USDA-ARS?s Scientific Manuscript database
Process-based modeling provides detailed spatial and temporal information of the soil environment in the shallow seedling recruitment zone across field topography where measurements of soil temperature and water may not sufficiently describe the zone. Hourly temperature and water profiles within the...
NASA Astrophysics Data System (ADS)
Fang, Fang; Vaid, Alok; Vinslava, Alina; Casselberry, Richard; Mishra, Shailendra; Dixit, Dhairya; Timoney, Padraig; Chu, Dinh; Porter, Candice; Song, Da; Ren, Zhou
2018-03-01
It is getting more important to monitor all aspects of influencing parameters in critical etch steps and utilize them as tuning knobs for within-wafer uniformity improvement and wafer edge yield enhancement. Meanwhile, we took a dive in pursuing "measuring what matters" and challenged ourselves for more aspects of signals acquired in actual process conditions. Among these factors which are considered subtle previously, we identified Temperature, especially electrostatic chuck (ESC) Temperature measurement in real etch process conditions have direct correlation to in-line measurements. In this work, we used SensArray technique (EtchTemp-SE wafer) to measure ESC temperature profile on a 300mm wafer with plasma turning on to reproduce actual temperature pattern on wafers in real production process conditions. In field applications, we observed substantial correlation between ESC temperature and in-line optical metrology measurements and since temperature is a process factor that can be tuning through set-temperature modulations, we have identified process knobs with known impact on physical profile variations. Furthermore, ESC temperature profile on a 300mm wafer is configured as multiple zones upon radius and SensArray measurements mechanism could catch such zonal distribution as well, which enables detailed temperature modulations targeting edge ring only where most of chips can be harvested and critical zone for yield enhancement. Last but not least, compared with control reference (ESC Temperature in static plasma-off status), we also get additional factors to investigate in chamber-to-chamber matching study and make process tool fleet match on the basis really matters in production. KLA-Tencor EtchTemp-SE wafer enables Plasma On wafer temperature monitoring of silicon etch process. This wafer is wireless and has 65 sensors with measurement range from 20 to 140°C. the wafer is designed to run in real production recipe plasma on condition with maximum RF power up to 7KW. The wafer surface is coated with Yttrium oxide film which allows Silicon Etch chemistry. At Fab-8, we carried investigations in 14 nm FEOL critical etch process which has direct impact on yield, using SensorArray EtchTemp-SE wafer, we measured ESC temperature profile across multiple chambers, for both plasma on and plasma off, promising results achieved on chamber temperature signature identification, guideline for chamber to chamber matching improvement. Correlation between wafer mean temperature and determining criticality-process parameters of recess depth and CD is observed. Furthermore, detail zonal temperature/profile correlation is investigated to identify individual correlation in each chuck zone, and provided unique process knobs corresponding to each chunk. Meanwhile, passive ESC Chuck DOE was done to modulate wafer temperature at different zones, and Sensor Array wafer measurements verified temperature responding well with the ESC set point. Correlation R2 = 0.9979 for outer ring and R2 = 0.9981 for Mid Outer ring is observed, as shown in . Experiments planning to modulate edge zone ESC temperature to tune profile within-wafer uniformity and prove gain in edge yield enhancement and to improve edge yield is underway.
Computational fluid dynamics modeling of bun baking process under different oven load conditions.
Tank, A; Chhanwal, N; Indrani, D; Anandharamakrishnan, C
2014-09-01
A computational fluid dynamics (CFD) model was developed to study the temperature profile of the bun during baking process. Evaporation-condensation mechanism and effect of the latent heat during phase change of water was incorporated in this model to represent actual bun baking process. Simulation results were validated with experimental measurements of bun temperature at two different positions. Baking process is completed within 20 min, after the temperature of crumb become stable at 98 °C. Further, this study was extended to investigate the effect of partially (two baking trays) loaded and fully loaded (eight baking trays) oven on temperature profile of bun. Velocity and temperature profile differs in partially loaded and fully loaded oven. Bun placed in top rack showed rapid baking while bun placed in bottom rack showed slower baking due to uneven temperature distribution in the oven. Hence, placement of bun inside the oven affects temperature of bun and consequently, the quality of the product.
Ant colony system algorithm for the optimization of beer fermentation control.
Xiao, Jie; Zhou, Ze-Kui; Zhang, Guang-Xin
2004-12-01
Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.
USDA-ARS?s Scientific Manuscript database
Predictions of seedling emergence timing for spring wheat are facilitated by process-based modeling of the microsite environment in the shallow seedling recruitment zone. Hourly temperature and water profiles within the recruitment zone for 60 days after planting were simulated from the process-base...
Satellite-derived vertical profiles of temperature and dew point for mesoscale weather forecast
NASA Astrophysics Data System (ADS)
Masselink, Thomas; Schluessel, P.
1995-12-01
Weather forecast-models need spatially high resolutioned vertical profiles of temperature and dewpoint for their initialisation. These profiles can be supplied by a combination of data from the Tiros-N Operational Vertical Sounder (TOVS) and the imaging Advanced Very High Resolution Radiometer (AVHRR) on board the NOAA polar orbiting sate!- lites. In cloudy cases the profiles derived from TOVS data only are of insufficient accuracy. The stanthrd deviations from radiosonde ascents or numerical weather analyses likely exceed 2 K in temperature and 5Kin dewpoint profiles. It will be shown that additional cloud information as retrieved from AVHIRR allows a significant improvement in theaccuracy of vertical profiles. The International TOVS Processing Package (ITPP) is coupled to an algorithm package called AVHRR Processing scheme Over cLouds, Land and Ocean (APOLLO) where parameters like cloud fraction and cloud-top temperature are determined with higher accuracy than obtained from TOVS retrieval alone. Furthermore, a split-window technique is applied to the cloud-free AVHRR imagery in order to derive more accurate surface temperatures than can be obtained from the pure TOVS retrieval. First results of the impact of AVHRR cloud detection on the quality of the profiles are presented. The temperature and humidity profiles of different retrieval approaches are validated against analyses of the European Centre for Medium-Range Weatherforecasts.
System and method for glass processing and temperature sensing
Shepard, Chester L.; Cannon, Bret D.; Khaleel, Mohammad A.
2004-09-28
Techniques for measuring the temperature at various locations through the thickness of glass products and to control the glass processing operation with the sensed temperature information are disclosed. Fluorescence emission of iron or cerium in glass is excited and imaged onto segmented detectors. Spatially resolved temperature data are obtained through correlation of the detected photoluminescence signal with location within the glass. In one form the detected photoluminescence is compared to detected scattered excitation light to determine temperature. Stress information is obtained from the time history of the temperature profile data and used to evaluate the quality of processed glass. A heating or cooling rate of the glass is also controlled to maintain a predetermined desired temperature profile in the glass.
Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong; Kim, Mee Ree
2012-05-01
Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague-Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles.
Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong
2012-01-01
Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles. PMID:22404600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Dave H. Meikrantz; Mitchell R. Greenhalgh
2008-09-01
An annular centrifugal contactor pilot plant incorporating 30 stages of commercial 5 cm CINC V-02 units has been built and operated at INL during the past year. The pilot plant includes an automated process control and data acquisitioning system. The primary purpose of the pilot plant is to evaluate the performance of a large number of inter-connected centrifugal contactors and obtain temperature profile measurements within a 30-stage cascade. Additional solvent extraction flowsheet testing using stable surrogates is also being considered. Preliminary hydraulic testing was conducted with all 30 contactors interconnected for continuous counter-current flow. Hydraulic performance and system operational testsmore » were conducted successfully but with higher single-stage rotor speeds found necessary to maintain steady interstage flow at flowrates of 1 L/min and higher. Initial temperature profile measurements were also completed in this configuration studying the performance during single aqueous and two-phase counter-current flow at ambient and elevated inlet solution temperatures. Temperature profile testing of two discreet sections of the cascade required additional feed and discharge connections. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 were the solution feeds for all the testing described in this report. Numerous temperature profiles were completed using a newly constructed 30-stage centrifugal contactor pilot plant. The automated process control and data acquisition system worked very well throughout testing. Temperature data profiles for an array of total flowrates (FT) and contactor rpm values for both single-phase and two-phase systems have been collected with selected profiles and comparisons reported. Total flowrates (FT) ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Solution inlet temperatures ranging from ambient up to 50° C were tested. Ambient temperature testing shows that a small amount of heat is added to the processed solution by the mechanical energy of the contactors. The temperature profiles match the ambient temperature of the laboratory but are nearly 10° C higher toward the middle of the cascade. Heated input solution testing provides temperature profiles with smaller temperature gradients and are more influenced by the temperature of the inlet solutions than the ambient laboratory temperature. The temperature effects of solution mixing, even at 4000 rpm, were insignificant in any of the studies conducted on lamp oil and water.« less
Infrared thermography of welding zones produced by polymer extrusion additive manufacturing✩
Seppala, Jonathan E.; Migler, Kalman D.
2016-01-01
In common thermoplastic additive manufacturing (AM) processes, a solid polymer filament is melted, extruded though a rastering nozzle, welded onto neighboring layers and solidified. The temperature of the polymer at each of these stages is the key parameter governing these non-equilibrium processes, but due to its strong spatial and temporal variations, it is difficult to measure accurately. Here we utilize infrared (IR) imaging - in conjunction with necessary reflection corrections and calibration procedures - to measure these temperature profiles of a model polymer during 3D printing. From the temperature profiles of the printed layer (road) and sublayers, the temporal profile of the crucially important weld temperatures can be obtained. Under typical printing conditions, the weld temperature decreases at a rate of approximately 100 °C/s and remains above the glass transition temperature for approximately 1 s. These measurement methods are a first step in the development of strategies to control and model the printing processes and in the ability to develop models that correlate critical part strength with material and processing parameters. PMID:29167755
Infrared thermography of welding zones produced by polymer extrusion additive manufacturing.
Seppala, Jonathan E; Migler, Kalman D
2016-10-01
In common thermoplastic additive manufacturing (AM) processes, a solid polymer filament is melted, extruded though a rastering nozzle, welded onto neighboring layers and solidified. The temperature of the polymer at each of these stages is the key parameter governing these non-equilibrium processes, but due to its strong spatial and temporal variations, it is difficult to measure accurately. Here we utilize infrared (IR) imaging - in conjunction with necessary reflection corrections and calibration procedures - to measure these temperature profiles of a model polymer during 3D printing. From the temperature profiles of the printed layer (road) and sublayers, the temporal profile of the crucially important weld temperatures can be obtained. Under typical printing conditions, the weld temperature decreases at a rate of approximately 100 °C/s and remains above the glass transition temperature for approximately 1 s. These measurement methods are a first step in the development of strategies to control and model the printing processes and in the ability to develop models that correlate critical part strength with material and processing parameters.
A Technique for Transient Thermal Testing of Thick Structures
NASA Technical Reports Server (NTRS)
Horn, Thomas J.; Richards, W. Lance; Gong, Leslie
1997-01-01
A new open-loop heat flux control technique has been developed to conduct transient thermal testing of thick, thermally-conductive aerospace structures. This technique uses calibration of the radiant heater system power level as a function of heat flux, predicted aerodynamic heat flux, and the properties of an instrumented test article. An iterative process was used to generate open-loop heater power profiles prior to each transient thermal test. Differences between the measured and predicted surface temperatures were used to refine the heater power level command profiles through the iteration process. This iteration process has reduced the effects of environmental and test system design factors, which are normally compensated for by closed-loop temperature control, to acceptable levels. The final revised heater power profiles resulted in measured temperature time histories which deviated less than 25 F from the predicted surface temperatures.
NIMBUS-5 sounder data processing system. Part 2: Results
NASA Technical Reports Server (NTRS)
Smith, W. L.; Woolf, H. M.; Hayden, C. M.; Shen, W. C.
1975-01-01
The Nimbus-5 spacecraft carries infrared and microwave radiometers for sensing the temperature distribution of the atmosphere. Methods developed for obtaining temperature profiles from the combined set of infrared and microwave radiation measurements are described. Algorithms used to determine (a) vertical temperature and water vapor profiles, (b) cloud height, fractional coverage, and liquid water content, (c) surface temperature, and (d) total outgoing longwave radiation flux are described. Various meteorological results obtained from the application of the Nimbus-5 sounding data processing system during 1973 and 1974 are presented.
Process for forming retrograde profiles in silicon
Weiner, K.H.; Sigmon, T.W.
1996-10-15
A process is disclosed for forming retrograde and oscillatory profiles in crystalline and polycrystalline silicon. The process consisting of introducing an n- or p-type dopant into the silicon, or using prior doped silicon, then exposing the silicon to multiple pulses of a high-intensity laser or other appropriate energy source that melts the silicon for short time duration. Depending on the number of laser pulses directed at the silicon, retrograde profiles with peak/surface dopant concentrations which vary are produced. The laser treatment can be performed in air or in vacuum, with the silicon at room temperature or heated to a selected temperature.
NASA Technical Reports Server (NTRS)
Danielson, E. F.; Hipskind, R. S.; Gaines, S. E.
1980-01-01
Results are presented from computer processing and digital filtering of radiosonde and radar tracking data obtained during the ITCZ experiment when coordinated measurements were taken daily over a 16 day period across the Panama Canal Zone. The temperature relative humidity and wind velocity profiles are discussed.
Experimental validation of thermo-chemical algorithm for a simulation of pultrusion processes
NASA Astrophysics Data System (ADS)
Barkanov, E.; Akishin, P.; Miazza, N. L.; Galvez, S.; Pantelelis, N.
2018-04-01
To provide better understanding of the pultrusion processes without or with temperature control and to support the pultrusion tooling design, an algorithm based on the mixed time integration scheme and nodal control volumes method has been developed. At present study its experimental validation is carried out by the developed cure sensors measuring the electrical resistivity and temperature on the profile surface. By this verification process the set of initial data used for a simulation of the pultrusion process with rod profile has been successfully corrected and finally defined.
NASA Astrophysics Data System (ADS)
Hurter, F.; Maier, O.
2013-11-01
We reconstruct atmospheric wet refractivity profiles for the western part of Switzerland with a least-squares collocation approach from data sets of (a) zenith path delays that are a byproduct of the GPS (global positioning system) processing, (b) ground meteorological measurements, (c) wet refractivity profiles from radio occultations whose tangent points lie within the study area, and (d) radiosonde measurements. Wet refractivity is a parameter partly describing the propagation of electromagnetic waves and depends on the atmospheric parameters temperature and water vapour pressure. In addition, we have measurements of a lower V-band microwave radiometer at Payerne. It delivers temperature profiles at high temporal resolution, especially in the range from ground to 3000 m a.g.l., though vertical information content decreases with height. The temperature profiles together with the collocated wet refractivity profiles provide near-continuous dew point temperature or relative humidity profiles at Payerne for the study period from 2009 to 2011. In the validation of the humidity profiles, we adopt a two-step procedure. We first investigate the reconstruction quality of the wet refractivity profiles at the location of Payerne by comparing them to wet refractivity profiles computed from radiosonde profiles available for that location. We also assess the individual contributions of the data sets to the reconstruction quality and demonstrate a clear benefit from the data combination. Secondly, the accuracy of the conversion from wet refractivity to dew point temperature and relative humidity profiles with the radiometer temperature profiles is examined, comparing them also to radiosonde profiles. For the least-squares collocation solution combining GPS and ground meteorological measurements, we achieve the following error figures with respect to the radiosonde reference: maximum median offset of relative refractivity error is -16% and quartiles are 5% to 40% for the lower troposphere. We further added 189 radio occultations that met our requirements. They mostly improved the accuracy in the upper troposphere. Maximum median offsets have decreased from 120% relative error to 44% at 8 km height. Dew point temperature profiles after the conversion with radiometer temperatures compare to radiosonde profiles as to: absolute dew point temperature errors in the lower troposphere have a maximum median offset of -2 K and maximum quartiles of 4.5 K. For relative humidity, we get a maximum mean offset of 7.3%, with standard deviations of 12-20%. The methodology presented allows us to reconstruct humidity profiles at any location where temperature profiles, but no atmospheric humidity measurements other than from GPS are available. Additional data sets of wet refractivity are shown to be easily integrated into the framework and strongly aid the reconstruction. Since the used data sets are all operational and available in near-realtime, we envisage the methodology of this paper to be a tool for nowcasting of clouds and rain and to understand processes in the boundary layer and at its top.
Temperature and melt solid interface control during crystal growth
NASA Technical Reports Server (NTRS)
Batur, Celal
1990-01-01
Findings on the adaptive control of a transparent Bridgman crystal growth furnace are summarized. The task of the process controller is to establish a user specified axial temperature profile by controlling the temperatures in eight heating zones. The furnace controller is built around a computer. Adaptive PID (Proportional Integral Derivative) and Pole Placement control algorithms are applied. The need for adaptive controller stems from the fact that the zone dynamics changes with respect to time. The controller was tested extensively on the Lead Bromide crystal growth. Several different temperature profiles and ampoule's translational rates are tried. The feasibility of solid liquid interface quantification by image processing was determined. The interface is observed by a color video camera and the image data file is processed to determine if the interface is flat, convex or concave.
Temperature control in a 30 stage, 5-cm Centrifugal Contactor Pilot Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack D. Law; Troy G. Garn; David H. Meikrantz
2009-09-01
Temperature profile testing was performed using a 30 stage 5-cm centrifugal contactor pilot plant. These tests were performed to evaluate the ability to control process temperature by adjusting feed solution temperatures. This would eliminate the need for complex jacketed heat exchanger installation on the centrifugal contactors. Thermocouples were installed on the inlet and outlets of each stage, as well as directly in the mixing zone of several of the contactor stages. Lamp oil, a commercially available alkane mixture of C14 to C18 chains, and tap water adjusted to pH 2 with nitric acid were the solution feeds for the temperaturemore » profile testing. Temperature data profiles for an array of total throughputs and contactor rpm values for both single-phase and two-phase systems were collected with selected profiles. The total throughput ranged from 0.5-1.4 L/min with rotor speeds from 3500-4000 rpm. Inlet solution temperatures ranging from ambient up to 50 °C were tested. Results of the two-phase temperature profile testing are detailed« less
Zimmermann, Morgana; Longhi, Daniel A; Schaffner, Donald W; Aragão, Gláucia M F
2014-05-01
The knowledge and understanding of Bacillus coagulans inactivation during a thermal treatment in tomato pulp, as well as the influence of temperature variation during thermal processes are essential for design, calculation, and optimization of the process. The aims of this work were to predict B. coagulans spores inactivation in tomato pulp under varying time-temperature profiles with Gompertz-inspired inactivation model and to validate the model's predictions by comparing the predicted values with experimental data. B. coagulans spores in pH 4.3 tomato pulp at 4 °Brix were sealed in capillary glass tubes and heated in thermostatically controlled circulating oil baths. Seven different nonisothermal profiles in the range from 95 to 105 °C were studied. Predicted inactivation kinetics showed similar behavior to experimentally observed inactivation curves when the samples were exposed to temperatures in the upper range of this study (99 to 105 °C). Profiles that resulted in less accurate predictions were those where the range of temperatures analyzed were comparatively lower (inactivation profiles starting at 95 °C). The link between fail prediction and both lower starting temperature and magnitude of the temperature shift suggests some chemical or biological mechanism at work. Statistical analysis showed that overall model predictions were acceptable, with bias factors from 0.781 to 1.012, and accuracy factors from 1.049 to 1.351, and confirm that the models used were adequate to estimate B. coagulans spores inactivation under fluctuating temperature conditions in the range from 95 to 105 °C. How can we estimate Bacillus coagulans inactivation during sudden temperature shifts in heat processing? This article provides a validated model that can be used to predict B. coagulans under changing temperature conditions. B. coagulans is a spore-forming bacillus that spoils acidified food products. The mathematical model developed here can be used to predict the spoilage risk following thermal process deviations for tomato products. © 2014 Institute of Food Technologists®
Multisensor Retrieval of Atmospheric Properties.
NASA Astrophysics Data System (ADS)
Boba Stankov, B.
1998-09-01
A new method, Multisensor Retrieval of Atmospheric Properties (MRAP), is presented for deriving vertical profiles of atmospheric parameters throughout the troposphere. MRAP integrates measurements from multiple, diverse, remote sensing, and in situ instruments, the combination of which provides better capabilities than any instrument alone. Since remote sensors can deliver measurements automatically and continuously with high time resolution, MRAP provides better coverage than traditional rawinsondes. MRAP's design is flexible, being capable of incorporating measurements from different instruments in order to take advantage of new or developing advanced sensor technology. Furthermore, new or alternative atmospheric parameters for a variety of applications may be easily added as products of MRAP.A combination of passive radiometric, active radar, and in situ observations provide the best temperature and humidity profile measurements. Therefore, MRAP starts with a traditional, radiometer-based, physical retrieval algorithm provided by the International TOVS (TIROS-N Operational Vertical Sounder) Processing Package (ITPP) that constrains the retrieved profiles to agree with brightness temperature measurements. The first-guess profiles required by the ITPP's iterative retrieval algorithm are obtained by using a statistical inversion technique and ground-based remote sensing measurements. Because the individual ground-based remote sensing measurements are usually of sufficiently high quality, the first-guess profiles by themselves provide a satisfactory solution to establish the atmospheric water vapor and temperature state, and the TOVS data are included to provide profiles with better accuracy at higher levels, MRAP provides a physically consistent mechanism for combining the ground- and space-based humidity and temperature profiles.Data that have been used successfully to retrieve humidity and temperature profiles with MRAP are the following: temperature profiles in the lower troposphere from the ground-based Radio Acoustic Sounding System (RASS); total water vapor measurements from the Global Positioning System; specific humidity gradient profiles from the wind-profiling radar/RASS system; surface meteorological observations from standard instruments; cloud-base heights from a lidar ceilometer; temperature from the Aeronautical Radio, Incorporated Communication, Addressing and Reporting System aboard commercial airlines; and brightness temperature observations from TOVS.Data from the experiment conducted in the late summer of 1995 at Point Loma, California, were used for comparisons of MRAP results and 20 nearby rawinsonde releases to assess the statistical error estimates of MRAP. The temperature profiles had a bias of -0.27°C and a standard deviation of 1.56°C for the entire troposphere. Dewpoint profile retrievals did not have an overall accuracy as high as that of the temperature profiles but they exhibited a markedly improved standard deviation and bias in the lower atmosphere when the wind profiler/RASS specific humidity gradient information was available as a further constraint on the process. The European Centre for Medium-Range Weather Forecasts (ECMWF) model profiles of humidity and temperature for the grid point nearest to the Point Loma site were also used for comparison with the rawinsonde soundings to establish the usefulness of MRAP profiles to the weather forecasting community. The comparison showed that the vertical resolution of the ECMWF model profiles within the planetary boundary layer is not capable of detecting sharp gradients.
Dynamic control of remelting processes
Bertram, Lee A.; Williamson, Rodney L.; Melgaard, David K.; Beaman, Joseph J.; Evans, David G.
2000-01-01
An apparatus and method of controlling a remelting process by providing measured process variable values to a process controller; estimating process variable values using a process model of a remelting process; and outputting estimated process variable values from the process controller. Feedback and feedforward control devices receive the estimated process variable values and adjust inputs to the remelting process. Electrode weight, electrode mass, electrode gap, process current, process voltage, electrode position, electrode temperature, electrode thermal boundary layer thickness, electrode velocity, electrode acceleration, slag temperature, melting efficiency, cooling water temperature, cooling water flow rate, crucible temperature profile, slag skin temperature, and/or drip short events are employed, as are parameters representing physical constraints of electroslag remelting or vacuum arc remelting, as applicable.
Method to determine thermal profiles of nanoscale circuitry
Zettl, Alexander K; Begtrup, Gavi E
2013-04-30
A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.
Assessment of thermal efficiency of heat recovery coke making
NASA Astrophysics Data System (ADS)
Tiwari, H. P.; Saxena, V. K.; Haldar, S. K.; Sriramoju, S. K.
2017-08-01
The heat recovery stamp charge coke making process is quite complicated due to the evolved volatile matter during coking, is partially combusted in oven crown and sole flue in a controlled manner to provide heat for producing metallurgical coke. Therefore, the control and efficient utilization of heat in the oven crown, and sole flue is difficult, which directly affects the operational efficiency. Considering the complexity and importance of thermal efficiency, evolution of different gases, combustion of gasses in oven crown and sole flue, and heating process of coke oven has been studied. A nonlinear regression methodology was used to predict temperature profile of different depth of coal cake during the coking. It was observed that the predicted temperature profile is in good agreement with the actual temperature profile (R2 = 0.98) and is validated with the actual temperature profile of other ovens. A complete study is being done to calculate the material balance, heat balance, and heat losses. This gives an overall understanding of heat flow which affects the heat penetration into the coal cake. The study confirms that 60% heat was utilized during coking.
NASA Technical Reports Server (NTRS)
Hooker, Matthew W.
1996-01-01
An evaluation of four firing profiles was performed to determine the optimum processing conditions for producing high-T(sub c) Bi-Pb-Sr-Ca-Cu-O thick films on yttria-stabilized zirconia substrates. Using these four profiles, the effects of sintering temperatures of 830-850 C and soak times of 0.5 to 12 hours were examined. In this study, T-c, zero values of 100 K were obtained using a firing profile in which the films were sintered for 1.5 to 2 hours at 840 to 845 C and then quenched to room temperature. X-ray diffraction analyses of these specimens confirmed the presence of the high-T(sub c) phase. Films which were similarly fired and furnace cooled from the peak processing temperature exhibited a two-step superconductive transition to zero resistance, with T-c,zero values ranging from 85 to 92 K. The other firing profiles evaluated in this investigation yielded specimens which either exhibited critical transition temperatures below 90 K or did not exhibit a superconductive transition above 77 K.
NASA Astrophysics Data System (ADS)
Anderson, O. L.
1982-07-01
The temperature profile of planetary interiors is an important item of information, because many thermodynamic or geodynamic investigations of a planet's interior require an estimate of the temperature profile. Modeling studies of the thermal history or convective processes focus in detail on the thermal profile of the planet. A description is presented of results which show how the present (or equilibrium) interior temperature profile is related to certain constraints placed on the planet, especially the physical properties of the mantle material. These properties depend upon a priori assumptions of chemical composition. The investigation is mainly concerned with experimental and theoretical data appropriate to mantle minerals, in order to justify the use of a simple equation-of-state for planet interiors. It is found that anharmonicity does not seem to be required for calculations of interior properties of the terrestrial planets.
Objective fitting of hemoglobin dynamics in traumatic bruises based on temperature depth profiling
NASA Astrophysics Data System (ADS)
Vidovič, Luka; Milanič, Matija; Majaron, Boris
2014-02-01
Pulsed photothermal radiometry (PPTR) allows noninvasive measurement of laser-induced temperature depth profiles. The obtained profiles provide information on depth distribution of absorbing chromophores, such as melanin and hemoglobin. We apply this technique to objectively characterize mass diffusion and decomposition rate of extravasated hemoglobin during the bruise healing process. In present study, we introduce objective fitting of PPTR data obtained over the course of the bruise healing process. By applying Monte Carlo simulation of laser energy deposition and simulation of the corresponding PPTR signal, quantitative analysis of underlying bruise healing processes is possible. Introduction of objective fitting enables an objective comparison between the simulated and experimental PPTR signals. In this manner, we avoid reconstruction of laser-induced depth profiles and thus inherent loss of information in the process. This approach enables us to determine the value of hemoglobin mass diffusivity, which is controversial in existing literature. Such information will be a valuable addition to existing bruise age determination techniques.
NASA Astrophysics Data System (ADS)
Leblanc, Thierry; Sica, Robert J.; van Gijsel, Joanna A. E.; Haefele, Alexander; Payen, Guillaume; Liberti, Gianluigi
2016-08-01
A standardized approach for the definition, propagation, and reporting of uncertainty in the temperature lidar data products contributing to the Network for the Detection for Atmospheric Composition Change (NDACC) database is proposed. One important aspect of the proposed approach is the ability to propagate all independent uncertainty components in parallel through the data processing chain. The individual uncertainty components are then combined together at the very last stage of processing to form the temperature combined standard uncertainty. The identified uncertainty sources comprise major components such as signal detection, saturation correction, background noise extraction, temperature tie-on at the top of the profile, and absorption by ozone if working in the visible spectrum, as well as other components such as molecular extinction, the acceleration of gravity, and the molecular mass of air, whose magnitudes depend on the instrument, data processing algorithm, and altitude range of interest. The expression of the individual uncertainty components and their step-by-step propagation through the temperature data processing chain are thoroughly estimated, taking into account the effect of vertical filtering and the merging of multiple channels. All sources of uncertainty except detection noise imply correlated terms in the vertical dimension, which means that covariance terms must be taken into account when vertical filtering is applied and when temperature is integrated from the top of the profile. Quantitatively, the uncertainty budget is presented in a generic form (i.e., as a function of instrument performance and wavelength), so that any NDACC temperature lidar investigator can easily estimate the expected impact of individual uncertainty components in the case of their own instrument. Using this standardized approach, an example of uncertainty budget is provided for the Jet Propulsion Laboratory (JPL) lidar at Mauna Loa Observatory, Hawai'i, which is typical of the NDACC temperature lidars transmitting at 355 nm. The combined temperature uncertainty ranges between 0.1 and 1 K below 60 km, with detection noise, saturation correction, and molecular extinction correction being the three dominant sources of uncertainty. Above 60 km and up to 10 km below the top of the profile, the total uncertainty increases exponentially from 1 to 10 K due to the combined effect of random noise and temperature tie-on. In the top 10 km of the profile, the accuracy of the profile mainly depends on that of the tie-on temperature. All other uncertainty components remain below 0.1 K throughout the entire profile (15-90 km), except the background noise correction uncertainty, which peaks around 0.3-0.5 K. It should be kept in mind that these quantitative estimates may be very different for other lidar instruments, depending on their altitude range and the wavelengths used.
Method of realizing catalytic processes under unsteady state conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noskov, A.S.; Lakhmostov, V.S.; Matros, Yu.S.
1988-07-01
The operation of a system with the catalyst bed divided into three parts was investigated theoretically and experimentally. The conditions under which the system will efficiently convert a reaction mixture with a low inlet temperature in an unsteady state regime are determined. Calculations were performed for the industrially typical process of afterburning CO on a copper-chrome catalyst in the form of Raschig rings. A flow sheet of the unit with the catalyst divided into three is shown with temperature profiles along the bed at various moments in time. The method can be used for processing large volumes of gaseous wastesmore » on very active catalysts and for catalytic reactions with optimum temperature profiles close to those presented.« less
Measuring temperature and field profiles in heat assisted magnetic recording
NASA Astrophysics Data System (ADS)
Hohlfeld, J.; Zheng, X.; Benakli, M.
2015-08-01
We introduce a theoretical and experimental framework that enables quantitative measurements of the temperature and magnetic field profiles governing the thermo-magnetic write process in heat assisted magnetic recording. Since our approach allows the identification of the correct temperature dependence of the magneto-crystalline anisotropy field in the vicinity of the Curie point as well, it provides an unprecedented experimental foundation to assess our understanding of heat assisted magnetic recording.
A Two-Temperature Model of the Intracluster Medium
NASA Astrophysics Data System (ADS)
Takizawa, Motokazu
1998-12-01
We investigate evolution of the intracluster medium (ICM), considering the relaxation process between the ions and electrons. According to the standard scenario of structure formation, the ICM is heated by the shock in the accretion flow to the gravitational potential well of the dark halo. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. Then the electrons and ions exchange the energy through Coulomb collisions and reach equilibrium. From simple order estimation we find that the region where the electron temperature is considerably lower than the ion temperature spreads out on a megaparsec scale. We then calculate the ion and electron temperature profiles by combining the adiabatic model of a two-temperature plasma by Fox & Loeb with spherically symmetric N-body and hydrodynamic simulations based on three different cosmological models. It is found that the electron temperature is about half the mean temperature at radii ~1 Mpc. This could lead to about a 50% underestimation in the total mass contained within ~1 Mpc when the electron temperature profiles are used. The polytropic indices of the electron temperature profiles are ~=1.5, whereas those of mean temperature are ~=1.3 for r >= 1 Mpc. This result is consistent both with the X-ray observations on electron temperature profiles and with some theoretical and numerical predictions about mean temperature profiles.
NASA Astrophysics Data System (ADS)
Krivec, Stefan; Detzel, Thomas; Buchmayr, Michael; Hutter, Herbert
2010-10-01
The detection of Na in insulating samples by means of time of flight-secondary ion mass spectrometry (ToF-SIMS) depth profiling has always been a challenge. In particular the use of O 2+ as sputter species causes a severe artifact in the Na depth distribution due to Na migration under the influence of an internal electrical filed. In this paper we address the influence of the sample temperature on this artifact. It is shown that the transport of Na is a dynamic process in concordance with the proceeding sputter front. Low temperatures mitigated the migration process by reducing the Na mobility in the target. In the course of this work two sample types have been investigated: (i) A Na doped PMMA layer, deposited on a thin SiO 2 film. Here, the incorporation behavior of Na into SiO 2 during depth profiling is demonstrated. (ii) Na implanted into a thin SiO 2 film. By this sample type the migration behavior could be examined when defects, originating from the implantation process, are present in the SiO 2 target. In addition, we propose an approach for the evaluation of an implanted Na profile, which is unaffected by the migration process.
Power control of SAFE reactor using fuzzy logic
NASA Astrophysics Data System (ADS)
Irvine, Claude
2002-01-01
Controlling the 100 kW SAFE (Safe Affordable Fission Engine) reactor consists of design and implementation of a fuzzy logic process control system to regulate dynamic variables related to nuclear system power. The first phase of development concentrates primarily on system power startup and regulation, maintaining core temperature equilibrium, and power profile matching. This paper discusses the experimental work performed in those areas. Nuclear core power from the fuel elements is simulated using resistive heating elements while heat rejection is processed by a series of heat pipes. Both axial and radial nuclear power distributions are determined from neuronic modeling codes. The axial temperature profile of the simulated core is matched to the nuclear power profile by varying the resistance of the heating elements. The SAFE model establishes radial temperature profile equivalence by establishing 32 control zones as the nodal coordinates. Control features also allow for slow warm up, since complete shutoff can occur in the heat pipes if heat-source temperatures drop/rise below a certain minimum value, depending on the specific fluid and gas combination in the heat pipe. The entire system is expected to be self-adaptive, i.e., capable of responding to long-range changes in the space environment. Particular attention in the development of the fuzzy logic algorithm shall ensure that the system process remains at set point, virtually eliminating overshoot on start-up and during in-process disturbances. The controller design will withstand harsh environments and applications where it might come in contact with water, corrosive chemicals, radiation fields, etc. .
Muley, Pranjali D; Boldor, Dorin
2012-01-01
Use of advanced microwave technology for biodiesel production from vegetable oil is a relatively new technology. Microwave dielectric heating increases the process efficiency and reduces reaction time. Microwave heating depends on various factors such as material properties (dielectric and thermo-physical), frequency of operation and system design. Although lab scale results are promising, it is important to study these parameters and optimize the process before scaling up. Numerical modeling approach can be applied for predicting heating and temperature profiles including at larger scale. The process can be studied for optimization without actually performing the experiments, reducing the amount of experimental work required. A basic numerical model of continuous electromagnetic heating of biodiesel precursors was developed. A finite element model was built using COMSOL Multiphysics 4.2 software by coupling the electromagnetic problem with the fluid flow and heat transfer problem. Chemical reaction was not taken into account. Material dielectric properties were obtained experimentally, while the thermal properties were obtained from the literature (all the properties were temperature dependent). The model was tested for the two different power levels 4000 W and 4700 W at a constant flow rate of 840ml/min. The electric field, electromagnetic power density flow and temperature profiles were studied. Resulting temperature profiles were validated by comparing to the temperatures obtained at specific locations from the experiment. The results obtained were in good agreement with the experimental data.
Effects of Temperature and Air Density Profiles on Ozone Lidar Retrievals
NASA Astrophysics Data System (ADS)
Kirgis, G.; Langford, A. O.; Senff, C. J.; Alvarez, R. J. _II, II
2017-12-01
The recent reduction in the primary U.S. National Ambient Air Quality Standard (NAAQS) for ozone (O3) from 75 to 70 parts-per-billion by volume (ppbv) adds urgency to the need for better understanding of the processes that control ground-level concentrations in the United States. While ground-based in situ sensors are capable of measuring ozone levels, they don't give any insight into upper air transport and mixing. Differential absorption lidars such as the NOAA/ESRL Tunable Optical Profiler for Aerosol and oZone (TOPAZ) measure continuous vertical ozone profiles with high spatial and temporal resolution. However, the retrieved ozone mixing ratios depend on the temperature and air density profiles used in the analysis. This study analyzes the ozone concentrations for seven field campaigns from 2013 to 2016 to evaluate the impact of the assumed pressure and temperature profiles on the ozone mixing ratio retrieval. Pressure and temperature profiles from various spatial and temporal resolution models (Modern Era Retrospective-Analysis for Research and Applications, NCEP/NCAR Reanalysis, NCEP North American Regional Reanalysis, Rapid Refresh, and High-Resolution Rapid Refresh) are compared to reference ozone profiles created with pressure and temperature profiles from ozonesondes launched close to the TOPAZ measurement site. The results show significant biases with respect to time of day and season, altitude, and location of the model-extracted profiles. Limitations and advantages of all datasets used will also be discussed.
A new study of the kinetics of curd production in the process of cheese manufacture.
Muñoz, Susana Vargas; Torres, Maykel González; Guerrero, Francisco Quintanilla; Talavera, Rogelio Rodríguez
2017-11-01
We studied the role played by temperature and rennet concentration in the coagulation process for cheese manufacture and the evaluation of their kinetics. We concluded that temperature is the main factor that determines the kinetics. The rennet concentration was unimportant probably due to the fast action of the enzyme chymosin. The Dynamic light scattering technique allowed measuring the aggregate's size and their formation kinetics. The volume fraction of solids was determined from viscosity measurements, showing profiles that are in agreement with the size profiles. The results indicate that the formation of the aggregates for rennet cheese is strongly dependent on temperature and rennet concentration. The results revealed that at 35·5 °C the volume fraction of solids has the maximum slope, indicating that at this temperature the curd is formed rapidly. The optimal temperature throughout the process was established. Second-order kinetics were obtained for the process. We observed a quadratic dependence between the rennet volume and the volume fraction of solids (curd), thereby indicating that the kinetics of the curd production should be of order two.
Physical Retrieval of Surface Emissivity Spectrum from Hyperspectral Infrared Radiances
NASA Technical Reports Server (NTRS)
Li, Jun; Weisz, Elisabeth; Zhou, Daniel K.
2007-01-01
Retrieval of temperature, moisture profiles and surface skin temperature from hyperspectral infrared (IR) radiances requires spectral information about the surface emissivity. Using constant or inaccurate surface emissivities typically results in large retrieval errors, particularly over semi-arid or arid areas where the variation in emissivity spectrum is large both spectrally and spatially. In this study, a physically based algorithm has been developed to retrieve a hyperspectral IR emissivity spectrum simultaneously with the temperature and moisture profiles, as well as the surface skin temperature. To make the solution stable and efficient, the hyperspectral emissivity spectrum is represented by eigenvectors, derived from the laboratory measured hyperspectral emissivity database, in the retrieval process. Experience with AIRS (Atmospheric InfraRed Sounder) radiances shows that a simultaneous retrieval of the emissivity spectrum and the sounding improves the surface skin temperature as well as temperature and moisture profiles, particularly in the near surface layer.
Modeling carbon cycle process of soil profile in Loess Plateau of China
NASA Astrophysics Data System (ADS)
Yu, Y.; Finke, P.; Guo, Z.; Wu, H.
2011-12-01
SoilGen2 is a process-based model, which could reconstruct soil formation under various climate conditions, parent materials, vegetation types, slopes, expositions and time scales. Both organic and inorganic carbon cycle processes could be simulated, while the later process is important in carbon cycle of arid and semi-arid regions but seldom being studied. After calibrating parameters of dust deposition rate and segments depth affecting elements transportation and deposition in the profile, modeling results after 10000 years were confronted with measurements of two soil profiles in loess plateau of China, The simulated trends of organic carbon and CaCO3 in the profile are similar to measured values. Relative sensitivity analysis for carbon cycle process have been done and the results show that the change of organic carbon in long time scale is more sensitive to precipitation, temperature, plant carbon input and decomposition parameters (decomposition rate of humus, ratio of CO2/(BIO+HUM), etc.) in the model. As for the inorganic carbon cycle, precipitation and potential evaporation are important for simulation quality, while the leaching and deposition of CaCO3 are not sensitive to pCO2 and temperature of atmosphere.
NASA Astrophysics Data System (ADS)
Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.
2017-04-01
The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from both WEGC systems, current OPSv5.6 and next-generation rOPS, are shown and discussed, based on both insights from individual profiles and statistical ensembles, and compared to moist air retrieval results from the UCAR Boulder and ROM-SAF Copenhagen centers. The results show that the new algorithmic scheme improves the temperature, humidity and pressure retrieval performance, in particular also the robustness including for integrated uncertainty estimation for large-scale applications, over the previous algorithms. The new rOPS-implemented algorithm will therefore be used in the first large-scale reprocessing towards a tropospheric climate data record 2001-2016 by the rOPS, including its integrated uncertainty propagation.
Temperature structure of the Uranian upper atmosphere
NASA Technical Reports Server (NTRS)
Elliot, J. L.; Dunham, E.
1979-01-01
The temperature structure of the upper atmosphere of Uranus at two locations on the planet was determined from observations of the occultation of the star SAO158687 by Uranus on 10 March 1977, carried out at the Kuiper Airborne Observatory. The temperature-pressure relationships obtained from the immersion and emersion data for 7280 A channel show peak-to-peak variations of 45 K for immersion and 35 K for emersion. The mean temperature for both immersion and emersion profiles is about 100 K, which shows that Uranus has a temperature inversion between 0.001 mbar and the 100 mbar level probed by IR measurements. Both profiles show wavelike temperature variations, which may be due to dynamical or photochemical processes.
Bell, Robert T; Jacobs, Alan G; Sorg, Victoria C; Jung, Byungki; Hill, Megan O; Treml, Benjamin E; Thompson, Michael O
2016-09-12
A high-throughput method for characterizing the temperature dependence of material properties following microsecond to millisecond thermal annealing, exploiting the temperature gradients created by a lateral gradient laser spike anneal (lgLSA), is presented. Laser scans generate spatial thermal gradients of up to 5 °C/μm with peak temperatures ranging from ambient to in excess of 1400 °C, limited only by laser power and materials thermal limits. Discrete spatial property measurements across the temperature gradient are then equivalent to independent measurements after varying temperature anneals. Accurate temperature calibrations, essential to quantitative analysis, are critical and methods for both peak temperature and spatial/temporal temperature profile characterization are presented. These include absolute temperature calibrations based on melting and thermal decomposition, and time-resolved profiles measured using platinum thermistors. A variety of spatially resolved measurement probes, ranging from point-like continuous profiling to large area sampling, are discussed. Examples from annealing of III-V semiconductors, CdSe quantum dots, low-κ dielectrics, and block copolymers are included to demonstrate the flexibility, high throughput, and precision of this technique.
NASA Astrophysics Data System (ADS)
Löhnert, U.; Maier, O.
2012-05-01
The motivation of this study is to verify theoretical expectations placed on ground-based microwave radiometer (MWR) techniques and to confirm whether they are suitable for supporting key missions of national weather services, such as timely and accurate weather advisories and warnings. We evaluate reliability and accuracy of atmospheric temperature profiles retrieved continuously by the microwave profiler system HATPRO (Humidity And Temperature PROfiler) operated at the aerological station of Payerne (MeteoSwiss) in the time period August 2006-December 2009. Assessment is performed by comparing temperatures from the radiometer against temperature measurements from a radiosonde accounting for a total of 2107 quality-controlled all-season cases. In the evaluated time period, the MWR delivered reliable temperature profiles in 86% of all-weather conditions on a temporal resolution of 12-13 min. Random differences between MWR and radiosonde are down to 0.5 K in the lower boundary layer and increase to 1.7 K at 4 km height. The differences observed between MWR and radiosonde in the lower boundary layer are similar to the differences observed between the radiosonde and another in-situ sensor located on a close-by 30 m tower. Temperature retrievals from above 4 km contain less than 5% of the total information content of the measurements, which makes clear that this technique is mainly suited for continuous observations in the boundary layer. Systematic temperature differences are also observed throughout the retrieved profile and can account for up to ±0.5 K. These errors are due to offsets in the measurements of the microwave radiances that have been corrected for in data post-processing and lead to nearly bias-free overall temperature retrievals. Different reasons for the radiance offsets are discussed, but cannot be unambiguously determined retrospectively. Monitoring and, if necessary, corrections for radiance offsets as well as a real-time rigorous automated data quality control are mandatory for microwave profiler systems that are designated for operational temperature profiling. In the analysis of a subset of different atmospheric situations, it is shown that lifted inversions and data quality during precipitation present the largest challenges for operational MWR temperature profiling.
NASA Astrophysics Data System (ADS)
K R, Sreenivas; Mohammad, Rafiuddin
2016-11-01
Predicting the fog-onset, its growth and dissipation helps in managing airports and other modes of transport. After sunset, occurrence of fog requires moist air, low wind and clear-sky conditions. Under these circumstances radiative heat transfer plays a vital role in the NBL. Locally, initiation of fog happens when the air temperature falls below the dew-point. Thus, to predict the onset of fog at a given location, one has to compute evolution of vertical temperature profile. Earlier,our group has shown that the presence of aerosols and vertical variation in their number density determines the radiative-cooling and hence development of vertical temperature profile. Aerosols, through radiation in the window-band, provides an efficient path for air layers to lose heat to the cold, upper atmosphere. This process creates cooler air layer between warmer ground and upper air layers and resulting temperature profile facilitate the initiation of fog. Our results clearly indicates that accounting for the presence of aerosols and their radiative-transfer is important in modeling micro-meteorological process of fog formation and its evolution. DST, Govt. INDIA.
Bianchi, Giulia; Nuzzi, Monica; Avitabile Leva, Alexa; Rizzolo, Anna
2007-05-25
In the present study, headspace solid phase microextraction combined to capillary gas chromatography (HS-SPME-GC) has been applied for the determination of changes in the volatile profile of rose petals (Rosa hybrida, cvs David Austin) following processing (heat treatment and addition as an ingredient to a food product--for example yoghurt). Four SPME fibres at two sampling temperatures (40 and 60 degrees C) with a sampling time of 30 min were examined. Volatile profiles were detected either by FID or/and by olfactometry (ODP-II, Gerstel). Fibre testing was performed using raw rose petals for sampling temperature selection and an 18 characteristic rose volatile standard mixture in water was used to compare fibre performances at the sampling temperature of 60 degrees C. Polydimethylsiloxane-divinylbenzene (PDMS-DVB) fibre at the sampling temperature of 60 degrees C was the most suitable to sample the rose alcohols phenyl ethanol, citronellol, nerol, geraniol and eugenol, as assessed by GC-olfactometry, not only from raw petals, but also from processed rose petals and the food product. PDMS-DVB fibre also showed a desired low affinity to volatiles from yoghurt, which reduces the influence of food matrix on the volatile profile. The method was linear over two orders of magnitude and had satisfactory repeatability, with limits of detection for the rose alcohols ranging from <1 to 10 ng/ml concentration levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.
Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less
Roehling, Tien T.; Wu, Sheldon S. Q.; Khairallah, Saad A.; ...
