Sample records for process technology program

  1. Balanced program plan: analysis for biomedical and environmental research. Volume 5. Oil shale technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    Oil shale technology has been divided into two sub-technologies: surfaceprocessing and in-situ processing. Definition of the research programs is essentially an amplification of the five King-Muir categories: (A) pollutants: characterization, measurement, and monitoring; (B) physical and chemical processes and effects; (C) health effects; (D) ecological processes and effects; and (E) integrated assessment. Twenty-three biomedical and environmental research projects are described as to program title, scope, milestones, technology time frame, program unit priority, and estimated program unit cost.

  2. BER balanced program plan: oil shale technology. [23 suggested biomedical and environmental research projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schulte, H.F.; Stoker, A.K.; Campbell, E.E.

    1976-06-01

    Oil shale technology has been divided into two sub-technologies: surface processing and in-situ processing. Definition of the research programs is essentially an amplification of the five King-Muir categories: (A) pollutants: characterization, measurement, and monitoring; (B) physical and chemical processes and effects; (C) health effects; (D) ecological processes and effects; and (E) integrated assessment. Twenty-three biomedical and environmental research projects are described as to program title, scope, milestones, technolgy time frame, program unit priority, and estimated program unit cost.

  3. Initiating the 2002 Mars Science Laboratory (MSL) Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.

  4. A Research Program on Artificial Intelligence in Process Engineering.

    ERIC Educational Resources Information Center

    Stephanopoulos, George

    1986-01-01

    Discusses the use of artificial intelligence systems in process engineering. Describes a new program at the Massachusetts Institute of Technology which attempts to advance process engineering through technological advances in the areas of artificial intelligence and computers. Identifies the program's hardware facilities, software support,…

  5. Physics of the Cosmos (PCOS) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Pham, B. Thai; Clampin, M.; Werneth, R. L.

    2014-01-01

    The Physics of the Cosmos (PCOS) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for PCOS Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the PCOS Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report include science missions and technology development for dark energy, gravitational waves, X-ray, and inflation probe science.

  6. NASA's Physics of the Cosmos and Cosmic Origins programs manage Strategic Astrophysics Technology (SAT) development

    NASA Astrophysics Data System (ADS)

    Pham, Thai; Thronson, Harley; Seery, Bernard; Ganel, Opher

    2016-07-01

    The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" "How did galaxies, stars, and planets come to be?" and "Are we alone?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos2 (PCOS), Cosmic Origins3 (COR), and Exoplanet Exploration Program4 (ExEP) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the Astrophysics Division's main investment method to mature technologies that will be identified by study teams set up to inform the 2020 Decadal Survey process on several large astrophysics mission concepts.

  7. Strengthening 4-H Program Communication through Technology

    ERIC Educational Resources Information Center

    Robideau, Kari; Santl, Karyn

    2011-01-01

    Advances in technology are transforming how youth and parents interact with programs. The Strengthening 4-H Communication through Technology project was implemented in eight county 4-H programs in Northwest Minnesota. This article outlines the intentional process used to effectively implement technology in program planning. The project includes:…

  8. A Conceptual Methodology for Assessing Acquisition Requirements Robustness against Technology Uncertainties

    NASA Astrophysics Data System (ADS)

    Chou, Shuo-Ju

    2011-12-01

    In recent years the United States has shifted from a threat-based acquisition policy that developed systems for countering specific threats to a capabilities-based strategy that emphasizes the acquisition of systems that provide critical national defense capabilities. This shift in policy, in theory, allows for the creation of an "optimal force" that is robust against current and future threats regardless of the tactics and scenario involved. In broad terms, robustness can be defined as the insensitivity of an outcome to "noise" or non-controlled variables. Within this context, the outcome is the successful achievement of defense strategies and the noise variables are tactics and scenarios that will be associated with current and future enemies. Unfortunately, a lack of system capability, budget, and schedule robustness against technology performance and development uncertainties has led to major setbacks in recent acquisition programs. This lack of robustness stems from the fact that immature technologies have uncertainties in their expected performance, development cost, and schedule that cause to variations in system effectiveness and program development budget and schedule requirements. Unfortunately, the Technology Readiness Assessment process currently used by acquisition program managers and decision-makers to measure technology uncertainty during critical program decision junctions does not adequately capture the impact of technology performance and development uncertainty on program capability and development metrics. The Technology Readiness Level metric employed by the TRA to describe program technology elements uncertainties can only provide a qualitative and non-descript estimation of the technology uncertainties. In order to assess program robustness, specifically requirements robustness, against technology performance and development uncertainties, a new process is needed. This process should provide acquisition program managers and decision-makers with the ability to assess or measure the robustness of program requirements against such uncertainties. A literature review of techniques for forecasting technology performance and development uncertainties and subsequent impacts on capability, budget, and schedule requirements resulted in the conclusion that an analysis process that coupled a probabilistic analysis technique such as Monte Carlo Simulations with quantitative and parametric models of technology performance impact and technology development time and cost requirements would allow the probabilities of meeting specific constraints of these requirements to be established. These probabilities of requirements success metrics can then be used as a quantitative and probabilistic measure of program requirements robustness against technology uncertainties. Combined with a Multi-Objective Genetic Algorithm optimization process and computer-based Decision Support System, critical information regarding requirements robustness against technology uncertainties can be captured and quantified for acquisition decision-makers. This results in a more informed and justifiable selection of program technologies during initial program definition as well as formulation of program development and risk management strategies. To meet the stated research objective, the ENhanced TEchnology Robustness Prediction and RISk Evaluation (ENTERPRISE) methodology was formulated to provide a structured and transparent process for integrating these enabling techniques to provide a probabilistic and quantitative assessment of acquisition program requirements robustness against technology performance and development uncertainties. In order to demonstrate the capabilities of the ENTERPRISE method and test the research Hypotheses, an demonstration application of this method was performed on a notional program for acquiring the Carrier-based Suppression of Enemy Air Defenses (SEAD) using Unmanned Combat Aircraft Systems (UCAS) and their enabling technologies. The results of this implementation provided valuable insights regarding the benefits and inner workings of this methodology as well as its limitations that should be addressed in the future to narrow the gap between current state and the desired state.

  9. Cryogenic Tank Technology Program (CTTP)

    NASA Technical Reports Server (NTRS)

    Vaughn, T. P.

    2001-01-01

    The objectives of the Cryogenic Tank Technology Program were to: (1) determine the feasibility and cost effectiveness of near net shape hardware; (2) demonstrate near net shape processes by fabricating large scale-flight quality hardware; and (3) advance state of current weld processing technologies for aluminum lithium alloys.

  10. Initiating the 2002 Mars Science Laboratory (MSL) Focused Technology Program

    NASA Technical Reports Server (NTRS)

    Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.

    2004-01-01

    The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to deliver a new generation of rover safely to the surface of Mars and conduct comprehensive in situ investigations using a new generation of instruments. This system will be designed to land with precision and be capable of operating over a large percentage on the surface of Mars. It will have capabilities that will support NASA's scientific goals into the next decade of exphation. The MSL Technology program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by the Jet Propulsion Laboratory (JPL) and is divided into a Focused Program and a Base Program. The Focused Technology Program addresses technologies that are specific and critical to near-term missions, while the Base Technology Program addresses those technologies that are applicable to multiple missions and which can be characterized as longer term, higher risk, and high payoff technologies. The MSL Technology Program is under the Focused Program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology s requirements and the development process are tightly coordinated with the Project. The Technology Program combines proven management techniques of flight projects with commercial and academic technology management strategies, to create a technology management program that meets the near-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment.

  11. NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Pham, Thai; Seery, Bernard; Ganel, Opher

    2016-01-01

    The strategic astrophysics missions of the coming decades will help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" Enabling these missions requires advances in key technologies far beyond the current state of the art. NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices manage technology maturation projects funded through the Strategic Astrophysics Technology (SAT) program to accomplish such advances. The PCOS and COR Program Offices, residing at the NASA Goddard Space Flight Center (GSFC), were established in 2011, and serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the Programs' technology development activities and the current technology investment portfolio of 23 technology advancements. We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The Programs' priorities are driven by strategic direction from the Astrophysics Division, which is informed by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) 2010 Decadal Survey report [1], the Astrophysics Implementation Plan (AIP) [2] as updated, and the Astrophysics Roadmap "Enduring Quests, Daring Visions" [3]. These priorities include technology development for missions to study dark energy, gravitational waves, X-ray and inflation probe science, and large far-infrared (IR) and ultraviolet (UV)/optical/IR telescopes to conduct imaging and spectroscopy studies. The SAT program is the Astrophysics Division's main investment method to mature technologies that will be identified by study teams set up to inform the 2020 Decadal Survey process on several large astrophysics mission concepts.

  12. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  13. NASA's Physics of the Cosmos and Cosmic Origins technology development programs

    NASA Astrophysics Data System (ADS)

    Clampin, Mark; Pham, Thai

    2014-07-01

    NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices, established in 2011, reside at the NASA Goddard Space Flight Center (GSFC). The offices serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the programs' technology development activities and technology investment portfolio, funded by NASA's Strategic Astrophysics Technology (SAT) program. We currently fund 19 technology advancements to enable future PCOS and COR missions to help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The programs' goal is to promote and support technology development needed to enable missions envisioned by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) Decadal Survey report [1] and the Astrophysics Implementation Plan (AIP) [2]. These include technology development for dark energy, gravitational waves, X-ray and inflation probe science, and a 4m-class UV/optical telescope to conduct imaging and spectroscopy studies, as a post-Hubble observatory with significantly improved sensitivity and capability.

  14. NASA's Physics of the Cosmos and Cosmic Origins Technology Development Programs

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Pham, Thai

    2014-01-01

    NASA's Physics of the Cosmos (PCOS) and Cosmic Origins (COR) Program Offices, established in 2011, reside at the NASA Goddard Space Flight Center (GSFC). The offices serve as the implementation arm for the Astrophysics Division at NASA Headquarters. We present an overview of the programs' technology development activities and technology investment portfolio, funded by NASA's Strategic Astrophysics Technology (SAT) program. We currently fund 19 technology advancements to enable future PCOS and COR missions to help answer the questions "How did our universe begin and evolve?" and "How did galaxies, stars, and planets come to be?" We discuss the process for addressing community-provided technology gaps and Technology Management Board (TMB)-vetted prioritization and investment recommendations that inform the SAT program. The process improves the transparency and relevance of our technology investments, provides the community a voice in the process, and promotes targeted external technology investments by defining needs and identifying customers. The programs' goal is to promote and support technology development needed to enable missions envisioned by the National Research Council's (NRC) "New Worlds, New Horizons in Astronomy and Astrophysics" (NWNH) Decadal Survey report [1] and the Astrophysics Implementation Plan (AIP) [2]. These include technology development for dark energy, gravitational waves, X-ray and inflation probe science, and a 4m-class UV/optical telescope to conduct imaging and spectroscopy studies, as a post-Hubble observatory with significantly improved sensitivity and capability.

  15. Outcomes from a postgraduate biomedical technology innovation training program: the first 12 years of Stanford Biodesign.

    PubMed

    Brinton, Todd J; Kurihara, Christine Q; Camarillo, David B; Pietzsch, Jan B; Gorodsky, Julian; Zenios, Stefanos A; Doshi, Rajiv; Shen, Christopher; Kumar, Uday N; Mairal, Anurag; Watkins, Jay; Popp, Richard L; Wang, Paul J; Makower, Josh; Krummel, Thomas M; Yock, Paul G

    2013-09-01

    The Stanford Biodesign Program began in 2001 with a mission of helping to train leaders in biomedical technology innovation. A key feature of the program is a full-time postgraduate fellowship where multidisciplinary teams undergo a process of sourcing clinical needs, inventing solutions and planning for implementation of a business strategy. The program places a priority on needs identification, a formal process of selecting, researching and characterizing needs before beginning the process of inventing. Fellows and students from the program have gone on to careers that emphasize technology innovation across industry and academia. Biodesign trainees have started 26 companies within the program that have raised over $200 million and led to the creation of over 500 new jobs. More importantly, although most of these technologies are still at a very early stage, several projects have received regulatory approval and so far more than 150,000 patients have been treated by technologies invented by our trainees. This paper reviews the initial outcomes of the program and discusses lessons learned and future directions in terms of training priorities.

  16. Two Inseparable Facets of Technology Integration Programs: Technology and Theoretical Framework

    ERIC Educational Resources Information Center

    Demir, Servet

    2011-01-01

    This paper considers the process of program development aiming at technology integration for teachers. For this consideration, the paper focused on an integration program which was recently developed as part of a larger project. The participants of this program were 45 in-service teachers. The program continued four weeks and the conduct of the…

  17. High area rate reconnaissance (HARR) and mine reconnaissance/hunter (MR/H) exploratory development programs

    NASA Astrophysics Data System (ADS)

    Lathrop, John D.

    1995-06-01

    This paper describes the sea mine countermeasures developmental context, technology goals, and progress to date of the two principal Office of Naval Research exploratory development programs addressing sea mine reconnaissance and minehunting technology development. The first of these programs, High Area Rate Reconnaissance, is developing toroidal volume search sonar technology, sidelooking sonar technology, and associated signal processing technologies (motion compensation, beamforming, and computer-aided detection and classification) for reconnaissance and hunting against volume mines and proud bottom mines from 21-inch diameter vehicles operating in deeper waters. The second of these programs, Amphibious Operation Area Mine Reconnaissance/Hunter, is developing a suite of sensor technologies (synthetic aperture sonar, ahead-looking sonar, superconducting magnetic field gradiometer, and electro-optic sensor) and associated signal processing technologies for reconnaissance and hunting against all mine types (including buried mines) in shallow water and very shallow water from 21-inch diameter vehicles. The technologies under development by these two programs must provide excellent capabilities for mine detection, mine classification, and discrimination against false targets.

  18. Data Processing Technology, A Suggested 2-Year Post High School Curriculum.

    ERIC Educational Resources Information Center

    Central Texas Coll., Killeen.

    This guide identifies technicians, states specific job requirements, and describes special problems in defining, initiating, and operating post-high school programs in data processing technology. The following are discussed: (1) the program (employment opportunities, the technician, work performed by data processing personnel, the faculty, student…

  19. 76 FR 30696 - Technology Evaluation Process

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ...-NOA-0039] Technology Evaluation Process AGENCY: Office of Energy Efficiency and Renewable Energy... (DOE) seeks comments and information related to a commercial buildings technology evaluation process... technologies for commercial buildings based on the voluntary submittal of product test data. The program would...

  20. Albuquerque Operations Office, Albuquerque, New Mexico: Technology summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-08-01

    This document has been prepared by the Department of Energy`s (DOE) Environmental Management (EM) Office of Technology Development (OTD) in order to highlight research, development, demonstration, testing, and evaluation (RDDT&E) activities funded through the Albuquerque Operations Office. Technologies and processes described have the potential to enhance DOE`s cleanup and waste management efforts, as well as improve US industry`s competitiveness in global environmental markets. The information has been assembled from recently produced OTD documents that highlight technology development activities within each of the OTD program elements. These integrated program summaries include: Volatile Organic Compounds in Non-Arid Soils, Volatile Organic Compounds inmore » Arid Soils, Mixed Waste Landfill Integrated Demonstration, Uranium in Soils Integrated Demonstration, Characterization, Monitoring, and Sensor Technology, In Situ Remediation, Buried Waste Integrated Demonstration, Underground Storage Tank, Efficient Separations and Processing, Mixed Waste Integrated Program, Rocky Flats Compliance Program, Pollution Prevention Program, Innovation Investment Area, and Robotics Technology.« less

  1. MANTECH project book

    NASA Astrophysics Data System (ADS)

    The effective integration of processes, systems, and procedures used in the production of aerospace systems using computer technology is managed by the Integration Technology Division (MTI). Under its auspices are the Information Management Branch, which is actively involved with information management, information sciences and integration, and the Implementation Branch, whose technology areas include computer integrated manufacturing, engineering design, operations research, and material handling and assembly. The Integration Technology Division combines design, manufacturing, and supportability functions within the same organization. The Processing and Fabrication Division manages programs to improve structural and nonstructural materials processing and fabrication. Within this division, the Metals Branch directs the manufacturing methods program for metals and metal matrix composites processing and fabrication. The Nonmetals Branch directs the manufacturing methods programs, which include all manufacturing processes for producing and utilizing propellants, plastics, resins, fibers, composites, fluid elastomers, ceramics, glasses, and coatings. The objective of the Industrial Base Analysis Division is to act as focal point for the USAF industrial base program for productivity, responsiveness, and preparedness planning.

  2. Research and technology, 1984: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Moorehead, T. W. (Editor)

    1984-01-01

    The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

  3. Vehicle Technologies Program Awards and Patents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-12-13

    Award-winning technologies and processes are hallmarks of the programs funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, and industrial partners. Awards, patents, and other recognition validate the products of research undertaken as part of the Vehicle Technologies Program.

  4. Introduction of new technologies and decision making processes: a framework to adapt a Local Health Technology Decision Support Program for other local settings.

    PubMed

    Poulin, Paule; Austen, Lea; Scott, Catherine M; Poulin, Michelle; Gall, Nadine; Seidel, Judy; Lafrenière, René

    2013-01-01

    Introducing new health technologies, including medical devices, into a local setting in a safe, effective, and transparent manner is a complex process, involving many disciplines and players within an organization. Decision making should be systematic, consistent, and transparent. It should involve translating and integrating scientific evidence, such as health technology assessment (HTA) reports, with context-sensitive evidence to develop recommendations on whether and under what conditions a new technology will be introduced. However, the development of a program to support such decision making can require considerable time and resources. An alternative is to adapt a preexisting program to the new setting. We describe a framework for adapting the Local HTA Decision Support Program, originally developed by the Department of Surgery and Surgical Services (Calgary, AB, Canada), for use by other departments. The framework consists of six steps: 1) development of a program review and adaptation manual, 2) education and readiness assessment of interested departments, 3) evaluation of the program by individual departments, 4) joint evaluation via retreats, 5) synthesis of feedback and program revision, and 6) evaluation of the adaptation process. Nine departments revised the Local HTA Decision Support Program and expressed strong satisfaction with the adaptation process. Key elements for success were identified. Adaptation of a preexisting program may reduce duplication of effort, save resources, raise the health care providers' awareness of HTA, and foster constructive stakeholder engagement, which enhances the legitimacy of evidence-informed recommendations for introducing new health technologies. We encourage others to use this framework for program adaptation and to report their experiences.

  5. Defense Science Board Task Force on The Manufacturing Technology Program: A Key to Affordably Equipping the Future Force

    DTIC Science & Technology

    2006-02-01

    technology for cost and risk reduction of products, software, and processes; long-term, multi-Service needs; and disruptive technologies , both...initiatives and for disruptive technologies , the Office of the Secretary of Defense (OSD) can better promote the importance and value of the program...multi- Service programs, research in “ disruptive ” technologies , and SBIR programs. Balance current, near term, and future needs as well as small and

  6. Technology transfer

    NASA Technical Reports Server (NTRS)

    Handley, Thomas

    1992-01-01

    The requirements for a successful technology transfer program and what such a program would look like are discussed. In particular, the issues associated with technology transfer in general, and within the Jet Propulsion Laboratory (JPL) environment specifically are addressed. The section on background sets the stage, identifies the barriers to successful technology transfer, and suggests actions to address the barriers either generally or specifically. The section on technology transfer presents a process with its supporting management plan that is required to ensure a smooth transfer process. Viewgraphs are also included.

  7. Advanced technologies for NASA space programs

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    1991-01-01

    A review of the technology requirements for future space programs is presented. The technologies are emphasized with a discussion of their mission impact. Attention is given to automation and robotics, materials, information acquisition/processing display, nano-electronics/technology, superconductivity, and energy generation and storage.

  8. Intelligent Processing Equipment Developments Within the Navy's Manufacturing Technology Centers of Excellence

    NASA Technical Reports Server (NTRS)

    Nanzetta, Philip

    1992-01-01

    The U.S. Navy has had an active Manufacturing Technology (MANTECH) Program aimed at developing advanced production processes and equipment since the late-1960's. During the past decade, however, the resources of the MANTECH program were concentrated in Centers of Excellence. Today, the Navy sponsors four manufacturing technology Centers of Excellence: the Automated Manufacturing Research Facility (AMRF); the Electronics Manufacturing Productivity Facility (EMPF); the National Center for Excellence in Metalworking Technology (NCEMT); and the Center of Excellence for Composites Manufacturing Technology (CECMT). This paper briefly describes each of the centers and summarizes typical Intelligent Equipment Processing (IEP) projects that were undertaken.

  9. RESEARCH AND TECHNOLOGY DIVISION REPORT FOR 1966.

    ERIC Educational Resources Information Center

    BAUM, C.

    THE WORK OF THE RESEARCH AND TECHNOLOGY DIVISION OF SYSTEM DEVELOPMENT CORPORATION DURING 1966 IS REPORTED. THE PROGRESS OF VARIOUS STUDIES AND ACTIVITIES DISCUSSED IN THE REPORT WERE ADVANCED PROGRAMING, INFORMATION PROCESSING RESEARCH, PROGRAMING SYSTEMS, DATA BASE SYSTEMS. LANGUAGE PROCESSING AND RETRIEVAL, BEHAVIORAL GAMING AND SIMULATION…

  10. Spinoff, 1991

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1991-01-01

    This is an instrument of the Technology Utilization Program and is designed to heighten awareness of the technology available for transfer and its potential for public benefit. NASA's mainline programs, whose objectives require development of new technology and therefore expand the bank of technology available for transfer in future years, are summarized. Focus is on the representative sampling of spinoffs (spinoff, in this context, means products and processes developed as secondary applications of existing NASA technology) that resulted from NASA's mainline programs. The various mechanisms NASA employs to stimulate technology transfer are described and contact sources are listed in the appendix for further information about the Technology Utilization Program.

  11. Technology advancements for the U.S. manned Space Station - An overview

    NASA Technical Reports Server (NTRS)

    Simon, William E.

    1987-01-01

    The structure and methodology of the Johnson Space Center (JSC) advanced development program is described. An overview of the program is given, and the technology transfer process to other disciplines is described. The test bed and flight experiment programs are described, as is the technology assessment which was performed at the end of the Phase B program. The technology program within each discipline is summarized, and the coordination and integration of the JSC program with the activities of other NASA centers and with work package contractors are discussed.

  12. Making Technology Ready: Integrated Systems Health Management

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Oliver, Patrick J.

    2007-01-01

    This paper identifies work needed by developers to make integrated system health management (ISHM) technology ready and by programs to make mission infrastructure ready for this technology. This paper examines perceptions of ISHM technologies and experience in legacy programs. Study methods included literature review and interviews with representatives of stakeholder groups. Recommendations address 1) development of ISHM technology, 2) development of ISHM engineering processes and methods, and 3) program organization and infrastructure for ISHM technology evolution, infusion and migration.

  13. Application of dynamic milling in stainless steel processing

    NASA Astrophysics Data System (ADS)

    Shan, Wenju

    2017-09-01

    This paper mainly introduces the method of parameter setting for NC programming of stainless steel parts by dynamic milling. Stainless steel is of high plasticity and toughness, serious hard working, large cutting force, high temperature in cutting area and easy wear of tool. It is difficult to process material. Dynamic motion technology is the newest NC programming technology of Mastercam software. It is an advanced machining idea. The tool path generated by the dynamic motion technology is more smooth, more efficient and more stable in the machining process. Dynamic motion technology is very suitable for cutting hard machining materials.

  14. A Survey of Computer Use in Associate Degree Programs in Engineering Technology.

    ERIC Educational Resources Information Center

    Cunningham, Pearley

    As part of its annual program review process, the Department of Engineering Technology at the Community College of Allegheny County, in Pennsylvania, conducted a study of computer usage in community college engineering technology programs across the nation. Specifically, the study sought to determine the types of software, Internet access, average…

  15. Harvard University Program on Technology and Society; Fifth Annual Report, 1968-1969.

    ERIC Educational Resources Information Center

    Mesthene, Emmanuel G.

    The fifth annual report of Harvard University's Program on Technology and Society describes current research in the Program's major areas of concentration--namely the effects of technological change on the life of the individual in society, social and individual values, the political organization of society, and the structure and processes of…

  16. Evidence-Based Medicine and State Health Care Coverage: The Washington Health Technology Assessment Program.

    PubMed

    Rothman, David J; Blackwood, Kristy L; Adair, Whitney; Rothman, Sheila M

    2018-04-01

    To evaluate the Washington State Health Technology Assessment Program (WHTAP). Washington State Health Technology Assessment Program proceedings in Seattle, Washington. We assessed the program through observation of its proceedings over a 5-year period, 2009-2014. We conducted detailed analyses of the documents it produced and reviewed relevant literature. Washington State Health Technology Assessment Program is unique compared to other state and federal programs. It has successfully applied evidence-based medicine to health care decision making, limited by the strength of available data. It claims cost savings, but they are not substantiated. Washington State Health Technology Assessment Program is a useful model for other states considering implementation of technology assessment programs. We provide key lessons for improving WHTAP's process. © Health Research and Educational Trust.

  17. Cosmic Origins (COR) Technology Development Program Overview

    NASA Astrophysics Data System (ADS)

    Werneth, Russell; Pham, B.; Clampin, M.

    2014-01-01

    The Cosmic Origins (COR) Program Office was established in FY11 and resides at the NASA Goddard Space Flight Center (GSFC). The office serves as the implementation arm for the Astrophysics Division at NASA Headquarters for COR Program related matters. We present an overview of the Program’s technology management activities and the Program’s technology development portfolio. We discuss the process for addressing community-provided technology needs and the Technology Management Board (TMB)-vetted prioritization and investment recommendations. This process improves the transparency and relevance of technology investments, provides the community a voice in the process, and leverages the technology investments of external organizations by defining a need and a customer. Goals for the COR Program envisioned by the National Research Council’s (NRC) “New Worlds, New Horizons in Astronomy and Astrophysics” (NWNH) Decadal Survey report includes a 4m-class UV/optical telescope that would conduct imaging and spectroscopy as a post-Hubble observatory with significantly improved sensitivity and capability, a near-term investigation of NASA participation in the Japanese Aerospace Exploration Agency/Institute of Space and Astronautical Science (JAXA/ISAS) Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission, and future Explorers.

  18. Materials processing in space program tasks-supplement

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1983-01-01

    An overview of the program scope for managers and scientists in industry, university, and government communities is provided. An introductory description of the program, its history, strategy, and overall goals; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications are included. The tasks are grouped into six categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies; combustion experiments; and experimental technology.

  19. FOOD PROCESSING TECHNOLOGY, A SUGGESTED 2-YEAR POST HIGH SCHOOL CURRICULUM.

    ERIC Educational Resources Information Center

    KNOEBEL, ROBERT M.; AND OTHERS

    ADMINISTRATORS, ADVISORY COMMITTEES, SUPERVISORS, AND TEACHERS MAY USE THIS GUIDE IN PLANNING AND DEVELOPING NEW PROGRAMS OR EVALUATING EXISTING PROGRAMS IN POST-HIGH SCHOOL FOOD PROCESSING TECHNOLOGY. BASIC MATERIALS WERE PREPARED BY THE STATE UNIVERSITY OF NEW YORK AGRICULTURAL AND TECHNICAL COLLEGE AT MORRISVILLE AND FINAL PREPARATION WAS…

  20. 76 FR 31272 - Permanent Certification Program for Health Information Technology; Revisions to ONC-Approved...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-31

    ... Permanent Certification Program for Health Information Technology; Revisions to ONC-Approved Accreditor Processes AGENCY: Office of the National Coordinator for Health Information Technology (ONC), Department of... Coordinator for Health Information Technology (the National Coordinator) by section 3001(c)(5) of the Public...

  1. 76 FR 72636 - Permanent Certification Program for Health Information Technology; Revisions to ONC-Approved...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-25

    ... Permanent Certification Program for Health Information Technology; Revisions to ONC-Approved Accreditor Processes AGENCY: Office of the National Coordinator for Health Information Technology (ONC), Department of... Coordinator for Health Information Technology by section 3001(c)(5) of the Public Health Service Act (PHSA) as...

  2. Machine vision 1992-1996: technology program to promote research and its utilization in industry

    NASA Astrophysics Data System (ADS)

    Soini, Antti J.

    1994-10-01

    Machine vision technology has got a strong interest in Finnish research organizations, which is resulting in many innovative products to industry. Despite this end users were very skeptical towards machine vision and its robustness for harsh industrial environments. Therefore Technology Development Centre, TEKES, who funds technology related research and development projects in universities and individual companies, decided to start a national technology program, Machine Vision 1992 - 1996. Led by industry the program boosts research in machine vision technology and seeks to put the research results to work in practical industrial applications. The emphasis is in nationally important, demanding applications. The program will create new industry and business for machine vision producers and encourage the process and manufacturing industry to take advantage of this new technology. So far 60 companies and all major universities and research centers are working on our forty different projects. The key themes that we have are process control, robot vision and quality control.

  3. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less

  4. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less

  5. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less

  6. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less

  7. Coal Mining Technology, An Innovative Program.

    ERIC Educational Resources Information Center

    Wabash Valley Coll., Mt. Carmel, IL.

    Described in detail in this report are the processes and procedures involved in the development of a State funded curriculum and program for a new emerging technology, in this instance a Coal Mining Technology Program, to be taught at Wabash Valley College in Illinois. The document provides a step-by-step account of the determination of need,…

  8. A Successful Infusion Process for Enabling Lunar Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Over, Ann P.; Klem, Mark K.; Motil, Susan M.

    2008-01-01

    The NASA Vision for Space Exploration begins with a more reliable flight capability to the International Space Station and ends with sending humans to Mars. An important stepping stone on the path to Mars encompasses human missions to the Moon. There is little doubt throughout the stakeholder community that new technologies will be required to enable this Vision. However, there are many factors that influence the ability to successfully infuse any technology including the technical risk, requirement and development schedule maturity, and, funds available. This paper focuses on effective infusion processes that have been used recently for the technologies in development for the lunar exploration flight program, Constellation. Recent successes with Constellation customers are highlighted for the Exploration Technology Development Program (ETDP) Projects managed by NASA Glenn Research Center (GRC). Following an overview of the technical context of both the flight program and the technology capability mapping, the process is described for how to effectively build an integrated technology infusion plan. The process starts with a sound risk development plan and is completed with an integrated project plan, including content, schedule and cost. In reality, the available resources for this development are going to change over time, necessitating some level of iteration in the planning. However, the driving process is based on the initial risk assessment, which changes only when the overall architecture changes, enabling some level of stability in the process.

  9. 45 CFR 170.504 - Reconsideration process for requests for ONC-AA status.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... status. 170.504 Section 170.504 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH INFORMATION TECHNOLOGY HEALTH INFORMATION TECHNOLOGY STANDARDS, IMPLEMENTATION SPECIFICATIONS, AND CERTIFICATION CRITERIA AND CERTIFICATION PROGRAMS FOR HEALTH INFORMATION TECHNOLOGY Permanent Certification Program for HIT...

  10. 45 CFR 170.504 - Reconsideration process for requests for ONC-AA status.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... status. 170.504 Section 170.504 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH INFORMATION TECHNOLOGY HEALTH INFORMATION TECHNOLOGY STANDARDS, IMPLEMENTATION SPECIFICATIONS, AND CERTIFICATION CRITERIA AND CERTIFICATION PROGRAMS FOR HEALTH INFORMATION TECHNOLOGY Permanent Certification Program for HIT...

  11. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.

    1992-08-01

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximatelymore » 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.« less

  12. 15 CFR 296.22 - Award criteria.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION PROGRAM The Competition Process § 296.22 Award criteria. NIST must determine that a proposal successfully meets all of the...

  13. 15 CFR 296.22 - Award criteria.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION PROGRAM The Competition Process § 296.22 Award criteria. NIST must determine that a proposal successfully meets all of the...

  14. 15 CFR 296.22 - Award criteria.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION PROGRAM The Competition Process § 296.22 Award criteria. NIST must determine that a proposal successfully meets all of the...

  15. 15 CFR 296.22 - Award criteria.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS TECHNOLOGY INNOVATION PROGRAM The Competition Process § 296.22 Award criteria. NIST must determine that a proposal successfully meets all of the...

  16. Process compressor technology. Volume 2: TI-59 manual for estimating centrifugal compressor performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapina, R.P.

    1983-01-01

    This volume provides the performance-estimating procedures of Volume 1 in the from of calculator programs. Each chapter contains one program and is divided into five parts: the background (which develops the technology and equations); the program description; user instructions; sample problems; and the program listing. More than 25 programs are included.

  17. Shuttle Ground Operations Efficiencies/Technologies (SGOE/T) study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Scholz, A. L.; Hart, M. T.; Lowry, D. J.

    1987-01-01

    Methods and technolgoy were defined to reduce the overall operations cost of a major space program. Space Shuttle processing at Kennedy Space Center (KSC) was designed as the working model that would be the source of the operational information. Methods of improving efficiency of ground operations were assessed and technology elements that could reduce cost identified. Emphasis is on: (1) specific technology items and (2) management approaches required to develop and support efficient ground operations. Prime study results are to be recommendations on how to achieve more efficient operations and identification of existing or new technology that would make vehicle processing in both the current program and future programs more efficient and, therefore, less costly.

  18. Exemplar Practices for Department of Defense Technology Transfer

    DTIC Science & Technology

    2013-01-01

    2):176–183. Ruegg, R. 2000. “Delivering Public Benefits with Private-Sector Efficiency.” In Advanced Technology Program : Assessing Outcomes, edited ...The literature identified the following critical factors for a successful technology transfer program : an effective ORTA, engaged researchers, well...experts, and stakeholders. These interviews were held between June and September 2012. Programs and processes identified during the discussions

  19. 45 CFR 170.504 - Reconsideration process for requests for ONC-AA status.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... status. 170.504 Section 170.504 Public Welfare Department of Health and Human Services HEALTH INFORMATION TECHNOLOGY HEALTH INFORMATION TECHNOLOGY STANDARDS, IMPLEMENTATION SPECIFICATIONS, AND CERTIFICATION CRITERIA AND CERTIFICATION PROGRAMS FOR HEALTH INFORMATION TECHNOLOGY ONC HIT Certification Program § 170.504...

  20. 45 CFR 170.504 - Reconsideration process for requests for ONC-AA status.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... status. 170.504 Section 170.504 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES HEALTH INFORMATION TECHNOLOGY HEALTH INFORMATION TECHNOLOGY STANDARDS, IMPLEMENTATION SPECIFICATIONS, AND CERTIFICATION CRITERIA AND CERTIFICATION PROGRAMS FOR HEALTH INFORMATION TECHNOLOGY ONC HIT Certification Program § 170.504...

  1. Mars Science Laboratory Focused Technology Program Overview

    NASA Technical Reports Server (NTRS)

    Udomkesmalee, Gabriel Souraphol; Hayati, Samad A.

    2005-01-01

    This paper describes how the MSL-FT program functions to ensure that the needed technology is identified, developed, matured to TRL 6, and infused in the MSL mission, in a systematic fashion that will meet the mission's objectives innovatively and within budget. The paper describes the mission's technical and project challenges, and outlines the process, procedures, tools and people involved in meeting those challenges. The paper also discusses the technology certification process required to demonstrate that technology deliverables perform adequately and in a predictable fashion to successful infusion into the MSL Flight System.

  2. Digital Denture Fabrication in Pre- and Postdoctoral Education: A Survey of U.S. Dental Schools.

    PubMed

    Fernandez, Monica A; Nimmo, Arthur; Behar-Horenstein, Linda S

    2016-01-01

    To survey chairs of prosthodontics or restorative departments and program directors of postdoctoral prosthodontic programs in the United States regarding digital denture fabrication. The key objectives of the survey were to identify the current trends in complete denture fabrication using CAD/CAM technology and to determine how and to what extent this technique is taught and used in U.S. pre- and postdoctoral prosthodontic programs. An invitation to participate in an online survey was sent to 52 prosthodontics/restorative chairs of U.S. dental schools and to all of the 50 program directors of postdoctoral prosthodontics programs. A version of the survey with the same questions was sent to a national sample of prosthodontics/restorative chairs and program directors of postdoctoral prosthodontics. The 20-item survey took approximately 15 minutes to complete. Dependent samples paired t-test was run on items that were the same in both surveys. The response rate for the survey was 63% for department chairs and 44% for program directors. All respondents with the exception of one department chair were aware of CAD/CAM technology used for denture fabrication. More than half of the program directors (52.4%) compared to 12.1% of chairs have incorporated some aspects of CAD/CAM denture fabrication technology into their curriculum. When asked if the fabrication cost prevented introducing this technology in the predoctoral/postdoctoral curriculum, 52.4% of the department chairs affirmed this response compared to 12.1% of the program directors. There was a significant difference between groups when asked if they had incorporated the CAD/CAM denture fabrication technique into the postgraduate/predoctoral curriculum. Department chairs reported less usage of CAD/CAM technology. Only 12.1% of department chairs reported using some aspects of CAD/CAM technology in the predoctoral curriculum compared to 52.4% in the postdoctoral curriculum (F = 13.528, p ≤ 0.001). While this technology is used in four predoctoral clinics, none of the chairs reported including CAD/CAM denture fabrication in their preclinical complete denture courses. For the schools using the technology, 33.3% of postdoctoral and 30.3% of predoctoral programs use it to make a denture with a try-in step; however, 19% of the postdoctoral and 18.2% of predoctoral programs process the dentures without a try-in appointment. Slightly less than half (42.9%) of graduate programs are using the technology to make just the denture bases. Only a small proportion (10% or less) of the total number of dentures processed in post- and predoctoral programs are made using CAD/CAM technology. The proportion of postdoctoral programs that process cases using CAD/CAM technology was significantly higher than in predoctoral programs (F = 5.106, p ≤ 0.028). Many schools indicated that they are in a "trial phase" to evaluate the technique, especially at the predoctoral level. Also, 19% (n = 4) of postdoctoral and 15.2% (n = 5) of predoctoral respondents have created continuing education courses. Of postdoctoral programs, 38.1% (n = 8) plan to introduce this technology at some point in the near future (next 1 to 4 years); 27.3% of predoctoral programs plan to as well. All program directors and department chairs who participated in the survey are aware of this technology with the exception of one department chair. More than half of the program directors reported that they have incorporated this technology in their curricula compared to only 12% of department chairs. Currently, only 10% or less of complete denture cases are processed using the CAD/CAM technology, at either the post- or predoctoral levels. Both groups reported that the main use of this technology is for the fabrication of denture bases and for processing dentures including the try-in step. The majority of respondents in both groups indicated they plan to add digital denture fabrication into their curricula within the next 1 to 4 years. © 2015 by the American College of Prosthodontists.

  3. Technology Demonstration Summary, Chemfix Solidification/Stabilization Process, Clackamas, Oregon

    EPA Science Inventory

    ChemfIx's* patented stabilization/solidification technology was demonstrated at the Portable Equipment Salvage Company (PESC) site in Clackamas, Oregon, as part of the Superfund Innovative Technology Evaluation (SITE) program. The Chemfix process is designed to solidify and sta...

  4. Research and Analysis of Image Processing Technologies Based on DotNet Framework

    NASA Astrophysics Data System (ADS)

    Ya-Lin, Song; Chen-Xi, Bai

    Microsoft.Net is a kind of most popular program development tool. This paper gave a detailed analysis concluded about some image processing technologies of the advantages and disadvantages by .Net processed image while the same algorithm is used in Programming experiments. The result shows that the two best efficient methods are unsafe pointer and Direct 3D, and Direct 3D used to 3D simulation development, and the others are useful in some fields while these technologies are poor efficiency and not suited to real-time processing. The experiment results in paper will help some projects about image processing and simulation based DotNet and it has strong practicability.

  5. Listening Technologies for Individuals and the Classroom

    ERIC Educational Resources Information Center

    Marttila, Joan

    2004-01-01

    Assistive technology has always been an important component of individualized education programs. The individualized education program process can be used to supply hearing assistive technology to students. One goal of audiologists and educators is to improve the acoustic environment of classrooms for all students by constructing school buildings…

  6. Double Infusion: Toward a Process of Articulation between Critical Multicultural Education and Technology Education in a Teacher Preparation Program

    ERIC Educational Resources Information Center

    McShay, James

    2005-01-01

    This paper describes the goals of critical multicultural education in the USA and identifies current challenges working to impede its infusion within technology teacher education programs. It offers both technology and multicultural teacher educators a model for infusion of both critical multicultural perspectives and technology into their…

  7. Library Services and Technology Act: Five-Year Program Evaluation Report for the State of Utah, 1998-2002.

    ERIC Educational Resources Information Center

    Utah State Library Div., Salt Lake City. Dept. of Community and Economic Development.

    This document presents the evaluation report for Utah's Library Services and Technology Act (LSTA) program for 1998-2002. Part I, "Executive Summary," describes the evaluation study process and summarizes recommendations related to goals in the following areas: (1) basic library technology; (2) enhanced library technology; (3) PIONEER:…

  8. OAST Technology for the Future. Executive Summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program (IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the space environment. A secondary objective was to review the current NASA (In-Reach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  9. Technology Needs to Support Future Mars Exploration

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.; Baker, John; Lillard, Randolph P.

    2013-01-01

    The Mars Program Planning Group (MPPG) under the direction of Dr. Orlando Figueroa, was chartered to develop options for a program-level architecture for robotic exploration of Mars consistent with the objective to send humans to Mars in the 2030's. Scientific pathways were defined for future exploration, and multiple architectural options were developed that meet current science goals and support the future human exploration objectives. Integral to the process was the identification of critical technologies which enable the future scientific and human exploration goals. This paper describes the process for technology capabilities identification and examines the critical capability needs identified in the MPPG process. Several critical enabling technologies that have been identified to support the robotic exploration goals and with potential feedforward application to human exploration goals. Potential roadmaps for the development and validation of these technologies are discussed, including options for subscale technology demonstrations of future human exploration technologies on robotic missions.

  10. AMTEC: a cooperative effort in medical technology education.

    PubMed

    Beiermann, M K; Coggeshall, M; Gavin, M L; Laughlin, P; Palermo, J; Torrey, J A; Weidner, J

    1978-04-01

    A committee in the St. Louis Metropolitan area has been established to promote communication and cooperation among the area's existing hospital-based programs in medical technology. Area Medical Technology Education Coordinators (AMTEC) was established three years ago primarily to facilitate the administrative functions of medical technology education and to serve as an instrument for the exchange of ideas. Its primary undertaking has been the central processing of applications to the area programs, as an aid in the admission process. In addition, a continuing education program sponsored by the committee has been established, and various "curriculum sharing" activities have been sponsored for the students enrolled in the schools. Future plans for the committee include sponsoring an on-going evaluation process of graduates by employers, and establishing a criterion-referenced question pool. The authors describe the experiences of the committee to date and plans for the implementation of future goals.

  11. NASA information sciences and human factors program

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Data Systems Program consists of research and technology devoted to controlling, processing, storing, manipulating, and analyzing space-derived data. The objectives of the program are to provide the technology advancements needed to enable affordable utilization of space-derived data, to increase substantially the capability for future missions of on-board processing and recording and to provide high-speed, high-volume computational systems that are anticipated for missions such as the evolutionary Space Station and Earth Observing System.

  12. Evaluating Technology Integration in the Elementary School: A Site-Based Approach.

    ERIC Educational Resources Information Center

    Mowe, Richard

    This book enables educators at the elementary level to conduct formative evaluations of their technology programs in minimum time. Most of the technology is computer related, including word processing, graphics, desktop publishing, spreadsheets, databases, instructional software, programming, and telecommunications. The design of the book is aimed…

  13. Examining the potential of information technology to improve public insurance application processes: enrollee assessments from a concurrent mixed method analysis.

    PubMed

    Mishra, Abhay Nath; Ketsche, Patricia; Marton, James; Snyder, Angela; McLaren, Susan

    2014-01-01

    To assess the perceived readiness of Medicaid and Children's Health Insurance Program (CHIP) enrollees to use information technologies (IT) in order to facilitate improvements in the application processes for these public insurance programs. We conducted a concurrent mixed method study of Medicaid and CHIP enrollees in a southern state. We conducted focus groups to identify enrollee concerns regarding the current application process and their IT proficiency. Additionally, we surveyed beneficiaries via telephone about their access to and use of the Internet, and willingness to adopt IT-enabled processes. 2013 households completed the survey. We used χ(2) analysis for comparisons across different groups of respondents. A majority of enrollees will embrace IT-enabled enrollment, but a small yet significant group continues to lack access to facilitating technologies. Moreover, a segment of beneficiaries in the two programs continues to place a high value on personal interactions with program caseworkers. IT holds the promise of improving efficiency and reducing barriers for enrollees, but state and federal agencies managing public insurance programs need to ensure access to traditional processes and make caseworkers available to those who require and value such assistance, even after implementing IT-enabled processes. The use of IT-enabled processes is essential for effectively managing eligibility and enrollment determinations for public programs and private plans offered through state or federally operated exchanges. However, state and federal officials should be cognizant of the technological readiness of recipients and provide offline help to ensure broad participation in the insurance market. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. MLS student active learning within a "cloud" technology program.

    PubMed

    Tille, Patricia M; Hall, Heather

    2011-01-01

    In November 2009, the MLS program in a large public university serving a geographically large, sparsely populated state instituted an initiative for the integration of technology enhanced teaching and learning within the curriculum. This paper is intended to provide an introduction to the system requirements and sample instructional exercises used to create an active learning technology-based classroom. Discussion includes the following: 1.) define active learning and the essential components, 2.) summarize teaching methods, technology and exercises utilized within a "cloud" technology program, 3.) describe a "cloud" enhanced classroom and programming 4.) identify active learning tools and exercises that can be implemented into laboratory science programs, and 5.) describe the evaluation and assessment of curriculum changes and student outcomes. The integration of technology in the MLS program is a continual process and is intended to provide student-driven active learning experiences.

  15. User needs as a basis for advanced technology. [U.S. civil space program

    NASA Technical Reports Server (NTRS)

    Mankins, John C.; Reck, Gregory M.

    1992-01-01

    The NASA Integrated Technology Plan (ITP) is described with treatment given to the identification of U.S. technology needs, space research and technology programs, and some ITP implementations. The ITP is based on the development and transfer of technologies relevant to the space program that also have significant implications for general technological research. Among the areas of technological research identified are: astrophysics, earth sciences, microgravity, and space physics. The Office of Space Science and Applications prioritizes the technology needs in three classes; the highest priority is given to submm and microwave technologies for earth sciences and astrophysics study. Other government and commercial needs are outlined that include cryogenic technologies, low-cost engines, advanced data/signal processing, and low-cost ELVs. It is demonstrated that by identifying and addressing these areas of user technology needs NASA's research and technology program can enhance U.S. trade and industrial competitiveness.

  16. CICT Computing, Information, and Communications Technology Program

    NASA Technical Reports Server (NTRS)

    Laufenberg, Lawrence; Tu, Eugene (Technical Monitor)

    2002-01-01

    The CICT Program is part of the NASA Aerospace Technology Enterprise's fundamental technology thrust to develop tools. processes, and technologies that enable new aerospace system capabilities and missions. The CICT Program's four key objectives are: Provide seamless access to NASA resources- including ground-, air-, and space-based distributed information technology resources-so that NASA scientists and engineers can more easily control missions, make new scientific discoveries, and design the next-generation space vehicles, provide high-data delivery from these assets directly to users for missions, develop goal-oriented human-centered systems, and research, develop and evaluate revolutionary technology.

  17. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liby, Alan L; Rogers, Hiram

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work onmore » advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, B.E.; Singleton, A.H.; McAllister, K.K.

    During the past twenty-five years, there have been significant developments in Underground Coal Gasification technology in the US. Government-funded programs have focused on the development of two process configurations: the Controlled Retracting Injection Point (CRIP) and the Steeply Dipping Bed (SDB). Private industry has participated in these programs and is continuing its activities in the development and commercialization of these technologies. This paper will trace the evolution of today`s processes from their origins in the Russian technologies and advancements that are continuing to be made in bringing the technologies to commercial reality in both the US and overseas. The statusmore » of both the CRIP and SDB technologies will be discussed along with developments in processes for utilization of the UCG product gas to generate power and to make chemicals and liquid fuels.« less

  19. NASA's In Space Propulsion Technology Program Accomplishments and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Johnson, Les C.; Harris, David

    2008-01-01

    NASA's In-Space Propulsion Technology (ISPT) Program was managed for 5 years at the NASA MSFC and significant strides were made in the advancement of key transportation technologies that will enable or enhance future robotic science and deep space exploration missions. At the program's inception, a set of technology investment priorities were established using an NASA-wide, mission-driven prioritization process and, for the most part, these priorities changed little - thus allowing a consistent framework in which to fund and manage technology development. Technologies in the portfolio included aerocapture, advanced chemical propulsion, solar electric propulsion, solar sail propulsion, electrodynamic and momentum transfer tethers, and various very advanced propulsion technologies with significantly lower technology readiness. The program invested in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program was to lay the technological foundation for travel to nearby interstellar space. The ambitious goals of the program at its inception included supporting the development of technologies that could support all of NASA's missions, both human and robotic. As time went on and budgets were never as high as planned, the scope of the program was reduced almost every year, forcing the elimination of not only the broader goals of the initial program, but also of funding for over half of the technologies in the original portfolio. In addition, the frequency at which the application requirements for the program changed exceeded the development time required to mature technologies: forcing sometimes radical rescoping of research efforts already halfway (or more) to completion. At the end of its fifth year, both the scope and funding of the program were at a minimum despite the program successfully meeting all of it's initial high priority objectives. This paper will describe the program, its requirements, technology portfolio, and technology maturation processes. Also discussed will be the major technology milestones achieved and the lessons learned from managing a $100M+ technology program.

  20. Research and technology, fiscal year 1982

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.

  1. The Status of Preservice Education in Career and Technology Education.

    ERIC Educational Resources Information Center

    Bruening, Thomas H.; Scanlon, Dennis C.; Hodes, Carol L.

    A study collected baseline data about the status of teacher preservice Career and Technology Education (CTE) from program chairs at colleges and universities in the United Status. The survey had six sections: pedagogical competencies for CTE teachers, CTE certification process, course delivery, recent program revisions, CTE program demographics,…

  2. Spinoff, 1984

    NASA Technical Reports Server (NTRS)

    Haggerty, J. J.

    1984-01-01

    A pictorial resume that underlines the challenging nature of NASA programs and their extraordinary demands for technological input, is presented. Also, NASA's current mainline programs, which require development of new technology, are given. A representative sampling of spinoff products and processes resulting from technology utiliization, or secondary application, and the mechanisms NASA employs to stimulate technology utilization are provided. Contact sources for further information are presented.

  3. The technology application process as applied to a firefighter's breathing system

    NASA Technical Reports Server (NTRS)

    Mclaughlan, P. B.

    1974-01-01

    The FBS Program indicated that applications of advanced technology can result in an improved FBS that will satisfy the requirements defined by municipal fire departments. To accomplish this technology transfer, a substantial commitment of resources over an extended period of time has been required. This program has indicated that the ability of NASA in terms of program management such as requirement definition, system analysis, and industry coordination may play as important a role as specific sources of hardware technology. As a result of the FBS program, a sequence of milestones was passed that may have applications as generalized milestones and objectives for any technical application program.

  4. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  5. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less

  6. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less

  7. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  8. Transitioning Science and Technology into Acquisition Programs: Assessing One Government Laboratorys Processes

    DTIC Science & Technology

    2015-12-01

    Accountability Office reports and recommendations, and ARDEC and the program managers established processes. The research indicated that the...Record. This examination was a direct review and comparison of Department of Defense policies, U.S. Government Accountability Office reports and...Government Accountability Office I&TT Innovation and Technology Transition IPT Integrated Product Team JCIDS Joint Capabilities Integration

  9. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  10. Survey of the US materials processing and manufacturing in space program

    NASA Technical Reports Server (NTRS)

    Mckannan, E. C.

    1981-01-01

    To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.

  11. Risk-Informed Decision Making: Application to Technology Development Alternative Selection

    NASA Technical Reports Server (NTRS)

    Dezfuli, Homayoon; Maggio, Gaspare; Everett, Christopher

    2010-01-01

    NASA NPR 8000.4A, Agency Risk Management Procedural Requirements, defines risk management in terms of two complementary processes: Risk-informed Decision Making (RIDM) and Continuous Risk Management (CRM). The RIDM process is used to inform decision making by emphasizing proper use of risk analysis to make decisions that impact all mission execution domains (e.g., safety, technical, cost, and schedule) for program/projects and mission support organizations. The RIDM process supports the selection of an alternative prior to program commitment. The CRM process is used to manage risk associated with the implementation of the selected alternative. The two processes work together to foster proactive risk management at NASA. The Office of Safety and Mission Assurance at NASA Headquarters has developed a technical handbook to provide guidance for implementing the RIDM process in the context of NASA risk management and systems engineering. This paper summarizes the key concepts and procedures of the RIDM process as presented in the handbook, and also illustrates how the RIDM process can be applied to the selection of technology investments as NASA's new technology development programs are initiated.

  12. The National Shipbuilding Research Program. 1995 Ship Production Symposium. Paper No. 14: Spanish Shipbuilding: Restructuring Process and Technological Updating From 1984-1994

    DTIC Science & Technology

    1995-01-01

    disputes increased by the fact that the industrial restructuring process coincided with the return of a great number of Spanish workers who were emigrants in...INNOVATION MARINE INDUSTRY STANDARDS WELDING INDUSTRIAL ENGINEERING EDUCATION AND TRAINING THE NATIONAL SHIPBUILDING RESEARCH PROGRAM January, 1995 NSRP 0439...1995 Ship Production Symposium Paper No . 14: Spanish Shipbuilding: Restructuring Process & Technologi- cal Updating From 1984-1994 U.S. DEPARTMENT OF

  13. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM Evaluation of Soil Amendment Technologies at the Crooksville/RosevillePottery Area of Concern Rocky Mountain Remediation ServicesEnvirobond™ Process

    EPA Science Inventory

    RMRS developed the Envirobond™ process to treat heavy metals in soil.This phosphate-based technology consists of a proprietary powder and solution that binds with metals in contaminated waste. RMRS claims that the Envirobond™ process converts metal contaminants from their leach...

  14. Spinoff 1979

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1979-01-01

    Technology is knowledge, the technical "know-how" employed by a society to produce things that improve the quality of human life. Like other forms of knowledge, it is transferable; once developed, technology can be applied to uses different-and often remote-from the original application. Thus, the technology that NASA has developed in more than two decades of space and aeronautical research constitutes a valuable national resource, a bank of knowledge available for secondary utilization, or "spinoff." NASA mainline programs, by their challenging nature, are particularly demanding of technological advance; meeting their goals has forced extraordinary advancements in virtually every scientific and technological discipline. For that reason, the wealth of aerospace-generated knowledge available for transfer is exceptionally diverse, and much of it is readily applicable to secondary use over a broad spectrum of public needs and conveniences. Through its Congressionally mandated Technology Utilization Program, NASA seeks to promote wider use of this technological resource. The program provides a link between the technology bank and those in either the private or public sectors who might be able to re-use the technology productively. Its aim is to accelerate the transfer process, to bring to the marketplace sooner those spinoffs which might eventually occur in the normal course of events, and to gain thereby more immediate economic benefit in terms of new products and new jobs. The program has been remarkably successful. Since its inception 17 years ago, thousands of spinoff products and processes have emerged. Some of these innovations bring only moderate increments of economic gain or lifestyle improvement, but many others amount to significant public benefits, with economic values often running to millions of dollars. Collectively, spinoffs provide a substantial bonus return on the funds invested in aerospace research. This publication is intended to increase public awareness of the resource that is NASA's technology bank and its potential for further public benefit. It is devoted primarily to the NASA technology transfer process, but in the interests of perspective it also describes related areas of NASA endeavor. Section 1 consists of a resume of NASA's current mainline programs. These programs are producing direct public benefit through direct application of technology; at the same time, they are contributing to indirect benefit-spinoff-by generating new technology which may find secondary application in the future. Section 2 is the focal point of this volume. It contains a representative sampling of spinoff products and processes employed in various avenues of everyday life, and it describes briefly the NASA technology from which these transfers derived. Section 3 details the mechanisms of the technology transfer process, including the means by which NASA seeks to stimulate technology utilization. Also described are NASA's activities in a related area of technology transfer: provision of assistance to agencies interested in exploiting the benefit potential of satellite remote sensing technology.

  15. OAST Technology for the Future. Volume 3 - Critical Technologies, Themes 5-8

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which require validation in the 5 ace environment. A secondary objective was to review the current NASA (In-Reach and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  16. OAST Technology for the Future. Volume 2 - Critical Technologies, Themes 1-4

    NASA Technical Reports Server (NTRS)

    1988-01-01

    NASA's Office of Aeronautics and Space Technology (OAST) conducted a workshop on the In-Space Technology Experiments Program IN-STEP) December 6-9, 1988, in Atlanta, Georgia. The purpose of this workshop was to identify and prioritize space technologies which are critical for future national space programs and which. require validation in the space environment. A secondary objective was to review the current NASA (InReach) and Industry/University (Out-Reach) experiments. Finally, the aerospace community was requested to review and comment on the proposed plans for the continuation of the In-Space Technology Experiments Program. In particular, the review included the proposed process for focusing the next experiment selection on specific, critical technologies and the process for implementing the hardware development and integration on the Space Shuttle vehicle. The product of the workshop was a prioritized listing of the critical space technology needs in each of eight technology disciplines. These listings were the cumulative recommendations of nearly 400 participants, which included researchers, technologists, and managers from aerospace industries, universities, and government organizations.

  17. Industrial Technology Modernization Program. Project 32. Factory Vision. Phase 2

    DTIC Science & Technology

    1988-04-01

    instructions for the PWA’s, generating the numerical control (NC) program instructions for factory assembly equipment, controlling the process... generating the numerical control (NC) program instructions for factory assembly equipment, controlling the production process instructions and NC... Assembly Operations the "Create Production Process Program" will automatically generate a sequence of graphics pages (in paper mode), or graphics screens

  18. NASA programs in technology transfer and their relation to remote sensing education

    NASA Technical Reports Server (NTRS)

    Weinstein, R. H.

    1980-01-01

    Technology transfer to users is a central feature of NASA programs. In each major area of responsibility, a variety of mechanisms was established to provide for this transfer of operational capability to the proper end user, be it a Federal agency, industry, or other public sector users. In addition, the Technology Utilization program was established to cut across all program areas and to make available a wealth of 'spinoff' technology (i.e., secondary applications of space technology to ground-based use). The transfer of remote sensing technology, particularly to state and local users, presents some real challenges in application and education for NASA and the university community. The agency's approach to the transfer of remote sensing technology and the current and potential role of universities in the process are considered.

  19. Evaluation Criteria for Solid Waste Processing Research and Technology Development

    NASA Technical Reports Server (NTRS)

    Levri, Julie A.; Hogan, J. A.; Alazraki, M. P.

    2001-01-01

    A preliminary list of criteria is proposed for evaluation of solid waste processing technologies for research and technology development (R&TD) in the Advanced Life Support (ALS) Program. Completion of the proposed list by current and prospective ALS technology developers, with regard to specific missions of interest, may enable identification of appropriate technologies (or lack thereof) and guide future development efforts for the ALS Program solid waste processing area. An attempt is made to include criteria that capture information about the technology of interest as well as its system-wide impacts. Some of the criteria in the list are mission-independent, while the majority are mission-specific. In order for technology developers to respond to mission-specific criteria, critical information must be available on the quantity, composition and state of the waste stream, the wast processing requirements, as well as top-level mission scenario information (e.g. safety, resource recovery, planetary protection issues, and ESM equivalencies). The technology readiness level (TRL) determines the degree to which a technology developer is able to accurately report on the list of criteria. Thus, a criteria-specific minimum TRL for mandatory reporting has been identified for each criterion in the list. Although this list has been developed to define criteria that are needed to direct funding of solid waste processing technologies, this list processes significant overlap in criteria required for technology selection for inclusion in specific tests or missions. Additionally, this approach to technology evaluation may be adapted to other ALS subsystems.

  20. 1986 fuel cell seminar: Program and abstracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1986-10-01

    Ninety nine brief papers are arranged under the following session headings: gas industry's 40 kw program, solid oxide fuel cell technology, phosphoric acid fuel cell technology, molten carbonate fuel cell technology, phosphoric acid fuel cell systems, power plants technology, fuel cell power plant designs, unconventional fuels, fuel cell application and economic assessments, and plans for commerical development. The papers are processed separately for the data base. (DLC)

  1. Dividends from Technology Applied.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    National Aeronautics and Space Administration's (NASA) Applications Program employs aerospace science/technology to provide direct public benefit. Topics related to this program discussed include: Landsat, earth crustal study (plate tectonics), search and rescue systems, radiation measurement, upper atmosphere research, space materials processing,…

  2. EVALUATION OF THE MART CORPORATION'S EQ-1 WASTEWATER PROCESSING SYSTEM

    EPA Science Inventory

    The USEPA has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV Program is to further environment...

  3. Interpretive flexibility in mobile health: lessons from a government-sponsored home care program.

    PubMed

    Nielsen, Jeppe Agger; Mathiassen, Lars

    2013-10-30

    Mobile technologies have emerged as important tools that health care personnel can use to gain easy access to client data anywhere. This is particularly useful for nurses and care workers in home health care as they provide services to clients in many different settings. Although a growing body of evidence supports the use of mobile technologies, the diverse implications of mobile health have yet to be fully documented. Our objective was to examine a large-scale government-sponsored mobile health implementation program in the Danish home care sector and to understand how the technology was used differently across home care agencies. We chose to perform a longitudinal case study with embedded units of analysis. We included multiple data sources, such as written materials, a survey to managers across all 98 Danish municipalities, and semistructured interviews with managers, care workers, and nurses in three selected home care agencies. We used process models of change to help analyze the overall implementation process from a longitudinal perspective and to identify antecedent conditions, key events, and practical outcomes. Strong collaboration between major stakeholders in the Danish home care sector (government bodies, vendors, consultants, interest organizations, and managers) helped initiate and energize the change process, and government funding supported quick and widespread technology adoption. However, although supported by the same government-sponsored program, mobile technology proved to have considerable interpretive flexibility with variation in perceived nature of technology, technology strategy, and technology use between agencies. What was first seen as a very promising innovation across the Danish home care sector subsequently became the topic of debate as technology use arrangements ran counter to existing norms and values in individual agencies. Government-sponsored programs can have both positive and negative results, and managers need to be aware of this and the interpretive flexibility of mobile technology. Mobile technology implementation is a complex process that is best studied by combining organization-level analysis with features of the wider sociopolitical and interorganizational environment.

  4. CHEMICAL STABILIZATION OF MIXED ORGANIC AND METAL COMPOUNDS - EPA SITE PROGRAM DEMONSTRATION OF THE SILICATE TECHNOLOGY CORPORATION PROCESS

    EPA Science Inventory

    In November 1990, the Silicate Technology Corporation`s (STC) proprietary process for treating soil contaminated with toxic semivolatile organic and inorganic contaminants was evaluated in a Superfund Innovative Technology Evaluation (SITE) field demonstration at the Selma Pressu...

  5. Manufacturing Process Applications Team (MATeam)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The activities of the Manufacturing Process Applications Team concerning the promotion of joint Industry/Federal Agency/NASA funded research and technology operating plan (RTOP) programs are reported. Direct transfers occurred in cutting tools, laser wire stripping, soldering, and portable X-ray unit technology. TROP program funding approval was obtained for the further development of the cutting tool Sialon and development of an automated nondestructive fracture toughness testing system.

  6. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  7. GSFC Cutting Edge Avionics Technologies for Spacecraft

    NASA Technical Reports Server (NTRS)

    Luers, Philip J.; Culver, Harry L.; Plante, Jeannette

    1998-01-01

    With the launch of NASA's first fiber optic bus on SAMPEX in 1992, GSFC has ushered in an era of new technology development and insertion into flight programs. Predating such programs the Lewis and Clark missions and the New Millenium Program, GSFC has spearheaded the drive to use cutting edge technologies on spacecraft for three reasons: to enable next generation Space and Earth Science, to shorten spacecraft development schedules, and to reduce the cost of NASA missions. The technologies developed have addressed three focus areas: standard interface components, high performance processing, and high-density packaging techniques enabling lower cost systems. To realize the benefits of standard interface components GSFC has developed and utilized radiation hardened/tolerant devices such as PCI target ASICs, Parallel Fiber Optic Data Bus terminals, MIL-STD-1773 and AS1773 transceivers, and Essential Services Node. High performance processing has been the focus of the Mongoose I and Mongoose V rad-hard 32-bit processor programs as well as the SMEX-Lite Computation Hub. High-density packaging techniques have resulted in 3-D stack DRAM packages and Chip-On-Board processes. Lower cost systems have been demonstrated by judiciously using all of our technology developments to enable "plug and play" scalable architectures. The paper will present a survey of development and insertion experiences for the above technologies, as well as future plans to enable more "better, faster, cheaper" spacecraft. Details of ongoing GSFC programs such as Ultra-Low Power electronics, Rad-Hard FPGAs, PCI master ASICs, and Next Generation Mongoose processors.

  8. A case history of technology transfer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A sequence of events, occurring over the last 25 years, are described that chronicle the evolution of ion-bombardment electric propulsion technology. Emphasis is placed on the latter phases of this evolution, where special efforts were made to pave the way toward the use of this technology in operational space flight systems. These efforts consisted of a planned program to focus the technology toward its end applications and an organized process that was followed to transfer the technology from the research-technology NASA Center to the user-development NASA Center and its industry team. Major milestones in this evolution, which are described, include the development of thruster technology across a large size range, the successful completion of two space electric rocket tests, SERT I and SERT II, development of power-processing technology for electric propulsion, completion of a program to make the technology ready for flight system development, and finally the technology transfer events.

  9. Defense Science and Technology Strategy

    DTIC Science & Technology

    1994-09-01

    I 3 IV. The Science and Technology Program .................... 15 Advanced Concept Technology Demomstrations...product and process concepts that pcrmit us to tailor, modify, and optimize the manufactUriiig process; develop sensors a-t i~a Mcrials that will detect...It can be used during concept formulations to expand the range of technical, operational, and system alternatives evaluated. The technology can

  10. A Research Program in Computer Technology. 1986 Annual Technical Report

    DTIC Science & Technology

    1989-08-01

    1986 (Annual Technical Report I July 1985 - June 1986 A Research Program in Computer Technology ISI/SR-87-178 U S C INFORMA-TION S C I EN C ES...Program in Computer Technology (Unclassified) 12. PERSONAL AUTHOR(S) 151 Research Staff 13a. TYPE OF REPORT 113b. TIME COVERED 14 DATE OF REPORT (Yeer...survivable networks 17. distributed processing, local networks, personal computers, workstation environment 18. computer acquisition, Strategic Computing 19

  11. NASA's CSTI Earth-to-Orbit Propulsion Program - On-target technology transfer to advanced space flight programs

    NASA Technical Reports Server (NTRS)

    Escher, William J. D.; Herr, Paul N.; Stephenson, Frank W., Jr.

    1990-01-01

    NASA's Civil Space Technology Initiative encompasses among its major elements the Earth-to-Orbit Propulsion Program (ETOPP) for future launch vehicles, which is budgeted to the extent of $20-30 million/year for the development of essential technologies. ETOPP technologies include, in addition to advanced materials and processes and design/analysis computational tools, the advanced systems-synthesis technologies required for definition of highly reliable LH2 and hydrocarbon fueled rocket engines to be operated at significantly reduced levels of risk and cost relative to the SSME. Attention is given to the technology-transfer services of ETOPP.

  12. US Department of Energy's Efforts in Intelligent Processing Equipment

    NASA Technical Reports Server (NTRS)

    Peavy, Richard D.; Mcfarland, Janet C.

    1992-01-01

    The Department of Energy (DOE) uses intelligent processing equipment (IPE) technologies to conduct research and development and manufacturing for energy and nuclear weapons programs. This paper highlights several significant IPE efforts underway in DOE. IPE technologies are essential to the accomplishment of DOE's missions, because of the need for small lot production, precision, and accuracy in manufacturing, hazardous waste management, and protection of the environment and the safety and health of the workforce and public. Applications of IPE technologies include environmental remediation and waste handling, advanced manufacturing, and automation of tasks carried out in hazardous areas. DOE laboratories have several key programs that integrate robotics, sensor, and control technologies. These programs embody a considerable technical capability that also may be used to enhance U.S. industrial competitiveness. DOE encourages closer cooperation with U.S. industrial partners based on mutual benefits. This paper briefly describes technology transfer mechanisms available for industrial involvement.

  13. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    NASA Astrophysics Data System (ADS)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the Country.

  14. Advanced technology for America's future in space

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In response to Recommendation 8 of the Augustine Committee Report, NASA's Office of Aeronautics, Exploration and Technology (OAET) developed a proposed 'Integrated Technology Plan for the Civil Space Program' that entails substantial changes in the processes, structure and the content of NASA's space research and technology program. The Space Systems and Technology Advisory Committee (SSTAC, a subcommittee of the NASA Advisory Committee) and several other senior, expert, informed advisory groups conducted a review of NASA's proposed Integrated Technology Plan (ITP). This review was in response to the specific request in Recommendation 8 that 'NASA utilize an expert, outside review process, managed from headquarters, to assist in the allocation of technology funds'. This document, the final report from that review, addresses: (1) summary recommendations; (2) mission needs; (3) the integrated technology plan; (4) summary reports of the technical panels; and (5) conclusions and observations.

  15. SELENIUM TREATMENT/REMOVAL ALTERNATIVES DEMONSTRATION PROJECT - MINE WASTE TECHNOLOGY PROGRAM ACTIVITY III, PROJECT 20

    EPA Science Inventory

    This document is the final report for EPA's Mine WAste Technology Program (MWTP) Activity III, Project 20--Selenium Treatment/Removal Alternatives Demonstration project. Selenium contamination originates from many sources including mining operations, mineral processing, abandoned...

  16. Information Retrieval Research and ESPRIT.

    ERIC Educational Resources Information Center

    Smeaton, Alan F.

    1987-01-01

    Describes the European Strategic Programme of Research and Development in Information Technology (ESPRIT), and its five programs: advanced microelectronics, software technology, advanced information processing, office systems, and computer integrated manufacturing. The emphasis on logic programming and ESPRIT as the European response to the…

  17. Spinoff 1996

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1996-01-01

    By their challenging nature, NASA programs are particularly demanding of technological input. Meeting the aeronautical and space goals of the past four decades has necessitated leading edge advancements across a diverse spectrum that embraces virtually every scientific and technological discipline. Technology is simply knowledge and, like other forms of knowledge, it is often broadly applied and transferable. For that reason, the vast storehouse of technology NASA has built is a national resource, a bank of knowledge available for commercial applications and enhancements to the quality of life-"spinoff"-to new products and processes of benefit to the national economy, industrial efficiency and human welfare. Multiple use of technology has never been more important. Budgetary stringency is reducing the amount of government funding available for new research and development, but at the same time intensifying international competition demands increasing technological innovation to strengthen the U.S. posture in the global marketplace. Reuse of technology offers a relatively inexpensive supplementary means of partnering with industry focused on bringing new products and processes to the market. More than a thousand of spinoff products and processes have emerged from reapplication of technology developed for NASA mission programs. Each has Contributed some measure of benefit to the national economy, productivity or lifestyle; some bring only moderate increments of gain, but many generate benefits of significant order with economic values in the millions of dollars. Other technologies with moderate economic return have added measurably to the quality of life of U.S. citizens. Collectively, they represent a substantial dividend on the national investment in aerospace research. By Congressional mandate, it is NASA's responsibility to promote expansion of spinoff in the public interest. Through its Technology Transfer Program, NASA seeks to encourage greater use of its technological resources by providing a link between the technology and those who might be able to put it to advantageous use. The program's aim is to broaden and accelerate the transfer accomplishments and thereby to gain national benefit in terms of new products, services, and new jobs. This publication is an instrument of-and documents the outcome of-that purpose. It is intended to heighten awareness of the technology available for transfer and its potential for public benefit. Spinoff 1996 is organized in three sections: Section 1, summarizes NASA's current mainline programs, whose objectives require development of new technology and therefore replenish and expand the bank of knowledge available for reapplication. Section 2, the focal point of this volume, contains a representative sampling of spinoff products and processes that resulted from secondary application of NASA technology. Section 3, describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for Further information about the Technology Transfer Program.

  18. Use of GIS technologies to facilitate the transportation project programming process.

    DOT National Transportation Integrated Search

    2008-05-01

    Transportation project programming in a transportation agency is a process of matching : potential projects with available funds to accomplish the agencys mission and goals of a : given period of time. Result of this process is normally a transpor...

  19. Implementation and Evaluation of Technology Mentoring Program Developed for Teacher Educators: A 6M-Framework

    ERIC Educational Resources Information Center

    Gunuc, Selim

    2015-01-01

    The purpose of this basic research is to determine the problems experienced in the Technology Mentoring Program (TMP), and the study discusses how these problems affect the process in general. The implementation was carried out with teacher educators in the education faculty. 8 doctorate students (mentors) provided technology mentoring…

  20. NASA EEE Parts and Advanced Interconnect Program (AIP)

    NASA Technical Reports Server (NTRS)

    Gindorf, T.; Garrison, A.

    1996-01-01

    none given From Program Objectives: I. Accelerate the readiness of new technologies through development of validation, assessment and test method/tools II. Provide NASA Projects infusion paths for emerging technologies III. Provide NASA Projects technology selection, application and validation guidelines for harware and processes IV. Disseminate quality assurance, reliability, validation, tools and availability information to the NASA community.

  1. Data systems elements technology assessment and system specifications, issue no. 2. [nasa programs

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ability to satisfy the objectives of future NASA Office of Applications programs is dependent on technology advances in a number of areas of data systems. The hardware and software technology of end-to-end systems (data processing elements through ground processing, dissemination, and presentation) are examined in terms of state of the art, trends, and projected developments in the 1980 to 1985 timeframe. Capability is considered in terms of elements that are either commercially available or that can be implemented from commercially available components with minimal development.

  2. Technology Transfer

    NASA Technical Reports Server (NTRS)

    Smith, Nanette R.

    1995-01-01

    The objective of this summer's work was to attempt to enhance Technology Application Group (TAG) ability to measure the outcomes of its efforts to transfer NASA technology. By reviewing existing literature, by explaining the economic principles involved in evaluating the economic impact of technology transfer, and by investigating the LaRC processes our William & Mary team has been able to lead this important discussion. In reviewing the existing literature, we identified many of the metrics that are currently being used in the area of technology transfer. Learning about the LaRC technology transfer processes and the metrics currently used to track the transfer process enabled us to compare other R&D facilities to LaRC. We discuss and diagram impacts of technology transfer in the short run and the long run. Significantly, it serves as the basis for analysis and provides guidance in thinking about what the measurement objectives ought to be. By focusing on the SBIR Program, valuable information regarding the strengths and weaknesses of this LaRC program are to be gained. A survey was developed to ask probing questions regarding SBIR contractors' experience with the program. Specifically we are interested in finding out whether the SBIR Program is accomplishing its mission, if the SBIR companies are providing the needed innovations specified by NASA and to what extent those innovations have led to commercial success. We also developed a survey to ask COTR's, who are NASA employees acting as technical advisors to the SBIR contractors, the same type of questions, evaluating the successes and problems with the SBIR Program as they see it. This survey was developed to be implemented interactively on computer. It is our hope that the statistical and econometric studies that can be done on the data collected from all of these sources will provide insight regarding the direction to take in developing systematic evaluations of programs like the SBIR Program so that they can reach their maximum effectiveness.

  3. NASA gear research and its probable effect on rotorcraft transmission design

    NASA Technical Reports Server (NTRS)

    Zaretsky, E. V.; Townsend, D. P.; Coy, J. J.

    1979-01-01

    The NASA Lewis Research Center devised a comprehensive gear technology research program beginning in 1969, the results of which are being integrated into the NASA civilian Helicopter Transmission System Technology Program. Attention is given to the results of this gear research and those programs which are presently being undertaken. In addition, research programs studying pitting fatigue, gear steels and processing, life prediction methods, gear design and dynamics, elastohydrodynamic lubrication, lubrication methods and gear noise are presented. Finally, the impact of advanced gear research technology on rotorcraft transmission design is discussed.

  4. Beowulf Distributed Processing and the United States Geological Survey

    USGS Publications Warehouse

    Maddox, Brian G.

    2002-01-01

    Introduction In recent years, the United States Geological Survey's (USGS) National Mapping Discipline (NMD) has expanded its scientific and research activities. Work is being conducted in areas such as emergency response research, scientific visualization, urban prediction, and other simulation activities. Custom-produced digital data have become essential for these types of activities. High-resolution, remotely sensed datasets are also seeing increased use. Unfortunately, the NMD is also finding that it lacks the resources required to perform some of these activities. Many of these projects require large amounts of computer processing resources. Complex urban-prediction simulations, for example, involve large amounts of processor-intensive calculations on large amounts of input data. This project was undertaken to learn and understand the concepts of distributed processing. Experience was needed in developing these types of applications. The idea was that this type of technology could significantly aid the needs of the NMD scientific and research programs. Porting a numerically intensive application currently being used by an NMD science program to run in a distributed fashion would demonstrate the usefulness of this technology. There are several benefits that this type of technology can bring to the USGS's research programs. Projects can be performed that were previously impossible due to a lack of computing resources. Other projects can be performed on a larger scale than previously possible. For example, distributed processing can enable urban dynamics research to perform simulations on larger areas without making huge sacrifices in resolution. The processing can also be done in a more reasonable amount of time than with traditional single-threaded methods (a scaled version of Chester County, Pennsylvania, took about fifty days to finish its first calibration phase with a single-threaded program). This paper has several goals regarding distributed processing technology. It will describe the benefits of the technology. Real data about a distributed application will be presented as an example of the benefits that this technology can bring to USGS scientific programs. Finally, some of the issues with distributed processing that relate to USGS work will be discussed.

  5. A Research Program in Computer Technology. 1987 Annual Technical Report

    DTIC Science & Technology

    1990-07-01

    TITLE (Indcle Security Clanificstion) 1987 Annual Technical Report: *A Research Program in Computer Technology (Unclassified) 12. PERSONAL AUTHOR(S) IS...distributed processing, survivable networks 17. NCE: distributed processing, local networks, personal computers, workstation environment 18. SC Dev...are the auw’iors and should not be Interpreted as representIng the official opinion or policy of DARPA, the U.S. Government, or any person or agency

  6. 75 FR 8785 - Agency Request for Emergency Processing of Collection of Information Associated With FRA's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... Technology Program is a newly authorized program under the Rail Safety Improvement Act of 2008 (RSIA) (Pub. L. 110-432; October 16, 2008). The program was directed by Congress and passed into law in the aftermath... the Nation's attention to rail safety and the possibility that new technologies, such as PTC, could...