2017-02-12
Additively manufactured (AM) metals are often highly textured, containing large columnar grains that initiate epitaxially under steep temperature gradients and rapid solidification conditions. These unique microstructures partially account for the massive property disparity existing between AM and conventionally processed alloys. Although equiaxed grains are desirable for isotropic mechanical behavior, the columnar-to-equiaxed transition remains difficult to predict for conventional solidification processes, and much more so for AM. In this study, the effects of laser intensity profile ellipticity on melt track macrostructures and microstructures were studied in 316L stainless steel. Experimental results were supported by temperature gradients and melt velocities simulated usingmore » the ALE3D multi-physics code. As a general trend, columnar grains preferentially formed with increasing laser power and scan speed for all beam profiles. However, when conduction mode laser heating occurs, scan parameters that result in coarse columnar microstructures using Gaussian profiles produce equiaxed or mixed equiaxed-columnar microstructures using elliptical profiles. Furthermore, by modulating spatial laser intensity profiles on the fly, site-specific microstructures and properties can be directly engineered into additively manufactured parts.« less
Crowder, Camerron M; Meyer, Eli; Fan, Tung-Yung; Weis, Virginia M
2017-08-01
Reproductive timing in brooding corals has been correlated to temperature and lunar irradiance, but the mechanisms by which corals transduce these environmental variables into molecular signals are unknown. To gain insight into these processes, global gene expression profiles in the coral Pocillopora damicornis were examined (via RNA-Seq) across lunar phases and between temperature treatments, during a monthly planulation cycle. The interaction of temperature and lunar day together had the largest influence on gene expression. Mean timing of planulation, which occurred at lunar days 7.4 and 12.5 for 28- and 23°C-treated corals, respectively, was associated with an upregulation of transcripts in individual temperature treatments. Expression profiles of planulation-associated genes were compared between temperature treatments, revealing that elevated temperatures disrupted expression profiles associated with planulation. Gene functions inferred from homologous matches to online databases suggest complex neuropeptide signalling, with calcium as a central mediator, acting through tyrosine kinase and G protein-coupled receptor pathways. This work contributes to our understanding of coral reproductive physiology and the impacts of environmental variables on coral reproductive pathways. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Djenadic, Ruzica; Winterer, Markus
2017-02-01
The influence of the time-temperature history on the characteristics of nanoparticles such as size, degree of agglomeration, or crystallinity is investigated for chemical vapor synthesis (CVS). A simple reaction-coagulation-sintering model is used to describe the CVS process, and the results of the model are compared to experimental data. Nanocrystalline titania is used as model material. Titania nanoparticles are generated from titanium-tetraisopropoxide (TTIP) in a hot-wall reactor. Pure anatase particles and mixtures of anatase, rutile (up to 11 vol.%), and brookite (up to 29 vol.%) with primary particle sizes from 1.7 nm to 10.5 nm and agglomerate particle sizes from 24.3 nm to 55.6 nm are formed depending on the particle time-temperature history. An inductively heated furnace with variable inductor geometry is used as a novel system to control the time-temperature profile in the reactor externally covering a large wall temperature range from 873 K to 2023 K. An appropriate choice of inductor geometry, i.e. time-temperature profile, can significantly reduce the degree of agglomeration. Other particle characteristics such as crystallinity are also substantially influenced by the time-temperature profile.
Temperature-Dependent Kinetic Prediction for Reactions Described by Isothermal Mathematics
Dinh, L. N.; Sun, T. C.; McLean, W.
2016-09-12
Most kinetic models are expressed in isothermal mathematics. In addition, this may lead unaware scientists either to the misconception that classical isothermal kinetic models cannot be used for any chemical process in an environment with a time-dependent temperature profile or, even worse, to a misuse of them. In reality, classical isothermal models can be employed to make kinetic predictions for reactions in environments with time-dependent temperature profiles, provided that there is a continuity/conservation in the reaction extent at every temperature–time step. In this article, fundamental analyses, illustrations, guiding tables, and examples are given to help the interested readers using eithermore » conventional isothermal reacted fraction curves or rate equations to make proper kinetic predictions for chemical reactions in environments with temperature profiles that vary, even arbitrarily, with time simply by the requirement of continuity/conservation of reaction extent whenever there is an external temperature change.« less
Thermal modeling of grinding for process optimization and durability improvements
NASA Astrophysics Data System (ADS)
Hanna, Ihab M.
Both thermal and mechanical aspects of the grinding process are investigated in detail in an effort to predict grinding induced residual stresses. An existing thermal model is used as a foundation for computing heat partitions and temperatures in surface grinding. By numerically processing data from IR temperature measurements of the grinding zone; characterizations are made of the grinding zone heat flux. It is concluded that the typical heat flux profile in the grinding zone is triangular in shape, supporting this often used assumption found in the literature. Further analyses of the computed heat flux profiles has revealed that actual grinding zone contact lengths exceed geometric contact lengths by an average of 57% for the cases considered. By integrating the resulting heat flux profiles; workpiece energy partitions are computed for several cases of dry conventional grinding of hardened steel. The average workpiece energy partition for the cases considered was 37%. In an effort to more accurately predict grinding zone temperatures and heat fluxes, refinements are made to the existing thermal model. These include consideration of contact length extensions due to local elastic deformations, variations of the assumed contact area ratio as a function of grinding process parameters, consideration of coolant latent heat of vaporization and its effect on heat transfer beyond the coolant boiling point, and incorporation of coolant-workpiece convective heat flux effects outside the grinding zone. The result of the model refinements accounting for contact length extensions and process-dependant contact area ratios is excellent agreement with IR temperature measurements over a wide range of grinding conditions. By accounting for latent heat of vaporization effects, grinding zone temperature profiles are shown to be capable of reproducing measured profiles found in the literature for cases on the verge of thermal surge conditions. Computed peak grinding zone temperatures for the aggressive grinding examples given are 30--50% lower than those computed using the existing thermal model formulation. By accounting for convective heat transfer effects outside the grinding zone, it is shown that while surface temperatures in the wake of the grinding zone may be significantly affected under highly convective conditions, computed residual stresses are less sensitive to such conditions. Numerical models are used to evaluate both thermally and mechanically induced stress fields in an elastic workpiece, while finite element modeling is used to evaluate residual stresses for workpieces with elastic-plastic material properties. Modeling of mechanical interactions at the local grit-workpiece length scale is used to create the often measured effect of compressive surface residual stress followed by a subsurface tensile peak. The model is shown to be capable of reproducing trends found in the literature of surface residual stresses which are compressive for low temperature grinding conditions, with surface stresses increasing linearly and becoming tensile with increasing temperatures. Further modifications to the finite element model are made to allow for transiently varying inputs for more complicated grinding processes of industrial components such as automotive cam lobes.
Seismic Imaging of Circumpolar Deep Water Exchange across the Shelf Break of the Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Gunn, K.; White, N.; Larter, R. D.; Falder, M.; Caulfield, C. C. P.
2016-02-01
The western Antarctic Peninsula is an area of recent extreme atmospheric warming. In the adjacent ocean, there is particular interest in on-shelf movement of Circumpolar Deep Water as a possible link to changing climate by affecting ice shelf processes. Here, we investigate on-shelf intrusions using two-dimensional seismic imaging of the water column which has vertical and horizontal resolutions of 10 m. 8 seismic profiles were acquired in February 2015 using the RRS James Clark Ross. These profiles traverse the shelf break and cross two bathymetric features, the Marguerite and Biscoe troughs, which may play a role in water exchange processes. Seismic data were acquired using two Generator-Injector air guns fired every 10 s with a pressure of 2000 psi. Reflections were recorded on a 2.4 km streamer of 192 receivers spaced every 12.5 m. Observed reflections in the processed records are caused by rapid changes of temperature ( 80%) and salinity ( 20%), delineating water masses of different properties. 13 XCTDs and XBTs plus a 38 kHz echo-sounder profile were simultaneously acquired along seismic profiles and used for calibration. Preliminary results show the top of the Winter Water layer as a bright reflection at 50-120 m depth across the entire survey, corresponding to temperatures ≤ -1°C. Curved, discontinuous, eddy-like reflections, also seen on echo-sounder profiles, are attributed to modified Upper Circumpolar Deep Water with temperatures ≥ 1.34°C. A warm core eddy, 11 km long and 220 m high, is visible 2 km inland of the shelf break. Pure Upper Circumpolar Deep Water of temperatures ≥ 1.80°C is aligned with weak but discernible, lens-shaped reflections. Eddy-like structures and the overall reflective morphology yield useful insights into shelf exchange processes, suggestive of three potential mechanisms: (i) topography controlled flow; (ii) an 'ice-pump' mechanism; and (iii) mesoscale eddies.
Full Waveform Inversion of Reflection Seismic Data for Ocean Temperature Profiles
2008-01-01
ographic processes and properties, such as internal-wave spectra [Holbrook and Fer, 2005; Krahmann et al, 2006] and temperature contrasts [ Paramo and...contribute little to the reflectance in the Norwegian Sea data set used here [ Paramo and Holbrook, 2005], so we assume for this study that all...bathyther- mograph) profiles presented by Paramo and Holbrook [2005], displayed here in the intercept time-slowness (Tau-p) domain, rather than the
A simple algorithm for beam profile diagnostics using a thermographic camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katagiri, Ken; Hojo, Satoru; Honma, Toshihiro
2014-03-15
A new algorithm for digital image processing apparatuses is developed to evaluate profiles of high-intensity DC beams from temperature images of irradiated thin foils. Numerical analyses are performed to examine the reliability of the algorithm. To simulate the temperature images acquired by a thermographic camera, temperature distributions are numerically calculated for 20 MeV proton beams with different parameters. Noise in the temperature images which is added by the camera sensor is also simulated to account for its effect. Using the algorithm, beam profiles are evaluated from the simulated temperature images and compared with exact solutions. We find that niobium ismore » an appropriate material for the thin foil used in the diagnostic system. We also confirm that the algorithm is adaptable over a wide beam current range of 0.11–214 μA, even when employing a general-purpose thermographic camera with rather high noise (ΔT{sub NETD} ≃ 0.3 K; NETD: noise equivalent temperature difference)« less
Temperature compensation analysis of liquid lens for variable-focus control
NASA Astrophysics Data System (ADS)
Chen, Shu-Jung; Tai, Tsai-Lin; Shen, Chih-Hsiung
2006-01-01
In this work, a fabrication and temperature compensation analysis and electrowetting for the liquid lenses is proposed. The unique capability of controlling the lens profile during the electrowetting fabrication processes is successfully demonstrated for different ambient temperature environment. For a lens fabricated on a hydrophobic Teflon layer, it is found that when the applied voltage is increased, the focal length increases, and the curvature decreases. One challenge for the liquid lens is operating temperature range. Due to the environment temperature change, the ability of controlling the lens profile is analyzed and measured. The description of change in contact angle corresponding to the variation of ambient temperature is derived. Based on this description, we firstly derive the control of voltage vs. temperature for a fixed dioptric power. The control of lens during a focusing action was studied by observation of the image formed by the light through the transparent bottom of ITO glass. Under several conditions of ambient temperature change, capability of controlling the lens profile for a fixed focus is successfully demonstrated by experiments.
NASA Technical Reports Server (NTRS)
Ledsham, W. H.; Staelin, D. H.
1978-01-01
An extended Kalman-Bucy filter has been implemented for atmospheric temperature profile retrievals from observations made using the Scanned Microwave Spectrometer (SCAMS) instrument carried on the Nimbus 6 satellite. This filter has the advantage that it requires neither stationary statistics in the underlying processes nor linear production of the observed variables from the variables to be estimated. This extended Kalman-Bucy filter has yielded significant performance improvement relative to multiple regression retrieval methods. A multi-spot extended Kalman-Bucy filter has also been developed in which the temperature profiles at a number of scan angles in a scanning instrument are retrieved simultaneously. These multi-spot retrievals are shown to outperform the single-spot Kalman retrievals.
NASA Technical Reports Server (NTRS)
Ding, Feng; Fang, Fan; Hearty, Thomas J.; Theobald, Michael; Vollmer, Bruce; Lynnes, Christopher
2014-01-01
The Atmospheric Infrared Sounder (AIRS) mission is entering its 13th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing long-wave radiation, cloud properties, and trace gases. Thus AIRS data have been widely used, among other things, for short-term climate research and observational component for model evaluation. One instance is the fifth phase of the Coupled Model Intercomparison Project (CMIP5) which uses AIRS version 5 data in the climate model evaluation. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the AIRS mission. The GES DISC, in collaboration with the AIRS Project, released data from the version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. The ongoing Earth System Grid for next generation climate model research project, a collaborative effort of GES DISC and NASA JPL, will bring temperature and humidity profiles from AIRS version 6. The AIRS version 6 product adds a new "TqJoint" data group, which contains data for a common set of observations across water vapor and temperature at all atmospheric levels and is suitable for climate process studies. How different may the monthly temperature and humidity profiles in "TqJoint" group be from the "Standard" group where temperature and water vapor are not always valid at the same time? This study aims to answer the question by comprehensively comparing the temperature and humidity profiles from the "TqJoint" group and the "Standard" group. The comparison includes mean differences at different levels globally and over land and ocean. We are also working on examining the sampling differences between the "TqJoint" and "Standard" group using MERRA data.
Improving Forecast Skill by Assimilation of AIRS Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste
2010-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The AIRS Version 5 retrieval algorithm, is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates delta T(p) for retrieved quantities and the use of these error estimates for Quality Control. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 deg. latitude X 0.67 deg longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates delta (p) were used as the uncertainty for each measurement in the data assimilation process. We compared forecasts analyses generated from the analyses done by assimilation of AIRS temperature profiles with three different sets of thresholds; Standard, Medium, and Tight. Assimilation of Quality Controlled AIRS temperature profiles significantly improve 5-7 day forecast skill compared to that obtained without the benefit of AIRS data in all of the cases studied. In addition, assimilation of Quality Controlled AIRS temperature soundings performs better than assimilation of AIRS observed radiances. Based on the experiments shown, Tight Quality Control of AIRS temperature profile performs best on the average from the perspective of improving Global 7 day forecast skill.
Advanced Ceramic Technology for Space Applications at NASA MSFC
NASA Technical Reports Server (NTRS)
Alim, Mohammad A.
2003-01-01
The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.
Temperature and emissivity determination of liquid steel S235
NASA Astrophysics Data System (ADS)
Schöpp, H.; Sperl, A.; Kozakov, R.; Gött, G.; Uhrlandt, D.; Wilhelm, G.
2012-06-01
Temperature determination of liquid metals is difficult but a necessary tool for improving materials and processes such as arc welding in the metal-working industry. A method to determine the surface temperature of the weld pool is described. A TIG welding process and absolute calibrated optical emission spectroscopy are used. This method is combined with high-speed photography. 2D temperature profiles are obtained. The emissivity of the radiating surface has an important influence on the temperature determination. A temperature dependent emissivity for liquid steel is given for the spectral region between 650 and 850 nm.
Retrieving cloudy atmosphere parameters from RPG-HATPRO radiometer data
NASA Astrophysics Data System (ADS)
Kostsov, V. S.
2015-03-01
An algorithm for simultaneously determining both tropospheric temperature and humidity profiles and cloud liquid water content from ground-based measurements of microwave radiation is presented. A special feature of this algorithm is that it combines different types of measurements and different a priori information on the sought parameters. The features of its use in processing RPG-HATPRO radiometer data obtained in the course of atmospheric remote sensing experiments carried out by specialists from the Faculty of Physics of St. Petersburg State University are discussed. The results of a comparison of both temperature and humidity profiles obtained using a ground-based microwave remote sensing method with those obtained from radiosonde data are analyzed. It is shown that this combined algorithm is comparable (in accuracy) to the classical method of statistical regularization in determining temperature profiles; however, this algorithm demonstrates better accuracy (when compared to the method of statistical regularization) in determining humidity profiles.
Process for hydrocracking carbonaceous material to provide fuels or chemical feed stock
Duncan, Dennis A.
1980-01-01
A process is disclosed for hydrocracking coal or other carbonaceous material to produce various aromatic hydrocarbons including benzene, toluene, xylene, ethylbenzene, phenol and cresols in variable relative concentrations while maintaining a near constant maximum temperature. Variations in relative aromatic concentrations are achieved by changing the kinetic severity of the hydrocracking reaction by altering the temperature profile up to and quenching from the final hydrocracking temperature. The relative concentration of benzene to the alkyl and hydroxyl aromatics is increased by imposing increased kinetic severity above that corresponding to constant heating rate followed by immediate quenching at about the same rate to below the temperature at which dehydroxylation and dealkylation reactions appreciably occur. Similarly phenols, cresols and xylenes are produced in enhanced concentrations by adjusting the temperature profile to provide a reduced kinetic severity relative to that employed when high benzene concentrations are desired. These variations in concentrations can be used to produce desired materials for chemical feed stocks or for fuels.
Optimization of plasma etching of SiO2 as hard mask for HgCdTe dry etching
NASA Astrophysics Data System (ADS)
Chen, Yiyu; Ye, Zhenhua; Sun, Changhong; Zhang, Shan; Xin, Wen; Hu, Xiaoning; Ding, Ruijun; He, Li
2016-10-01
HgCdTe is one of the dominating materials for infrared detection. To pattern this material, our group has proven the feasibility of SiO2 as a hard mask in dry etching process. In recent years, the SiO2 mask patterned by plasma with an auto-stopping layer of ZnS sandwiched between HgCdTe and SiO2 has been developed by our group. In this article, we will report the optimization of SiO2 etching on HgCdTe. The etching of SiO2 is very mature nowadays. Multiple etching recipes with deferent gas mixtures can be used. We utilized a recipe containing Ar and CHF3. With strictly controlled photolithography, the high aspect-ratio profile of SiO2 was firstly achieved on GaAs substrate. However, the same recipe could not work well on MCT because of the low thermal conductivity of HgCdTe and CdTe, resulting in overheated and deteriorated photoresist. By decreasing the temperature, the photoresist maintained its good profile. A starting table temperature around -5°C worked well enough. And a steep profile was achieved as checked by the SEM. Further decreasing of temperature introduced profile with beveled corner. The process window of the temperature is around 10°C. Reproducibility and uniformity were also confirmed for this recipe.
Materials and processing science: Limits for microelectronics
NASA Astrophysics Data System (ADS)
Rosenberg, R.
1988-09-01
The theme of this talk will be to illustrate examples of technologies that will drive materials and processing sciences to the limit and to describe some of the research being pursued to understand materials interactions which are pervasive to projected structure fabrication. It is to be expected that the future will see a progression to nanostructures where scaling laws will be tested and quantum transport will become more in evidence, to low temperature operation for tighter control and improved performance, to complex vertical profiles where 3D stacking and superlattices will produce denser packing and device flexibility, to faster communication links with optoelectronics, and to compatible packaging technologies. New low temperature processing techniques, such as epitaxy of silicon, PECVD of dielectrics, low temperature high pressure oxidation, silicon-germanium heterostructures, etc., must be combined with shallow metallurgies, new lithographic technologies, maskless patterning, rapid thermal processing (RTP) to produce needed profile control, reduce process incompatibilities and develop new device geometries. Materials interactions are of special consequence for chip substrates and illustrations of work in metal-ceramic and metal-polymer adhesion will be offered.
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.; Batur, Celal; Bennett, Robert J.
1997-01-01
We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful for scientific and commercial applications for the determination of process parameters to optimize crystal growth conditions.
NASA Technical Reports Server (NTRS)
Duvual, Walter M. B.; Batur, Celal; Bennett, Robert J.
1998-01-01
We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful in scientific and commercial applications for determining the optimized process parameters for crystal growth.
Optimization of thermal processing of canned mussels.
Ansorena, M R; Salvadori, V O
2011-10-01
The design and optimization of thermal processing of solid-liquid food mixtures, such as canned mussels, requires the knowledge of the thermal history at the slowest heating point. In general, this point does not coincide with the geometrical center of the can, and the results show that it is located along the axial axis at a height that depends on the brine content. In this study, a mathematical model for the prediction of the temperature at this point was developed using the discrete transfer function approach. Transfer function coefficients were experimentally obtained, and prediction equations fitted to consider other can dimensions and sampling interval. This model was coupled with an optimization routine in order to search for different retort temperature profiles to maximize a quality index. Both constant retort temperature (CRT) and variable retort temperature (VRT; discrete step-wise and exponential) were considered. In the CRT process, the optimal retort temperature was always between 134 °C and 137 °C, and high values of thiamine retention were achieved. A significant improvement in surface quality index was obtained for optimal VRT profiles compared to optimal CRT. The optimization procedure shown in this study produces results that justify its utilization in the industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mensah, P.F.; Stubblefield, M.A.; Pang, S.S.
Thermal characterization of a prepreg fabric used as the bonding material to join composite pipes has been modeled and solved using finite difference modeling (FDM) numerical analysis technique for one dimensional heat transfer through the material. Temperature distributions within the composite pipe joint are predicted. The prepreg material has temperature dependent thermal properties. Thus the resulting boundary value equations are non linear and analytical solutions cannot be obtained. This characterization is pertinent in determining the temperature profile in the prepreg layer during the manufacturing process for optimization purposes. In addition, in order to assess the effects of induced thermal stressmore » in the joint, the temperature profile is needed. The methodology employed in this analysis compares favorably with data from experimentation.« less
Westman, Johan O; Wang, Ruifei; Novy, Vera; Franzén, Carl Johan
2017-01-01
Considerable progress is being made in ethanol production from lignocellulosic feedstocks by fermentation, but negative effects of inhibitors on fermenting microorganisms are still challenging. Feeding preadapted cells has shown positive effects by sustaining fermentation in high-gravity simultaneous saccharification and co-fermentation (SSCF). Loss of cell viability has been reported in several SSCF studies on different substrates and seems to be the main reason for the declining ethanol production toward the end of the process. Here, we investigate how the combination of yeast preadaptation and feeding, cell flocculation, and temperature reduction improves the cell viability in SSCF of steam pretreated wheat straw. More than 50% cell viability was lost during the first 24 h of high-gravity SSCF. No beneficial effects of adding selected nutrients were observed in shake flask SSCF. Ethanol concentrations greater than 50 g L -1 led to significant loss of viability and prevented further fermentation in SSCF. The benefits of feeding preadapted yeast cells were marginal at later stages of SSCF. Yeast flocculation did not improve the viability but simplified cell harvest and improved the feasibility of the cell feeding strategy in demo scale. Cultivation at 30 °C instead of 35 °C increased cell survival significantly on solid media containing ethanol and inhibitors. Similarly, in multifeed SSCF, cells maintained the viability and fermentation capacity when the temperature was reduced from 35 to 30 °C during the process, but hydrolysis yields were compromised. By combining the yeast feeding and temperature change, an ethanol concentration of 65 g L -1 , equivalent to 70% of the theoretical yield, was obtained in multifeed SSCF on pretreated wheat straw. In demo scale, the process with flocculating yeast and temperature profile resulted in 5% (w/w) ethanol, equivalent to 53% of the theoretical yield. Multifeed SSCF was further developed by means of a flocculating yeast and a temperature-reduction profile. Ethanol toxicity is intensified in the presence of lignocellulosic inhibitors at temperatures that are beneficial to hydrolysis in high-gravity SSCF. The counteracting effects of temperature on cell viability and hydrolysis call for more tolerant microorganisms, enzyme systems with lower temperature optimum, or full optimization of the multifeed strategy with temperature profile.
NASA Astrophysics Data System (ADS)
Zhou, Chaojie; Ding, Xiaohua; Zhang, Jie; Yang, Jungang; Ma, Qiang
2017-12-01
While global oceanic surface information with large-scale, real-time, high-resolution data is collected by satellite remote sensing instrumentation, three-dimensional (3D) observations are usually obtained from in situ measurements, but with minimal coverage and spatial resolution. To meet the needs of 3D ocean investigations, we have developed a new algorithm to reconstruct the 3D ocean temperature field based on the Array for Real-time Geostrophic Oceanography (Argo) profiles and sea surface temperature (SST) data. The Argo temperature profiles are first optimally fitted to generate a series of temperature functions of depth, with the vertical temperature structure represented continuously. By calculating the derivatives of the fitted functions, the calculation of the vertical temperature gradient of the Argo profiles at an arbitrary depth is accomplished. A gridded 3D temperature gradient field is then found by applying inverse distance weighting interpolation in the horizontal direction. Combined with the processed SST, the 3D temperature field reconstruction is realized below the surface using the gridded temperature gradient. Finally, to confirm the effectiveness of the algorithm, an experiment in the Pacific Ocean south of Japan is conducted, for which a 3D temperature field is generated. Compared with other similar gridded products, the reconstructed 3D temperature field derived by the proposed algorithm achieves satisfactory accuracy, with correlation coefficients of 0.99 obtained, including a higher spatial resolution (0.25° × 0.25°), resulting in the capture of smaller-scale characteristics. Finally, both the accuracy and the superiority of the algorithm are validated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abe, Yoshiyuki; Iwasaki, Akira
1999-07-01
Although non-azeotropic mixtures are considered to be promising working fluids in advanced energy conversion systems, the primary technical problems in the heat transfer degradation in phase change processes cause economical handicap to wide-spread applications. The boiling behavior of mixtures still remains a number of basic questions being not answered yet, and the present authors believe that the most essential information for the boiling process in non-azeotropic mixtures is how temperature and concentration profiles are developed around the bubbles. The present study attempts at understanding fundamental heat and mass transfer mechanisms in nucleate pool boiling of non-azeotropic binary mixtures, and withmore » the knowledge to develop a passive boiling heat transfer enhancement eventually. To this end, the authors have employed microgravity environment for rather detailed observation around vapor bubbles in the course of boiling inception and bubble growth. A two-wavelength Mach-Zehnder interferometer has been developed, which withstands mechanical shock caused by gravity change from very low gravity of the order of 10{sup {minus}5} g to relatively high gravity of approximately 8 g exposed during deceleration period. A series of experiments on single vapor bubbles for CFC113 single component and CFC12/CFC112 non-azeotropic binary mixture have been conducted under a high quality microgravity conditions available in 10-second free-fall facility of Japan Microgravity Center (JAMIC). The results for single component liquid showed a strong influence due to Marangoni effect caused by the temperature profile around the bubble. The results for non-azeotropic binary mixture showed, however, considerably different behavior from single component liquid. Both temperature and concentration profiles around a single vapor bubble were evaluated from the interferograms. The temperature and concentration layers established around the bubbles were nearly one order of magnitude larger than those predicted by thermal diffusion and mass diffusion. The temperature and concentration profiles evaluated from the present experiments suggest the role of Marangoni effects due to both concentration profile and temperature profile around the bubble interface.« less
NASA Technical Reports Server (NTRS)
Withers, Paul
2005-01-01
Mars Pathfinder's Accelerometer instrument measured an unexpected and large temperature inversion between 10 and 20 kilometer altitude. Other instruments have failed to detect similar temperature inversions. I test whether this inversion is real or not by examining what changes have to be made to the assumptions in the accelerometer data processing to obtain a more "expected" temperature profile. Changes in derived temperature of up to 30K, or 15%, are necessary, which correspond to changes in derived density of up to 25% and changes in derived pressure of up to 10%. If the drag coefficient is changed to satisfy this, then instead of decreasing from 1.6 to 1.4 from 20 kilometers to 10 kilometers, the drag coefficient must increase from 1.6 to 1.8 instead. If winds are invoked, then speeds of 60 meters per second are necessary, four times greater than those predicted. Refinements to the equation of hydrostatic equilibrium modify the temperature profile by an order of magnitude less than the desired amount. Unrealistically large instrument drifts of 0.5-1.0 meters per square second are needed to adjust the temperature profile as desired. However, rotational contributions to the accelerations may have the necessary magnitude and direction to make this correction. Determining whether this hypothesis is true will require further study of the rigid body equations of motion, with detailed knowledge of the positions of all six accelerometers. The paradox concerning this inversion is not yet resolved. It is important to resolve it because the paradox has some startling implications. At one extreme, are temperature profiles derived from accelerometers inherently inaccurate by 20K or more? At the other extreme, are RS temperature profiles inaccurate by this same amount?
Results of the Mariner 6 and 7 Mars occultation experiments
NASA Technical Reports Server (NTRS)
Hogan, J. S.; Stewart, R. W.; Rasool, S. I.; Russell, L. H.
1972-01-01
Final profiles of temperature, pressure, and electron density on Mars were obtained for the Mariner 6 and 7 entry and exit cases, and results are presented for both the lower atmosphere and ionosphere. The results of an analysis of the systematic and formal errors introduced at each stage of the data-reduction process are also included. At all four occulation points, the lapse rate of temperature was subdadiabatic up to altitudes in excess of 20 km. A pronounced temperature inversion was present above the surface at the Mariner 6 exit point. All four profiles exhibit a sharp, superadiabatic drop in temperature at high altitudes, with temperatures falling below the frost point of CO2. These results give a strong indication of frozen CO2 in the middle atmosphere of Mars.
Broadband, high-resolution investigation of advanced absorption line shapes at high temperature
NASA Astrophysics Data System (ADS)
Schroeder, Paul J.; Cich, Matthew J.; Yang, Jinyu; Swann, William C.; Coddington, Ian; Newbury, Nathan R.; Drouin, Brian J.; Rieker, Gregory B.
2017-08-01
Spectroscopic studies of planetary atmospheres and high-temperature processes (e.g., combustion) require absorption line-shape models that are accurate over extended temperature ranges. To date, advanced line shapes, like the speed-dependent Voigt and Rautian profiles, have not been tested above room temperature with broadband spectrometers. We investigate pure water vapor spectra from 296 to 1305 K acquired with a dual-frequency comb spectrometer spanning from 6800 to 7200 c m-1 at a point spacing of 0.0033 c m-1 and absolute frequency accuracy of <3.3 ×10-6c m-1 . Using a multispectral fitting analysis, we show that only the speed-dependent Voigt accurately models this temperature range with a single power-law temperature-scaling exponent for the broadening coefficients. Only the data from the analysis using this profile fall within theoretical predictions, suggesting that this mechanism captures the dominant narrowing physics for these high-temperature conditions.
Spatial variability of heating profiles in windrowed poultry litter
USDA-ARS?s Scientific Manuscript database
In-house windrow composting of broiler litter has been suggested as a means to reduce microbial populations between flocks. Published time-temperature goals are used to determine the success of the composting process for microbial reductions. Spatial and temporal density of temperature measurement ...
Temperature stabilization in dispersed flows of frameless heat removal systems in space
NASA Astrophysics Data System (ADS)
Safronov, A. A.; Filatov, N. I.; Koroteev, A. A.; Bondareva, N. V.
2017-11-01
The temperature profile stabilization is studied at radiation cooling of a dispersed veil of droplet coolers-radiators. The stabilization is shown to be nonmonotonic. The influence of the studied process regularities on the characteristics of the radiating systems is analyzed.
NASA Astrophysics Data System (ADS)
Feltz, M. L.; Borg, L.; Knuteson, R. O.; Tobin, D.; Revercomb, H.; Gambacorta, A.
2017-09-01
The U.S. National Oceanic and Atmospheric Administration (NOAA) recently began operational processing to derive vertical temperature profiles from two new sensors, Cross-Track Infrared Sounder and Advanced Technology Microwave Sounder, which were developed for the next generation of U.S. weather satellites. The NOAA-Unique Combined Atmospheric Processing System (NUCAPS) has been developed by NOAA to routinely process data from future Joint Polar Satellite System operational satellites and the preparatory Suomi-NPP satellite. This paper assesses the NUCAPS vertical temperature profile product from the upper troposphere into the middle stratosphere using radiosonde and GPS radio occultation (RO) data. Radiosonde data from the Department of Energy Atmospheric Radiation Measurement (ARM) program are=] compared to both the NUCAPS and GPS RO temperature products to evaluate bias and RMS errors. At all three fixed ARM sites for time periods investigated the NUCAPS temperature in the 100-40 hPa range is found to have an average bias to the radiosondes of less than 0.45 K and an RMS error of less than 1 K when temperature averaging kernels are applied. At a 95% confidence level, the radiosondes and RO were found to agree within 0.4 K at the North Slope of Alaska site and within 0.83 K at Southern Great Plains and Tropical Western Pacific. The GPS RO-derived dry temperatures, obtained from the University Corporation for Atmospheric Research Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) mission, are used as a common reference for the intercomparison of NUCAPS temperature products to similar products produced by NASA from Atmospheric Infrared Sounder (AIRS) and by European Organisation for the Exploitation of Meteorological Satellites from MetOp-B Infrared Atmospheric Sounding Interferometer (IASI). For seasonal and zonal scales, the NUCAPS agreement with AIRS and IASI is less than 0.5 K after application of averaging kernels.
Hybrid photonic signal processing
NASA Astrophysics Data System (ADS)
Ghauri, Farzan Naseer
This thesis proposes research of novel hybrid photonic signal processing systems in the areas of optical communications, test and measurement, RF signal processing and extreme environment optical sensors. It will be shown that use of innovative hybrid techniques allows design of photonic signal processing systems with superior performance parameters and enhanced capabilities. These applications can be divided into domains of analog-digital hybrid signal processing applications and free-space---fiber-coupled hybrid optical sensors. The analog-digital hybrid signal processing applications include a high-performance analog-digital hybrid MEMS variable optical attenuator that can simultaneously provide high dynamic range as well as high resolution attenuation controls; an analog-digital hybrid MEMS beam profiler that allows high-power watt-level laser beam profiling and also provides both submicron-level high resolution and wide area profiling coverage; and all optical transversal RF filters that operate on the principle of broadband optical spectral control using MEMS and/or Acousto-Optic tunable Filters (AOTF) devices which can provide continuous, digital or hybrid signal time delay and weight selection. The hybrid optical sensors presented in the thesis are extreme environment pressure sensors and dual temperature-pressure sensors. The sensors employ hybrid free-space and fiber-coupled techniques for remotely monitoring a system under simultaneous extremely high temperatures and pressures.
Rodrigues, Diulia C Q; Soares, Atílio P; Costa, Esly F; Costa, Andréa O S
2017-01-01
Cement is one of the most used building materials in the world. The process of cement production involves numerous and complex reactions that occur under different temperatures. Thus, there is great interest in the optimization of cement manufacturing. Clinker production is one of the main steps of cement production and it occurs inside the kiln. In this paper, the dry process of clinker production is analysed in a rotary kiln that operates in counter flow. The main phenomena involved in clinker production is as follows: free residual water evaporation of raw material, decomposition of magnesium carbonate, decarbonation, formation of C3A and C4AF, formation of dicalcium silicate, and formation of tricalcium silicate. The main objective of this study was to propose a mathematical model that realistically describes the temperature profile and the concentration of clinker components in a real rotary kiln. In addition, the influence of different speeds of inlet gas and solids in the system was analysed. The mathematical model is composed of partial differential equations. The model was implemented in Mathcad (available at CCA/UFES) and solved using industrial input data. The proposal model is satisfactory to describe the temperature and concentration profiles of a real rotary kiln.
Alonso-Torres, Beatriz; Hernández-Pérez, José Alfredo; Sierra-Espinoza, Fernando; Schenker, Stefan; Yeretzian, Chahan
2013-01-01
Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.
Identification and control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.; Singh, N. B.
1992-01-01
This paper presents an intelligent adaptive control system for the control of a solid-liquid interface of a crystal while it is growing via directional solidification inside a multizone transparent furnace. The task of the process controller is to establish a user-specified axial temperature profile and to maintain a desirable interface shape. Both single-input-single-output and multi-input-multi-output adaptive pole placement algorithms have been used to control the temperature. Also described is an intelligent measurement system to assess the shape of the crystal while it is growing. A color video imaging system observes the crystal in real time and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.
Low-Cost Structural Thermoelectric Materials: Processing and Consolidation
2015-01-01
12 Fig. 8 Hardness from X - ray 2θ profiles for the Fe–Al–V and Ti–Ni–Sn... Hardness from X - ray 2θ profiles for the Fe–Al–V and Ti–Ni–Sn TE materials as a function of annealing temperature 3.3 Consolidated Thermoelectric...9 3. Results 10 3.1 X - ray
On the meaning of peak temperature profiles in inverted metamorphic sequences
NASA Astrophysics Data System (ADS)
Duprat-Oualid, Sylvia; Yamato, Philippe
2017-07-01
Inverted metamorphic sequences (IMS) are common features of main thrust systems on Earth. They exhibit an upwards continuous increase in peak temperature conditions and thereby constitute evidence of the close relationship between the thermal field evolution and tectonic processes. Heat advection and shear heating are known to allow the formation of such metamorphic signatures. Heat diffusion also plays an important role in temperature distribution on both sides of the thrust. Other advection processes such as erosion or accretion may also cause a local peak temperature inversion. Each one of these processes therefore affects the thermal field around the thrust. However, despite the crucial importance of all these processes for the interpretation of the inverted peak temperature signatures, their respective influences have never been quantified and compared all together. To address this issue, we propose an innovative coupled approach. (i) We use two-dimensional numerical models that simulate various thrust systems, allowing for a wide diversity of setups. To illustrate this study, we focus on intracontinental thrust systems for which all processes listed are likely to play a key role in the thermal evolution. We perform a parametric study including kinematic settings (i.e. convergence, erosion and accretion), thermal properties, mechanical strength and heat sources. (ii) Dimensionless numbers based on parameters are used to quantify the relative contributions of each process to the thermal budget evolution. Hence, the three thermal processes (i.e. heat diffusion, heat advection and shear heating) are compared with each other via three dimensionless combinations of the Peclet and Brinkman numbers: RDif, RAdv and RPro, respectively. Erosion and accretion are compared separately, based on a fourth dimensionless number Rea. (iii) We analytically examine the inverted peak temperature recorded along profiles that are perpendicular to the thrust zone defined in our numerical experiments. Each peak temperature profile presenting an inversion can then be characterized by a function of approximation involving six meaningful parameters: the location μFF and width σFF of the maximum peak temperature inversion, the characteristic peak temperature Tcte and gradient GLB beneath the inversion zone, and the inversion-related contrasts in the peak temperature ΔT and gradient ΔG. This coupled approach, linking numerical modelling and analytical treatment, allows to quantitatively interpret IMS in terms of the processes involved. The application of our method to intracontinental thrust systems demonstrates that shear heating and erosion support significant inversions, but that the relative contributions of each process have meaningful consequences. Our results reveal that competition between shear heating and heat diffusion on the one hand, and between erosion and accretion on the other hand have a high impact. In particular, the variability in the rock's mechanical strength strongly influences the features of peak temperature inversions. Consequently, none of these processes can be ignored. Our results highlight the major importance of the rheology of rocks in the thermal evolution of shear zones. Finally, our methodology is not only restricted to the analysis of numerical data but also constitutes a way of broad interest to analyse peak temperature signatures around any shear zone.
Evaluation and optimization of lidar temperature analysis algorithms using simulated data
NASA Technical Reports Server (NTRS)
Leblanc, Thierry; McDermid, I. Stuart; Hauchecorne, Alain; Keckhut, Philippe
1998-01-01
The middle atmosphere (20 to 90 km altitude) ha received increasing interest from the scientific community during the last decades, especially since such problems as polar ozone depletion and climatic change have become so important. Temperature profiles have been obtained in this region using a variety of satellite-, rocket-, and balloon-borne instruments as well as some ground-based systems. One of the more promising of these instruments, especially for long-term high resolution measurements, is the lidar. Measurements of laser radiation Rayleigh backscattered, or Raman scattered, by atmospheric air molecules can be used to determine the relative air density profile and subsequently the temperature profile if it is assumed that the atmosphere is in hydrostatic equilibrium and follows the ideal gas law. The high vertical and spatial resolution make the lidar a well adapted instrument for the study of many middle atmospheric processes and phenomena as well as for the evaluation and validation of temperature measurements from satellites, such as the Upper Atmosphere Research Satellite (UARS). In the Network for Detection of Stratospheric Change (NDSC) lidar is the core instrument for measuring middle atmosphere temperature profiles. Using the best lidar analysis algorithm possible is therefore of crucial importance. In this work, the JPL and CNRS/SA lidar analysis software were evaluated. The results of this evaluation allowed the programs to be corrected and optimized and new production software versions were produced. First, a brief description of the lidar technique and the method used to simulate lidar raw-data profiles from a given temperature profile is presented. Evaluation and optimization of the JPL and CNRS/SA algorithms are then discussed.
NASA Astrophysics Data System (ADS)
Sekimoto, K.; Koss, A.; Gilman, J.; Selimovic, V.; Coggon, M.; Zarzana, K. J.; Yuan, B.; Lerner, B. M.; Brown, S. S.; Warneke, C.; Yokelson, R. J.; De Gouw, J. A.
2017-12-01
Biomass burning is a large source of volatile organic compounds (VOCs) and many other trace species to the atmosphere. These VOCs can act as precursors to formation of secondary pollutants such as ozone and fine particles, and some VOCs can also have direct effects on human and ecosystem health. Multiple different and complex processes take place in biomass burning, e.g., distillation, flaming, and smoldering combustion processes. In a given fire, most of these processes occur simultaneously, but the relative importance of each can change over the course of a fire. This gives rise to some of the variability in VOC emissions between different fires. To study gas-phase emissions from biomass burning, an H3O+ ToF-CIMS was deployed during the FIREX 2016 laboratory intensive at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. This instrument has a fast time response and the measurements in stack burns show the varying gas-phase emissions as the mix of distillation, flaming, and smoldering varies. We used positive matrix factorization (PMF) to reduce and explain the observed chemical complexity in the gas phase. Despite the complexity and variability of emissions, we found that a solution including just two emission profiles explained on average 85% of the VOC emissions across 15 different fuel types including pines, firs, spruce, grass, shrubs, chaparrals, and wood wool. We identified the two profiles as resulting from high-temperature and low-temperature pyrolysis processes, and found that the profiles were remarkably similar (correlation coefficient r > 0.9) across nearly all the fuel types described above. Some of the remaining differences in VOC emission profiles between fuel types, and exceptions to the two-profile solution, can be explained by differences in the chemical composition of the fuels.
Investigation of Materials Processing Technology
1993-07-01
Figure 6: Time-temperature curves of A357 casting in Cu mold ................. 12 Figure 7: Time-temperature curves of 17 -4 casting in ceramic mold...simulation of 17 -4 ................ 17 Figure 12: IHTC from IHEAT simulation of 17 -4 casting ..................... 18 Figure 13: Temperature profiles...mold used for Ti castings .......................... 23 Figure 16: Cooling curves for a Ti casting in ceramic mold .................. 24 Figure 17
Flow Field Dynamics in a High-g Ultra-Compact Combustor
2016-12-01
6.1.3.1. Baseline Exit Temperatures .............................................................. 308 x 6.1.3.2. Exit Temperature Effects Due to...through improved thrust-specific fuel consumption ; however, implementation of an effective combustion scheme in the constrained space between turbine...their influence on the combustion process, and the resultant effect on exit temperature profiles and emissions (as detailed in the following section
Adaptive temperature profile control of a multizone crystal growth furnace
NASA Technical Reports Server (NTRS)
Batur, C.; Sharpless, R. B.; Duval, W. M. B.; Rosenthal, B. N.
1991-01-01
An intelligent measurement system is described which is used to assess the shape of a crystal while it is growing inside a multizone transparent furnace. A color video imaging system observes the crystal in real time, and determines the position and the shape of the interface. This information is used to evaluate the crystal growth rate, and to analyze the effects of translational velocity and temperature profiles on the shape of the interface. Creation of this knowledge base is the first step to incorporate image processing into furnace control.
NASA Astrophysics Data System (ADS)
Navas-Guzmán, Francisco; Kämpfer, Niklaus; Haefele, Alexander; Keckhut, Philippe; Hauchecorne, Alain
2015-04-01
The importance of the knowledge of the temperature structure in the atmosphere has been widely recognized. Temperature is a key parameter for dynamical, chemical and radiative processes in the atmosphere. The cooling of the stratosphere is an indicator for climate change as it provides evidence of natural and anthropogenic climate forcing just like surface warming ( [1] and references therein). However, our understanding of the observed stratospheric temperature trend and our ability to test simulations of the stratospheric response to emissions of greenhouse gases and ozone depleting substances remains limited. Stratospheric long-term datasets are sparse and obtained trends differ from one another [1]. Therefore it is important that in the future such datasets are generated. Different techniques allow to measure stratospheric temperature profiles as radiosonde, lidar or satellite. The main advantage of microwave radiometers against these other instruments is a high temporal resolution with a reasonable good spatial resolution. Moreover, the measurement at a fixed location allows to observe local atmospheric dynamics over a long time period, which is crucial for climate research. TEMPERA (TEMPERature RAdiometer) is a newly developed ground-based microwave radiometer designed, built and operated at the University of Bern. The instrument and the retrieval of temperature profiles has been described in detail in [2]. TEMPERA is measuring a pressure broadened oxygen line at 53.1 GHz in order to determine stratospheric temperature profiles. The retrieved profiles of TEMPERA cover an altitude range of approximately 20 to 45 km with a vertical resolution in the order of 15 km. The lower limit is given by the instrumental baseline and the bandwidth of the measured spectrum. The upper limit is given by the fact that above 50 km the oxygen lines are splitted by the Zeeman effect in the terrestrial magnetic field. In this study we present a comparison of stratospheric temperature profiles retrieved from TEMPERA radiometer with the ones obtained from different techniques such as in-situ (radiosondes), active remote sensing (lidar) and passive remote sensing on board of Aura satellite (MLS) measurements. Moreover, a statistical analysis of the stratospheric temperature from TEMPERA measurements for three years of data have been performed.The results evidence the capability of TEMPERA radiometer to monitor the temperature in the stratosphere for a long-term. The detection of some singular sudden stratospheric warming (SSW) during the analyzed period shows the necessity of these continuous monitoring in order to measure and understand some important processes which could happen on a short time scale. References [1] D. W. Thompson, D. J. Seidel, W. J. Randel, C.-Z. Zou, A. H. Butler, C. Mears, A. Osso, C. Long, and R. Lin, "The mystery of recent stratospheric temperature trends," Nature, vol. 491, no. 7426, pp. 692-697, 2012. [2] O. Stähli, A. Murk, N. Kämpfer, C. Mätzler, and P. Eriksson, "Microwave radiometer to retrieve temperature profiles from the surface to the stratopause," Atmospheric Measurement Techniques Discussions, vol. 6, no. 2, pp. 2857-2905, 2013.
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.
Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone
2016-10-05
Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics
Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone
2016-01-01
Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141
Effects of applied dc radial electric fields on particle transport in a bumpy torus plasma
NASA Technical Reports Server (NTRS)
Roth, J. R.
1978-01-01
The influence of applied dc radial electric fields on particle transport in a bumpy torus plasma is studied. The plasma, magnetic field, and ion heating mechanism are operated in steady state. Ion kinetic temperature is more than a factor of ten higher than electron temperature. The electric fields raise the ions to energies on the order of kilovolts and then point radially inward or outward. Plasma number density profiles are flat or triangular across the plasma diameter. It is suggested that the radial transport processes are nondiffusional and dominated by strong radial electric fields. These characteristics are caused by the absence of a second derivative in the density profile and the flat electron temperature profiles. If the electric field acting on the minor radius of the toroidal plasma points inward, plasma number density and confinement time are increased.
Radial magnetic compression in the expelled jet of a plasma deflagration accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loebner, Keith T. K., E-mail: kloebner@stanford.edu; Underwood, Thomas C.; Mouratidis, Theodore
2016-02-29
A spectroscopic study of a pulsed plasma deflagration accelerator is carried out that confirms the existence of a strong compression in the emerging jet at the exit plane of the device. An imaging spectrometer is used to collect broadened Hα emission from a transaxial slice of the emerging jet at high spatial resolution, and the radial plasma density profile is computed from Voigt fits of the Abel inverted emissivity profiles. The plasma temperature, determined via Doppler broadening of impurity line emission, is compared against the temperature predictions of a radial magnetohydrodynamic equilibrium model applied to the measured density profiles. Empiricalmore » scaling laws developed for the plasma density, combined with the measured and predicted temperatures, indicate that a radially equilibrated Z-pinch is formed within the expelled plasma jet at the exit plane during the deflagration process.« less
Evolution of Edge Pedestal Profiles Between ELMs
NASA Astrophysics Data System (ADS)
Floyd, J. P.; Stacey, W. M.; Groebner, R. J.
2012-10-01
The measured edge profile evolution in DIII-D discharges is analyzed in terms of the implied thermal diffusivities, ion diffusion coefficients and pinch velocities, using the momentum-balance methodology of Ref. [1], extended to take into account ion orbit loss and X-point loss. The evolution of the density, temperature, rotation and radial electric field profiles in the edge pedestal between edge localized modes (ELMs) provides information of these diffusive and non-diffusive transport processes in the pedestal of H-mode plasmas. This methodology is incorporated in the GTEDGE code developed for DIII-D data interpretation. Using a smaller integration time for the charge exchange recombination measurements than in Ref. [1] allows a more detailed examination of the time evolution of the ion temperature and rotation profiles. 6pt [1] W.M. Stacey and R.J. Groebner, Nucl. Fusion 51, 063024 (2011).
Lüthi, M. P.; Ryser, C.; Andrews, L. C.; ...
2015-01-01
Ice temperature profiles from the Greenland Ice Sheet contain information on the deformation history, past climates and recent warming. We present full-depth temperature profiles from two drill sites on a flow line passing through Swiss Camp, West Greenland. Numerical modeling reveals that ice temperatures are considerably higher than would be expected from heat diffusion and dissipation alone. The possible causes for this extra heat are evaluated using a Lagrangian heat flow model. The model results reveal that the observations can be explained with a combination of different processes: enhanced dissipation (strain heating) in ice-age ice, temperate paleo-firn, and cryo-hydrologic warmingmore » in deep crevasses.« less
Experiments on aerosol-induced cooling in the nocturnal boundary layer
NASA Astrophysics Data System (ADS)
Sreenivas, K.; Singh, D. K.; Vk, P.; Mukund, V.; Subramanian, G.