  7. Information Needs Perceived as Important by Leaders in Advanced Technological Education: Alignment with Community College Program Improvement Initiatives

    ERIC Educational Resources Information Center

    Badway, Norena Norton; Somerville, Jerry

    2011-01-01

    The purpose of this study was to analyze what leaders of Advanced Technological Education (ATE) programs funded by the National Science Foundation believe are their most important needs for research information. Data was collected through a Delphi process, and results were analyzed through frameworks associated with program improvement initiatives…

  8. Modernization of the NASA scientific and technical information program

    NASA Technical Reports Server (NTRS)

    Cotter, Gladys A.; Hunter, Judy F.; Ostergaard, K.

    1993-01-01

    The NASA Scientific and Technical Information Program utilizes a technology infrastructure assembled in the mid 1960s to late 1970s to process and disseminate its information products. When this infrastructure was developed it placed NASA as a leader in processing STI. The retrieval engine for the STI database was the first of its kind and was used as the basis for developing commercial, other U.S., and foreign government agency retrieval systems. Due to the combination of changes in user requirements and the tremendous increase in technological capabilities readily available in the marketplace, this infrastructure is no longer the most cost-effective or efficient methodology available. Consequently, the NASA STI Program is pursuing a modernization effort that applies new technology to current processes to provide near-term benefits to the user. In conjunction with this activity, we are developing a long-term modernization strategy designed to transition the Program to a multimedia, global 'library without walls.' Critical pieces of the long-term strategy include streamlining access to sources of STI by using advances in computer networking and graphical user interfaces; creating and disseminating technical information in various electronic media including optical disks, video, and full text; and establishing a Technology Focus Group to maintain a current awareness of emerging technology and to plan for the future.

  9. Development and Evaluation of Science and Technology Education Program Using Interferometric SAR

    NASA Astrophysics Data System (ADS)

    Ito, Y.; Ikemitsu, H.; Nango, K.

    2016-06-01

    This paper proposes a science and technology education program to teach junior high school students to measure terrain changes by using interferometric synthetic aperture radar (SAR). The objectives of the proposed program are to evaluate and use information technology by performing SAR data processing in order to measure ground deformation, and to incorporate an understanding of Earth sciences by analyzing interferometric SAR processing results. To draft the teaching guidance plan for the developed education program, this study considers both science and technology education. The education program was used in a Japanese junior high school. An educational SAR processor developed by the authors and the customized Delft object-oriented radar interferometric software package were employed. Earthquakes as diastrophism events were chosen as practical teaching materials. The selected events indicate clear ground deformation in differential interferograms with high coherence levels. The learners were able to investigate the ground deformations and disasters caused by the events. They interactively used computers and became skilled at recognizing the knowledge and techniques of information technology, and then they evaluated the technology. Based on the results of pre- and post-questionnaire surveys and self-evaluation by the learners, it was clarified that the proposed program was applicable for junior high school education, and the learners recognized the usefulness of Earth observation technology by using interferometric SAR. The usefulness of the teaching materials in the learning activities was also shown through the practical teaching experience.

  10. Technology Transfer and the Civil Space Program. Volume 2: Workshop proceedings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objectives were to (1) provide a top-level review of the Integrated Technology Plan (ITP) and current civil space technology plans, including planning processes and technologies; (2) discuss and assess technology transfer (TT) experiences across a wide range of participants; (3) identify alternate categories/strategies for TT and define the objectives of transfer processes in each case; (4) identify the roles of various government 'stakeholders', aerospace industry, industries at large, and universities in civil space technology research, development, demonstration, and transfer; (5) identify potential barriers and/or opportunities to successful civil space TT; (6) identify specific needs for innovations in policy, programs, and/or procedures to facilitate TT; and (7) develop a plan of attack for the development of a workshop report. Papers from the workshop are presented.

  11. REPORT ON TWO PROCESS EQUIPMENT CHANGES FOR FEDERAL PAINTING FACILITIES

    EPA Science Inventory

    EPA's National Risk Management Research Laboratory (NRMRL) has actively participated in the Strategic Environmental Research and Development Program (SERDP) to develop innovative technologies and processes for the reduction of environmental pollution. Technology developments fro...

  12. Technology in Science and Mathematics Education.

    ERIC Educational Resources Information Center

    Buccino, Alphonse

    Provided are several perspectives on technology, addressing changes in learners related to technology, changes in contemporary life related to technology, and changes in subject areas related to technology (indicating that technology has created such new tools for inquiry as computer programming, word processing, online database searches, and…

  13. A systematic collaborative process for assessing launch vehicle propulsion technologies

    NASA Astrophysics Data System (ADS)

    Odom, Pat R.

    1999-01-01

    A systematic, collaborative process for prioritizing candidate investments in space transportation systems technologies has been developed for the NASA Space Transportation Programs Office. The purpose of the process is to provide a repeatable and auditable basis for selecting technology investments to enable achievement of NASA's strategic space transportation objectives. The paper describes the current multilevel process and supporting software tool that has been developed. Technologies are prioritized across system applications to produce integrated portfolios for recommended funding. An example application of the process to the assessment of launch vehicle propulsion technologies is described and illustrated. The methodologies discussed in the paper are expected to help NASA and industry ensure maximum returns from technology investments under constrained budgets.

  14. TECHNOLOGY EVALUATION REPORT: CHEMFIX TECHNOLOGIES, INC. - SOLIDIFICATION/STABILIZATION PROCESS - CLACKAMAS, OREGON - VOLUME I

    EPA Science Inventory

    The CHEMFIX solidification/stabilization process was evaluated in the U.S. Environment Protection Agency's SITE program. Waste from an uncontrolled hazardous waste site was treated by the CHEMFIX process and subjected to a variety of physical and chemical test methods. Physical t...

  15. TECHNOLOGY EVALUATION REPORT: CHEMFIX TECHNOLOGIES, INC. - SOLIDIFICATION/STABILIZATION PROCESS - CLACKAMAS, OREGON - VOLUME II

    EPA Science Inventory

    The CHEMFIX solidification/stabilization process was evaluated in the U.S. Environmental Protection Agency's SITE program. Waste from an uncontrolled hazardous waste site was treated by the CHEMFIX process and subjected to a variety of physical and chemical test methods. Physical...

  16. Technology transfer and the NASA Technology Utilization Program - An overview

    NASA Technical Reports Server (NTRS)

    Clarks, Henry J.; Rose, James T.; Mangum, Stephen D.

    1989-01-01

    The goal of the NASA Technology Utilization (TU) Program is to broaden and accelerate the transfer of aerospace technology and to develop new commercial products and processes that represent additional return on the national investment in the U.S. space programs. The mechanisms established by the TU Program includes TU offices, publications, the information retrieval, software dissemination, and the NASA Applications Engineering Program. These mechanisms are implemented through a nationwide NASA TU Network, working closely with industry and public sector organizations to encourage and facilitate their access and utilization of the results of the U.S space programs. Examples of TU are described, including a method for the reduction of metal fatigue in textile equipment and a method for the management of wandering behavior in Alzheimer's patients.

  17. NASA Program Office Technology Investments to Enable Future Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley; Pham, Thai; Ganel, Opher

    2018-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope (née, Far-IR Surveyor), Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and Lynx (née, X-ray Surveyor). The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned Laser Interferometer Space Antenna (LISA) gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. For the past two years, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of the 2017 technology gap prioritization and showcase our current portfolio of technology development projects. To date, 96 COR and 86 PCOS SAT proposals have been received, of which 22 COR and 28 PCOS projects were awarded. For more information, see the Program Annual Technology Reports available through the PO Technology web page at https://apd440.gsfc.nasa.gov/technology.html .

  18. APPLICATIONS ANALYSIS REPORT: CHEMFIX TECHNOLOGIES, INC. - SOLIDIFICATION/STABILIZATION PROCESS

    EPA Science Inventory

    In support of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Program, this report evaluates the Chemfix Technologies, Inc. (Chemfix), solidification/stabilization technology for on-site treatment of hazardous waste. The Chemfix ...

  19. Technology of interdisciplinary open-ended designing in engineering education

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  20. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The goal of the U.S. Department of Energy Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985--1987 time period. The program will also attempt to develop cost-effective technologies to utilize steeply dipping seams and bituminous coal by UCC. Results of the program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks,more » and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program which incorporates maximum industry involvement is planned. Major projects are described in some detail. Finally, a strong program of supporting activities will address specific problems identified in the field testing and will seek to advance UCC technology. In summary, the program's strategy is to remove the high-risk elements of UCC by resolving those technical, environmental, and economic uncertainties that remain, and to enable industry to assume responsibility for commercialization of the process.« less

  2. Overview 1993: Computational applications

    NASA Technical Reports Server (NTRS)

    Benek, John A.

    1993-01-01

    Computational applications include projects that apply or develop computationally intensive computer programs. Such programs typically require supercomputers to obtain solutions in a timely fashion. This report describes two CSTAR projects involving Computational Fluid Dynamics (CFD) technology. The first, the Parallel Processing Initiative, is a joint development effort and the second, the Chimera Technology Development, is a transfer of government developed technology to American industry.

  3. Strategies for Integrating Emerging Technologies: Case Study of an Online Educational Technology Master's Program

    ERIC Educational Resources Information Center

    Czerkawski, Betul C.

    2013-01-01

    Emerging technologies do not necessarily facilitate or advance learning processes; teaching strategies that are used in the learning process, integration and incorporation methods do. In online instruction, research shows that "effective distance education depends on the provision of pedagogical excellence" (Bernard et al., 2004, p.413).…

  4. Rapid prototype fabrication processes for high-performance thrust cells

    NASA Technical Reports Server (NTRS)

    Hunt, K.; Chwiedor, T.; Diab, J.; Williams, R.

    1994-01-01

    The Thrust Cell Technologies Program (Air Force Phillips Laboratory Contract No. F04611-92-C-0050) is currently being performed by Rocketdyne to demonstrate advanced materials and fabrication technologies which can be utilized to produce low-cost, high-performance thrust cells for launch and space transportation rocket engines. Under Phase 2 of the Thrust Cell Technologies Program (TCTP), rapid prototyping and investment casting techniques are being employed to fabricate a 12,000-lbf thrust class combustion chamber for delivery and hot-fire testing at Phillips Lab. The integrated process of investment casting directly from rapid prototype patterns dramatically reduces design-to-delivery cycle time, and greatly enhances design flexibility over conventionally processed cast or machined parts.

  5. Assistive Technology and Adults with Learning Disabilities: A Blueprint for Exploration and Advancement.

    ERIC Educational Resources Information Center

    Raskind, Marshall

    1993-01-01

    This article describes assistive technologies for persons with learning disabilities, including word processing, spell checking, proofreading programs, outlining/"brainstorming" programs, abbreviation expanders, speech recognition, speech synthesis/screen review, optical character recognition systems, personal data managers, free-form databases,…

  6. Technology Education Partnerships: Arkansas Articulation.

    ERIC Educational Resources Information Center

    Thompson, Dale E.; And Others

    The Arkansas Articulation Program is the process used since 1986 to supervise the coordination between secondary and postsecondary levels of vocational, technical, and technology education courses whose content has been standardized as the result of competency identification specific to each subject area. The program aims to strengthen the…

  7. Vocational exploration in an extracurricular technology program for youth with autism.

    PubMed

    Dunn, Louise; Diener, Marissa; Wright, Cheryl; Wright, Scott; Narumanchi, Amruta

    2015-01-01

    Within a life span approach, introducing opportunities to explore careers through activities of interest provide ways for children to learn to explore, problem solve, and envision a future for themselves. However, little information exists about programs to promote social engagement and to explore potential career interests for youth with autism. Explore engagement and learning in a technology-based extracurricular program (called iSTAR) for youth with autism. The researchers used a qualitative approach with grounded-theory analysis to explore the processes that contributed to engagement and learning for youth with autism in an technology-based extracurricular program. Youth Centered Learning and Opportunities to Demonstrate Skills emerged as themes that illuminated the processes by which engagement and learning occurred for the youth in the iSTAR program. Interest in the graphics program stimulated interactions amongst the youth with each other and with the adults. Modeling, demonstration, and scaffolded questioning supported engagement and learning for all the youth. Providing structure, encouraging choices, and following the youths' lead provided bridges for sharing and learning about the technology program. Career exploration through use of interests in technology can provide opportunities for youth with autism to develop social and technical skills needed later for employment. Providing an environment that recognizes and builds on the youths' strengths and supports their autonomy and choices are critical components to promote their positive development and career potential.

  8. SHARED TECHNOLOGY TRANSFER PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GRIFFIN, JOHN M. HAUT, RICHARD C.

    2008-03-07

    The program established a collaborative process with domestic industries for the purpose of sharing Navy-developed technology. Private sector businesses were educated so as to increase their awareness of the vast amount of technologies that are available, with an initial focus on technology applications that are related to the Hydrogen, Fuel Cells and Infrastructure Technologies (Hydrogen) Program of the U.S. Department of Energy. Specifically, the project worked to increase industry awareness of the vast technology resources available to them that have been developed with taxpayer funding. NAVSEA-Carderock and the Houston Advanced Research Center teamed with Nicholls State University to catalog NAVSEA-Carderockmore » unclassified technologies, rated the level of readiness of the technologies and established a web based catalog of the technologies. In particular, the catalog contains technology descriptions, including testing summaries and overviews of related presentations.« less

  9. Economic effects and spin-offs in a small space economy: the case of Canada.

    PubMed

    Amesse, Fernand; Cohendet, Patrick; Poirier, Alain; Chouinard, Jean-Marc

    2002-12-01

    Canada, through a well-focused space program (telecommunications, earth observation, robotics), has succeeded in developing a space industry largely based on SMEs. The result has been significant economic benefits and technological spin-offs. In this article, the results of two programs, the ESA (European Space Agency) and the STEAR (Strategic Technologies in Automation and Robotics), are compared. The ESA program has generated significant indirect effects and spin-offs for Canadian exports. ESA's reputation and network have enabled SMEs to increase export sales of both space products and other commercial products derived from space technologies. The STEAR program has been highly successful in promoting a new generation of SMEs for space robotics, encouraging both spin-in and spin-offs of technologies. The analysis highlights the complementarity of mission- and diffusion-oriented programs in the technology transfer process.

  10. EPA SITE DEMONSTRATION OF THE INTERNATIONAL WASTE TECHNOLOGIES/GEO-CON IN SITU STABILIZATION/ SOLIDIFICATION PROCESS

    EPA Science Inventory

    This paper presents an EPA evaluation of the first field demonstration of an in situ stabilization/solidification process for contaminated soil under the EPA Superfund Innovative Technology Evaluation (SITE) program. Demonstration of this process was a joint effort of two vendors...

  11. Let's get technical: Enhancing program evaluation through the use and integration of internet and mobile technologies.

    PubMed

    Materia, Frank T; Miller, Elizabeth A; Runion, Megan C; Chesnut, Ryan P; Irvin, Jamie B; Richardson, Cameron B; Perkins, Daniel F

    2016-06-01

    Program evaluation has become increasingly important, and information on program performance often drives funding decisions. Technology use and integration can help ease the burdens associated with program evaluation by reducing the resources needed (e.g., time, money, staff) and increasing evaluation efficiency. This paper reviews how program evaluators, across disciplines, can apply internet and mobile technologies to key aspects of program evaluation, which consist of participant registration, participant tracking and retention, process evaluation (e.g., fidelity, assignment completion), and outcome evaluation (e.g., behavior change, knowledge gain). In addition, the paper focuses on the ease of use, relative cost, and fit with populations. An examination on how these tools can be integrated to enhance data collection and program evaluation is discussed. Important limitations of and considerations for technology integration, including the level of technical skill, cost needed to integrate various technologies, data management strategies, and ethical considerations, are highlighted. Lastly, a case study of technology use in an evaluation conducted by the Clearinghouse for Military Family Readiness at Penn State is presented and illustrates how technology integration can enhance program evaluation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Technology transfer to a developing nation, Korea

    NASA Technical Reports Server (NTRS)

    Stone, C. A.; Uccetta, S. J.

    1973-01-01

    An experimental project is reported which was undertaken. to determine if selected types of technology developed for the aerospace program during the past decade are relevant to specific industrial problems of a developing nation and to test whether a structured program could facilitate the transfer of relevant technologies. The Korea Institute of Science and Technology and the IIT Research Institute were selected as the active transfer agents to participate in the program. The pilot project was based upon the approach to the transfer of domestic technology developed by the NASA Technology Utilization Division and utilized the extensive data and technical resources available through the Space Agency and its contractors. This pilot project has helped to clarify some aspects of the international technology transfer process and to upgrade Korean technological capabilities.

  13. Total quality management - It works for aerospace information services

    NASA Technical Reports Server (NTRS)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle.

  14. A Technological Teacher Education Program Planning Model.

    ERIC Educational Resources Information Center

    Hansen, Ronald E.

    1993-01-01

    A model for technology teacher education curriculum has three facets: (1) purpose (experiential learning, personal development, technological enlightenment, economic well-being); (2) content (professional knowledge, curriculum development competence, pedagogical knowledge and skill, technological foundations); and (3) process (planned reflection,…

  15. Architecture for Survivable Systems Processing (ASSP). Technology benefits for Open System Interconnects

    NASA Technical Reports Server (NTRS)

    Wood, Richard J.

    1992-01-01

    The Architecture for Survivable Systems Processing (ASSP) program is a two phase program whose objective is the derivation, specification, development and validation of an open system architecture capable of supporting advanced processing needs of space, ground, and launch vehicle operations. The output of the first phase is a set of hardware and software standards and specifications defining this architecture at three levels. The second phase will validate these standards and develop the technology necessary to achieve strategic hardness, packaging density, throughput requirements, and interoperability/interchangeability.

  16. Flightdeck Automation Problems (FLAP) Model for Safety Technology Portfolio Assessment

    NASA Technical Reports Server (NTRS)

    Ancel, Ersin; Shih, Ann T.

    2014-01-01

    NASA's Aviation Safety Program (AvSP) develops and advances methodologies and technologies to improve air transportation safety. The Safety Analysis and Integration Team (SAIT) conducts a safety technology portfolio assessment (PA) to analyze the program content, to examine the benefits and risks of products with respect to program goals, and to support programmatic decision making. The PA process includes systematic identification of current and future safety risks as well as tracking several quantitative and qualitative metrics to ensure the program goals are addressing prominent safety risks accurately and effectively. One of the metrics within the PA process involves using quantitative aviation safety models to gauge the impact of the safety products. This paper demonstrates the role of aviation safety modeling by providing model outputs and evaluating a sample of portfolio elements using the Flightdeck Automation Problems (FLAP) model. The model enables not only ranking of the quantitative relative risk reduction impact of all portfolio elements, but also highlighting the areas with high potential impact via sensitivity and gap analyses in support of the program office. Although the model outputs are preliminary and products are notional, the process shown in this paper is essential to a comprehensive PA of NASA's safety products in the current program and future programs/projects.

  17. SOLTECH 1992 proceedings: Solar Process Heat Program, volume 1

    NASA Astrophysics Data System (ADS)

    1992-03-01

    This document is a limited Proceedings, documenting the presentations given at the symposia conducted by the U.S. Department of Energy's (DOE) Solar Industrial Program and Solar Thermal Electrical Program at SOLTECH92. The SOLTECH92 national solar energy conference was held in Albuquerque, New Mexico during the period February 17-20, 1992. The National Renewable Energy Laboratory manages the Solar Industrial Program; Sandia National Laboratories (Albuquerque) manages the Solar Thermal Electric Program. The symposia sessions were as follows: (1) Solar Industrial Program and Solar Thermal Electric Program Overviews, (2) Solar Process Heat Applications, (3) Solar Decontamination of Water and Soil, (4) Solar Building Technologies, (5) Solar Thermal Electric Systems, and (6) Photovoltaic (PV) Applications and Technologies. For each presentation given in these symposia, these Proceedings provide a one- to two-page abstract and copies of the viewgraphs and/or 35 mm slides utilized by the speaker. Some speakers provided additional materials in the interest of completeness. The materials presented in this document were not subjected to a peer review process.

  18. 75 FR 1843 - Medicare and Medicaid Programs; Electronic Health Record Incentive Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... Information Technology for Economic and Clinical Health Act HMO Health Maintenance Organization HOS Health... Sponsored Organization RHC Rural Health Clinic RPPO Regional Preferred Provider Organization SMHP State... proposed rulemaking on the process for organizations to conduct the certification of EHR technology. DATES...

  19. Space Transportation Avionics Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  20. Space Transportation Avionics Technology Symposium. Volume 2: Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  1. U.S. Climate Change Technology Program: Strategic Plan

    DTIC Science & Technology

    2006-09-01

    and Long Term, provides details on the 85 technologies in the R&D portfolio. 21 (Figure 2-1) Continuing Process The United States, in partnership with...locations may be centered near or in residential locations, and work processes and products may be more commonly communicated or delivered via digital... chemical properties, along with advanced methods to simulate processes , will stem from advances in computational technology. Current Portfolio The current

  2. Research and technology, 1993. Salute to Skylab and Spacelab: Two decades of discovery

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A summary description of Skylab and Spacelab is presented. The section on Advanced Studies includes projects in space science, space systems, commercial use of space, and transportation systems. Within the Research Programs area, programs are listed under earth systems science, space physics, astrophysics, and microgravity science and applications. Technology Programs include avionics, materials and manufacturing processes, mission operations, propellant and fluid management, structures and dynamics, and systems analysis and integration. Technology transfer opportunities and success are briefly described. A glossary of abbreviations and acronyms is appended as is a list of contract personnel within the program areas.

  3. Technology Demonstration Summary Site Program Demonstration Test Soliditech Inc Solidification-stabilization Process

    EPA Science Inventory

    The major objective of the Soliditech, Inc., SITE demonstration was to develop reliable performance and cost information about the Soliditech solidification, stabilization technology. The Soliditech process mixes hazardous waste materials with Portland cement or pozzolanic m...

  4. Meyerhoff Scholars Program: a strengths-based, institution-wide approach to increasing diversity in science, technology, engineering, and mathematics.

    PubMed

    Maton, Kenneth I; Pollard, Shauna A; McDougall Weise, Tatiana V; Hrabowski, Freeman A

    2012-01-01

    The Meyerhoff Scholars Program at the University of Maryland, Baltimore County is widely viewed as a national model of a program that enhances the number of underrepresented minority students who pursue science, technology, engineering, and mathematics PhDs. The current article provides an overview of the program and the institution-wide change process that led to its development, as well as a summary of key outcome and process evaluation research findings. African American Meyerhoff students are 5× more likely than comparison students to pursue a science, technology, engineering, and mathematics PhD. Program components viewed by the students as most beneficial include financial scholarship, being a part of the Meyerhoff Program community, the Summer Bridge program, study groups, and summer research. Qualitative findings from interviews and focus groups demonstrate the importance of the Meyerhoff Program in creating a sense of belonging and a shared identity, encouraging professional development, and emphasizing the importance of academic skills. Among Meyerhoff students, several precollege and college factors have emerged as predictors of successful entrance into a PhD program in the science, technology, engineering, and mathematics fields, including precollege research excitement, precollege intrinsic math/science motivation, number of summer research experiences during college, and college grade point average. Limitations of the research to date are noted, and directions for future research are proposed. © 2012 Mount Sinai School of Medicine.

  5. Technology advancement of the static feed water electrolysis process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.

    1977-01-01

    A program to advance the technology of oxygen- and hydrogen-generating subsystems based on water electrolysis was studied. Major emphasis was placed on static feed water electrolysis, a concept characterized by low power consumption and high intrinsic reliability. The static feed based oxygen generation subsystem consists basically of three subassemblies: (1) a combined water electrolysis and product gas dehumidifier module; (2) a product gas pressure controller and; (3) a cyclically filled water feed tank. Development activities were completed at the subsystem as well as at the component level. An extensive test program including single cell, subsystem and integrated system testing was completed with the required test support accessories designed, fabricated, and assembled. Mini-product assurance activities were included throughout all phases of program activities. An extensive number of supporting technology studies were conducted to advance the technology base of the static feed water electrolysis process and to resolve problems.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marrocco, M.

    The Ohio Power Company`s Tidd Pressurized Fluidized Bed Combined Cycle (PFBC) program continues to be the only operating PFBC demonstration program in the nation. The 70 MWe Tidd Demonstration Plant is a Round 1 Clean Coal Technology Project constructed to demonstrate the viability of PFBC combined cycle technology. The plant is now in Rs fourth year of operation. The technology has clearly demonstrated Rs ability to achieve sulfur capture of greater than 95%. The calcium to sulfur molar ratios have been demonstrated to exceed original projections. Unit availability has steadily increased and has been demonstrated to be competitive with othermore » technologies. The operating experience of the first forty-four months of testing has moved the PFBC process from a {open_quotes}promising technology{close_quotes} to available, proven option for efficient, environmentally acceptable base load generation. Funding for the $210 million program is provided by Ohio Power Company, The U.S. Department of Energy, The Ohio Coal Development Office, and the PFBC process vendors - Asea Brown Boveri Carbon (ABBC) and Babcock and Wilcox (B&W).« less

  7. Interpretive Flexibility in Mobile Health: Lessons From a Government-Sponsored Home Care Program

    PubMed Central

    Mathiassen, Lars

    2013-01-01

    Background Mobile technologies have emerged as important tools that health care personnel can use to gain easy access to client data anywhere. This is particularly useful for nurses and care workers in home health care as they provide services to clients in many different settings. Although a growing body of evidence supports the use of mobile technologies, the diverse implications of mobile health have yet to be fully documented. Objective Our objective was to examine a large-scale government-sponsored mobile health implementation program in the Danish home care sector and to understand how the technology was used differently across home care agencies. Methods We chose to perform a longitudinal case study with embedded units of analysis. We included multiple data sources, such as written materials, a survey to managers across all 98 Danish municipalities, and semistructured interviews with managers, care workers, and nurses in three selected home care agencies. We used process models of change to help analyze the overall implementation process from a longitudinal perspective and to identify antecedent conditions, key events, and practical outcomes. Results Strong collaboration between major stakeholders in the Danish home care sector (government bodies, vendors, consultants, interest organizations, and managers) helped initiate and energize the change process, and government funding supported quick and widespread technology adoption. However, although supported by the same government-sponsored program, mobile technology proved to have considerable interpretive flexibility with variation in perceived nature of technology, technology strategy, and technology use between agencies. What was first seen as a very promising innovation across the Danish home care sector subsequently became the topic of debate as technology use arrangements ran counter to existing norms and values in individual agencies. Conclusions Government-sponsored programs can have both positive and negative results, and managers need to be aware of this and the interpretive flexibility of mobile technology. Mobile technology implementation is a complex process that is best studied by combining organization-level analysis with features of the wider sociopolitical and interorganizational environment. PMID:24172852

  8. Office of Science and Technology&International Year EndReport - 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodvarsson, G.S.

    2005-10-27

    Source Term, Materials Performance, Radionuclide Getters, Natural Barriers, and Advanced Technologies, a brief introduction in each section describes the overall organization and goals of each program area. All of these areas have great potential for improving our understanding of the safety performance of the proposed Yucca Mountain repository, as processes within these areas are generally very conservatively represented in the Total System Performance Assessment. In addition, some of the technology thrust areas in particular may enhance system efficiency and reduce risk to workers. Thus, rather modest effort in the S&T Program could lead to large savings in the lifetime repositorymore » total cost and significantly enhanced understanding of the behavior of the proposed Yucca Mountain repository, without safety being compromised, and in some instances being enhanced. An overall strength of the S&T Program is the significant amount of integration that has already been achieved after two years of research. As an example (illustrated in Figure 1), our understanding of the behavior of the total waste isolation system has been enhanced through integration of the Source Term, Materials Performance, and Natural Barriers Thrust areas. All three thrust areas contribute to the integration of different processes in the in-drift environment. These processes include seepage into the drift, dust accumulation on the waste package, brine formation and precipitation on the waste package, mass transfer through the fuel cladding, changes in the seepage-water chemical composition, and transport of released radionuclides through the invert and natural barriers. During FY2005, each of our program areas assembled a team of external experts to conduct an independent review of their respective projects, research directions, and emphasis. In addition, the S&T Program as a whole was independently reviewed by the S&T Programmatic Evaluation Panel. As a result of these reviews, adjustments to the S&T Program will be implemented in FY2006 to ensure that the Program is properly aligned with OCRWM's priorities. Also during FY2005, several programmatic documents were published, including the Science and Technology Program Strategic Plan, the Science and Technology Program Management Plan, and the Science and Technology Program Plan. These and other communication products are available on the OCRWM web site under the Science and Technology section (http://www.ocrwm.doe.gov/osti/index.shtml).« less

  9. Development of a Convergent Spray Technologies(tm) Spray Process for a Solventless Sprayable Coating, MCC-1

    NASA Technical Reports Server (NTRS)

    Patel, Anil K.; Meeks, C.

    1998-01-01

    This paper discusses the application of Convergent Spray Technologies (TM) Spray Process to the development and successful implementation of Marshall Convergent Coating (MCC-1) as a primary Thermal Protection System (TPS) for the Space Shuttle Solid Rocket Boosters (SRBs). This paper discusses the environmental and process benefits of the MCC-1 technology, shows the systematic steps taken in developing the technology, including statistical sensitivity studies of about 35 variables. Based on the process and post-flight successes on the SRB, it will be seen that the technology is "field-proven". Application of this technology to other aerospace and commercial programs is summarized to illustrate the wide range of possibilities.

  10. SuperComputers for Space Applications

    DTIC Science & Technology

    2005-07-13

    also ADM001791, Potentially Disruptive Technologies and Their Impact in Space Programs Held in Marseille, France on 4-6 July 2005. , The original...Performance Embedded Computing will allow Ambitious Space Science Investigation", Proc. First Symp. on Potentially Disruptive Technologies and Their Impact in Space Programs, 2005. ➦ SOMMAIRE/SUMMARY ➦ Data Processing

  11. The Boeing Company's Manufacturing Technology Student Internship. Evaluation Report (1994-95).

    ERIC Educational Resources Information Center

    Wang, Changhua; Owens, Thomas R.

    An evaluation was conducted of the Boeing Company's summer internship program for students enrolled in a manufacturing technology program after grades 11, 12, and 13 (first year of community college). The evaluation included the following activities: a review of documents describing the internship structure, student selection process, and…

  12. 7 CFR 93.5 - Fees for citrus product analyses set by cooperative agreement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS PROCESSED FRUITS AND VEGETABLES Citrus Juices and Certain... applicant, the State of Florida, and the AMS Deputy Administrator, Science and Technology programs. A... Technology and the State of Florida, regarding the set hourly rate and the costs to perform individual...

  13. 7 CFR 93.5 - Fees for citrus product analyses set by cooperative agreement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS PROCESSED FRUITS AND VEGETABLES Citrus Juices and Certain... applicant, the State of Florida, and the AMS Deputy Administrator, Science and Technology programs. A... Technology and the State of Florida, regarding the set hourly rate and the costs to perform individual...

  14. 7 CFR 93.5 - Fees for citrus product analyses set by cooperative agreement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS PROCESSED FRUITS AND VEGETABLES Citrus Juices and Certain... applicant, the State of Florida, and the AMS Deputy Administrator, Science and Technology programs. A... Technology and the State of Florida, regarding the set hourly rate and the costs to perform individual...

  15. 7 CFR 93.5 - Fees for citrus product analyses set by cooperative agreement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (CONTINUED) COMMODITY LABORATORY TESTING PROGRAMS PROCESSED FRUITS AND VEGETABLES Citrus Juices and Certain... applicant, the State of Florida, and the AMS Deputy Administrator, Science and Technology programs. A... Technology and the State of Florida, regarding the set hourly rate and the costs to perform individual...

  16. Environmental development plan for transportation programs: FY80 update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saricks, C.L.; Singh, M.K.; Bernard, M.J. III

    1980-09-01

    This is the second annual update of the environmental development plan (EDP) for transportation programs. It has been prepared as a cooperative effort of the Assistant Secretaries for Conservation and Solar Energy (ASCS) Office of Transportation Programs (CS/TP) and the Environment (ASEV) Office of Environmental Assessments. EDPs identify the ecosystem, resource, physical environment, health, safety, socioeconomic, and environmental control concerns associated with DOE programs. The programs include the research, development, demonstration, and assessment (RDD and A) of 14 transportation technologies and several strategy implementation projects. This EDP update presents a research and assessment plan for resolving any potentially adverse environmentalmore » concerns arising from these programs. The EDP process provides a framework for: incorporating environmental concerns into CS/TP planning and decision processes early to ensure they are assigned the same importance as technological, fiscal, and institutional concerns in decision making; resolving environmental concerns concurrently with energy technology and strategy development; and providing a research schedule that mitigates adverse environmental effects through sound technological design or policy analysis. This EDP also describes the status of each environmental concern and the plan for its resolution. Much of ongoing DOE reseirch and technology development is aimed at resolving concerns identified in this EDP. Each EDP is intended to be so comprehensive that no concerns escape notice. Care is taken to include any CS/TP action that may eventually require an Environmental Impact Statement. Because technology demonstration and commercialization tend to raise more environmental concerns than other portions of the transportation program, most of this EDP addresses these concerns.« less

  17. Process Interaction for Wastewater Facilities, Wastewater Technology: A Two-Year Post High School Instructional Program. An Instructor's Guide for Use of Instructional Material in Wastewater Technology Training Programs. Volume V.

    ERIC Educational Resources Information Center

    Gearheart, Robert A.; And Others

    This document is one in a series which outlines performance objectives and instructional modules for a course of study which explains the relationships and functions of the process units in a wastewater treatment plant. The modules are arranged in an order appropriate for teaching students with no experience. The modules can also be rearranged and…

  18. Spinoff, 1994

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1994-01-01

    This publication is intended to foster the aim of the NASA Technology Transfer Program by heightening awareness of the NASA technology available for reapplication and its potential for public benefit. The publication is organized in three main sections. The first section, Aerospace Aims, is an illustrated summary of NASA's major aeronautical and space programs, their goals and directions, their contributions to American scientific and technological growth, and their potential for practical benefit. The second section, Technology Twice Used, is a representative selection of new products and processes adapted from technology originally developed for NASA mainline programs, underlying the broad diversity of spinoff applications and the social/economic benefits they provide. The third section, Technology Transfer, is a description of the mechanisms employed to encourage and facilitate practical application of new technologies developed in the course of NASA activities.

  19. Repository-Based Software Engineering Program: Working Program Management Plan

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Repository-Based Software Engineering Program (RBSE) is a National Aeronautics and Space Administration (NASA) sponsored program dedicated to introducing and supporting common, effective approaches to software engineering practices. The process of conceiving, designing, building, and maintaining software systems by using existing software assets that are stored in a specialized operational reuse library or repository, accessible to system designers, is the foundation of the program. In addition to operating a software repository, RBSE promotes (1) software engineering technology transfer, (2) academic and instructional support of reuse programs, (3) the use of common software engineering standards and practices, (4) software reuse technology research, and (5) interoperability between reuse libraries. This Program Management Plan (PMP) is intended to communicate program goals and objectives, describe major work areas, and define a management report and control process. This process will assist the Program Manager, University of Houston at Clear Lake (UHCL) in tracking work progress and describing major program activities to NASA management. The goal of this PMP is to make managing the RBSE program a relatively easy process that improves the work of all team members. The PMP describes work areas addressed and work efforts being accomplished by the program; however, it is not intended as a complete description of the program. Its focus is on providing management tools and management processes for monitoring, evaluating, and administering the program; and it includes schedules for charting milestones and deliveries of program products. The PMP was developed by soliciting and obtaining guidance from appropriate program participants, analyzing program management guidance, and reviewing related program management documents.

  20. Selection of a Brine Processor Technology for NASA Manned Missions

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Gleich, Andrew F.

    2016-01-01

    The current ISS Water Recovery System (WRS) reclaims water from crew urine, humidity condensate, and Sabatier product water. Urine is initially processed by the Urine Processor Assembly (UPA) which recovers 75% of the urine as distillate. The remainder of the water is present in the waste brine which is currently disposed of as trash on ISS. For future missions this additional water must be reclaimed due to the significant resupply penalty for missions beyond Low Earth Orbit (LEO). NASA has pursued various technology development programs for a brine processor in the past several years. This effort has culminated in a technology down-select to identify the optimum technology for future manned missions. The technology selection is based on various criteria, including mass, power, reliability, maintainability, and safety. Beginning in 2016 the selected technology will be transitioned to a flight hardware program for demonstration on ISS. This paper summarizes the technology selection process, the competing technologies, and the rationale for the technology selected for future manned missions.

  1. Unterdruck-Verdampfer-Brunnen (UVB): An in situ system for remediation of contaminated aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, M.A.; Argus, R.R.; Hough, B.L.

    Traditionally, contaminated groundwater is pumped to a surface facility for treatment, often by air stripping. An innovative technology, the Unterdruck-Verdampfer-Brunnen (UVB), German for Vacuum Vaporizing Well, is an in situ groundwater remediation technology that combines air-lift pumping and air stripping to clean aquifers contaminated with volatile compounds. Additionally, the developer claims that in some cases the technology is capable of simultaneous recovery of soil gas from the vadose zone. An evaluation of this process is discussed in this abstract. The UVB technology is a process patented by IEG mbH in Reutlingen, Germany. IEG Technologies, Inc., located in Charlotte, NC, marketsmore » the technology in North America. IEG teamed with Roy F. Weston, Inc. to demonstrate the UVB technology at March Air Force Base (AFB), CA. March AFB allowed the US EPA Superfund Innovative Technology Evaluation (SITE) program to evaluate the technology. The SITE program retained PRC Environmental, Inc. to evaluate the performance of the UVB system at March.« less

  2. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2012-03-01

    knowledge-based practices. As a result , most of these programs will carry technology, design, and production risks into subsequent phases of the...acquisition process that could result in cost growth or schedule delays. GAO also assessed the implementation of selected acquisition reforms and found...knowledge-based practices. As a result , most of these programs will carry technology, design, and production risks into subsequent phases of the

  3. Digital Writing and Diversity: The Effects of School Laptop Programs on Literacy Processes and Outcomes

    ERIC Educational Resources Information Center

    Zheng, Binbin; Warschauer, Mark; Farkas, George

    2013-01-01

    Over the last decade, the number of one-to-one laptop programs in U.S. schools has steadily increased. Though technology advocates believe that such programs can assist student writing, there has been little systematic evidence for this claim, and even less focused on technology use by at-risk learners. This study examined the effect of daily…

  4. Space Technology Mission Directorate Game Changing Development Program FY2015 Annual Program Review: Advanced Manufacturing Technology

    NASA Technical Reports Server (NTRS)

    Vickers, John; Fikes, John

    2015-01-01

    The Advance Manufacturing Technology (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of the Initiative is the Advanced Manufacturing National Program Office (AMNPO), which includes participation from all federal agencies involved in U.S. manufacturing. In support of the AMNPO the AMT Project supports building and Growing the National Network for Manufacturing Innovation through a public-private partnership designed to help the industrial community accelerate manufacturing innovation. Integration with other projects/programs and partnerships: STMD (Space Technology Mission Directorate), HEOMD, other Centers; Industry, Academia; OGA's (e.g., DOD, DOE, DOC, USDA, NASA, NSF); Office of Science and Technology Policy, NIST Advanced Manufacturing Program Office; Generate insight within NASA and cross-agency for technology development priorities and investments. Technology Infusion Plan: PC; Potential customer infusion (TDM, HEOMD, SMD, OGA, Industry); Leverage; Collaborate with other Agencies, Industry and Academia; NASA roadmap. Initiatives include: Advanced Near Net Shape Technology Integrally Stiffened Cylinder Process Development (launch vehicles, sounding rockets); Materials Genome; Low Cost Upper Stage-Class Propulsion; Additive Construction with Mobile Emplacement (ACME); National Center for Advanced Manufacturing.