2012-12-01
In the nocturnal boundary layer (NBL), under calm & clear-sky conditions, radiation is the principal mode of heat transfer & it determines the temperature distribution close to the ground. Radiative processes thus influence the surface energy budget, & play a decisive role in many micro-meteorological processes including the formation of radiation-fog & inversion layer. Here, we report hyper-cooling of air layers close to the ground that has a radiative origin. Resulting vertical temperature distribution has an anomalous profile with an elevated minimum few decimetres above the ground (known as Lifted Temperature Minimum; LTM). Even though the first observation of this type of profile dates back to 1930s, its origin has not been explained till recently. We report field experiments to elucidate effects of emissivity and other physical properties of the ground on the LTM profile. Field observations clearly indicate that LTM-profiles are observed as a rule in the lowest meter of the NBL. We also demonstrate that the air-layer near the ground, rather than the ground itself, leads the post sunset cooling. This fact changes the very nature of the sensible heat-flux boundary condition. A laboratory experimental setup has been developed that can reproduce LTM. Lab-experiments demonstrate that the high cooling rates observed in the field experiments arise from the presence of aerosols & the intensity of cooling is proportional to aerosol concentration (Fig-1). We have also captured penetrative convection cells in the field experiments (Fig-2). Results presented here thus help in parameterizing transport processes in the NBL.
Parkinson, William J.
1987-01-01
A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.
NASA Astrophysics Data System (ADS)
Kühn-Kauffeldt, M.; Marqués, J.-L.; Schein, J.
2015-01-01
Thomson scattering is applied to measure temperature and density of electrons in the arc plasma of the direct current gas tungsten arc welding (GTAW) process and pulsed gas metal arc welding (GMAW) process. This diagnostic technique allows to determine these plasma parameters independent from the gas composition and heavy particles temperature. The experimental setup is adapted to perform measurements on stationary as well as transient processes. Spatial and temporal electron temperature and density profiles of a pure argon arc in the case of the GTAW process and argon arc with the presence of aluminum metal vapor in the case of the GMAW process were obtained. Additionally the data is used to estimate the concentration of the metal vapor in the GMAW plasma.
Denys, S; Van Loey, A M; Hendrickx, M E
2000-01-01
A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing.
Raplee, J; Plotkowski, A; Kirka, M M; Dinwiddie, R; Okello, A; Dehoff, R R; Babu, S S
2017-03-03
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
Raplee, Jake B.; Plotkowski, Alex J.; Kirka, Michael M.; ...
2017-03-03
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in-situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. This developed a method for properly calibrating temperature profiles from thermographic data and then determining important characteristics of the build through additional processing. The thermographic data was analyzed to determinemore » the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, we calculated the thermal gradient and solid-liquid interface velocity and correlated it to microstructural variation within the part experimentally. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control.« less
Megalla, Dina; Van Geel, Paul J; Doyle, James T
2016-09-01
A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wilhelm, G.; Kozakov, R.; Gött, G.; Schöpp, H.; Uhrlandt, D.
2012-02-01
The controlled metal transfer process (CMT) is a variation of the gas metal arc welding (GMAW) process which periodically varies wire feeding speed. Using a short-arc burning phase to melt the wire tip before the short circuit, heat input to the workpiece is reduced. Using a steel wire and a steel workpiece, iron vapour is produced in the arc, its maximum concentration lying centrally. The interaction of metal vapour and welding gas considerably impacts the arc profile and, consequently, the heat transfer to the weldpool. Optical emission spectroscopy has been applied to determine the radial profiles of the plasma temperature and iron vapour concentration, as well as their temporal behaviour in the arc period for different mixtures of Ar, O2 and CO2 as shielding gases. Both the absolute iron vapour density and the temporal expansion of the iron core differ considerably for the gases Ar + 8%O2, Ar + 18% CO2 and 100% CO2 respectively. Pronounced minimum in the radial temperature profile is found in the arc centre in gas mixtures with high Ar content under the presence of metal vapour. This minimum disappears in pure CO2 gas. Consequently, the temperature and electrical and thermal conductivity in the arc when CO2 is used as a shielding gas are considerably lower.
Data Assimilation Experiments Using Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel
2009-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band in the AIRS Version 5 temperature profile retrieval step. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Clear column radiances for all channels are determined using tropospheric sounding 15 micron CO2 observations. This approach allows for the generation of accurate values of clear column radiances and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel clear column radiances. These error estimates are used for quality control of the retrieved products. Based on error estimate thresholds, each temperature profiles is assigned a characteristic pressure, pg, down to which the profile is characterized as good for use for data assimilation purposes. We have conducted forecast impact experiments assimilating AIRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM, at a spatial resolution of 0.5 deg by 0.5 deg. Assimilation of Quality Controlled AIRS temperature profiles down to pg resulted in significantly improved forecast skill compared to that obtained from experiments when all data used operationally by NCEP, except for AIRS data, is assimilated. These forecasts were also significantly better than to those obtained when AIRS radiances (rather than temperature profiles) are assimilated, which is the way AIRS data is used operationally by NCEP and ECMWF.
Environmental Effects on the Metallicities of Early-Type Galaxies
NASA Technical Reports Server (NTRS)
Jones, Christine; Oliversen, Ronald (Technical Monitor)
2004-01-01
We completed and published two papers in the Astrophysical Journal based on research from grant. In the first paper we analyzed nine X-ray-bright Virgo early-type galaxies observed by both ASCA and ROSAT. Through spatially resolved spectroscopy, we determined the radial temperature profiles and abundances of Mg, Si, and Fe for six galaxies. The temperature profiles are consistent with isothermal temperatures outside of cooler regions at the galaxies' centers. We present new evidence for iron abundance gradients in NGC 4472 and NGC 4649 and confirm the previous results on NGC 4636. Mg and Si abundance gradients on average are flatter than those of iron and correspond to an underabundance of α-process elements at high Fe values, while at low iron the element ratios favor enrichment by Type II supernovae (SNe). We explain the observed trend using the metallicity dependence of SN Ia metal production and present constraints on the available theoretical modeling for low-metallicity inhibition of SNe Ia. In the second paper We analyzed nine X-ray-bright Virgo early-type galaxies observed by both ASCA and ROSAT. Through spatially resolved spectroscopy, we determined the radial temperature profiles and abundances of Mg, Si, and Fe for six galaxies. The temperature profiles are consistent with isothermal temperatures outside of cooler regions at the galaxies' centers. We present new evidence for iron abundance gradients in NGC 4472 and NGC 4649 and confirm the previous results on NGC 4636. Mg and Si abundance gradients on average are flatter than those of iron and correspond to an underabundance of α-process elements at high Fe values, while at low iron the element ratios favor enrichment by Type I1 supernovae (SNe). We explain the observed trend using the metallicity dependence of SN Ia metal production and present constraints on the available theoretical modeling for low-metallicity inhibition of SNe Ia.
Isoflavone profile in soymilk as affected by soybean variety, grinding, and heat-processing methods.
Zhang, Yan; Chang, Sam K C; Liu, Zhisheng
2015-05-01
Isoflavones impart health benefits and their overall content and profile in foods are greatly influenced at each step during processing. In this study, 2 soybean varieties (Prosoy and black soybean) were processed with 3 different grinding (ambient, cold, and hot grinding) and heating methods (traditional stove cooking, 1-phase UHT, and 2-phase UHT) for soymilk making. The results showed after cold, ambient, and hot grinding, the total isoflavones were 3917, 5013, and 5949 nmol/g for Prosoy; the total isoflavones were 4073, 3966, and 4284 nmol/g for black soybean. Grinding could significantly increase isoflavone extraction. The grinding process had a destructive effect on isoflavones and this effect varied with grinding temperature. Different heating methods had different effects on different isoflavone forms. Two soybean varieties showed distinct patterns with respect to the change of isoflavone profile during processing. © 2015 Institute of Food Technologists®
Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.
Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick
2012-06-01
Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given.
Shafiekhani, Soraya; Zamindar, Nafiseh; Hojatoleslami, Mohammad; Toghraie, Davood
2016-06-01
Pasteurization of canned apple puree was simulated for a 3-D geometry in a semi-rigid aluminum based container which was heated from all sides at 378 K. The computational fluid dynamics code Ansys Fluent 14.0 was used and the governing equations for energy, momentum, and continuity were computed using a finite volume method. The food model was assumed to have temperature-dependent properties. To validate the simulation, the apple puree was pasteurized in a water cascading retort. The effect of the mesh structures was studied for the temperature profiles during thermal processing. The experimental temperature in the slowest heating zone in the container was compared with the temperature predicted by the model and the difference was not significant. The study also investigated the impact of head space (water-vapor) on heat transfer.
An Alternative Cu-Based Bond Layer for Electric Arc Coating Process
NASA Astrophysics Data System (ADS)
Fadragas, Carlos R.; Morales, E. V.; Muñoz, J. A.; Bott, I. S.; Lariot Sánchez, C. A.
2011-12-01
A Cu-Al alloy has been used as bond coat between a carbon steel substrate and a final coating deposit obtained by applying the twin wire electric arc spraying coating technique. The presence of a copper-based material in the composite system can change the overall temperature profile during deposition because copper exhibits a thermal conductivity several times higher than that of the normally recommended bond coat materials (such as nickel-aluminum alloys or nickel-chromium alloys). The microstructures of 420 and 304 stainless steels deposited by the electric arc spray process have been investigated, focusing attention on the deposit homogeneity, porosity, lamellar structure, and microhardness. The nature of the local temperature gradient during deposition can strongly influence the formation of the final coating deposit. This study presents a preliminary study, undertaken to investigate the changes in the temperature profile which occur when a Cu-Al alloy is used as bond coat, and the possible consequences of these changes on the microstructure and adhesion of the final coating deposit. The influence of the thickness of the bond layer on the top coating temperature has also been also evaluated.
NASA Technical Reports Server (NTRS)
Christensen, P. R.; Wyatt, M. B.; Glotch, T. D.; Rogers, A. D.; Anwar, S.; Arvidson, R. E.; Bandfield, J. L.; Blaney, D. L.; Budney, C.; Calvin, W. M.
2005-01-01
The Miniature Thermal Emission Spectrometer (Mini-TES) has provided remote measurements of mineralogy, thermophysical properties, and atmospheric temperature profile and composition of the outcrops, rocks, spherules, and soils surrounding the Spirit and Opportunity Rovers. The mineralogy of volcanic rocks provides insights into the composition of the source regions and the nature of martian igneous processes. Carbonates, sulfates, evaporites, and oxides provide information on the role of water in the surface evolution. Oxides, such as crystalline hematite, provide insight into aqueous weathering processes, as would the occurrence of clay minerals and other weathering products. Diurnal temperature measurements can be used to determine particle size and search for the effects of sub-surface layering, which in turn provide clues to the origin of surficial materials through rock disintegration, aeolian transport, atmospheric fallout, or induration. In addition to studying the surface properties, Mini-TES spectra have also been used to determine the temperature profile in the lower boundary layer, providing evidence for convective activity, and have determined the seasonal trends in atmospheric temperature and dust and cloud opacity.
Overhead longwave infrared hyperspectral material identification using radiometric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelinski, M. E.
Material detection algorithms used in hyperspectral data processing are computationally efficient but can produce relatively high numbers of false positives. Material identification performed as a secondary processing step on detected pixels can help separate true and false positives. This paper presents a material identification processing chain for longwave infrared hyperspectral data of solid materials collected from airborne platforms. The algorithms utilize unwhitened radiance data and an iterative algorithm that determines the temperature, humidity, and ozone of the atmospheric profile. Pixel unmixing is done using constrained linear regression and Bayesian Information Criteria for model selection. The resulting product includes an optimalmore » atmospheric profile and full radiance material model that includes material temperature, abundance values, and several fit statistics. A logistic regression method utilizing all model parameters to improve identification is also presented. This paper details the processing chain and provides justification for the algorithms used. Several examples are provided using modeled data at different noise levels.« less
NASA Technical Reports Server (NTRS)
Siegfried, D. E.
1982-01-01
A quartz hollow tube cathode was used to determine the operating conditions within a mercury orificed hollow cathode. Insert temperature profiles, cathode current distributions, plasma properties profile, and internal pressure-mass flow rate results are summarized and used in a phenomenological model which qualitatively describes electron emission and plasma production processes taking place within the cathode. By defining an idealized ion production region within which most of the plasma processes are concentrated, this model is expressed analytically as a simple set of equations which relate cathode dimensions and specifiable operating conditions, such as mass flow rate and discharge current, to such important parameters as emission surface temperature and internal plasma properties. Key aspects of the model are examined.
Dynamic predictive model for growth of Salmonella spp. in scrambled egg mix.
Li, Lin; Cepeda, Jihan; Subbiah, Jeyamkondan; Froning, Glenn; Juneja, Vijay K; Thippareddi, Harshavardhan
2017-06-01
Liquid egg products can be contaminated with Salmonella spp. during processing. A dynamic model for the growth of Salmonella spp. in scrambled egg mix - high solids (SEM) was developed and validated. SEM was prepared and inoculated with ca. 2 log CFU/mL of a five serovar Salmonella spp. cocktail. Salmonella spp. growth data at isothermal temperatures (10, 15, 20, 25, 30, 35, 37, 39, 41, 43, 45, and 47 °C) in SEM were collected. Baranyi model was used (primary model) to fit growth data and the maximum growth rate and lag phase duration for each temperature were determined. A secondary model was developed with maximum growth rate as a function of temperature. The model performance measures, root mean squared error (RMSE, 0.09) and pseudo-R 2 (1.00) indicated good fit for both primary and secondary models. A dynamic model was developed by integrating the primary and secondary models and validated using two sinusoidal temperature profiles, 5-15 °C (low temperature) for 480 h and 10-40 °C (high temperature) for 48 h. The RMSE values for the sinusoidal low and high temperature profiles were 0.47 and 0.42 log CFU/mL, respectively. The model can be used to predict Salmonella spp. growth in case of temperature abuse during liquid egg processing. Copyright © 2016. Published by Elsevier Ltd.
High temperature spectral emissivity measurement using integral blackbody method
NASA Astrophysics Data System (ADS)
Pan, Yijie; Dong, Wei; Lin, Hong; Yuan, Zundong; Bloembergen, Pieter
2016-10-01
Spectral emissivity is a critical material's thermos-physical property for heat design and radiation thermometry. A prototype instrument based upon an integral blackbody method was developed to measure material's spectral emissivity above 1000 °. The system was implemented with an optimized commercial variable-high-temperature blackbody, a high speed linear actuator, a linear pyrometer, and an in-house designed synchronization circuit. A sample was placed in a crucible at the bottom of the blackbody furnace, by which the sample and the tube formed a simulated blackbody which had an effective total emissivity greater than 0.985. During the measurement, the sample was pushed to the end opening of the tube by a graphite rod which was actuated through a pneumatic cylinder. A linear pyrometer was used to monitor the brightness temperature of the sample surface through the measurement. The corresponding opto-converted voltage signal was fed and recorded by a digital multi-meter. A physical model was proposed to numerically evaluate the temperature drop along the process. Tube was discretized as several isothermal cylindrical rings, and the temperature profile of the tube was measurement. View factors between sample and rings were calculated and updated along the whole pushing process. The actual surface temperature of the sample at the end opening was obtained. Taking advantages of the above measured voltage profile and the calculated true temperature, spectral emissivity under this temperature point was calculated.
NASA Astrophysics Data System (ADS)
Shibata, Y.; Nagasawa, C.; Abo, M.
2016-12-01
High-accurate vertical carbon dioxide (CO2) profiles are highly desirable in the inverse method to improve quantification and understanding of the global sink and source of CO2, and also global climate change. We have developed a ground based 1.6μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. The barometric formula can derive atmospheric pressure of each altitude using atmospheric pressure of ground level at the lidar site. Comparison of atmospheric pressure prlofiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan are consisted within 0.2 % below 3 km altitude. So, we have developed a 1.6 μm CO2 DIAL system for simultaneous measurements of the CO2 concentration and temperature profiles in the lower-atmosphere. Laser beams of three wavelengths around a CO2 absorption spectrum is transmitted alternately to the atmosphere. Moreover, the value of the retrieved CO2 concentration will be improved remarkably by processing the iteration assignment of CO2 concentration and temperature, which measured by these DIAL techniques. We have acheived vertical CO2 concentration and temperature profile from 0.5 to 2.0 km altitude by this DIAL system. In the next step, we will use this high accuracy CO2 concentration profile and back-trajectory analysis for the behavior analysis of the CO2 mass. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.
Double-Vacuum-Bag Process for Making Resin-Matrix Composites
NASA Technical Reports Server (NTRS)
Bradford, Larry J.
2007-01-01
A double-vacuum-bag process has been devised as a superior alternative to a single-vacuum-bag process used heretofore in making laminated fiber-reinforced resin-matrix composite-material structural components. This process is applicable to broad classes of high-performance matrix resins including polyimides and phenolics that emit volatile compounds (solvents and volatile by-products of resin-curing chemical reactions) during processing. The superiority of the double-vacuum-bag process lies in enhanced management of the volatile compounds. Proper management of volatiles is necessary for making composite-material components of high quality: if not removed and otherwise properly managed, volatiles can accumulate in interior pockets as resins cure, thereby forming undesired voids in the finished products. The curing cycle for manufacturing a composite laminate containing a reactive resin matrix usually consists of a two-step ramp-and-hold temperature profile and an associated single-step pressure profile as shown in Figure 1. The lower-temperature ramp-and-hold step is known in the art as the B stage. During the B stage, prepregs are heated and volatiles are generated. Because pressure is not applied at this stage, volatiles are free to escape. Pressure is applied during the higher-temperature ramp-and-hold step to consolidate the laminate and impart desired physical properties to the resin matrix. The residual volatile content and fluidity of the resin at the beginning of application of consolidation pressure are determined by the temperature and time parameters of the B stage. Once the consolidation pressure is applied, residual volatiles are locked in. In order to produce a void-free, high-quality laminate, it is necessary to design the curing cycle to obtain the required residual fluidity and the required temperature at the time of application of the consolidation pressure.
Assessing heat treatment of chicken breast cuts by impedance spectroscopy.
Schmidt, Franciny C; Fuentes, Ana; Masot, Rafael; Alcañiz, Miguel; Laurindo, João B; Barat, José M
2017-03-01
The aim of this work was to develop a new system based on impedance spectroscopy to assess the heat treatment of previously cooked chicken meat by two experiments; in the first, samples were cooked at different temperatures (from 60 to 90 ℃) until core temperature of the meat reached the water bath temperature. In the second approach, temperature was 80 ℃ and the samples were cooked for different times (from 5 to 55 min). Impedance was measured once samples had cooled. The examined processing parameters were the maximum temperature reached in thermal centre of the samples, weight loss, moisture and the integral of the temperature profile during the cooking-cooling process. The correlation between the processing parameters and impedance was studied by partial least square regressions. The models were able to predict the studied parameters. Our results are essential for developing a new system to control the technological, sensory and safety aspects of cooked meat products on the whole meat processing line.
Asmeda, R; Noorlaila, A; Norziah, M H
2016-01-15
This research was conducted to investigate the effects of different grinding techniques (dry, semi-wet and wet) of milled rice grains on the damaged starch and particle size distribution of flour produced from a new variety, MR263, specifically related to the pasting and thermal profiles. The results indicated that grinding techniques significantly (p<0.05) affected starch damage content and particle size distribution of rice flour. Wet grinding process yields flour with lowest percentage of starch damage (7.37%) and finest average particle size (8.52μm). Pasting and gelatinization temperature was found in the range of 84.45-89.63°C and 59.86-75.31°C, respectively. Dry ground flour attained the lowest pasting and gelatinization temperature as shown by the thermal and pasting profiles. Correlation analysis revealed that percentage of damaged starch granules had a significant, negative relationship with pasting temperature while average particle size distribution had a significant, strong negative relationship with gelatinization temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.
Laser-saturated fluorescence measurements in laminar sooting diffusion flames
NASA Technical Reports Server (NTRS)
Wey, Changlie
1993-01-01
The hydroxyl radical is known to be one of the most important intermediate species in the combustion processes. The hydroxyl radical has also been considered a dominant oxidizer of soot particles in flames. In this investigation the hydroxyl concentration profiles in sooting diffusion flames were measured by the laser-saturated fluorescence (LSF) method. The temperature distributions in the flames were measured by the two-line LSF technique and by thermocouple. In the sooting region the OH fluorescence was too weak to make accurate temperature measurements. The hydroxyl fluorescence profiles for all four flames presented herein show that the OH fluorescence intensities peaked near the flame front. The OH fluorescence intensity dropped sharply toward the dark region of the flame and continued declining to the sooting region. The OH fluorescence profiles also indicate that the OH fluorescence decreased with increasing height in the flames for all flames investigated. Varying the oxidizer composition resulted in a corresponding variation in the maximum OH concentration and the flame temperature. Furthermore, it appears that the maximum OH concentration for each flame increased with increasing flame temperature.
Code Description for Generation of Meteorological Height and Pressure Level and Layer Profiles
2016-06-01
defined by user input height or pressure levels. It can process input profiles from sensing systems such as radiosonde, lidar, or wind profiling radar...nearly the same way, but the split between wind and temperature/humidity (TH) special levels leads to some changes to one other routine. If changes are...top of the sounding, sometimes the moisture, the thermal, both thermal and moisture, and/or the wind data are missing. Missing data items in the
Mesospheric temperatures estimated from the meteor radar observations at Mohe, China
NASA Astrophysics Data System (ADS)
Liu, Libo; Liu, Huixin; Le, Huijun; Chen, Yiding; Sun, Yang-Yi; Ning, Baiqi; Hu, Lianhuan; Wan, Weixing; Li, Na; Xiong, Jiangang
2017-02-01
In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5°N, 122.3°E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Second, the full width at half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM as a function of TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2°S, 58.8°E) station.
Guiavarc'h, Yann P; van Loey, Ann M; Hendrickx, Marc E
2005-02-01
The possibilities and limitations of single- and multicomponent time-temperature integrators (TTIs) for evaluating the impact of thermal processes on a target food attribute with a Ztarget value different from the zTTI value(s) of the TTI is far from sufficiently documented. In this study, several thousand time-temperature profiles were generated by heat transfer simulations based on a wide range of product and process thermal parameters and considering a Ztarget value of 10 degrees C and a reference temperature of 121.1 degrees C, both currently used to assess the safety of food sterilization processes. These simulations included 15 different Ztarget=10 degrees CF121.1 degrees C values in the range 3 to 60 min. The integration of the time-temperature profiles with ZTTI values of 5.5 to 20.5 degrees C in steps of 1 degrees C allowed generation of a large database containing for each combination of product and process parameters the correction factor to apply to the process value FmultiTTI, which was derived from a single- or multicomponent TTI, to obtain the target process value 10 degrees CF121.1 degrees C. The table and the graph results clearly demonstrated that multicomponent TTIs with z-values close to 10 degrees C can be used as an extremely efficient approach when a single-component TTI with a z-value of 10 degrees C is not available. In particular, a two-component TTI with z1 and z2 values respectively above and below the Ztarget value (10 degrees C in this study) would be the best option for the development of a TTI to assess the safety of sterilized foods. Whatever process and product parameters are used, such a TTI allows proper evaluation of the process value 10 degrees CF121.1 degrees C.
Experimental Characterization of Radiation Forcing due to Atmospheric Aerosols
NASA Astrophysics Data System (ADS)
Sreenivas, K. R.; Singh, D. K.; Ponnulakshmi, V. K.; Subramanian, G.
2011-11-01
Micro-meteorological processes in the nocturnal atmospheric boundary layer (NBL) including the formation of radiation-fog and the development of inversion layers are controlled by heat transfer and the vertical temperature distribution close to the ground. In a recent study, it has been shown that the temperature profile close to the ground in stably-stratified, NBL is controlled by the radiative forcing due to suspended aerosols. Estimating aerosol forcing is also important in geo-engineering applications to evaluate the use of aerosols to mitigate greenhouse effects. Modeling capability in the above scenarios is limited by our knowledge of this forcing. Here, the design of an experimental setup is presented which can be used for evaluating the IR-radiation forcing on aerosols under either Rayleigh-Benard condition or under conditions corresponding to the NBL. We present results indicating the effect of surface emissivities of the top and bottom boundaries and the aerosol concentration on the temperature profiles. In order to understand the observed enhancement of the convection-threshold, we have determined the conduction-radiation time constant of an aerosol laden air layer. Our results help to explain observed temperature profiles in the NBL, the apparent stability of such profiles and indicate the need to account for the effect of aerosols in climatic/weather models.
X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignace, R.; Waldron, W. L.; Cassinelli, J. P.
2012-05-01
The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles,more » a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.« less
NASA Technical Reports Server (NTRS)
Susskind, Joel
2008-01-01
AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiles; atmospheric humidity profiles, fractional cloud cover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extratropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown, with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to validate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.
NASA Technical Reports Server (NTRS)
Susskind, Joel; Molnar, Gyula
2009-01-01
AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.
Bahlawane, N; Struckmeier, U; Kasper, T S; Osswald, P
2007-01-01
Chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD) have been employed to develop alumina thin films in order to protect thermocouples from catalytic overheating in flames and to minimize the intrusion presented to the combustion process. Alumina films obtained with a CVD process using AlCl(3) as the precursor are dense, not contaminated, and crystallize in the corundum structure, while MOCVD using Al(acetyl acetone)(3) allows the growth of corundum alumina with improved growth rates. These films, however, present a porous columnar structure and show some carbon contamination. Therefore, coated thermocouples using AlCl(3)-CVD were judged more suitable for flame temperature measurements and were tested in different fuels over a typical range of stoichiometries. Coated thermocouples exhibit satisfactory measurement reproducibility, no temporal drifts, and do not suffer from catalytic effects. Furthermore, their increased radiative heat loss (observed by infrared spectroscopy) allows temperature measurements over a wider range when compared to uncoated thermocouples. A flame with a well-known temperature profile established with laser-based techniques was used to determine the radiative heat loss correction to account for the difference between the apparent temperature measured by the coated thermocouple and the true flame temperature. The validity of the correction term was confirmed with temperature profile measurements for several flames previously studied in different laboratories with laser-based techniques.
NASA Astrophysics Data System (ADS)
Che, Yunfei; Ma, Shuqing; Xing, Fenghua; Li, Siteng; Dai, Yaru
2018-03-01
This paper focuses on an improvement of the retrieval of atmospheric temperature and relative humidity profiles through combining active and passive remote sensing. Ground-based microwave radiometer and millimeter-wavelength cloud radar were used to acquire the observations. Cloud base height and cloud thickness determinations from cloud radar were added into the atmospheric profile retrieval process, and a back-propagation neural network method was used as the retrieval tool. Because a substantial amount of data are required to train a neural network, and as microwave radiometer data are insufficient for this purpose, 8 years of radiosonde data from Beijing were used as the database. The monochromatic radiative transfer model was used to calculate the brightness temperatures in the same channels as the microwave radiometer. Parts of the cloud base heights and cloud thicknesses in the training data set were also estimated using the radiosonde data. The accuracy of the results was analyzed through a comparison with L-band sounding radar data and quantified using the mean bias, root-mean-square error (RMSE), and correlation coefficient. The statistical results showed that an inversion with cloud information was the optimal method. Compared with the inversion profiles without cloud information, the RMSE values after adding cloud information reduced to varying degrees for the vast majority of height layers. These reductions were particularly clear in layers with clouds. The maximum reduction in the RMSE for the temperature profile was 2.2 K, while that for the humidity profile was 16%.
Temperature distribution of thick thermoset composites
NASA Astrophysics Data System (ADS)
Guo, Zhan-Sheng; Du, Shanyi; Zhang, Boming
2004-05-01
The development of temperature distribution of thick polymeric matrix laminates during an autoclave vacuum bag process was measured and compared with numerically calculated results. The finite element formulation of the transient heat transfer problem was carried out for polymeric matrix composite materials from the heat transfer differential equations including internal heat generation produced by exothermic chemical reactions. Software based on the general finite element software package was developed for numerical simulation of the entire composite process. From the experimental and numerical results, it was found that the measured temperature profiles were in good agreement with the numerical ones, and conventional cure cycles recommended by prepreg manufacturers for thin laminates should be modified to prevent temperature overshoot.
1984-12-01
quench rates (10V 10V [/sec). Since the heat transport and temperature profile of Ti melt in the cold copper crucible are not well known, melting...experiments in a cold copper crucible by arc heating were conducted using Ti-6.3Si alloy. The temperature measurement at both the surface and the bottom of the...melt spinning compart- ment B, and ribbon processing chamber C. The pre-melted alloy ingot is . - " charged directly into a cold copper crucible while
Oligosaccharide formation during commercial pear juice processing.
Willems, Jamie L; Low, Nicholas H
2016-08-01
The effect of enzyme treatment and processing on the oligosaccharide profile of commercial pear juice samples was examined by high performance anion exchange chromatography with pulsed amperometric detection and capillary gas chromatography with flame ionization detection. Industrial samples representing the major stages of processing produced with various commercial enzyme preparations were studied. Through the use of commercially available standards and laboratory scale enzymatic hydrolysis of pectin, starch and xyloglucan; galacturonic acid oligomers, glucose oligomers (e.g., maltose and cellotriose) and isoprimeverose were identified as being formed during pear juice production. It was found that the majority of polysaccharide hydrolysis and oligosaccharide formation occurred during enzymatic treatment at the pear mashing stage and that the remaining processing steps had minimal impact on the carbohydrate-based chromatographic profile of pear juice. Also, all commercial enzyme preparations and conditions (time and temperature) studied produced similar carbohydrate-based chromatographic profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Shraiki, Mario; Arba-Mosquera, Samuel
2011-06-01
To evaluate ablation algorithms and temperature changes in laser refractive surgery. The model (virtual laser system [VLS]) simulates different physical effects of an entire surgical process, simulating the shot-by-shot ablation process based on a modeled beam profile. The model is comprehensive and directly considers applied correction; corneal geometry, including astigmatism; laser beam characteristics; and ablative spot properties. Pulse lists collected from actual treatments were used to simulate the temperature increase during the ablation process. Ablation efficiency reduction in the periphery resulted in a lower peripheral temperature increase. Steep corneas had lesser temperature increases than flat ones. The maximum rise in temperature depends on the spatial density of the ablation pulses. For the same number of ablative pulses, myopic corrections showed the highest temperature increase, followed by myopic astigmatism, mixed astigmatism, phototherapeutic keratectomy (PTK), hyperopic astigmatism, and hyperopic treatments. The proposed model can be used, at relatively low cost, for calibration, verification, and validation of the laser systems used for ablation processes and would directly improve the quality of the results.
Paleotemperatures derived from the EPICA Dome-C core based on isotopic diffusion in the firn pack.
NASA Astrophysics Data System (ADS)
Gkinis, V.; Johnsen, S. J.; Vinther, B.; Sheldon, S.; Ritz, C.; Masson-Delmotte, V.
2009-04-01
Water isotope ratios as measured from ice core samples have been used as a proxy for past temperatures. Based i.a. on a Rayleigh fractionation process they record the cloud temperature during snow formation. However, changes in the temperature and humidity of the vapor source can also affect the isotopic signal of the polar precipitation, thus inducing isotopic artifacts. Furthermore, for the case of the Antarctic ice cap, temperature inversions frequently occur during snow formation. As a result, the cloud temperature as recorded by the water isotopes can differ significantly from the temperature at the surface. After the deposition of snow and until pore close off, a diffusive process occurs in the pore space of the firn pack, mixing water vapor from different layers and smoothing the isotopic profiles. The smoothing depends only on the resulting diffusion length. This process is temperature dependent and it presents a slightly different rate between the two isotopic species of water, H218O and HD16O. This is because the fractionation factors as defined for these two isotopic species have a different dependence on temperature. In this study we present a temperature reconstruction based on the different diffusion rates of H218O and HD16O water molecules in firn. The advantage of such an approach is that the temperatures estimated represent the actual conditions in the firn stack. As a result, we can surpass the artifacts that can possibly disrupt the use of the classical technique. We will present temperature estimations as extracted from two high resolution (2.5 cm) data sets, from the EPICA Dome C deep core focused on the Holoene Climatic Optimum and the Last Glacial Maximum and compare them with results obtained with the classical slope method as well as constrains imposed by the measured temperature profile. We will also address the problems of spectral power estimation for determining the diffusion lengths.
NASA Astrophysics Data System (ADS)
Esence, Thibaut; Bayón, Rocío; Bruch, Arnaud; Rojas, Esther
2017-06-01
This work presents some of the experimental results obtained during a test campaign performed at the STONE facility of CEA-Grenoble in collaboration with CIEMAT-PSA supported by both the SFERA-II and the STAGE-STE project. This installation consists of a thermocline tank with thermal oil and rock/sand filler and the tests aimed to study the development of the temperature profile inside the tank at the beginning of charge/discharge processes. The investigation of how this profile is created and which is its dependence on the experimental parameters is crucial for predicting the behavior of a dual-media thermocline tank. Tests have been performed for dynamic processes from initial states with constant uniform temperature or with a thermal gradient already present due to a partial thermocline zone extraction in the former process. Tests at different fluid velocities and temperatures have been carried out as well, in order to evaluate the influence of operating conditions. When a dynamic process of charge or discharge is started, the development of the thermal front is very sharp and localized at tank top or bottom if initial tank temperature is uniform, whereas it is less pronounced if the test begins from a non-thermally uniform initial state. In terms of operating conditions, it has been observed that the development of the thermocline thermal front is independent not only of the fluid velocity but also of its temperatures, within the working ranges here considered. Due to these experimental results, it will be possible to improve simulation models for thermocline tanks and hence to predict their behavior more accurately, especially when they are implemented in annual simulations of CSP plants.
Optimum cooking conditions for shrimp and Atlantic salmon.
Brookmire, Lauren; Mallikarjunan, P; Jahncke, M; Grisso, R
2013-02-01
The quality and safety of a cooked food product depends on many variables, including the cooking method and time-temperature combinations employed. The overall heating profile of the food can be useful in predicting the quality changes and microbial inactivation occurring during cooking. Mathematical modeling can be used to attain the complex heating profile of a food product during cooking. Studies were performed to monitor the product heating profile during the baking and boiling of shrimp and the baking and pan-frying of salmon. Product color, texture, moisture content, mass loss, and pressed juice were evaluated during the cooking processes as the products reached the internal temperature recommended by the FDA. Studies were also performed on the inactivation of Salmonella cocktails in shrimp and salmon. To effectively predict inactivation during cooking, the Bigelow, Fermi distribution, and Weibull distribution models were applied to the Salmonella thermal inactivation data. Minimum cooking temperatures necessary to destroy Salmonella in shrimp and salmon were determined. The heating profiles of the 2 products were modeled using the finite difference method. Temperature data directly from the modeled heating profiles were then used in the kinetic modeling of quality change and Salmonella inactivation during cooking. The optimum cooking times for a 3-log reduction of Salmonella and maintaining 95% of quality attributes are 100, 233, 159, 378, 1132, and 399 s for boiling extra jumbo shrimp, baking extra jumbo shrimp, boiling colossal shrimp, baking colossal shrimp, baking Atlantic salmon, and pan frying Atlantic Salmon, respectively. © 2013 Institute of Food Technologists®
Thermographic Microstructure Monitoring in Electron Beam Additive Manufacturing
Raplee, J.; Plotkowski, A.; Kirka, M. M.; Dinwiddie, R.; Okello, A.; Dehoff, R. R.; Babu, S. S.
2017-01-01
To reduce the uncertainty of build performance in metal additive manufacturing, robust process monitoring systems that can detect imperfections and improve repeatability are desired. One of the most promising methods for in situ monitoring is thermographic imaging. However, there is a challenge in using this technology due to the difference in surface emittance between the metal powder and solidified part being observed that affects the accuracy of the temperature data collected. The purpose of the present study was to develop a method for properly calibrating temperature profiles from thermographic data to account for this emittance change and to determine important characteristics of the build through additional processing. The thermographic data was analyzed to identify the transition of material from metal powder to a solid as-printed part. A corrected temperature profile was then assembled for each point using calibrations for these surface conditions. Using this data, the thermal gradient and solid-liquid interface velocity were approximated and correlated to experimentally observed microstructural variation within the part. This work shows that by using a method of process monitoring, repeatability of a build could be monitored specifically in relation to microstructure control. PMID:28256595
A study of planetary meteorology
NASA Technical Reports Server (NTRS)
Ohring, G.
1973-01-01
Inversion techniques are applied to the few earth based observations of the Jovian emission spectrum to obtain directly the profiles of atmospheric temperature and ammonia abundance. The temperature profile is characterized by a definite tropopause region with a temperature of about 115K and a stratospheric region in which the temperature slowly increases with altitude. The derived ammonia profile indicates the presence of a saturated ammonia layer with a base temperature of approximately 14OK. The concept is described deducing the temperature and constituent profile of a planetary atmosphere from orbiter measurements of the planet's IR limb radiance profile. Analysis of the weighting functions for the Martian atmosphere indicates that a limb radiance profile in the 15 micron CO2 band can be used to determine the Martian atmospheric temperature profile from 20 to 60 km.
NASA Astrophysics Data System (ADS)
Hayat, Tanzila; Nadeem, S.
2018-03-01
This paper examines the three dimensional Eyring-Powell fluid flow over an exponentially stretching surface with heterogeneous-homogeneous chemical reactions. A new model of heat flux suggested by Cattaneo and Christov is employed to study the properties of relaxation time. From the present analysis we observe that there is an inverse relationship between temperature and thermal relaxation time. The temperature in Cattaneo-Christov heat flux model is lesser than the classical Fourier's model. In this paper the three dimensional Cattaneo-Christov heat flux model over an exponentially stretching surface is calculated first time in the literature. For negative values of temperature exponent, temperature profile firstly intensifies to its most extreme esteem and after that gradually declines to zero, which shows the occurrence of phenomenon (SGH) "Sparrow-Gregg hill". Also, for higher values of strength of reaction parameters, the concentration profile decreases.
Multilayered BN Coatings Processed by a Continuous LPCVD Treatment onto Hi-Nicalon Fibers
NASA Astrophysics Data System (ADS)
Jacques, S.; Vincent, H.; Vincent, C.; Lopez-Marure, A.; Bouix, J.
2001-12-01
Boron nitride coatings were deposited onto SiC fibers by means of continuous low-pressure chemical vapor deposition (LPCVD) treatment from BF3/NH3 mixtures. This process lies in unrolling the fiber in the reactor axis. The relationships between the processing parameters and the structure of the BN deposits are presented. Thanks to a temperature gradient present in the reactor, multilayered BN films can be performed by stacking successive isotropic and anisotropic sublayers. Tensile tests show that when the temperature profile is well adapted, the SiC fibers are not damaged by the LPCVD treatment.
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Moore, Michael E.; Lee, Kyung-Min; Lukosi, Eric D.; Hayward, Jason P.
2016-07-01
Undoped lithium-6 enriched glasses coated with pure cerium (99.9%) with a gold protection layer on top were heated at three different temperatures (500, 550, and 600 °C) for varied durations (1, 2, and 4 h). Diffusion profiles of cerium in such glasses were obtained with the conventional Rutherford backscattering technique. Through fitting the diffusion profiles with the thin-film solution of Fick's second law, diffusion coefficients of cerium with different annealing temperatures and durations were solved. Then, the activation energy of cerium for the diffusion process in the studied glasses was found to be 114 kJ/mol with the Arrhenius equation.
NASA Technical Reports Server (NTRS)
Hamill, Patrick; Toon, O. B.
1990-01-01
The SAM II extinction profiles and the associated temperature profiles are used to determine the amount of denitrification of the winter polar stratospheres. Clear evidence of the denitrification process in the Antarctic data is seen. There are indications in the Arctic data that denitrification mechanisms may be at work there also. At the latitudes observed by the SAM II satellite system, denitrification begins before the formation of extensive ice clouds and may be due to sedimentation of nitric acid particles. However, the possibility of dinitrification by type II PSCs at latitudes not observed by SAM II cannot be excluded.
Amillastre, Emilie; Aceves-Lara, César-Arturo; Uribelarrea, Jean-Louis; Alfenore, Sandrine; Guillouet, Stéphane E
2012-08-01
The impact of the temperature on an industrial yeast strain was investigated in very high ethanol performance fermentation fed-batch process within the range of 30-47 °C. As previously observed with a lab strain, decoupling between growth and glycerol formation occurred at temperature of 36 °C and higher. A dynamic model was proposed to describe the impact of the temperature on the total and viable biomass, ethanol and glycerol production. The model validation was implemented with experimental data sets from independent cultures under different temperatures, temperature variation profiles and cultivation modes. The proposed model fitted accurately the dynamic evolutions for products and biomass concentrations over a wide range of temperature profiles. R2 values were above 0.96 for ethanol and glycerol in most experiments. The best results were obtained at 37 °C in fed-batch and chemostat cultures. This dynamic model could be further used for optimizing and monitoring the ethanol fermentation at larger scale. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pivato, M.; Carniello, L.; Silvestri, S.; Marani, M.; Gardner, J.
2016-12-01
Water temperature represents one of the crucial factors driving the ecological processes in water bodies. Many contributions are available in the literature that describe temperature dynamics in deep basins as lakes or seas. Those basins are typically stratified which makes important to represent the vertical profile of the water temperature. Dealing with shallow water bodies, such as rivers, shallow lakes and lagoons, simplifies the problem because the water temperature can be assumed uniform in the water column. Conversely, the heat exchange at the soil-water interface assumes an important role in the water temperature dynamics. Notwithstanding, very few studies and data about this process are available in the literature. In order to provide more insight on the soil contribution to water temperature dynamics, we performed ad hoc field measurements in the Venice lagoon,. We selected a location on a tidal flat in the northern part of the lagoon, close to the Sant'Erasmo Island, where we measured the temperature within the water column and the first 1.5 m of the soil. Data collection started in July 2015 and is still ongoing. We used the data to characterize the heat flux at the water-soil interface in different periods of the year and to develop a "point" model for describing the evolution of the temperature in the water column. The insight on the process provided by the data and by the point model: i) enabled us to determine the soil thermal properties (diffusivity and heat capacity); ii) confirms the uniform profile of the water temperature in the water column; iii) demonstrates that the heat flux at the soil-water interface is comparable with other fluxes at the air-water interface and iv) highlights the important role exerted by advective water fluxes. The latter will be accounted for developing a module for describing the dynamic of the temperature to be coupled with an already existing 2D hydrodynamic model of the Venice lagoon.
Microscopic image processing systems for measuring nonuniform film thickness profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, A.H.; Plawsky, J.L.; DasGupta, S.
1994-01-01
In very thin liquid films. transport processes are controlled by the temperature and the interfacial intermolecular force field which is a function of the film thickness profile and interfacial properties. The film thickness profile and interfacial properties can be measured most efficiently using a microscopic image processing system. IPS, to record the intensity pattern of the reflected light from the film. There are two types of IPS: an image analyzing interferometer (IAI) and/or an image scanning ellipsometer (ISE). The ISE is a novel technique to measure the two dimensional thickness profile of a nonuniform, thin film, from 1 nm upmore » to several {mu}m, in a steady state as well as in a transient state. It is a full field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. Using the ISE, the transient thickness profile of a draining thin liquid film was measured and modeled. The interfacial conditions were determined in situ by measuring the Hamaker constant. The ISE and IAI systems are compared.« less
Speckle measurements of density and temperature profiles in a model gas circuit breaker
NASA Astrophysics Data System (ADS)
Stoller, P. C.; Panousis, E.; Carstensen, J.; Doiron, C. B.; Färber, R.
2015-01-01
Speckle imaging was used to measure the density and temperature distribution in the arc zone of a model high voltage circuit breaker during the high current phase and under conditions simulating those present during current-zero crossings (current-zero-like arc); the arc was stabilized by a transonic, axial flow of synthetic air. A single probe beam was used; thus, accurate reconstruction was only possible for axially symmetric gas flows and arc channels. The displacement of speckles with respect to a reference image was converted to a line-of-sight integrated deflection angle, which was in turn converted into an axially symmetric refractive index distribution using a multistep process that made use of the inverse Radon transform. The Gladstone-Dale relation, which gives the index of refraction as a function of density, was extended to high temperatures by taking into account dissociation and ionization processes. The temperature and density were determined uniquely by assuming that the pressure distribution in the case of cold gas flow (in the absence of an arc) is not modified significantly by the arc. The electric conductivity distribution was calculated from the temperature profile and compared to measurements of the arc voltage and to previous results published in the literature for similar experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, Ritu; Ghosh, Joydeep; Chowdhuri, M. B.
Neutral particle behavior in Aditya tokamak, which has a circular poloidal ring limiter at one particular toroidal location, has been investigated using DEGAS2 code. The code is based on the calculation using Monte Carlo algorithms and is mainly used in tokamaks with divertor configuration. This code has been successfully implemented in Aditya tokamak with limiter configuration. The penetration of neutral hydrogen atom is studied with various atomic and molecular contributions and it is found that the maximum contribution comes from the dissociation processes. For the same, H α spectrum is also simulated which was matched with the experimental one. Themore » dominant contribution around 64% comes from molecular dissociation processes and neutral particle is generated by those processes have energy of ~ 2.0 eV. Furthermore, the variation of neutral hydrogen density and H α emissivity profile are analysed for various edge temperature profiles and found that there is not much changes in H α emission at the plasma edge with the variation of edge temperature (7 to 40 eV).« less
2013-01-01
Background Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. Results A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. Conclusions From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development. PMID:23587016
NASA Astrophysics Data System (ADS)
Vogt, T.; Schirmer, M.; Cirpka, O. A.
2010-12-01
Infiltrating river water is of high relevance for drinking water supply by river bank filtration as well as for riparian groundwater ecology. Quantifying flow patterns and velocities, however, is hampered by temporal and spatial variations of exchange fluxes. In recent years, heat has become a popular natural tracer to estimate exchange rates between rivers and groundwater. Nevertheless, field investigations are often limited by insufficient sensors spacing or simplifying assumptions such as one-dimensional flow. Our interest lies in a detailed local survey of river water infiltration at a restored river section at the losing river Thur in northeast Switzerland. Here, we measured three high-resolution temperature profiles along an assumed flow path by means of distributed temperature sensing (DTS) using fiber optic cables wrapped around poles. Moreover, piezometers were equipped with standard temperature sensors for a comparison to the DTS data. Diurnal temperature oscillations were tracked in the river bed and the riparian groundwater and analyzed by means of dynamic harmonic regression and subsequent modeling of heat transport with sinusoidal boundary conditions to quantify seepage velocities and thermal diffusivities. Compared to the standard temperature sensors, the DTS data give a higher vertical resolution, facilitating the detection of process- and structure-dependent patterns of the spatiotemporal temperature field. This advantage overcompensates the scatter in the data due to instrument noise. In particular, we could demonstrate the impact of heat conduction through the unsaturated zone on the riparian groundwater by the high resolution temperature profiles.
NASA Astrophysics Data System (ADS)
Acherjee, Bappa; Kuar, Arunanshu S.; Mitra, Souren; Misra, Dipten
2012-04-01
The influence of the carbon black on temperature distribution and weld profile, during laser transmission welding of polymers, is investigated in the present research work. A transient numerical model, based on conduction mode heat transfer, is developed to analyze the process. The heat input to the model is considered to be the volumetric Gaussian heat source. The computation of temperature field during welding is carried out for polycarbonates having different proportion of carbon black in polymer matrix. The temperature dependent material properties of polycarbonate are taken into account for modeling. The finite element code ANSYS ® is employed to obtain the numerical results. The numerically computed results of weld pool dimensions are compared with the experimental results. The comparison shows a fair agreement between them, which gives confidence to use the developed model for intended investigation with acceptable accuracy. The results obtained have revealed that the carbon black has considerable influence on the temperature field distribution and the formation of the weld pool geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willems van Beveren, L. H., E-mail: laurensw@unimelb.edu.au; Bowers, H.; Ganesan, K.
2016-06-14
Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here, we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at. %. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to mapmore » out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.« less
Jones, Leslie A.; Muhlfeld, Clint C.; Hauer, F. Richard; F. Richard Hauer,; Lamberti, G.A.
2017-01-01
Stream temperature has direct and indirect effects on stream ecology and is critical in determining both abiotic and biotic system responses across a hierarchy of spatial and temporal scales. Temperature variation is primarily driven by solar radiation, while landscape topography, geology, and stream reach scale ecosystem processes contribute to local variability. Spatiotemporal heterogeneity in freshwater ecosystems influences habitat distributions, physiological functions, and phenology of all aquatic organisms. In this chapter we provide an overview of methods for monitoring stream temperature, characterization of thermal profiles, and modeling approaches to stream temperature prediction. Recent advances in temperature monitoring allow for more comprehensive studies of the underlying processes influencing annual variation of temperatures and how thermal variability may impact aquatic organisms at individual, population, and community based scales. Likewise, the development of spatially explicit predictive models provide a framework for simulating natural and anthropogenic effects on thermal regimes which is integral for sustainable management of freshwater systems.