  5. Low NO/x/ heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1980-01-01

    The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  6. Low NO(x) heavy fuel combustor program

    NASA Technical Reports Server (NTRS)

    Lister, E.; Niedzwiecki, R. W.; Nichols, L.

    1979-01-01

    The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.

  7. DEMONSTRATION OF AN INTEGRATED, PASSIVE BIOLOGICAL TREATMENT PROCESS FOR AMD

    EPA Science Inventory

    An innovative, cost-effective, biological treatment process has been designed by MSE Technology Applications, Inc. to treat acid mine drainage (AMD). A pilot-scale demonstration is being conducted under the Mine Waste Technology Program using water flowing from an abandoned mine ...

  8. AMBIENT AMMONIA MONITORING TECHNOLOGIES

    EPA Science Inventory

    The Environmental Technology Verification (ETV) Program develops testing protocols and verifies the performance of innovative technologies that have the potential to improve the protection of human health and the environment. This abstract and poster describe the process by whic...

  9. Endocrine Disruptor Screening Program (EDSP) Comprehensive Management Plans

    EPA Pesticide Factsheets

    The EDSP Comprehensive Management Plan describes the technical review processes that will be used in implementing this program and how the agency intends to factor technology advancements into the program.

  10. ZENON ENVIRONMENTAL INC., ZENOGEM™ BIOLOGICAL AND ULTRAFILTRATION TECHNOLOGY; INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the results of a field demonstration conducted under the SITE Program. The technology which was demonstrated was a wastewater treatment technology developed by Zenon Environmental Inc. The process, named ZenoGem™, integrates biological treatment with memb...

  11. Sensors 2000! Program: Advanced Biosensor and Measurement Systems Technologies for Spaceflight Research and Concurrent, Earth-Based Applications

    NASA Technical Reports Server (NTRS)

    Hines, J.

    1999-01-01

    Sensors 2000! (S2K!) is a specialized, integrated projects team organized to provide focused, directed, advanced biosensor and bioinstrumentation systems technology support to NASA's spaceflight and ground-based research and development programs. Specific technology thrusts include telemetry-based sensor systems, chemical/ biological sensors, medical and physiological sensors, miniaturized instrumentation architectures, and data and signal processing systems. A concurrent objective is to promote the mutual use, application, and transition of developed technology by collaborating in academic-commercial-govemment leveraging, joint research, technology utilization and commercialization, and strategic partnering alliances. Sensors 2000! is organized around three primary program elements: Technology and Product Development, Technology infusion and Applications, and Collaborative Activities. Technology and Product Development involves development and demonstration of biosensor and biotelemetry systems for application to NASA Space Life Sciences Programs; production of fully certified spaceflight hardware and payload elements; and sensor/measurement systems development for NASA research and development activities. Technology Infusion and Applications provides technology and program agent support to identify available and applicable technologies from multiple sources for insertion into NASA's strategic enterprises and initiatives. Collaborative Activities involve leveraging of NASA technologies with those of other government agencies, academia, and industry to concurrently provide technology solutions and products of mutual benefit to participating members.

  12. IVHM for the 3rd Generation RLV Program: Technology Development

    NASA Technical Reports Server (NTRS)

    Kahle, Bill

    2000-01-01

    The objective behind the Integrated Vehicle Health Management (IVHM) project is to develop and integrate the technologies which can provide a continuous, intelligent, and adaptive health state of a vehicle and use this information to improve safety and reduce costs of operations. Technological areas discussed include: developing, validating, and transfering next generation IVHM technologies to near term industry and government reusable launch systems; focus NASA on the next generation and highly advanced sensor and software technologies; and validating IVHM systems engineering design process for future programs.

  13. X-34 Technology Demonstrator in High Bay

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  14. Study on the key technology of grain logistics tracking system

    NASA Astrophysics Data System (ADS)

    Zhen, Tong; Ge, Hongyi; Jiang, Yuying; Che, Yi

    2010-07-01

    In recent year, with the rapid development of GIS technology, more and more programming problems depend on the GIS technology and professional model system. The solution of auxiliary programming problem by using GIS technology, which has become very popular. GIS is an important tool and technology, that captures, stores, analyzes, manages, and presents data that are linked to location. A grain logistics distribution system based on GIS is established, which provides a visualization scheme during the process of grain circulation and supports users making decision and analyzing for grain logistics enterprise.

  15. Spinoff 1995

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1995-01-01

    Recognizing the great potential of the technology bank, Congress charged NASA with stimulating the widest possible use of this valuable resource in the national interest. NASA's instrument of that purpose is the Technology Transfer Program, which seeks to broaden and accelerate the spinoff process. Its intent is to spur expanded national benefit, in terms of new products and new jobs, by facilitating the commercial application of the technology; it encourages greater use of the storehouse of knowledge by providing a channel linking the technology and those who might be able to put it to advantageous use. In July 1994, NASA implemented an Agenda for Change - a new way of doing business in partnership with the private sector. This Agenda marks the beginning of a new focus to further improve our contributions to America's economic security through the pursuit of aeronautics and space missions. This publication is an implement of the Technology Transfer Program intended to heighten awareness among potential users of the technology available for transfer and the economic and social benefits that might be realized by applications of NASA technology to US commercial interests. Spinoff 1995 is organized in three sections. Section 1 outlines NASA's mainline effort, the major programs that generate new technology and therefore replenish and expand the bank of technical knowledge available for application. Section 2, the focal point of this volume, contains a representative sampling of spinoff products and processes that resulted from applications of technology originally developed to meet NASA aerospace goals. Section 3, describes the various mechanisms NASA employs to stimulate technology transfer and lists, in an appendix, contact sources for further information about the Technology Transfer Program.

  16. White House/OSTP perspective

    NASA Technical Reports Server (NTRS)

    Pryor, Donald

    1992-01-01

    Two aspects of the Office of Science and Technology Policy (OSTP) are discussed: (1) efforts to state the overarching technology policy in which technology transfer plays an important part; and (2) efforts to coordinate federal R&D contracts programs in several technology areas through the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET) process.

  17. Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  18. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  19. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Astrophysics Data System (ADS)

    Marsik, S. J.; Morea, S. F.

    1985-03-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  20. Pathfinder

    NASA Image and Video Library

    2004-04-15

    Pictured in the high bay, is the X-34 Technology Demonstrator in the process of completion. The X-34 wass part of NASA's Pathfinder Program which demonstrated advanced space transportation technologies through the use of flight experiments and experimental vehicles. These technology demonstrators and flight experiments supported the Agency's goal of dramatically reducing the cost of access to space and defined the future of space transportation pushing technology into a new era of space development and exploration at the dawn of the new century. The X-34 program was cancelled in 2001.

  1. Funding and Strategic Alignment Guidance for Infusing Small Business Innovation Research Technology Into Aeronautics Research Mission Directorate Projects at NASA Glenn Research Center for 2015

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    This document is intended to enable the more effective transition of NASA Glenn Research Center (GRC) SBIR technologies funded by the Small Business Innovation Research (SBIR) program as well as its companion, the Small Business Technology Transfer (STTR) program into NASA Aeronautics Research Mission Directorate (ARMD) projects. Primarily, it is intended to help NASA program and project managers find useful technologies that have undergone extensive research and development (RRD), through Phase II of the SBIR program; however, it can also assist non-NASA agencies and commercial companies in this process. aviation safety, unmanned aircraft, ground and flight test technique, low emissions, quiet performance, rotorcraft

  2. CAV-OX CAVITATION OXIDIATION PROCESS - MAGNUM WATER TECHNOLOGY, INC. - APPLICATIONS ANALYSIS REPORT

    EPA Science Inventory

    This report evaluates the ability of the CAV-OX cavitation oxidation process to remove volatile organic compounds (VOC) present in aqueous wastes. This report also presents economic data based on the Superfund Innovative Technology Evaluation (SITE) Program demonstration and nine...

  3. 32 CFR 22.105 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... applying existing technology to new products and processes in a general way. Advanced research is most... Category 6.3A) programs within Research, Development, Test and Evaluation (RDT&E). Applied research... technology such as new materials, devices, methods and processes. It typically is funded in Applied Research...

  4. Perspective on the National Aero-Space Plane Program instrumentation development

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Erbland, Peter

    1993-01-01

    A review of the requirement for, and development of, advanced measurement technology for the National Aerospace Plane program is presented. The objective is to discuss the technical need and the program commitment required to ensure that adequate and timely measurement capabilities are provided for ground and flight testing in the NASP program. The scope of the measurement problem is presented, the measurement process is described, how instrumentation technology development has been affected by NASP program evolution is examined, the national effort to define measurement requirements and assess the adequacy of current technology to support the NASP program is discussed, and the measurement requirements are summarized. The unique features of the NASP program that complicate the understanding of requirements and the development of viable solutions are illustrated.

  5. Advanced Food Technology Workshop Report. Volumes 1 and 2

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2003-01-01

    The Advanced Human Support Technology (AHST) Program conducts research and technology development to provide new technologies and next-generation system that will enable humans to live and work safely and effectively in space. One program element within the AHST Program is Advanced Life Support (ALS). The goal of the ALS program element is to develop regenerative life support systems directed at supporting National Aeronautics and Space Administration's (NASA) future long-duration missions. Such missions could last from months to years and make resupply impractical, thereby necessitating self-sufficiency. Thus, subsystems must be developed to fully recycle air and water, recover resources from solid wastes grow plants, process raw plant products into nutritious and palatable foods, control the thermal environment, while reducing the overall system mass. ALS systems will be a combination of physico-chemical and biological components depending on the specific mission requirements. In the transit vehicle, the food system will primarily be a prepackaged food system with the possible addition of salad crops that can be picked and eaten with limited preparation. On the lunar or planetary evolved base, the food system will be a combination of the prepackaged menu item and ingredients that are processed from the grown crops. Food processing and food preparation will be part of this food system.

  6. An Educational Technology Curriculum for Converging Technologies.

    ERIC Educational Resources Information Center

    Allen, Brockenbrough S.; And Others

    1989-01-01

    Outlines curriculum reforms being made in the master's level educational technology program at San Diego State University. Topics discussed include technological changes and the roles of educational product designers; human information processing; knowledge base design; student design of educational adventure games; interactive video design; and…

  7. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, GROUNDWATER SAMPLING TECHNOLOGIES, GEOPROBE INC., PNEUMATIC BLADDER PUMP GW 1400 SERIES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, GROUNDWATER SAMPLING TECHNOLOGIES, GEOPROBE INC, MECHANICAL BLADDER PUMP MODEL MP470

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...

  9. Astrophysics space systems critical technology needs

    NASA Technical Reports Server (NTRS)

    Gartrell, C. F.

    1982-01-01

    This paper addresses an independent assessment of space system technology needs for future astrophysics flight programs contained within the NASA Space Systems Technology Model. The critical examination of the system needs for the approximately 30 flight programs in the model are compared to independent technology forecasts and possible technology deficits are discussed. These deficits impact the developments needed for spacecraft propulsion, power, materials, structures, navigation, guidance and control, sensors, communications and data processing. There are also associated impacts upon in-orbit assembly technology and space transportation systems. A number of under-utilized technologies are highlighted which could be exploited to reduce cost and enhance scientific return.

  10. Ceramic Technology for Advanced Heat Engines Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-08-01

    The Ceramic Technology for Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional researchmore » is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially.« less

  11. Project Tradition and Technology (Project TNT): The Hualapai Bilingual Academic Excellence Program.

    ERIC Educational Resources Information Center

    Reed, Michael D.; And Others

    Project Tradition and Technology (TNT) at Peach Springs Elementary School (Peach Springs, Arizona) is 1 of 12 programs recognized nationally as an outstanding model of bilingual education by the U.S. Department of Education. Project TNT is a process-oriented curriculum development model that identifies the community's needs and expectations for…

  12. Ion beam applications research. A summary of Lewis Research Center Programs

    NASA Technical Reports Server (NTRS)

    Banks, B. A.

    1981-01-01

    A summary of the ion beam applications research (IBAR) program organized to enable the development of materials, products, and processes through the nonpropulsive application of ion thruster technology is given. Specific application efforts utilizing ion beam sputter etching, deposition, and texturing are discussed as well as ion source and component technology applications.

  13. The Processes and Effects of an Internal Technology Discovery Program upon Management.

    ERIC Educational Resources Information Center

    Schuelke, L. David

    This paper summarizes the results of a field study conducted by the Center for Research in Scientific Communication at the University of Minnesota, Saint Paul, which concerned the effects of a technology-monitoring program on communication activities, behaviors, and attitudes of employees at a multinational, Minneapolis-based company. It was…

  14. Computer Programming with Early Elementary Students with Down Syndrome

    ERIC Educational Resources Information Center

    Taylor, Matthew S.; Vasquez, Eleazar; Donehower, Claire

    2017-01-01

    Students of all ages and abilities must be given the opportunity to learn academic skills that can shape future opportunities and careers. Researchers in the mid-1970s and 1980s began teaching young students the processes of computer programming using basic coding skills and limited technology. As technology became more personalized and easily…

  15. Meaningful Use of Simulation as an Educational Method in Nursing Programs

    ERIC Educational Resources Information Center

    Thompson, Teri L.

    2011-01-01

    The purpose of this descriptive study was to examine the use of simulation technology within nursing programs leading to licensure as registered nurses. In preparation for this study the Use of Simulation Technology Inventory (USTI) was developed and based in the structure, processes, outcomes model and the current literature on simulation. The…

  16. X-43 Hypersonic Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Voland, Randall T.; Huebner, Lawrence D.; McClinton, Charles R.

    2005-01-01

    NASA recently completed two major programs in Hypersonics: Hyper-X, with the record-breaking flights of the X-43A, and the Next Generation Launch Technology (NGLT) Program. The X-43A flights, the culmination of the Hyper-X Program, were the first-ever examples of a scramjet engine propelling a hypersonic vehicle and provided unique, convincing, detailed flight data required to validate the design tools needed for design and development of future operational hypersonic airbreathing vehicles. Concurrent with Hyper-X, NASA's NGLT Program focused on technologies needed for future revolutionary launch vehicles. The NGLT was "competed" by NASA in response to the President s redirection of the agency to space exploration, after making significant progress towards maturing technologies required to enable airbreathing hypersonic launch vehicles. NGLT quantified the benefits, identified technology needs, developed airframe and propulsion technology, chartered a broad University base, and developed detailed plans to mature and validate hypersonic airbreathing technology for space access. NASA is currently in the process of defining plans for a new Hypersonic Technology Program. Details of that plan are not currently available. This paper highlights results from the successful Mach 7 and 10 flights of the X-43A, and the current state of hypersonic technology.

  17. (abstract) Formal Inspection Technology Transfer Program

    NASA Technical Reports Server (NTRS)

    Welz, Linda A.; Kelly, John C.

    1993-01-01

    A Formal Inspection Technology Transfer Program, based on the inspection process developed by Michael Fagan at IBM, has been developed at JPL. The goal of this program is to support organizations wishing to use Formal Inspections to improve the quality of software and system level engineering products. The Technology Transfer Program provides start-up materials and assistance to help organizations establish their own Formal Inspection program. The course materials and certified instructors associated with the Technology Transfer Program have proven to be effective in classes taught at other NASA centers as well as at JPL. Formal Inspections (NASA tailored Fagan Inspections) are a set of technical reviews whose objective is to increase quality and reduce the cost of software development by detecting and correcting errors early. A primary feature of inspections is the removal of engineering errors before they amplify into larger and more costly problems downstream in the development process. Note that the word 'inspection' is used differently in software than in a manufacturing context. A Formal Inspection is a front-end quality enhancement technique, rather than a task conducted just prior to product shipment for the purpose of sorting defective systems (manufacturing usage). Formal Inspections are supporting and in agreement with the 'total quality' approach being adopted by many NASA centers.

  18. System approach to modeling of industrial technologies

    NASA Astrophysics Data System (ADS)

    Toropov, V. S.; Toropov, E. S.

    2018-03-01

    The authors presented a system of methods for modeling and improving industrial technologies. The system consists of information and software. The information part is structured information about industrial technologies. The structure has its template. The template has several essential categories used to improve the technological process and eliminate weaknesses in the process chain. The base category is the physical effect that takes place when the technical process proceeds. The programming part of the system can apply various methods of creative search to the content stored in the information part of the system. These methods pay particular attention to energy transformations in the technological process. The system application will allow us to systematize the approach to improving technologies and obtaining new technical solutions.

  19. A Catalyst for Industry-University Partnerships

    NASA Astrophysics Data System (ADS)

    Senich, Donald

    2004-03-01

    Technology is one of the key elements that define a society or civilization. Whether technology causes everything in a society is not as important as it is to recognize that the processes of technological innovation are critical to the eveolution of a society. Industry is relying more and more on their university and small business partners to provide some of the most innovative paths to economic well being. The United States Government has established several innovative programs to assist in the technology deployment that is the underpining to the technological revolution. This presentation will examine funding trends and selected research alliances involving Industry, Government, and University collaboration. Three programs at the National Science Foundation are stimulating and encouraging the partnerships between different sectors of the technology dependent industrial community and entrepreneurs. This presentation provides a description of three of the most successful programs: Grant Opportunities for Academic Liasion with Industry (GOALI), Small Business Innovation Research Program (SBIR), and the Small Business Technology Transfer Program (STTR). By working together within the boundaries of Industry-University collaborations we can perpetuate leadership in research to develop tools, goods, services, and prosperity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The goal of the US Department of Energy (DOE) Underground Coal Conversion (UCC) program is to develop the technology to produce clean fuels from coal deposits that are unsuitable for commercial exploitation by conventional mining techniques. The highest priority is to develop and demonstrate, in conjunction with industry, a commercially feasible process for underground gasification of low-rank coal in the 1985 to 1987 time period. The DOE program has stimulated industry interest and activity in developing UCC technology. Several major energy corporations and utilities have invested private funds in UCC research and development (R and D) projects. Results of themore » program to date indicate that, while UCC is technically feasible, it still contains some process unknowns, environmental risks, and economic risks that require R and D. In order to contribute to the national energy goals, a strong DOE program that incorporates maximum industry involvement is planned. The program's strategy is to remove the high-risk elements of UCC by resolving technical, environmental, and economic uncertainties. This will enable industry to assume responsibility for commercialization of the technology. Thus, the elements of the program have been designed to: provide detailed design and operational data that industry can scale-up with confidence; provide accurate and complete cost estimates that can be scaled-up and will allow comparison with alternative processes; provide detailed environmental impact and control data to allow industry to implement projects that will meet applicable standards; verify the reliability of continuous operation of UCC processes; and show that UCC processes have the flexibility to meet a variety of commercial needs.« less

  1. Materials and Processes Technology.

    ERIC Educational Resources Information Center

    Ritz, John M.; And Others

    This instructional resource guide is intended to assist the industrial arts (IA) teacher in implementing a comprehensive materials and Processes Technology program at the technical level in Virginia high schools. The course is designed to help students make informed educational and occupational choices and prepare them for advanced technical or…

  2. Beyond Coordination: Joint Planning and Program Execution. The IHPRPT Materials Working Group

    NASA Technical Reports Server (NTRS)

    Stropki, Michael A.; Cleyrat, Danial A.; Clinton, Raymond G., Jr.; Rogacki, John R. (Technical Monitor)

    2000-01-01

    "Partnership is more than just coordination," stated then-Commander of the Air Force Research Laboratory (AFRL), Major General Dick Paul (USAF-Ret), at this year's National Space and Missile Materials Symposium. His comment referred to the example of the joint planning and program execution provided by the Integrated High Payoff Rocket Propulsion Technology (IHPRPT) Materials Working Group (IMWG). Most people agree that fiscal pressures imposed by shrinking budgets have made it extremely difficult to build upon our existing technical capabilities. In times of sufficient budgets, building advanced systems poses no major difficulties. However, with today's budgets, realizing enhanced capabilities and developing advanced systems often comes at an unaffordable cost. Overcoming this problem represents both a challenge and an opportunity to develop new business practices that allow us to develop advanced technologies within the restrictions imposed by current funding levels. Coordination of technology developments between different government agencies and organizations is a valuable tool for technology transfer. However, rarely do the newly developed technologies have direct applicability to other ongoing programs. Technology requirements are typically determined up-front during the program planning stage so that schedule risk can be minimized. The problem with this process is that the costs associated with the technology development are often borne by a single program. Additionally, the potential exists for duplication of technical effort. Changing this paradigm is a difficult process but one that can be extremely worthwhile should the right opportunity arise. The IMWG is one such example where NASA, the DoD, and industry have developed joint requirements that are intended to satisfy multiple program needs. More than mere coordination, the organizations comprising the group come together as partners, sharing information and resources, proceeding from a joint roadmap.

  3. An application of multiattribute decision analysis to the Space Station Freedom program. Case study: Automation and robotics technology evaluation

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey H.; Levin, Richard R.; Carpenter, Elisabeth J.

    1990-01-01

    The results are described of an application of multiattribute analysis to the evaluation of high leverage prototyping technologies in the automation and robotics (A and R) areas that might contribute to the Space Station (SS) Freedom baseline design. An implication is that high leverage prototyping is beneficial to the SS Freedom Program as a means for transferring technology from the advanced development program to the baseline program. The process also highlights the tradeoffs to be made between subsidizing high value, low risk technology development versus high value, high risk technology developments. Twenty one A and R Technology tasks spanning a diverse array of technical concepts were evaluated using multiattribute decision analysis. Because of large uncertainties associated with characterizing the technologies, the methodology was modified to incorporate uncertainty. Eight attributes affected the rankings: initial cost, operation cost, crew productivity, safety, resource requirements, growth potential, and spinoff potential. The four attributes of initial cost, operations cost, crew productivity, and safety affected the rankings the most.

  4. Video streaming technologies using ActiveX and LabVIEW

    NASA Astrophysics Data System (ADS)

    Panoiu, M.; Rat, C. L.; Panoiu, C.

    2015-06-01

    The goal of this paper is to present the possibilities of remote image processing through data exchange between two programming technologies: LabVIEW and ActiveX. ActiveX refers to the process of controlling one program from another via ActiveX component; where one program acts as the client and the other as the server. LabVIEW can be either client or server. Both programs (client and server) exist independent of each other but are able to share information. The client communicates with the ActiveX objects that the server opens to allow the sharing of information [7]. In the case of video streaming [1] [2], most ActiveX controls can only display the data, being incapable of transforming it into a data type that LabVIEW can process. This becomes problematic when the system is used for remote image processing. The LabVIEW environment itself provides little if any possibilities for video streaming, and the methods it does offer are usually not high performance, but it possesses high performance toolkits and modules specialized in image processing, making it ideal for processing the captured data. Therefore, we chose to use existing software, specialized in video streaming along with LabVIEW and to capture the data provided by them, for further use, within LabVIEW. The software we studied (the ActiveX controls of a series of media players that utilize streaming technology) provide high quality data and a very small transmission delay, ensuring the reliability of the results of the image processing.

  5. Establishing a scientific and technical information program: Planning and resource management

    NASA Technical Reports Server (NTRS)

    Blados, Walter R.

    1992-01-01

    In the last 50 years, technological advances have accelerated at a rate unprecedented in history. We are experiencing a tremendous expansion of scientific and technological effort in many directions, and the result is a fantastic increase in the accumulation of scientific and technical information (STI) and knowledge. An integral part of the research and development (R&D) process is the STI associated with it. STI is both a raw material (input) and a product (output) of this process. The topics addressed include the following: the value of STI, management of an STI program, program policy and guidance, organizational structure, data sources, training/orientation, and the current information environment.

  6. GEOSAFE CORPORATION IN SITU VITRIFICATION: INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the findings associated with a Demonstration of the Geosafe Corporation (Geosafe) In Situ Vitrification (ISV) Process. The Geosafe ISV Technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program in conjuction with remedi...

  7. Space benefits: The secondary application of aerospace technology in other sectors of the economy. [(information dissemination and technology transfer from NASA programs)

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Space Benefits is a publication that has been prepared for the NASA Technology Utilization Office by the Denver Research Institute's Program for Transfer Research and Impact Studies, to provide the Agency with accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The technological innovations derived from NASA space programs and their current applications in the following areas are considered: (1) manufacturing consumer products, (2) manufacturing capital goods, (3) new consumer products and retailing, (4) electric utilities, (5) environmental quality, (6) food production and processing, (7) government, (8) petroleum and gas, (9) construction, (10) law enforcement, and (11) highway transportation.

  8. The Use of SMS Support in Programming Education

    ERIC Educational Resources Information Center

    Kert, Serhat Bahadir

    2011-01-01

    The rapid developments in the communication technologies today render possible the use of new technological support tools in learning processes. Wireless, or mobile wireless, technologies are the tools whose potential contributions to education are investigated. The potential effects of these technologies on learning are explored through studies…

  9. An introduction of internationalisation in food science doctoral program: a case study of Bogor Agricultural University, Indonesia.

    PubMed

    Hunaefi, D

    2010-01-01

    The Department of Food Science and Technology- Bogor Agricultural University (DFST-IPB), Indonesia is one of the oldest Departments of its kind in Indonesia. The Department has been founded since 1964 under the Faculty of Agricultural Engineering and Technology. The Department has a core competence in the area of food science and technology, particularly in the development of food chemistry, food microbiology, food process engineering, food analysis, food quality and safety. The Department offers educational programs: Undergraduate Program in Food Technology and Master as well as Doctorate Program in Food Science. The Master and Doctorate Program are enrolled by 35 students annually. Globalisation as a global phenomenon has been influencing DFST doctoral program as internationalization in response to globalization is a common feature in majority universities. Facing this challenge, DFST Doctorate Program's has made some efforts to provide students with international atmosphere, including having international guest lecturers, inviting prospective international students, and initiating join program with international universities. In addition, research focusing in tropical food and collaboration with international universities may need to be improved to widen the network, increase publication and place DFST doctorate program visible in the international forum. This paper is intended to reveal the perceived challenges of globalization for food science doctoral program (DFST-IPB) and to what extent and in what form internationalization has been achieved. However, it should be noted that this article is selective rather than comprehensive in reflecting on the internationalization process of food science doctoral program (DFST-IPB).

  10. Transferring new technologies within the federal sector: The New Technology Demonstration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, D.R.; Hunt, D.M.

    1994-08-01

    The federal sector is the largest consumer of products in the United States and annually purchases almost 1.5 quads of energy measured at the building site at a cost of almost $10 billion (U.S. Department of Energy 1991). A review of design, construction, and procurement practices in the federal sector, as well as discussions with manufacturers and vendors, indicated that new technologies are not utilized in as timely a manner as possible. As a consequence of this technology transfer lag, the federal sector loses valuable energy and environmental benefits that can be derived through the application of new technologies. Inmore » addition, opportunities are lost to reduce federal energy expenditures and spur U.S. economic growth through the procurement of such technologies. In 1990, under the direction of the U.S. Department of Energy (DOE) Federal Energy Management Program, the Pacific Northwest Laboratory began the design of a program to accelerate the introduction of new U.S. technologies into the federal sector. Designated first as the Test Bed Demonstration Program and more recently the New Technology Demonstration Program, it sought to shorten the acceptance period of new technologies within the federal sector. By installing and evaluating various new technologies at federal facilities, the Program attempts to increase the acceptance of those new technologies through the results of {open_quotes}real-world{close_quotes} federal installations. Since that time, the Program has conducted new technology demonstrations and evaluations, evolved to address the need for more timely information transfer, and explored collaborative opportunities with other DOE offices and laboratories. This paper explains the processes by which a new technology demonstration project is implemented and presents a general description of the Program results to date.« less

  11. Separations in the STATS report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choppin, G.R.

    1996-12-31

    The Separations Technology and Transmutation Systems (STATS) Committee formed a Subcommittee on Separations. This subcommittee was charged with evaluating the separations proposed for the several reactor and accelerator transmutation systems. It was also asked to review the processing options for the safe management of high-level waste generated by the defense programs, in particular, the special problems involved in dealing with the waste at the U.S. Department of Energy (DOE) facility in Hanford, Washington. Based on the evaluations from the Subcommittee on Separations, the STATS Committee concluded that for the reactor transmutation programs, aqueous separations involving a combination of PUREX andmore » TRUEX solvent extraction processes could be used. However, additional research and development (R&D) would be required before full plant-scale use of the TRUEX technology could be employed. Alternate separations technology for the reactor transmutation program involves pyroprocessing. This process would require a significant amount of R&D before its full-scale application can be evaluated.« less

  12. Teaching biomedical technology innovation as a discipline.

    PubMed

    Yock, Paul G; Brinton, Todd J; Zenios, Stefanos A

    2011-07-20

    Recently, universities in the United States and abroad have developed dedicated educational programs in life science technology innovation. Here, we discuss the two major streams of educational theory and practice that have informed these programs: design thinking and entrepreneurship education. We make the case that the process of innovation for new medical technologies (medtech) is different from that for biopharmaceuticals and outline the challenges and opportunities associated with developing a discipline of medtech innovation.

  13. Effective Beginning Reading Programs: A Best-Evidence Synthesis

    ERIC Educational Resources Information Center

    Slavin, Robert E.; Lake, Cynthia; Chambers, Bette; Cheung, Alan; Davis, Susan

    2009-01-01

    This article systematically reviews research on the achievement outcomes of four types of approaches to improving the beginning reading success of children in kindergarten and first grade: Reading curricula, instructional technology, instructional process programs, and combinations of curricula and instructional process. Study inclusion criteria…

  14. Expendable launch vehicles technology: A report to the US Senate and the US House of Representatives

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As directed in Public Law 100-657, Commercial Space Launch Act Amendments of 1988, and consistent with National Space Policy, NASA has prepared a report on a potential program of research on technologies to reduce the initial and recurring costs, increase reliability, and improve performance of expendable launch vehicles for the launch of commercial and government spacecraft into orbit. The report was developed in consultation with industry and in recognition of relevant ongoing and planned NASA and DoD technology programs which will provide much of the required launch systems technology for U.S. Government needs. Additional efforts which could be undertaken to strengthen the technology base are identified. To this end, focus is on needs for launch vehicle technology development and, in selected areas, includes verification to permit private-sector new technology application at reduced risk. If such a program were to be implemented, it would entail both government and private-sector effort and resources. The additional efforts identified would augment the existing launch vehicle technology programs. The additional efforts identified have not been funded, based upon agency assessments of relative priority vis-a-vis the existing programs. Throughout the consultation and review process, the industry representatives stressed the overriding importance of continuing the DoD/NASA Advanced Launch Development activity and other government technology programs as a primary source of essential launch vehicle technology.

  15. Expendable launch vehicles technology: A report to the US Senate and the US House of Representatives

    NASA Astrophysics Data System (ADS)

    1990-07-01

    As directed in Public Law 100-657, Commercial Space Launch Act Amendments of 1988, and consistent with National Space Policy, NASA has prepared a report on a potential program of research on technologies to reduce the initial and recurring costs, increase reliability, and improve performance of expendable launch vehicles for the launch of commercial and government spacecraft into orbit. The report was developed in consultation with industry and in recognition of relevant ongoing and planned NASA and DoD technology programs which will provide much of the required launch systems technology for U.S. Government needs. Additional efforts which could be undertaken to strengthen the technology base are identified. To this end, focus is on needs for launch vehicle technology development and, in selected areas, includes verification to permit private-sector new technology application at reduced risk. If such a program were to be implemented, it would entail both government and private-sector effort and resources. The additional efforts identified would augment the existing launch vehicle technology programs. The additional efforts identified have not been funded, based upon agency assessments of relative priority vis-a-vis the existing programs. Throughout the consultation and review process, the industry representatives stressed the overriding importance of continuing the DoD/NASA Advanced Launch Development activity and other government technology programs as a primary source of essential launch vehicle technology.

  16. APPLICATION, PERFORMANCE, AND COSTS OF ...

    EPA Pesticide Factsheets

    A critical review of biological treatment processes for remediation of contaminated soils is presented. The focus of the review is on documented cost and performance of biological treatment technologies demonstrated at full- or field-scale. Some of the data were generated by the U.S. Environmental Protection Agency's (EPA's) Bioremediation in the Field Program, jointly supported by EPA's Office of Research and Development, EPA's Office of Solid Waste and Emergency Waste, and the EPA Regions through the Superfund Innovative Technology Evaluation Program (SITE) Program. Military sites proved to be another fertile data source. Technologies reviewed in this report include both ex-situ processes, (land treatment, biopile/biocell treatment, composting, and bioslurry reactor treatment) and in-situ alternatives (conventional bioventing, enhanced or cometabolic bioventing, anaerobic bioventing, bioslurping, phytoremediation, and natural attenuation). Targeted soil contaminants at the documented sites were primarily organic chemicals, including BTEX, petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), chlorinated aliphatic hydrocarbons (CAHs), organic solvents, polychlorinated biphenyls (PCBs), pesticides, dioxin, and energetics. The advantages, limitations, and major cost drivers for each technology are discussed. Box and whisker plots are used to summarize before and after concentrations of important contaminant groups for those technologies consider

  17. Airborne Systems Technology Application to the Windshear Threat

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Lewis, Michael S.; Hinton, David A.

    1996-01-01

    The general approach and products of the NASA/FAA Airborne Windshear Program conducted by NASA Langley Research Center are summarized, with references provided for the major technical contributions. During this period, NASA conducted 2 years of flight testing to characterize forward-looking sensor performance. The NASA/FAA Airborne Windshear Program was divided into three main elements: Hazard Characterization, Sensor Technology, and Flight Management Systems. Simulation models developed under the Hazard Characterization element are correlated with flight test data. Flight test results comparing the performance and characteristics of the various Sensor Technologies (microwave radar, lidar, and infrared) are presented. Most of the activities in the Flight Management Systems element were conducted in simulation. Simulation results from a study evaluating windshear crew procedures and displays for forward-looking sensor-equipped airplanes are discussed. NASA Langley researchers participated heavily in the FAA process of generating certification guidelines for predictive windshear detection systems. NASA participants felt that more valuable technology products were generated by the program because of this interaction. NASA involvement in the process and the resulting impact on products and technology transfer are discussed in this paper.

  18. From Manuscript to Article: Publishing Educational Technology Research

    ERIC Educational Resources Information Center

    Niederhauser, Dale S.; Wetzel, Keith; Lindstrom, Denise L.

    2004-01-01

    The publishing process is often challenging for new educational technology scholars. This article provides insights into the publication process to help them understand and to increase the chances that their work will be accepted for publication in high-quality peer-reviewed journals. Suggestions for developing a program of research, a description…

  19. An Exercise in Technology Prioritization in a Competitive Environment

    NASA Technical Reports Server (NTRS)

    Stephens, Karen L.

    2006-01-01

    The proper prioritization of technologies within a technology development program is critical for success in a budget constrained environment. A large portfolio of diverse products at differing states of development all competing for program resources presents a need for a process by which a realistic need date can guide the development strategy for each technology. This paper will document an exercise to identify "mission pull" for each technology that can be used to identify the best projected need date for each. This date is then used to back out a development schedule with corresponding funding profile needed to meet the flight opportunity.

  20. Development of Educational Support System for Learning Image Processing Enabling Client-Side Programming Aided by Java Servlet Technology

    NASA Astrophysics Data System (ADS)

    Furukawa, Tatsuya; Aoki, Noriyuki; Ohchi, Masashi; Nakao, Masaki

    The image proccessing has become a useful and important technology in various reserch and development fields. According to such demands for engineering problems, we have designed and implemented the educational support system for that using a Java Applet technology. However in the conventional system, it required the tedious procedure for the end user to code his own programs. Therefore, in this study, we have improved the defect in the previous system by using a Java Servlet technology. The new system will make it possible for novice user to experience a practical digital image proccessing and an advanced programming with ease. We will describe the architecture of the proposed system function, that has been introduced to facilitate the client-side programming.

  1. Spinoff, 1985

    NASA Technical Reports Server (NTRS)

    Haggerty, J. J.

    1986-01-01

    Mainline NASA programs, whose challenging objectives necessitate advances across a diverse scientific/technological spectrum are summarized. A representative selection of spinoff products and processes are presented and the NASA technology from which these transfers are derived, are described. The mechanisms NASA employs to foster technology utilization and stimulate interest among prospective users of the technology are detailed.

  2. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - ALBANY INTERNATIONAL CORP. INDUSTRIAL PROCESS TECHNOLOGIES PRIMATEX PLUS I FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  3. The Need for Technology Management Education for Undergraduate Programs: A Conceptual Framework

    ERIC Educational Resources Information Center

    Tas, Murat; Yeloglu, H. Okan

    2018-01-01

    As the National Research Council [17] described the technology management as "a process, which includes planning, directing, control and coordination of the development and implementation of technological capabilities to shape and accomplish the strategic and operational objectives of an organization'', Technology Management education is…

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, LEAD IN DUST WIPE MEASUREMENT TECHNOLOGY, NITON LLC, X-RAY FLUORESCENCE SPECTRUM ANALYZER, XLT-700

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) design efficient processes for conducting has created the Environmental Technology perfofl1lance tests of innovative technologies. Verification Program (E TV) to facilitate the deployment of innovative or improved environmental techn...

  5. IMPROVING AIR QUALITY THROUGH ENVIRONMENTAL TECHNOLOGY VERIFICATIONS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) began the Environmental Technology Verification (ETV) Program in 1995 as a means of working with the private sector to establish a market-based verification process available to all environmental technologies. Under EPA's Office of R...

  6. A Process for Determining What Business and Industry Want and Need from Our Graduates.

    ERIC Educational Resources Information Center

    Burgess, Michael; And Others

    Columbus State Community College (CSCC) in Ohio has developed a process and model for assuring that technical programs and individual course outcomes meet the needs of the industries being served. Initially undertaken as part of a project with Honda of America to provide two new technology programs, the process included surveys of representative…

  7. Microgravity Science and Applications Program tasks, 1986 revision

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The Microgravity Science and Applications (MSA) program is directed toward research in the science and technology of processing materials under conditions of low gravity to provide a detailed examination of the constraints imposed by gravitational forces on Earth. The program is expected to lead to the development of new materials and processes in commercial applications adding to this nation's technological base. The research studies emphasize the selected materials and processes that will best elucidate the limitations due to gravity and demonstrate the enhanced sensitivity of control of processes that may be provided by the weightless environment of space. Primary effort is devoted to a study of the specific areas of research which reveals potential value in the initial investigations of the previous decades. Examples of previous process research include crystal growth and directional solidification of metals; containerless processing of reactive materials; synthesis and separation of biological materials; etc. Additional efforts will be devoted to identifying the special requirements which drive the design of hardware to reduce risk in future developments.

  8. Competency Gauged Writing Activities for Middle Grade Students Prompted by Needs of Technology Education.

    ERIC Educational Resources Information Center

    Adams, Jan; And Others

    A cooperative program conducted by the Logan (Utah) City School District and IBM Corporation used computers in the classroom to develop new teaching and career guidance approaches while enhancing students' process writing skills. The program included units designed for student and teacher awareness of the impacts of technology, the need for a new…

  9. Programmed Instruction to Computer-Based Instruction: The Evolution of an Instructional Technology.

    ERIC Educational Resources Information Center

    Lamos, Joseph P.

    This review of the evolution of programmed instruction from Pressey and Skinner to the present suggests that current computer technology will be able to free the learner from the limitations of time and place as Pressey originally proposed. It is noted that Skinner provided the necessary foundation for treating the learning process on an…

  10. On-Line Support and Portfolio Assessment for NETS-T Standards In Pre-Service Programs at a Large Southeastern University.