NASA Astrophysics Data System (ADS)
Hauschild, Dirk
2017-02-01
Today, the use of laser photons for materials processing is a key technology in nearly all industries. Most of the applications use circular beam shapes with Gaussian intensity distribution that is given by the resonator of the laser or by the power delivery via optical fibre. These beam shapes can be typically used for material removal with cutting or drilling and for selective removal of material layers with ablation processes. In addition to the removal of materials, it is possible to modify and improve the material properties in case the dose of laser photons and the resulting light-material interaction addresses a defined window of energy and dwell-time. These process windows have typically dwell-times between µs and s because of using sintering, melting, thermal diffusion or photon induced chemical and physical reaction mechanisms. Using beam shaping technologies the laser beam profiles can be adapted to the material properties and time-temperature and the space-temperature envelopes can be modified to enable selective annealing or crystallization of layers or surfaces. Especially the control of the process energy inside the beam and at its edges opens a large area of laser applications that can be addressed only with an optimized spatial and angular beam profile with down to sub-percent intensity variation used in e.g. immersion lithography tools with ArF laser sources. LIMO will present examples for new beam shapes and related material refinement processes even on large surfaces and give an overview about new mechanisms in laser material processing for current and coming industrial applications.
Fullerton, Aimee H.; Torgersen, Christian E.; Lawler, Joshua J.; Faux, Russell N.; Steel, E. Ashley; Beechie, Timothy J.; Ebersole, Joseph L.; Leibowitz, Scott J.
2015-01-01
Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and leveling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature versus distance) for 53 rivers in the Pacific Northwest (USA) using an extensive dataset of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically, and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient, and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform, or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat.
NASA Astrophysics Data System (ADS)
Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee G.; Teuben, Peter; Lord, Steve
2011-02-01
DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can: select and display over 500,000 pre-run model spectral energy distributions (SEDs) find the best-fit model to your data set account for beam size in model fitting manipulate data and models with an interactive viewer display gas and dust density and temperature profiles display model intensity profiles at various wavelengths
Experimental and numerical study on plasma nitriding of AISI P20 mold steel
NASA Astrophysics Data System (ADS)
Nayebpashaee, N.; Vafaeenezhad, H.; Kheirandish, Sh.; Soltanieh, M.
2016-09-01
In this study, plasma nitriding was used to fabricate a hard protective layer on AISI P20 steel, at three process temperatures (450°C, 500°C, and 550°C) and over a range of time periods (2.5, 5, 7.5, and 10 h), and at a fixed gas N2:H2 ratio of 75vol%:25vol%. The morphology of samples was studied using optical microscopy and scanning electron microscopy, and the formed phase of each sample was determined by X-ray diffraction. The elemental depth profile was measured by energy dispersive X-ray spectroscopy, wavelength dispersive spectroscopy, and glow dispersive spectroscopy. The hardness profile of the samples was identified, and the microhardness profile from the surface to the sample center was recorded. The results show that ɛ-nitride is the dominant species after carrying out plasma nitriding in all strategies and that the plasma nitriding process improves the hardness up to more than three times. It is found that as the time and temperature of the process increase, the hardness and hardness depth of the diffusion zone considerably increase. Furthermore, artificial neural networks were used to predict the effects of operational parameters on the mechanical properties of plastic mold steel. The plasma temperature, running time of imposition, and target distance to the sample surface were all used as network inputs; Vickers hardness measurements were given as the output of the model. The model accurately reproduced the experimental outcomes under different operational conditions; therefore, it can be used in the effective simulation of the plasma nitriding process in AISI P20 steel.
Using a 3D profiler and infrared camera to monitor oven loading in fully cooked meat operations
NASA Astrophysics Data System (ADS)
Stewart, John; Giorges, Aklilu
2009-05-01
Ensuring meat is fully cooked is an important food safety issue for operations that produce "ready to eat" products. In order to kill harmful pathogens like Salmonella, all of the product must reach a minimum threshold temperature. Producers typically overcook the majority of the product to ensure meat in the most difficult scenario reaches the desired temperature. A difficult scenario can be caused by an especially thick piece of meat or by a surge of product into the process. Overcooking wastes energy, degrades product quality, lowers the maximum throughput rate of the production line and decreases product yield. At typical production rates of 6000lbs/hour, these losses from overcooking can have a significant cost impact on producers. A wide area 3D camera coupled with a thermal camera was used to measure the thermal mass variability of chicken breasts in a cooking process. Several types of variability are considered including time varying thermal mass (mass x temperature / time), variation in individual product geometry and variation in product temperature. The automatic identification of product arrangement issues that affect cooking such as overlapping product and folded products is also addressed. A thermal model is used along with individual product geometry and oven cook profiles to predict the percentage of product that will be overcooked and to identify products that may not fully cook in a given process.
Garre, Alberto; Huertas, Juan Pablo; González-Tejedor, Gerardo A; Fernández, Pablo S; Egea, Jose A; Palop, Alfredo; Esnoz, Arturo
2018-02-02
This contribution presents a mathematical model to describe non-isothermal microbial inactivation processes taking into account the acclimation of the microbial cell to thermal stress. The model extends the log-linear inactivation model including a variable and model parameters quantifying the induced thermal resistance. The model has been tested on cells of Escherichia coli against two families of non-isothermal profiles with different constant heating rates. One of the families was composed of monophasic profiles, consisting of a non-isothermal heating stage from 35 to 70°C; the other family was composed of biphasic profiles, consisting of a non-isothermal heating stage followed by a holding period at constant temperature of 57.5°C. Lower heating rates resulted in a higher thermal resistance of the bacterial population. This was reflected in a higher D-value. The parameter estimation was performed in two steps. Firstly, the D and z-values were estimated from the isothermal experiments. Next, the parameters describing the acclimation were estimated using one of the biphasic profiles. This set of parameters was able to describe the remaining experimental data. Finally, a methodology for the construction of diagrams illustrating the magnitude of the induced thermal resistance is presented. The methodology has been illustrated by building it for a biphasic temperature profile with a linear heating phase and a holding phase. This diagram provides a visualization of how the shape of the temperature profile (heating rate and holding temperature) affects the acclimation of the cell to the thermal stress. This diagram can be used for the design of inactivation treatments by industry taking into account the acclimation of the cell to the thermal stress. Copyright © 2017 Elsevier B.V. All rights reserved.
Quality assessment of filtered smoked yellowfin tuna (Thunnus albacares) steaks.
Pivarnik, Lori F; Faustman, Cameron; Rossi, Santiago; Suman, Surendranath P; Palmer, Catherine; Richard, Nicole L; Ellis, P Christopher; DiLiberti, Michael
2011-08-01
Filtered smoke (FS) has been used to preserve taste, texture, and/or color in tuna and other fish species. This treatment is particularly important in color preservation during frozen storage. The objective of this study was to compare changes in the quality profiles of FS-treated and untreated (UT) yellowfin tuna (Thunnus albacares) steaks stored in 3 ways: room temperature (21 to 22 °C), refrigerated (4 to 5 °C), and iced (0 °C). FS and UT steaks were processed from the same lot of fish and analyzed for chemical, microbiological, lipid oxidation, color, and sensory profiles. Similar trends were seen for microbial proliferation and accumulation of apparent ammonia and total volatile base nitrogen (TVB-N) during the storage temperatures evaluated. Notable exception in quality profile was found in lipid oxidation which was, as expected, lower for treated samples at all storage temperatures for TBARS (P < 0.05) and lower or significantly (P < 0.05) lower for POV values. FS increased the initial redness value significantly (P < 0.05). Unlike UT product, there was no loss of color value concomitant with quality changes for FS-treated tuna for all storage temperatures evaluated. The overall goal of this project was to evaluate filtered smoked tuna steaks as to the impact on the overall quality profile. As a color-stabilizing technology, it could mask deteriorating quality. © 2011 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Lempe, B.; Taudt, C.; Baselt, T.; Rudek, F.; Maschke, R.; Basan, F.; Hartmann, P.
2014-02-01
The production of complex titanium components for various industries using laser welding processes has received growing attention in recent years. It is important to know whether the result of the cohesive joint meets the quality requirements of standardization and ultimately the customer requirements. Erroneous weld seams can have fatal consequences especially in the field of car manufacturing and medicine technology. To meet these requirements, a real-time process control system has been developed which determines the welding quality through a locally resolved temperature profile. By analyzing the resulting weld plasma received data is used to verify the stability of the laser welding process. The determination of the temperature profile is done by the detection of the emitted electromagnetic radiation from the material in a range of 500 nm to 1100 nm. As detectors, special high dynamic range CMOS cameras are used. As the emissivity of titanium depends on the wavelength, the surface and the angle of radiation, measuring the temperature is a problem. To solve these a special pyrometer setting with two cameras is used. That enables the compensation of these effects by calculating the difference between the respective pixels on simultaneously recorded images. Two spectral regions with the same emissivity are detected. Therefore the degree of emission and surface effects are compensated and canceled out of the calculation. Using the spatially resolved temperature distribution the weld geometry can be determined and the laser process can be controlled. The active readjustment of parameters such as laser power, feed rate and inert gas injection increases the quality of the welding process and decreases the number of defective goods.
The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.
2015-12-07
Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. High-speed photography was used to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a more uniform tomore » a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.« less
The dynamics of Al/Pt reactive multilayer ignition via pulsed-laser irradiation
Murphy, Ryan D.; Reeves, Robert V.; Yarrington, Cole D.; ...
2015-12-07
Reactive multilayers consisting of alternating layers of Al and Pt were irradiated by single laser pulses ranging from 100 μs to 100 ms in duration, resulting in the initiation of rapid, self-propagating reactions. The threshold intensities for ignition vary with the focused laser beam diameter, bilayer thickness, and pulse length and are affected by solid state reactions and conduction of heat away from the irradiated regions. We used high-speed photography to observe ignition dynamics during irradiation and elucidate the effects of heat transfer into a multilayer foil. For an increasing laser pulse length, the ignition process transitioned from a moremore » uniform to a less uniform temperature profile within the laser-heated zone. A more uniform temperature profile is attributed to rapid heating rates and heat localization for shorter laser pulses, and a less uniform temperature profile is due to slower heating of reactants and conduction during irradiation by longer laser pulses. Lastly, finite element simulations of laser heating using measured threshold intensities indicate that micron-scale ignition of Al/Pt occurs at low temperatures, below the melting point of both reactants.« less
Cryopumping in Cryogenic Insulations for a Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Johnson, Theodore F.; Weiser, Erik S.; Grimsley, Brian W.; Jensen, Brian J.
2003-01-01
Testing at cryogenic temperatures was performed to verify the material characteristics and manufacturing processes of reusable propellant tank cryogenic insulations for a Reusable Launch Vehicle (RLV). The unique test apparatus and test methods developed for the investigation of cryopumping in cryogenic insulations are described. Panel level test specimens with various types of cryogenic insulations were subjected to a specific thermal profile where the temperature varied from -262 C to 21 C. Cryopumping occurred if the interior temperature of the specimen exhibited abnormal temperature fluctuations, such as a sudden decrease in temperature during the heating phase.
Photothermal modeling of thulium fibre laser-tissue interactions
NASA Astrophysics Data System (ADS)
Warnaby, Catherine E.; Coleman, Daniel J.; King, Terence A.
2003-10-01
A one-dimensional finite difference model has been used to investigate the temperature distribution within thulium fibre laser-irradiated tissue. Temperature-time and temperature-depth profiles are presented for various laser stimulus parameters in the 2 micron region. These current calculations are aimed at determining theoretical temperature distributions in the application of relatively low power fibre lasers for thermal stimulation of cutaneous nerves in human pain processing. Theoretical skin surface temperatures are compared with those from thermal camera measurements during thulium fibre laser irradiation. The effectiveness of the thulium fibre laser for thermally stimulating cutaneous nerves is confirmed.
Chang, Chi-Huang; Hsieh, Chiu-Lan; Wang, Hui-Er; Peng, Chiung-Chi; Chyau, Charng-Cherng; Peng, Robert Y
2013-03-15
Guava leaf tea (GLT), exhibiting a diversity of medicinal bioactivities, has become a popularly consumed daily beverage. To improve the product quality, a new process was recommended to the Ser-Tou Farmers' Association (SFA), who began field production in 2005. The new process comprised simplified steps: one bud-two leaves were plucked at 3:00-6:00 am, in the early dawn period, followed by withering at ambient temperature (25-28 °C), rolling at 50 °C for 50-70 min, with or without fermentation, then drying at 45-50 °C for 70-90 min, and finally sorted. The product manufactured by this new process (named herein GLTSF) exhibited higher contents (in mg g(-1), based on dry ethyl acetate fraction/methanolic extract) of polyphenolics (417.9 ± 12.3) and flavonoids (452.5 ± 32.3) containing a compositional profile much simpler than previously found: total quercetins (190.3 ± 9.1), total myricetin (3.3 ± 0.9), total catechins (36.4 ± 5.3), gallic acid (8.8 ± 0.6), ellagic acid (39.1 ± 6.4) and tannins (2.5 ± 9.1). We have successfully developed a new process for manufacturing GLTSF with a unique polyphenolic profile. Such characteristic compositional distribution can be ascribed to the right harvesting hour in the early dawn and appropriate treatment process at low temperature, avoiding direct sunlight. © 2012 Society of Chemical Industry.
NASA Technical Reports Server (NTRS)
Balckburn, Linda B.
1987-01-01
A study was undertaken to determine the mechanical properties and microstructures resulting from Liquid Interface Diffusion (LID -Registered) processing of foil-gauge specimens of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo coated with varying amounts of LID material. In addition, the effects of various elevated temperature exposures on the concentration profiles of the LID alloying elements were investigated, using specimens with a narrow strip of LID material applied to the surface. Room and elevated temperature tensile properties were determined for both coated and uncoated specimens. Optical microscopy was used to examine alloy microstructures, and scanning electron microscopy to examine fracture surface morphologies. The chemical concentration profiles of the strip-coated specimens were determined with an electron microprobe.
Tissue temperature profile in the human forearm during thermal stress at thermal stability.
Ducharme, M B; VanHelder, W P; Radomski, M W
1991-11-01
The purpose of the present study was to investigate the effect of a range of water temperatures (Tw from 15 to 36 degrees C) on the tissue temperature profile of the resting human forearm at thermal stability. Tissue temperature (Tti) was continuously monitored by a calibrated multicouple probe during 3 h of immersion of the forearm. The probe was implanted approximately 9 cm distal from the olecranon process along the ulnar ridge. Tti was measured every 5 mm, from the longitudinal axis of the forearm (determined from computed tomography scanning) to the skin surface. Along with Tti, skin temperature (Tsk), rectal temperature (Tre), and blood flow were measured during the immersions. For all temperature conditions, the temperature profile inside the limb was linear as a function of the radial distance from the forearm axis (P less than 0.001). Temperature gradient measured in the forearm ranged from 0.2 +/- 0.1 degrees C C cm (Tw = 36 degrees C) to 2.3 +/- 0.5 degrees C cm (Tw = 15 degrees C). The maximal Tti was measured in all cases at the longitudinal axis of the forearm and was in all experimental conditions lower than Tre. On immersion at Tw less than 36 degrees C, the whole forearm can be considered to be part of the shell of the body. With these experimental data, mathematical equations were developed to predict, with an accuracy of at least 0.6 degrees C, the Tti at any depth inside the forearm at steady state during thermal stress.(ABSTRACT TRUNCATED AT 250 WORDS)
Spectroscopic investigation of the high-current phase of a pulsed GMAW process
NASA Astrophysics Data System (ADS)
Rouffet, M. E.; Wendt, M.; Goett, G.; Kozakov, R.; Schoepp, H.; Weltmann, K. D.; Uhrlandt, D.
2010-11-01
While metal vapours have an important impact on the efficiency of the pulsed gas metal arc welding process, only a few papers are focused on this effect. In this paper, methods based on emission spectroscopy are performed to improve the understanding of the physical phenomena occurring during the high-current pulse. Boltzmann plots applied to iron lines, the Stark broadening of the 696.5 nm argon line and composition calculations assuming local thermodynamic equilibrium are used to determine characteristic parameters of the plasma. It is observed that the central part of the arc is composed mainly of iron. The percentage of iron increases quickly at the beginning of the high-current pulse, and slowly decreases when the central part broadens. During the high-current phase the temperature profile has a minimum value of around 8000 K at the axis of the arc while the argon envelope of the central part reaches temperatures of approximately 13.000 K. The high percentage of iron and the high radiation of the plasma at the centre can explain the measured shape of the temperature profile.
Empirical models of the electron temperature and density in the nightside venus ionosphere.
Brace, L H; Theis, R F; Niemann, H B; Mayr, H G; Hoegy, W R; Nagy, A F
1979-07-06
Empirical models of the electron temperature and electron density of the late afternoon and nightside Venus ionosphere have been derived from Pioneer Venus measurements acquired between 10 December 1978 and 23 March 1979. The models describe the average ionosphere conditions near 18 degrees N latitude between 150 and 700 kilometers altitude for solar zenith angles of 80 degrees to 180 degrees . The average index of solar flux was 200. A major feature of the density model is the factor of 10 decrease beyond 90 degrees followed by a very gradual decrease between 120 degrees and 180 degrees . The density at 150 degrees is about five times greater than observed by Venera 9 and 10 at solar minimum (solar flux approximately 80), a difference that is probably related to the effects of increased solar activity on the processes that maintain the nightside ionosphere. The nightside electron density profile from the model (above 150 kilometers) can be reproduced theoretically either by transport of 0(+) ions from the dayside or by precipitation of low-energy electrons. The ion transport process would require a horizontal flow velocity of about 300 meters per second, a value that is consistent with other Pioneer Venus observations. Although currently available energetic electron data do not yet permit the role of precipitation to be evaluated quantitatively, this process is clearly involved to some extent in the formation of the nightside ionosphere. Perhaps the most surprising feature of the temperature model is that the electron temperature remains high throughout the nightside ionosphere. These high nocturnal temperatures and the existence of a well-defined nightside ionopause suggest that energetic processes occur across the top of the entire nightside ionosphere, maintaining elevated temperatures. A heat flux of 2 x 10(10) electron volts per square centimeter per second, introduced at the ionopause, is consistent with the average electron temperature profile on the nightside at a solar zenith angle of 140 degrees .
In vivo optoacoustic temperature imaging for image-guided cryotherapy of prostate cancer
NASA Astrophysics Data System (ADS)
Petrova, E. V.; Brecht, H. P.; Motamedi, M.; Oraevsky, A. A.; Ermilov, S. A.
2018-03-01
The objective of this study is to demonstrate in vivo the feasibility of optoacoustic temperature imaging during cryotherapy of prostate cancer. We developed a preclinical prototype optoacoustic temperature imager that included pulsed optical excitation at a wavelength of 805 nm, a modified clinical transrectal ultrasound probe, a parallel data acquisition system, image processing and visualization software. Cryotherapy of a canine prostate was performed in vivo using a commercial clinical system, Cryocare® CS, with an integrated ultrasound imaging. The universal temperature-dependent optoacoustic response of blood was employed to convert reconstructed optoacoustic images to temperature maps. Optoacoustic imaging of temperature during prostate cryotherapy was performed in the longitudinal view over a region of 30 mm (long) × 10 mm (deep) that covered the rectum, the Denonvilliers fascia, and the posterior portion of the treated gland. The transrectal optoacoustic images showed high-contrast vascularized regions, which were used for quantitative estimation of local temperature profiles. The constructed temperature maps and their temporal dynamics were consistent with the arrangement of the cryoprobe and readouts of the thermal needle sensors. The temporal profiles of the readouts from the thermal needle sensors and the temporal profile estimated from the normalized optoacoustic intensity of the selected vascularized region showed significant resemblance, except for the initial overshoot, that may be explained as a result of the physiological thermoregulatory compensation. The temperature was mapped with errors not exceeding ±2 °C (standard deviation) consistent with the clinical requirements for monitoring cryotherapy of the prostate. In vivo results showed that the optoacoustic temperature imaging is a promising non-invasive technique for real-time imaging of tissue temperature during cryotherapy of prostate cancer, which can be combined with transrectal ultrasound—the current standard for guiding clinical cryotherapy procedure.
Use of Quality Controlled AIRS Temperature Soundings to Improve Forecast Skill
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste; Iredell, Lena
2010-01-01
AIRS was launched on EOS Aqua on May 4, 2002, together with AMSU-A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU-A are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. Also included are the clear column radiances used to derive these products which are representative of the radiances AIRS would have seen if there were no clouds in the field of view. All products also have error estimates. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20 percent, in cases with up to 90 percent effective cloud cover. The products are designed for data assimilation purposes for the improvement of numerical weather prediction, as well as for the study of climate and meteorological processes. With regard to data assimilation, one can use either the products themselves or the clear column radiances from which the products were derived. The AIRS Version 5 retrieval algorithm is now being used operationally at the Goddard DISC in the routine generation of geophysical parameters derived from AIRS/AMSU data. A major innovation in Version 5 is the ability to generate case-by-case level-by-level error estimates for retrieved quantities and clear column radiances, and the use of these error estimates for Quality Control. The temperature profile error estimates are used to determine a case-by-case characteristic pressure pbest, down to which the profile is considered acceptable for data assimilation purposes. The characteristic pressure p(sub best) is determined by comparing the case dependent error estimate (delta)T(p) to the threshold values (Delta)T(p). The AIRS Version 5 data set provides error estimates of T(p) at all levels, and also profile dependent values of pbest based on use of a Standard profile dependent threshold (Delta)T(p). These Standard thresholds were designed as a compromise between optimal use for data assimilation purposes, which requires highest accuracy (tighter Quality Control), and climate purposes, which requires more spatial coverage (looser Quality Control). Subsequent research using Version 5 sounding and error estimates showed that tighter Quality Control performs better for data assimilation proposes, while looser Quality Control better spatial coverage) performs better for climate purposes. We conducted a number of data assimilation experiments using the NASA GEOS-5 Data Assimilation System as a step toward finding an optimum balance of spatial coverage and sounding accuracy with regard to improving forecast skill. The model was run at a horizontal resolution of 0.5 degree latitude x 0.67 degree longitude with 72 vertical levels. These experiments were run during four different seasons, each using a different year. The AIRS temperature profiles were presented to the GEOS-5 analysis as rawinsonde profiles, and the profile error estimates (delta)T(p) were used as the uncertainty for each measurement in the data assimilation process.
THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
De la Luz, Victor; Raulin, Jean-Pierre; Lara, Alejandro
2013-01-10
We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimetermore » wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.« less
Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu
2006-01-01
The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.
Cold-Cap Temperature Profile Comparison between the Laboratory and Mathematical Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.
2015-06-01
The rate of waste vitrification in an electric melter is connected to the feed-to-glass conversion process, which occurs in the cold cap, a layer of reacting feed on top of molten glass. The cold cap consists of two layers: a low temperature (~100°C – ~800°C) region of unconnected feed and a high temperature (~800°C – ~1100°C) region of foam with gas bubbles and cavities mixed in the connected glass melt. A recently developed mathematical model describes the effect of the cold cap on glass production. For verification of the mathematical model, a laboratory-scale melter was used to produce a coldmore » cap that could be cross-sectioned and polished in order to determine the temperature profile related to position in the cold cap. The cold cap from the laboratory-scale melter exhibited an accumulation of feed ~400°C due to radiant heat from the molten glass creating dry feed conditions in the melter, which was not the case in the mathematical model where wet feed conditions were calculated. Through the temperature range from ~500°C – ~1100°C, there was good agreement between the model and the laboratory cold cap. Differences were observed between the two temperature profiles due to the temperature of the glass melts and the lack of secondary foam, large cavities, and shrinkage of the primary foam bubbles upon the cooling of the laboratory-scale cold cap.« less
Interpreting Repeated Temperature-Depth Profiles for Groundwater Flow
NASA Astrophysics Data System (ADS)
Bense, Victor F.; Kurylyk, Barret L.; van Daal, Jonathan; van der Ploeg, Martine J.; Carey, Sean K.
2017-10-01
Temperature can be used to trace groundwater flows due to thermal disturbances of subsurface advection. Prior hydrogeological studies that have used temperature-depth profiles to estimate vertical groundwater fluxes have either ignored the influence of climate change by employing steady-state analytical solutions or applied transient techniques to study temperature-depth profiles recorded at only a single point in time. Transient analyses of a single profile are predicated on the accurate determination of an unknown profile at some time in the past to form the initial condition. In this study, we use both analytical solutions and a numerical model to demonstrate that boreholes with temperature-depth profiles recorded at multiple times can be analyzed to either overcome the uncertainty associated with estimating unknown initial conditions or to form an additional check for the profile fitting. We further illustrate that the common approach of assuming a linear initial temperature-depth profile can result in significant errors for groundwater flux estimates. Profiles obtained from a borehole in the Veluwe area, Netherlands in both 1978 and 2016 are analyzed for an illustrative example. Since many temperature-depth profiles were collected in the late 1970s and 1980s, these previously profiled boreholes represent a significant and underexploited opportunity to obtain repeat measurements that can be used for similar analyses at other sites around the world.
NASA Astrophysics Data System (ADS)
Hopcroft, Peter O.; Gallagher, Kerry; Pain, Christopher C.
2009-08-01
Collections of suitably chosen borehole profiles can be used to infer large-scale trends in ground-surface temperature (GST) histories for the past few hundred years. These reconstructions are based on a large database of carefully selected borehole temperature measurements from around the globe. Since non-climatic thermal influences are difficult to identify, representative temperature histories are derived by averaging individual reconstructions to minimize the influence of these perturbing factors. This may lead to three potentially important drawbacks: the net signal of non-climatic factors may not be zero, meaning that the average does not reflect the best estimate of past climate; the averaging over large areas restricts the useful amount of more local climate change information available; and the inversion methods used to reconstruct the past temperatures at each site must be mathematically identical and are therefore not necessarily best suited to all data sets. In this work, we avoid these issues by using a Bayesian partition model (BPM), which is computed using a trans-dimensional form of a Markov chain Monte Carlo algorithm. This then allows the number and spatial distribution of different GST histories to be inferred from a given set of borehole data by partitioning the geographical area into discrete partitions. Profiles that are heavily influenced by non-climatic factors will be partitioned separately. Conversely, profiles with climatic information, which is consistent with neighbouring profiles, will then be inferred to lie in the same partition. The geographical extent of these partitions then leads to information on the regional extent of the climatic signal. In this study, three case studies are described using synthetic and real data. The first demonstrates that the Bayesian partition model method is able to correctly partition a suite of synthetic profiles according to the inferred GST history. In the second, more realistic case, a series of temperature profiles are calculated using surface air temperatures of a global climate model simulation. In the final case, 23 real boreholes from the United Kingdom, previously used for climatic reconstructions, are examined and the results compared with a local instrumental temperature series and the previous estimate derived from the same borehole data. The results indicate that the majority (17) of the 23 boreholes are unsuitable for climatic reconstruction purposes, at least without including other thermal processes in the forward model.
1983-06-01
DE ERMIuIATIC1N OF SUBSUEFACZE THERMAL STRUCTURE * The study of the oceans by satellites has become a sajc: *arena for sc-intific scrutiny and...between *satellite- de ~ived sea surface temperatu-res and vsrt.-cal *temperature profiles, then the areas of acoust-ical oceanicg- raphy and naval...based on dynamical principles and will ulti-mately provide the basis for pred-icting ocear,-c processes. Emp rical mq4thods have been de -termined i n the
NASA Astrophysics Data System (ADS)
Jamiyanaa, Khongor
Pultrusion processing is a technique to make highly aligned fiber reinforced polymer composites. Thermoset pultrusion is a mature process and well established, while thermoplastic pultrusion in still in its infancy. Thermoplastic pultrusion has not been well established because thermoplastic resins are difficult to process due to their high viscosity. However, thermoplastic resins offer distinct advantages that make thermoplastic pultrusion worth exploring. The present work centers on developing a method to design and validate a die for a thermoplastic pultrusion system. Analytical models and various software tools were used to design a pultrusion die. Experimental measurements have been made to validate the models. One-dimensional transient heat transfer analysis was used to calculate the time required for pre-impregnated E-Glass/Polypropylene tapes to melt and consolidate into profiled shapes. Creo Element/Pro 1.0 was used to design the die, while ANSYS Work Bench 14.0 was used to conduct heat transfer analysis to understand the temperature profile of the pultrusion apparatus. Additionally Star-CCM+ was used to create a three-dimensional fluid flow model to capture the molten polymer flow inside the pultrusion die. The fluid model was used to understand the temperature of the flow and the force required to pull the material at any given temperature and line speed. A complete pultrusion apparatus including the die, heating unit, cooling unit, and the frame has been designed and manufactured as guided by the models, and pultruded profiles have been successfully produced. The results show that the analytical model and the fluid model show excellent correlation. The predicted and measured pulling forces are in agreement and show that the pull force increases as the pull speed increases. Furthermore, process induced residual stress and its influence on dimensional instability, such as bending or bowing, on pultruded composites was analyzed. The study indicated that unbalanced layup can produce asymmetrical residual stress through the thickness and causes the part to bow. Furthermore, the residual stress through the thickness was mapped with excellent accuracy. A design of experiments around the processing parameters indicated that increase in pull speed or decrease in die temperature increased the residual stress within the part.
Velocity and temperature profiles in near-critical nitrogen flowing past a horizontal flat plate
NASA Technical Reports Server (NTRS)
Simoneau, R. J.
1977-01-01
Boundary layer velocity and temperature profiles were measured for nitrogen near its thermodynamic critical point flowing past a horizontal flat plate. The results were compared measurements made for vertically upward flow. The boundary layer temperatures ranged from below to above the thermodynamic critical temperature. For wall temperatures below the thermodynamic critical temperature there was little variation between the velocity and temperature profiles in three orientations. In all three orientations the point of crossing into the critical temperature region is marked by a significant flattening of the velocity and temperature profiles and also a decrease in heat transfer coefficient.
NASA Astrophysics Data System (ADS)
Wei, Chuyu; Pineda, Daniel I.; Paxton, Laurel; Egolfopoulos, Fokion N.; Spearrin, R. Mitchell
2018-06-01
A tomographic laser absorption spectroscopy technique, utilizing mid-infrared light sources, is presented as a quantitative method to spatially resolve species and temperature profiles in small-diameter reacting flows relevant to combustion systems. Here, tunable quantum and interband cascade lasers are used to spectrally resolve select rovibrational transitions near 4.98 and 4.19 μm to measure CO and {CO2}, respectively, as well as their vibrational temperatures, in piloted premixed jet flames. Signal processing methods are detailed for the reconstruction of axial and radial profiles of thermochemical structure in a canonical ethylene-air jet flame. The method is further demonstrated to quantitatively distinguish between different turbulent flow conditions.
Diode laser soldering using a lead-free filler material for electronic packaging structures
NASA Astrophysics Data System (ADS)
Chaminade, C.; Fogarassy, E.; Boisselier, D.
2006-04-01
As of today, several lead-free soldering pastes have been qualified for currently used soldering process. Regarding the new potential of laser-assisted soldering processes, the behaviour of the SnAgCu soldering paste requires, however, new investigations. In the first part of this study, the specific temperature profile of a laser soldering process is investigated using a high power diode laser (HPDL). These experimental results are compared to a thermal simulation developed for this specific application. The second part of this work deals with the diffusion of the tin-based filler material through the nickel barrier using the information extracted from the temperature simulations.
NASA Astrophysics Data System (ADS)
Baranski, L. A.; Rozemski, K.
TOVS/TIP digital data transmitted at the VHF-BEACON range from NOAA satellites are receiving and processing at the SDRPC. Receiving station is connected with the microcomputer IBM-PC/AT which process TOVS/TIP data via two states: initial data processing and retrieval of vertical profiles of the temperature, water vapour and ozone mixing ratio in the atmosphere. Receiving and processing equipment, retrieval methods, results and error discussion are presented.
Multiphysics Modeling of Microwave Heating of a Frozen Heterogeneous Meal Rotating on a Turntable.
Pitchai, Krishnamoorthy; Chen, Jiajia; Birla, Sohan; Jones, David; Gonzalez, Ric; Subbiah, Jeyamkondan
2015-12-01
A 3-dimensional (3-D) multiphysics model was developed to understand the microwave heating process of a real heterogeneous food, multilayered frozen lasagna. Near-perfect 3-D geometries of food package and microwave oven were used. A multiphase porous media model combining the electromagnetic heat source with heat and mass transfer, and incorporating phase change of melting and evaporation was included in finite element model. Discrete rotation of food on the turntable was incorporated. The model simulated for 6 min of microwave cooking of a 450 g frozen lasagna kept at the center of the rotating turntable in a 1200 W domestic oven. Temperature-dependent dielectric and thermal properties of lasagna ingredients were measured and provided as inputs to the model. Simulated temperature profiles were compared with experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The total moisture loss in lasagna was predicted and compared with the experimental moisture loss during cooking. The simulated spatial temperature patterns predicted at the top layer was in good agreement with the corresponding patterns observed in thermal images. Predicted point temperature profiles at 6 different locations within the meal were compared with experimental temperature profiles and root mean square error (RMSE) values ranged from 6.6 to 20.0 °C. The predicted total moisture loss matched well with an RMSE value of 0.54 g. Different layers of food components showed considerably different heating performance. Food product developers can use this model for designing food products by understanding the effect of thickness and order of each layer, and material properties of each layer, and packaging shape on cooking performance. © 2015 Institute of Food Technologists®
NASA Astrophysics Data System (ADS)
Ilhan, Z.; Wehner, W. P.; Schuster, E.; Boyer, M. D.; Gates, D. A.; Gerhardt, S.; Menard, J.
2015-11-01
Active control of the toroidal current density profile is crucial to achieve and maintain high-performance, MHD-stable plasma operation in NSTX-U. A first-principles-driven, control-oriented model describing the temporal evolution of the current profile has been proposed earlier by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. A feedforward + feedback control scheme for the requlation of the current profile is constructed by embedding the proposed nonlinear, physics-based model into the control design process. Firstly, nonlinear optimization techniques are used to design feedforward actuator trajectories that steer the plasma to a desired operating state with the objective of supporting the traditional trial-and-error experimental process of advanced scenario planning. Secondly, a feedback control algorithm to track a desired current profile evolution is developed with the goal of adding robustness to the overall control scheme. The effectiveness of the combined feedforward + feedback control algorithm for current profile regulation is tested in predictive simulations carried out in TRANSP. Supported by PPPL.
2017-01-01
Summary The present study was done to optimize the power ultrasound processing for maximizing diastase activity of and minimizing hydroxymethylfurfural (HMF) content in honey using response surface methodology. Experimental design with treatment time (1-15 min), amplitude (20-100%) and volume (40-80 mL) as independent variables under controlled temperature conditions was studied and it was concluded that treatment time of 8 min, amplitude of 60% and volume of 60 mL give optimal diastase activity and HMF content, i.e. 32.07 Schade units and 30.14 mg/kg, respectively. Further thermal profile analyses were done with initial heating temperatures of 65, 75, 85 and 95 ºC until temperature of honey reached up to 65 ºC followed by holding time of 25 min at 65 ºC, and the results were compared with thermal profile of honey treated with optimized power ultrasound. The quality characteristics like moisture, pH, diastase activity, HMF content, colour parameters and total colour difference were least affected by optimized power ultrasound treatment. Microbiological analysis also showed lower counts of aerobic mesophilic bacteria and in ultrasonically treated honey than in thermally processed honey samples complete destruction of coliforms, yeasts and moulds. Thus, it was concluded that power ultrasound under suggested operating conditions is an alternative nonthermal processing technique for honey. PMID:29540991
Self-consistent discharge growing model of helicon plasma
NASA Astrophysics Data System (ADS)
Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro; Tanikawa, Takao
2015-11-01
Helicon plasma is a high-density and low-temperature plasma generated by the electromagnetic (Helicon) wave excited in the plasma. It is thought to be useful for various applications including electric thrusters. Physics of helicon plasma production involves such fundamental processes as the wave propagation (dispersion relation), collisional and non-collisional wave damping, plasma heating, ionization/recombination of neutral particles, and modification of the dispersion relation by newly ionized plasma. There remain a number of unsolved physical issues such as, how the Helicon and the TG modes influence the plasma density, electron temperature and their spatial profiles. While the Helicon mode is absorbed in the bulk plasma, the TG mode is mostly absorbed near the edge of the plasma. The local power deposition in the helicon plasma is mostly balanced by collisional loss. This local power balance can give rise to the inhomogeneous electron temperature profile that leads to time evolution of density profile and dispersion relation. In our study, we construct a self-consistent model of the discharge evolution that includes the wave excitation, electron heat transfer, and diffusion of charged particles.
Method and device for predicting wavelength dependent radiation influences in thermal systems
Kee, Robert J.; Ting, Aili
1996-01-01
A method and apparatus for predicting the spectral (wavelength-dependent) radiation transport in thermal systems including interaction by the radiation with partially transmitting medium. The predicted model of the thermal system is used to design and control the thermal system. The predictions are well suited to be implemented in design and control of rapid thermal processing (RTP) reactors. The method involves generating a spectral thermal radiation transport model of an RTP reactor. The method also involves specifying a desired wafer time dependent temperature profile. The method further involves calculating an inverse of the generated model using the desired wafer time dependent temperature to determine heating element parameters required to produce the desired profile. The method also involves controlling the heating elements of the RTP reactor in accordance with the heating element parameters to heat the wafer in accordance with the desired profile.
NASA Astrophysics Data System (ADS)
Tanabe, Hiroshi; Inomoto, Michiaki; Ono, Yasushi; Yamada, Takuma; Imazawa, Ryota; Cheng, Chio-Zong
2016-07-01
We present results of recent studies of high power heating of magnetic reconnection, the fundamental process of several astrophysical events such as solar flare, in the Mega Amp Spherical Tokamak (MAST) - the world largest merging experiment. In addition to the previously reported significant reconnection heating up to ˜1keV [1], detailed local profiles of electron and ion temperature have been measured using a ultra-fine 300 channel Ruby- and a 130 channel YAG-Thomson scattering and a new 32 channel ion Doppler tomography diagnostics [2]. 2D profile measurement of electron temperature revealed highly localized heating structure at the X point with the characteristic scale length of 0.02-0.05m
40 CFR 1066.950 - Fuel temperature profile.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Fuel temperature profile. 1066.950 Section 1066.950 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... Test Procedures for Motor Vehicles § 1066.950 Fuel temperature profile. Develop fuel temperature...
UNDERSTANDING THE STRUCTURE OF THE HOT INTERSTELLAR MEDIUM IN NORMAL EARLY-TYPE GALAXIES.
NASA Astrophysics Data System (ADS)
Traynor, Liam; Kim, Dong-Woo; Chandra Galaxy Atlas
2018-01-01
The hot interstellar medium (ISM) of early-type galaxies (ETG's) provides crucial insight into the understanding of their formation and evolution. Mechanisms such as type Ia supernovae heating, AGN feedback, deepening potential depth through dark matter assembly and ramp-pressure stripping are known to affect the structure of the ISM. By using temperature maps and radial temperature profiles of the hot ISM from ~70 ETG's with archival Chandra data, it is possible to classify the galaxy's ISM into common structural types. This is extended by using 3D fitting of the radial temperature profile in order to provide models that further constrain the structural types. Five structural types are present, negative (temperature decreases with radii), positive (temperature increases with radii), hybrid-dip (temperature decreases at small radii and increases at large radii), hybrid-bump (inverse of hybrid-dip) and quasi-isothermal (temperature is constant at all radii). This work will be continued by 1) determining which mechanisms are present in which galaxies and 2) analysing the model parameters between galaxies within each structural type to determine whether each type can be described by a single set of model parameters, indicating that the same physical processes are responsible for creating that structural type.
Numerical modeling of thermal regime in inland water bodies with field measurement data
NASA Astrophysics Data System (ADS)
Gladskikh, D.; Sergeev, D.; Baydakov, G.; Soustova, I.; Troitskaya, Yu.
2018-01-01
Modification of the program complex LAKE, which is intended to compute the thermal regimes of inland water bodies, and the results of its validation in accordance with the parameters of lake part of Gorky water reservoir are reviewed in the research. The modification caused changing the procedure of input temperature profile assignment and parameterization of surface stress on air-water boundary in accordance with the consideration of wind influence on mixing process. Also the innovation consists in combined methods of gathering meteorological parameters from files of global meteorological reanalysis and data of hydrometeorological station. Temperature profiles carried out with CTD-probe during expeditions in the period 2014-2017 were used for validation of the model. The comparison between the real data and the numerical results and its assessment based on time and temperature dependences in control points, correspondence of the forms of the profiles and standard deviation for all performed realizations are provided. It is demonstrated that the model reproduces the results of field measurement data for all observed conditions and seasons. The numerical results for the regimes with strong mixing are in the best quantitative and qualitative agreement with the real profiles. The accuracy of the forecast for the ones with strong stratification near the surface is lower but all specificities of the forms are correctly reproduced.
Feguš, Urban; Žigon, Uroš; Petermann, Marcus; Knez, Željko
2015-01-01
Aim of this experimental work was to investigate the possibility of producing fruit powders without employing drying aid and to investigate the effect of drying temperatures on the final powder characteristics. Raw fruit materials (banana puree, strawberry puree and blueberry concentrate) were processed using three different drying techniques each operating at a different temperature conditions: vacuum-drying (-27-17 °C), Spray-drying (130-160 °C) and PGSS-drying (112-152 °C). Moisture content, total colour difference, antioxidant activity and sensory characteristics of the processed fruit powders were analysed. The results obtained from the experimental work indicate that investigated fruit powders without or with minimal addition of maltodextrin can be produced. Additionally, it was observed that an increase in process temperature results in a higher loss of colour, antioxidant activity and intensity of the flavour profile.
ERIC Educational Resources Information Center
United Nations Educational, Scientific, and Cultural Organization, Paris (France). Div. of Marine Sciences.
In this report the members of the Scientific Committee on Ocean Research Working Group 51 have attempted to describe the total process involved in obtaining salinity and temperature profiles with modern conductivity-temperature-depth (CTD) instruments. Their objective has been to provide a guide to procedures which will, if allowed, lead to the…
Carbon Dioxide Convection in the Martian Polar Night and Its Implications for Polar Processes
NASA Technical Reports Server (NTRS)
Colaprete, A.; Haberle, R. M.
2003-01-01
Each Martian year nearly 30% of the atmosphere is exchanged with the polar ice caps. This exchange occurs through a combination of direct surface condensation and atmospheric precipitation of carbon dioxide. It has long been thought the amount of condensation within the polar night is maintained by a balance between diabatic processes such as radiative cooling and latent heating from condensing CO2. This assumption manifests itself in Mars General Circulation Models (GCM) in such a way as to never allow the atmospheric temperature to dip below the saturation temperature of CO2. However, observations from Mars Global Surveyor (MGS) Radio Science (RS) and the Thermal Emission Spectrometer (TES) have demonstrated this assumption to be, at best, approximate. Both RS and TES observations within the polar nights of both poles indicate substantial supersaturated regions with respect to CO2. The observed temperature profiles suggest conditionally unstable regions containing planetary significant amounts of potential convective energy. Presented here are estimates of the total planetary inventory of convective available potential energy (CAPE) and the potential convective energy flux (PCEF). The values for CAPE and PCEF are derived from RS temperature profiles and compared to Mars GCM results using a new convective CO2 cloud model that allows for the formation of CAPE.
Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel
2008-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AlRS data. Version 5 contains accurate case-by-case error estimates for most derived products, which are also used for quality control. We have conducted forecast impact experiments assimilating AlRS quality controlled temperature profiles using the NASA GEOS-5 data assimilation system, consisting of the NCEP GSI analysis coupled with the NASA FVGCM. Assimilation of quality controlled temperature profiles resulted in significantly improved forecast skill in both the Northern Hemisphere and Southern Hemisphere Extra-Tropics, compared to that obtained from analyses obtained when all data used operationally by NCEP except for AlRS data is assimilated. Experiments using different Quality Control thresholds for assimilation of AlRS temperature retrievals showed that a medium quality control threshold performed better than a tighter threshold, which provided better overall sounding accuracy; or a looser threshold, which provided better spatial coverage of accepted soundings. We are conducting more experiments to further optimize this balance of spatial coverage and sounding accuracy from the data assimilation perspective. In all cases, temperature soundings were assimilated well below cloud level in partially cloudy cases. The positive impact of assimilating AlRS derived atmospheric temperatures all but vanished when only AIRS stratospheric temperatures were assimilated. Forecast skill resulting from assimilation of AlRS radiances uncontaminated by clouds, instead of AlRS temperature soundings, was only slightly better than that resulting from assimilation of only stratospheric AlRS temperatures. This reduction in forecast skill is most likely the result of significant loss of tropospheric information when only AIRS radiances unaffected by clouds are used in the data assimilation process.
Delay in convection in nocturnal boundary layer due to aerosol-induced cooling
NASA Astrophysics Data System (ADS)
Singh, Dhiraj Kumar; Ponnulakshmi, V. K.; Subramanian, G.; Sreenivas, K. R.
2012-11-01
Heat transfer processes in the nocturnal boundary layer (NBL) influence the surface energy budget, and play an important role in many micro-meteorological processes including the formation of inversion layers, radiation fog, and in the control of air-quality near the ground. Under calm clear-sky conditions, radiation dominates over other transport processes, and as a result, the air layers just above ground cool the fastest after sunset. This leads to an anomalous post-sunset temperature profile characterized by a minimum a few decimeters above ground (Lifted temperature minimum). We have designed a laboratory experimental setup to simulate LTM, involving an enclosed layer of ambient air, and wherein the boundary condition for radiation is decoupled from those for conduction and convection. The results from experiments involving both ambient and filtered air indicate that the high cooling rates observed are due to the presence of aerosols. Calculated Rayleigh number of LTM-type profiles is of the order 105-107 in the field and of order 103-105 in the laboratory. In the LTM region, there is convective motion when the Rayleigh number is greater than 104 rather than the critical Rayleigh number (Rac = 1709). The diameter of convection rolls is a function of height of minimum of LTM-type profiles. The results obtained should help in the parameterization of transport process in the nocturnal boundary layer, and highlight the need to accounting the effects of aerosols and ground emissivity in climate models.
Raman lidar/AERI PBL Height Product
Ferrare, Richard
2012-12-14
Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.
Self-similarity of temperature profiles in distant galaxy clusters: the quest for a universal law
NASA Astrophysics Data System (ADS)
Baldi, A.; Ettori, S.; Molendi, S.; Gastaldello, F.
2012-09-01
Context. We present the XMM-Newton temperature profiles of 12 bright (LX > 4 × 1044 erg s-1) clusters of galaxies at 0.4 < z < 0.9, having an average temperature in the range 5 ≲ kT ≲ 11 keV. Aims: The main goal of this paper is to study for the first time the temperature profiles of a sample of high-redshift clusters, to investigate their properties, and to define a universal law to describe the temperature radial profiles in galaxy clusters as a function of both cosmic time and their state of relaxation. Methods: We performed a spatially resolved spectral analysis, using Cash statistics, to measure the temperature in the intracluster medium at different radii. Results: We extracted temperature profiles for the clusters in our sample, finding that all profiles are declining toward larger radii. The normalized temperature profiles (normalized by the mean temperature T500) are found to be generally self-similar. The sample was subdivided into five cool-core (CC) and seven non cool-core (NCC) clusters by introducing a pseudo-entropy ratio σ = (TIN/TOUT) × (EMIN/EMOUT)-1/3 and defining the objects with σ < 0.6 as CC clusters and those with σ ≥ 0.6 as NCC clusters. The profiles of CC and NCC clusters differ mainly in the central regions, with the latter exhibiting a slightly flatter central profile. A significant dependence of the temperature profiles on the pseudo-entropy ratio σ is detected by fitting a function of r and σ, showing an indication that the outer part of the profiles becomes steeper for higher values of σ (i.e. transitioning toward the NCC clusters). No significant evidence of redshift evolution could be found within the redshift range sampled by our clusters (0.4 < z < 0.9). A comparison of our high-z sample with intermediate clusters at 0.1 < z < 0.3 showed how the CC and NCC cluster temperature profiles have experienced some sort of evolution. This can happen because higher z clusters are at a less advanced stage of their formation and did not have enough time to create a relaxed structure, which is characterized by a central temperature dip in CC clusters and by flatter profiles in NCC clusters. Conclusions: This is the first time that a systematic study of the temperature profiles of galaxy clusters at z > 0.4 has been attempted. We were able to define the closest possible relation to a universal law for the temperature profiles of galaxy clusters at 0.1 < z < 0.9, showing a dependence on both the relaxation state of the clusters and the redshift. Appendix A is only available in electronic form at http://www.aanda.org
First-Principles-Driven Model-Based Optimal Control of the Current Profile in NSTX-U
NASA Astrophysics Data System (ADS)
Ilhan, Zeki; Barton, Justin; Wehner, William; Schuster, Eugenio; Gates, David; Gerhardt, Stefan; Kolemen, Egemen; Menard, Jonathan
2014-10-01
Regulation in time of the toroidal current profile is one of the main challenges toward the realization of the next-step operational goals for NSTX-U. A nonlinear, control-oriented, physics-based model describing the temporal evolution of the current profile is obtained by combining the magnetic diffusion equation with empirical correlations obtained at NSTX-U for the electron density, electron temperature, and non-inductive current drives. In this work, the proposed model is embedded into the control design process to synthesize a time-variant, linear-quadratic-integral, optimal controller capable of regulating the safety factor profile around a desired target profile while rejecting disturbances. Neutral beam injectors and the total plasma current are used as actuators to shape the current profile. The effectiveness of the proposed controller in regulating the safety factor profile in NSTX-U is demonstrated via closed-loop predictive simulations carried out in PTRANSP. Supported by PPPL.