    ERIC Educational Resources Information Center

    Shoffner, Mary B.; Dias, Laurie B.

    This paper details the theoretical underpinnings of one university's approach to technology integration in its pre-service teacher preparation programs, and the results of a continuous, feedback-driven project to evaluate for technology integration through a student portfolio development process. Portfolios are assessed for multiple education and…

  11. NASA Astrophysics Prioritizes Technology Development Funding for Strategic Missions

    NASA Astrophysics Data System (ADS)

    Thronson, Harley A.; Pham, Bruce; Ganel, Opher

    2017-01-01

    The Cosmic Origins (COR) and Physics of the Cosmos (PCOS) Program Offices (POs) reside at NASA GSFC and implement priorities for the NASA HQ Astrophysics Division (APD). One major aspect of the POs’ activities is managing our Strategic Astrophysics Technology (SAT) program to mature technologies for future strategic missions. The Programs follow APD guidance on which missions are strategic, currently informed by the NRC’s 2010 Decadal Survey report, as well as APD’s Implementation Plan and the Astrophysics Roadmap.In preparation for the upcoming 2020 Decadal Survey, the APD has established Science and Technology Definition Teams (STDTs) to study four large-mission concepts: the Origins Space Telescope, Habitable Exoplanet Imaging Mission, Large UV/Optical/IR Surveyor, and X-ray Surveyor. The STDTs will develop the science case and design reference mission, assess technology development needs, and estimate the cost of their concept. A fifth team, the L3 Study Team (L3ST), was charged to study potential US contributions to ESA’s planned L3 gravitational-wave observatory.The POs use a rigorous and transparent process to solicit technology gaps from the scientific and technical communities, and prioritize those entries based on strategic alignment, expected impact, cross-cutting applicability, and urgency. Starting in 2016, the technology-gap assessments of the four STDTs and the L3ST are included in our process. Until a study team submits its final report, community-proposed changes to gaps submitted or adopted by a study team are forwarded to that study team for consideration.We discuss our technology development process, with strategic prioritization informing calls for SAT proposals and informing investment decisions. We also present results of this year’s technology gap prioritization and showcase our current portfolio of technology development projects. To date, 77 COR and 80 PCOS SAT proposals have been received, of which 18 COR and 22 PCOS projects were funded (PCOS awards starting in 2017 have yet to be announced). For more information, see the respective Program Annual Technology Reports under the technology tabs of the COR website at cor.gsfc.nasa.gov and the PCOS website at pcos.gsfc.nasa.gov.

  12. Technology readiness levels for advanced nuclear fuels and materials development

    DOE PAGES

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...

    2016-12-23

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  13. Technology readiness levels for advanced nuclear fuels and materials development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carmack, W. J.; Braase, L. A.; Wigeland, R. A.

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less

  14. NASA Aerospace Flight Battery Systems Program Update

    NASA Technical Reports Server (NTRS)

    Manzo, Michelle; ODonnell, Patricia

    1997-01-01

    The objectives of NASA's Aerospace Flight Battery Systems Program is to: develop, maintain and provide tools for the validation and assessment of aerospace battery technologies; accelerate the readiness of technology advances and provide infusion paths for emerging technologies; provide NASA projects with the required database and validation guidelines for technology selection of hardware and processes relating to aerospace batteries; disseminate validation and assessment tools, quality assurance, reliability, and availability information to the NASA and aerospace battery communities; and ensure that safe, reliable batteries are available for NASA's future missions.

  15. Physics and Process Modeling (PPM) and Other Propulsion R and T. Volume 1; Materials Processing, Characterization, and Modeling; Lifting Models

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This CP contains the extended abstracts and presentation figures of 36 papers presented at the PPM and Other Propulsion R&T Conference. The focus of the research described in these presentations is on materials and structures technologies that are parts of the various projects within the NASA Aeronautics Propulsion Systems Research and Technology Base Program. These projects include Physics and Process Modeling; Smart, Green Engine; Fast, Quiet Engine; High Temperature Engine Materials Program; and Hybrid Hyperspeed Propulsion. Also presented were research results from the Rotorcraft Systems Program and work supported by the NASA Lewis Director's Discretionary Fund. Authors from NASA Lewis Research Center, industry, and universities conducted research in the following areas: material processing, material characterization, modeling, life, applied life models, design techniques, vibration control, mechanical components, and tribology. Key issues, research accomplishments, and future directions are summarized in this publication.

  16. Permanent certification program for health information technology; revisions to ONC-Approved Accreditor processes. Final rule.

    PubMed

    2011-11-25

    Under the authority granted to the National Coordinator for Health Information Technology by section 3001(c)(5) of the Public Health Service Act (PHSA) as added by the Health Information Technology for Economic and Clinical Health (HITECH) Act, this final rule establishes a process for addressing instances where the ONC-Approved Accreditor (ONC-AA) engages in improper conduct or does not perform its responsibilities under the permanent certification program. This rule also addresses the status of ONC-Authorized Certification Bodies (ONC-ACBs) in instances where there may be a change in the accreditation organization serving as the ONC-AA and clarifies the responsibilities of the new ONC-AA.

  17. GLOBE Program Teacher's Guide.

    ERIC Educational Resources Information Center

    1997

    The GLOBE Program is a worldwide, hands-on educational program for elementary and secondary school students. GLOBE aims to increase student achievement in mathematics and science, awareness towards the environment, and improve science process skills through network technology. This teacher's guide provides an overview of the GLOBE program and…

  18. Machine intelligence and robotics: Report of the NASA study group. Executive summary

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A brief overview of applications of machine intelligence and robotics in the space program is given. These space exploration robots, global service robots to collect data for public service use on soil conditions, sea states, global crop conditions, weather, geology, disasters, etc., from Earth orbit, space industrialization and processing technologies, and construction of large structures in space. Program options for research, advanced development, and implementation of machine intelligence and robot technology for use in program planning are discussed. A vigorous and long-range program to incorporate and keep pace with state of the art developments in computer technology, both in spaceborne and ground-based computer systems is recommended.

  19. Some implications of the technology assessment function for the effective public decision-making process

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1971-01-01

    A preliminary provisional assessment of the prospects for the establishment of an adequate technology assessment function and the implications of the assessment function for the public decision process are presented. Effects of the technology assessment function on each phase of the public decision process and briefly explored. Significant implications during the next decade are projected with respect to the following phases: invention and development of alternative means (technological configurations); evaluation, selection and promotion of preferred courses of action; and modification of statutory scheme or social action program as an outcome of continuing monitoring and appraisal.

  20. Advanced Technologies for Space Life Science Payloads on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hines, John W.; Connolly, John P. (Technical Monitor)

    1997-01-01

    SENSORS 2000! (S2K!) is a specialized, high-performance work group organized to provide advanced engineering and technology support for NASA's Life Sciences spaceflight and ground-based research and development programs. In support of these objectives, S2K! manages NASA's Advanced Technology Development Program for Biosensor and Biotelemetry Systems (ATD-B), with particular emphasis on technologies suitable for Gravitational Biology, Human Health and Performance, and Information Technology and Systems Management. A concurrent objective is to apply and transition ATD-B developed technologies to external, non-NASA humanitarian (medical, clinical, surgical, and emergency) situations and to stimulate partnering and leveraging with other government agencies, academia, and the commercial/industrial sectors. A phased long-term program has been implemented to support science disciplines and programs requiring specific biosensor (i.e., biopotential, biophysical, biochemical, and biological) measurements from humans, animals (mainly primates and rodents), and cells under controlled laboratory and simulated microgravity situations. In addition to the technology programs described above, NASA's Life and Microgravity Sciences and Applications Office has initiated a Technology Infusion process to identify and coordinate the utilization and integration of advanced technologies into its International Space Station Facilities. This project has recently identified a series of technologies, tasks, and products which, if implemented, would significantly increase the science return, decrease costs, and provide improved technological capability. This presentation will review the programs described above and discuss opportunities for collaboration, leveraging, and partnering with NASA.

  1. VERIFICATION OF THE PERFORMANCE OF DECONTAMINATION TECHNOLOGIES IN EPA'S SAFE BUILDINGS PROGRAM

    EPA Science Inventory

    The paper describes initial progress in identifying and testing technologies applicable for decontaminating workplaces and other buildings that may be subject to chemical or biological attack. The EPA is using the process established in its Environmental Technology Verification (...

  2. Three-Dimensional Computer Simulation as an Important Competence Based Aspect of a Modern Mining Professional

    NASA Astrophysics Data System (ADS)

    Aksenova, Olesya; Pachkina, Anna

    2017-11-01

    The article deals with the problem of necessity of educational process transformation to meet the requirements of modern miming industry; cooperative developing of new educational programs and implementation of educational process taking into account modern manufacturability. The paper proves the idea of introduction into mining professionals learning process studying of three-dimensional models of surface technological complex, ore reserves and underground digging complex as well as creating these models in different graphic editors and working with the information analysis model obtained on the basis of these three-dimensional models. The technological process of manless coal mining at the premises of the mine Polysaevskaya controlled by the information analysis models built on the basis of three-dimensional models of individual objects and technological process as a whole, and at the same time requiring the staff able to use the programs of three-dimensional positioning in the miners and equipment global frame of reference is covered.

  3. Developing science policy capacity at the state government level: Planning a science and technology policy fellowship program for Colorado and beyond

    NASA Astrophysics Data System (ADS)

    Druckenmiller, M. L.

    2017-12-01

    There is growing recognition of the potential to advance science policy capacity within state legislatures, where there is most often a shortage of professional backgrounds in the natural sciences, technology, engineering, and medicine. Developing such capacity at the state level should be considered a vital component of any comprehensive national scale strategy to strengthen science informed governance. Toward this goal, the Center for Science and Technology Policy Research at the University of Colorado Boulder is leading a strategic planning process for a Science and Technology Policy Fellowship Program within the Colorado state legislature and executive branch agencies. The intended program will place PhD-level scientists and engineers in one-year placements with decision-makers to provide an in-house resource for targeted policy-relevant research. Fellows will learn the intricacies of the state policymaking process, be exposed to opportunities for science to inform decisions, and develop a deeper understanding of key science and technology topics in Colorado, including water resources, wildfire management, and energy. The program's ultimate goals are to help foster a decision-making arena informed by evidence-based information, to develop new leaders adept at bridging science and policymaking realms, and to foster governance that champions the role of science in society. Parallel to efforts in Colorado, groups from nine other states are preparing similar plans, providing opportunities to share approaches across states and to set the stage for increased science and technology input to state legislative agendas nationwide. Importantly, highly successful and sustainable models exist; the American Association for the Advancement of Science (AAAS) has implemented a federally based fellowship program for over 43 years and the California Council for Science and Technology (CCST) has directed a fellowship program for their state's legislature since 2009. AAAS and CCST are now serving as critical and leading partners in creating similar programs across the U.S.

  4. The Space Shuttle focused-technology program - Lessons learned

    NASA Technical Reports Server (NTRS)

    Fitzgerald, P. E., Jr.; Gabris, E. A.

    1983-01-01

    The results of a focused technology program (FTP), its management structure, the development of the Space Shuttle, and lessons applicable to future space programs such as a space station are discussed. A committee was formed by NASA in 1969 to define the technologies necessary for a reusable spacecraft. Basic and applied research assessments were featured at the beginning of the process. Working groups were established to cover all necessary areas, e.g., Operations, Structures and Materials, Aerothermodynamics, etc., and tasks were distributed to appropriate NASA centers. Funding was drawn from existing budgets. The FTP proceeded successfully because of an understanding of the respective roles of industry and government, the willingness of industry to invest early in a new technology, and the unclassified status of information generated by the program. The in-house design and technology transfer methods that brought the project to a technology demonstration phase are explored, noting the necessity for users to take part in the development within their field.

  5. Customer Satisfaction Survey of Pacific Northwest National Laboratory's Technical Assistance Partners -- FY 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conger, Robin L.; Spanner, Gary E.

    2011-11-02

    The businesses that have utilized PNNL's Technology Assistance Program were sent a survey to solicit feedback about the program and to determine what, if any, outcomes resulted from the assistance provided. As part of its small business outreach, Pacific Northwest National Laboratory (PNNL) offers technology assistance to businesses with fewer than 500 employees throughout the nation and to businesses of any size in the 2 counties that contain the Hanford site. Upon request, up to 40 staff-hours of a researcher's time can be provided to address technology issues at no charge to the requesting firm. During FY 2011, PNNL completedmore » assistance for 54 firms. Topics of the technology assistance covered a broad range, including environment, energy, industrial processes, medical, materials, computers and software, and sensors. In FY 2011, PNNL's Technology Assistance Program (TAP) was funded by PNNL Overheads. Over the past 16 years, the Technology Assistance Program has received total funding of nearly $2.8 million from several federal and private sources.« less

  6. Building technological capability within satellite programs in developing countries

    NASA Astrophysics Data System (ADS)

    Wood, Danielle; Weigel, Annalisa

    2011-12-01

    This paper explores the process of building technological capability in government-led satellite programs within developing countries. The key message is that these satellite programs can learn useful lessons from literature in the international development community. These lessons are relevant to emerging satellite programs that leverage international partnerships in order to establish local capability to design, build and operate satellites. Countries with such programs include Algeria, Nigeria, Turkey, Malaysia and the United Arab Emirates. The paper first provides background knowledge about space activity in developing countries, and then explores the nuances of the lessons coming from the international development literature. Developing countries are concerned with satellite technology because satellites provide useful services in the areas of earth observation, communication, navigation and science. Most developing countries access satellite services through indirect means such as sharing data with foreign organizations. More countries, however, are seeking opportunities to develop satellite technology locally. There are objective, technically driven motivations for developing countries to invest in satellite technology, despite rich debate on this topic. The paper provides a framework to understand technical motivations for investment in satellite services, hardware, expertise and infrastructure in both short and long term. If a country decides to pursue such investments they face a common set of strategic decisions at the levels of their satellite program, their national context and their international relationships. Analysis of past projects shows that countries have chosen diverse strategies to address these strategic decisions and grow in technological capability. What is similar about the historical examples is that many countries choose to leverage international partnerships as part of their growth process. There are also historical examples from outside the space arena in which organizations have pursued technological capability. Scholars have analyzed these examples and developed insightful frameworks. The paper draws key concepts from this literature about the nature of development, technology, knowledge and organizational learning. These concepts are relevant to learning in new satellite programs, but the ideas must be applied cautiously because of the nature of satellite technology. The paper draws three major lessons from the international development literature regarding absorptive capacity, tacit knowledge and organizational learning; it synthesizes these lessons into a cohesive, original framework. The closing section proposes future work on a detailed study of technological learning in specific government satellite programs.

  7. Atmosphere Revitalization Technology Development for Crewed Space Exploration

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; Carrasquillo, Robyn L.; Harris, Danny W.

    2006-01-01

    As space exploration objectives extend human presence beyond low Earth orbit, the solutions to technological challenges presented by supporting human life in the hostile space environment must build upon experience gained during past and present crewed space exploration programs. These programs and the cabin atmosphere revitalization process technologies and systems developed for them represent the National Aeronautics and Space Administration s (NASA) past and present operational knowledge base for maintaining a safe, comfortable environment for the crew. The contributions of these programs to the NASA s technological and operational working knowledge base as well as key strengths and weaknesses to be overcome are discussed. Areas for technological development to address challenges inherent with the Vision for Space Exploration (VSE) are presented and a plan for their development employing unit operations principles is summarized

  8. Western Partnership for Environmental Technology Education Faculty Internship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zehnder, N.

    1994-12-31

    As an important element within Western Partnership for Environmental Technology Education (PETE), summer internship opportunities are made available to environmental technology instructors, primarily at the community-college level, at participating federal laboratories, test facilities, state regulatory agencies and in private industry. The Program is intended to provide instructors with the opportunity to gain practical experience and understanding within the broad area of environmental technology to enhance the development and presentation of environmental technology curricula. Internship content is intended to be flexible to provide experiences which will relate to and meet the specific needs of the intern and his/her college. The Faultymore » Internship Program provides business and government with the opportunity to strengthen the educational process and to expand potential candidate pools for employment.« less

  9. Develop Improved Materials to Support the Hydrogen Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dr. Michael C. Martin

    The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects withmore » near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.« less

  10. SITE PROGRAM DEMONSTRATION ECO LOGIC INTERNATIONAL GAS-PHASE CHEMICAL REDUCTION PROCESS, BAY CITY, MICHIGAN TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    The SITE Program funded a field demonstration to evaluate the Eco Logic Gas-Phase Chemical Reduction Process developed by ELI Eco Logic International Inc. (ELI), Ontario, Canada. The Demonstration took place at the Middleground Landfill in Bay City, Michigan using landfill wa...

  11. 75 FR 54417 - Agency Information Collection Activities: Notice of Request for Approval of a New Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... technology transfer program.'' It further states that ``The Secretary shall establish a process for... Pilot Program. The process may include participation by representatives of the State departments of... particular innovation was important, yet never actually determined whether States would value such an...

  12. Proposal of Modification Strategy of NC Program in the Virtual Manufacturing Environment

    NASA Astrophysics Data System (ADS)

    Narita, Hirohisa; Chen, Lian-Yi; Fujimoto, Hideo; Shirase, Keiichi; Arai, Eiji

    Virtual manufacturing will be a key technology in process planning, because there are no evaluation tools for cutting conditions. Therefore, virtual machining simulator (VMSim), which can predict end milling processes, has been developed. The modification strategy of NC program using VMSim is proposed in this paper.

  13. The First NASA Advanced Composites Technology Conference, part 1

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1991-01-01

    Papers are presented from the conference. The ACT program is a multiyear research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT program on new materials development and processing, innovative design concepts, analysis development and validation, cost effective manufacturing methodology, and cost tracking and prediction procedures. Papers presented on major applications programs approved by the Department of Defense are also included.

  14. Astrotech 21: A technology program for future astrophysics missions

    NASA Technical Reports Server (NTRS)

    Cutts, James A.; Newton, George P.

    1991-01-01

    The Astrotech 21 technology program is being formulated to enable a program of advanced astrophysical observatories in the first decade of the 21st century. This paper describes the objectives of Astrotech 21 and the process that NASA is using to plan and implement it. It also describes the future astrophysical mission concepts that have been defined for the twenty-first century and discusses some of the requirements that they will impose on information systems for space astrophysics.

  15. IPAD: Integrated Programs for Aerospace-vehicle Design

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The conference was organized to promote wider awareness of the IPAD program and its coming impact on American industry. The program focuses on technology issues that are critical to computer aided design manufacturing. Included is a description of a representative aerospace design process and its interface with manufacturing, the design of a future IPAD integrated computer aided design system, results to date in developing IPAD products and associated technology, and industry experiences and plans to exploit these products.

  16. NASA RPS Program Overview: A Focus on RPS Users

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Sutliff, Thomas J.; Sandifer, Carl E., II; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  17. Software Analytical Instrument for Assessment of the Process of Casting Slabs

    NASA Astrophysics Data System (ADS)

    Franěk, Zdeněk; Kavička, František; Štětina, Josef; Masarik, Miloš

    2010-06-01

    The paper describes the original proposal of ways of solution and function of the program equipment for assessment of the process of casting slabs. The program system LITIOS was developed and implemented in EVRAZ Vitkovice Steel Ostrava on the equipment of continuous casting of steel (further only ECC). This program system works on the data warehouse of technological parameters of casting and quality parameters of slabs. It enables an ECC technologist to analyze the course of casting melt and with using statistics methods to set the influence of single technological parameters on the duality of final slabs. The system also enables long term monitoring and optimization of the production.

  18. Propulsion/flight control integration technology (PROFIT) software system definition

    NASA Technical Reports Server (NTRS)

    Carlin, C. M.; Hastings, W. J.

    1978-01-01

    The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.

  19. Educational Data Processing Directors' Perceptions of Technological Training Priorities for School Administrators.

    ERIC Educational Resources Information Center

    Bozeman, W. C.; Spuck, D. W.

    Results of a survey of school district data processing directors' attitudes toward the content of technology curriculum in educational administrator training programs are presented in this paper. Questionnaires sent to 152 large school districts yielded 78 usable returns, a 51 percent response rate. Respondents rated the following topics as most…

  20. Revitalized militarily critical technologies program

    NASA Astrophysics Data System (ADS)

    Wick, Raymond V.

    2005-04-01

    The Department of Defense (DoD) Militarily Critical Technologies Program (MCTP) provides a systematic, ongoing assessment and analysis of goods and technologies to determine those that would permit significant advances in the development, production and use of military capabilities of potential adversaries and those that are being developed worldwide that have the potential to significantly enhance or degrade US military capabilities in the future. The program's objective is to characterize the technologies, including quantitative values and parameters, and assess worldwide technology capabilities. The MCTP is composed of two sets of documents, the well known and often referenced one, the MCTL, and a second one, a more recently added list called the Developing Science and Technologies List (DSTL). Both are products of the MCTP process, however, the later is primarily used by DDR&E and other government organizations and agencies to aid in the prioritization and understanding of new technologies being developed worldwide. Technologies are selected for the MCTL and the DSTL through the deliberation and consensus of Technology Working Groups (TWGs). TWGs continually screen technologies and nominate items to be added or removed from the MCTL and the DSTL as appropriate. Working within an informal structure, TWG members are composed of government, industry and academia subject matter experts, who strive to produce precise and objective analyses across each technology areas. This process and details of the current MCTP are outlined in this poster paper. This paper focuses on the solid state laser technology area, using it as an example of the MCTP's product of assessing, identifying, and quantifying militarily critical technology parameters.

  1. Profit opportunities for the chemical process industries

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Papers given at a seminar designed to assist industry in the utilization of NASA-developed technology are presented. The topics include the following: the Technology Utilization program, NASA patent policy changes, transfer of Hysttl resin technology, nonflammable cellulosic materials development, nonflammable paper technology, circuit board laminates and construction, polymide resins and other polymers, and intumescent coatings.

  2. Implementing a Swedish regionalized medical program supported by digital technologies: possibilities and challenges from a management perspective.

    PubMed

    Pettersson, Fanny L M

    2013-01-01

    In 2011, Umeå University in Sweden was facing its first attempt to transform the existing medical program into a regionalized medical program (RMP), supported by the use of digital technologies. The Swedish RMP means that students are distributed in geographically separated groups while doing their five clinical clerkship semesters. To provide medical students with ways of undertaking their theoretical studies when geographically distributed, digital technologies are used for educational and administrative purposes. In this article, the Swedish RMP will be described and related to previous international research on educating medical students in rural settings. The aim of this article was, from a management perspective, to understand if and how contradictions arise during the implementation process of the Swedish RMP, supported by digital technologies. Based on this analysis, a further aim was to discuss, from a management perspective, the possibilities and challenges for improvement of this medical educational practice, as well as to provide implications for other similar changes in medical programs internationally. To identify possible contradictions during the implementation process, ethnographically inspired observations were made during management work meetings, before and during the first regionalized semester. In addition, in-depth follow-up interviews were held in May and June 2011 with six management executives of the Swedish RMP, concerning their expectations and experiences of the implementation process. The qualitative and activity theory (AT)-inspired analysis resulted in the emergence of two main themes and seven sub-themes. The analysis suggests that a number of contradictions arose during the implementation process of the Swedish RMP. For instance, a contradiction constituted as a conflict between the university management and some teachers concerning how digital technologies and technology enhanced learning (TEL) could and should be used when educating medical students. In addition, due to the use of digital technologies the implementation process helped to reveal existing problems and tensions in educational practice, not previously visible to management. These included contradictions such as a lack of alignment in how course goals, teaching practices, and examinations should be carried out. Further, obsolete course content and overlap between courses and subjects were identified, leading to an overhaul of all semesters, not only those regionalized. This study showed how contradictions in educational practice arose when the Swedish RMP, supported by digital technologies, was implemented. These contradictions involve both possibilities and challenges for management to improve how and with what quality the Swedish RMP is conducted. A challenge for management is to find the most effective way to enhance up-take and use of the more interactive and innovative TEL-solutions. However, a possibility is that the regionalization process and implemented improvements may also influence non-regionalized semesters, with the potential to eventually increase the quality of the entire program.

  3. Testimony from Learning Disabled College Writers on the Efficacy of Word Processing in their Writing Process. Working Paper.

    ERIC Educational Resources Information Center

    Collins, Terence; Price, Lynda

    As part of a three-year federally funded research program intended to shed light on the writing processes of learning disabled college-aged writers (with special emphasis on the use of technology in creating workable mainstreamed curricula), this paper records in an interview format the responses of students to the program, including word…

  4. ACTS Experiments Program

    NASA Technical Reports Server (NTRS)

    Schertler, R. J.

    1986-01-01

    An overview of the ACTS Experiments Program is presented. ACTS is being developed and will flight test the advanced technologies associated with: a Ka-band multibeam antenna, onboard signal processing and switching as well as laser communications. A nominal 3 yr experiments program is planned. Through the experiments program, the capabilities of the ACTS system will be made available to U.S. industry, university and government experimenters to test, prove the feasibility and evaluate the key ACTS system technologies. Communication modes of operation using the baseband processor and microwave switch matrix are presented, along with the antenna coverage pattern. Potential experiment categories are also presented and briefly discussed. An overall schedule of activities associated with the experiments program is outlined. Results of the ACTS Experiments Program will provide information vital to successful industry implementation of ACTS technology in a future operational system.

  5. The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorrell, C.A.

    1997-04-01

    In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80%more » of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cort, K. A.; Hostick, D. J.; Belzer, D. B.

    The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.

  7. Pilot Plants Enhance Brazosport Lab Courses.

    ERIC Educational Resources Information Center

    Krieger, James

    1986-01-01

    Describes an experiential lab program for a two-year college's chemical technology program. Discusses student experiences in six miniature pilot plants that represent the essential instrumentation and chemical processes found in the chemical industry. Recognizes the industries that helped implement the program. (TW)

  8. Development, implementation and evaluation of an evidence-based program for introduction of new health technologies and clinical practices in a local healthcare setting.

    PubMed

    Harris, Claire; Garrubba, Marie; Allen, Kelly; King, Richard; Kelly, Cate; Thiagarajan, Malar; Castleman, Beverley; Ramsey, Wayne; Farjou, Dina

    2015-12-28

    This paper reports the process of establishing a transparent, accountable, evidence-based program for introduction of new technologies and clinical practices (TCPs) in a large Australian healthcare network. Many countries have robust evidence-based processes for assessment of new TCPs at national level. However many decisions are made by local health services where the resources and expertise to undertake health technology assessment (HTA) are limited and a lack of structure, process and transparency has been reported. An evidence-based model for process change was used to establish the program. Evidence from research and local data, experience of health service staff and consumer perspectives were incorporated at each of four steps: identifying the need for change, developing a proposal, implementation and evaluation. Checklists assessing characteristics of success, factors for sustainability and barriers and enablers were applied and implementation strategies were based on these findings. Quantitative and qualitative methods were used for process and outcome evaluation. An action research approach underpinned ongoing refinement to systems, processes and resources. A Best Practice Guide developed from the literature and stakeholder consultation identified seven program components: Governance, Decision-Making, Application Process, Monitoring and Reporting, Resources, Administration, and Evaluation and Quality Improvement. The aims of transparency and accountability were achieved. The processes are explicit, decisions published, outcomes recorded and activities reported. The aim of ascertaining rigorous evidence-based information for decision-making was not achieved in all cases. Applicants proposing new TCPs provided the evidence from research literature and local data however the information was often incorrect or inadequate, overestimating benefits and underestimating costs. Due to these limitations the initial application process was replaced by an Expression of Interest from applicants followed by a rigorous HTA by independent in-house experts. The program is generalisable to most health care organisations. With one exception, the components would be achievable with minimal additional resources; the lack of skills and resources required for HTA will limit effective application in many settings. A toolkit containing details of the processes and sample materials is provided to facilitate replication or local adaptation by those wishing to establish a similar program.

  9. How to tap NASA-developed technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruzic, N.

    The National Aeronautics and Space Administration (NASA) space program's contribution to technology and the transfer of its achievements to industrial and consumer products is unprecedented. The process of transferring new technology suffers, however, partly because managers tend to ignore new technological markets unless new products solve their specific problems and partly because managers may not know the technology is available. NASA's Technology Utilization Branch has learned to initiate transfer, using a network of centers to dispense information on applications. NASA also has a large software library and computer programs, as well as teams to make person-to-person contacts. Examples of successfulmore » transfers have affected energy sources, building contruction, health, and safety. (DCK)« less

  10. Concept and Practice of Teaching Technical University Students to Modern Technologies of 3d Data Acquisition and Processing: a Case Study of Close-Range Photogrammetry and Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Kravchenko, Iulia; Luhmann, Thomas; Shults, Roman

    2016-06-01

    For the preparation of modern specialists in the acquisition and processing of three-dimensional data, a broad and detailed study of related modern methods and technologies is necessary. One of the most progressive and effective methods of acquisition and analyzing spatial data is terrestrial laser scanning. The study of methods and technologies for terrestrial laser scanning is of great importance not only for GIS specialists, but also for surveying engineers who make decisions in traditional engineering tasks (monitoring, executive surveys, etc.). The understanding and formation of the right approach in preparing new professionals need to develop a modern and variable educational program. This educational program must provide effective practical and laboratory work and the student's coursework. The resulting knowledge of the study should form the basis for practical or research of young engineers. In 2014, the Institute of Applied Sciences (Jade University Oldenburg, Germany) and Kyiv National University of Construction and Architecture (Kiev, Ukraine) had launched a joint educational project for the introduction of terrestrial laser scanning technology for collection and processing of spatial data. As a result of this project practical recommendations have been developed for the organization of educational processes in the use of terrestrial laser scanning. An advanced project-oriented educational program was developed which is presented in this paper. In order to demonstrate the effectiveness of the program a 3D model of the big and complex main campus of Kyiv National University of Construction and Architecture has been generated.

  11. Precision Casting via Advanced Simulation and Manufacturing

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A two-year program was conducted to develop and commercially implement selected casting manufacturing technologies to enable significant reductions in the costs of castings, increase the complexity and dimensional accuracy of castings, and reduce the development times for delivery of high quality castings. The industry-led R&D project was cost shared with NASA's Aerospace Industry Technology Program (AITP). The Rocketdyne Division of Boeing North American, Inc. served as the team lead with participation from Lockheed Martin, Ford Motor Company, Howmet Corporation, PCC Airfoils, General Electric, UES, Inc., University of Alabama, Auburn University, Robinson, Inc., Aracor, and NASA-LeRC. The technical effort was organized into four distinct tasks. The accomplishments reported herein. Task 1.0 developed advanced simulation technology for core molding. Ford headed up this task. On this program, a specialized core machine was designed and built. Task 2.0 focused on intelligent process control for precision core molding. Howmet led this effort. The primary focus of these experimental efforts was to characterize the process parameters that have a strong impact on dimensional control issues of injection molded cores during their fabrication. Task 3.0 developed and applied rapid prototyping to produce near net shape castings. Rocketdyne was responsible for this task. CAD files were generated using reverse engineering, rapid prototype patterns were fabricated using SLS and SLA, and castings produced and evaluated. Task 4.0 was aimed at developing technology transfer. Rocketdyne coordinated this task. Casting related technology, explored and evaluated in the first three tasks of this program, was implemented into manufacturing processes.

  12. Integrated Technology Assessment Center (ITAC) Update

    NASA Technical Reports Server (NTRS)

    Taylor, J. L.; Neely, M. A.; Curran, F. M.; Christensen, E. R.; Escher, D.; Lovell, N.; Morris, Charles (Technical Monitor)

    2002-01-01

    The Integrated Technology Assessment Center (ITAC) has developed a flexible systems analysis framework to identify long-term technology needs, quantify payoffs for technology investments, and assess the progress of ASTP-sponsored technology programs in the hypersonics area. For this, ITAC has assembled an experienced team representing a broad sector of the aerospace community and developed a systematic assessment process complete with supporting tools. Concepts for transportation systems are selected based on relevance to the ASTP and integrated concept models (ICM) of these concepts are developed. Key technologies of interest are identified and projections are made of their characteristics with respect to their impacts on key aspects of the specific concepts of interest. Both the models and technology projections are then fed into the ITAC's probabilistic systems analysis framework in ModelCenter. This framework permits rapid sensitivity analysis, single point design assessment, and a full probabilistic assessment of each concept with respect to both embedded and enhancing technologies. Probabilistic outputs are weighed against metrics of interest to ASTP using a multivariate decision making process to provide inputs for technology prioritization within the ASTP. ITAC program is currently finishing the assessment of a two-stage-to-orbit (TSTO), rocket-based combined cycle (RBCC) concept and a TSTO turbine-based combined cycle (TBCC) concept developed by the team with inputs from NASA. A baseline all rocket TSTO concept is also being developed for comparison. Boeing has recently submitted a performance model for their Flexible Aerospace System Solution for Tomorrow (FASST) concept and the ISAT program will provide inputs for a single-stage-to-orbit (SSTO) TBCC based concept in the near-term. Both of these latter concepts will be analyzed within the ITAC framework over the summer. This paper provides a status update of the ITAC program.

  13. Administrative and Technical Support for the U.S. Army Medical Research and Development Command Joint Working Group on Medical Chemical Defense

    DTIC Science & Technology

    1989-08-01

    microproces;qor databaAing systems for monitoring project and contract reports and program technology trans. fers, coordinating and providing administratIvo ...The JWGD 3 annual planning process generally included: - Program review by the JWGD’ membership at quarterly meetings, which consisted of the review...Office developed the program planning and budget documents associated with the planning process outlined above. Program project databases and

  14. Research Themes and Technological Base Program in Behavioral and Social Sciences for the U.S. Army

    DTIC Science & Technology

    1976-01-01

    appears to produce different al human information processing strategies. Concrete stimuli exert unifying or organizing effects that function as memory ...Technology for Tactical Information Processing and Presentation Scope: a. Objectives: To provide technological advances for enchancing user performance in...auditory, and black and white- color , situation portrayal. 44 :v.:;..^ „..■ ..„i--.v ..^.:n:,r.^,...::..:■ .;......’,. .^.M. ■ m»m viriniap

  15. ENVIROMETAL TECHNOLOGIES, INC., METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN IN-SITU REACTIVE IRON WALL

    EPA Science Inventory

    This report summarizes the results of a field demonstration conducted under the SITE program. The technology that was demonstrated was a metal-enhanced dechlorination process developed by EnviroMetal Technologies, Inc. to treat groundwater contaminated with chlorinated volatile ...

  16. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  17. SITE DEMONSTRATION OF MINERGY GLASS FURNACE TREATMENT OF PCBS, PCDDS/FS, AND METALS IN RIVER SEDIMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) program selected the Glass Furnace Technology (GFT) treatment process for evaluation. The GFT was developed by Minergy Corporation (Minergy) as an ex situ remediation technolog...

  18. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    NASA Technical Reports Server (NTRS)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  19. Simulation technology - A key to effective man-machine integration for future combat rotorcraft systems

    NASA Technical Reports Server (NTRS)

    Kerr, Andrew W.

    1990-01-01

    The utilization of advanced simulation technology in the development of the non-real-time MANPRINT design tools in the Army/NASA Aircrew-Aircraft Integration (A3I) program is described. A description is then given of the Crew Station Research and Development Facilities, the primary tool for the application of MANPRINT principles. The purpose of the A3I program is to develop a rational, predictive methodology for helicopter cockpit system design that integrates human factors engineering with other principles at an early stage in the development process, avoiding the high cost of previous system design methods. Enabling technologies such as the MIDAS work station are examined, and the potential of low-cost parallel-processing systems is indicated.

  20. Assessment Study on Sensors and Automation in the Industries of the Future. Reports on Industrial Controls, Information Processing, Automation, and Robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Bonnie; Boddy, Mark; Doyle, Frank

    This report presents the results of an expert study to identify research opportunities for Sensors & Automation, a sub-program of the U.S. Department of Energy (DOE) Industrial Technologies Program (ITP). The research opportunities are prioritized by realizable energy savings. The study encompasses the technology areas of industrial controls, information processing, automation, and robotics. These areas have been central areas of focus of many Industries of the Future (IOF) technology roadmaps. This report identifies opportunities for energy savings as a direct result of advances in these areas and also recognizes indirect means of achieving energy savings, such as product quality improvement,more » productivity improvement, and reduction of recycle.« less

  1. Program Revitalization Needs Leadership from the Top

    ERIC Educational Resources Information Center

    Corey, Mary Louise

    1974-01-01

    The advent of computer technology has necessitated the revision of bookkeeping and accounting programs. Responsibility for leadership in authorizing the revision and providing the opportunities for teachers to learn automated data processing techniques rests with State and local supervisors of business education programs. (AG)

  2. An Approach to Help Departments Meet the New ABET Process Safety Requirements

    ERIC Educational Resources Information Center

    Vaughen, Bruce K.

    2012-01-01

    The proposed program criteria changes by the Accreditation Board for Engineering and Technology, Inc. (ABET), for chemical, biochemical, biomolecular, and similarly named programs includes a fundamental awareness expectation of the hazards involved in chemical processing for a graduating chemical engineer. As of July 2010, these four new words…

  3. Balanced program plan. Analysis for biomedical and environmental research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    Major issues associated with the use of nuclear power are health hazards of exposure to radioactive materials; sources of radiation exposure; reactor accidents; sabotage of nuclear facilities; diversion of fissile material and its use for extortion; and the presence of plutonium in the environment. Fission fuel cycle technology is discussed with regard to milling, UF/sub 6/ production, uranium enrichment, plutonium fuel fabrication, power production, fuel processing, waste management, and fuel and waste transportation. The following problem areas of fuel cycle technology are briefly discussed: characterization, measurement, and monitoring; transport processes; health effects; ecological processes and effects; and integrated assessment. Estimatedmore » program unit costs are summarized by King-Muir Category. (HLW)« less

  4. Joule Unlimited Technologies Approval

    EPA Pesticide Factsheets

    This March 29 letter from EPA approves the petition from Joule Unlimited Technologies, Inc. regarding ethanol produced through the Joule Helioculture Process under the Clean Air Act for renewable fuel [D-code 5] RINs under the RFS program.

  5. Semiconductor technology program. Progress briefs

    NASA Technical Reports Server (NTRS)

    Bullis, W. M.

    1980-01-01

    Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.

  6. Multi-criteria development and incorporation into decision tools for health technology adoption.

    PubMed

    Poulin, Paule; Austen, Lea; Scott, Catherine M; Waddell, Cameron D; Dixon, Elijah; Poulin, Michelle; Lafrenière, René

    2013-01-01

    When introducing new health technologies, decision makers must integrate research evidence with local operational management information to guide decisions about whether and under what conditions the technology will be used. Multi-criteria decision analysis can support the adoption or prioritization of health interventions by using criteria to explicitly articulate the health organization's needs, limitations, and values in addition to evaluating evidence for safety and effectiveness. This paper seeks to describe the development of a framework to create agreed-upon criteria and decision tools to enhance a pre-existing local health technology assessment (HTA) decision support program. The authors compiled a list of published criteria from the literature, consulted with experts to refine the criteria list, and used a modified Delphi process with a group of key stakeholders to review, modify, and validate each criterion. In a workshop setting, the criteria were used to create decision tools. A set of user-validated criteria for new health technology evaluation and adoption was developed and integrated into the local HTA decision support program. Technology evaluation and decision guideline tools were created using these criteria to ensure that the decision process is systematic, consistent, and transparent. This framework can be used by others to develop decision-making criteria and tools to enhance similar technology adoption programs. The development of clear, user-validated criteria for evaluating new technologies adds a critical element to improve decision-making on technology adoption, and the decision tools ensure consistency, transparency, and real-world relevance.