NASA Astrophysics Data System (ADS)
Münch, Thomas; Kipfstuhl, Sepp; Freitag, Johannes; Meyer, Hanno; Laepple, Thomas
2017-09-01
The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (≳ 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (≪ 1 ‰ RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.
The viscosity and temperature dependence of 1H T1-NMRD of the Gd(H 2O) 83+ complex
NASA Astrophysics Data System (ADS)
Zhou, Xiangzhi; Westlund, Per-Olof
2005-11-01
Water proton T1-NMRD profiles of the Gd(H 2O) 83+ complex have been recorded at three temperatures and at four concentrations of glycerol. The analysis is performed using both the generalized Solomon-Bloembergen-Morgan (GSBM) theory [J. Magn. Reson. 167(2004), 147-160], and the stochastic Liouville approach (SLA). The GSBM approach uses a two processes dynamic model of the zero-field splitting (ZFS) correlation function whereas SLA uses a single process model. Both models reproduce the proton T1-NMRD profiles well. However, the model parameters extracted from the two analyses, yield different ESR X-band spectra which moreover do not reproduce the experimental ESR spectra. It is shown that the analyses of the proton T1-NMRD profiles recorded for a solution Gd(H 2O) 83+ ions are relatively insensitive to the slow modulation part of dynamic model of the ZFS interaction correlation function. The description of the electron spin system results in a very small static ZFS, while recent ESR lineshape analysis indicates that the contribution from the static ZFS is important. Analysis of proton T1-NMRD profiles of Gd(H 2O) 83+ complex do result in a description of the electron spin system but these microscopic parameters are uncertain unless they also are tested in a ESR-lineshape analysis.
Investigation of neutral particle dynamics in Aditya tokamak plasma with DEGAS2 code
NASA Astrophysics Data System (ADS)
Dey, Ritu; Ghosh, Joydeep; Chowdhuri, M. B.; Manchanda, R.; Banerjee, S.; Ramaiya, N.; Sharma, Deepti; Srinivasan, R.; Stotler, D. P.; Aditya Team
2017-08-01
Neutral particle behavior in Aditya tokamak, which has a circular poloidal ring limiter at one particular toroidal location, has been investigated using DEGAS2 code. The code is based on the calculation using Monte Carlo algorithms and is mainly used in tokamaks with divertor configuration. This code has been successfully implemented in Aditya tokamak with limiter configuration. The penetration of neutral hydrogen atom is studied with various atomic and molecular contributions and it is found that the maximum contribution comes from the dissociation processes. For the same, H α spectrum is also simulated and matched with the experimental one. The dominant contribution around 64% comes from molecular dissociation processes and neutral particle is generated by those processes have energy of ~2.0 eV. Furthermore, the variation of neutral hydrogen density and H α emissivity profile are analysed for various edge temperature profiles and found that there is not much changes in H α emission at the plasma edge with the variation of edge temperature (7-40 eV).
Investigation of neutral particle dynamics in Aditya tokamak plasma with DEGAS2 code
Dey, Ritu; Ghosh, Joydeep; Chowdhuri, M. B.; ...
2017-06-09
Neutral particle behavior in Aditya tokamak, which has a circular poloidal ring limiter at one particular toroidal location, has been investigated using DEGAS2 code. The code is based on the calculation using Monte Carlo algorithms and is mainly used in tokamaks with divertor configuration. This code has been successfully implemented in Aditya tokamak with limiter configuration. The penetration of neutral hydrogen atom is studied with various atomic and molecular contributions and it is found that the maximum contribution comes from the dissociation processes. For the same, H α spectrum is also simulated which was matched with the experimental one. Themore » dominant contribution around 64% comes from molecular dissociation processes and neutral particle is generated by those processes have energy of ~ 2.0 eV. Furthermore, the variation of neutral hydrogen density and H α emissivity profile are analysed for various edge temperature profiles and found that there is not much changes in H α emission at the plasma edge with the variation of edge temperature (7 to 40 eV).« less
Modelling Soil Heat and Water Flow as a Coupled Process in Land Surface Models
NASA Astrophysics Data System (ADS)
García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Braud, Isabelle
2010-05-01
To improve model estimates of soil water and heat flow by land surface models (LSMs), in particular in the first few centimetres of the near-surface soil profile, we have to consider in detail all the relevant physical processes involved (see e.g. Milly, 1982). Often, thermal and iso-thermal vapour fluxes in LSMs are neglected and the simplified Richard's equation is used as a result. Vapour transfer may affect the water fluxes and heat transfer in LSMs used for hydrometeorological and climate simulations. Processes occurring in the top 50 cm soil may be relevant for water and heat flux dynamics in the deeper layers, as well as for estimates of evapotranspiration and heterotrophic respiration, or even for climate and weather predictions. Water vapour transfer, which was not incorporated in previous versions of the MOSES/JULES model (Joint UK Land Environment Simulator; Cox et al., 1999), has now been implemented. Furthermore, we also assessed the effect of the soil vertical resolution on the simulated soil moisture and temperature profiles and the effect of the processes occurring at the upper boundary, mainly in terms of infiltration rates and evapotranspiration. SiSPAT (Simple Soil Plant Atmosphere Transfer Model; Braud et al., 1995) was initially used to quantify the changes that we expect to find when we introduce vapour transfer in JULES, involving parameters such as thermal vapour conductivity and diffusivity. Also, this approach allows us to compare JULES to a more complete and complex numerical model. Water vapour flux varied with soil texture, depth and soil moisture content, but overall our results suggested that water vapour fluxes change temperature gradients in the entire soil profile and introduce an overall surface cooling effect. Increasing the resolution smoothed and reduced temperature differences between liquid (L) and liquid/vapour (LV) simulations at all depths, and introduced a temperature increase over the entire soil profile. Thermal gradients rather than soil water potential gradients seem to cause temporal and spatial (vertical) soil temperature variability. We conclude that a multi-soil layer configuration may improve soil water dynamics, heat transfer and coupling of these processes, as well as evapotranspiration estimates and land surface-atmosphere coupling. However, a compromise should be reached between numerical and process-simulation aspects. References: Braud I., A.C. Dantas-Antonino, M. Vauclin, J.L. Thony and P. Ruelle, 1995b: A Simple Soil Plant Atmo- sphere Transfer model (SiSPAT), Development and field verification, J. Hydrol, 166: 213-250 Cox, P.M., R.A. Betts, C.B. Bunton, R.L.H. Essery, P.R. Rowntree, and J. Smith (1999), The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn., 15, 183-203. Milly, P.C.D., 1982. Moisture and heat transport in hysteric inhomogeneous porous media: a matric head- based formulation and a numerical model, Water Resour. Res., 18:489-498
Mathioudakis, V L; Aivasidis, A
2009-01-01
Artificial dosage of nitrate in sewer networks is considered as one of the most effective methods for odor and corrosion control. However, there is limited knowledge on the effect of temperature on the transformations that takes place during anoxic conditions. Thus, two groups of batch experiments were conducted to gain insight in the involved processes in bulk phase of a septic municipal wastewater. It can be concluded that sewer denitrification, in bulk phase, can be simplified in three stages. According to the experimental results, nitrate or nitrite is utilized for autotrophic denitrification with sulfide, while heterotrophic utilization is initiated after the completion of anoxic sulfide oxidation. Moreover, temperature is proved to have a significant impact on sewer denitrification kinetic profile, as it determines the extent of temporal nitrite accumulation. The temperature coefficient of each anoxic process, including sulfide oxidation, nitrate utilization and denitrification/nitrite utilization is experimentally calculated and temperature dependent equations are developed, providing the rate of all anoxic processes in bulk phase of sewer wastewater, in any given temperature.
Uptake of Light Elements in Thin Metallic Films
NASA Astrophysics Data System (ADS)
Markwitz, Andreas; Waldschmidt, Mathias
Ion beam analysis was used to investigate the influence of substrate temperature on the inclusion of impurities during the deposition process of thin metallic single and double layers. Thin layers of gold and aluminium were deposited at different temperatures onto thin copper layers evaporated on silicon wafer substrates. The uptake of oxygen in the layers was measured using the highly sensitive non-resonant reaction 16O(d,p)170O at 920 keV. Nuclear reaction analysis was also used to probe for carbon and nitrogen with a limit of detection better than 20 ppm. Hydrogen depth profiles were measured using elastic recoil detection on the nanometer scale. Rutherford backscattering spectroscopy was used to determine the depth profiles of the metallic layers and to study diffusion processes. The combined ion beam analyses revealed an uptake of oxygen in the layers depending on the different metallic cap layers and the deposition temperature. Lowest oxygen values were measured for the Au/Cu layers, whereas the highest amount of oxygen was measured in Al/Cu layers deposited at 300°C. It was also found that with single copper layers produced at various temperatures, oxygen contamination occurred during the evaporation process and not afterwards, for example, as a consequence of the storage of the films under normal conditions for several days. Hydrogen, carbon, and nitrogen were found as impurities in the single and double layered metallic films, a finding that is in agreement with the measured oxidation behaviour of the metallic films.
Influence of inductive heating on microstructure and material properties in roll forming processes
NASA Astrophysics Data System (ADS)
Guk, Anna; Kunke, Andreas; Kräusel, Verena; Landgrebe, Dirk
2017-10-01
The increasing demand for sheet metal parts and profiles with enhanced mechanical properties by using high and ultra-high-strength (UHS) steels for the automotive industry must be covered by increasing flexibility of tools and machines. This can be achieved by applying innovative technologies such as roll forming with integrated inductive heating. This process is similar to indirect press hardening and can be used for the production of hardened profiles and profiles with graded properties in longitudinal and traverse direction. The advantage is that the production of hardened components takes place in a continuous process and the integration of heating and quenching units in the profiling system increases flexibility, accompanied by shortening of the entire process chain and minimizing the springback risk. The features of the mentioned process consists of the combination of inhomogeneous strain distribution over the stripe width by roll forming and inhomogeneity of microstructure by accelerated inductive heating to austenitizing temperature. Therefore, these two features have a direct influence on the mechanical properties of the material during forming and hardening. The aim of this work is the investigation of the influence of heating rates on microstructure evolution and mechanical properties to determine the process window. The results showed that heating rate should be set at 110 K/s for economic integration of inductive heating into the roll forming process.
Padalino, Lucia; Caliandro, Rocco; Chita, Giuseppe; Conte, Amalia; Del Nobile, Matteo Alessandro
2016-11-20
The influence of drying temperature on the starch crystallites and its impact on durum wheat pasta sensory properties is addressed in this work. In particular, spaghetti were produced by means of a pilot plant using 5 different drying temperature profiles. The sensory properties, as well as the cooking quality of pasta were assessed. X-ray powder diffraction was used for investigating changes in the crystallinity content of the samples. Starch crystallinity, size and density of the starch crystallites were determined from the analysis of the diffraction profiles. As expected, spaghetti sensory properties improved as the drying temperatures increased. In particular, attributes as resistance to break for uncooked samples and firmness, elasticity, bulkiness and stickiness for cooked samples, all benefit from drying temperature increase. The spaghetti cooking quality was also positively affected by the drying temperature increase. Diffraction analysis suggested that the improvement of sensory properties and cooking quality of pasta were directly related to the increase in density of both physical crosslink of starch granules and chemical crosslink of protein matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wieland, Flurin; Gloess, Alexia N; Keller, Marco; Wetzel, Andreas; Schenker, Stefan; Yeretzian, Chahan
2012-03-01
A real-time automated process control tool for coffee roasting is presented to consistently and accurately achieve a targeted roast degree. It is based on the online monitoring of volatile organic compounds (VOC) in the off-gas of a drum roaster by proton transfer reaction time-of-flight mass spectrometry at a high time (1 Hz) and mass resolution (5,500 m/Δm at full width at half-maximum) and high sensitivity (better than parts per billion by volume). Forty-two roasting experiments were performed with the drum roaster being operated either on a low, medium or high hot-air inlet temperature (= energy input) and the coffee (Arabica from Antigua, Guatemala) being roasted to low, medium or dark roast degrees. A principal component analysis (PCA) discriminated, for each one of the three hot-air inlet temperatures, the roast degree with a resolution of better than ±1 Colorette. The 3D space of the three first principal components was defined based on 23 mass spectral profiles of VOCs and their roast degree at the end point of roasting. This provided a very detailed picture of the evolution of the roasting process and allowed establishment of a predictive model that projects the online-monitored VOC profile of the roaster off-gas in real time onto the PCA space defined by the calibration process and, ultimately, to control the coffee roasting process so as to achieve a target roast degree and a consistent roasting.
An Efficient Monte Carlo Method for Modeling Radiative Transfer in Protoplanetary Disks
NASA Technical Reports Server (NTRS)
Kim, Stacy
2011-01-01
Monte Carlo methods have been shown to be effective and versatile in modeling radiative transfer processes to calculate model temperature profiles for protoplanetary disks. Temperatures profiles are important for connecting physical structure to observation and for understanding the conditions for planet formation and migration. However, certain areas of the disk such as the optically thick disk interior are under-sampled, or are of particular interest such as the snow line (where water vapor condenses into ice) and the area surrounding a protoplanet. To improve the sampling, photon packets can be preferentially scattered and reemitted toward the preferred locations at the cost of weighting packet energies to conserve the average energy flux. Here I report on the weighting schemes developed, how they can be applied to various models, and how they affect simulation mechanics and results. We find that improvements in sampling do not always imply similar improvements in temperature accuracies and calculation speeds.
Thermo-electrochemical instrumentation of cylindrical Li-ion cells
NASA Astrophysics Data System (ADS)
McTurk, Euan; Amietszajew, Tazdin; Fleming, Joe; Bhagat, Rohit
2018-03-01
The performance evaluation and optimisation of commercially available lithium-ion cells is typically based upon their full cell potential and surface temperature measurements, despite these parameters not being fully representative of the electrochemical processes taking place in the core of the cell or at each electrode. Several methods were devised to obtain the cell core temperature and electrode-specific potential profiles of cylindrical Li-ion cells. Optical fibres with Bragg Gratings were found to produce reliable core temperature data, while their small mechanical profile allowed for low-impact instrumentation method. A pure metallic lithium reference electrode insertion method was identified, avoiding interference with other elements of the cell while ensuring good contact, enabling in-situ observations of the per-electrode electrochemical responses. Our thermo-electrochemical instrumentation technique has enabled us to collect unprecedented cell data, and has subsequently been used in advanced studies exploring the real-world performance limits of commercial cells.
Modeling temperature and humidity profiles within forest canopies
USDA-ARS?s Scientific Manuscript database
Physically-based models are a powerful tool to help understand interactions of vegetation, atmospheric dynamics, and hydrology, and to test hypotheses regarding the effects of land cover, management, hydrometeorology, and climate variability on ecosystem processes. The purpose of this paper is to f...
Transcriptome profiling in fast versus slow-growing rainbow trout across seasonal gradients
USDA-ARS?s Scientific Manuscript database
Background: Circannual rhythms in vertebrates can influence a wide variety of physiological processes. Some notable examples include annual reproductive cycles and for poikilotherms, seasonal changes modulating growth. Increasing water temperature elevates growth rates in fishes, but increases i...
Self-similar solutions for multi-species plasma mixing by gradient driven transport
NASA Astrophysics Data System (ADS)
Vold, E.; Kagan, G.; Simakov, A. N.; Molvig, K.; Yin, L.
2018-05-01
Multi-species transport of plasma ions across an initial interface between DT and CH is shown to exhibit self-similar species density profiles under 1D isobaric conditions. Results using transport theory from recent studies and using a Maxwell–Stephan multi-species approximation are found to be in good agreement for the self-similar mix profiles of the four ions under isothermal and isobaric conditions. The individual ion species mass flux and molar flux profile results through the mixing layer are examined using transport theory. The sum over species mass flux is confirmed to be zero as required, and the sum over species molar flux is related to a local velocity divergence needed to maintain pressure equilibrium during the transport process. The light ion species mass fluxes are dominated by the diagonal coefficients of the diffusion transport matrix, while for the heaviest ion species (C in this case), the ion flux with only the diagonal term is reduced by about a factor two from that using the full diffusion matrix, implying the heavy species moves more by frictional collisions with the lighter species than by its own gradient force. Temperature gradient forces were examined by comparing profile results with and without imposing constant temperature gradients chosen to be of realistic magnitude for ICF experimental conditions at a fuel-capsule interface (10 μm scale length or greater). The temperature gradients clearly modify the relative concentrations of the ions, for example near the fuel center, however the mixing across the fuel-capsule interface appears to be minimally influenced by the temperature gradient forces within the expected compression and burn time. Discussion considers the application of the self-similar profiles to specific conditions in ICF.
Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
David H. Meikrantz; Troy G. Garn; Jack D. Law
2010-02-01
A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middlemore » of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.« less
NASA Astrophysics Data System (ADS)
Ramesh, K.; Kesarkar, A. P.; Bhate, J.; Venkat Ratnam, M.; Jayaraman, A.
2015-01-01
The retrieval of accurate profiles of temperature and water vapour is important for the study of atmospheric convection. Recent development in computational techniques motivated us to use adaptive techniques in the retrieval algorithms. In this work, we have used an adaptive neuro-fuzzy inference system (ANFIS) to retrieve profiles of temperature and humidity up to 10 km over the tropical station Gadanki (13.5° N, 79.2° E), India. ANFIS is trained by using observations of temperature and humidity measurements by co-located Meisei GPS radiosonde (henceforth referred to as radiosonde) and microwave brightness temperatures observed by radiometrics multichannel microwave radiometer MP3000 (MWR). ANFIS is trained by considering these observations during rainy and non-rainy days (ANFIS(RD + NRD)) and during non-rainy days only (ANFIS(NRD)). The comparison of ANFIS(RD + NRD) and ANFIS(NRD) profiles with independent radiosonde observations and profiles retrieved using multivariate linear regression (MVLR: RD + NRD and NRD) and artificial neural network (ANN) indicated that the errors in the ANFIS(RD + NRD) are less compared to other retrieval methods. The Pearson product movement correlation coefficient (r) between retrieved and observed profiles is more than 92% for temperature profiles for all techniques and more than 99% for the ANFIS(RD + NRD) technique Therefore this new techniques is relatively better for the retrieval of temperature profiles. The comparison of bias, mean absolute error (MAE), RMSE and symmetric mean absolute percentage error (SMAPE) of retrieved temperature and relative humidity (RH) profiles using ANN and ANFIS also indicated that profiles retrieved using ANFIS(RD + NRD) are significantly better compared to the ANN technique. The analysis of profiles concludes that retrieved profiles using ANFIS techniques have improved the temperature retrievals substantially; however, the retrieval of RH by all techniques considered in this paper (ANN, MVLR and ANFIS) has limited success.
Temperature Distribution within a Cold Cap during Nuclear Waste Vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixon, Derek R.; Schweiger, Michael J.; Riley, Brian J.
2015-07-21
The kinetics of the feed-to-glass conversion affects the waste vitrification rate in an electric melter. The primary area of interest in this conversion process is the cold cap, a layer of reacting feed on top of molten glass. Knowing the temperature profile within a cold cap will help determine its characteristics and relate them to the rate of glass production. The work presented here provides an experimental determination of the temperature distribution within the cold cap. Since a direct measurement of the temperature field within the cold cap is impracticable, an indirect method was developed where the textural features inmore » a laboratory-made cold cap with a high-level waste feed were mapped as a function of position using optical microscopy, scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. To correlate the temperature distribution to microstructures within the cold cap, microstructures were identified of individual feed samples that were heat treated to set temperatures between 400°C and 1200°C and quenched. The temperature distribution within the cold cap was then established by correlating cold-cap regions with the feed samples of nearly identical structures and was compared with the temperature profile from a mathematical model.« less
NASA Astrophysics Data System (ADS)
Gérard, Jean-Claude; Bougher, Stephen; Montmessin, Franck; Bertaux, Jean-Loup; Stiepen, A.
The thermal structure of the Mars upper atmosphere is the result of the thermal balance between heating by EUV solar radiation, infrared heating and cooling, conduction and dynamic influences such as gravity waves, planetary waves, and tides. It has been derived from observations performed from different spacecraft. These include in situ measurements of orbital drag whose strength depends on the local gas density. Atmospheric temperatures were determined from the altitude variation of the density measured in situ by the Viking landers and orbital drag measurements. Another method is based on remote sensing measurements of ultraviolet airglow limb profiles obtained over 40 years ago with spectrometers during the Mariner 6 and 7 flybys and from the Mariner 9 orbiter. Comparisons with model calculations indicate that they both reflect the CO_2 scale height from which atmospheric temperatures have been deduced. Upper atmospheric temperatures varying over the wide range 270-445 K, with a mean value of 325 K were deduced from the topside scale height of the airglow vertical profile. We present an analysis of limb profiles of the CO Cameron (a(3) Pi-X(1) Sigma(+) ) and CO_2(+) doublet (B(2) Sigma_u(+) - X(2) PiΠ_g) airglows observed with the SPICAM instrument on board Mars Express. We show that the temperature in the Mars thermosphere is very variable with a mean value of 270 K, but values ranging between 150 and 400 K have been observed. These values are compared to earlier determinations and model predictions. No clear dependence on solar zenith angle, latitude or season is apparent. Similarly, exospheric variations with F10.7 in the SPICAM airglow dataset are small over the solar minimum to moderate conditions sampled by Mars Express since 2005. We conclude that an unidentified process is the cause of the large observed temperature variability, which dominates the other sources of temperature variations.
NASA Technical Reports Server (NTRS)
Holmes, Thomas; Owe, Manfred; deJeu, Richard
2007-01-01
Two data sets of experimental field observations with a range of meteorological conditions are used to investigate the possibility of modeling near-surface soil temperature profiles in a bare soil. It is shown that commonly used heat flow methods that assume a constant ground heat flux can not be used to model the extreme variations in temperature that occur near the surface. This paper proposes a simple approach for modeling the surface soil temperature profiles from a single depth observation. This approach consists of two parts: 1) modeling an instantaneous ground flux profile based on net radiation and the ground heat flux at 5cm depth; 2) using this ground heat flux profile to extrapolate a single temperature observation to a continuous near surface temperature profile. The new model is validated with an independent data set from a different soil and under a range of meteorological conditions.
NASA Astrophysics Data System (ADS)
Kuznetsov, A. G.; Babin, Sergei A.; Shelemba, Ivan S.
2009-11-01
We demonstrate a Raman-based all-fibre temperature sensor utilising a pulsed erbium fibre laser. The sensor is made of a standard single-mode telecom fibre, SMF-28, and includes a number of directional couplers as band-pass filters. The temperature profile along a 7-km fibreoptic line is measured with an accuracy of 2oC and a spatial resolution of 10 m. In data processing, we take into account the difference in attenuation between the spectral components of the backscatter signal.
NASA Astrophysics Data System (ADS)
Holstein-Rathlou, C.; Maue, A.; Withers, P.
2016-01-01
The Mars Science Laboratory (MSL) entered the martian atmosphere on Aug. 6, 2012 landing in Gale crater (4.6°S, 137.4°E) in the local mid-afternoon. Aerodynamic accelerations were measured during descent and atmospheric density, pressure and temperature profiles have been calculated from this data. Using an averaging technique developed for the NASA Phoenix Mars mission, the profiles are extended to 134.1 km, twice that of the engineering reconstruction. Large-scale temperature oscillations in the MSL temperature profile are suggestive of thermal tides. Comparing the MSL temperature profile with measured Mars Climate Sounder temperature profiles and Mars Climate Database model output highlights the presence of diurnal tides. Derived vertical wavelengths for the diurnal migrating tide are larger than predicted from idealized tidal theory, indicating an added presence of nonmigrating diurnal tides. Sub-CO2 condensation mesospheric temperatures, very similar to the Pathfinder temperature profile, allude to the possibility of CO2 clouds. This is however not supported by recent observations and models.
The layered evolution of fabric and microstructure of snow at Point Barnola, Central East Antarctica
NASA Astrophysics Data System (ADS)
Calonne, Neige; Montagnat, Maurine; Matzl, Margret; Schneebeli, Martin
2017-02-01
Snow fabric, defined as the distribution of the c-axis orientations of the ice crystals in snow, is poorly known. So far, only one study exits that measured snow fabric based on a statistically representative technique. This recent study has revealed the impact of temperature gradient metamorphism on the evolution of fabric in natural snow, based on cold laboratory experiments. On polar ice sheets, snow properties are currently investigated regarding their strong variability in time and space, notably because of their potential influence on firn processes and consequently on ice core analysis. Here, we present measurements of fabric and microstructure of snow from Point Barnola, East Antarctica (close to Dome C). We analyzed a snow profile from 0 to 3 m depth, where temperature gradients occur. The main contributions of the paper are (1) a detailed characterization of snow in the upper meters of the ice sheet, especially by providing data on snow fabric, and (2) the study of a fundamental snow process, never observed up to now in a natural snowpack, namely the role of temperature gradient metamorphism on the evolution of the snow fabric. Snow samples were scanned by micro-tomography to measure continuous profiles of microstructural properties (density, specific surface area and pore thickness). Fabric analysis was performed using an automatic ice texture analyzer on 77 representative thin sections cut out from the samples. Different types of snow fabric could be identified and persist at depth. Snow fabric is significantly correlated with snow microstructure, pointing to the simultaneous influence of temperature gradient metamorphism on both properties. We propose a mechanism based on preferential grain growth to explain the fabric evolution under temperature gradients. Our work opens the question of how such a layered profile of fabric and microstructure evolves at depth and further influences the physical and mechanical properties of snow and firn. More generally, it opens the way to further studies on the influence of the snow fabric in snow processes related to anisotropic properties of ice such as grain growth, mechanical response, electromagnetic behavior.
The acoustic radiation force on a heated (or cooled) rigid sphere - Theory
NASA Technical Reports Server (NTRS)
Lee, C. P.; Wang, T. G.
1984-01-01
A finite amplitude sound wave can exert a radiation force on an object due to second-order effect of the wave field. The radiation force on a rigid small sphere (i.e., in the long wavelength limit), which has a temperature different from that of the environment, is presently studied. This investigation assumes no thermally induced convection and is relevant to material processing in the absence of gravity. Both isotropic and nonisotropic temperature profiles are considered. In this calculation, the acoustic effect and heat transfer process are essentially decoupled because of the long wavelength limit. The heat transfer information required for determining the force is contained in the parameters, which are integrals over the temperature distribution.
NASA Astrophysics Data System (ADS)
Farrell, Ross R.; Wellinger, Marco; Gloess, Alexia N.; Nichols, David S.; Breadmore, Michael C.; Shellie, Robert A.; Yeretzian, Chahan
2015-11-01
We introduce a real-time method to monitor the evolution of oak aromas during the oak toasting process. French and American oak wood boards were toasted in an oven at three different temperatures, while the process-gas was continuously transferred to the inlet of a proton-transfer-reaction time-of-flight mass spectrometer for online monitoring. Oak wood aroma compounds important for their sensory contribution to oak-aged wine were tentatively identified based on soft ionization and molecular mass. The time-intensity profiles revealed toasting process dynamics illustrating in real-time how different compounds evolve from the oak wood during toasting. Sufficient sensitivity was achieved to observe spikes in volatile concentrations related to cracking phenomena on the oak wood surface. The polysaccharide-derived compounds exhibited similar profiles; whilst for lignin-derived compounds eugenol formation differed from that of vanillin and guaiacol at lower toasting temperatures. Significant generation of oak lactone from precursors was evident at 225 oC. Statistical processing of the real-time aroma data showed similarities and differences between individual oak boards and oak wood sourced from the different origins. This study enriches our understanding of the oak toasting process and demonstrates a new analytical approach for research on wood volatiles.
An Energy-Saving Ceramic Cooler For Hot Arid Regions
NASA Astrophysics Data System (ADS)
Aimiuwu, Victor O.
2008-03-01
A ceramic cooling device is fabricated from fired clay materials. Its evaporative cooling process and temperature profiles are presented. The use of the device to produce cold water 15 ° C below the ambient temperature during the hottest part of the day is impressive. Its storage capability to preserve fresh fruits and vegetables for up to forty days has direct applications in rural areas where both conventional refrigeration and daily markets are unavailable.
NASA Astrophysics Data System (ADS)
Wang, W.; Kishimoto, Y.; Imadera, K.; Li, J. Q.; Wang, Z. X.
2018-05-01
The mechanism for the formation and sustainment of a self-organized global profile and the ‘ E × B staircase’ are investigated through simulations of a flux-driven ion temperature gradient (ITG) turbulence based on GKNET, a 5D global gyrokinetic code. The staircase is found to be initiated from the radially extended ITG mode structures with nearly up-down symmetry during the saturation phase, and is established as it evolves into a quasi-steady turbulence, leading to a self-organized global temperature profile and to meso-scale isomorphic profiles of the radial electric field and the temperature gradient. It is found that the quasi-regular E × B shear flow pattern is primarily originated from an even-symmetrical zonal flow produced by the extended ITG mode, which flow pattern exhibits an in-phase relation with the mean flow variation induced by the temperature relaxation. Consequently, the staircase is initiated through the profiles of total electric field and temperature gradient with a self-organized manner. Since the sign of E × B shear flow at the central part are opposite to that at both edges, it disintegrates the ITG mode into smaller scale eddies. Meanwhile, smaller scale eddies tend to be aligned radially by spontaneous phase matching, which can provide the growth of mode amplitude and the formation of radially extended mode structures, leading to the bursty heat transport. This process is repeated quasi-periodically, sustaining self-organized structures and the E × B staircase. Moreover, the equilibrium mean field is found to be of specific importance in causing the structures and dynamics from meso- to macro scales in toroidal plasmas.
Effects of air flow directions on composting process temperature profile
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulcu, Recep; Yaldiz, Osman
2008-07-01
In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperaturemore » distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.« less
A conceptual snow model with an analytic resolution of the heat and phase change equations
NASA Astrophysics Data System (ADS)
Riboust, Philippe; Le Moine, Nicolas; Thirel, Guillaume; Ribstein, Pierre
2017-04-01
Compared to degree-day snow models, physically-based snow models resolve more processes in an attempt to achieve a better representation of reality. Often these physically-based models resolve the heat transport equations in snow using a vertical discretization of the snowpack. The snowpack is decomposed into several layers in which the mechanical and thermal states of the snow are calculated. A higher number of layers in the snowpack allow for better accuracy but it also tends to increase the computational costs. In order to develop a snow model that estimates the temperature profile of snow with a lower computational cost, we used an analytical decomposition of the vertical profile using eigenfunctions (i.e. trigonometric functions adapted to the specific boundary conditions). The mass transfer of snow melt has also been estimated using an analytical conceptualization of runoff fingering and matrix flow. As external meteorological forcing, the model uses solar and atmospheric radiation, air temperature, atmospheric humidity and precipitations. It has been tested and calibrated at point scale at two different stations in the Alps: Col de Porte (France, 1325 m) and Weissfluhjoch (Switzerland, 2540 m). A sensitivity analysis of model parameters and model inputs will be presented together with a comparison with measured snow surface temperature, SWE, snow depth, temperature profile and snow melt data. The snow model is created in order to be ultimately coupled with hydrological models for rainfall-runoff modeling in mountainous areas. We hope to create a model faster than physically-based models but capable to estimate more physical processes than degree-day snow models. This should help to build a more reliable snow model capable of being easily calibrated by remote sensing and in situ observation or to assimilate these data for forecasting purposes.
NASA Astrophysics Data System (ADS)
Shirley, James H.; McConnochie, Timothy H.; Kass, David M.; Kleinböhl, Armin; Schofield, John T.; Heavens, Nicholas G.; McCleese, Daniel J.; Benson, Jennifer; Hinson, David P.; Bandfield, Joshua L.
2015-05-01
We exploit the relative stability and repeatability of the Mars atmosphere at aphelion for an inter-comparison of Mars Global Surveyor/Thermal Emission Spectrometer (MGS/TES) and Mars Reconnaissance Orbiter/Mars Climate Sounder (MRO/MCS) nighttime temperature profiles and aerosol opacity profiles in Mars years 25, 26, 29, 30, and 31. Cross-calibration of these datasets is important, as they together provide an extended climatology for this planetary atmosphere. As a standard of comparison we employ temperature profiles obtained by radio occultation methods during the MGS mission in Mars years 24, 25, and 26. We first compare both zonal mean TES limb sounding profiles and zonal mean MCS limb sounding profiles with zonal means of radio occultation temperature profiles for the same season (Ls = 70-80°) and latitudes (55-70°N). We employ a statistical z test for quantifying the degree of agreement of temperature profiles by pressure level. For pressures less than 610 Pa (altitudes > 3 km), the ensemble mean temperature difference between the radio occultation and TES limb sounding profiles found in these comparisons was 1.7 ± 0.7 K. The ensemble mean temperature difference between radio occultation and MCS profiles was 1.4 ± 1.0 K. These differences fall within the formal error estimates for both TES and MCS, validating the accuracy of the instruments and their respective retrieval algorithms. In the second phase of our investigation, we compare aphelion season zonal mean TES limb sounding temperature, water ice opacity, and dust opacity profiles with those obtained at the same latitudes in different years by MCS. The ensemble mean temperature difference found for three comparisons between TES and MCS zonal mean temperature profiles was 2.8 ± 2.1 K. MCS and TES temperatures between 610 Pa and 5 Pa from 55 to 70°N are largely in agreement (with differences < 2 K) when water ice aerosol opacities are comparable. Temperature differences increase when the opacities are dissimilar; TES profiles exhibit colder temperatures when TES water ice opacities are greater than those observed by MCS. Our comparisons reveal a possible systematic offset of TES and MCS temperatures at the highest altitudes resolved in the TES retrievals; TES temperatures are consistently colder than the corresponding MCS temperatures at pressures ⩽ 1 Pa (altitudes ⩾ 58 km). We otherwise find no evidence of systematic bias between TES limb sounding and MCS retrieved atmospheric quantities between 610 Pa and 1 Pa. Inter-annual variability is noted in comparisons of latitudinal temperature gradients from 55 to 70°N, in the amplitude of inversions linked with thermal tides in the middle atmosphere, and in the abundance and vertical distribution of water ice aerosols from 55 to 70°N during the aphelion season.
Dynamic predictive model for the growth of Salmonella spp. in liquid whole egg.
Singh, Aikansh; Korasapati, Nageswara R; Juneja, Vijay K; Subbiah, Jeyamkondan; Froning, Glenn; Thippareddi, Harshavardhan
2011-04-01
A dynamic model for the growth of Salmonella spp. in liquid whole egg (LWE) (approximately pH 7.8) under continuously varying temperature was developed. The model was validated using 2 (5 to 15 °C; 600 h and 10 to 40 °C; 52 h) sinusoidal, continuously varying temperature profiles. LWE adjusted to pH 7.8 was inoculated with approximately 2.5-3.0 log CFU/mL of Salmonella spp., and the growth data at several isothermal conditions (5, 7, 10, 15, 20, 25, 30, 35, 37, 39, 41, 43, 45, and 47 °C) was collected. A primary model (Baranyi model) was fitted for each temperature growth data and corresponding maximum growth rates were estimated. Pseudo-R2 values were greater than 0.97 for primary models. Modified Ratkowsky model was used to fit the secondary model. The pseudo-R2 and root mean square error were 0.99 and 0.06 log CFU/mL, respectively, for the secondary model. A dynamic model for the prediction of Salmonella spp. growth under varying temperature conditions was developed using 4th-order Runge-Kutta method. The developed dynamic model was validated for 2 sinusoidal temperature profiles, 5 to 15 °C (for 600 h) and 10 to 40 °C (for 52 h) with corresponding root mean squared error values of 0.28 and 0.23 log CFU/mL, respectively, between predicted and observed Salmonella spp. populations. The developed dynamic model can be used to predict the growth of Salmonella spp. in LWE under varying temperature conditions. Liquid egg and egg products are widely used in food processing and in restaurant operations. These products can be contaminated with Salmonella spp. during breaking and other unit operations during processing. The raw, liquid egg products are stored under refrigeration prior to pasteurization. However, process deviations can occur such as refrigeration failure, leading to temperature fluctuations above the required temperatures as specified in the critical limits within hazard analysis and critical control point plans for the operations. The processors are required to evaluate the potential growth of Salmonella spp. in such products before the product can be used, or further processed. Dynamic predictive models are excellent tools for regulators as well as the processing plant personnel to evaluate the microbiological safety of the product under such conditions.
An Overview of the Regional Experiments for Land-atmosphere Exchanges 2012 (REFLEX 2012) Campaign
NASA Astrophysics Data System (ADS)
Timmermans, Wim J.; van der Tol, Christiaan; Timmermans, Joris; Ucer, Murat; Chen, Xuelong; Alonso, Luis; Moreno, Jose; Carrara, Arnaud; Lopez, Ramon; de la Cruz Tercero, Fernando; Corcoles, Horacio L.; de Miguel, Eduardo; Sanchez, Jose A. G.; Pérez, Irene; Franch, Belen; Munoz, Juan-Carlos J.; Skokovic, Drazen; Sobrino, Jose; Soria, Guillem; MacArthur, Alasdair; Vescovo, Loris; Reusen, Ils; Andreu, Ana; Burkart, Andreas; Cilia, Chiara; Contreras, Sergio; Corbari, Chiara; Calleja, Javier F.; Guzinski, Radoslaw; Hellmann, Christine; Herrmann, Ittai; Kerr, Gregoire; Lazar, Adina-Laura; Leutner, Benjamin; Mendiguren, Gorka; Nasilowska, Sylwia; Nieto, Hector; Pachego-Labrador, Javier; Pulanekar, Survana; Raj, Rahul; Schikling, Anke; Siegmann, Bastian; von Bueren, Stefanie; Su, Zhongbo (Bob)
2015-12-01
The REFLEX 2012 campaign was initiated as part of a training course on the organization of an airborne campaign to support advancement of the understanding of land-atmosphere interaction processes. This article describes the campaign, its objectives and observations, remote as well as in situ. The observations took place at the experimental Las Tiesas farm in an agricultural area in the south of Spain. During the period of ten days, measurements were made to capture the main processes controlling the local and regional land-atmosphere exchanges. Apart from multi-temporal, multi-directional and multi-spatial space-borne and airborne observations, measurements of the local meteorology, energy fluxes, soil temperature profiles, soil moisture profiles, surface temperature, canopy structure as well as leaf-level measurements were carried out. Additional thermo-dynamical monitoring took place at selected sites. After presenting the different types of measurements, some examples are given to illustrate the potential of the observations made.
Global volatile profile of virgin olive oils flavoured by aromatic/medicinal plants.
Perestrelo, R; Silva, C; Silva, P; Câmara, J S
2017-07-15
The global volatile profile of commercial virgin olive oils and flavoured olive oils with aromatic/medicinal plants, was established using liquid-liquid microextraction (LLME) and headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-qMS). More than 60 volatile organic compounds (VOCs belonging to different groups were identified using both methods. Olive oils volatile profile was slightly influenced by maceration process, which occurred at room temperature (20±2°C) for 15days. The predominant differences were observed in terpenoids group, since some of them were only identified in the flavoured olive oils, while others showed an increase with the maceration process. VOCs mass transfer from plants to olive oils could explain the observed results. Principal components analysis (PCA) applied to LLME/GC-qMS data allowed to distinguish the olive oils. The flavoured oils would increase the use of olive oil among consumers as consequence of the improvement of its aromatic profile and healthy properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
Processes of Equatorial Thermal Structure: An Analysis of Galileo Temperature Profile with 3-D Model
NASA Technical Reports Server (NTRS)
Majeed, T.; Waite, J. H., Jr.; Bougher, S. W.; Gladstone, G. R.
2005-01-01
The Jupiter Thermosphere General Circulation Model (JTGCM) calculates the global dynamical structure of Jupiter's thermosphere self-consistently with its global thermal structure and composition. The main heat source that drives the thermospheric flow is high-latitude Joule heating. A secondary source of heating is the auroral process of particle precipitation. Global simulations of Jovian thermospheric dynamics indicate strong neutral outflows from the auroral ovals with velocities up to approximately 2 kilometers per second and subsequent convergence and downwelling at the Jovian equator. Such circulation is shown to be an important process for transporting significant amounts of auroral energy to equatorial latitudes and for regulating the global heat budget in a manner consistent with the high thermospheric temperatures observed by the Galileo probe. Adiabatic compression of the neutral atmosphere resulting from downward motion is an important source of equatorial heating (less than 0.06 microbar). The adiabatic heating continues to dominate between 0.06 and 0.2 microbar, but with an addition of comparable heating due to horizontal advection induced by the meridional flow. Thermal conduction plays an important role in transporting heat down to lower altitudes (greater than 0.2microbar) where it is balanced by the cooling associated with the wind transport processes. Interestingly, we find that radiative cooling caused by H3(+), CH4, and C2H2 emissions does not play a significant role in interpreting the Galileo temperature profile.
NASA Astrophysics Data System (ADS)
Serov, S. V.; Tugarinov, S. N.; Klyuchnikov, L. A.; Krupin, V. A.; von Hellermann, M.
2017-12-01
The applicability of the CXSFIT code to process experimental data from Charge-eXchange Recombination Spectroscopy (CXRS) diagnostics at the T-10 tokamak is studied with a view to its further use for processing experimental data at the ITER facility. The design and operating principle of the CXRS diagnostics are described. The main methods for processing the CXRS spectra of the 5291-Å line of C5+ ions at the T-10 tokamak (with and without subtraction of parasitic emission from the edge plasma) are analyzed. The method of averaging the CXRS spectra over several shots, which is used at the T-10 tokamak to increase the signal-to-noise ratio, is described. The approximation of the spectrum by a set of Gaussian components is used to identify the active CXRS line in the measured spectrum. Using the CXSFIT code, the ion temperature in ohmic discharges and discharges with auxiliary electron cyclotron resonance heating (ECRH) at the T-10 tokamak is calculated from the CXRS spectra of the 5291-Å line. The time behavior of the ion temperature profile in different ohmic heating modes is studied. The temperature profile dependence on the ECRH power is measured, and the dynamics of ECR removal of carbon nuclei from the T-10 plasma is described. Experimental data from the CXRS diagnostics at T-10 substantially contribute to the implementation of physical programs of studies on heat and particle transport in tokamak plasmas and investigation of geodesic acoustic mode properties.
We present development of a process to perform greyscale photolithography on a 2.55-m thick photoresist in order to transfer tiered and sloped...platinum or iridium oxide (IrO2) electrodes above and below each layer. Process variables including resist rehydration , focus of the exposure, and UV cure...bake temperature were optimized to produce the best greyscale profile through the thickness of the resist.
Process control of laser conduction welding by thermal imaging measurement with a color camera.
Bardin, Fabrice; Morgan, Stephen; Williams, Stewart; McBride, Roy; Moore, Andrew J; Jones, Julian D C; Hand, Duncan P
2005-11-10
Conduction welding offers an alternative to keyhole welding. Compared with keyhole welding, it is an intrinsically stable process because vaporization phenomena are minimal. However, as with keyhole welding, an on-line process-monitoring system is advantageous for quality assurance to maintain the required penetration depth, which in conduction welding is more sensitive to changes in heat sinking. The maximum penetration is obtained when the surface temperature is just below the boiling point, and so we normally wish to maintain the temperature at this level. We describe a two-color optical system that we have developed for real-time temperature profile measurement of the conduction weld pool. The key feature of the system is the use of a complementary metal-oxide semiconductor standard color camera leading to a simplified low-cost optical setup. We present and discuss the real-time temperature measurement and control performance of the system when a defocused beam from a high power Nd:YAG laser is used on 5 mm thick stainless steel workpieces.
Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling
2014-09-30
warmer profile through greater latent heat release. Resulting temperature profiles all follow essentially moist adiabats in the upper troposphere ...default RRTM ozone concentration profile). Greater convective mixing deepens the tropopause for cases with stronger moisture flux convergence. Case...with tropospheric temperatures about 4 degrees cooler than the original temperature profile. This case represents conditions during the suppressed
NASA Astrophysics Data System (ADS)
Horuz, Erhan; Bozkurt, Hüseyin; Karataş, Haluk; Maskan, Medeni
2018-02-01
Drying kinetics, modeling, temperature profile and energy indices were investigated in apple slices during drying by a specially designed microwave-hot air domestic hybrid oven at the following conditions: 120, 150 and 180 W microwave powers coupled with 50, 60 and 70 °C air temperatures. Both sources of energy were applied simultaneously during the whole drying processes. The drying process continued until the moisture content of apple slices reached to 20% from 86.3% (wet basis, w.b). Drying times ranged from 330 to 800 min and decreased with increasing microwave power and air temperatures. The constant rate period was only observed at low microwave powers and air temperatures. Two falling rate periods were observed. Temperature of apple slices sharply increased within the first 60 min, then reached equilibrium with drying medium and finally increased at the end of the drying process. In order to describe drying behavior of apple slices nine empirical models were applied. The Modified Logistic Model fitted the best our experimental data ( R 2 = 0.9955-0.9998; χ 2 = 3.46 × 10-5-7.85 × 10-4 and RMSE = 0.0052-0.0221). The effective moisture and thermal diffusivities were calculated by Fick's second law and ranged from 1.42 × 10-9 to 3.31 × 10-9 m2/s and 7.70 × 10-9 to 12.54 × 10-9 m2/s, respectively. The activation energy ( Ea) values were calculated from effective moisture diffusivity ( Deff), thermal diffusivity ( α) and the rate constant of the best model ( k). The Ea values found from these three terms were similar and varied from 13.04 to 33.52 kJ/mol. Energy consumption and specific energy requirement of the hybrid drying of apple slices decreased and energy efficiency of the drying system increased with increasing microwave power and air temperature. Apples can be dried rapidly and effectively by use of the hybrid technique.
NASA Astrophysics Data System (ADS)
Xia, Huanxiong; Xiang, Dong; Yang, Wang; Mou, Peng
2014-12-01
Low-temperature plasma technique is one of the critical techniques in IC manufacturing process, such as etching and thin-film deposition, and the uniformity greatly impacts the process quality, so the design for the plasma uniformity control is very important but difficult. It is hard to finely and flexibly regulate the spatial distribution of the plasma in the chamber via controlling the discharge parameters or modifying the structure in zero-dimensional space, and it just can adjust the overall level of the process factors. In the view of this problem, a segmented non-uniform dielectric module design solution is proposed for the regulation of the plasma profile in a CCP chamber. The solution achieves refined and flexible regulation of the plasma profile in the radial direction via configuring the relative permittivity and the width of each segment. In order to solve this design problem, a novel simulation-based auto-design approach is proposed, which can automatically design the positional sequence with multi independent variables to make the output target profile in the parameterized simulation model approximate the one that users preset. This approach employs an idea of quasi-closed-loop control system, and works in an iterative mode. It starts from initial values of the design variable sequences, and predicts better sequences via the feedback of the profile error between the output target profile and the expected one. It never stops until the profile error is narrowed in the preset tolerance.
Thermal Buckling Analysis of Rectangular Panels Subjected to Humped Temperature Profile Heating
NASA Technical Reports Server (NTRS)
Ko, William I.
2004-01-01
This research investigates thermal buckling characteristics of rectangular panels subjected to different types of humped temperature profile heating. Minimum potential energy and finite-element methods are used to calculate the panel buckling temperatures. The two methods give fairly close thermal buckling solutions. 'Buckling temperature magnification factor of the first kind, eta' is established for the fixed panel edges to scale up the buckling solution of uniform temperature loading case to give the buckling solution of the humped temperature profile loading cases. Also, 'buckling temperature magnification factor of the second kind, xi' is established for the free panel edges to scale up the buckling solution of humped temperature profile loading cases with unheated boundary heat sinks to give the buckling solutions when the boundary heat sinks are heated up.