  7. Industrial Design: A Phoenix Reborn from the Ashes of Technology Education--A Case History

    ERIC Educational Resources Information Center

    Greenwald, Martin; Feigler, Denis

    2009-01-01

    Like the "phoenix," technology education (TE) can, under the right circumstances, give life to new programs--curricula with different emphases and directions from technology education, yet sharing a common heritage: the belief that applied technology will continue to shape the world. How that shaping process takes place--and the problems that it…

  8. A National Research Survey of Technology Use in the BSW Teaching and Learning Process

    ERIC Educational Resources Information Center

    Buquoi, Brittany; McClure, Carli; Kotrlik, Joseph W.; Machtmes, Krisanna; Bunch, J. C.

    2013-01-01

    The purpose of this descriptive-correlational research study was to assess the overall use of technology in the teaching and learning process (TLP) by BSW educators. The accessible and target population included all full-time, professorial-rank, BSW faculty in Council on Social Work Education--accredited BSW programs at land grant universities.…

  9. Experience and advantages in implementation of educational program in network form at Department «Closed nuclear fuel cycle Technologies» of National Research Nuclear University «MEPhI»

    NASA Astrophysics Data System (ADS)

    Beygel‧, A. G.; Kutsenko, K. V.; Lavrukhin, A. A.; Magomedbekov, E. P.; Pershukov, V. A.; Sofronov, V. L.; Tyupina, E. A.; Zhiganov, A. N.

    2017-01-01

    The experience of implementation of the basic educational program of magistracy on direction «Nuclear Physics and Technologies» in a network form is presented. Examples of joint implementation of the educational process with employers organizations, other universities and intranet mobility of students are given.

  10. Bridging the Technology Valley of Death in Joint Medical Development

    DTIC Science & Technology

    2015-11-01

    Force lieutenant colonel, is the Air Force Medical Support Agency Advanced Development Liaison Field Engineer in Falls Church, Virginia. Prusaczyk is...Awareness, communication and coordination may be mini - mal among Service S&T and AD programs. Joint Transition Planning Process A Joint Transition...Human Proof of Phase III NDA/BLA ling Approval, Launch Concept*** Launch Review Program Initiation Materiel Technology Engineering & Production

  11. Guidance, Navigation and Control Digital Emulation Technology Laboratory. Volume 1. Part 1. Task 1: Digital Emulation Technology Laboratory

    DTIC Science & Technology

    1991-09-27

    complex floating-point functions in a fraction of the time used by the best supercomputers on the market today. These co-processing boards "piggy-back...by the VNIX-based DECLARE program. Ve’ ctLptieu du te, tedi the new verion with main programs that noi, include onlN the variablc required wkith each

  12. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.

  13. Differences in Adaptive Competency Acquisition between Traditionally Certified and Alternatively Certified Technology Education Teachers.

    ERIC Educational Resources Information Center

    Coyle-Rogers, Patricia G.; Rogers, George E.

    A study determined whether there are any differences in the adaptive competency acquisition between technology education teachers who have completed a school district add-on alternative certification process and technology education teachers who completed a traditional baccalaureate degree certification program. Non-probability sampling was used…

  14. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.

    1980-01-01

    Progress in the transfer of aerospace technology to solve key problems in the manufacturing sector of the economy is reported. Potential RTOP programs are summarized along with dissemination activities. The impact of transferred NASA manufacturing technology is discussed. Specific areas covered include aircraft production, robot technology, machining of alloys, and electrical switching systems.

  15. NASA Technology Transfer System

    NASA Technical Reports Server (NTRS)

    Tran, Peter B.; Okimura, Takeshi

    2017-01-01

    NTTS is the IT infrastructure for the Agency's Technology Transfer (T2) program containing 60,000+ technology portfolio supporting all ten NASA field centers and HQ. It is the enterprise IT system for facilitating the Agency's technology transfer process, which includes reporting of new technologies (e.g., technology invention disclosures NF1679), protecting intellectual properties (e.g., patents), and commercializing technologies through various technology licenses, software releases, spinoffs, and success stories using custom built workflow, reporting, data consolidation, integration, and search engines.

  16. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  17. Factors Affecting the Corporate Decision-Making Process of Air Transport Manufacturers

    NASA Technical Reports Server (NTRS)

    Ollila, R. G.; Hill, J. D.; Noton, B. R.; Duffy, M. A.; Epstein, M. M.

    1976-01-01

    Fuel economy is a pivotal question influencing the future sale and utilization of commercial aircraft. The NASA Aircraft Energy Efficiency (ACEE) Program Office has a program intended to accelerate the readiness of advanced technologies for energy efficient aircraft. Because the decision to develop a new airframe or engine is a major financial hazard for manufacturers, it is important to know what factors influence the decision making process. A method is described for identifying and ranking individuals and organizations involved at each stage of commercial air transport development, and the barriers that must be overcome in adopting new technologies.

  18. Development of a prototype interactive learning system using multi-media technology for mission independent training program

    NASA Technical Reports Server (NTRS)

    Matson, Jack E.

    1992-01-01

    The Spacelab Mission Independent Training Program provides an overview of payload operations. Most of the training material is currently presented in workbook form with some lecture sessions to supplement selected topics. The goal of this project was to develop a prototype interactive learning system for one of the Mission Independent Training topics to demonstrate how the learning process can be improved by incorporating multi-media technology into an interactive system. This report documents the development process and some of the problems encountered during the analysis, design, and production phases of this system.

  19. The NASA program in Space Energy Conversion Research and Technology

    NASA Astrophysics Data System (ADS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  20. The NASA program in Space Energy Conversion Research and Technology

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Flood, D. J.; Ambrus, J. H.; Hudson, W. R.

    1982-01-01

    The considered Space Energy Conversion Program seeks advancement of basic understanding of energy conversion processes and improvement of component technologies, always in the context of the entire power subsystem. Activities in the program are divided among the traditional disciplines of photovoltaics, electrochemistry, thermoelectrics, and power systems management and distribution. In addition, a broad range of cross-disciplinary explorations of potentially revolutionary new concepts are supported under the advanced energetics program area. Solar cell research and technology are discussed, taking into account the enhancement of the efficiency of Si solar cells, GaAs liquid phase epitaxy and vapor phase epitaxy solar cells, the use of GaAs solar cells in concentrator systems, and the efficiency of a three junction cascade solar cell. Attention is also given to blanket and array technology, the alkali metal thermoelectric converter, a fuel cell/electrolysis system, and thermal to electric conversion.

  1. Advanced physical-chemical life support systems research

    NASA Technical Reports Server (NTRS)

    Evanich, Peggy L.

    1988-01-01

    A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.

  2. Guidelines for Implementation of an Advanced Outage Control Center to Improve Outage Coordination, Problem Resolution, and Outage Risk Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St. Germain, Shawn W.; Farris, Ronald K.; Whaley, April M.

    This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provide the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The purpose of this research is to improve management of nuclear powermore » plant (NPP) outages through the development of an advanced outage control center (AOCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This technical report for industry implementation outlines methods and considerations for the establishment of an AOCC. This report provides a process for implementation of a change management plan, evaluation of current outage processes, the selection of technology, and guidance for the implementation of the selected technology. Methods are presented for both adoption of technologies within an existing OCC and for a complete OCC replacement, including human factors considerations for OCC design and setup.« less

  3. Cast Metals Coalition Technology Transfer and Program Management Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. Thismore » closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.« less

  4. Programming methodology for a general purpose automation controller

    NASA Technical Reports Server (NTRS)

    Sturzenbecker, M. C.; Korein, J. U.; Taylor, R. H.

    1987-01-01

    The General Purpose Automation Controller is a multi-processor architecture for automation programming. A methodology has been developed whose aim is to simplify the task of programming distributed real-time systems for users in research or manufacturing. Programs are built by configuring function blocks (low-level computations) into processes using data flow principles. These processes are activated through the verb mechanism. Verbs are divided into two classes: those which support devices, such as robot joint servos, and those which perform actions on devices, such as motion control. This programming methodology was developed in order to achieve the following goals: (1) specifications for real-time programs which are to a high degree independent of hardware considerations such as processor, bus, and interconnect technology; (2) a component approach to software, so that software required to support new devices and technologies can be integrated by reconfiguring existing building blocks; (3) resistance to error and ease of debugging; and (4) a powerful command language interface.

  5. Quality and productivity drive innovation and improvement at United Technologies Aerospace Operations, Inc.

    NASA Technical Reports Server (NTRS)

    Jamar, L. G.

    1986-01-01

    Quality and innovation are the hallmarks of the national space program. In programs that preceded the Shuttle Program the emphasis was on meeting the risks and technical challenges of space with safety, quality, reliability, and success. At United Technologies Aerospace Operations, Inc. (UTAO), the battle has developed along four primary fronts. These fronts include programs to motivate and reward people, development and construction of optimized processes and facilities, implementation of specifically tailored management systems, and the application of appropriate measurement and control systems. Each of these initiatives is described. However, to put this quality and productivity program in perspective, UTAO and its role in the Shuttle Program are described first.

  6. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  7. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    NASA Technical Reports Server (NTRS)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualis, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  8. Merging home and health via contemporary care delivery: program management insights on a home telehealth project.

    PubMed

    Abraham, Chon; Rosenthal, David A

    2008-01-01

    This article discusses a home telehealth program that uses innovative informatics and telemedicine technologies to meet the needs of a Veterans Affairs Medical Center. We provide background information for the program inclusive of descriptions for the decision support system, patient selection process, and selected home telehealth technologies. Lessons learned based on interview data collected from the project team highlight issues regarding implementation and management of the program. Our goal is to provide useful information to other healthcare systems considering home telehealth as a contemporary option for care delivery.

  9. Building a National Security Program at a Small School: Identifying Opportunities and Overcoming Challenges

    ERIC Educational Resources Information Center

    Grossman, Michael; Schortgen, Francis

    2016-01-01

    This article offers insights into the overall program development process and--institutional obstacles and constraints notwithstanding--successful introduction of a new national security program at a small liberal arts university at a time of growing institutional prioritization of science, technology, engineering, and mathematics (STEM) programs.…

  10. Large Composite Structures Processing Technologies for Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Clinton, R. G., Jr.; Vickers, J. H.; McMahon, W. M.; Hulcher, A. B.; Johnston, N. J.; Cano, R. J.; Belvin, H. L.; McIver, K.; Franklin, W.; Sidwell, D.

    2001-01-01

    Significant efforts have been devoted to establishing the technology foundation to enable the progression to large scale composite structures fabrication. We are not capable today of fabricating many of the composite structures envisioned for the second generation reusable launch vehicle (RLV). Conventional 'aerospace' manufacturing and processing methodologies (fiber placement, autoclave, tooling) will require substantial investment and lead time to scale-up. Out-of-autoclave process techniques will require aggressive efforts to mature the selected technologies and to scale up. Focused composite processing technology development and demonstration programs utilizing the building block approach are required to enable envisioned second generation RLV large composite structures applications. Government/industry partnerships have demonstrated success in this area and represent best combination of skills and capabilities to achieve this goal.

  11. Technology for Independent Living: Sourcebook.

    ERIC Educational Resources Information Center

    Enders, Alexandra, Ed.

    This sourcebook provides information for the practical implementation of independent living technology in the everyday rehabilitation process. "Information Services and Resources" lists databases, clearinghouses, networks, research and development programs, toll-free telephone numbers, consumer protection caveats, selected publications, and…

  12. Energy-Saving Opportunities for Manufacturing Enterprises (International English Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This fact sheet provides information about the Industrial Technologies Program Save Energy Now energy audit process, software tools, training, energy management standards, and energy efficient technologies to help U.S. companies identify energy cost savings.

  13. [Optimization of education for laparoendoscopic technologies in Ukraine].

    PubMed

    Lesovoĭ, V N; Savenkov, V I; Tomin, M S

    2014-09-01

    International experience of training of surgeons, including urologists, in laparoendoscopic technologies, was analyzed. Practical course "The Fundamentals of aparoscopic Surgery" (FLS) and the European program of education for basic laparoscopic urologic skills (E-BLUS), which are used in specialized centers, constitute a standard programs of development of basic endosurgical skills. Such centers in Ukraine are absent. The project of complex system of a simulating education, testing and certification of surgeons, who are trained in endovideosurgical technologies, is proposed. While performing surveying of Ukrainian surgeons there were revealed the problems in a process of their education and introduction of highly technological methods: insufficient equipment with modern apparatuses, absence of a standardized pro- gram of education. The staged program of education was elaborated, taking into account progressive international experience and adopted to our environment and con ditions.

  14. National Security Technology Incubation Strategic Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This strategic plan contains information on the vision, mission, business and technology environment, goals, objectives, and incubation process of the National Security Technology Incubation Program (NSTI) at Arrowhead Center. The development of the NSTI is a key goal of the National Security Preparedness Project (NSPP). Objectives to achieve this goal include developing incubator plans (strategic, business, action, and operations), creating an incubator environment, creating a support and mentor network for companies in the incubator program, attracting security technology businesses to the region, encouraging existing business to expand, initiating business start-ups, evaluating products and processes of the incubator program, and achievingmore » sustainability of the incubator program. With the events of 9/11, the global community faces ever increasing and emerging threats from hostile groups determined to rule by terror. According to the National Nuclear Security Administration (NNSA) Strategic Plan, the United States must be able to quickly respond and adapt to unanticipated situations as they relate to protection of our homeland and national security. Technology plays a key role in a strong national security position, and the private business community, along with the national laboratories, academia, defense and homeland security organizations, provide this technology. Fostering innovative ideas, translated into relevant technologies answering the needs of NNSA, is the purpose of the NSTI. Arrowhead Center of New Mexico State University is the operator and manager of the NSTI. To develop the NSTI, Arrowhead Center must meet the planning, development, execution, evaluation, and sustainability activities for the program and identify and incubate new technologies to assist the NNSA in meeting its mission and goals. Technology alone does not give a competitive advantage to the country, but the creativity and speed with which it is employed does. For a company to succeed, it must have sustainable competitive advantages in seven key areas: geography, products and businesses, distribution, sales and service culture, efficiency, brand, and most important, people. The four strategic goals of the plan are to: 1. Identify and recruit small businesses with technology applications for national security. 2. Design and implement a national security incubator program that provides incubator services and physical space for the targeted businesses. 3. Provide business assistance and technical leadership to NSTI clients to assist in bringing their products to market. 4. Construct a new multi-tenant facility with dedicated physical space for businesses with technology applications for national security.« less

  15. Technology transfer metrics: Measurement and verification of data/reusable launch vehicle business analysis

    NASA Technical Reports Server (NTRS)

    Trivoli, George W.

    1996-01-01

    Congress and the Executive Branch have mandated that all branches of the Federal Government exert a concentrated effort to transfer appropriate government and government contractor-developed technology to the industrial use in the U.S. economy. For many years, NASA has had a formal technology transfer program to transmit information about new technologies developed for space applications into the industrial or commercial sector. Marshall Space Flight Center (MSFC) has been in the forefront of the development of U.S. industrial assistance programs using technologies developed at the Center. During 1992-93, MSFC initiated a technology transfer metrics study. The MSFC study was the first of its kind among the various NASA centers. The metrics study is a continuing process, with periodic updates that reflect on-going technology transfer activities.

  16. Programming and Operations Lab 1--Intermediate, Data Processing Technology: 8025.23.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The following course outline has been prepared as a guide toward helping the student develop an understanding of operating principles and procedures necessary in processing data electronically. Students who have met the objectives of Designing the Computer Program should be admitted to this course. The class meets 2 hours per day for 90 clock…

  17. Ramp Technology and Intelligent Processing in Small Manufacturing

    NASA Technical Reports Server (NTRS)

    Rentz, Richard E.

    1992-01-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  18. Ramp technology and intelligent processing in small manufacturing

    NASA Astrophysics Data System (ADS)

    Rentz, Richard E.

    1992-04-01

    To address the issues of excessive inventories and increasing procurement lead times, the Navy is actively pursuing flexible computer integrated manufacturing (FCIM) technologies, integrated by communication networks to respond rapidly to its requirements for parts. The Rapid Acquisition of Manufactured Parts (RAMP) program, initiated in 1986, is an integral part of this effort. The RAMP program's goal is to reduce the current average production lead times experienced by the Navy's inventory control points by a factor of 90 percent. The manufacturing engineering component of the RAMP architecture utilizes an intelligent processing technology built around a knowledge-based shell provided by ICAD, Inc. Rules and data bases in the software simulate an expert manufacturing planner's knowledge of shop processes and equipment. This expert system can use Product Data Exchange using STEP (PDES) data to determine what features the required part has, what material is required to manufacture it, what machines and tools are needed, and how the part should be held (fixtured) for machining, among other factors. The program's rule base then indicates, for example, how to make each feature, in what order to make it, and to which machines on the shop floor the part should be routed for processing. This information becomes part of the shop work order. The process planning function under RAMP greatly reduces the time and effort required to complete a process plan. Since the PDES file that drives the intelligent processing is 100 percent complete and accurate to start with, the potential for costly errors is greatly diminished.

  19. Progress in MMIC technology for satellite communications

    NASA Technical Reports Server (NTRS)

    Haugland, Edward J.; Leonard, Regis F.

    1987-01-01

    NASA's Lewis Research Center is actively involved in the development of monolithic microwave and millimeter-wave integrated circuits (MMICs). The approach of the program is to support basic research under grant or in-house, while MMIC development is done under contract, thereby facilitating the transfer of technology to users. Preliminary thrusts of the program have been the extension of technology to higher frequencies (60 GHz), degrees of complexity, and performance (power, efficiency, noise figure) by utilizing novel circuit designs, processes, and materials. A review of the progress made so far is presented.

  20. First NASA Advanced Composites Technology Conference, Part 2

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1991-01-01

    Presented here is a compilation of papers presented at the first NASA Advanced Composites Technology (ACT) Conference held in Seattle, Washington, from 29 Oct. to 1 Nov. 1990. The ACT program is a major new multiyear research initiative to achieve a national goal of technology readiness before the end of the decade. Included are papers on materials development and processing, innovative design concepts, analysis development and validation, cost effective manufacturing methodology, and cost tracking and prediction procedures. Papers on major applications programs approved by the Department of Defense are also included.

  1. Second NASA Advanced Composites Technology Conference

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    The conference papers are presented. The Advanced Composite Technology (ACT) Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. These papers will also be included in the Ninth Conference Proceedings to be published by the Federal Aviation Administration as a separate document.

  2. Multidisciplinary propulsion simulation using NPSS

    NASA Technical Reports Server (NTRS)

    Claus, Russell W.; Evans, Austin L.; Follen, Gregory J.

    1992-01-01

    The current status of the Numerical Propulsion System Simulation (NPSS) program, a cooperative effort of NASA, industry, and universities to reduce the cost and time of advanced technology propulsion system development, is reviewed. The technologies required for this program include (1) interdisciplinary analysis to couple the relevant disciplines, such as aerodynamics, structures, heat transfer, combustion, acoustics, controls, and materials; (2) integrated systems analysis; (3) a high-performance computing platform, including massively parallel processing; and (4) a simulation environment providing a user-friendly interface. Several research efforts to develop these technologies are discussed.

  3. NASA Electronic Parts and Packaging Program

    NASA Technical Reports Server (NTRS)

    Kayali, Sammy

    2000-01-01

    NEPP program objectives are to: (1) Access the reliability of newly available electronic parts and packaging technologies for usage on NASA projects through validations, assessments, and characterizations, and the development of test methods/tools; (2)Expedite infusion paths for advanced (emerging) electronic parts and packaging technologies by evaluations of readiness for manufacturability and project usage consideration; (3) Provide NASA projects with technology selection, application, and validation guidelines for electronic parts and packaging hardware and processes; nd (4) Retain and disseminate electronic parts and packaging quality assurance, reliability validations, tools, and availability information to the NASA community.

  4. Calculus Demonstrations Using MATLAB

    ERIC Educational Resources Information Center

    Dunn, Peter K.; Harman, Chris

    2002-01-01

    The note discusses ways in which technology can be used in the calculus learning process. In particular, five MATLAB programs are detailed for use by instructors or students that demonstrate important concepts in introductory calculus: Newton's method, differentiation and integration. Two of the programs are animated. The programs and the…

  5. Including Multiple Voices in Collaboratively Designing a Teacher Education Program

    ERIC Educational Resources Information Center

    Konecki, Loretta R.; Sturdivant, Robika L.; King, Caryn M.; Melin, Jacquelyn A.; Lancaster, Paula E.

    2012-01-01

    This narrative case study describes the collaborative processes employed by a midwestern university as it designed and implemented a clinically based, postbaccalaureate teacher preparation program for science, technology, engineering, and mathematics (STEM) graduates committed to teaching in high need secondary schools. The program development…

  6. Corps of Engineers National Automation Team (CENAT) Technology Transfer Test Bed (T(3)B) Demonstration of the Design 4D Program

    DTIC Science & Technology

    1989-11-01

    other design tools. RESULTS OF TEST/DEMONSTRATION: Training for the Design 4D Program was conducted at USACERL. Although nearly half of the test...subjects had difficulty with the prompts, their understanding of the program improved after experimenting with the commands. After training , most felt...Equipment Testing Process 3 TEST DISTRICT TRAINING ........................................... 10 Training Process Post Training Survey Post Training

  7. Translations from Kommunist, Number 13, September 1978

    DTIC Science & Technology

    1978-10-30

    programmed machine tool here is merely a component of a more complex reprogrammable technological system. This includes the robot machine tools with...sufficient possibilities for changing technological operations and processes and automated technological lines. 52 The reprogrammable automated sets will...simulate the possibilities of such sets. A new technological level will be developed in industry related to reprogrammable automated sets, their design

  8. The Perceived Influence of Industry-Sponsored Credentials on the Recruitment Process in the Information Technology Industry: Employer and Employee Perspectives

    ERIC Educational Resources Information Center

    Bartlett, Kenneth R.; Horwitz, Sujin K.; Ipe, Minu; Liu, Yuwen

    2005-01-01

    The increase in the number of industry-sponsored credential programs raises many questions for career and technical education. This study investigated the perceived influence of industry-sponsored credentials on the recruitment process in the information technology (IT) field. Influence is examined from the perspective of Human Resource (HR)…

  9. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 1: Data processing and transfer panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The data processing and transfer technology areas that need to be developed and that could benefit from space flight experiments are identified. Factors considered include: user requirements, concepts in 'Outlook for Space', and cost reduction. Major program thrusts formulated are an increase in end-to-end information handling and a reduction in life cycle costs.

  10. Multiyear Subcontractor Selection Criteria Analysis.

    DTIC Science & Technology

    1983-09-01

    advancement are program instability, higher costs, and increased lead-times. Compounding the instability created by advancing technology are changes in...drive smaller firms out of business (17:46). Technology is advancing at an ever increasing pace, demanding higher performance and larger amounts of engi...Process Adding to the external factors mentioned above, the weapon systems acquisition process tends to retard pro- ductivity advancements by its very

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, F. G.; Daniels, E. J.

    This report summarizes an assessment conducted by Environmental Technologies Alternatives, Inc., under a subcontract to Argonne National Laboratory. The project was conducted in two phases. An assessment of alternative technologies for recycling of prompt non-tire rubber was conducted in the first phase, and an experimental program focusing on a new technology called the catalytic Regeneration Process offered the greatest opportunity for recovery of high-value recyclable rubber material. An experimental and large-scale test program was undertaken to further delineate the economic potential as an essential step leading to commercial deployment and to determine the course of continued development of the technologymore » by the private sector. The experimental program defined process-operating conditions for the technology and verified the degree of devulcanisation achievable for two rubber compounds: ethylene-propylene-nonconjugated-diene monomer (EPDM) and neoprene. To determine product acceptance, samples of devulcanized EPDM and neoprene were prepared and used in factory trials for the production of automotive moldings (EPDM) and fiber-filled belting (neoprene). The factory trials indicated that the physical properties of the products were acceptable in both cases. The appearance of molded and calendared surface finishes was acceptable, while that of extruded finishes was unsatisfactory. The fiber-filled neoprene belting application offers the greatest economic potential. Process costs were estimated at $0.34/lb for neoprene waste rubber relative to a value of $0.57/lb. The results of the experimental program led to the decision to continue development of this technology is being planned, subject to the availability of about $3 million in financing from private-sector investors. The ability to recycle non-tire rubber scrap could conserve as much as 90,000 Btu/lb, thus yielding an estimated energy savings potential of about 0.25 quad/yr.« less

  12. Materials processing in space program tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E. (Compiler)

    1982-01-01

    Active research areas as of the end of the fiscal year 1982 of the Materials Processing in Space Program, NASA-Office of Space and Terrestrial Applications, involving several NASA centers and other organizations are highlighted to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program is described as well as its history, strategy and overall goal; the organizational structures and people involved are identified and each research task is described together with a list of recent publications. The tasks are grouped into four categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies.

  13. Thin EFG octagons

    NASA Astrophysics Data System (ADS)

    Kalejs, J. P.

    1994-01-01

    Mobil Solar Energy Corporation currently practices a unique crystal growth technology for producing crystalline silicon sheet, which is then cut with lasers into wafers. The wafers are processed into solar cells and incorporated into modules for photovoltaic applications. The silicon sheet is produced using a method known as Edge-defined Film-fed growth (EFG), in the form of hollow eight-sided polygons (octagons) with 10 cm faces. These are grown to lengths of 5 meters and thickness of 300 microns, with continuous melt replenishment, in compact furnaces designed to operate at a high sheet area production area of 135 sq cm/min. The present Photovoltaic Manufacturing Technology (PVMaT) three-year program seeks to advance the manufacturing line capabilities of the Mobil Solar crystal growth and cutting technologies. If successful, these advancements will provide significant reductions in already low silicon raw material usage, improve process productivity, laser cutting throughput and yield, and so lower both individual wafer cost and the cost of module production. This report summarizes the significant technical improvements in EFG technology achieved in Phase 1 of this program. Technical results are reported for each of the three main program areas: (1) thin octagon growth (crystal growth) -- to reduce the thickness of the octagon to an interim goal of 250 microns during Phase 1, with an ultimate goal of achieving 200 micron thicknesses; (2) laser cutting -- to improve the laser cutting process, so as to produce wafers with decreased laser cutting damage at increased wafer throughput rates; and (3) process control and product specification -- to implement advanced strategies in crystal growth process control and productivity designed to increase wafer yields.

  14. OAST space technology accomplishments FY 1991

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The program consists of a continuum of space research and technology activities ranging from initial research to the full scale test of prototype equipment in space. Activities include work that is performed by in-house staff at the NASA Centers, university researchers supported by NASA funded grants and contracts, and industrial aerospace organizations under contract to NASA. These diverse activities provide advances in technology breakthroughs that may revolutionalize a technical discipline or mission concept. The work is managed and coordinated by OAST through a process that integrates the best available talent and capability in NASA, industry, and universities into a National civil space research and technology program.

  15. Community resources and technologies developed through the NIH Roadmap Epigenomics Program.

    PubMed

    Satterlee, John S; Beckel-Mitchener, Andrea; McAllister, Kim; Procaccini, Dena C; Rutter, Joni L; Tyson, Frederick L; Chadwick, Lisa Helbling

    2015-01-01

    This chapter describes resources and technologies generated by the NIH Roadmap Epigenomics Program that may be useful to epigenomics researchers investigating a variety of diseases including cancer. Highlights include reference epigenome maps for a wide variety of human cells and tissues, the development of new technologies for epigenetic assays and imaging, the identification of novel epigenetic modifications, and an improved understanding of the role of epigenetic processes in a diversity of human diseases. We also discuss future needs in this area including exploration of epigenomic variation between individuals, single-cell epigenomics, environmental epigenomics, exploration of the use of surrogate tissues, and improved technologies for epigenome manipulation.

  16. Turnaround Operations Analysis for OTV. Volume 3: Technology Development Plan

    NASA Technical Reports Server (NTRS)

    1988-01-01

    An integrated technology development plan for the technologies required to process both GBOTVs and SBOTVs are described. The plan includes definition of the tests and experiments to be accomplished on the ground, in a Space Shuttle Sortie Mission, on an Expendable Launch Vehicle, or at the Space Station as a Technology Development Mission (TDM). The plan reflects and accommodates current and projected research and technology programs where appropriate.

  17. Independent Assessment of Technology Characterizations to Support the Biomass Program Annual State-of-Technology Assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, B.

    2011-03-01

    This report discusses an investigation that addressed two thermochemical conversion pathways for the production of liquid fuels and addressed the steps to the process, the technology providers, a method for determining the state of technology and a tool to continuously assess the state of technology. This report summarizes the findings of the investigation as well as recommendations for improvements for future studies.

  18. Preparing for a New Century: Information Technology Workforce Needs.

    ERIC Educational Resources Information Center

    Teeter, Thomas A.; Bailey, Janet L.; Cherepski, Don D.; Faucett, John; Hines, Robert J.; Jovanovic, Nickolas S.; Tschumi, Pete; Walker, Jeffery T.; Watson, Gretchen B.

    The purpose of this project was to determine workforce needs in the new information technology/knowledge-based world in order to design a coherent minor program in information technology at the University of Arkansas at Little Rock for the non-technically oriented college student. The process consisted of three phases: site visits to five…

  19. The New Improved Big6 Workshop Handbook. Professional Growth Series.

    ERIC Educational Resources Information Center

    Eisenberg, Michael B.; Berkowitz, Robert E.

    This handbook is intended to help classroom teachers, teacher-librarians, technology teachers, administrators, parents, community members, and students to learn about the Big6 Skills approach to information and technology skills, to use the Big6 process in their own activities, and to implement a Big6 information and technology skills program. The…

  20. Technology Planning: Designing the Direction to Get There

    ERIC Educational Resources Information Center

    Norton, Sylvia Knight

    2013-01-01

    School librarians play an important role in developing a technology plan for the school library program that reflects teaching and learning for today's education. The school librarian's leadership in the overall process and the written plan itself can influence future strategies for teaching and learning with technology that can go well…

  1. Preparing for High Technology: 30 Steps to Implementation. Research & Development Series No. 232.

    ERIC Educational Resources Information Center

    Abram, Robert; And Others

    This planning guide is one of three that addresses the concerns of postsecondary college administrators and planners regarding the planning and implementation of technician training programs in high technology areas. It specifically focuses on a 30-step planning process that is generalizable to various high technology areas. (The other two…

  2. Production and use of metals and oxygen for lunar propulsion

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Linne, Diane L.; Landis, Geoffrey A.; Groth, Mary F.; Colvin, James E.

    1991-01-01

    Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.

  3. Utilization of Space Station Freedom for technology research

    NASA Technical Reports Server (NTRS)

    Avery, Don E.

    1992-01-01

    Space Station Freedom presents a unique opportunity for technology developers to conduct research in the space environment. Research can be conducted in the pressurized volume of the Space Station's laboratories or attached to the Space Station truss in the vacuum of space. Technology developers, represented by the Office of Aeronautics and Space Technology (OAST), will have 12 percent of the available Space Station resources (volume, power, data, crew, etc.) to use for their research. Most technologies can benefit from research on Space Station Freedom and all these technologies are represented in the OAST proposed traffic model. This traffic model consists of experiments that have been proposed by technology developers but not necessarily selected for flight. Experiments to be flown in space will be selected through an Announcement of Opportunity (A.O.) process. The A.O. is expected to be released in August, 1992. Experiments will generally fall into one of the 3 following categories: (1) Individual technology experiments; (2) Instrumented Space Station; and (3) Guest investigator program. The individual technology experiments are those that do not instrument the Space Station nor directly relate to the development of technologies for evolution of Space Station or development of advanced space platforms. The Instrumented Space Station category is similar to the Orbiter Experiments Program and allows the technology developer to instrument subsystems on the Station or develop instrumentation packages that measure products or processes of the Space Station for the advancement of space platform technologies. The guest investigator program allows the user to request data from Space Station or other experiments for independent research. When developing an experiment, a developer should consider all the resources and infrastructure that Space Station Freedom can provide and take advantage of these to the maximum extent possible. Things like environment, accommodations, carriers, and integration should all be taken into account. In developing experiments at Langley Research Center, an iterative approach is proving useful. This approach uses Space Station utilization and subsystem experts to advise and critique experiment designs to take advantage of everything the Space Station has to offer. Also, solid object modeling and animation computer tools are used to fully visualize the experiment and its processes. This process is very useful for attached payloads and allows problems to be detected early in the experiment design phase.

  4. Microelectromechanical Systems

    NASA Technical Reports Server (NTRS)

    Gabriel, Kaigham J.

    1995-01-01

    Micro-electromechanical systems (MEMS) is an enabling technology that merges computation and communication with sensing and actuation to change the way people and machines interact with the physical world. MEMS is a manufacturing technology that will impact widespread applications including: miniature inertial measurement measurement units for competent munitions and personal navigation; distributed unattended sensors; mass data storage devices; miniature analytical instruments; embedded pressure sensors; non-invasive biomedical sensors; fiber-optics components and networks; distributed aerodynamic control; and on-demand structural strength. The long term goal of ARPA's MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies for both perceiving and controlling systems, processes, and the environment. The MEMS program has three major thrusts: advanced devices and processes, system design, and infrastructure.

  5. Exploitation of rights from the US space program by NASA: Review of the process

    NASA Technical Reports Server (NTRS)

    Kempf, Robert; Gimeno, Benjamin

    1995-01-01

    The legal environment, and some observations on the policies, procedures, and practices developed and instituted by NASA with regard to the treatment of intellectual property rights arising out of NASA support, are presented. The allocation, protection, and exercise (or exploitation) of such rights are considered. Focus is on the exercise (or exploitation) of intellectual property rights in a manner that provides an incentive to achieve beneficial or commercial use by the private sector of technology resulting from the U.S. space program. While some emphasis is on matters unique to the U.S. space program, many of the policies, procedures, and practices supported research and development activities. The process of making the results of U.S. government supported research and development activities available to the private sector for beneficial or commercial use, whether or not subject to intellectual property rights protection, is commonly known as technology transfer. Consequently, the consideration of intellectual property rights is in the context of the broader technology transfer objectives of NASA.

  6. Marshall Space Flight Center's Virtual Reality Applications Program 1993

    NASA Technical Reports Server (NTRS)

    Hale, Joseph P., II

    1993-01-01

    A Virtual Reality (VR) applications program has been under development at the Marshall Space Flight Center (MSFC) since 1989. Other NASA Centers, most notably Ames Research Center (ARC), have contributed to the development of the VR enabling technologies and VR systems. This VR technology development has now reached a level of maturity where specific applications of VR as a tool can be considered. The objectives of the MSFC VR Applications Program are to develop, validate, and utilize VR as a Human Factors design and operations analysis tool and to assess and evaluate VR as a tool in other applications (e.g., training, operations development, mission support, teleoperations planning, etc.). The long-term goals of this technology program is to enable specialized Human Factors analyses earlier in the hardware and operations development process and develop more effective training and mission support systems. The capability to perform specialized Human Factors analyses earlier in the hardware and operations development process is required to better refine and validate requirements during the requirements definition phase. This leads to a more efficient design process where perturbations caused by late-occurring requirements changes are minimized. A validated set of VR analytical tools must be developed to enable a more efficient process for the design and development of space systems and operations. Similarly, training and mission support systems must exploit state-of-the-art computer-based technologies to maximize training effectiveness and enhance mission support. The approach of the VR Applications Program is to develop and validate appropriate virtual environments and associated object kinematic and behavior attributes for specific classes of applications. These application-specific environments and associated simulations will be validated, where possible, through empirical comparisons with existing, accepted tools and methodologies. These validated VR analytical tools will then be available for use in the design and development of space systems and operations and in training and mission support systems.

  7. Biomedical applications of NASA technology

    NASA Technical Reports Server (NTRS)

    Friedman, Donald S.

    1991-01-01

    Through the active transfer of technology, NASA Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from such areas as digital image processing, space medicine and biology, microelectronics, optics, and electro-optics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs aremore » discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.« less

  9. Analysis to develop a program for energy-integrated farm systems

    NASA Astrophysics Data System (ADS)

    Eakin, D. E.; Clark, M. A.; Inaba, L. K.; Johnson, K. I.

    1981-09-01

    A program to use renewable energy resources and possibly develop decentralization of energy systems for agriculture is discussed. The program's objective is determined by: (1) an analysis of the technologies that could be utilized to transform renewable farm resources to energy by the year 2000, (2) the quantity of renewable farm resources that are available, and (3) current energy-use patterns. Individual research, development, and demonstration projects are fit into a national program of energy-integrated farm systems on the basis of market need, conversion potential, technological opportunities, and acceptability. Quantification of these factors for the purpose of establishing program guidelines is conducted using the following four precepts: (1) market need is identified by current use of energy for agricultural production; (2) conversion potential is determined by the availability of renewable resources; and (3) technological opportunities are determined by the state-of-the-art methods, techniques, and processes that can convert renewable resources into farm energy.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Kenneth; Oxstrand, Johanna

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore,more » a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal of the digital architecture project is to provide a long-term strategy to integrate plant systems, plant processes, and plant workers. This include technologies to improve nuclear worker efficiency and human performance; to offset a range of plant surveillance and testing activities with new on-line monitoring technologies; improve command, control, and collaboration in settings such as outage control centers and work execution centers; and finally to improve operator performance with new operator aid technologies for the control room. The requirements identified through the activities in the Digital Architecture project will be used to estimate the amount of traffic on the network and hence estimating the minimal bandwidth needed.« less

  11. Summaries of FY 1996 geosciences research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-01

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and ismore » also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.« less

  12. Architecture for Survivable System Processing (ASSP)

    NASA Astrophysics Data System (ADS)

    Wood, Richard J.

    1991-11-01

    The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.

  13. Architecture for Survivable System Processing (ASSP)

    NASA Technical Reports Server (NTRS)

    Wood, Richard J.

    1991-01-01

    The Architecture for Survivable System Processing (ASSP) Program is a multi-phase effort to implement Department of Defense (DOD) and commercially developed high-tech hardware, software, and architectures for reliable space avionics and ground based systems. System configuration options provide processing capabilities to address Time Dependent Processing (TDP), Object Dependent Processing (ODP), and Mission Dependent Processing (MDP) requirements through Open System Architecture (OSA) alternatives that allow for the enhancement, incorporation, and capitalization of a broad range of development assets. High technology developments in hardware, software, and networking models, address technology challenges of long processor life times, fault tolerance, reliability, throughput, memories, radiation hardening, size, weight, power (SWAP) and security. Hardware and software design, development, and implementation focus on the interconnectivity/interoperability of an open system architecture and is being developed to apply new technology into practical OSA components. To insure for widely acceptable architecture capable of interfacing with various commercial and military components, this program provides for regular interactions with standardization working groups (e.g.) the International Standards Organization (ISO), American National Standards Institute (ANSI), Society of Automotive Engineers (SAE), and Institute of Electrical and Electronic Engineers (IEEE). Selection of a viable open architecture is based on the widely accepted standards that implement the ISO/OSI Reference Model.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua; Burnham, Laurie; Jones, Christian Birk

    The U.S. DOE Regional Test Center for Solar Technologies program was established to validate photovoltaic (PV) technologies installed in a range of different climates. The program is funded by the Energy Department's SunShot Initiative. The initiative seeks to make solar energy cost competitive with other forms of electricity by the end of the decade. Sandia National Laboratory currently manages four different sites across the country. The National Renewable Energy Laboratory manages a fifth site in Colorado. The entire PV portfolio currently includes 20 industry partners and almost 500 kW of installed systems. The program follows a defined process that outlinesmore » tasks, milestones, agreements, and deliverables. The process is broken out into four main parts: 1) planning and design, 2) installation, 3) operations, and 4) decommissioning. This operations manual defines the various elements of each part.« less

  15. Scale-up of mild gasification to be a process development unit mildgas 24 ton/day PDU design report. Final report, November 1991--July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    From November 1991 to April 1996, Kerr McGee Coal Corporation (K-M Coal) led a project to develop the Institute of Gas Technology (IGT) Mild Gasification (MILDGAS) process for near-term commercialization. The specific objectives of the program were to: design, construct, and operate a 24-tons/day adiabatic process development unit (PDU) to obtain process performance data suitable for further design scale-up; obtain large batches of coal-derived co-products for industrial evaluation; prepare a detailed design of a demonstration unit; and develop technical and economic plans for commercialization of the MILDGAS process. The project team for the PDU development program consisted of: K-M Coal,more » IGT, Bechtel Corporation, Southern Illinois University at Carbondale (SIUC), General Motors (GM), Pellet Technology Corporation (PTC), LTV Steel, Armco Steel, Reilly Industries, and Auto Research.« less

  16. Programming of Multicomponent Temporal Release Profiles in 3D Printed Polypills via Core-Shell, Multilayer, and Gradient Concentration Profiles.

    PubMed

    Haring, Alexander P; Tong, Yuxin; Halper, Justin; Johnson, Blake N

    2018-06-10

    Additive manufacturing (AM) appears poised to provide novel pharmaceutical technology and controlled release systems, yet understanding the effects of processing and post-processing operations on pill design, quality, and performance remains a significant barrier. This paper reports a study of the relationship between programmed concentration profile and resultant temporal release profile using a 3D printed polypill system consisting of a Food and Drug Administration (FDA) approved excipient (Pluronic F-127) and therapeutically relevant dosages of three commonly used oral agents for treatment of type 2 diabetes (300-500 mg per pill). A dual-extrusion hydrogel microextrusion process enables the programming of three unique concentration profiles, including core-shell, multilayer, and gradient structures. Experimental and computational studies of diffusive mass transfer processes reveal that programmed concentration profiles are dynamic throughout both pill 3D printing and solidification. Spectrophotometric assays show that the temporal release profiles could be selectively programmed to exhibit delayed, pulsed, or constant profiles over a 5 h release period by utilizing the core-shell, multilayer, and gradient distributions, respectively. Ultimately, this work provides new insights into the mass transfer processes that affect design, quality, and performance of spatially graded controlled release systems, as well as demonstrating the potential to create disease-specific polypill technology with programmable temporal release profiles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Martin Marietta, Y-12 Plant Laboratory Partnership Program Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koger, J.

    1995-02-10

    The Y-12 Plant currently embraces three mission areas; stockpile surveillance, maintaining production capability, and storage of special nuclear materials. The Y-12 Plant also contributes to the nations` economic strength by partnering with industry in deploying technology. This partnering has been supported to a great extent through the Technology Transfer Initiative (TTI) directed by DOE/Defense Programs (DP-14). The Oak Ridge Centers for Manufacturing Technology (ORCMT) was established to draw upon the manufacturing and fabrication capabilities at the Y-12 Plant to coordinate and support collaborative efforts, between DP and the domestic industrial sector, toward the development of technologies which offer mutual benefitmore » to both DOE/DP programs and the private sector. Most of the needed technologies for the ``Factory of the Future`` (FOF) are being pursued as core areas at the Y-12 Plant. As a result, 85% of DP-14 projects already support the FOF. The unique capabilities of ORCMT can be applied to a wide range of manufacturing problems to enhance the capabilities of the US industrial base and its economic outcome. The ORCMT has an important role to play in DOE`s Technology Transfer initiative because its capabilities are focused on applied manufacturing and technology deployment which has a more near-term impact on private sector competitiveness. The Y-12 Plant uses the ORCMT to help maintain its own core competencies for the FOF by challenging its engineers and capabilities with technical problems from industry. Areas of strength at the Y-12 Plant that could impact the FOF include modeling of processes and advanced materials; intelligent inspection systems with standardized operator interfaces, analysis software, and part programming language; electronic transfer of designs and features; existing computer-based concurrent engineering; and knowledge-based forming process.« less

  18. NURSING 911: an orientation program to improve retention of online RN-BSN students.

    PubMed

    Gilmore, Melanie; Lyons, Evadna M

    2012-01-01

    This article describes the implementation and evaluation of an eight-hour, comprehensive, face-to-face orientation program designed to improve student retention in a newly developed online RN to BSN program. A total of 179 newly enrolled RN to BSN students participated in the orientation program and evaluated the process. Student attrition decreased from 20 percent to less than 1 percent after the orientation program was extended and improved to include a technology assessment and an online practice course. A quality online program requires a well-designed orientation that includes technological assessments and hands-on, active participation by the learner. The newly improved and designed course has become effective in student retention and transition into the online learning environment.

  19. 7 CFR 91.5 - Where services are offered.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Science and Technology Programs National Science Laboratory. A variety of proximate, chemical, microbiological and biomolecular tests and laboratory analyses performed on fruits and vegetables, poultry, meat and meat products, fiber products and processed foods are performed at the Science and Technology...

  20. Image processing system design for microcantilever-based optical readout infrared arrays

    NASA Astrophysics Data System (ADS)

    Tong, Qiang; Dong, Liquan; Zhao, Yuejin; Gong, Cheng; Liu, Xiaohua; Yu, Xiaomei; Yang, Lei; Liu, Weiyu

    2012-12-01

    Compared with the traditional infrared imaging technology, the new type of optical-readout uncooled infrared imaging technology based on MEMS has many advantages, such as low cost, small size, producing simple. In addition, the theory proves that the technology's high thermal detection sensitivity. So it has a very broad application prospects in the field of high performance infrared detection. The paper mainly focuses on an image capturing and processing system in the new type of optical-readout uncooled infrared imaging technology based on MEMS. The image capturing and processing system consists of software and hardware. We build our image processing core hardware platform based on TI's high performance DSP chip which is the TMS320DM642, and then design our image capturing board based on the MT9P031. MT9P031 is Micron's company high frame rate, low power consumption CMOS chip. Last we use Intel's company network transceiver devices-LXT971A to design the network output board. The software system is built on the real-time operating system DSP/BIOS. We design our video capture driver program based on TI's class-mini driver and network output program based on the NDK kit for image capturing and processing and transmitting. The experiment shows that the system has the advantages of high capturing resolution and fast processing speed. The speed of the network transmission is up to 100Mbps.

  1. Space Technology Mission Directorate: Game Changing Development

    NASA Technical Reports Server (NTRS)

    Gaddis, Stephen W.

    2015-01-01

    NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.

  2. Manufacturing process applications team (MATeam)

    NASA Technical Reports Server (NTRS)

    Bangs, E. R.; Meyer, J. D.

    1978-01-01

    Activities of the manufacturing applications team (MATeam) in effecting widespread transfer of NASA technology to aid in the solution of manufacturing problems in the industrial sector are described. During the program's first year of operation, 450 companies, industry associations, and government agencies were contacted, 150 manufacturing problems were documented, and 20 potential technology transfers were identified. Although none of the technology transfers has been commercialized and put in use, several are in the applications engineering phase, and others are in the early stages of implementation. The technology transfer process is described and guidelines used for the preparation of problems statements are included.

  3. RLV/X-33 operations overview

    NASA Astrophysics Data System (ADS)

    Black, Stephen T.; Eshleman, Wally

    1997-01-01

    This paper describes the VentureStar™ SSTO RLV and X-33 operations concepts. Applications of advanced technologies, automated ground support systems, advanced aircraft and launch vehicle lessons learned have been integrated to develop a streamlined vehicle and mission processing concept necessary to meet the goals of a commercial SSTO RLV. These concepts will be validated by the X-33 flight test program where financial and technical risk mitigation are required. The X-33 flight test program totally demonstrates the vehicle performance, technology, and efficient ground operations at the lowest possible cost. The Skunk Work's test program approach and test site proximity to the production plant are keys. The X-33 integrated flight and ground test program incrementally expands the knowledge base of the overall system allowing minimum risk progression to the next flight test program milestone. Subsequent X-33 turnaround processing flows will be performed with an aircraft operations philosophy. The differences will be based on research and development, component reliability and flight test requirements.

  4. Internet Technology in Magnetic Resonance: A Common Gateway Interface Program for the World-Wide Web NMR Spectrometer

    NASA Astrophysics Data System (ADS)

    Buszko, Marian L.; Buszko, Dominik; Wang, Daniel C.

    1998-04-01

    A custom-written Common Gateway Interface (CGI) program for remote control of an NMR spectrometer using a World Wide Web browser has been described. The program, running on a UNIX workstation, uses multiple processes to handle concurrent tasks of interacting with the user and with the spectrometer. The program's parent process communicates with the browser and sends out commands to the spectrometer; the child process is mainly responsible for data acquisition. Communication between the processes is via the shared memory mechanism. The WWW pages that have been developed for the system make use of the frames feature of web browsers. The CGI program provides an intuitive user interface to the NMR spectrometer, making, in effect, a complex system an easy-to-use Web appliance.

  5. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  6. Photonics: Technology project summary

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.

    1991-01-01

    Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.

  7. Creating the Future: Research and Technology

    NASA Technical Reports Server (NTRS)

    1998-01-01

    With the many different technical talents, Marshall Space Flight Center (MSFC) continues to be an important force behind many scientific breakthroughs. The MSFC's annual report reviews the technology developments, research in space and microgravity sciences, studies in space system concepts, and technology transfer. The technology development programs include development in: (1) space propulsion and fluid management, (2) structures and dynamics, (3) materials and processes and (4) avionics and optics.

  8. 15 CFR 295.5 - Use of pre-proposals in the selection process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS ADVANCED... preparation costs incurred by proposers and to make the selection process more efficient, NIST may use...

  9. 15 CFR 295.5 - Use of pre-proposals in the selection process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS ADVANCED... preparation costs incurred by proposers and to make the selection process more efficient, NIST may use...

  10. 15 CFR 295.5 - Use of pre-proposals in the selection process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS ADVANCED... preparation costs incurred by proposers and to make the selection process more efficient, NIST may use...

  11. 15 CFR 295.5 - Use of pre-proposals in the selection process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS ADVANCED... preparation costs incurred by proposers and to make the selection process more efficient, NIST may use...

  12. 15 CFR 295.5 - Use of pre-proposals in the selection process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS ADVANCED... preparation costs incurred by proposers and to make the selection process more efficient, NIST may use...

  13. Modeling technology innovation: how science, engineering, and industry methods can combine to generate beneficial socioeconomic impacts.

    PubMed

    Stone, Vathsala I; Lane, Joseph P

    2012-05-16

    Government-sponsored science, technology, and innovation (STI) programs support the socioeconomic aspects of public policies, in addition to expanding the knowledge base. For example, beneficial healthcare services and devices are expected to result from investments in research and development (R&D) programs, which assume a causal link to commercial innovation. Such programs are increasingly held accountable for evidence of impact-that is, innovative goods and services resulting from R&D activity. However, the absence of comprehensive models and metrics skews evidence gathering toward bibliometrics about research outputs (published discoveries), with less focus on transfer metrics about development outputs (patented prototypes) and almost none on econometrics related to production outputs (commercial innovations). This disparity is particularly problematic for the expressed intent of such programs, as most measurable socioeconomic benefits result from the last category of outputs. This paper proposes a conceptual framework integrating all three knowledge-generating methods into a logic model, useful for planning, obtaining, and measuring the intended beneficial impacts through the implementation of knowledge in practice. Additionally, the integration of the Context-Input-Process-Product (CIPP) model of evaluation proactively builds relevance into STI policies and programs while sustaining rigor. The resulting logic model framework explicitly traces the progress of knowledge from inputs, following it through the three knowledge-generating processes and their respective knowledge outputs (discovery, invention, innovation), as it generates the intended socio-beneficial impacts. It is a hybrid model for generating technology-based innovations, where best practices in new product development merge with a widely accepted knowledge-translation approach. Given the emphasis on evidence-based practice in the medical and health fields and "bench to bedside" expectations for knowledge transfer, sponsors and grantees alike should find the model useful for planning, implementing, and evaluating innovation processes. High-cost/high-risk industries like healthcare require the market deployment of technology-based innovations to improve domestic society in a global economy. An appropriate balance of relevance and rigor in research, development, and production is crucial to optimize the return on public investment in such programs. The technology-innovation process needs a comprehensive operational model to effectively allocate public funds and thereby deliberately and systematically accomplish socioeconomic benefits.

  14. Modeling technology innovation: How science, engineering, and industry methods can combine to generate beneficial socioeconomic impacts

    PubMed Central

    2012-01-01

    Background Government-sponsored science, technology, and innovation (STI) programs support the socioeconomic aspects of public policies, in addition to expanding the knowledge base. For example, beneficial healthcare services and devices are expected to result from investments in research and development (R&D) programs, which assume a causal link to commercial innovation. Such programs are increasingly held accountable for evidence of impact—that is, innovative goods and services resulting from R&D activity. However, the absence of comprehensive models and metrics skews evidence gathering toward bibliometrics about research outputs (published discoveries), with less focus on transfer metrics about development outputs (patented prototypes) and almost none on econometrics related to production outputs (commercial innovations). This disparity is particularly problematic for the expressed intent of such programs, as most measurable socioeconomic benefits result from the last category of outputs. Methods This paper proposes a conceptual framework integrating all three knowledge-generating methods into a logic model, useful for planning, obtaining, and measuring the intended beneficial impacts through the implementation of knowledge in practice. Additionally, the integration of the Context-Input-Process-Product (CIPP) model of evaluation proactively builds relevance into STI policies and programs while sustaining rigor. Results The resulting logic model framework explicitly traces the progress of knowledge from inputs, following it through the three knowledge-generating processes and their respective knowledge outputs (discovery, invention, innovation), as it generates the intended socio-beneficial impacts. It is a hybrid model for generating technology-based innovations, where best practices in new product development merge with a widely accepted knowledge-translation approach. Given the emphasis on evidence-based practice in the medical and health fields and “bench to bedside” expectations for knowledge transfer, sponsors and grantees alike should find the model useful for planning, implementing, and evaluating innovation processes. Conclusions High-cost/high-risk industries like healthcare require the market deployment of technology-based innovations to improve domestic society in a global economy. An appropriate balance of relevance and rigor in research, development, and production is crucial to optimize the return on public investment in such programs. The technology-innovation process needs a comprehensive operational model to effectively allocate public funds and thereby deliberately and systematically accomplish socioeconomic benefits. PMID:22591638

  15. Handbook for Implementing Agile in Department of Defense Information Technology Acquisition

    DTIC Science & Technology

    2010-12-15

    Wire-frame Mockup of iTunes Cover Flow Feature (source: http://www.balsamiq.com/products/mockups/examples#mytunez...programming. The JOPES customer was included early in the development process in order to understand requirements management (story cards ), observe...transition by teaching the new members Agile processes, such as story card development, refactoring, and pair programming. Additionally, the team worked to

  16. Identify Skills and Proficiency Levels Necessary for Entry-Level Employment for All Vocational Programs Using Computers to Process Data. Final Report.

    ERIC Educational Resources Information Center

    Crowe, Jacquelyn

    This study investigated computer and word processing operator skills necessary for employment in today's high technology office. The study was comprised of seven major phases: (1) identification of existing community college computer operator programs in the state of Washington; (2) attendance at an information management seminar; (3) production…

  17. Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Pernice

    2010-09-01

    INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

  18. Total quality management: It works for aerospace information services

    NASA Technical Reports Server (NTRS)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle. Four projects are described that utilize cross-functional, problem-solving teams for identifying requirements and defining tasks and task standards, management participation, attention to critical processes, and measurable long-term goals. The implementation of these projects provides the customer with measurably improved access to information that is provided through several channels: the NASA STI Database, document requests for microfiche and hardcopy, and the Centralized Help Desk.

  19. Fossil energy program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-12-01

    The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.

  20. Advanced Waste Treatment, Wastewater Technology: A Two-Year Post High School Instructional Program. An Instructor's Guide for Use of Instructional Material in Wastewater Technology Training Programs. Volume VI.

    ERIC Educational Resources Information Center

    Gearheart, Robert A.; And Others

    This document is one in a series which outlines performance objectives and instructional modules for a course of study which explains the relationship and functions of the process units in a wastewater treatment plant. The modules are arranged in order appropriate for teaching students with no experience. The modules can also be rearranged and…

  1. ALTERNATIVE TO CHROME ETCHING PROCESSES FOR METALS

    EPA Science Inventory

    Several industries, including the National Center for Manufacturing Science have initiated programs for chrome abatement. The programs, however, generally focus on chrome reduction by use of existing technologies and do not address the elimination of chrome in pretreatment proces...

  2. Technology initiatives for the autonomous guidance, navigation, and control of single and multiple satellites

    NASA Astrophysics Data System (ADS)

    Croft, John; Deily, John; Hartman, Kathy; Weidow, David

    1998-01-01

    In the twenty-first century, NASA envisions frequent low-cost missions to explore the solar system, observe the universe, and study our planet. To realize NASA's goal, the Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center sponsors technology programs that enhance spacecraft performance, streamline processes and ultimately enable cheaper science. Our technology programs encompass control system architectures, sensor and actuator components, electronic systems, design and development of algorithms, embedded systems and space vehicle autonomy. Through collaboration with government, universities, non-profit organizations, and industry, the GNCC incrementally develops key technologies that conquer NASA's challenges. This paper presents an overview of several innovative technology initiatives for the autonomous guidance, navigation, and control (GN&C) of satellites.

  3. Intelligent systems for KSC ground processing

    NASA Technical Reports Server (NTRS)

    Heard, Astrid E.

    1992-01-01

    The ground processing and launch of Shuttle vehicles and their payloads is the primary task of Kennedy Space Center. It is a process which is largely manual and contains little inherent automation. Business is conducted today much as it was during previous NASA programs such as Apollo. In light of new programs and decreasing budgets, NASA must find more cost effective ways in which to do business while retaining the quality and safety of activities. Advanced technologies including artificial intelligence could cut manpower and processing time. This paper is an overview of the research and development in Al technology at KSC with descriptions of the systems which have been implemented, as well as a few under development which are promising additions to ground processing software. Projects discussed cover many facets of ground processing activities, including computer sustaining engineering, subsystem monitor and diagnosis tools and launch team assistants. The deployed Al applications have proven an effectiveness which has helped to demonstrate the benefits of utilizing intelligent software in the ground processing task.

  4. X-33 Environmental Impact Statement: A Fast Track Approach

    NASA Technical Reports Server (NTRS)

    McCaleb, Rebecca C.; Holland, Donna L.

    1998-01-01

    NASA is required by the National Environmental Policy Act (NEPA) to prepare an appropriate level environmental analysis for its major projects. Development of the X-33 Technology Demonstrator and its associated flight test program required an environmental impact statement (EIS) under the NEPA. The EIS process is consists of four parts: the "Notice of Intent" to prepare an EIS and scoping; the draft EIS which is distributed for review and comment; the final ETS; and the "Record of Decision." Completion of this process normally takes from 2 - 3 years, depending on the complexity of the proposed action. Many of the agency's newest fast track, technology demonstration programs require NEPA documentation, but cannot sustain the lengthy time requirement between program concept development to implementation. Marshall Space Flight Center, in cooperation with Kennedy Space Center, accomplished the NEPA process for the X-33 Program in 13 months from Notice of Intent to Record of Decision. In addition, the environmental team implemented an extensive public involvement process, conducting a total of 23 public meetings for scoping and draft EIS comment along with numerous informal meetings with public officials, civic organizations, and Native American Indians. This paper will discuss the fast track approach used to successfully accomplish the NEPA process for X-33 on time.

  5. Status of Propulsion Technology Development Under the NASA In-space Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Anderson, David; Kamhawi, Hani; Patterson, Mike; Dankanich, John; Pencil, Eric; Pinero, Luis

    2014-01-01

    Since 2001, the In-Space Propulsion Technology (ISPT) program has been developing and delivering in-space propulsion technologies for NASA's Science Mission Directorate (SMD). These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, Flagship and sample return missions currently under consideration. The ISPT program is currently developing technology in three areas that include Propulsion System Technologies, Entry Vehicle Technologies, and Systems Mission Analysis. ISPT's propulsion technologies include: 1) the 0.6-7 kW NASA's Evolutionary Xenon Thruster (NEXT) gridded ion propulsion system; 2) a 0.3-3.9kW Hall-effect electric propulsion (HEP) system for low cost and sample return missions; 3) the Xenon Flow Control Module (XFCM); 4) ultra-lightweight propellant tank technologies (ULTT); and 5) propulsion technologies for a Mars Ascent Vehicle (MAV). The HEP system is composed of the High Voltage Hall Accelerator (HiVHAc) thruster, a power processing unit (PPU), and the XFCM. NEXT and the HiVHAc are throttle-able electric propulsion systems for planetary science missions. The XFCM and ULTT are two component technologies which being developed with nearer-term flight infusion in mind. Several of the ISPT technologies are related to sample return missions needs like: MAV propulsion and electric propulsion. And finally, one focus of the SystemsMission Analysis area is developing tools that aid the application or operation of these technologies on wide variety of mission concepts. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness.

  6. NASA spinoffs to bioengineering and medicine

    NASA Technical Reports Server (NTRS)

    Rouse, D. J.; Winfield, D. L.; Canada, S. C.

    1991-01-01

    Through the active transfer of technology, the National Aeronautics and Space Administration (NASA) Technology Utilization (TU) Program assists private companies, associations, and government agencies to make effective use of NASA's technological resources to improve U.S. economic competitiveness and to provide societal benefit. Aerospace technology from areas such as digital image processing, space medicine and biology, microelectronics, optics and electrooptics, and ultrasonic imaging have found many secondary applications in medicine. Examples of technology spinoffs are briefly discussed to illustrate the benefits realized through adaptation of aerospace technology to solve health care problems. Successful implementation of new technologies increasingly requires the collaboration of industry, universities, and government, and the TU Program serves as the liaison to establish such collaborations with NASA. NASA technology is an important resource to support the development of new medical products and techniques that will further advance the quality of health care available in the U.S. and worldwide.

  7. Creating Nanotechnicians for the 21st Century Workplace

    NASA Astrophysics Data System (ADS)

    Burke, Michael; Jean, Kristi; Brown, Cheryl; Barrett, Rick; Leopold, Carrie

    The North Dakota State College of Science (NDSCS) Nanoscience Technology Training Program was designed and implemented to meet the growing demand for technicians skilled in nanofabrication, surface analysis and production of various micro and nano-scale products. The program emphasizes hands-on training and utilizes a state-of-the-art Applied Science and Advanced Manufacturing Training Laboratory to develop the KSA’s (knowledge, skills, attitudes) needed by industry. Two-year Associate in Applied Science degree, diploma and certificate tracks are offered in four industry focus areas; nanotechnology, microelectronics technology, bio-fuels technology and biotechnology. Students learn to work in multidisciplinary teams on design, prototyping, analysis and manufacturing processes of products. The program also hosts an extensive hands-on outreach program which interacted with over 8000 secondary school science students and 500 teachers in the first 12 months of operation.

  8. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: UTC FUEL CELLS' PC25C POWER PLANT - GAS PROCESSING UNIT PERFORMANCE FOR ANAEROBIC DIGESTER GAS

    EPA Science Inventory

    Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system based on the UTC Fuel Cell's PC25C Fuel Cell Power Plant was evaluated. The...

  9. Spinoff, 1986

    NASA Technical Reports Server (NTRS)

    Haggerty, James J.

    1986-01-01

    The major programs that generate new technology and therefore expand the bank of knowledge available for future transfer are outlined. The focal point of this volume contains a representative sampling of spinoff products and processes that resulted from technology utilization, or secondary application. The various mechanisms NASA employs to stimulate technology utilization are described and in an appendix, are listed contact sources for further information.

  10. 2010 Mississippi Curriculum Framework: Postsecondary Surgical Technology. (Program CIP: 51.0909 - Surgical Technology/Technologist)

    ERIC Educational Resources Information Center

    Davis, Tonya; Elliott, Jessica; Gandy, Zielda; Binkley, Dottie; Wilburn, Cathy; Ladner, Melissa; Howell, Karen; Shirley, LeAnn; Hinton, Debbie; Allhoff, Tammy

    2010-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  11. 2006 Mississippi Curriculum Framework: Postsecondary Surgical Technology. (Program CIP: 51.0909 - Surgical Technology/Technologist)

    ERIC Educational Resources Information Center

    Tice, Tonya; Elliott, Jessica; Gandy, Zielda; Wilkerson, Tammy

    2006-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  12. Developing People's Ability To Learn. European Perspectives on Self-Learning Competency and Technological Change.

    ERIC Educational Resources Information Center

    Nyhan, Barry

    This book outlines the process and outcomes of the EUROTECNET Self-Learning Competency research project that was launched in 1989. (EUROTECNET is a program designed to promote educational responses that will enable the European Community to create technological innovations in the workplace.) Part I, Technological Change and the Need for a…

  13. The city and its need for technology

    NASA Technical Reports Server (NTRS)

    Berkowitz, B. L.

    1978-01-01

    An experimental program has been undertaken to explore the process of identifying and transferring newer technology for the benefit of the city. This paper describes the nature of the problems involved in the experiment, some of the areas of supposed commonality with other cities and some of the prerequisites for any city to become involved with technological innovation.

  14. The (Mis)Use of Technology in the National Accreditation System

    ERIC Educational Resources Information Center

    Munson, April

    2014-01-01

    The use of technology in the evaluation of higher education programs is a mainstay. Physical evidence rooms, face-to-face interviews, and reviewing of documentation on site have become obsolete. Relying on the heavy use of technology in the evaluation process has allowed what some believe to be a more cohesive, streamlined approach to the…

  15. 2011 Mississippi Curriculum Framework: Postsecondary Forestry Technology. (Program CIP: 03.0511 - Forest Technology/Technician)

    ERIC Educational Resources Information Center

    Jones, Luke; Keeton, Jeff

    2011-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  16. 2007 Mississippi Curriculum Framework: Postsecondary Forestry Technology. (Program CIP: 03.0511 - Forest Technology/Technician)

    ERIC Educational Resources Information Center

    Johnson, Carl; Loden, Emily; Keeton, Jeff; Thompson, Don; Mitchell, Brian; Couch, Andrew; Walker, Bob; Grado, Steve

    2007-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  17. 2009 Mississippi Curriculum Framework: Postsecondary Cardiovascular Technology. (Program CIP: 51.0901 - Cardiovascular Technology)

    ERIC Educational Resources Information Center

    Stanford-Means, Cynthia; Stevens, Richard

    2009-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  18. Aerospace technology as a source of new ideas.

    NASA Technical Reports Server (NTRS)

    Hamilton, J. T.

    1972-01-01

    It is shown that technological products and processes resulting from aeronautical and space research and development can be a significant source of new product or product improvement ideas. The problems associated with technology transfer are discussed. As an example, the commercialization of NASTRAN, NASA's structural analysis computer program, is discussed. Some other current application projects are also outlined.

  19. 2008 Mississippi Curriculum Framework: Postsecondary Radiologic Technology. (Program CIP: 51.0911 - Radiologic Technology/Science - Radiographer)

    ERIC Educational Resources Information Center

    Armstrong, David; Cochran, Timothy; Compton, Steve; Davis, Jennifer; Edgerton, Seena Shazowee; Kisner, Christie; Lewis, Judy; Sartin, Billie Faye; Shell, Deborah

    2008-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  20. Lithium-Ion Batteries for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Halpert, G.; Marsh, R. A.; James, R.

    1999-01-01

    This presentation reviews: (1) the goals and objectives, (2) the NASA and Airforce requirements, (3) the potential near term missions, (4) management approach, (5) the technical approach and (6) the program road map. The objectives of the program include: (1) develop high specific energy and long life lithium ion cells and smart batteries for aerospace and defense applications, (2) establish domestic production sources, and to demonstrate technological readiness for various missions. The management approach is to encourage the teaming of universities, R&D organizations, and battery manufacturing companies, to build on existing commercial and government technology, and to develop two sources for manufacturing cells and batteries. The technological approach includes: (1) develop advanced electrode materials and electrolytes to achieve improved low temperature performance and long cycle life, (2) optimize cell design to improve specific energy, cycle life and safety, (3) establish manufacturing processes to ensure predictable performance, (4) establish manufacturing processes to ensure predictable performance, (5) develop aerospace lithium ion cells in various AH sizes and voltages, (6) develop electronics for smart battery management, (7) develop a performance database required for various applications, and (8) demonstrate technology readiness for the various missions. Charts which review the requirements for the Li-ion battery development program are presented.

  1. Program of policy studies in science and technology

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1973-01-01

    The application of an interdisciplinary, problem-oriented capability to the performance of total social impact evaluations is discussed. The consequences of introducing new configurations, technological or otherwise into future social environments are presented. The primary characteristics of the program are summarized: (1) emphasis on interdisciplinary, problem-oriented analysis; (2) development of intra- and inter-institutional arrangements for the purpose of analyzing social problems, evaluating existing programs, and assessing the social impacts of prospective policies, programs, and other public actions; (3) focus on methodological approaches to the projection of alternative future social environments, the identification of the effects of the introduction of new policies, programs, or other actions into the social system, and the evaluation of the social impacts of such effects; (4) availability of analytical resources for advisory and research tasks, and provision for use of program facilities as a neutral forum for the discussion of public issues involving involving the impact of advancing technology on social value-institutional processes.

  2. FEU Technology Digest No. 3.

    ERIC Educational Resources Information Center

    Further Education Unit, London (England).

    This digest contains four articles about technology and education in Britain. "The Development of an 'Additional Skills' Training Programme" (Peter Riley) details the organization and progress of a collaborative effort between Blackpool Processing Company and Flyde College's Additional Skills training program, a solution to achieving the…

  3. Partnerships Take a New Turn.

    ERIC Educational Resources Information Center

    Rich, Don

    1983-01-01

    Milwaukee Area Technical College has joined with business and industry to develop training programs for computer-based information processing, and engineering and manufacturing technologies. These partnerships are important as companies look for ways to improve productivity and quality, keep abreast of changing technology, and ensure economic…

  4. 42 CFR 416.180 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) MEDICARE PROGRAM AMBULATORY SURGICAL SERVICES Adjustment in Payment Amounts for New Technology Intraocular... technology intraocular lenses (IOLs) furnished at ambulatory surgical centers (ASCs). (b) Scope. This subpart sets forth— (1) The process for interested parties to request that CMS review the appropriateness of...

  5. My Favorite Things Electronically Speaking.

    ERIC Educational Resources Information Center

    Glantz, Shelley

    1997-01-01

    Presents the results of an informal user survey on favorite information technology, including the best features of these. Discusses library online catalogs, electronic encyclopedias, CD-ROMs, laser discs, electronic magazine indexes, online services, the Internet, word processing programs, magazines as major sources of technology information,…

  6. Information Processing Technology. Final Report.

    ERIC Educational Resources Information Center

    Choate, Larry; And Others

    A tech prep/associate degree program in information technology was developed to prepare workers for entry into and advancement in occupations entailing applications of scientific principles and higher mathematics in situations involving various office machines. According to the articulation agreement reached, students from five country regional…

  7. Biodesign process and culture to enable pediatric medical technology innovation.

    PubMed

    Wall, James; Wynne, Elizabeth; Krummel, Thomas

    2015-06-01

    Innovation is the process through which new scientific discoveries are developed and promoted from bench to bedside. In an effort to encourage young entrepreneurs in this area, Stanford Biodesign developed a medical device innovation training program focused on need-based innovation. The program focuses on teaching systematic evaluation of healthcare needs, invention, and concept development. This process can be applied to any field of medicine, including Pediatric Surgery. Similar training programs have gained traction throughout the United States and beyond. Equally important to process in the success of these programs is an institutional culture that supports transformative thinking. Key components of this culture include risk tolerance, patience, encouragement of creativity, management of conflict, and networking effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Materials processing in space programs tasks. [NASA research tasks

    NASA Technical Reports Server (NTRS)

    Pentecost, E.

    1981-01-01

    Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.

  9. Education and training for technicians in photonics-enabled technologies

    NASA Astrophysics Data System (ADS)

    Hull, Daniel M.; Hull, Darrell M.

    2005-10-01

    Within a few years after lasers were first made operational in 1960, it became apparent that rapid growth in the applications of this new technology in industry, health care, and other fields would require a new generation of technicians in laser/optics engineering. Technicians are the men and women who work alongside scientists and engineers in bringing their ideas, designs, and processes to fruition. In America, most highly qualified technicians are graduates of associate of applied science (AAS) programs in community and technical colleges (two-year postsecondary institutions). Curricula and educational programs designed to prepare technicians in laser/electro-optics technology (LEOT) emerged in the 1970s; today there are over 15 LEOT programs in the United States producing over 100 LEOT graduates each year.

  10. NASA Astrophysics Data System (ADS)

    McHugh, K. M.; Key, J. F.

    1994-06-01

    Spray forming is a near- net- shape fabrication technology in which a spray of finely atomized liquid droplets is deposited onto a suitably shaped substrate or pattern to produce a coherent solid. The technology offers unique opportunities for simplifying materials processing, often while substantially improving product quality. Spray forming is applicable to a wide range of metals and nonmetals and offers property improvements resulting from rapid solidification (e.g., refined microstructures, extended solid solubilities, and reduced segregation). Economic benefits result from process simplification and the elimination of unit operations. Researchers at the Idaho National Engineering Laboratory (INEL) are developing spray forming technology for producing near- net- shape solids and coatings of a variety of metals, polymers, and composite materials using de Laval nozzles. This article briefly describes the atomization behavior of liquid metals in linear de Laval nozzles and illustrates the versatility of the process by summarizing results from two spray forming programs. In one program, low-carbon steel strip >0.75 mm thick was produced; in the other, polymer membranes ˜5 μm thick were spray formed.

  11. Integrated propulsion technology demonstrator. Program plan

    NASA Technical Reports Server (NTRS)

    1994-01-01

    NASA and Rockwell have embarked on a cooperative agreement to define, develop, fabricate, and operate an integrated propulsion technology demonstrator (IPTD) for the purpose of validating design, process, and technology improvements of launch vehicle propulsion systems. This program, a result of NRA8-11, Task Area 1 A, is jointly funded by both NASA and Rockwell and is sponsored by the Reusable Launch Vehicle office at NASA Marshall Space flight Center. This program plan provides to the joint NASA/Rockwell integrated propulsion technology demonstrator (IPTD) team a description of the activities within tasks / sub tasks and associated schedules required to successfully achieve program objectives. This document also defines the cost elements and manpower allocations for each sub task for purpose of program control. This plan is updated periodically by developing greater depth of direction for outyear tasks as the program matures. Updating is accomplished by adding revisions to existing pages or attaching page revisions to this plan. In either case, revisions will be identified by appropriate highlighting of the change, or specifying a revision page through the use of footnotes on the bottom right of each change page. Authorization for the change is provided by the principal investigators to maintain control of this program plan document and IPTD program activities.

  12. Augmenting Space Technology Program Management with Secure Cloud & Mobile Services

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.; Munk, Christopher; Helble, Adelle; Press, Martin T.; George, Cory; Johnson, David

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Game Changing Development (GCD) program manages technology projects across all NASA centers and reports to NASA headquarters regularly on progress. Program stakeholders expect an up-to-date, accurate status and often have questions about the program's portfolio that requires a timely response. Historically, reporting, data collection, and analysis were done with manual processes that were inefficient and prone to error. To address these issues, GCD set out to develop a new business automation solution. In doing this, the program wanted to leverage the latest information technology platforms and decided to utilize traditional systems along with new cloud-based web services and gaming technology for a novel and interactive user environment. The team also set out to develop a mobile solution for anytime information access. This paper discusses a solution to these challenging goals and how the GCD team succeeded in developing and deploying such a system. The architecture and approach taken has proven to be effective and robust and can serve as a model for others looking to develop secure interactive mobile business solutions for government or enterprise business automation.

  13. Automated Error Detection for Developing Grammar Proficiency of ESL Learners

    ERIC Educational Resources Information Center

    Feng, Hui-Hsien; Saricaoglu, Aysel; Chukharev-Hudilainen, Evgeny

    2016-01-01

    Thanks to natural language processing technologies, computer programs are actively being used not only for holistic scoring, but also for formative evaluation of writing. CyWrite is one such program that is under development. The program is built upon Second Language Acquisition theories and aims to assist ESL learners in higher education by…

  14. Computer Programs for Technical Communicators: The Compelling Curriculum. Working Draft.

    ERIC Educational Resources Information Center

    Selfe, Cynthia L.; Wahlstrom, Billie J.

    A series of computer programs have been developed at Michigan Technological University for use with technical writing and technical communications classes. The first type of program in the series, CURIE II, includes process-based modules, each of which corresponds to one of the following assignments: memoranda, resumes, feasibility reports,…

  15. The New Millenium Program: Serving Earth and Space Sciences

    NASA Technical Reports Server (NTRS)

    Li, Fuk K.

    2000-01-01

    NASA has exciting plans for space science and Earth observations during the next decade. A broad range of advanced spacecraft and measurement technologies will be needed to support these plans within the existing budget and schedule constraints. Many of these technology needs are common to both NASA's Office of Earth Science (OES) and Office of Space Sciences (OSS). Even though some breakthrough technologies have been identified to address these needs, project managers have traditionally been reluctant to incorporate them into flight programs because their inherent development risk. To accelerate the infusion of new technologies into its OES and OSS missions, NASA established the New Millennium Program (NMP). This program analyzes the capability needs of these enterprises, identifies candidate technologies to address these needs, incorporates advanced technology suites into validation flights, validates them in the relevant space environment, and then proactively infuses the validated technologies into future missions to enhance their capabilities while reducing their life cycle cost. The NMP employs a cross-enterprise Science Working Group, the NASA Enterprise science and technology roadmaps to define the capabilities needed by future Earth and Space science missions. Additional input from the science community is gathered through open workshops and peer-reviewed NASA Research Announcement (NRAs) for advanced measurement concepts. Technology development inputs from the technology organizations within NASA, other government agencies, federally funded research and development centers (FFRDC's), U.S. industry, and academia are sought to identify breakthrough technologies that might address these needs. This approach significantly extends NASA's technology infrastructure. To complement other flight test programs that develop or validate of individual components, the NMP places its highest priority on system-level validations of technology suites in the relevant space environment. This approach is not needed for all technologies, but it is usually essential to validate advanced system architectures or new measurement concepts. The NMP has recently revised its processes for defining candidate validation flights, and selecting technologies for these flights. The NMP now employs integrated project formulation teams, 'Which include scientists, technologists, and mission planners, to incorporate technology suites into candidate validation flights. These teams develop competing concepts, which can be rigorously evaluated prior to selection for flight. The technology providers for each concept are selected through an open, competitive, process during the project formulation phase. If their concept is selected for flight, they are incorporated into the Project Implementation Team, which develops, integrates, tests, launches, and operates the technology validation flight. Throughout the project implementation phase, the Implementation Team will document and disseminate their validation results to facilitate the infusion of their validated technologies into future OSS and OES science missions. The NMP has successfully launched its first two Deep Space flights for the OSS, and is currently implementing its first two Earth Orbiting flights for the OES. The next OSS and OES flights are currently being defined. Even though these flights are focused on specific Space Science and Earth Science themes, they are designed to validate a range of technologies that could benefit both enterprises, including advanced propulsion, communications, autonomous operations and navigation, multifunctional structures, microelectronics, and advanced instruments. Specific examples of these technologies will be provided in our presentation. The processes developed by the NMP also provide benefits across the Space and Earth Science enterprises. In particular, the extensive, nation-wide technology infrastructure developed by the NMP enhances the access to breakthrough technologies for both enterprises.