NASA Technical Reports Server (NTRS)
Schwab, J. R.; Stabe, R. G.; Whitney, W. J.
1983-01-01
Results are presented for a typical nonuniform inlet radial temperature profile through an advanced single-stage axial turbine and compared with the results obtained for a uniform profile. Gas temperature rises of 40 K to 95 K are predicted at the hub and tip corners at the trailing edges of the pressure surfaces in both the stator and rotor due to convection of hot fluid from the mean by the secondary flow. The inlet temperature profile is shown to be mixed out at the rotor exit survey plane (2.3 axial chords downstream of the rotor trailing edge) in both the analysis and the experiment. The experimental rotor exit angle profile for the nonuniform inlet temperature profile indicates underturning at the tip caused by increased clearance. Severe underturning also occurs at the mean, both with and without the nonuniform inlet temperature profile. The inviscid rotational flow code used in the analysis fails to predict the underturning at the mean, which may be caused by viscous effects.
NASA Technical Reports Server (NTRS)
Schwab, J. R.; Stabe, R. G.; Whitney, W. J.
1983-01-01
Results are presented for a typical nonuniform inlet radial temperature profile through an advanced single-stage axial turbine and compared with the results obtained for a uniform profile. Gas temperature rises of 40 K to 95 K are predicted at the hub and tip corners at the trailing edges of the pressure surfaces in both the stator and rotor due to convection of hot fluid from the mean by the secondary flow. The inlet temperature profile is shown to be mixed out at the rotor exit survey plane (2.3 axial chords downstream of the rotor trailing edge) in both the analysis and the experiment. The experimental rotor exit angle profile for the nonuniform inlet temperature profile indicates underturning at the tip caused by increased clearance. Severe underturning also occurs at the mean, both with and without the nonuniform inlet temperature profile. The inviscid rotational flow code used in the analysis fails to predict the underturning at the mean, which may be caused by viscous effects. Previously announced in STAR as N83-27958
NASA Astrophysics Data System (ADS)
Du, C.; Yu, J.; Sun, F.; Liu, X.
2015-12-01
To reveal how water and vapor transfer in vadose zone affect evapotranspiration in Gobi desert and riparian in hyper arid region is important for understanding eco-hydrological process. Field studies and numerical simulations were imported to evaluate the water and vapor movement processes under non isothermal and lower water content conditions. The soil profiles (12 layers) in Gobi desert and riparian sites of Ejina were installed with sensors to monitor soil moisture and temperature for 1 year. The meteorological conditions and water table were measured by micro weather stations and mini-Divers respectively in the two sites. Soil properties, including particles composition, moisture, bulk density, water retention curve, and saturated hydraulic conductivity of two site soil profiles, was measured. The observations showed that soil temperatures for the two sites displayed large diurnal and seasonal fluctuations. Temperature gradients with depth resulted in a downward in summer and upward in winter and became driving force for thermal vapor movement. Soil moistures in Gobi desert site were very low and varied slowly with time. While the soil moistures in riparian site were complicated due to root distribution but water potentials remained uniform with time. The hydrus-1D was employed to simulate evapotranspiration processes. The simulation results showed the significant difference of evaporation rate in the Gobi desert and riparian sites.
Mean state densities, temperatures and winds during the MAC/SINE and MAC/EPSILON campaigns
NASA Technical Reports Server (NTRS)
Luebken, F.-J.; Von Zahn, U.; Manson, A.; Meek, C.; Hoppe, U.-P.; Schmidlin, F. J.
1990-01-01
Two field campaigns were conducted, primarily in northern Norway, in the summer and late autumn of 1987; these yielded a total of 41 in situ temperature profiles and 67 in situ wind profiles. Simultaneously, ground-based measurements were conducted of OH temperatures and sodium lidar temperatures for 85 and 104 hours, respectively. The summer campaign's mean temperature profile exhibited major deviations from the CIRA (1986) reference atmosphere; the differences between this model and the observations are less pronounced in the autumn. Both the summer and autumn mean wind profiles were in general agreement with the CIRA model.
Results from a lab study of melting sea ice
NASA Astrophysics Data System (ADS)
Wiese, M.; Griewank, P.; Notz, D.
2012-04-01
Sea-ice melting is a complex process which is not fully understood yet. In order to study sea-ice melt in detail we perform lab experiments in an approximately 2x0.7x1.2 m large tank in a cold room. We grow sea ice with different salinities at least 10 cm thick. Then we let the ice melt at different air temperatures and oceanic heat fluxes. During the melt period, we measure the evolution of ice thickness, internal temperature, salinity and surface temperature. We will present results from roughly five months of experiments. Topics will include the influence of bulk salinity on melt rates and the surface temperature. The effects of flushing on the salinity evolution and detailed thermal profiles will also be included. To investigate these processes we focus on the energy budget and the salinity evolution. These topics are linked since the thermodynamic properties of sea ice (heat capacity, heat conductivity and latent heat of fusion) are very sensitive to salinity variations. For example the heat capacity of sea ice increases greatly as the temperature approaches the melting point. This increase results in non-linear temperature profiles and enhances heat conduction into the ice. The salinity evolution during the growth phase has been investigated and measured in multiple studies over the last decades. In contrast there are no detailed lab measurements of melting ice available to quantify the effects of flushing melt water and ponding. This is partially due to the fact that the heterogeneity of melting sea ice makes it much more difficult to measure representative values.
Temperature profile and equipartition law in a Langevin harmonic chain
NASA Astrophysics Data System (ADS)
Kim, Sangrak
2017-09-01
Temperature profile in a Langevin harmonic chain is explicitly derived and the validity of the equipartition law is checked. First, we point out that the temperature profile in previous studies does not agree with the equipartition law: In thermal equilibrium, the temperature profile deviates from the same temperature distribution against the equipartition law, particularly at the ends of the chain. The matrix connecting temperatures of the heat reservoirs and the temperatures of the harmonic oscillators turns out to be a probability matrix. By explicitly calculating the power spectrum of the probability matrix, we will show that the discrepancy comes from the neglect of the power spectrum in higher frequency ω, which is in decay mode, and related with the imaginary number of wave number q.
Experimental research and numerical simulation on cryogenic line chill-down process
NASA Astrophysics Data System (ADS)
Jin, Lingxue; Cho, Hyokjin; Lee, Cheonkyu; Jeong, Sangkwon
2018-01-01
The empirical heat transfer correlations are suggested for the fast cool down process of the cryogenic transfer line from room temperature to cryogenic temperature. The correlations include the heat transfer coefficient (HTC) correlations for single-phase gas convection and film boiling regimes, minimum heat flux (MHF) temperature, critical heat flux (CHF) temperature and CHF. The correlations are obtained from the experimental measurements. The experiments are conducted on a 12.7 mm outer diameter (OD), 1.25 mm wall thickness and 7 m long stainless steel horizontal pipe with liquid nitrogen (LN2). The effect of the lengthwise position is verified by measuring the temperature profiles in near the inlet and the outlet of the transfer line. The newly suggested heat transfer correlations are applied to the one-dimensional homogeneous transient model to simulate the cryogenic line chill-down process, and the chill-down time and the cryogen consumption are well predicted in the mass flux range from 26.0 kg/m2 s to 73.6 kg/m2 s through the correlations.
HEATPLOT: a temperature distribution plotting program for heating
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elrod, D.C.; Turner, W.D.
1977-07-01
HEATPLOT is a temperature distribution plotting program that may be used with HEATING5, a generalized heat conduction code. HEATPLOT is capable of drawing temperature contours (isotherms), temperature-time profiles, and temperature-distance profiles from the current HEATING5 temperature distribution or from temperature changes relative to the initial temperature distribution. Contour plots may be made for two- or three-dimensional models. Temperature-time profiles and temperature-distance profiles may be made for one-, two-, and three-dimensional models. HEATPLOT is an IBM 360/370 computer code which uses the DISSPLA plotting package. Plots may be created on the CALCOMP pen-and-ink, and CALCOMP cathode ray tube (CRT), or themore » EAI pen-and-ink plotters. Printer plots may be produced or a compressed data set that may be routed to any of the available plotters may be made.« less
NASA Astrophysics Data System (ADS)
Zasova, L.; Formisano, V.; Grassi, D.; Igantiev, N.; Moroz, V.
Thermal IR spectrometry is one of the methods of the Martian atmosphere investigation below 55 km. The temperature profiles retrieved from the 15 μm CO2 band may be used for MIRA database. This approach gives the vertical resolution of several kilometers and accuracy of several Kelvins. An aerosol abundance, which influences the temperature profiles, is obtained from the continuum of the same spectrum. It is taken into account in the temperature retrieval procedure in a self- consistent way. Although this method has limited vertical resolution it possesses some advantages. For example, the radio occultation method gives the temperature profiles with higher spectral resolution, but the radio observations are sparse in space and local time. Direct measurements, which give the most accurate results, enable to obtain the temperature profiles only for some chosen points (landing places). Actually, the thermal IR-spectrometry is the only method, which allows to monitor the temperature profiles with good coverage both in space and local time. The first measurements of this kind were fulfilled by IRIS, installed on board of Mariner 9. This spectrometer was characterized by rather high spectral resolution (2.4 cm-1). The temperature profiles vs. local time dependencies for different latitudes and seasons were retrieved, including dust storm conditions, North polar night, Tharsis volcanoes. The obtained temperature profiles have been compared with the temperature profiles for the same conditions, taken from Climate Data Base (European GCM). The Planetary Fourier Spectrometer onboard Mars Express (which is planned to be launched in 2003) has the spectral range 1.2-45 μm and spectral resolution of 1.5 cm- 1. Temperature retrieval is one of the main scientific goals of the experiment. It opens a possibility to get a series of temperature profiles taken for different conditions, which can later be used in MIRA producing.
NASA Technical Reports Server (NTRS)
Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.
2010-01-01
In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.
Transient thermal analysis during friction stir welding between AA2014-T6 and pure copper
NASA Astrophysics Data System (ADS)
Gadhavi, A. R.; Ghetiya, N. D.; Patel, K. M.
2018-04-01
AA2xxx-Cu alloys showed larger applications in the defence sectors and in aerospace industries due to high strength to weight ratio and toughness. FSW in a butt joint configuration was carried out between AA2014-T6 and pure Copper placing AA2014 on AS and Cu on RS. Temperature profiles were observed by inserting K-type thermocouples in the mid-thickness at various locations of the plate. A sharp decrease in temperature profiles was observed on Copper side due to its higher thermal conductivity. A thermal numerical model was prepared in ANSYS to compare the simulated temperature profiles with the experimental temperature profiles and both the temperature profiles were found to be in good agreement.
Modeling a Packed Bed Reactor Utilizing the Sabatier Process
NASA Technical Reports Server (NTRS)
Shah, Malay G.; Meier, Anne J.; Hintze, Paul E.
2017-01-01
A numerical model is being developed using Python which characterizes the conversion and temperature profiles of a packed bed reactor (PBR) that utilizes the Sabatier process; the reaction produces methane and water from carbon dioxide and hydrogen. While the specific kinetics of the Sabatier reaction on the RuAl2O3 catalyst pellets are unknown, an empirical reaction rate equation1 is used for the overall reaction. As this reaction is highly exothermic, proper thermal control is of the utmost importance to ensure maximum conversion and to avoid reactor runaway. It is therefore necessary to determine what wall temperature profile will ensure safe and efficient operation of the reactor. This wall temperature will be maintained by active thermal controls on the outer surface of the reactor. Two cylindrical PBRs are currently being tested experimentally and will be used for validation of the Python model. They are similar in design except one of them is larger and incorporates a preheat loop by feeding the reactant gas through a pipe along the center of the catalyst bed. The further complexity of adding a preheat pipe to the model to mimic the larger reactor is yet to be implemented and validated; preliminary validation is done using the smaller PBR with no reactant preheating. When mapping experimental values of the wall temperature from the smaller PBR into the Python model, a good approximation of the total conversion and temperature profile has been achieved. A separate CFD model incorporates more complex three-dimensional effects by including the solid catalyst pellets within the domain. The goal is to improve the Python model to the point where the results of other reactor geometry can be reasonably predicted relatively quickly when compared to the much more computationally expensive CFD approach. Once a reactor size is narrowed down using the Python approach, CFD will be used to generate a more thorough prediction of the reactors performance.
Reflow process stabilization by chemical characteristics and process conditions
NASA Astrophysics Data System (ADS)
Kim, Myoung-Soo; Park, Jeong-Hyun; Kim, Hak-Joon; Kim, Il-Hyung; Jeon, Jae-Ha; Gil, Myung-Goon; Kim, Bong-Ho
2002-07-01
With the shrunken device rule below 130nm, the patterning of smaller contact hole with enough process margin is required for mass production. Therefore, shrinking technology using thermal reflow process has been applied for smaller contact hole formation. In this paper, we have investigated the effects of chemical characteristics such as molecular weight, blocking ratio of resin, cross-linker amount and solvent type with its composition to reflow process of resist and found the optimized chemical composition for reflow process applicable condition. And several process conditions like resist coating thickness and multi-step thermal reflow method have been also evaluated to stabilize the pattern profile and improve CD uniformity after reflow process. From the experiment results, it was confirmed that the effect of crosslinker in resist to reflow properties such as reflow temperature and reflow rate were very critical and it controlled the pattern profile during reflow processing. And also, it showed stable CD uniformity and improved resist properties for top loss, film shrinkage and etch selectivity. The application of lower coating thickness of resist induced symmetric pattern profile even at edge with wider process margin. The introduction of two-step baking method for reflow process showed uniform CD value, also. It is believed that the application of resist containing crosslinker and optimized process conditions for smaller contact hole patterning is necessary for the mass production with a design rule below 130nm.
Laser beam shaping for studying thermally induced damage
NASA Astrophysics Data System (ADS)
Masina, Bathusile N.; Bodkin, Richard; Mwakikunga, Bonex; Forbes, Andrew
2011-10-01
This paper presents an implementation of a laser beam shaping system for both heating a diamond tool and measuring the resulting temperature optically. The influence the initial laser parameters have on the resultant temperature profiles is shown experimentally and theoretically. A CO2 laser beam was used as the source to raise the temperature of the diamond tool and the resultant temperature was measured by using the blackbody principle. We have successfully transformed a Gaussian beam profile into a flat-top beam profile by using a diffractive optical element as a phase element in conjunction with a Fourier transforming lens. In this paper, we have successfully demonstrated temperature profiles across the diamond tool surface using two laser beam profiles and two optical setups, thus allowing a study of temperature influences with and without thermal stress. The generation of such temperature profiles on the diamond tool in the laboratory is important in the study of changes that occur in diamond tools, particularly the reduced efficiency of such tools in applications where extreme heating due to friction is expected.
Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling
NASA Astrophysics Data System (ADS)
Gallagher, Kerry; Elliott, Tim
2009-02-01
High-temperature, diffusive fractionation has been invoked to account for striking Li isotopic variability recently observed within individual phenocrysts and xenolith minerals. It has been argued that chemical potential gradients required to drive such diffusion arise from changes in Li partitioning between coexisting phases during cooling. If so, Li isotopic zoning should be a common occurrence but the role of temperature-dependent partition coefficients in generating Li isotopic variability remains to be tested in a quantitative manner. Here we consider a basic scenario of a phenocryst in a cooling lava, using simple parameterisations of the temperature dependence of Li partitioning and diffusivity in clinopyroxene. Our model initially produces an asymmetric isotope profile across the crystal with a δ7Li minimum that remains close to the edge of a crystal. Such a distinctive shape mimics Li isotopic profiles documented in some olivine and clinopyroxene phenocrysts, which have isotopically normal cores but anomalously light rims. The temperature dependence of both the diffusivity and the partition coefficient of Li are key factors in generating this form of diffusion profile. Continued diffusion leads to an inversion in the sense of isotopic change between core and rim and results in the whole phenocryst attaining markedly light isotopic values. Our calculations show that significant Li isotopic zoning can occur as a natural consequence of cooling magmatic systems. Crystals that have experienced more complex thermal histories (e.g. re-entrained cumulates versus true phenocrysts) will therefore exhibit contrasting isotopic profiles and, as such, these data may be useful for tracing sub-volcanic processes.
NASA Astrophysics Data System (ADS)
Tison, J.-L.; Zhou, J.; Thomas, D. N.; Rysgaard, S.; Eicken, H.; Crabeck, O.; Deleu, F.; Delille, B.
2012-04-01
Recent data from a year-round survey of landfast sea ice growth in Barrow (Alaska) have shown how O2/N2 and O2/Ar ratios could be used to pinpoint primary production in sea ice and derive net productivity rates from the temporal evolution of the oxygen concentration at a given depth within the sea ice cover. These rates were however obtained surmising that neither convection, nor diffusion had affected the gas concentration profiles in the ice between discrete ice core collections. This paper discusses examples from three different field surveys (the above-mentioned Barrow experiment, the INTERICE IV tank experiment in Hamburg and a short field survey close to the Kapisilit locality in the South-East Greenland fjords) where convection or diffusion processes have clearly affected the temporal evolution of the gas profiles in the ice, therefore potentially affecting biological signatures. The INTERICE IV and Barrow experiment show that the initial equilibrium dissolved gas entrapment within the skeletal layer basically governs most of the profiles higher up in the sea ice cover during the active sea ice growth. However, as the ice layers age and cool down under the temperature gradient, bubble nucleation occurs while the concentration in the ice goes well above the theoretical one, calculated from brine equilibrium under temperature and salinity changes and observed brine volumes. This phase change locks the gases within the sea ice structure, preventing "degassing" of the ice, as is observed for salts under the mushy layer brine convection process. In some cases, mainly in the early stages of the freezing process (first 10-20 cm) where temperature gradients are strong and the ice still permeable on its whole thickness, repeated convection and bubble nucleation can actually increase the gas concentration in the ice above the one initially acquired within the skeletal layer. Convective processes will also occur on ice decay, when ice permeability is restored and the Rayleigh number reaches a critical value. The Barrow data set shows that these events, can be strong enough to redistribute the gases within the sea ice cover, including in the gaseous form. Diffusive processes will become dominant once internal melting is strong enough to stratify the brine network within the ice. In the Kapisilit case, the regular decrease of an internal gas peak intensity due to external forcing during ice growth (change of water type) has allowed us to deduce gas diffusivities from the temporal evolution of the peak. The values fit to the few previous estimates from experimental work, and lie close to diffusivity values in water. Finally, at the end of the decay phase, when the temperature profile is isothermal, the whole ice cover returns to ice concentrations equivalent to those calculated using gas solubility in water and observed brine volumes, to the exception of the very surface layer, generally for textural reasons.
Data Assimilation Experiments using Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
SUsskind, Joel
2008-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 pm C02 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 pm C02 observations are now used primarily in the generation of cloud cleared radiances Ri. This approach allows for the generation of accurate values of Ri and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by- channel error estimates for Ri. These error estimates are used for quality control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of quality control using the NASA GEOS-5 data assimilation system. Assimilation of quality controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done Operationally by ECMWF and NCEP. Forecasts resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.
NASA Astrophysics Data System (ADS)
Doungkaew, N.; Eichhubl, P.
2015-12-01
Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.
Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; ...
2016-09-26
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less
NASA Astrophysics Data System (ADS)
Heng, LAN; Guosheng, XU; Kevin, TRITZ; Ning, YAN; Tonghui, SHI; Yongliang, LI; Tengfei, WANG; Liang, WANG; Jingbo, CHEN; Yanmin, DUAN; Yi, YUAN; Youwen, SUN; Shuai, GU; Qing, ZANG; Ran, CHEN; Liang, CHEN; Xingwei, ZHENG; Shuliang, CHEN; Huan, LIU; Yang, YE; Huiqian, WANG; Baonian, WAN; the EAST Team
2017-12-01
A new edge tangential multi-energy soft x-ray (ME-SXR) diagnostic with high temporal (≤ 0.1 ms) and spatial (∼1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile (approximately from r/a∼ 0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil’ technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.
Haskey, S R; Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Kaplan, D H; Pablant, N A; Stagner, L
2016-11-01
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.
NASA Astrophysics Data System (ADS)
Ma, Xulin; He, Jie; Ge, Xuyang
2017-09-01
In this study, the impacts of the environmental temperature profile on the tropical cyclone eyewall replacement cycle are examined using idealized numerical simulations. It is found that the environmental thermal condition can greatly affect the formation and structure of a secondary eyewall and the intensity change during the eyewall replacement cycle. Simulation with a warmer thermal profile produces a larger moat and a prolonged eyewall replacement cycle. It is revealed that the enhanced static stability greatly suppresses convection, and thus causes slow secondary eyewall formation. The possible processes influencing the decay of inner eyewall convection are investigated. It is revealed that the demise of the inner eyewall is related to a choking effect associated with outer eyewall convection, the radial distribution of moist entropy fluxes within the moat region, the enhanced static stability in the inner-core region, and the interaction between the inner and outer eyewalls due to the barotropic instability. This study motivates further research into how environmental conditions influence tropical cyclone dynamics and thermodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haskey, S. R.; Grierson, B. A.; Burrell, K. H.
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region inmore » H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. Finally, these challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model. Published by AIP Publishing.« less
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Karasik, M.; Chan, L. Y.
2015-08-01
A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (˜1 ns FWHM) with the intensity of 1.1 × 1015 W/cm2. The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 1021 cm-3 with the density scale length of 120 μm along the plasma symmetry axis. The resulting ne and Te profiles are verified to be self-consistent with the measured quantities of the refracted probe light.
NASA Astrophysics Data System (ADS)
Haskey, S. R.; Grierson, B. A.; Burrell, K. H.; Chrystal, C.; Groebner, R. J.; Kaplan, D. H.; Pablant, N. A.; Stagner, L.
2016-11-01
Recent completion of a thirty two channel main-ion (deuterium) charge exchange recombination spectroscopy (CER) diagnostic on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] enables detailed comparisons between impurity and main-ion temperature, density, and toroidal rotation. In a H-mode DIII-D discharge, these new measurement capabilities are used to provide the deuterium density profile, demonstrate the importance of profile alignment between Thomson scattering and CER diagnostics, and aid in determining the electron temperature at the separatrix. Sixteen sightlines cover the core of the plasma and another sixteen are densely packed towards the plasma edge, providing high resolution measurements across the pedestal and steep gradient region in H-mode plasmas. Extracting useful physical quantities such as deuterium density is challenging due to multiple photoemission processes. These challenges are overcome using a detailed fitting model and by forward modeling the photoemission using the FIDASIM code, which implements a comprehensive collisional radiative model.
Improvements in the malaxation process to enhance the aroma quality of extra virgin olive oils.
Reboredo-Rodríguez, P; González-Barreiro, C; Cancho-Grande, B; Simal-Gándara, J
2014-09-01
The influence of olive paste preparation conditions on the standard quality parameters, as well as volatile profiles of extra virgin olive oils (EVOOs) from Morisca and Manzanilla de Sevilla cultivars produced in an emerging olive growing area in north-western Spain and processed in an oil mill plant were investigated. For this purpose, two malaxation temperatures (20/30 °C), and two malaxation times (30/90 min) selected in accordance with the customs of the area producers were tested. The volatile profile of the oils underwent a substantial change in terms of odorant series when different malaxation parameters were applied. Copyright © 2014 Elsevier Ltd. All rights reserved.
Numerical study of effects of atmosphere temperature profile on wildfire behavior
Chunmei Xia; M. Yousuff Hussaini; Philip Cunningham; Rodman R. Linn; Scott L. Goodrick
2003-01-01
The vertical temperature profile and hence the stability in the atmosphere near the ground vanes significantly between day and night. Typically, the potential temperature at the surface is higher than that above the ground during the day and lower than that above the ground during the night. Such differences in the vertical temperature profile might act to accelerate...
Wind and Wind Stress Measurements in HiRes
2008-09-30
to design the experimental system to be conducted on R /P FLIP. Data from a past experiment are also being analyzed with respect to processes...For the HiRes experiment on R /P FLIP, the air temperature profile will be measured along with wind stress, surface heat flux, sea surface...the best as it registered the lower ambient temperature. In preparation for the HiRes experiment onboard R /P FLIP a mast prototype was built in
NASA Astrophysics Data System (ADS)
Ebrahimi, Ali; Or, Dani
2017-04-01
The sensitivity of the Earth's polar regions to raising global temperatures is reflected in rapidly changing hydrological processes with pronounced seasonal thawing of permafrost soil and increased biological activity. Of particular concern is the potential release of large amounts of soil carbon and the stimulation of other soil-borne GHG emissions such as methane. Soil methanotrophic and methanogenic microbial communities rapidly adjust their activity and spatial organization in response to permafrost thawing and a host of other environmental factors. Soil structural elements such as aggregates and layering and hydration status affect oxygen and nutrient diffusion processes thereby contributing to methanogenic activity within temporal anoxic niches (hotspots or hot-layers). We developed a mechanistic individual based model to quantify microbial activity dynamics within soil pore networks considering, hydration, temperature, transport processes and enzymatic activity associated with methane production in soil. The model was the upscaled from single aggregates (or hotspots) to quantifying emissions from soil profiles in which freezing/thawing processes provide macroscopic boundary conditions for microbial activity at different soil depths. The model distinguishes microbial activity in aerate bulk soil from aggregates (or submerged parts of the profile) for resolving methane production and oxidation rates. Methane transport pathways through soil by diffusion and ebullition of bubbles vary with hydration dynamics and affect emission patterns. The model links seasonal thermal and hydrologic dynamics with evolution of microbial community composition and function affecting net methane emissions in good agreement with experimental data. The mechanistic model enables systematic evaluation of key controlling factors in thawing permafrost and microbial response (e.g., nutrient availability, enzyme activity, PH) on long term methane emissions and carbon decomposition rates in the rapidly changing polar regions.
A comparative study of single-temperature and two-temperature accretion flows around black holes
NASA Astrophysics Data System (ADS)
Dihingia, Indu Kalpa; Das, Santabrata; Mandal, Samir
2018-02-01
We study the properties of sub-Keplerian accretion disk around a stationary black hole, considering bremsstrahlung, synchrotron and Comptonization of synchrotron photons as radiative cooling mechanisms active in the disk. We obtain the solutions of two-temperature global accretion flow (TTAF) and compare it with the results obtained from single-temperature (STAF) model. We observe that flow properties, in particular, the radial profile of electron and ion temperatures differ noticeably in the adopted models for flows with identical boundary conditions fixed at the outer edge of the disk. Since the electron temperature is one of the key factors to regulate the radiative processes, we argue that physically motivated description of electron temperature needs to be considered in studying the astrophysical phenomena around black holes.
Gas Atomization of Molten Metal: Part II. Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abu-Lebdeh, Taher M.; Leon, Genaro Perez-de; Hamoush, Sameer A.
A numerical model was derived to obtain results for two alloys during the Gas Atomization (GA) method. The model equations and governing equations were implemented through the application of part I data. Aspects such as heat transfer, fluid mechanics, thermodynamics and law of motions were taken into account for the formulation of equations that take gas dynamics, droplet dynamics and energy balance or conservation into consideration. The inputs of the model include: Processing parameters such as the size of the droplets, characteristics of the metal alloy, initial temperature of the molten metal, properties and fractions of the atomization gas andmore » the gas pressure. The outputs include velocity and thermal profiles of the droplet and gas. Velocity profiles illustrate the velocity of both droplet and gas, while thermal profiles illustrate cooling rate and the rate of temperature change of the droplets. The alloys are gamma-Titanium Aluminide (γ-TiAl) and Al-3003-O. These alloys were selected due to the vast amount of applications both can have in several industries. Certain processing parameters were held constant, while others were altered. Furthermore, the main focus of this study was to gain insight into which optimal parameters should be utilized within the GA method for these alloys and to provide insight into the behavior of these alloys« less
NASA Astrophysics Data System (ADS)
Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.
2014-11-01
In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.
Gas Atomization of Molten Metal: Part II. Applications
Abu-Lebdeh, Taher M.; Leon, Genaro Perez-de; Hamoush, Sameer A.; ...
2016-02-01
A numerical model was derived to obtain results for two alloys during the Gas Atomization (GA) method. The model equations and governing equations were implemented through the application of part I data. Aspects such as heat transfer, fluid mechanics, thermodynamics and law of motions were taken into account for the formulation of equations that take gas dynamics, droplet dynamics and energy balance or conservation into consideration. The inputs of the model include: Processing parameters such as the size of the droplets, characteristics of the metal alloy, initial temperature of the molten metal, properties and fractions of the atomization gas andmore » the gas pressure. The outputs include velocity and thermal profiles of the droplet and gas. Velocity profiles illustrate the velocity of both droplet and gas, while thermal profiles illustrate cooling rate and the rate of temperature change of the droplets. The alloys are gamma-Titanium Aluminide (γ-TiAl) and Al-3003-O. These alloys were selected due to the vast amount of applications both can have in several industries. Certain processing parameters were held constant, while others were altered. Furthermore, the main focus of this study was to gain insight into which optimal parameters should be utilized within the GA method for these alloys and to provide insight into the behavior of these alloys« less
Combined VHF Dopplar radar and airborne (CV-990) measurements of atmospheric winds on the mesoscale
NASA Technical Reports Server (NTRS)
Fairall, Christopher W.; Thomson, Dennis W.
1989-01-01
Hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. To prevent a potential loss of structural detail and retain statistical significance, data from both radars were stratified into categories based on the location data from the Penn State radar were also compared to data from Pittsburgh radiosondes. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radars operating beneath a jet stream. Temperature profiles for the radar site were obtained using an interpolated temperature and dewpoint temperature sounding procedure developed at Penn State. The combination of measured wind and interpolated temperature profiles allowed Richardson number profiles to be generated for the profiler sounding volume. Both Richardson number and wind shear statistics were then examined along with pilot reports of turbulence in the vicinity of the profiler.
NASA Astrophysics Data System (ADS)
Ney, Patrizia; Graf, Alexander
2018-03-01
We present a portable elevator-based facility for measuring CO2, water vapour, temperature and wind-speed profiles between the soil surface and the atmospheric surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile range (in our case, approximately 2 m) while concentrations are logged at a frequency of 20 s^{-1}. Using campaign measurements in winter wheat, winter barley and a catch crop mixture (spring 2015 to autumn 2016) during different stages of crop development and different times of the day, we demonstrate a simple approach to correct for time lags, and the resulting profiles of 30-min mean mole fractions of CO2 and H2O over height increments of 0.025 m. The profiles clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the diurnal cycle and during the growing season. Profiles of temperature and wind speed are based on a ventilated finewire thermocouple and a hot-wire anemometer, respectively. Measurements over bare soil and a short plant canopy were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurements and raw-data-processing approach. Derived fluxes of CO2, latent and sensible heat and momentum show good agreement with eddy-covariance measurements.
Adaptive dynamics of cuticular hydrocarbons in Drosophila
Rajpurohit, Subhash; Hanus, Robert; Vrkoslav, Vladimír; Behrman, Emily L.; Bergland, Alan O.; Petrov, Dmitri; Cvačka, Josef; Schmidt, Paul S.
2016-01-01
Cuticular hydrocarbons (CHCs) are hydrophobic compounds deposited on the arthropod cuticle that are of functional significance with respect to stress tolerance, social interactions, and mating dynamics. We characterized CHC profiles in natural populations of Drosophila melanogaster at five levels: across a latitudinal transect in the eastern U.S., as a function of developmental temperature during culture, across seasonal time in replicate years, and as a function of rapid evolution in experimental mesocosms in the field. Furthermore, we also characterized spatial and temporal change in allele frequencies for SNPs in genes that are associated with the production and chemical profile of CHCs. Our data demonstrate a striking degree of parallelism for clinal and seasonal variation in CHCs in this taxon; CHC profiles also demonstrate significant plasticity in response to rearing temperature, and the observed patterns of plasticity parallel the spatiotemporal patterns observed in nature. We find that these congruent shifts in CHC profiles across time and space are also mirrored by predictable shifts in allele frequencies at SNPs associated with CHC chain length. Finally, we observed rapid and predictable evolution of CHC profiles in experimental mesocosms in the field. Together, these data strongly suggest that CHC profiles respond rapidly and adaptively to environmental parameters that covary with latitude and season, and that this response reflects the process of local adaptation in natural populations of D. melanogaster. PMID:27718537
NASA Astrophysics Data System (ADS)
Vidovič, Luka; Milanič, Matija; Majaron, Boris
2015-01-01
Pulsed photothermal radiometry (PPTR) allows noninvasive determination of laser-induced temperature depth profiles in optically scattering layered structures. The obtained profiles provide information on spatial distribution of selected chromophores such as melanin and hemoglobin in human skin. We apply the described approach to study time evolution of incidental bruises (hematomas) in human subjects. By combining numerical simulations of laser energy deposition in bruised skin with objective fitting of the predicted and measured PPTR signals, we can quantitatively characterize the key processes involved in bruise evolution (i.e., hemoglobin mass diffusion and biochemical decomposition). Simultaneous analysis of PPTR signals obtained at various times post injury provides an insight into the variations of these parameters during the bruise healing process. The presented methodology and results advance our understanding of the bruise evolution and represent an important step toward development of an objective technique for age determination of traumatic bruises in forensic medicine.
Development of a Cu-Sn based brazing system with a low brazing and a high remelting temperature
NASA Astrophysics Data System (ADS)
Schmieding, M.; Holländer, U.; Möhwald, K.
2017-03-01
Objective of the project presented is the development of a joining process for hot working steel components at low brazing temperatures leading to a bond with a much higher remelting temperature. This basically is achieved by the use of a Cu-Sn melt spinning foil combined with a pure Cu foil. During brazing, the Sn content of the foil is decreased by diffusion of Sn into the additional Cu resulting in a homogenious joint with a increased remelting temperature of the filler metal. Within this project specimens were brazed and diffusion annealed in a vacuum furnace at 850 °C varying the processing times (0 - 10 h). The samples prepared were studied metallographically and diffusion profiles of Sn were recorded using EDX line scans. The results are discussed in view of further investigations and envisaged applications.
Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P
2017-08-24
This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.
Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting
NASA Technical Reports Server (NTRS)
Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.
2010-01-01
In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.
Characteristics of early winter high Arctic atmospheric boundary layer profiles
NASA Astrophysics Data System (ADS)
Wickström, Siiri; Vihma, Timo; Nygård, Tiina; Kramer, Daniel; Palo, Timo; Jonassen, Marius
2017-04-01
For a large part of the year, the Arctic climate system is characterised by a stably stratified atmospheric boundary layer, with strong temperature inversions isolating the surface from the air aloft. These nversions are typically driven by longwave radiative cooling, warm-air advection aloft, or subsidence. All these mechanisms are affected by the synoptic sate of the atmosphere in the high Arctic. In this study we present data from an intensive measurement campaign in Svalbard in October 2014, when atmospheric profiles were measured with a tethered balloon in Adventdalen and Hornsund. In addition radiosonde soundings from Ny-Ålesund were analysed. A total of 115 individual profiles were analysed, almost all of them showing a surface-based temperature inversion. Our preliminary results show that the strongest and deepest inversions are observed at the beginning of a warm-air advection event, but as the temperature, wind and cloudiness increase the inversion strength and depth decrease rapidly. The inversion curvature parameter seems to be strongly dependent on the longwave radiative balance with the highest curvatures (strongest vertical temperature gradient close to the surface) associated with strong longwave radiative heat loss from the surface. The different processes affecting the stable atmospheric boundary layer during a low-pressure passage are determined, and the effects of the synoptic scale changes are isolated from those caused by local topographic forcing.
USDA-ARS?s Scientific Manuscript database
Potatoes accumulate sucrose and the reducing sugars glucose and fructose when stored at low temperatures. This process, cold-induced sweetening, has been studied extensively because potatoes with elevated reducing sugars produce undesirable, dark-colored products and acrylamide, a suspected carcinog...
Effects of Planetary Thermal Structure on the Ascent and Cooling of Magma on Venus
NASA Technical Reports Server (NTRS)
Sakimoto, Susan E. H.; Zuber, Maria T.
1995-01-01
Magellan radar images of the surface of Venus show a spatially broad distribution of volcanic features. Models of magmatic ascent processes to planetary surfaces indicate that the thermal structure of the interior significantly influences the rate of magmatic cooling and thus the amount of magma that can be transported to the surface before solidification. In order to understand which aspects of planetary thermal structure have the greatest influence on the cooling of buoyantly ascending magma, we have constructed magma cooling profiles for a plutonic ascent mechanism, and evaluated the profiles for variations in the surface and mantle temperature, surface temperature gradient, and thermal gradient curvature. Results show that, for a wide variety of thermal conditions, smaller and slower magma bodies are capable of reaching the surface on Venus compared to Earth, primarily due to the higher surface temperature of Venus. Little to no effect on the cooling and transport of magma are found to result from elevated mantle temperatures, elevation-dependent surface temperature variations, or details of the thermal gradient curvature. The enhanced tendency of magma to reach the surface on Venus may provide at least a partial explanation for the extensive spatial distribution of observed volcanism on the surface.
Development of Advanced Multizone Facilities for Microgravity Processing
NASA Technical Reports Server (NTRS)
1998-01-01
NASA has been interested in experimental ground based study to investigate the fundamental processes involved in phase transformation processes during growth of metallic, nonmetallic and electronic materials. Solidification, vapor growth and solution growth techniques of growing crystals are of special interest because of the inherent importance of convection in the nutrient solution. Convection enhances the mass transport through the nutrient and results in faster growth rates. Availability of low gravity environment of space has provided scientists a new variable to control the extent of convection and thus isolate the diffusive phenomena for their better understanding. The thermal gradient at the liquid-solid interface is determined by the alloy characteristics, the hot zone temperature, cold zone temperature and the width of the insulating zone. The thermal profiles get established by the existing material and geometrical constraints of the experimental set up. The major effort under this research was devoted to designing a programmable furnace which can be used to obtain thermal profiles along the length of the sample as per the demands of the scientists. The furnace did not have active cooling of the zones. Only active heating and passive cooling were utilized.
Use of the augmented Young-Laplace equation to model equilibrium and evaporating extended menisci
DOE Office of Scientific and Technical Information (OSTI.GOV)
DasGupta, S.; Schonberg, J.A.; Kim, I.Y.
1993-05-01
The generic importance of fluid flow and change-of-phase heat transfer in the contact line region of an extended meniscus has led to theoretical and experimental research on the details of these transport processes. Numerical solutions of equilibrium and nonequilibrium models based on the augmented Young-Laplace equation were successfully used to evaluate experimental data for an extended meniscus. The data for the equilibrium and nonequilibrium meniscus profiles were obtained optically using ellipsometry and image processing interferometry. A Taylor series expansion of the fourth-order nonlinear transport model was used to obtain the extremely sensitive initial conditions at the interline. The solid-liquid-vapor Hamakermore » constants for the systems were obtained from the experimental data. The consistency of the data was demonstrated by using the combining rules to calculate the unknown value of the Hamaker constant for the experimental substrate. The sensitivity of the meniscus profile to small changes in the environment was demonstrated. Both temperature and intermolecular forces need to be included in modeling transport processes in the contact line region because the chemical potential is a function of both temperature and pressure.« less
Schneid, Stefan C; Stärtzel, Peter M; Lettner, Patrick; Gieseler, Henning
2011-01-01
The recent US Food and Drug Administration (FDA) legislation has introduced the evaluation of the Design Space of critical process parameters in manufacturing processes. In freeze-drying, a "formulation" is expected to be robust when minor deviations of the product temperature do not negatively affect the final product quality attributes. To evaluate "formulation" robustness by investigating the effect of elevated product temperature on product quality using a bacterial vaccine solution. The vaccine solution was characterized by freeze-dry microscopy to determine the critical formulation temperature. A conservative cycle was developed using the SMART™ mode of a Lyostar II freeze dryer. Product temperature was elevated to imitate intermediate and aggressive cycle conditions. The final product was analyzed using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Karl Fischer, and modulated differential scanning calorimetry (MDSC), and the life cell count (LCC) during accelerated stability testing. The cakes processed at intermediate and aggressive conditions displayed larger pores with microcollapse of walls and stronger loss in LCC than the conservatively processed product, especially during stability testing. For all process conditions, a loss of the majority of cells was observed during storage. For freeze-drying of life bacterial vaccine solutions, the product temperature profile during primary drying appeared to be inter-related to product quality attributes.
Muller dos Santos, Marcelo; Souza da Rosa, Alexandre; Dal'Boit, Silvia; Mitchell, David A; Krieger, Nadia
2004-07-01
The potential for thermal denaturation to cause enzyme losses during solid-state fermentation processes for the production of enzymes was examined, using the protease of Penicillium fellutanum as a model system. The frequency factor and activation energies for the first-order denaturation of this enzyme were determined as 3.447 x 10(59) h(-1) and 364,070 Jmol(-1), respectively. These values were incorporated into a mathematical model of enzyme deactivation, which was used to investigate the consequences of subjecting this protease to temporal temperature profiles reported in the literature for mid-height in a 34 cm high packed-bed bioreactor of 150 mm diameter. In this literature source, temperature profiles were measured for 5, 15 and 25 liters per minute of air and enzyme activities were measured as a function of time. The enzyme activity profiles predicted by the model were distributed similarly, one relative to the other, as had been found in the experimental study, with substantial amounts of denaturation being predicted when the substrate temperature exceeded 40 degrees C, which occurred at the lower two airflow rates. A mathematical model of a well-mixed bioreactor was used to explore the difficulties that would be faced at large scale. It suggests that even with airflows as high as one volume per volume per minute, up to 85% of the enzyme produced by the microorganism can be denatured by the end of the fermentation. This work highlights the extra care that must be taken in scaling up solid-state fermentation processes for the production of thermolabile products. Copyright 2003 Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Wu, Yu; Chen, Chih-Tung; Lee, Jian-Cheng; Shyu, J. Bruce H.
2017-04-01
The fate of passive continental margin in collisional orogens is crucial in understanding tectonic evolution of mountain belts. The active arc-continent collision of Taiwan is considered as a model case in studying mountain building processes, and largely consists of deformed margin basement and cover series. Among the whole orogeny belt, the slate belt of the Hsuehshan Range (HR) is a prominent large-scale pop-up structural on the prowedge part of the orogen, and is composed of metamorphosed Eocene to Miocene sediments which experienced only the Neogene Taiwan orogeny after diagenesis in margin graben. Characterizing the metamorphic history of the HR is essential for reconstructing its geological evolution during the mountain building processes. However, previous studies were mostly focused on northern and central HR, structural investigation coupled with metamorphic documentation in the southern part of HR, which is the most active part of the orogeny belt, is therefore targeted in this work. Since carbonaceous material is common in pelitic protolith of HR slates, the Raman spectrum of carbonaceous material (RSCM) measuring the rock peak temperature is chosen for quantitative thermal metamorphic documentation. In this study, we reconstruct a geological structural profile in western central Taiwan across the prowedge part of the mountain belt containing the southern HR by combining the surface geological data, well log records and published seismic reflection profiles. Although most of the existing data are concentrated in the fold-and-thrust belt, they are now reinforced by new field structural measurements and RSCM samples in the southern HR. In total 27 RSCM samples were collected along 2 transects perpendicular to the average strike with a dense interval about 2 km. The results allow us to map peak temperature distribution across southern HR, and provide new constraints for structural profile reconstruction and reappraisal of the structural evolution of the HR and neighboring fold-and-thrust belt. As shown in the previous thermal metamorphic investigation, we expected that southern HR strata acquired highest temperature during its burial stage than the orogenic stage like their central HR counterparts, thus experiencing mostly retrograde metamorphism in the entire mountain building processes.
Transition Pathway and Its Free-Energy Profile: A Protocol for Protein Folding Simulations
Lee, In-Ho; Kim, Seung-Yeon; Lee, Jooyoung
2013-01-01
We propose a protocol that provides a systematic definition of reaction coordinate and related free-energy profile as the function of temperature for the protein-folding simulation. First, using action-derived molecular dynamics (ADMD), we investigate the dynamic folding pathway model of a protein between a fixed extended conformation and a compact conformation. We choose the pathway model to be the reaction coordinate, and the folding and unfolding processes are characterized by the ADMD step index, in contrast to the common a priori reaction coordinate as used in conventional studies. Second, we calculate free-energy profile as the function of temperature, by employing the replica-exchange molecular dynamics (REMD) method. The current method provides efficient exploration of conformational space and proper characterization of protein folding/unfolding dynamics from/to an arbitrary extended conformation. We demonstrate that combination of the two simulation methods, ADMD and REMD, provides understanding on molecular conformational changes in proteins. The protocol is tested on a small protein, penta-peptide of met-enkephalin. For the neuropeptide met-enkephalin system, folded, extended, and intermediate sates are well-defined through the free-energy profile over the reaction coordinate. Results are consistent with those in the literature. PMID:23917881
Effect of ambient temperature on the thermal profile of the human forearm, hand, and fingers
NASA Technical Reports Server (NTRS)
Montgomery, L. D.; Williams, B. A.
1976-01-01
Forearm, hand, and finger skin temperatures were measured on the right and left sides of seven resting men. The purpose was to determine the bilateral symmetry of these segmental temperature profiles at ambient temperatures from 10 to 45 C. Thermistors placed on the right and left forearms, hands, and index fingers were used to monitor the subjects until equilibration was reached at each ambient temperature. Additionally, thermal profiles of both hands were measured with copper-constantan thermocouples. During one experimental condition (23 C ambient), rectal, ear canal, and 24 skin temperatures were measured on each subject. Average body and average skin temperatures are given for each subject at the 23 C ambient condition. Detailed thermal profiles are also presented for the dorsal, ventral, and circumferential left forearm, hand, and finger skin temperatures at 23 C ambient. No significant differences were found between the mean skin temperatures of the right and left contralateral segments at any of the selected ambient temperatures.
NASA Astrophysics Data System (ADS)
Taori, A.; Jayaraman, A.; Raghunath, K.; Kamalakar, V.
2012-01-01
The vertical temperature profiles in a typical Rayleigh lidar system depends on the backscatter photon counts and the CIRA-86 model inputs. For the first time, we show that, by making simultaneous measurements of Rayleigh lidar and upper mesospheric O2 temperatures, the lidar capability can be enhanced to obtain mesospheric temperature profile up to about 95 km altitudes. The obtained results are compared with instantaneous space-borne SABER measurements for a validation.
High Resolution Temperature Measurement of Liquid Stainless Steel Using Hyperspectral Imaging
Devesse, Wim; De Baere, Dieter; Guillaume, Patrick
2017-01-01
A contactless temperature measurement system is presented based on a hyperspectral line camera that captures the spectra in the visible and near infrared (VNIR) region of a large set of closely spaced points. The measured spectra are used in a nonlinear least squares optimization routine to calculate a one-dimensional temperature profile with high spatial resolution. Measurements of a liquid melt pool of AISI 316L stainless steel show that the system is able to determine the absolute temperatures with an accuracy of 10%. The measurements are made with a spatial resolution of 12 µm/pixel, justifying its use in applications where high temperature measurements with high spatial detail are desired, such as in the laser material processing and additive manufacturing fields. PMID:28067764
Electrical Resistivity Tomography monitoring reveals groundwater storage in a karst vadose zone
NASA Astrophysics Data System (ADS)
Watlet, A.; Kaufmann, O.; Van Camp, M. J.; Triantafyllou, A.; Cisse, M. F.; Quinif, Y.; Meldrum, P.; Wilkinson, P. B.; Chambers, J. E.
2016-12-01
Karst systems are among the most difficult aquifers to characterize, due to their high heterogeneity. In particular, temporary groundwater storage that occurs in the unsaturated zone and the discharge to deeper layers are difficult processes to identify and estimate with in-situ measurements. Electrical Resistivity Tomography (ERT) monitoring is meant to track changes in the electrical properties of the subsurface and has proved to be applicable to evidence and quantify hydrological processes in several types of environments. Applied to karst systems, it has particularly highlighted the challenges in linking electrical resistivity changes to groundwater content with usual approaches of petrophysical relationships, given the high heterogeneity of the subsurface. However, taking up the challenge, we undertook an ERT monitoring at the Rochefort Cave Laboratory (Belgium) lasting from Spring 2014 to Winter 2016. This includes 3 main periods of several months with daily measurements, from which seasonal groundwater content changes in the first meters of the vadose zone were successfully imaged. The monitoring concentrates on a 48 electrodes profile that goes from a limestone plateau to the bottom of a sinkhole. 3D UAV photoscans of the surveyed sinkhole and of the main chamber of the nearby cave were performed. Combined with lithological observations from a borehole drilled next to the ERT profile, the 3D information made it possible to project karstified layers visible in the cave to the surface and assess their potential locations along the ERT profile. Overall, this helped determining more realistic local petrophysical properties in the surveyed area, and improving the ERT data inversion by adding structural constraints. Given a strong air temperature gradient in the sinkhole, we also developed a new approach of temperature correction of the raw ERT data. This goes through the solving (using pyGIMLI package) of the 2D ground temperature field and its temporal evolution, calibrated with data from in-situ temperature probes installed along the ERT profile. Results from a 3D ERT monitoring of a sprinkling experiment, those of a gravimetric monitoring and an in-cave flow discharges monitoring were also of interest to verify interpretations of the permanent ERT monitoring in terms of groundwater content changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, A.E.; Elders, W.A.
1981-01-01
Oxygen isotopic compositions have been measured in drill cuttings and core samples from more than 40 wells ranging in depth to more than 3.5 km in the Cerro Prieto geothermal field. Profiles of isotopic ratios versus sampling depths provide information on the three-dimensional distribution of temperature and fluid flow. These parameters also indicate variations in the history of hydrothermal processes in different areas of the geothermal field.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-01-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
NASA Astrophysics Data System (ADS)
Xie, Z. Q.; Antaya, T. A.
1990-02-01
We have obtained excellent agreement between BEAM-3D calculations and beam profile and emittance measurements of the total extracted beam from the room temperature electron cyclotron resonance (RTECR), when a low degree of beam neutralization is assumed in the calculations, as will be presented in this paper. The beam envelope has approximately a quadratic dependence on drift distance, and space-charge effects dominate the early beam formation and beamline optics matching process.
Modeling the clouds on Venus: model development and improvement of a nucleation parameterization
NASA Astrophysics Data System (ADS)
Määttänen, Anni; Bekki, Slimane; Vehkamäki, Hanna; Julin, Jan; Montmessin, Franck; Ortega, Ismael K.; Lebonnois, Sébastien
2014-05-01
As both the clouds of Venus and aerosols in the Earth's stratosphere are composed of sulfuric acid droplets, we use the 1-D version of a model [1,4] developed for stratospheric aerosols and clouds to study the clouds on Venus. We have removed processes and compounds related to the stratospheric clouds so that the only species remaining are water and sulfuric acid, corresponding to the stratospheric sulfate aerosols, and we have added some key processes. The model describes microphysical processes including condensation/evaporation, and sedimentation. Coagulation, turbulent diffusion, and a parameterization for two-component nucleation [8] of water and sulfuric acid have been added in the model. Since the model describes explicitly the size distribution with a large number of size bins (50-500), it can handle multiple particle modes. The validity ranges of the existing nucleation parameterization [7] have been improved to cover a larger temperature range, and the very low relative humidity (RH) and high sulfuric acid concentrations found in the atmosphere of Venus. We have made several modifications to improve the 2002 nucleation parameterization [7], most notably ensuring that the two-component nucleation model behaves as predicted by the analytical studies at the one-component limit reached at extremely low RH. We have also chosen to use a self-consistent cluster distribution [9], constrained by scaling it to recent quantum chemistry calculations [3]. First tests of the cloud model have been carried out with temperature profiles from VIRA [2] and from the LMD Venus GCM [5], and with a compilation of water vapor and sulfuric acid profiles, as in [6]. The temperature and pressure profiles do not evolve with time, but the vapour profiles naturally change with the cloud. However, no chemistry is included for the moment, so the vapor concentrations are only dependent on the microphysical processes. The model has been run for several hundreds of Earth days to reach a steady state. Preliminary results are evaluated against observations. [1] Jumelet et al., JGR, 2009. [2] Kliore et al., 1986. [3] Kurtén et al., BER, 2007 [4] Larsen et al., JGR, 2000. [5] Lebonnois et al. JGR, 2010. [6] McGouldrick and Toon, Icarus 191, 2007. [7] Vehkamäki et al. JGR, 2002 [9] Wilemski and Wyslouzil, J.Chem.Phys. 1995.
Measurement of temperature profiles in flames by emission-absorption spectroscopy
NASA Technical Reports Server (NTRS)
Simmons, F. S.; Arnold, C. B.; Lindquist, G. H.
1972-01-01
An investigation was conducted to explore the use of infrared and ultraviolet emission-absorption spectroscopy for determination of temperature profiles in flames. Spectral radiances and absorptances were measured in the 2.7-micron H2O band and the 3064-A OH band in H2/O2 flames for several temperature profiles which were directly measured by a sodium line-reversal technique. The temperature profiles, determined by inversion of the infrared and ultraviolet spectra, showed an average disagreement with line-reversal measurements of 50 K for the infrared and 200 K for the ultraviolet at a temperature of 2600 K. The reasons for these discrepancies are discussed in some detail.
Ogura, Tatsuki; Date, Yasuhiro; Kikuchi, Jun
2013-01-01
Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an “ECOMICS” web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation. PMID:23840554
Fabrication of a Mo based high temperature TZM alloy by non-consumable arc melting technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, S.P.; Krishnamurthy, N., E-mail: spc@barc.gov.in
High temperature structural materials are in great demand for power, chemical and nuclear industries which can perform beyond 1000 °C as super alloys usually fail. In this regard, Mo based TZM alloy is capable of retaining strength up to 1500 °C with excellent corrosion compatibility against molten alkali metals. Hence, currently this alloy is considered an important candidate material for high temperature compact nuclear and fusion reactors. Due to reactive nature of Mo and having high melting point, manufacturing this alloy by conventional process is unsuitable. Powder metallurgy technique has limited success due to restriction in quantity and purity. Thismore » paper deals with fabrication of TZM alloy by nonconsumable tungsten arc melting technique. Initially a ternary master alloy of Mo-Ti-Zr was prepared which subsequently by dilution method, was converted into TZM alloy gradually by external addition of Mo and C in various proportions. A number of melting trials were conducted to optimize the process parameters like current, voltage and time to achieve desired alloy composition. The alloy was characterized with respect to composition, elemental distribution profile, microstructure, hardness profile and phase analysis. Well consolidated alloy button was obtained having desired composition, negligible material loss and having microstructure as comparable to standard TZM alloy. (author)« less
Scaling of confinement and profiles in the EXTRAP T2 reversed-field pinch
NASA Astrophysics Data System (ADS)
Welander, A.
1999-01-01
In the EXTRAP T2 reversed-field pinch the diagnostic techniques for the measurement of electron density and temperature include; Thomson scattering which gives values at three radial positions in the core (r/a = 0, 0.28, 0.56), Langmuir probes which give values at the edge (r/a > 0.9) and interferometry which gives a line-averaged density. The empirical scaling of electron density and temperature including profile information with global plasma parameters has been studied. The density profile is subject to large variations, with an average parabolic shape when the density is low and flatter shapes when the density is increased. The change in the profile shape can be attributed to a shift in the penetration length of neutrals from the vicinity of the wall. The temperature scales roughly as I/n1/2 where I is the plasma current and n is the density. The temperature profile is always quite flat with lower variations and there is a tendency for a flatter profile at higher temperatures.
NASA Astrophysics Data System (ADS)
Pätzold, M.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Tyler, G. L.
2016-10-01
In their recent paper, Grandin et al. (2014) claim to have developed a novel approach, principally a ray tracing method, to analyze radio sounding data from occulted spacecraft signals by planetary atmospheres without the usual assumptions of the radio occultation inversion method of a stratified, layered, symmetric atmosphere. They apply their "new approach" to observations of the Mars Express Radio Science (MaRS) experiment and compare their resulting temperature, neutral number density, and electron density profiles with those from MaRS, claiming that there is good agreement with the observations. The fact is, however, that there are serious disagreements in the most important altitude ranges. Their temperature profile shows a 30 K shift or a 300σ (1σ standard deviation = 0.1 K for the MaRS profile near the surface) difference toward warmer temperatures at the surface when compared with MaRS, while the MaRS profile is in best agreement with the profile from the Mars Climate Data Base V5.0 (MCD V5.0). Their full temperature profile from the surface to 250 km altitude deviates significantly from the MCD V5.0 profile. Their ionospheric electron density profile is considerably different from that derived from the MaRs observations. Although Grandin et al. (2014) claim to derive the neutral number density and temperature profiles above 200 km, including the asymptotic exosphere temperature, it is simply not possible to derive this information from what is essentially noise.
40 CFR 86.133-96 - Diurnal emission test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.1233-96 - Diurnal emission test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.133-96 - Diurnal emission test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.1233-96 - Diurnal emission test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.133-96 - Diurnal emission test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.1233-96 - Diurnal emission test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
40 CFR 86.133-96 - Diurnal emission test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...
Temperature profiles from Salt Valley, Utah
NASA Astrophysics Data System (ADS)
Sass, J. H.; Lachenbruch, A. H.; Smith, E. P.
Temperature profiles were obtained in the nine drilled wells as part of a thermal study of the Salt Valley anticline, Paradox Basin, Utha. Thermal conductivities were also measured on 10 samples judged to be representative of the rocks encountered in the deepest hole. The temperature profiles and thermal conductivities are presented, together with preliminary interpretive remarks and suggestions for additional work.
NASA Technical Reports Server (NTRS)
Chung, Y. C.; England, A. W.; DeRoo, R. D.; Weininger, Etai
2006-01-01
The radiobrightness of a snowpack is strongly linked to the snow moisture content profile, to the point that the only operational inversion algorithms require dry snow. Forward dynamic models do not include the effects of freezing and thawing of the soil beneath the snowpack and the effect of vegetation within the snow or above the snow. To get a more realistic description of the evolution of the snowpack, we reported an addition to the Snow-Soil-Vegetation-Atmosphere- Transfer (SSVAT) model, wherein we coupled soil processes of the Land Surface Process (LSP) model with the snow model SNTHERM. In the near future we will be adding a radiobrightness prediction based on the modeled moisture, temperature and snow grain size profiles. The initial investigations with this SSVAT for a late winter and early spring snow pack indicate that soil processes warm the snowpack and the soil. Vapor diffusion needs to be considered whenever the ground is thawed. In the early spring, heat flow from the ground into a snow and a strong temperature gradient across the snow lead to thermal convection. The buried vegetation can be ignored for a late winter snow pack. The warmer surface snow temperature will affect radiobrightness since it is most sensitive to snow surface characteristics. Comparison to data shows that SSVAT provides a more realistic representation of the temperature and moisture profiles in the snowpack and its underlying soil than SNTHERM. The radiobrightness module will be optimized for the prediction of brightness when the snow is moist. The liquid water content of snow causes considerable absorption compared to dry snow, and so longer wavelengths are likely to be most revealing as to the state of a moist snowpack. For volumetric moisture contents below about 7% (the pendular regime), the water forms rings around the contact points between snow grains. Electrostatic modeling of these pendular rings shows that the absorption of these rings is significantly higher than a sphere of the same volume. The first implementation of the radiobrightness module will therefore be a simple radiative transfer model without scattering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Borkowski, C.A.; Huang, C.
1998-01-01
AMTEC (Alkali Metal Thermal-to-Electric Conversion) cell development has received increased attention and funding in the space power community because of several desirable performance characteristics compared to current radioisotope thermoelectric generation and solar photovoltaic (PV) power generation. AMTEC cell development is critically dependent upon the ability to predict thermal, fluid dynamic and electrical performance of an AMTEC cell which has many complex thermal, fluid dynamic and electrical processes and interactions occurring simultaneously. Development of predictive capability is critical to understanding the complex processes and interactions within the AMTEC cell, and thereby creating the ability to design high-performance, cost-effective AMTEC cells. Amore » flexible, sophisticated thermal/fluid/electrical model of an operating AMTEC cell has been developed using the SINDA/FLUINT analysis software. This model can accurately simulate AMTEC cell performance at any hot side and cold side temperature combination desired, for any voltage and current conditions, and for a broad range of cell design parameters involving the cell dimensions, current collector and electrode design, electrode performance parameters, and cell wall and thermal shield emissivity. The model simulates the thermal radiation network within the AMTEC cell using RadCAD thermal radiation analysis; hot side, cold side and cell wall conductive and radiative coupling; BASE (Beta Alumina Solid Electrode) tube electrochemistry, including electrode over-potentials; the fluid dynamics of the low-pressure sodium vapor flow to the condenser and liquid sodium flow in the wick; sodium condensation at the condenser; and high-temperature sodium evaporation in the wick. The model predicts the temperature profiles within the AMTEC cell walls, the BASE tube temperature profiles, the sodium temperature profile in the artery return, temperature profiles in the evaporator, thermal energy flows throughout the AMTEC cell, all sodium pressure drops from hot BASE tubes to the condenser, the current, voltage, and power output from the cell, and the cell efficiency. This AMTEC cell model is so powerful and flexible that it is used in radioisotope AMTEC power system design, solar AMTEC power system design, and combustion-driven power system design on several projects at Advanced Modular Power Systems, Inc. (AMPS). The model has been successfully validated against actual cell experimental data and its performance predictions agree very well with experimental data on PX-5B cells and other test cells at AMPS. {copyright} {ital 1998 American Institute of Physics.}« less
Modernized active spectroscopic diagnostics (CXRS) of the T-10 tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krupin, V. A., E-mail: Krupin-VA@nrcki.ru; Klyuchnikov, L. A., E-mail: Lklyuchnikov@list.ru; Korobov, K. V., E-mail: Korobov-KV@nrcki.ru
2015-12-15
This work presents the results of modernization of the CXRS (charge exchange recombination spectroscopy) diagnostics [1] at the T-10 tokamak. The relevance of this work is due to the importance of measurements of the ion temperature and nuclei density of the working gas and impurities for analysis of transport processes in the plasma ion component. Measurements of radial profiles of the ion temperature are extremely important for investigating the geodesic acoustic mode behavior which is conducted at the T-10 [2]. The modernized scheme of CXRS measurements, as well as the design and operational features of the spectrometer created for themore » new diagnostics, is described. Principles of data recording and further processing are considered in detail; attention is given to the problem of calibration of the whole complex of equipment. The performed changes in diagnostics allow the measurements to be taken simultaneously in three spectral intervals: in the region of the beam line H{sub α}, the CXRS line of carbon ion C{sup 5+}, and the CXRS line of one of the hydrogen-like ions: He{sup 1+}, Li{sup 2+}, N{sup 6+}, O{sup 7+} or Ne{sup 9+}. This makes it possible to measure the density profiles of two plasma impurities simultaneously, as well as the ion temperature from CXRS lines of different elements. The modernized diagnostics significantly broadens the possibilities of studying the physics of transport processes and quasi-coherent modes of plasma oscillations at the T-10.« less
Improving Forecast Skill by Assimilation of Quality Controlled AIRS Version 5 Temperature Soundings
NASA Technical Reports Server (NTRS)
Susskind, Joel; Reale, Oreste
2009-01-01
The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing (and reprocessing) of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains two significant improvements over Version 4: 1) Improved physics allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profile T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of cloud cleared radiances R(sub i). This approach allows for the generation of accurate values of R(sub i) and T(p) under most cloud conditions. 2) Another very significant improvement in Version 5 is the ability to generate accurate case-by-case, level-by-level error estimates for the atmospheric temperature profile, as well as for channel-by-channel error estimates for R(sub i). These error estimates are used for Quality Control of the retrieved products. We have conducted forecast impact experiments assimilating AIRS temperature profiles with different levels of Quality Control using the NASA GEOS-5 data assimilation system. Assimilation of Quality Controlled T(p) resulted in significantly improved forecast skill compared to that obtained from analyses obtained when all data used operationally by NCEP, except for AIRS data, is assimilated. We also conducted an experiment assimilating AIRS radiances uncontaminated by clouds, as done operationally by ECMWF and NCEP. Forecast resulting from assimilated AIRS radiances were of poorer quality than those obtained assimilating AIRS temperatures.
Nomoto, Naoki; Ali, Muntjeer; Jayaswal, Komal; Iguchi, Akinori; Hatamoto, Masashi; Okubo, Tsutomu; Takahashi, Masanobu; Kubota, Kengo; Tagawa, Tadashi; Uemura, Shigeki; Yamaguchi, Takashi; Harada, Hideki
2018-04-01
Profile analysis of the down-flow hanging sponge (DHS) reactor was conducted under various temperature and organic load conditions to understand the organic removal and nitrification process for sewage treatment. Under high organic load conditions (3.21-7.89 kg-COD m -3 day -1 ), dissolved oxygen (DO) on the upper layer of the reactor was affected by organic matter concentration and water temperature, and sometimes reaches around zero. Almost half of the COD Cr was removed by the first layer, which could be attributed to the adsorption of organic matter on sponge media. After the first layer, organic removal proceeded along the first-order reaction equation from the second to the fourth layers. The ammoniacal nitrogen removal ratio decreased under high organic matter concentration (above 100 mg L -1 ) and low DO (less than 1 mg L -1 ) condition. Ammoniacal nitrogen removal proceeded via a zero-order reaction equation along the reactor height. In addition, the profile results of DO, COD Cr , and NH 3 -N were different in the horizontal direction. Thus, it is thought the concentration of these items and microbial activities were not in a uniform state even in the same sponge layer of the DHS reactor.
Heat transport in the Red Lake Bog, Glacial Lake Agassiz Peatlands
McKenzie, J.M.; Siegel, D.I.; Rosenberry, D.O.; Glaser, P.H.; Voss, C.I.
2007-01-01
We report the results of an investigation on the processes controlling heat transport in peat under a large bog in the Glacial Lake Agassiz Peatlands. For 2 years, starting in July 1998, we recorded temperature at 12 depth intervals from 0 to 400 cm within a vertical peat profile at the crest of the bog at sub-daily intervals. We also recorded air temperature 1 m above the peat surface. We calculate a peat thermal conductivity of 0.5 W m-1 ??C-1 and model vertical heat transport through the peat using the SUTRA model. The model was calibrated to the first year of data, and then evaluated against the second year of collected heat data. The model results suggest that advective pore-water flow is not necessary to transport heat within the peat profile and most of the heat is transferred by thermal conduction alone in these waterlogged soils. In the spring season, a zero-curtain effect controls the transport of heat through shallow depths of the peat. Changes in local climate and the resulting changes in thermal transport still may cause non-linear feedbacks in methane emissions related to the generation of methane deeper within the peat profile as regional temperatures increase. Copyright ?? 2006 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Voronkov, V. V.; Falster, R.; Kim, TaeHyeong; Park, SoonSung; Torack, T.
2013-07-01
Silicon wafers, coated with a silicon nitride layer and subjected to high temperature Rapid Thermal Annealing (RTA) in Ar, show—upon a subsequent two-step precipitation anneal cycle (such as 800 °C + 1000 °C)—peculiar depth profiles of oxygen precipitate densities. Some profiles are sharply peaked near the wafer surface, sometimes with a zero bulk density. Other profiles are uniform in depth. The maximum density is always the same. These profiles are well reproduced by simulations assuming that precipitation starts from a uniformly distributed small oxide plates originated from RTA step and composed of oxygen atoms and vacancies ("VO2 plates"). During the first step of the precipitation anneal, an oxide layer propagates around this core plate by a process of oxygen attachment, meaning that an oxygen-only ring-shaped plate emerges around the original plate. These rings, depending on their size, then either dissolve or grow during the second part of the anneal leading to a rich variety of density profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrena, R.; Canovas, C.; Sanchez, A.
2006-07-01
A macroscopic non-steady state energy balance was developed and solved for a composting pile of source-selected organic fraction of municipal solid waste during the maturation stage (13,500 kg of compost). Simulated temperature profiles correlated well with temperature experimental data (ranging from 50 to 70 deg. C) obtained during the maturation process for more than 50 days at full scale. Thermal inertia effect usually found in composting plants and associated to the stockpiling of large composting masses could be predicted by means of this simplified energy balance, which takes into account terms of convective, conductive and radiation heat dissipation. Heat lossesmore » in a large composting mass are not significant due to the similar temperatures found at the surroundings and at the surface of the pile (ranging from 15 to 40 deg. C). In contrast, thermophilic temperature in the core of the pile was maintained during the whole maturation process. Heat generation was estimated with the static respiration index, a parameter that is typically used to monitor the biological activity and stability of composting processes. In this study, the static respiration index is presented as a parameter to estimate the metabolic heat that can be generated according to the biodegradable organic matter content of a compost sample, which can be useful in predicting the temperature of the composting process.« less
Using Ground Measurements to Examine the Surface Layer Parameterization Scheme in NCEP GFS
NASA Astrophysics Data System (ADS)
Zheng, W.; Ek, M. B.; Mitchell, K.
2017-12-01
Understanding the behavior and the limitation of the surface layer parameneterization scheme is important for parameterization of surface-atmosphere exchange processes in atmospheric models, accurate prediction of near-surface temperature and identifying the role of different physical processes in contributing to errors. In this study, we examine the surface layer paramerization scheme in the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) using the ground flux measurements including the FLUXNET data. The model simulated surface fluxes, surface temperature and vertical profiles of temperature and wind speed are compared against the observations. The limits of applicability of the Monin-Obukhov similarity theory (MOST), which describes the vertical behavior of nondimensionalized mean flow and turbulence properties within the surface layer, are quantified in daytime and nighttime using the data. Results from unstable regimes and stable regimes are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Wang, Leyun; Almer, Jonathan D.
Deformation processes in Grade 91 (Fe–9%Cr–1%Mo–V,Nb) and Grade 92 (Fe–9%Cr–0.5%Mo–2%W–V,Nb) ferritic–martensitic steels were investigated at temperatures between 20 and 650 °C using high-energy synchrotron X-ray diffraction with in situ thermal–mechanical loading. The change of the dislocation density with strain was quantified by X-ray diffraction line profile analysis complemented by transmission electron microscopy measurements. The relationship between dislocation density and strain during uniform deformation was described by a dislocation model, and two critical materials parameters, namely dislocation mean free path and dynamic recovery coefficient, were determined as a function of temperature. Effects of alloy chemistry, thermal–mechanical treatment and temperature on themore » tensile deformation process in Grade 91 and Grade 92 steels can be well understood by the dislocation evolution behavior.« less
Wright, Serena; Hull, Tom; Sivyer, David B.; Pearce, David; Pinnegar, John K.; Sayer, Martin D. J.; Mogg, Andrew O. M.; Azzopardi, Elaine; Gontarek, Steve; Hyder, Kieran
2016-01-01
Monitoring temperature of aquatic waters is of great importance, with modelled, satellite and in-situ data providing invaluable insights into long-term environmental change. However, there is often a lack of depth-resolved temperature measurements. Recreational dive computers routinely record temperature and depth, so could provide an alternate and highly novel source of oceanographic information to fill this data gap. In this study, a citizen science approach was used to obtain over 7,000 scuba diver temperature profiles. The accuracy, offset and lag of temperature records was assessed by comparing dive computers with scientific conductivity-temperature-depth instruments and existing surface temperature data. Our results show that, with processing, dive computers can provide a useful and novel tool with which to augment existing monitoring systems all over the globe, but especially in under-sampled or highly changeable coastal environments. PMID:27445104
NASA Astrophysics Data System (ADS)
Kreider, Kenneth G.; DeWitt, David P.; Fowler, Joel B.; Proctor, James E.; Kimes, William A.; Ripple, Dean C.; Tsai, Benjamin K.
2004-04-01
Recent studies on dynamic temperature profiling and lithographic performance modeling of the post-exposure bake (PEB) process have demonstrated that the rate of heating and cooling may have an important influence on resist lithographic response. Measuring the transient surface temperature during the heating or cooling process with such accuracy can only be assured if the sensors embedded in or attached to the test wafer do not affect the temperature distribution in the bare wafer. In this paper we report on an experimental and analytical study to compare the transient response of embedded platinum resistance thermometer (PRT) sensors with surface-deposited, thin-film thermocouples (TFTC). The TFTCs on silicon wafers have been developed at NIST to measure wafer temperatures in other semiconductor thermal processes. Experiments are performed on a test bed built from a commercial, fab-qualified module with hot and chill plates using wafers that have been instrumented with calibrated type-E (NiCr/CuNi) TFTCs and commercial PRTs. Time constants were determined from an energy-balance analysis fitting the temperature-time derivative to the wafer temperature during the heating and cooling processes. The time constants for instrumented wafers ranged from 4.6 s to 5.1 s on heating for both the TFTC and PRT sensors, with an average difference less than 0.1 s between the TFTCs and PRTs and slightly greater differences on cooling.
Radiation forcing by the atmospheric aerosols in the nocturnal boundary layer
NASA Astrophysics Data System (ADS)
Singh, D. K.; Ponnulakshami, V. K.; Mukund, V.; Subramanian, G.; Sreenivas, K. R.
2013-05-01
We have conducted experimental and theoretical studies on the radiation forcing due to suspended aerosols in the nocturnal boundary layer. We present radiative, conductive and convective equilibrium profile for different bottom boundaries where calculated Rayleigh number is higher than the critical Rayleigh number in laboratory conditions. The temperature profile can be fitted using an exponential distribution of aerosols concentration field. We also present the vertical temperature profiles in a nocturnal boundary in the presence of fog in the field. Our results show that during the presence of fog in the atmosphere, the ground temperature is greater than the dew-point temperature. The temperature profiles before and after the formation of fog are also observed to be different.
Tokamak plasma current disruption infrared control system
Kugel, Henry W.; Ulrickson, Michael
1987-01-01
In a magnetic plasma confinment device having an inner toroidal limiter mounted on an inner wall of a plasma containment vessel, an arrangement is provided for monitoring vertical temperature profiles of the limiter. The temperature profiles are taken at brief time intervals, in a time scan fashion. The time scans of the vertical temperature profile are continuously monitored to detect the presence of a peaked temperature excursion, which, according to the present invention, is a precursor of a subsequent major plasma disruption. A fast scan of the temperature profile is made so as to provide a time interval in real time prior to the major plasma disruption, such that corrective action can be taken to reduce the harmful effects of the plasma disruption.
Temperature profiles of patient-applied eyelid warming therapies.
Wang, Michael T M; Gokul, Akilesh; Craig, Jennifer P
2015-12-01
To compare temperature profile characteristics (on and off eye) of two patient-applied heat therapies for meibomian gland dysfunction (MGD): an eye mask containing disposable warming units (EyeGiene(®)) and a microwave-heated flaxseed eye bag(®) (MGDRx EyeBag(®)). In vitro evaluation: surface temperature profiles of activated eye masks and heated eye bags(®) (both n=10), were tracked every 10s until return to ambient temperature. Heat-transfer assessment: outer and inner eyelid temperature profiles throughout the eye mask and eye bag(®) treatment application period (10min) were investigated in triplicate. The devices were applied for 12 different time intervals in a randomised order, with a cool-down period in between to ensure ocular temperatures returned to baseline. Temperature measurements were taken before and immediately after each application. In vitro evaluation: on profile, the eye bag(®) surface temperature peaked earlier (0±0 s vs. 100±20 s, p<0.001), cooled more slowly and displayed less variability than the eye mask (all p<0.05). Heat-transfer assessment: the eye bag(®) effected higher peak inner eyelid temperatures (38.1±0.4°C vs. 37.4±0.2°C, p=0.04), as well as larger inner eyelid temperature increases over the first 2 min, and between 9 and 10 min (all p<0.05). The eye bag(®) surface temperature profile displayed greater uniformity and slower cooling than the eye mask, and was demonstrated to be significantly more effective in raising ocular temperatures than the eye mask, both statistically and clinically. This has implications for MGD treatment, where the melting points of meibomian secretions are likely to be higher with increasing disease severity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Constraining ecosystem processes from tower fluxes and atmospheric profiles.
Hill, T C; Williams, M; Woodward, F I; Moncrieff, J B
2011-07-01
The planetary boundary layer (PBL) provides an important link between the scales and processes resolved by global atmospheric sampling/modeling and site-based flux measurements. The PBL is in direct contact with the land surface, both driving and responding to ecosystem processes. Measurements within the PBL (e.g., by radiosondes, aircraft profiles, and flask measurements) have a footprint, and thus an integrating scale, on the order of 1-100 km. We use the coupled atmosphere-biosphere model (CAB) and a Bayesian data assimilation framework to investigate the amount of biosphere process information that can be inferred from PBL measurements. We investigate the information content of PBL measurements in a two-stage study. First, we demonstrate consistency between the coupled model (CAB) and measurements, by comparing the model to eddy covariance flux tower measurements (i.e., water and carbon fluxes) and also PBL scalar profile measurements (i.e., water, carbon dioxide, and temperature) from Canadian boreal forest. Second, we use the CAB model in a set of Bayesian inversions experiments using synthetic data for a single day. In the synthetic experiment, leaf area and respiration were relatively well constrained, whereas surface albedo and plant hydraulic conductance were only moderately constrained. Finally, the abilities of the PBL profiles and the eddy covariance data to constrain the parameters were largely similar and only slightly lower than the combination of both observations.
Intercomparison Between Microwave Radiometer and Radiosonding Data
NASA Astrophysics Data System (ADS)
Toanca, Florica; Stefan, Sabina
2014-05-01
The aim of this study is to compare relative humidity and temperature vertical profiles measured by ground based Microwave Radiometer (MWR) RPG HATPRO installed at the Romanian Atmospheric Observatory (Magurele, 44.35 N, 26.03 E) and by radio-sounding (RS) (Baneasa, 44.30 N, 26.04 E) provided by National Meteorological Administration. MWR uses passive microwave detection in the 22.335 to 31.4 GHz and 51to 58 GHz bands to obtain the vertical profiles of temperature and relative humidity up to 10km with a temporal resolution of several minutes. The reliability of atmospheric temperature and relative humidity profiles retrieved continuously by the MWR for the winter and summer of year 2013 was studied. The study was conducted, comparing the temperature and humidity profiles from the MWR with the ones from the radio soundings at 0:00 a.m. Two datasets of the humidity show a fairly good agreement for the interval between ground and 1.5 km in the January month for winter and up to 2 km in the July month for summer. Above 2 km, for the both seasons, the humidity profiles present in most of the selected cases the same trend evolution. The temperature vertical profiles agreed in 95% of the cases during summer and 85% during winter. It is very important for intercomparison that for both seasons almost all temperature vertical profiles highlight temperature inversions. Two cases have been analyzed in order to find possible explanations for the discrepancies between vertical profiles, focusing on advantages and disadvantages of MWR measurements.
Estimating Mixing Heights Using Microwave Temperature Profiler
NASA Technical Reports Server (NTRS)
Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne
2008-01-01
A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.
Mesoscale temperature and moisture fields from satellite infrared soundings
NASA Technical Reports Server (NTRS)
Hillger, D. W.; Vonderhaar, T. H.
1976-01-01
The combined use of radiosonde and satellite infrared soundings can provide mesoscale temperature and moisture fields at the time of satellite coverage. Radiance data from the vertical temperature profile radiometer on NOAA polar-orbiting satellites can be used along with a radiosonde sounding as an initial guess in an iterative retrieval algorithm. The mesoscale temperature and moisture fields at local 9 - 10 a.m., which are produced by retrieving temperature profiles at each scan spot for the BTPR (every 70 km), can be used for analysis or as a forecasting tool for subsequent weather events during the day. The advantage of better horizontal resolution of satellite soundings can be coupled with the radiosonde temperature and moisture profile both as a best initial guess profile and as a means of eliminating problems due to the limited vertical resolution of satellite soundings.
Differences between radiosonde and dropsonde temperature profiles over the Arctic Ocean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skony, S.M.; Kahl, J.D.W.; Zaitseva, N.A.
1994-10-01
The boundary layer structure measured by 402 pairs of approximately collocated radiosonde and dropsonde temperature profiles over the Arctic Ocean during the period 1957-1961 is examined. The radiosonde profiles were obtained at the Russian drifting ice camps `North Pole 7` and `North Pole 8,` and the dropsonde profiles were measured during the United States Air Force `Ptarmigan` series of weather reconnaissance flights. The boundary layer structure is characterized by the features of the low-level tropospheric temperature inversion. The results indicate that the dropsonde soundings, although containing relatively few measurement levels, contain sufficient vertical resolution to characterize the temperature inversion. Systematicmore » differences were noted in wintertime inversion features and near-surface temperatures as measured by dropsondes and radiosondes. These differences are attributed to contrasting temperature lag errors accompanying ascending and descending sensors.« less
NASA Astrophysics Data System (ADS)
Abo, M.; Shibata, Y.; Nagasawa, C.
2017-12-01
We have developed a ground based direct detection three-wavelength 1.6 μm differential absorption lidar (DIAL) to achieve measurements of vertical CO2 concentration and temperature profiles in the atmosphere. As the spectra of absorption lines of any molecules are influenced basically by the temperature and pressure in the atmosphere, it is important to measure them simultaneously so that the better accuracy of the DIAL measurement is realized. Conventionally, we have obtained the vertical profile of absorption cross sections using the atmospheric temperature profile by the objective analysis and the atmospheric pressure profile calculated by the pressure height equation. Comparison of atmospheric pressure profiles calculated from this equation and those obtained from radiosonde observations at Tateno, Japan is consistent within 0.2 % below 3 km altitude. But the temperature dependency of the CO2 density is 0.25 %/°C near the surface. Moreover, the CO2 concentration is often evaluated by the mixing ratio. Because the air density is related by the ideal gas law, the mixing ratio is also related by the atmospheric temperature. Therefore, the temperature affects not only accuracy of CO2 concentration but the CO2 mixing ratio. In this paper, some experimental results of the simultaneous measurement of atmospheric temperature profiles and CO2 mixing ratio profiles are reported from 0.4 to 2.5 km altitude using the three-wavelength 1.6 μm DIAL system. Temperature profiles of CO2 DIAL measurement were sometimes different from those of objective analysis below 1.5 km altitude. These differences are considered to be due to regionality at the lidar site. The temperature difference of 5.0 °C corresponds to a CO2 mixing ratio difference of 8.0 ppm at 500 m altitude. This cannot be ignored in estimates of regional sources and sinks of CO2. This three-wavelength CO2 DIAL technique can estimate accurately temporal behavior of CO2 mixing ratio profiles in the lower atmosphere. This work was financially supported by the System Development Program for Advanced Measurement and Analysis of the Japan Science and Technology Agency.
Comparison of tracer methods to quantify hydrodynamic exchange within the hyporheic zone
NASA Astrophysics Data System (ADS)
Engelhardt, I.; Piepenbrink, M.; Trauth, N.; Stadler, S.; Kludt, C.; Schulz, M.; Schüth, C.; Ternes, T. A.
2011-03-01
SummaryHydrodynamic exchange between surface-water and groundwater was studied at a river located within the Rhine Valley in Germany. Piezometric pressure heads and environmental tracers such as temperature, stable isotopes, chloride, X-ray contrast media, and artificial sweetener were investigated within the hyporheic zone and river water plume. Vertical profiles of environmental tracers were collected using multi-level wells within the neutral up-gradient zone, beneath the river bed, and within the horizontal proximal and distal down-gradient zone. Infiltration velocities were calculated from pressure heads, temperature fluctuations and gradients. The amount of river water within groundwater was estimated from vertical profiles of chloride, stable isotopes, and persistent pharmaceuticals. Profiles of stable isotopes and chloride reveal the existence of down-welling within the shallow hyporheic zone that is generated by river bed irregularities. Due to down-welling an above-average migration of river water into the hyporheic zone establishes even under upward hydraulic pressure gradients. The investigated environmental tracers could not distinctively display short-time-infiltration velocities representative for flood waves, while average infiltration velocities calculated over several months are uniform displayed. Based on vertical temperature profiles the down-gradient migration of the river water plume could be observed even after long periods of effluent conditions and over a distance of 200 m from the river bank. X-ray contrast media and artificial sweeteners were observed in high concentrations within the proximal zone, but were not detected at a distance of 200 m from the river bank. Using temperature as environmental tracer within the hyporheic zone may result in overestimating the migration of pollutants within the river water plume as the process of natural attenuation will be neglected. Furthermore, temperature was not able to display the effect of down-welling. Stable isotopes and chloride were found to be suitable environmental tracers to forecast the release and fate of organic contaminants within the hyporheic zone.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianco, Laura; Friedrich, Katja; Wilczak, James M.
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature ( T) andmore » relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature ( T v) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5?km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m -3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. Furthermore, an encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.« less
Bianco, Laura; Friedrich, Katja; Wilczak, James M.; ...
2017-05-09
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature ( T) andmore » relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature ( T v) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5?km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m -3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. Furthermore, an encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.« less
NASA Astrophysics Data System (ADS)
Bianco, Laura; Friedrich, Katja; Wilczak, James M.; Hazen, Duane; Wolfe, Daniel; Delgado, Ruben; Oncley, Steven P.; Lundquist, Julie K.
2017-05-01
To assess current remote-sensing capabilities for wind energy applications, a remote-sensing system evaluation study, called XPIA (eXperimental Planetary boundary layer Instrument Assessment), was held in the spring of 2015 at NOAA's Boulder Atmospheric Observatory (BAO) facility. Several remote-sensing platforms were evaluated to determine their suitability for the verification and validation processes used to test the accuracy of numerical weather prediction models.The evaluation of these platforms was performed with respect to well-defined reference systems: the BAO's 300 m tower equipped at six levels (50, 100, 150, 200, 250, and 300 m) with 12 sonic anemometers and six temperature (T) and relative humidity (RH) sensors; and approximately 60 radiosonde launches.In this study we first employ these reference measurements to validate temperature profiles retrieved by two co-located microwave radiometers (MWRs) as well as virtual temperature (Tv) measured by co-located wind profiling radars equipped with radio acoustic sounding systems (RASSs). Results indicate a mean absolute error (MAE) in the temperature retrieved by the microwave radiometers below 1.5 K in the lowest 5 km of the atmosphere and a mean absolute error in the virtual temperature measured by the radio acoustic sounding systems below 0.8 K in the layer of the atmosphere covered by these measurements (up to approximately 1.6-2 km). We also investigated the benefit of the vertical velocity correction applied to the speed of sound before computing the virtual temperature by the radio acoustic sounding systems. We find that using this correction frequently increases the RASS error, and that it should not be routinely applied to all data.Water vapor density (WVD) profiles measured by the MWRs were also compared with similar measurements from the soundings, showing the capability of MWRs to follow the vertical profile measured by the sounding and finding a mean absolute error below 0.5 g m-3 in the lowest 5 km of the atmosphere. However, the relative humidity profiles measured by the microwave radiometer lack the high-resolution details available from radiosonde profiles. An encouraging and significant finding of this study was that the coefficient of determination between the lapse rate measured by the microwave radiometer and the tower measurements over the tower levels between 50 and 300 m ranged from 0.76 to 0.91, proving that these remote-sensing instruments can provide accurate information on atmospheric stability conditions in the lower boundary layer.
NASA Astrophysics Data System (ADS)
Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.
2004-05-01
A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .
Lubricant rheology applied to elastohydrodynamic lubrication
NASA Technical Reports Server (NTRS)
Winer, W. O.; Sanborn, D. M.
1977-01-01
Viscosity measurements in a high pressure rheometer, elastohydrodynamic simulator studies (including the development of a temperature measuring technique), and analytical fluid modeling for elastohydrodynamic contacts are described. The more recent research which is described concerns infrared temperature measurements in elastohydrodynamic contacts and the exploration of the glassy state of lubricants. A correlation, of engineering significance, was made between transient surface temperature measurements and surface roughness profiles. Measurements of glass transitions of lubricants and the study of the effect of rate processes on materials lead to the conclusion that typical lubricants go into the glassy state as they pass through the contact region of typical elastohydrodynamic contacts.
Non-hoop winding effect on bonding temperature of laser assisted tape winding process
NASA Astrophysics Data System (ADS)
Zaami, Amin; Baran, Ismet; Akkerman, Remko
2018-05-01
One of the advanced methods for production of thermoplastic composite methods is laser assisted tape winding (LATW). Predicting the temperature in LATW process is very important since the temperature at nip-point (bonding line through width) plays a pivotal role in a proper bonding and hence the mechanical performance. Despite the hoop-winding where the nip-point is the straight line, non-hoop winding includes a curved nip-point line. Hence, the non-hoop winding causes somewhat a different power input through laser-rays and-reflections and consequently generates unknown complex temperature profile on the curved nip-point line. Investigating the temperature at the nip-point line is the point of interest in this study. In order to understand this effect, a numerical model is proposed to capture the effect of laser-rays and their reflections on the nip-point temperature. To this end, a 3D optical model considering the objects in LATW process is considered. Then, the power distribution (absorption and reflection) from the optical analysis is used as an input (heat flux distribution) for the thermal analysis. The thermal analysis employs a fully-implicit advection-diffusion model to calculate the temperature on the surfaces. The results are examined to demonstrate the effect of winding direction on the curved nip-point line (tape width) which has not been considered in literature up to now. Furthermore, the results can be used for designing a better and more efficient setup in the LATW process.
Ebner, Jennifer; Baum, Florian; Pischetsrieder, Monika
2016-09-16
Peptide profiles of different drinking milk samples were examined to study how the peptide fingerprint of milk reflects processing conditions. The combination of a simple and fast method for peptide extraction using stage tips and MALDI-TOF-MS enabled the fast and easy generation and relative quantification of peptide fingerprints for high-temperature short-time (HTST), extended shelf life (ESL) and ultra-high temperature (UHT) milk of the same dairies. The relative quantity of 16 peptides changed as a function of increasing heat load. Additional heating experiments showed that among those, the intensity of peptide β-casein 196-209 (m/z 1460.9Da) was most heavily influenced by heat treatment indicating a putative marker peptide for milk processing conditions. Storage experiments with HTST- and UHT milk revealed that the differences between different types of milk samples were not only caused by the heating process. Relevant was also the proteolytic activity of enzymes during storage, which were differently influenced by the heat treatment. These results indicate that the peptide profile may be suitable to monitor processing as well as storage conditions of milk. In the present study, peptide profiling of different types of milk was carried out by MALDI-TOF-MS after stage-tip extraction and relative quantification using an internal reference peptide. Although MALDI-TOF-MS covers only part of the peptidome, the method is easy and quick and is, therefore, suited for routine analysis to address several aspects of food authenticity. Using this method, 16 native peptides were detected in milk that could be modulated by different industrial processes. Subsequent heating and storage experiments with pasteurized and UHT milk confirmed that these peptides are indeed related to the production or storage conditions of the respective products. Furthermore, the heating experiments revealed one peptide, namely the β-casein-derived sequence β-casein 196-209, which underwent particularly sensitive modulation by heat treatment. The present results indicate that the modulated peptides, and especially β-casein 196-209, may be suitable markers to monitor processing parameters for industrial milk production. Furthermore, the model experiments suggest mechanisms leading to the formation or degradation of peptides, which help to evaluate putative marker peptides. Copyright © 2016 Elsevier B.V. All rights reserved.
Cryogenic Quenching Process for Electronic Part Screening
NASA Technical Reports Server (NTRS)
Sheldon, Douglas J.; Cressler, John
2011-01-01
The use of electronic parts at cryogenic temperatures (less than 100 C) for extreme environments is not well controlled or developed from a product quality and reliability point of view. This is in contrast to the very rigorous and well-documented procedures to qualify electronic parts for mission use in the 55 to 125 C temperature range. A similarly rigorous methodology for screening and evaluating electronic parts needs to be developed so that mission planners can expect the same level of high reliability performance for parts operated at cryogenic temperatures. A formal methodology for screening and qualifying electronic parts at cryogenic temperatures has been proposed. The methodology focuses on the base physics of failure of the devices at cryogenic temperatures. All electronic part reliability is based on the bathtub curve, high amounts of initial failures (infant mortals), a long period of normal use (random failures), and then an increasing number of failures (end of life). Unique to this is the development of custom screening procedures to eliminate early failures at cold temperatures. The ability to screen out defects will specifically impact reliability at cold temperatures. Cryogenic reliability is limited by electron trap creation in the oxide and defect sites at conductor interfaces. Non-uniform conduction processes due to process marginalities will be magnified at cryogenic temperatures. Carrier mobilities change by orders of magnitude at cryogenic temperatures, significantly enhancing the effects of electric field. Marginal contacts, impurities in oxides, and defects in conductor/conductor interfaces can all be magnified at low temperatures. The novelty is the use of an ultra-low temperature, short-duration quenching process for defect screening. The quenching process is designed to identify those defects that will precisely (and negatively) affect long-term, cryogenic part operation. This quenching process occurs at a temperature that is at least 25 C colder than the coldest expected operating temperature. This quenching process is the opposite of the standard burn-in procedure. Normal burn-in raises the temperature (and voltage) to activate quickly any possible manufacturing defects remaining in the device that were not already rejected at a functional test step. The proposed inverse burn-in or quenching process is custom-tailored to the electronic device being used. The doping profiles, materials, minimum dimensions, interfaces, and thermal expansion coefficients are all taken into account in determining the ramp rate, dwell time, and temperature.
NASA Astrophysics Data System (ADS)
Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.
2017-12-01
The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.
A New SBUV Ozone Profile Time Series
NASA Technical Reports Server (NTRS)
McPeters, Richard
2011-01-01
Under NASA's MEaSUREs program for creating long term multi-instrument data sets, our group at Goddard has re-processed ozone profile data from a series of SBUV instruments. We have processed data from the Nimbus 7 SBUV instrument (1979-1990) and data from SBUV/2 instruments on NOAA-9 (1985-1998), NOAA-11 (1989-1995), NOAA-16 (2001-2010), NOAA-17 (2002-2010), and NOAA-18 (2005-2010). This reprocessing uses the version 8 ozone profile algorithm but now uses the Brion, Daumont, and Malicet (BMD) ozone cross sections instead of the Bass and Paur cross sections. The new cross sections have much better resolution, and extended wavelength range, and a more consistent temperature dependence. The re-processing also uses an improved cloud height climatology based on the Raman cloud retrievals of OMI. Finally, the instrument-to-instrument calibration is set using matched scenes so that ozone diurnal variation in the upper stratosphere does not alias into the ozone trands. Where there is no instrument overlap, SAGE and MLS are used to estimate calibration offsets. Preliminary analysis shows a more coherent time series as a function of altitude. The net effect on profile total column ozone is on average an absolute reduction of about one percent. Comparisons with ground-based systems are significantly better at high latitudes.
NASA Technical Reports Server (NTRS)
Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc
2012-01-01
Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents reliable global retrievals based a single a priori and strongly implies that a robust science analysis must instead rely on retrievals employing localized a priori information, for example from an ensemble based data assimilation system such as the Local Ensemble Transform Kalman Filter (LETKF).
Clay aquitards as archives of holocene paleoclimate: delta18O and thermal profiling.
Hendry, M Jim; Woodbury, A D
2007-01-01
Paleoclimatic conditions in the Holocene were reconstructed from a detailed vertical profile of pore water delta(18)O and a series of downhole thermal profiles at a thick, hydrogeologically simple, aquitard research site in the Northern Great Plains of Saskatchewan. Reconstructions were obtained using the theory of one-dimensional diffusive transport and an empirical Bayesian inversion technique. Inversion of the delta(18)O profile shows that input signal consists of a sudden increase of +6 per thousand (corresponding to a temperature increase of about 18 degrees C) at about 12,000 years before present (BP), after which no measurable change in delta(18)O is apparent to present day. This research shows, at this location, that there is no evidence of large amplitude temperature shifts in the Holocene and supports the commonly used assumption in ground water studies of constant atmospheric delta(18)O values throughout the Holocene. Inversion of the temperature profiles suggests the ground surface temperature increased primarily in the last half of the 20th century, with a peak temperature (about 3 degrees C) circa 1990. For both profiles, the ability to resolve historical variability decays rapidly with time. For the temperature profiles, the decay in resolution precluded the development of reliable estimates of climatic conditions prior to about 1950 and, in the case of the delta(18)O profile, it prevented the precise definition of climate changes (e.g., Hypsithermal and Little Ice Age) in the Holocene.
The New Microwave Temperature and Humidity Profiler (MTHP) Airborne Instrument
NASA Astrophysics Data System (ADS)
Lim, B.; Bendig, R.; Denning, R.; Pandian, P.; Read, W. G.; Tanner, A.
2016-12-01
The Jet Propulsion Laboratory (JPL) has developed a next generation sensor, the Microwave Temperature and Humidity Profiler (MTHP) for use on airborne platforms. The instrument measures the 60 GHz oxygen band and 183 GHz water vapor band, and scans ahead of the aircraft flight path, allowing for atmospheric retrievals above and below the aircraft, to generate vertical profiles. The millimeter wave microwave receivers utilize low noise amplifiers made on the 35 nm indium phosphide (InP) High Electron Mobility Transistors (HEMTs) process that offer low noise figures ( 4 dB). Continuous calibration is performed with a novel rotating drum, through an aperture matched to the measurement frequencies, with two external targets - one at ambient and another heated to 55oC. The instrument performs a scan of the vertical structure of the atmosphere and calibration targets every 1.5 seconds The instrument has recently flown on the Gulfstream 2 in June 2016 and participated in the NCAR ARISTO C-130 flight test campaign in August 2016. The performance of the instrument during these campaigns, will be presented.
Chemical characteristics of hadal waters in the Izu-Ogasawara Trench of the western Pacific Ocean.