  16. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Parag Kulkarni; Wei Wei

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs will be benchmarked with IGCC polygen costs for plants of similar size. Sorbent attrition and lifetime will be addressed via bench-scale experiments that monitor sorbent performance over time and by assessing materials interactions at operating conditions. The product gas from the third reactor (high-temperature vitiated air) will be evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. This is the eighteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the Phase II period starting July 01, 2005 and ending September 30, 2005. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including process modeling, scale-up and economic analysis.« less

  17. DESIGN OF A P3 EXCHANGE PROGRAM

    EPA Science Inventory

    Numerous pollution prevention techniques have proven themselves to be efficient, effective, and easy answers to environmental difficulties. However, most P2 programs are focused on high technology industries and processes. There is enormous potential to apply existing P2 kno...

  18. Report: EPA Could Improve the SmartWay Transport Partnership Program by Implementing a Direct Data Verification Process

    EPA Pesticide Factsheets

    Report #12-P-0747, August 30, 2012. Recent studies corroborate EPA’s claims that its SmartWay Transport Partnership program helps remove marketplace barriers in order to deploy fuel efficient technologies faster.

  19. Growing a Global Perspective: Utilizing Graduate Students as Scientists in the Classroom

    NASA Astrophysics Data System (ADS)

    Martinez, A.; Prouhet, T.; Kincaid, J.; Williams, N.; Simms, M.; Evans, R.

    2006-12-01

    Advancing Geospatial Skills in Science and Social Sciences (AGSSS) is a NSF GK12 program designed to produce scientists with an interest in and skills related to education by bringing graduate students (termed Fellows) into science and social science classrooms. The AGSSS program is unique in the GK-12 program because of its emphasis on spatial thinking with and through geospatial technologies. Spatial thinking is defined as the knowledge, skills, and habits of mind to use concepts of space, tools of representation, and processes of reasoning to structure problems, find answers and express solutions to these problems. Working collaboratively, Fellows assist teachers in using technologies (many freely available) such as virtual globes, GIS, GPS, NASA's ISSEarthKAM, and online databases. Fellows also customize existing curricula based on teacher requests to focus on spatial thinking and skill development. Preliminary results of the program reveal that students' use of geospatial technologies in interactive lessons that highlight real world processes and global perspectives encourages the development of higher order thinking skills. Fellows perceive three primary benefits: developing collaboration and communication skills, solidifying their own understandings of spatial thinking and becoming more aware and skilled in working in educational settings.

  20. Image processing techniques and applications to the Earth Resources Technology Satellite program

    NASA Technical Reports Server (NTRS)

    Polge, R. J.; Bhagavan, B. K.; Callas, L.

    1973-01-01

    The Earth Resources Technology Satellite system is studied, with emphasis on sensors, data processing requirements, and image data compression using the Fast Fourier and Hadamard transforms. The ERTS-A system and the fundamentals of remote sensing are discussed. Three user applications (forestry, crops, and rangelands) are selected and their spectral signatures are described. It is shown that additional sensors are needed for rangeland management. An on-board information processing system is recommended to reduce the amount of data transmitted.

  1. An Overview Of NASA's Solar Sail Propulsion Project

    NASA Technical Reports Server (NTRS)

    Garbe, Gregory; Montgomery, Edward E., IV

    2003-01-01

    Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.

  2. Systems Engineering in NASA's R&TD Programs

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2005-01-01

    Systems engineering is largely the analysis and planning that support the design, development, and operation of systems. The most common application of systems engineering is in guiding systems development projects that use a phased process of requirements, specifications, design, and development. This paper investigates how systems engineering techniques should be applied in research and technology development programs for advanced space systems. These programs should include anticipatory engineering of future space flight systems and a project portfolio selection process, as well as systems engineering for multiple development projects.

  3. Status report on the land processes aircraft science management operations working group

    NASA Technical Reports Server (NTRS)

    Lawless, James G.; Mann, Lisa J.

    1991-01-01

    Since its inception three years ago, the Land Processes Aircraft Science Management Operations Working Group (MOWG) provided recommendations on the optimal use of the Agency's aircraft in support of the Land Processes Science Program. Recommendations covered topics such as aircraft and sensor usage, development of long-range plans, Multisensor Airborne Campaigns (MAC), program balance, aircraft sensor databases, new technology and sensor development, and increased University scientist participation in the program. Impacts of these recommendations improved the efficiency of various procedures including the flight request process, tracking of flight hours, and aircraft usage. The group also created a bibliography focused on publications produced by Land Processes scientists from the use of the aircraft program, surveyed NASA funded PI's on their participation in the aircraft program, and developed a planning template for multi-sensor airborne campaigns. Benefits from these activities are summarized.

  4. Spatial Information Processing: Standards-Based Open Source Visualization Technology

    NASA Astrophysics Data System (ADS)

    Hogan, P.

    2009-12-01

    . Spatial information intelligence is a global issue that will increasingly affect our ability to survive as a species. Collectively we must better appreciate the complex relationships that make life on Earth possible. Providing spatial information in its native context can accelerate our ability to process that information. To maximize this ability to process information, three basic elements are required: data delivery (server technology), data access (client technology), and data processing (information intelligence). NASA World Wind provides open source client and server technologies based on open standards. The possibilities for data processing and data sharing are enhanced by this inclusive infrastructure for geographic information. It is interesting that this open source and open standards approach, unfettered by proprietary constraints, simultaneously provides for entirely proprietary use of this same technology. 1. WHY WORLD WIND? NASA World Wind began as a single program with specific functionality, to deliver NASA content. But as the possibilities for virtual globe technology became more apparent, we found that while enabling a new class of information technology, we were also getting in the way. Researchers, developers and even users expressed their desire for World Wind functionality in ways that would service their specific needs. They want it in their web pages. They want to add their own features. They want to manage their own data. They told us that only with this kind of flexibility, could their objectives and the potential for this technology be truly realized. World Wind client technology is a set of development tools, a software development kit (SDK) that allows a software engineer to create applications requiring geographic visualization technology. 2. MODULAR COMPONENTRY Accelerated evolution of a technology requires that the essential elements of that technology be modular components such that each can advance independent of the other elements. World Wind therefore changed its mission from providing a single information browser to enabling a whole class of 3D geographic applications. Instead of creating a single program, World Wind is a suite of components that can be selectively used in any number of programs. World Wind technology can be a part of any application, or it can be a window in a web page. Or it can be extended with additional functionalities by application and web developers. World Wind makes it possible to include virtual globe visualization and server technology in support of any objective. The world community can continually benefit from advances made in the technology by NASA in concert with the world community. 3. OPEN SOURCE AND OPEN STANDARDS NASA World Wind is NASA Open Source software. This means that the source code is fully accessible for anyone to freely use, even in association with proprietary technology. Imagery and other data provided by the World Wind servers reside in the public domain, including the data server technology itself. This allows others to deliver their own geospatial data and to provide custom solutions based on users specific needs.

  5. Pressure Ulcer Prevention: Where Practice and Education Meet.

    PubMed

    Bos, Brenda S; Wangen, Tina M; Elbing, Carl E; Rowekamp, Debra J; Kruggel, Heather A; Conlon, Patricia M; Scroggins, Leann M; Schad, Shauna P; Neumann, Julie A; Barth, Melissa M; Grubbs, Pamela L; Sievers, Beth A

    2016-01-01

    This article describes the processes used to implement a pressure ulcer management program in a Midwest academic medical center, which led to a decrease in reportable pressure ulcers. A learning needs assessment was completed, and a workgroup was formed to address the learning needs. Methods, materials, and processes included lectures, technology-enhanced learning, and interactive stations with mannequins and pressure ulcer moulages. The processes and outcome measures used to measure effectiveness of the program are discussed.

  6. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  7. Welding technology. [technology transfer of NASA developments to commercial organizations

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Welding processes which have been developed during NASA space program activities are discussed. The subjects considered are: (1) welding with an electron gun, (2) technology of welding special alloys, and (3) welding shop techniques and equipment. The material presented is part of the combined efforts of NASA and the Small Business Administration to provide technology transfer of space-related developments to the benefit of commercial organizations.

  8. Policy formulation and technology assessment.

    PubMed

    Banta, H D; Behney, C J

    1981-01-01

    Describes technology assessment and its application to the health field; examines evaluation of efficacy, safety, and cost effectiveness; discusses the use of technology assessment in policy formulation, especially by federal programs; suggests a system for assessment of medical technologies; and offers some observations about the future of technology assessment in policy making. Technology assessment began formally in 1965 in the Committee on Science and Astronautics of the House of Representatives as a process of examining technology and its impacts. Only a few attempts have been made since then to apply the concepts of technology assessment to health care. The amount of money currently devoted to assessing the efficacy and safety of medical technologies is small, and many important technologies have not been assessed. Priorities for clinical trials should therefore be set. Cost effectiveness analysis is a useful tool in decision making but because of its inherent limitations, it should not be the sole or even primary determinant of a decision. Technology assessment is apparently infrequently used as a decision-assisting tool by 3rd party payers, federal government agencies funding biomedical research, or the federal program which is designed to control physician utilization of certain technologies. Only the FDA regularly utilizes technology assessment. A systematic program of technology assessment would require identification of technologies needing testing, setting of priorities for such tests, synthesizing of information gained and its dessemination to decision makers.

  9. NASA-UVA light aerospace alloy and structures technology program

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Stoner, Glenn E.; Swanson, Robert E.; Thornton, Earl A.; Wawner, Franklin E., Jr.; Wert, John A.

    1990-01-01

    The objective of the Light Aerospace Alloy and Structures Technology Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites, and associated thermal gradient structures. Individual technical objectives are established for each project. Efforts aim to produce basic understanding of material behavior, monolithic and composite alloys, processing methods, solid and mechanics analyses, measurement advances, and a pool of educated graduate students. Progress is reported for 11 areas of study.

  10. High Current Density, Long Life Cathodes for High Power RF Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, Robert Lawrence; Collins, George; Falce, Lou

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for themore » technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.« less

  11. Numerical Implementation of Indicators and Statistical Control Tools in Monitoring and Evaluating CACEI-ISO Indicators of Study Program in Industrial Process by Systematization

    ERIC Educational Resources Information Center

    Ayala, Gabriela Cota; Real, Francia Angélica Karlos; Ivan, Ramirez Alvarado Edqar

    2016-01-01

    The research was conducted to determine if the study program of the career of industrial processes Technological University of Chihuahua, 1 year after that it was certified by CACEI, continues achieving the established indicators and ISO 9001: 2008, implementing quality tools, monitoring of essential indicators are determined, flow charts are…

  12. THE JUNIOR HIGH SCHOOL PROGRAM IN INDUSTRIAL ARTS, A STUDY OF INDUSTRY AND TECHNOLOGY FOR CONTEMPORARY MAN.

    ERIC Educational Resources Information Center

    MALEY, DONALD

    THE PROGRAM DEVELOPED BY THE UNIVERSITY OF MARYLAND IN COOPERATION WITH THE MONTGOMERY COUNTY SCHOOL SYSTEM IS DESCRIBED. IT IS AN ATTEMPT TO PUT EDUCATIONAL THEORY INTO OPERATION. IT FOCUSES ON AN EXPERIMENTAL-LABORATORY-FOR-PEOPLE CONCEPT AND EMPHASIZES THE INDIVIDUAL'S ROLE IN THE LEARNING PROCESS. IT HAS PUT THE PROCESS OF SELF-EDUCATION AHEAD…

  13. A compilation of technology spinoffs from the US Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Jackson, David Jeff

    1993-01-01

    As the successful transfer of NASA-developed technology is a stated mission of NASA, the documentation of such transfer is vital in support of the program. The purpose of this report is to document technology transfer, i.e. 'spinoffs', from the U.S. Space Shuttle Program to the commercial sector. These spinoffs have their origin in the many scientific and engineering fields associated with the shuttle program and, as such, span many diverse commercial applications. These applications include, but are not limited to, consumer products, medicine, industrial productivity, manufacturing technology, public safety, resources management, materials processing, transportation, energy, computer technology, construction, and environmental applications. To aide to the generation of this technology spinoff list, significant effort was made to establish numerous and complementary sources of information. The primary sources of information used in compiling this list include: the NASA 'Spinoff' publication, NASA Tech Briefs, the Marshall Space Flight Center (MSFC) Technology Utilization (TU) Office, the NASA Center for Aerospace Information (CASI), the NASA COSMIC Software Center, and MSFC laboratory and contractor personnel. A complete listing of resources may be found in the bibliography of this report. Additionally, effort was made to insure that the obtained information was placed in electronic database form to insure that the subsequent updating would be feasible with minimal effort.

  14. Sensor Acquisition for Water Utilities: Survey, Down Selection Process, and Technology List

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alai, M; Glascoe, L; Love, A

    2005-06-29

    The early detection of the biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The LLNL deliverable from this Operational Technology Demonstration (OTD) wasmore » to assist the development of a technology acquisition process for a water distribution early warning system. The technology survey includes a review of previous sensor surveys and current test programs and a compiled database of relevant technologies. In the survey paper we discuss previous efforts by governmental agencies, research organizations, and private companies. We provide a survey of previous sensor studies with regard to the use of Early Warning Systems (EWS) that includes earlier surveys, testing programs, and response studies. The list of sensor technologies was ultimately developed to assist in the recommendation of candidate technologies for laboratory and field testing. A set of recommendations for future sensor selection efforts has been appended to this document, as has a down selection example for a hypothetical water utility.« less

  15. New Teacher Induction Programs: A Case Study of an Exemplary School District, and How It Prepares Its New Teachers for the Use of Instructional Technology in the Classroom

    ERIC Educational Resources Information Center

    Sherman, David B.

    2014-01-01

    This research study examined Generation Y new teachers, the process of new teacher induction, and the most effective methods for providing professional development in instructional technology for Generation Y teachers. This research study examined Generation Y new teachers, the process of new teacher induction, and the most effective methods for…

  16. Klystron Manufacturing Technology Program.

    DTIC Science & Technology

    1983-09-01

    processes, and methodology used on the current production tube, VKU-7735E, and the new methods and techniques used to improve and reduce the cost of...the bellows. This alignment is c~tclto the smoothi operation of the internal tuniing mezhanism. IT METR𔃼D - VKCU-7795F The new assembly method changes...Varian, the MT contractor that the new methodology , technologies and process changes introduced into the MT power klystron and autotuner assembly - VKU

  17. Phase 1 of the automated array assembly task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Coleman, M. G.; Pryor, R. A.; Grenon, L. A.; Lesk, I. A.

    1977-01-01

    The state of technology readiness for the automated production of solar cells and modules is reviewed. Individual process steps and process sequences for making solar cells and modules were evaluated both technically and economically. High efficiency with a suggested cell goal of 15% was stressed. It is concluded that the technology exists to manufacture solar cells which will meet program goals.

  18. Get Students Excited--3D Printing Brings Designs to Life

    ERIC Educational Resources Information Center

    Lacey, Gary

    2010-01-01

    Students in technology education programs from middle school through high school around the nation are benefiting from--and enjoying--hands-on experience in mechanical engineering, applied mathematics, materials processing, basic electronics, robotics, industrial manufacturing, and other STEM (science, technology, engineering, and math)-focused…

  19. STATUS OF COMMERCIAL UTILITY FGD (FLUE GAS DESULFURIZATION) TECHNOLOGY

    EPA Science Inventory

    The paper summarizes the status of FGD technology as of March 1983 and highlights recent trends in process selection, design, and performance of FGD systems. The information collected in the program is stored in the Flue Gas Desulfurization Information System (FGDIS), a collectio...

  20. Strategies of Successful Technology Integrators. Part I: Streamlining Classroom Management.

    ERIC Educational Resources Information Center

    McNally, Lynn; Etchison, Cindy

    2000-01-01

    Discussion of how to develop curriculum that successfully integrates technology into elementary and secondary school classrooms focuses on solutions for school and classroom management tasks. Highlights include Web-based solutions; student activities; word processing; desktop publishing; draw and paint programs; spreadsheets; and database…

  1. 15 CFR 295.4 - The selection process.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS ADVANCED TECHNOLOGY.... NIST will also examine proposals that have been submitted to a previous competition to determine... review of their proposals with NIST, and in some cases site visits may be required. Subject to the...

  2. 15 CFR 295.4 - The selection process.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS ADVANCED TECHNOLOGY.... NIST will also examine proposals that have been submitted to a previous competition to determine... review of their proposals with NIST, and in some cases site visits may be required. Subject to the...

  3. 15 CFR 295.4 - The selection process.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS ADVANCED TECHNOLOGY.... NIST will also examine proposals that have been submitted to a previous competition to determine... review of their proposals with NIST, and in some cases site visits may be required. Subject to the...

  4. 15 CFR 295.4 - The selection process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS ADVANCED TECHNOLOGY.... NIST will also examine proposals that have been submitted to a previous competition to determine... review of their proposals with NIST, and in some cases site visits may be required. Subject to the...

  5. 15 CFR 295.4 - The selection process.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF STANDARDS AND TECHNOLOGY, DEPARTMENT OF COMMERCE NIST EXTRAMURAL PROGRAMS ADVANCED TECHNOLOGY.... NIST will also examine proposals that have been submitted to a previous competition to determine... review of their proposals with NIST, and in some cases site visits may be required. Subject to the...

  6. Use of a Business Approach to Improve Disease Surveillance Data Management Systems and Information Technology Process in Florida's Bureau of STD Prevention and Control.

    PubMed

    Shiver, Stacy A; Schmitt, Karla; Cooksey, Adrian

    2009-01-01

    The business of sexually transmitted disease (STD) prevention and control demands technology that is capable of supporting a wide array of program activities-from the processing of laboratory test results to the complex and confidential process involved in contact investigation. The need for a tool that enables public health officials to successfully manage the complex operations encountered in an STD prevention and control program, and the need to operate in an increasingly poor resource environment, led the Florida Bureau of STD to develop the Patient Reporting Investigation Surveillance Manager. Its unique approach, technical architecture, and sociotechnical philosophy have made this business application successful in real-time monitoring of disease burden for local communities, identification of emerging outbreaks, monitoring and assurance of appropriate treatments, improving access to laboratory data, and improving the quality of data for epidemiologic analysis. Additionally, the effort attempted to create and release a product that promoted the Centers for Disease Control and Prevention's ideas for integration of programs and processes.

  7. National Diabetes Education Program

    MedlinePlus

    ... Process Research Training & Career Development Funded Grants & Grant History Research Resources Research at NIDDK Technology Advancement & Transfer Meetings & Events Health Information Diabetes Digestive ...

  8. Using technology to enhance the quality of home health care: three case studies of health information technology initiatives at the visiting nurse service of New York.

    PubMed

    Russell, David; Rosenfeld, Peri; Ames, Sylvia; Rosati, Robert J

    2010-01-01

    There is a growing recognition among health services researchers and policy makers that Health Information Technology (HIT) has the potential to address challenging issues that face patients and providers of healthcare. The Visiting Nurse Service of New York (VNSNY), a large not-for-profit home healthcare agency, has integrated technology applications into the service delivery model of several programs. Case studies, including the development and implementation, of three informatics initiatives at VNSNY are presented on: (1) Quality Scorecards that utilize process, outcomes, cost, and satisfaction measures to assess performance among clinical staff and programs; (2) a tool to identify patients at risk of being hospitalized, and (3) a predictive model that identifies patients who are eligible for physical rehabilitation services. Following a description of these initiatives, we discuss their impact on quality and process indicators, as well as the opportunities and challenges to implementation. © 2010 National Association for Healthcare Quality.

  9. Processing experiments on non-Czochralski silicon sheet

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.; Grenon, L. A.; Sakiotis, N. G.; Pastirik, E. M.; Sparks, T. O.; Legge, R. N.

    1981-01-01

    A program is described which supports and promotes the development of processing techniques which may be successfully and cost-effectively applied to low-cost sheets for solar cell fabrication. Results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.

  10. Learning Objects: A User-Centered Design Process

    ERIC Educational Resources Information Center

    Branon, Rovy F., III

    2011-01-01

    Design research systematically creates or improves processes, products, and programs through an iterative progression connecting practice and theory (Reinking, 2008; van den Akker, 2006). Developing a new instructional systems design (ISD) processes through design research is necessary when new technologies emerge that challenge existing practices…

  11. Improvement of the Processes of Liquid-Phase Epitaxial Growth of Nanoheteroepitaxial Structures

    NASA Astrophysics Data System (ADS)

    Maronchuk, I. I.; Sanikovich, D. D.; Potapkov, P. V.; Vel‧chenko, A. A.

    2018-05-01

    We have revealed the shortcomings of equipment and technological approaches in growing nanoheteroepitaxial structures with quantum dots by liquid-phase epitaxy. We have developed and fabricated a new vertical barreltype cassette for growing quantum dots and epitaxial layers of various thicknesses in one technological process. A physico-mathematical simulation has been carried out of the processes of liquid-phase epitaxial growth of quantumdimensional structures with the use of the program product SolidWorks (FlowSimulation program). Analysis has revealed the presence of negative factors influencing the growth process of the above structures. The mathematical model has been optimized, and the equipment has been modernized without additional experiments and measurements. The flow dynamics of the process gas in the reactor at various flow rates has been investigated. A method for tuning the thermal equipment has been developed. The calculated and experimental temperature distributions in the process of growing structures with high reproducibility are in good agreement, which confirms the validity of the modernization made.

  12. Electronic Handbooks Simplify Process Management

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Getting a multitude of people to work together to manage processes across many organizations for example, flight projects, research, technologies, or data centers and others is not an easy task. Just ask Dr. Barry E. Jacobs, a research computer scientist at Goddard Space Flight Center. He helped NASA develop a process management solution that provided documenting tools for process developers and participants to help them quickly learn, adapt, test, and teach their views. Some of these tools included editable files for subprocess descriptions, document descriptions, role guidelines, manager worksheets, and references. First utilized for NASA's Headquarters Directives Management process, the approach led to the invention of a concept called the Electronic Handbook (EHB). This EHB concept was successfully applied to NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, among other NASA programs. Several Federal agencies showed interest in the concept, so Jacobs and his team visited these agencies to show them how their specific processes could be managed by the methodology, as well as to create mockup versions of the EHBs.

  13. Publications of the NASA Controlled Ecological Life Support System (CELSS) program 1989-1992

    NASA Technical Reports Server (NTRS)

    Powers, Janet V.

    1994-01-01

    Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) program are listed. The CELSS program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system, which is based upon the integration of biological and physical/chemical processes, that will produce nutritious and palatable food, potable and hygienic water, and a breathable atmosphere by recycling metabolic and other wastes. This research and technology development is being performed in the areas of biomass production/food processing, waste management, and systems management and control. The bibliography follows these divisions. Principal investigators whose research tasks resulted in publication are identified by an asterisk. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.

  14. Internet Technology in Magnetic Resonance: A Common Gateway Interface Program for the World-Wide Web NMR Spectrometer

    PubMed

    Buszko; Buszko; Wang

    1998-04-01

    A custom-written Common Gateway Interface (CGI) program for remote control of an NMR spectrometer using a World Wide Web browser has been described. The program, running on a UNIX workstation, uses multiple processes to handle concurrent tasks of interacting with the user and with the spectrometer. The program's parent process communicates with the browser and sends out commands to the spectrometer; the child process is mainly responsible for data acquisition. Communication between the processes is via the shared memory mechanism. The WWW pages that have been developed for the system make use of the frames feature of web browsers. The CGI program provides an intuitive user interface to the NMR spectrometer, making, in effect, a complex system an easy-to-use Web appliance. Copyright 1998 Academic Press.

  15. Internet (WWW) based system of ultrasonic image processing tools for remote image analysis.

    PubMed

    Zeng, Hong; Fei, Ding-Yu; Fu, Cai-Ting; Kraft, Kenneth A

    2003-07-01

    Ultrasonic Doppler color imaging can provide anatomic information and simultaneously render flow information within blood vessels for diagnostic purpose. Many researchers are currently developing ultrasound image processing algorithms in order to provide physicians with accurate clinical parameters from the images. Because researchers use a variety of computer languages and work on different computer platforms to implement their algorithms, it is difficult for other researchers and physicians to access those programs. A system has been developed using World Wide Web (WWW) technologies and HTTP communication protocols to publish our ultrasonic Angle Independent Doppler Color Image (AIDCI) processing algorithm and several general measurement tools on the Internet, where authorized researchers and physicians can easily access the program using web browsers to carry out remote analysis of their local ultrasonic images or images provided from the database. In order to overcome potential incompatibility between programs and users' computer platforms, ActiveX technology was used in this project. The technique developed may also be used for other research fields.

  16. National Aeronautics and Space Administration Budget Estimates, Fiscal Year 2011

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The Budget includes three new robust exploration programs: (1) Technology demonstration program, $7.8 five years. Funds the development and demonstration of technologies that reduce the cost and expand the capabilities of future exploration activities, including in-orbit refueling and storage. (2) Heavy-Lift and Propulsion R&D, $3.1 billion over five years. Funds R&D for new launch systems, propellants, materials, and combustion processes. (3) Robotic precursor missions, $3.0 billion over five years. Funds cost-effective means to scout exploration targets and identify hazards and resources for human visitation and habitation. In addition, the Budget enhances the current Human Research Program by 42%; and supports the Participatory Exploration Program at 5 million per year for activities across many NASA programs.

  17. Process science development at the Center for Optics Manufacturing

    NASA Astrophysics Data System (ADS)

    Pollicove, Harvey M.; Moore, Duncan T.; Golini, Donald

    1992-01-01

    The Center for Optics Manufacturing (COM) has organized a volunteer Process Science Committee that will cooperate in advancing the optical manufacturing sciences. The objective is to develop technical information and processes that improve manufacturing capability, especially in grinding and polishing technology. Chaired by Donald Golini of Litton Itek Optical Systems, the committee members are volunteers from several American Precision Optics Manufacturers Association (APOMA) companies and institutions. Many of the companies are also funding project elements. The committee will accelerate industry progress by integrating the research and development activities of cooperating APOMA companies and institutions involved in both COM and independent programs. In the short term, the effort concentrates on grinding and polishing process innovation. In later phases, the effort will aid in the design future generations of machines and processes. While the developments are directly adaptable to COM's OPTICAM program, the results will influence a wide range of innovation and application in all methods of optical fabrication. Several leaders in the field are participating in the research and development effort--Boston University, Eastman Kodak Company, Hughes Leitz Optical Technologies, Lawrence Livermore National Laboratory, Litton Itek Optical Systems, Melles Griot, Optical Components Inc., Precision Optical, Rank Pneumo, Schott Glass Technologies, Solution Technology, Texas Instruments, Tropel, and the universities of Arizona and Rochester. Other APOMA member companies will participate as resource needs grow. The collaboration is unique in the industry's history.

  18. Enabling technologies for Chinese Mars lander guidance system

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang

    2017-04-01

    Chinese first Mars exploration activity, orbiting landing and roaming collaborative mission, has been programmed and started. As a key technology, Mars lander guidance system is intended to serve atmospheric entry, descent and landing (EDL) phases. This paper is to report the formation process of enabling technology road map for Chinese Mars lander guidance system. First, two scenarios of the first-stage of the Chinese Mars exploration project are disclosed in detail. Second, mission challenges and engineering needs of EDL guidance, navigation, and control (GNC) are presented systematically for Chinese Mars exploration program. Third, some useful related technologies developed in China's current aerospace projects are pertinently summarized, especially on entry guidance, parachute descent, autonomous hazard avoidance and safe landing. Finally, an enabling technology road map of Chinese Mars lander guidance is given through technological inheriting and improving.

  19. Seismic data compression speeds exploration projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galibert, P.Y.

    As part of an ongoing commitment to ensure industry-wide distribution of its revolutionary seismic data compression technology, Chevron Petroleum Technology Co. (CPTC) has entered into licensing agreements with Compagnie Generale de Geophysique (CGG) and other seismic contractors for use of its software in oil and gas exploration programs. CPTC expects use of the technology to be far-reaching to all of its industry partners involved in seismic data collection, processing, analysis and storage. Here, CGG--one of the world`s leading seismic acquisition and processing companies--talks about its success in applying the new methodology to replace full on-board seismic processing. Chevron`s technology ismore » already being applied on large off-shore 3-D seismic surveys. Worldwide, CGG has acquired more than 80,000 km of seismic data using the data compression technology.« less

  20. Gap analysis survey: an aid in transitioning to standardized curricula for nuclear medicine technology.

    PubMed

    Bires, Angela Macci; Mason, Donna L; Gilmore, David; Pietrzyk, Carly

    2012-09-01

    This article discusses the process by which the Society of Nuclear Medicine Technology Section (SNMTS) is assisting educators as they transition to comply with the fourth edition of the Curriculum Guide for Educational Programs in Nuclear Medicine Technology. An electronic survey was sent to a list of nuclear medicine technology programs compiled by the educational division of the SNMTS. The collected data included committee member demographics, goals and objectives, conference call minutes, consultation discussions, transition examples, 4- and 2-y program curricula, and certificate program curricula. There were 56 responses to the survey. All respondents were program directors, with 3 respondents having more than one type of program, for a total of 59 programs. Of these, 19 (33.93%) were baccalaureate, 19 (28.57%) associate, and 21 (37.5%) certificate. Forty-eight respondents (85.71%) had accreditation through the Joint Review Commission on Educational Programs in Nuclear Medicine Technology, 6 (10.71%) had regional accreditation, and 2 (3.57%) were accredited through other entities. Thirteen categories of required general education courses were identified, and the existing program curricula of 9 (69.2%) courses were more than 50% compliant with the fourth edition Curriculum Guide. The fact that no measurable gap could be found within the didactic professional content across programs was due to the lack of a degree requirement and content standardization within the profession. The data indicated that the participating programs offer a minimum of 1-15 contact hours in emerging technology modalities. The required clinical hours ranged from 765 to 1,920 for degree or certificate completion. The average number of clinical hours required for all programs was 1,331.69. Standardization of the number and types of courses is needed both for current baccalaureate programs and for clinical education. This standardization will guide programs in transitioning from a certificate or associate level to the baccalaureate level. The greatest obstacle is in expanding curricula to meet the recommendations of the fourth edition Curriculum Guide. Such expansion to entry-level competency may be met by incorporating hybrid imaging courses, secondary-level courses, and equivalency courses on the basic sciences and emerging technologies.

  1. 40 CFR 270.65 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... may issue a research, development, and demonstration permit for any hazardous waste treatment facility which proposes to utilize an innovative and experimental hazardous waste treatment technology or process...

  2. 40 CFR 270.65 - Research, development, and demonstration permits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... may issue a research, development, and demonstration permit for any hazardous waste treatment facility which proposes to utilize an innovative and experimental hazardous waste treatment technology or process...

  3. Maximizing Value for Training with ISO 9000.

    ERIC Educational Resources Information Center

    Russo, C. W. Russ; Russo, Tracy Callaway

    1996-01-01

    The International Organization for Standardization (ISO) has created quality assurance guidelines that help technology trainers and educators manage and organize training programs. This article briefly outlines program design principles, emphasizing needs analysis and outcome evaluation, performance documentation, and process management. ISO 9000…

  4. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  5. Supporting Data for Fiscal Year 1994. Budget Estimate Submission

    DTIC Science & Technology

    1993-04-01

    0603401F 405 36 Space Systems Environmental Interactions Technology 0603410F 416 38 Conventional Weapons Technology 0603601F 423 39 Advanced Radiation...Transfer Pilot Program (SBIR/STTR) 0603302F Space and Missile Rocket Propulsion 31 392 060341OF Space Systems Environmental Interactions Technology 36...Deliver Interactive Decode (Rapid Message Processing) capability in Communications Element. - (U) Conduct maintainability demonstration. - (U) Begin Initial

  6. Identifying Critical Manufacturing Technologies Required for Transforming the Army Industrial Base

    DTIC Science & Technology

    2014-04-01

    mechanism, 1 = least common mechanism)? ................................................................... 29 Figure 5 – Which Technology “ Test Beds...facilities, produce new designs , and incorporate efficient manufacturing processes. The value and continued success of the Army Industrial Base depends on...in materiel supplies to troops. Specific programs, described in AR 700-09, that are designed to transition manufacturing technology into the Army

  7. 2006 Mississippi Curriculum Framework: Postsecondary Veterinary Technology. (Program CIP: 51.0808 - Veterinary/Animal Health Technology/Technician and Veterinary Assistant)

    ERIC Educational Resources Information Center

    Glenn, Bobby

    2006-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  8. 2010 Mississippi Curriculum Framework: Postsecondary Veterinary Technology. (Program CIP: 51.0808 - Veterinary/Animal Health Technology/Technician and Veterinary Assistant)

    ERIC Educational Resources Information Center

    Glenn, Bobby; Sills, Kirby

    2010-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  9. Process Document, Joint Verification Protocol, and Joint Test Plan for Verification of HACH-LANGE GmbH LUMIStox 300 Bench Top Luminometer and ECLOX Handheld Luminometer for Luminescent Bacteria Test for use in Wastewater

    EPA Science Inventory

    The Danish Environmental Technology Verification program (DANETV) Water Test Centre operated by DHI, is supported by the Danish Ministry for Science, Technology and Innovation. DANETV, the United States Environmental Protection Agency Environmental Technology Verification Progra...

  10. 2007 Mississippi Curriculum Framework: Postsecondary Agricultural Mechanics Technology. (Program CIP: 01.0201 - Agricultural Mechanics and Equipment/Machine Technology)

    ERIC Educational Resources Information Center

    Massey, Jeremy; Louwerens, Shane; Galey, Joe

    2007-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  11. 2011 Mississippi Curriculum Framework: Postsecondary Agricultural Technician Technology. (Program CIP: 01.0201 - Agricultural Mechanics and Equipment/Machine Technology)

    ERIC Educational Resources Information Center

    Massey, Jeremy; Louwerens, Shane; Galey, Joe

    2011-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  12. High School/High Tech: Promoting Career Exploration Technology for Youth with Learning Disabilities and Behavioral Disorders.

    ERIC Educational Resources Information Center

    Lemaire, Gail Schoen; Mallik, Kalisankar; Stoll, Bryan G.

    2002-01-01

    A model program to promote science, engineering, and technology careers and address academic and vocational needs of low-income youth with learning disabilities includes referral and intake processes and academic and career training and services. Of the 21 first-year participants, 13 were employed (7 in technology-related positions) or enrolled in…

  13. 2009 Mississippi Curriculum Framework: Postsecondary Nuclear Medicine Technology. (Program CIP: 51.0905 - Nuclear Medical Technology/Technologist)

    ERIC Educational Resources Information Center

    Boney, Linda; Lee, Joanne; Pyles, Alice; Whitfield, Stacy

    2009-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  14. 2009 Mississippi Curriculum Framework: Postsecondary Health Information Technology. (Program CIP-51.0707-Medical Records Technology/Technician)

    ERIC Educational Resources Information Center

    Hoffman, Casey; Jones, Robin; McGuffee, Michelle; Scott, Nena

    2009-01-01

    As the world economy continues to evolve, businesses and industries must adopt new practices and processes in order to survive. Quality and cost control, work teams and participatory management, and an infusion of technology are transforming the way people work and do business. Employees are now expected to read, write, and communicate…

  15. Japan Fulbright Memorial Fund Program Opens New Avenues for Effective Technology Integration into Education

    NASA Astrophysics Data System (ADS)

    Paoletti, Franco; Carlucci, Lisa Marie

    2006-04-01

    Technology is increasingly playing a major role in today's education often integrated into instruction to become one of the teacher's most effective and often indispensable tools used in the classroom. It can be said that the use of technology at the beginning of this new millennium is affecting the instructional process and it is changing some of its basic connotations. The presented work analyzes the impact of various technologies on education emphasizing the advantages provided by a successful integration, the obstacles encountered along the way, and the methodologies currently used in the process. ``Educational exchange can turn nations into people, contributing as no other form of communication can to the humanizing of international relations'' (Senator J.M. Fulbright). Technology of this modern era is providing the indispensable tool to achieve this superior level of communication overcoming historical, cultural, and language barriers. In the context of the Japan Fulbright Memorial Fund (JFMF) Teacher Program, we analyze the impact of technology on educational cross-cultural exchanges to raise awareness and interest of the scientific/educational community on the need of establishing stronger international relations promoting world peace and global prosperity.

  16. NRG CO 2NCEPT - Confirmation Of Novel Cost-effective Emerging Post-combustion Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, Matthew; Armpriester, Anthony

    Under DOE's solicitation DE-FOA-0001190, NRG and Inventys conceptualized a Large-Scale pilot (>10MWe) post-combustion CO 2 capture project using Inventys' VeloxoThermTM carbon capture technology. The technology is comprised of an intensified thermal swing adsorption (TSA) process that uses a patented architecture of structured adsorbent and a novel process design and embodiment to capture CO 2 from industrial flue gas streams. The result of this work concluded that the retrofit of this technology is economically and technically viable, but that the sorbent material selected for the program would need improving to meet the techno-economic performance requirements of the solicitation.

  17. National Kidney Disease Education Program

    MedlinePlus

    ... Process Research Training & Career Development Funded Grants & Grant History Research Resources Research at NIDDK Technology Advancement & Transfer Meetings & Events Health Information Diabetes Digestive ...

  18. Multi-fuel reformers for fuel cells used in transportation. Phase 1: Multi-fuel reformers

    NASA Astrophysics Data System (ADS)

    1994-05-01

    DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

  19. Advanced Industrial Materials Program

    NASA Astrophysics Data System (ADS)

    Stooksbury, F.

    1994-06-01

    The mission of the Advanced Industrial Materials (AIM) program is to commercialize new/improved materials and materials processing methods that will improve energy efficiency, productivity, and competitiveness. Program investigators in the DOE national laboratories are working with about 100 companies, including 15 partners in CRDA's. Work is being done on intermetallic alloys, ceramic composites, metal composites, polymers, engineered porous materials, and surface modification. The program supports other efforts in the Office of Industrial Technologies to assist the energy-consuming process industries. The aim of the AIM program is to bring materials from basic research to industrial application to strengthen the competitive position of US industry and save energy.

  20. Implementation of Quality Management in Core Service Laboratories

    PubMed Central

    Creavalle, T.; Haque, K.; Raley, C.; Subleski, M.; Smith, M.W.; Hicks, B.

    2010-01-01

    CF-28 The Genetics and Genomics group of the Advanced Technology Program of SAIC-Frederick exists to bring innovative genomic expertise, tools and analysis to NCI and the scientific community. The Sequencing Facility (SF) provides next generation short read (Illumina) sequencing capacity to investigators using a streamlined production approach. The Laboratory of Molecular Technology (LMT) offers a wide range of genomics core services including microarray expression analysis, miRNA analysis, array comparative genome hybridization, long read (Roche) next generation sequencing, quantitative real time PCR, transgenic genotyping, Sanger sequencing, and clinical mutation detection services to investigators from across the NIH. As the technology supporting this genomic research becomes more complex, the need for basic quality processes within all aspects of the core service groups becomes critical. The Quality Management group works alongside members of these labs to establish or improve processes supporting operations control (equipment, reagent and materials management), process improvement (reengineering/optimization, automation, acceptance criteria for new technologies and tech transfer), and quality assurance and customer support (controlled documentation/SOPs, training, service deficiencies and continual improvement efforts). Implementation and expansion of quality programs within unregulated environments demonstrates SAIC-Frederick's dedication to providing the highest quality products and services to the NIH community.

Top