Gamo, Toshitaka; Shitashima, Kiminori
2018-01-01
Vertical profiles of potential temperature, salinity, and some chemical components were obtained at a trench station (29°05'N, 142°51'E; depth = 9768 m) in the Izu-Ogasawara (Bonin) Trench in 1984 and 1994 to characterize the hadal waters below ∼6000 m depth. We compared portions of both the 1984 and 1994 profiles with nearby data obtained between 1976 and 2013. Results demonstrated that the hadal waters had slightly higher potential temperature and nitrate and lower dissolved oxygen than waters at sill depths (∼6000 m) outside the trench, probably due to the effective accumulation of geothermal heat and active biological processes inside the trench. The silicate, iron, and manganese profiles in 1984 showed slight but significant increases below ∼6000 m depth, suggesting that these components may have been intermittently supplied from the trench bottom. Significant amounts of 222 Rn in excess over 226 Ra were detected in the hadal waters up to 2675 m from the bottom, reflecting laterally supplied 222 Rn from the trench walls.
NASA Astrophysics Data System (ADS)
Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.
2016-10-01
We will present results of simultaneous measurements of LPI-driven light scattering and density/temperature profiles in CH plasmas produced by the Nike krypton fluoride laser (λ = 248 nm). The primary diagnostics for the LPI measurement are time-resolved spectrometers with absolute intensity calibration in spectral ranges relevant to the optical detection of stimulated Raman scattering or two plasmon decay. The spectrometers are capable of monitoring signal intensity relative to thermal background radiation from plasma providing a useful way to analyze LPI initiation. For further understanding of LPI processes, the recently implemented grid image refractometer (Nike-GIR)a is used to measure the coronal plasma profiles. In this experiment, Nike-GIR is equipped with a 5th harmonic probe laser (λ = 213 nm) in attempt to probe into a high density region over the previous peak density with λ = 263 nm probe light ( 4 ×1021 cm-3). The LPI behaviors will be discussed with the measured data sets. Work supported by DoE/NNSA.
Oh, Jaechul; Weaver, J L; Karasik, M; Chan, L Y
2015-08-01
A grid image refractometer (GIR) has been implemented at the Nike krypton fluoride laser facility of the Naval Research Laboratory. This instrument simultaneously measures propagation angles and transmissions of UV probe rays (λ = 263 nm, Δt = 10 ps) refracted through plasma. We report results of the first Nike-GIR measurement on a CH plasma produced by the Nike laser pulse (∼1 ns FWHM) with the intensity of 1.1 × 10(15) W/cm(2). The measured angles and transmissions were processed to construct spatial profiles of electron density (ne) and temperature (Te) in the underdense coronal region of the plasma. Using an inversion algorithm developed for the strongly refracted rays, the deployed GIR system probed electron densities up to 4 × 10(21) cm(-3) with the density scale length of 120 μm along the plasma symmetry axis. The resulting n(e) and T(e) profiles are verified to be self-consistent with the measured quantities of the refracted probe light.
Liu, Yanhong; Ream, Amy
2008-11-01
To study how Listeria monocytogenes survives and grows in ultrahigh-temperature-processed (UHT) skim milk, microarray technology was used to monitor the gene expression profiles of strain F2365 in UHT skim milk. Total RNA was isolated from strain F2365 in UHT skim milk after 24 h of growth at 4 degrees C, labeled with fluorescent dyes, and hybridized to "custom-made" commercial oligonucleotide (35-mers) microarray chips containing the whole genome of L. monocytogenes strain F2365. Compared to L. monocytogenes grown in brain heart infusion (BHI) broth for 24 h at 4 degrees C, 26 genes were upregulated (more-than-twofold increase) in UHT skim milk, whereas 14 genes were downregulated (less-than-twofold decrease). The upregulated genes included genes encoding transport and binding proteins, transcriptional regulators, proteins in amino acid biosynthesis and energy metabolism, protein synthesis, cell division, and hypothetical proteins. The downregulated genes included genes that encode transport and binding proteins, protein synthesis, cellular processes, cell envelope, energy metabolism, a transcriptional regulator, and an unknown protein. The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. Furthermore, cells grown in UHT skim milk displayed the same sensitivity to hydrogen peroxide as cells grown in BHI, demonstrating that the elevated levels of expression of genes encoding manganese transporter complexes in UHT skim milk did not result in changes in the oxidative stress sensitivity. To our knowledge, this report represents a novel study of global transcriptional gene expression profiling of L. monocytogenes in a liquid food.
Observations and modelling of the boundary layer using remotely piloted aircraft
NASA Astrophysics Data System (ADS)
Cayez, Gregoire; Dralet, Jean-Philippe; Seity, Yann; Momboisse, Geraud; Hattenberger, Gautier; Bronz, Murat; Roberts, Greg
2014-05-01
Over the past decade, the scientific community considers the RPAS (remotely piloted aircraft system) as a tool which can help to improve their knowledge of climate and atmospheric phenomena. RPAS equipped with instruments can now conduct measurements in areas that are too hazardous or remote for a manned plane. RPAS are especially adapted system for observing the atmospheric boundary layer processes at high vertical and temporal resolution. The main objectives of VOLTIGE (Vecteur d'Observation de La Troposphère pour l'Investigation et la Gestion de l'Environnement) are to study the life cycle of fog with micro-RPAS, encourage direct participation of the students on the advancement and development of novel observing systems, and assess the feasibility of deploying RPAS in Météo-France's operational network. The instrumented RPAS flights successfully observed the evolution of small-scale meteorological events. Before the arrival of the warm pseudo-front, profiles show a temperature inversion of a hundred meters, which overlaps a cold and wet atmospheric layer. Subsequent profiles show the combination of the arrival of a marine air mass as well as the arrival of a higher level warm pseudo-front. A third case study characterizes the warm sector of the disturbance. Two distinct air masses are visible on the vertical profiles, and show a dry air above an air almost saturated and slightly colder. The temperature and the relative humidity profiles show < 1 meter vertical resolution with a difference between ascent and descent profiles within ± 0.5°C and ± 6 % RH. These results comply with the Météo-France standard limits of quality control. The RPAS profiles were compared with those of the Arome forecast model (an operational model at Météo France). The temperature and wind in the Arome model profiles generally agree with those of the RPAS (less for relative humidity profiles). The Arome model also suggests transitions between air masses occurred at a higher level than those measured by RPAS. These results suggest that forecast models may be improved using high resolution and frequent in-situ measurements.
Distributed fiber-optic temperature sensing for hydrologic systems
NASA Astrophysics Data System (ADS)
Selker, John S.; ThéVenaz, Luc; Huwald, Hendrik; Mallet, Alfred; Luxemburg, Wim; van de Giesen, Nick; Stejskal, Martin; Zeman, Josef; Westhoff, Martijn; Parlange, Marc B.
2006-12-01
Instruments for distributed fiber-optic measurement of temperature are now available with temperature resolution of 0.01°C and spatial resolution of 1 m with temporal resolution of fractions of a minute along standard fiber-optic cables used for communication with lengths of up to 30,000 m. We discuss the spectrum of fiber-optic tools that may be employed to make these measurements, illuminating the potential and limitations of these methods in hydrologic science. There are trade-offs between precision in temperature, temporal resolution, and spatial resolution, following the square root of the number of measurements made; thus brief, short measurements are less precise than measurements taken over longer spans in time and space. Five illustrative applications demonstrate configurations where the distributed temperature sensing (DTS) approach could be used: (1) lake bottom temperatures using existing communication cables, (2) temperature profile with depth in a 1400 m deep decommissioned mine shaft, (3) air-snow interface temperature profile above a snow-covered glacier, (4) air-water interfacial temperature in a lake, and (5) temperature distribution along a first-order stream. In examples 3 and 4 it is shown that by winding the fiber around a cylinder, vertical spatial resolution of millimeters can be achieved. These tools may be of exceptional utility in observing a broad range of hydrologic processes, including evaporation, infiltration, limnology, and the local and overall energy budget spanning scales from 0.003 to 30,000 m. This range of scales corresponds well with many of the areas of greatest opportunity for discovery in hydrologic science.
NASA Technical Reports Server (NTRS)
Hodges, D. B.
1976-01-01
An iterative method is presented to retrieve single field of view (FOV) tropospheric temperature profiles directly from cloud-contaminated radiance data. A well-defined temperature profile may be calculated from the radiative transfer equation (RTE) for a partly cloudy atmosphere when the average fractional cloud amount and cloud-top height for the FOV are known. A cloud model is formulated to calculate the fractional cloud amount from an estimated cloud-top height. The method is then examined through use of simulated radiance data calculated through vertical integration of the RTE for a partly cloudy atmosphere using known values of cloud-top height(s) and fractional cloud amount(s). Temperature profiles are retrieved from the simulated data assuming various errors in the cloud parameters. Temperature profiles are retrieved from NOAA-4 satellite-measured radiance data obtained over an area dominated by an active cold front and with considerable cloud cover and compared with radiosonde data. The effects of using various guessed profiles and the number of iterations are considered.
A multi-sensor analysis of Nimbus 5 data on 22 January 1973. [meteorological parameters
NASA Technical Reports Server (NTRS)
Allison, L. J.; Rodgers, E. B.; Wilheit, T. T.; Wexler, R.
1973-01-01
The Nimbus 5 meteorological satellite carried aloft a full complement of radiation sensors, the data from which were analyzed and intercompared during orbits 569-570 on 22 January 1973. The electrically scanning microwave radiometer (ESMR) which sensed passive microwave radiation in the 19.35 GHz region, delineated rain areas over the ocean off the U.S. east coast, in good agreement with WSR-57 and FPS-77 radar imagery and permitted the estimation of rainfall rates in this region. Residual ground water in the lower Mississippi Valley, which resulted from abnormal rainfall in previous months, was indicated under clear sky conditions by soil brightness temperature values in the Nimbus 5 ESMR and U.S. Air Force Data Acquisition and Processing Program (DAPP) IR data. The temperature-humidity infrared radiometer showed the height and spatial configuration of frontal clouds along the east coast and outlined the confluence of a polar jet stream with a broad sub-tropical jet stream along the U.S. Gulf Coast. Temperature profiles from three vertical temperature sounders, the infrared temperature profile radiometer (ITPR), the Nimbus E microwave spectrometer (NEMS) and the selective chopper radiometer (SCR) were found to be in good agreement with related radiosonde ascents along orbit 569 from the sub-tropics to the Arctic Circle.
Mesospheric temperatures estimated from the meteor radar observations at Mohe, China
NASA Astrophysics Data System (ADS)
Liu, Libo; Liu, Huixin; Chen, Yiding; Le, Huijun
2017-04-01
In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5 °N, 122.3° E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics (TIMED) satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Secondly, the full-width of half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that the FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM and TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2° S, 58.8° E) station. Acknowledgments The TIMED/SABER kinetic temperature (version 2.0) data are provided by the SABER team through http://saber.gats-inc.com/. The temperatures from the NRLMSISE-00 model are calculated using Aerospace Blockset toolbox of MATLAB (2016a). This research was supported by National Natural Science Foundation of China (41231065, 41321003). We acknowledge the use of meteor radar data from the Chinese Meridian Project and from Data Center for Geophysics, Data Sharing Infrastructure of Earth System Science. The Mohe meteor radar was operated by Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences. The data can be available from the first author.
NASA Astrophysics Data System (ADS)
Ouriev, Boris; Windhab, Erich; Braun, Peter; Birkhofer, Beat
2004-10-01
In-line visualization and on-line characterization of nontransparent fluids becomes an important subject for process development in food and nonfood industries. In our work, a noninvasive Doppler ultrasound-based technique is introduced. Such a technique is applied for investigation of nonstationary flow in the chocolate precrystallization process. Unstable flow conditions were induced by abrupt flow interruption and were followed up by strong flow pulsations in the piping system. While relying on available process information, such as absolute pressures and temperatures, no analyses of flow conditions or characterization of suspension properties could possibly be done. It is obvious that chocolate flow properties are sensitive to flow boundary conditions. Therefore, it becomes essential to perform reliable structure state monitoring and particularly in application to nonstationary flow processes. Such flow instabilities in chocolate processing can often lead to failed product quality with interruption of the mainstream production. As will be discussed, a combination of flow velocity profiles, on-line fit into flow profiles, and pressure difference measurement are sufficient for reliable analyses of fluid properties and flow boundary conditions as well as monitoring of the flow state. Analyses of the flow state and flow properties of chocolate suspension are based on on-line measurement of one-dimensional velocity profiles across the flow channel and their on-line characterization with the power-law model. Conclusions about flow boundary conditions were drawn from a calculated velocity standard mean deviation, the parameters of power-law fit into velocity profiles, and volumetric flow rate information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beatty, Thomas G.; Zhao, Ming; Gilliland, Ronald L.
We observed two eclipses of the Kepler-13A planetary system, on UT 2014 April 28 and UT 2014 October 13, in the near-infrared using Wide Field Camera 3 on the Hubble Space Telescope . By using the nearby binary stars Kepler-13BC as a reference, we were able to create a differential light curve for Kepler-13A that had little of the systematics typically present in HST /WFC3 spectrophotometry. We measure a broadband (1.1–1.65 μ m) eclipse depth of 734 ± 28 ppm and are able to measure the emission spectrum of the planet at R ≈ 50 with an average precision of 70 ppm. Wemore » find that Kepler-13Ab possesses a noninverted, monotonically decreasing vertical temperature profile. We exclude an isothermal profile and an inverted profile at more than 3 σ . We also find that the dayside emission of Kepler-13Ab appears generally similar to an isolated M7 brown dwarf at a similar effective temperature. Due to the relatively high mass and surface gravity of Kepler-13Ab, we suggest that the apparent lack of an inversion is due to cold-trap processes in the planet’s atmosphere. Using a toy model for where cold traps should inhibit inversions, as well as observations of other planets in this temperature range with measured emission spectra, we argue that with more detailed modeling and more observations we may be able to place useful constraints on the size of condensates on the daysides of hot Jupiters.« less
NASA Astrophysics Data System (ADS)
Criales Escobar, Luis Ernesto
One of the most frequently evolving areas of research is the utilization of lasers for micro-manufacturing and additive manufacturing purposes. The use of laser beam as a tool for manufacturing arises from the need for flexible and rapid manufacturing at a low-to-mid cost. Laser micro-machining provides an advantage over mechanical micro-machining due to the faster production times of large batch sizes and the high costs associated with specific tools. Laser based additive manufacturing enables processing of powder metals for direct and rapid fabrication of products. Therefore, laser processing can be viewed as a fast, flexible, and cost-effective approach compared to traditional manufacturing processes. Two types of laser processing techniques are studied: laser ablation of polymers for micro-channel fabrication and selective laser melting of metal powders. Initially, a feasibility study for laser-based micro-channel fabrication of poly(dimethylsiloxane) (PDMS) via experimentation is presented. In particular, the effectiveness of utilizing a nanosecond-pulsed laser as the energy source for laser ablation is studied. The results are analyzed statistically and a relationship between process parameters and micro-channel dimensions is established. Additionally, a process model is introduced for predicting channel depth. Model outputs are compared and analyzed to experimental results. The second part of this research focuses on a physics-based FEM approach for predicting the temperature profile and melt pool geometry in selective laser melting (SLM) of metal powders. Temperature profiles are calculated for a moving laser heat source to understand the temperature rise due to heating during SLM. Based on the predicted temperature distributions, melt pool geometry, i.e. the locations at which melting of the powder material occurs, is determined. Simulation results are compared against data obtained from experimental Inconel 625 test coupons fabricated at the National Institute for Standards & Technology via response surface methodology techniques. The main goal of this research is to develop a comprehensive predictive model with which the effect of powder material properties and laser process parameters on the built quality and integrity of SLM-produced parts can be better understood. By optimizing process parameters, SLM as an additive manufacturing technique is not only possible, but also practical and reproducible.
Marangoni-Benard Convection in a Evaporating Liquid Thin Layer
NASA Technical Reports Server (NTRS)
Chai, An-Ti; Zhang, Nengli
1996-01-01
Marangoni-Benard convection in evaporating liquid thin layers has been investigated through flow visualization and temperature profile measurement. Twelve liquids, namely ethyl alcohol, methanol, chloroform, acetone, cyclohexane, benzine, methylene chloride, carbon tetrachloride, ethyl acetate, n-pentane, silicone oil (0.65 cSt.), and freon-113, were tested and convection patterns in thin layers of these samples were observed. Comparison among these tested samples shows that some liquids are sensitive to surface contamination from aluminum powder but some are not. The latter is excellent to be used for the investigation of surface-tension driven convection through visualization using the tracer. Two sample liquids, alcohol and freon-113 were particularly selected for systematic study. It was found that the wavelength of Benard cells would not change with thickness of the layer when it evaporates at room temperature. Special attention was focused on cases in which a liquid layer was cooled from below, and some interesting results were obtained. Convection patterns were recorded during the evaporation process and the patterns at certain time frame were compared. Benard cells were observed in thin layers with a nonlinear temperature profile and even with a zero or positive temperature gradient. Wavelength of the cells was found to increase as the evaporation progressed.
Aimee T. Classen; Sarah I. Boyle; Kristin E. Haskins; Steven T. Overby; Stephen C. Hart
2003-01-01
Temperature sensitivity of community-level physiological profiles (CLPPs) was examined for two semiarid soils from the southwestern United States using five different C-substrate profile microtiter plates (Biolog GN2, GP2, ECO, SFN2, and SFP2) incubated at five different temperature regimes.The CLPPs produced from all plate types were relatively unaffected by these...
NASA Astrophysics Data System (ADS)
Khalkhali, Abolfazl; Ebrahimi-Nejad, Salman; Geran Malek, Nima
2018-06-01
Friction stir welding (FSW) process overcomes many difficulties arising in conventional fusion welding processes of aluminum alloys. The current paper presents a comprehensive investigation on the effects of rotational speed, traverse speed, tool tilt angle and tool pin profile on the longitudinal force, axial force, maximum temperature, tensile strength, percent elongation, grain size, micro-hardness of welded zone and welded zone thickness of AA1100 aluminum alloy sheets. Design of experiments (DOE) was applied using the Taguchi approach and subsequently, effects of the input parameter on process outputs were investigated using analysis of variance (ANOVA). A perceptron neural network model was developed to find a correlation between the inputs and outputs. Multi-objective optimization using modified NSGA-II was implemented followed by NIP and TOPSIS approaches to propose optimum points for each of the square, pentagon, hexagon, and circular pin profiles. Results indicate that the optimization process can reach horizontal and vertical forces as low as 1452 N and 2913 N, respectively and a grain size as low as 2 μm. This results in hardness values of up to 57.2 and tensile strength, elongation and joint thickness of 2126 N, 5.9% and 3.7 mm, respectively. The maximum operating temperature can also reach a sufficiently high value of 374 °C to provide adequate material flow.
Feldmann, Arne; Anso, Juan; Bell, Brett; Williamson, Tom; Gavaghan, Kate; Gerber, Nicolas; Rohrbach, Helene; Weber, Stefan; Zysset, Philippe
2016-05-01
Surgical robots have been proposed ex vivo to drill precise holes in the temporal bone for minimally invasive cochlear implantation. The main risk of the procedure is damage of the facial nerve due to mechanical interaction or due to temperature elevation during the drilling process. To evaluate the thermal risk of the drilling process, a simplified model is proposed which aims to enable an assessment of risk posed to the facial nerve for a given set of constant process parameters for different mastoid bone densities. The model uses the bone density distribution along the drilling trajectory in the mastoid bone to calculate a time dependent heat production function at the tip of the drill bit. Using a time dependent moving point source Green's function, the heat equation can be solved at a certain point in space so that the resulting temperatures can be calculated over time. The model was calibrated and initially verified with in vivo temperature data. The data was collected in minimally invasive robotic drilling of 12 holes in four different sheep. The sheep were anesthetized and the temperature elevations were measured with a thermocouple which was inserted in a previously drilled hole next to the planned drilling trajectory. Bone density distributions were extracted from pre-operative CT data by averaging Hounsfield values over the drill bit diameter. Post-operative [Formula: see text]CT data was used to verify the drilling accuracy of the trajectories. The comparison of measured and calculated temperatures shows a very good match for both heating and cooling phases. The average prediction error of the maximum temperature was less than 0.7 °C and the average root mean square error was approximately 0.5 °C. To analyze potential thermal damage, the model was used to calculate temperature profiles and cumulative equivalent minutes at 43 °C at a minimal distance to the facial nerve. For the selected drilling parameters, temperature elevation profiles and cumulative equivalent minutes suggest that thermal elevation of this minimally invasive cochlear implantation surgery may pose a risk to the facial nerve, especially in sclerotic or high density mastoid bones. Optimized drilling parameters need to be evaluated and the model could be used for future risk evaluation.
The effects of temperatures on the pebble flow in a pebble bed high temperature reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, R. S.; Cogliati, J. J.; Gougar, H. D.
2012-07-01
The core of a pebble bed high temperature reactor (PBHTR) moves during operation, a feature which leads to better fuel economy (online refueling with no burnable poisons) and lower fuel stress. The pebbles are loaded at the top and trickle to the bottom of the core after which the burnup of each is measured. The pebbles that are not fully burned are recirculated through the core until the target burnup is achieved. The flow pattern of the pebbles through the core is of importance for core simulations because it couples the burnup distribution to the core temperature and power profiles,more » especially in cores with two or more radial burnup 'zones '. The pebble velocity profile is a strong function of the core geometry and the friction between the pebbles and the surrounding structures (other pebbles or graphite reflector blocks). The friction coefficient for graphite in a helium environment is inversely related to the temperature. The Thorium High Temperature Reactor (THTR) operated in Germany between 1983 and 1989. It featured a two-zone core, an inner core (IC) and outer core (OC), with different fuel mixtures loaded in each zone. The rate at which the IC was refueled relative to the OC in THTR was designed to be 0.56. During its operation, however, this ratio was measured to be 0.76, suggesting the pebbles in the inner core traveled faster than expected. It has been postulated that the positive feedback effect between inner core temperature, burnup, and pebble flow was underestimated in THTR. Because of the power shape, the center of the core in a typical cylindrical PBHTR operates at a higher temperature than the region next to the side reflector. The friction between pebbles in the IC is lower than that in the OC, perhaps causing a higher relative flow rate and lower average burnup, which in turn yield a higher local power density. Furthermore, the pebbles in the center region have higher velocities than the pebbles next to the side reflector due to the interaction between the pebbles and the immobile graphite reflector as well as the geometry of the discharge conus near the bottom of the core. In this paper, the coupling between the temperature profile and the pebble flow dynamics was analyzed by using PEBBED/THERMIX and PEBBLES codes by modeling the HTR-10 reactor in China. Two extreme and opposing velocity profiles are used as a starting point for the iterations. The PEBBED/THERMIX code is used to calculate the burnup, power and temperature profiles with one of the velocity profiles as input. The resulting temperature profile is then passed to PEBBLES code to calculate the updated pebble velocity profile taking the new temperature profile into account. If the aforementioned hypothesis is correct, the strong temperature effect upon the friction coefficients would cause the two cases to converge to different final velocity and temperature profiles. The results of this analysis indicates that a single zone pebble bed core is self-stabilizing in terms of the pebble velocity profile and the effect of the temperature profile on the pebble flow is insignificant. (authors)« less
Optimum DMOS cell doping profiles for high-voltage discrete and integrated device technologies
NASA Astrophysics Data System (ADS)
Shenai, Krishna
1992-05-01
It is shown that the implantation and activation sequences of B and As result in significant variations in the contact resistance and p-base sheet resistance beneath the n+-source diffusion of a DMOSFET cell. For identical process parameters, the contact resistance of As-doped n+ silicon was significantly improved when high-dose B was implanted due to higher As surface concentration. The SUPREM III process modeling results were found to be in qualitative agreement with the measured spreading resistance profiles and the discrepancies could be attributed to larger high-temperature diffusion constants used in SUPREM III and the coupled As-B diffusion/activation effects that are not accounted for in process modeling. The experimental results are discussed within the framework of fabricating high-performance DMOSFET cells and CMOS high-voltage devices on the same chip for discrete and smart-power applications.
We used an extensive dataset of remotely sensed summertime river temperature to compare longitudinal profiles (temperature versus distance) for 54 rivers in the Pacific Northwest. We evaluated (1) how often profiles fit theoretical expectations of asymptotic downstream warming, a...
Temperature and composition profile during double-track laser cladding of H13 tool steel
NASA Astrophysics Data System (ADS)
He, X.; Yu, G.; Mazumder, J.
2010-01-01
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
Gulab, Hussain; Jan, Muhammad Rasul; Shah, Jasmin; Manos, George
2010-01-01
This paper presents results regarding the effect of various process conditions on the performance of a zeolite catalyst in pyrolysis of high density polyethylene. The results show that polymer catalytic degradation can be operated at relatively low catalyst content reducing the cost of a potential industrial process. As the polymer to catalyst mass ratio increases, the system becomes less active, but high temperatures compensate for this activity loss resulting in high conversion values at usual batch times and even higher yields of liquid products due to less overcracking. The results also show that high flow rate of carrier gas causes evaporation of liquid products falsifying results, as it was obvious from liquid yield results at different reaction times as well as the corresponding boiling point distributions. Furthermore, results are presented regarding temperature effects on liquid selectivity. Similar values resulted from different final reactor temperatures, which are attributed to the batch operation of the experimental equipment. Since polymer and catalyst both undergo the same temperature profile, which is the same up to a specific time independent of the final temperature. Obviously, this common temperature step determines the selectivity to specific products. However, selectivity to specific products is affected by the temperature, as shown in the corresponding boiling point distributions, with higher temperatures showing an increased selectivity to middle boiling point components (C(8)-C(9)) and lower temperatures increased selectivity to heavy components (C(14)-C(18)).
Sodars and their application for investigation of the turbulent structure of the lower atmosphere
NASA Astrophysics Data System (ADS)
Krasnenko, N. P.; Shamanaeva, L. G.
2016-11-01
Possibilities of sodar application for investigation of the spatiotemporal dynamics of three components of wind velocity vector, longitudinal and transverse structural functions of wind velocity field, structural characteristics of temperature and wind velocity, turbulent kinetic energy dissipation rate, and outer scales of temperature and dynamic turbulence in the atmospheric boundary layer are analyzed. The original closed iterative algorithm of sodar data processing taking into account the classical and molecular absorption and the turbulent sound attenuation on the propagation path is used that allows the vertical profiles of the characteristics of temperature and wind velocity field to be reconstructed simultaneously and their interrelations to be investigated. It is demonstrated how the structure of temperature and wind turbulence is visualised in real time.
NASA Astrophysics Data System (ADS)
Lan, C. W.; Ting, C. C.
1995-04-01
Since the liquid encapsulated vertical Bridgman (LEVB) crystal growth is a batch process, it is time dependent in nature. A numerical simulation is conducted to study the unsteady features of the process, including the dynamic evolution of heat flow, growth rate, and interface morphology during crystal growth. The numerical model, which is governed by time-dependent equations for momentum and energy transport, and the conditions for evolution of melt/crystal and melt/encapsulant interfaces, is approximated by a body-fitted coordinate finite-volume method. The resulting differential/algebraic equations are then solved by the ILU (0) preconditioned DASPK code. Sample calculations are mainly conducted for GaAs. Dynamic effects of some process parameters, such as the growth speed, the ambient temperature profile, and ampoule design, are illustrated through calculated results. Due to the heat of fusion release and time-dependent end effects, in some cases a near steady-state operation is not possible. The control of growth front by modifying the ambient temperature profile is also demonstrated. Calculations are also performed for a 4.8 cm diameter InP crystal. The calculated melt/seed interface shape is compared with the measured one from Matsumoto et al. [J. Crystal Growth 132 (1993) 348] and they are in good agreement.
NASA Astrophysics Data System (ADS)
Kudinov, V. A.; Eremin, A. V.; Kudinov, I. V.
2017-11-01
The differential equation of heat transfer with allowance for energy dissipation and spatial and temporal nonlocality has been derived by the relaxation of heat flux and temperature gradient in the Fourier law formula for the heat flux at the use of the heat balance equation. An investigation of the numerical solution of the heat-transfer problem at a laminar fluid flow in a plane duct has shown the impossibility of an instantaneous acceptance of the boundary condition of the first kind — the process of its settling at small values of relaxation coefficients takes a finite time interval the duration of which is determined by the thermophysical and relaxation properties of the fluid. At large values of relaxation coefficients, the use of the boundary condition of the first kind is possible only at Fo → ∞. The friction heat consideration leads to the alteration of temperature profiles, which is due to the rise of the intervals of elevated temperatures in the zone of the maximal velocity gradients. With increasing relaxation coefficients, the smoothing of temperature profiles occurs, and at their certain high values, the fluid cooling occurs at a gradientless temperature variation along the transverse spatial variable and, consequently, the temperature proves to be dependent only on time and on longitudinal coordinate.
NASA Astrophysics Data System (ADS)
Parkinson, Christopher D.; Gao, Peter; Schulte, Rick; Bougher, Stephen W.; Yung, Yuk L.; Bardeen, Charles G.; Wilquet, Valérie; Vandaele, Ann Carine; Mahieux, Arnaud; Tellmann, Silvia; Pätzold, Martin
2015-08-01
Observations from Pioneer Venus and from SPICAV/SOIR aboard Venus Express (VEx) have shown the upper haze (UH) of Venus to be highly spatially and temporally variable, and populated by multiple particle size modes. Previous models of this system (e.g., Gao et al., 2014. Icarus 231, 83-98), using a typical temperature profile representative of the atmosphere (viz., equatorial VIRA profile), did not investigate the effect of temperature on the UH particle distributions. We show that the inclusion of latitude-dependent temperature profiles for both the morning and evening terminators of Venus helps to explain how the atmospheric aerosol distributions vary spatially. In this work we use temperature profiles obtained by two instruments onboard VEx, VeRa and SPICAV/SOIR, to represent the latitudinal temperature dependence. We find that there are no significant differences between results for the morning and evening terminators at any latitude and that the cloud base moves downwards as the latitude increases due to decreasing temperatures. The UH is not affected much by varying the temperature profiles; however, the haze does show some periodic differences, and is slightly thicker at the poles than at the equator. We also find that the sulphuric acid "rain" seen in previous models may be restricted to the equatorial regions of Venus, such that the particle size distribution is relatively stable at higher latitudes and at the poles.
NASA Astrophysics Data System (ADS)
Ahmed, Sazzad Hossain; Mian, Ahsan; Srinivasan, Raghavan
2016-07-01
In DMLS process objects are fabricated layer by layer from powdered material by melting induced by a controlled laser beam. Metallic powder melts and solidifies to form a single layer. Solidification map during layer formation is an important route to characterize micro-structure and grain morphology of sintered layer. Generally, solidification leads to columnar, equiaxed or mixture of these two types grain morphology depending on solidification rate and thermal gradient. Eutectic or dendritic structure can be formed in fully equiaxed zone. This dendritic growth has a large effect on material properties. Smaller dendrites generally increase ductility of the layer. Thus, materials can be designed by creating desired grain morphology in certain regions using DMLS process. To accomplish this, hardness, temperature distribution, thermal gradient and solidification cooling rate in processed layers will be studied under change of process variables by using finite element analysis, with specific application to Ti-6Al-4V.
Effect of thermal profile on cyclic flaw growth in aluminum
NASA Technical Reports Server (NTRS)
Engstrom, W. L.
1975-01-01
Surface flawed and single edge notch tension specimens of 2219-T851 and -T87 aluminum were tested to determine static fracture characteristics and base line (constant amplitude, constant temperature) cyclic flaw growth behavior. Subsequent testing was then conducted in which flawed specimens were subjected to a thermal profile in which the applied stress was varied simultaneously with the temperature. The profile used represents a simplified space shuttle orbiter load/temperature flight cycle. Test temperatures included the range from 144K (-200 F) up to 450K (350 F). The measured flaw growth rates obtained from the thermal profile tests were then compared with rates predicted by assuming linear cumulative damage of base line rates.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Behrendt, Andreas; Wulfmeyer, Volker
2017-02-01
Measurements carried out by the Raman lidar system BASIL are reported to demonstrate the capability of this instrument to characterize turbulent processes within the Convective Boundary Layer (CBL). In order to resolve the vertical profiles of turbulent variables, high resolution water vapour and temperature measurements, with a temporal resolution of 10 sec and a vertical resolution of 90 and 30 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of spectral and auto-covariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (IOP 5, 20 April 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. The noise errors are demonstrated to be small enough to allow the derivation of up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations with sufficient accuracy.
NASA Astrophysics Data System (ADS)
Duan, Y.; Durand, M. T.; Jezek, K. C.; Yardim, C.; Bringer, A.; Aksoy, M.; Johnson, J. T.
2017-12-01
The ultra-wideband software-defined microwave radiometer (UWBRAD) is designed to provide ice sheet internal temperature product via measuring low frequency microwave emission. Twelve channels ranging from 0.5 to 2.0 GHz are covered by the instrument. A Greenland air-borne demonstration was demonstrated in September 2016, provided first demonstration of Ultra-wideband radiometer observations of geophysical scenes, including ice sheets. Another flight is planned for September 2017 for acquiring measurements in central ice sheet. A Bayesian framework is designed to retrieve the ice sheet internal temperature from simulated UWBRAD brightness temperature (Tb) measurements over Greenland flight path with limited prior information of the ground. A 1-D heat-flow model, the Robin Model, was used to model the ice sheet internal temperature profile with ground information. Synthetic UWBRAD Tb observations was generated via the partially coherent radiation transfer model, which utilizes the Robin model temperature profile and an exponential fit of ice density from Borehole measurement as input, and corrupted with noise. The effective surface temperature, geothermal heat flux, the variance of upper layer ice density, and the variance of fine scale density variation at deeper ice sheet were treated as unknown variables within the retrieval framework. Each parameter is defined with its possible range and set to be uniformly distributed. The Markov Chain Monte Carlo (MCMC) approach is applied to make the unknown parameters randomly walk in the parameter space. We investigate whether the variables can be improved over priors using the MCMC approach and contribute to the temperature retrieval theoretically. UWBRAD measurements near camp century from 2016 was also treated with the MCMC to examine the framework with scattering effect. The fine scale density fluctuation is an important parameter. It is the most sensitive yet highly unknown parameter in the estimation framework. Including the fine scale density fluctuation greatly improved the retrieval results. The ice sheet vertical temperature profile, especially the 10m temperature, can be well retrieved via the MCMC process. Future retrieval work will apply the Bayesian approach to UWBRAD airborne measurements.
Microwave-assisted liquefaction of rape straw for the production of bio-oils
Xing-Yan Huang; Feng Li; Jiu-Long Xie; Cornelis F. De Hoop; Chung-Yun Hse; Jin-Qiu Qi; Hui Xiao
2017-01-01
The acid-catalyzed liquefaction of rape straw in methanol using microwave energy was examined. Conversion yield and energy consumption were evaluated to profile the microwave-assisted liquefaction process. Chemical components of the bio-oils from various liquefaction conditions were identified. A higher reaction temperature was found to be beneficial to obtain higher...
NASA Astrophysics Data System (ADS)
Hill, Laura E.; Gomes, Carmen L.
2014-12-01
The goal of this study was to develop an effective method to synthesize poly-n-isopropylacrylamide (PNIPAAM) nanoparticles with entrapped cinnamon bark extract (CBE) to improve its delivery to foodborne pathogens and control its release with temperature stimuli. CBE was used as a model for hydrophobic natural antimicrobials. A top-down procedure using crosslinked PNIPAAM was compared to a bottom-up procedure using NIPAAM monomer. Both processes relied on self-assembly of the molecules into micelles around the CBE at 40 °C. Processing conditions were compared including homogenization time of the polymer, hydration time prior to homogenization, lyophilization, and the effect of particle ultrafiltration. The top-down versus bottom-up synthesis methods yielded particles with significantly different characteristics, especially their release profiles and antimicrobial activities. The synthesis methods affected particle size, with the bottom-up procedure resulting in smaller (P < 0.05) diameters than the top-down procedure. The controlled release profile of CBE from nanoparticles was dependent on the release media temperature. A faster, burst release was observed at 40 °C and a slower, more sustained release was observed at lower temperatures. PNIPAAM particles containing CBE were analyzed for their antimicrobial activity against Salmonella enterica serovar Typhimurium LT2 and Listeria monocytogenes Scott A. The PNIPAAM particles synthesized via the top-down procedure had a much faster release, which led to a greater (P < 0.05) antimicrobial activity. Both of the top-down nanoparticles performed similarly, therefore the 7 min homogenization time nanoparticles would be the best for this application, as the process time is shorter and little improvement was seen by using a slightly longer homogenization.
Experimental analysis and modeling of ultrasound assisted freezing of potato spheres.
Kiani, Hossein; Zhang, Zhihang; Sun, Da-Wen
2015-09-01
In recent years, innovative methods such as ultrasound assisted freezing have been developed in order to improve the freezing process. During freezing of foods, accurate prediction of the temperature distribution, phase ratios, and process time is very important. In the present study, ultrasound assisted immersion freezing process (in 1:1 ethylene glycol-water solution at 253.15K) of potato spheres (0.02 m diameter) was evaluated using experimental, numerical and analytical approaches. Ultrasound (25 kHz, 890 W m(-2)) was irradiated for different duty cycles (DCs=0-100%). A finite volume based enthalpy method was used in the numerical model, based on which temperature and liquid fraction profiles were simulated by a program developed using OpenFOAM® CFD software. An analytical technique was also employed to calculate freezing times. The results showed that ultrasound irradiation could decrease the characteristic freezing time of potatoes. Since ultrasound irradiation increased the heat transfer coefficient but simultaneously generated heat at the surface of the samples, an optimum DC was needed for the shortest freezing time which occurred in the range of 30-70% DC. DCs higher than 70% increased the freezing time. DCs lower than 30% did not provide significant effects on the freezing time compared to the control sample. The numerical model predicted the characteristic freezing time in accordance with the experimental results. In addition, analytical calculation of characteristic freezing time exhibited qualitative agreement with the experimental results. As the numerical simulations provided profiles of temperature and water fraction within potatoes frozen with or without ultrasound, the models can be used to study and control different operation situations, and to improve the understanding of the freezing process. Copyright © 2015 Elsevier B.V. All rights reserved.
Surface layer and bloom dynamics observed with the Prince William Sound Autonomous Profiler
NASA Astrophysics Data System (ADS)
Campbell, R. W.
2016-02-01
As part of a recent long term monitoring effort, deployments of a WETLabs Autonomous Moored Profiler (AMP) began Prince William Sound (PWS) in 2013. The PWS AMP consists of a positively buoyant instrument frame, with a winch and associated electronics that profiles the frame from a park depth (usually 55 m) to the surface by releasing and retrieving a thin UHMWPE tether; it generally conducts a daily cast and measures temperature, salinity, chlorophyll-a fluorescence, turbidity, and oxygen and nitrate concentrations. Upward and downward looking ADCPs are mounted on a float below the profiler, and an in situ plankton imager is in development and will be installed in 2016. Autonomous profilers are a relatively new technology, and early deployments experienced a number of failures from which valuable lessons may be learned. Nevertheless, an unprecedented time series of the seasonal biogeochemical procession in the surface waters coastal Gulf of Alaska was collected in 2014 and 2015. The northern Gulf of Alaska has experienced a widespread warm anomaly since early 2014, and surface layer temperature anomalies in PWS were strongly positive during winter 2014. The spring bloom observed by the profiler began 2-3 weeks earlier than average, with surface nitrate depleted by late April. Although surface temperatures were still above average in 2015, bloom timing was much later, with a short vigorous bloom in late April and a subsurface bloom in late May that coincided with significant nitrate drawdown. As well as the vernal blooms, wind-driven upwelling events lead to several small productivity pulses that were evident in changes in nitrate and oxygen concentrations, and chlorophyll-a fluorescence. As well as providing a mechanistic understanding of surface layer biogeochemistry, high frequency observations such as these put historical observations in context, and provide new insights into the scales of variability in the annual cycles of the surface ocean in the North Pacific.
O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development.
Radermacher, Pablo T; Myachina, Faina; Bosshardt, Fritz; Pandey, Rahul; Mariappa, Daniel; Müller, H-Arno J; Lehner, Christian F
2014-04-15
Effects of temperature on biological processes are complex. Diffusion is less affected than the diverse enzymatic reactions that have distinct individual temperature profiles. Hence thermal fluctuations pose a formidable challenge to ectothermic organisms in which body temperature is largely dictated by the ambient temperature. How cells in ectotherms cope with the myriad disruptive effects of temperature variation is poorly understood at the molecular level. Here we show that nucleocytoplasmic posttranslational modification of proteins with O-linked GlcNAc (O-GlcNAc) is closely correlated with ambient temperature during development of distantly related ectotherms ranging from the insect Drosophila melanogaster to the nematode Caenorhabditis elegans to the fish Danio rerio. Regulation seems to occur at the level of activity of the only two enzymes, O-GlcNAc transferase and O-GlcNAcase, that add and remove, respectively, this posttranslational modification in nucleus and cytoplasm. With genetic approaches in D. melanogaster and C. elegans, we demonstrate the importance of high levels of this posttranslational modification for successful development at elevated temperatures. Because many cytoplasmic and nuclear proteins in diverse pathways are O-GlcNAc targets, temperature-dependent regulation of this modification might contribute to an efficient coordinate adjustment of cellular processes in response to thermal change.
Twilight and nighttime ionospheric temperatures from oxygen 6300- and 5577-A spectral-line profiles.
NASA Technical Reports Server (NTRS)
Feibelman, W. A.; Hake, R. D., Jr.; Sipler, D. P.; Biondi , M. A.
1972-01-01
Use of Fabry-Perot interferometer measurements of atomic-oxygen 6300- and 5577-A line profiles from twilight and nightglow to determine the neutral temperatures in the F2 and E regions of the earth's ionosphere. The exospheric temperatures determined from the 6300-A profiles are usually somewhat higher than the temperatures calculated from Jacchia's model, and differences as large as about 300 K are noted when the exospheric temperature equals 1500 to 1600 K. The postsunset and predawn rate of change of the exospheric temperature is often substantially larger than the Jacchia prediction. The 5577-A (E region) measured temperatures range from 200 to 220 K on quiet nights to 500 to 600 K during geomagnetic storms.
Hepburn, Sophie; Cairns, David A; Jackson, David; Craven, Rachel A; Riley, Beverley; Hutchinson, Michelle; Wood, Steven; Smith, Matthew Welberry; Thompson, Douglas; Banks, Rosamonde E
2015-06-01
We have examined the impact of sample processing time delay, temperature, and the addition of protease inhibitors (PIs) on the urinary proteome and peptidome, an important aspect of biomarker studies. Ten urine samples from patients with varying pathologies were each divided and PIs added to one-half, with aliquots of each then processed and frozen immediately, or after a delay of 6 h at 4°C or room temperature (20-22°C), effectively yielding 60 samples in total. Samples were then analyzed by 2D-PAGE, SELDI-TOF-MS, and immunoassay. Interindividual variability in profiles was the dominant feature in all analyses. Minimal changes were observed by 2D-PAGE as a result of delay in processing, temperature, or PIs and no changes were seen in IgG, albumin, β2 -microglobulin, or α1 -microglobulin measured by immunoassay. Analysis of peptides showed clustering of some samples by presence/absence of PIs but the extent was very patient-dependent with most samples showing minimal effects. The extent of processing-induced changes and the benefit of PI addition are patient- and sample-dependent. A consistent processing methodology is essential within a study to avoid any confounding of the results. © 2014 The Authors PROTEOMICS Clinical Applications Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Temperature-profile methods for estimating percolation rates in arid environments
Constantz, Jim; Tyler, Scott W.; Kwicklis, Edward
2003-01-01
Percolation rates are estimated using vertical temperature profiles from sequentially deeper vadose environments, progressing from sediments beneath stream channels, to expansive basin-fill materials, and finally to deep fractured bedrock underlying mountainous terrain. Beneath stream channels, vertical temperature profiles vary over time in response to downward heat transport, which is generally controlled by conductive heat transport during dry periods, or by advective transport during channel infiltration. During periods of stream-channel infiltration, two relatively simple approaches are possible: a heat-pulse technique, or a heat and liquid-water transport simulation code. Focused percolation rates beneath stream channels are examined for perennial, seasonal, and ephemeral channels in central New Mexico, with estimated percolation rates ranging from 100 to 2100 mm d−1 Deep within basin-fill and underlying mountainous terrain, vertical temperature gradients are dominated by the local geothermal gradient, which creates a profile with decreasing temperatures toward the surface. If simplifying assumptions are employed regarding stratigraphy and vapor fluxes, an analytical solution to the heat transport problem can be used to generate temperature profiles at specified percolation rates for comparison to the observed geothermal gradient. Comparisons to an observed temperature profile in the basin-fill sediments beneath Frenchman Flat, Nevada, yielded water fluxes near zero, with absolute values <10 mm yr−1 For the deep vadose environment beneath Yucca Mountain, Nevada, the complexities of stratigraphy and vapor movement are incorporated into a more elaborate heat and water transport model to compare simulated and observed temperature profiles for a pair of deep boreholes. Best matches resulted in a percolation rate near zero for one borehole and 11 mm yr−1 for the second borehole.
Climate reconstruction from borehole temperatures influenced by groundwater flow
NASA Astrophysics Data System (ADS)
Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.
2017-12-01
Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cartolano, M. S.; Craig, D., E-mail: darren.craig@wheaton.edu; Den Hartog, D. J.
2014-01-15
The connection between impurity ion heating and other physical processes in the plasma is evaluated by studying variations in the amount of ion heating at reconnection events in the Madison Symmetric Torus (MST). Correlation of the change in ion temperature with individual tearing mode amplitudes indicates that the edge-resonant modes are better predictors for the amount of global ion heating than the core-resonant modes. There is also a strong correlation between ion heating and current profile relaxation. Simultaneous measurements of the ion temperature at different toroidal locations reveal, for the first time, a toroidal asymmetry to the ion heating inmore » MST. These results present challenges for existing heating theories and suggest a stronger connection between edge-resonant tearing modes, current profile relaxation, and ion heating than has been previously thought.« less
NASA Astrophysics Data System (ADS)
Ney, Patrizia; Schmidt, Marius; Klosterhalfen, Anne; Graf, Alexander
2017-04-01
We present a portable elevator-based setup for measuring CO2, water vapor, temperature and wind profiles from the soil surface to the surface layer above crop canopies. The end of a tube connected to a closed-path gas analyzer is continuously moved up and down over the profile height (currently 2 m), while concentrations are logged at a frequency of 20 Hz. Temperature and wind speed are measured at the same frequency by a ventilated finewire thermocouple and a hotwire, respectively, and all measurements are duplicated as a continuous fixed-height measurement at the top of the profile. Test measurements were carried out at the TERENO research site of Selhausen (50°52'09"N, 06°27'01"E, 104.5 m MSL, Germany, ICOS site DE-RuS) in winter wheat, winter barley and a catch crop mixture during different stages of crop development and different times of the day (spring 2015 to autumn 2016). We demonstrate a simple approach to correct for time lags, and the resulting half-hourly mean profiles of CO2 and H2O over height increments of 2.5 cm. These results clearly show the effects of soil respiration and photosynthetic carbon assimilation, varying both during the daily cycle and during the growing season. Post-harvest measurements over bare soil and short intercrop canopy (<20 cm) were analyzed in the framework of Monin-Obukhov similarity theory to check the validity of the measurement and raw data processing approach. Derived CO2 and latent heat fluxes show a good agreement to eddy-covariance measurements. In a next step, we applied a dispersion matrix inversion (modified after Warland and Thurtell 2000, Santos et al. 2011) to the concentration profiles to estimate the vertical source and sink distribution of CO2 and H2O. First results showed reasonable values for evaporation, transpiration and aboveground net primary production, but a likely overestimation of soil respiration. We discuss possible causes associated with exchange processes near the soil surface below a dense canopy, and the potential use of the wind and temperature profiles in efforts to improve the dispersion parametrization in this region. Santos, E.A., Wagner-Riddle, C., Warland, J.S. and Brown, S. (2011): Applying a Lagrangian dispersion analysis to infer carbon dioxide and latent heat fluxes in a corn canopy. Agricultural and Forest Meteorology 151: 620-632. Warland, J.S. and Thurtell, G.W. (2000): A Lagrangian solution to the relationship between a distributed source and concentration profile. Boundary-Layer Meteorology 96: 453-471.
Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan
2014-09-08
Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km.
Boundary Waves on the Ice Surface Created by Currents
NASA Astrophysics Data System (ADS)
Naito, K.; Izumi, N.; Yokokawa, M.; Yamada, T.; de Lima, A. C.
2013-12-01
The formation of periodic boundary waves, e.g. antidunes and cyclic steps (Parker & Izumi 2000) has been known to be caused by instabilities between flow and bed (e.g. Engelund 1970), and are observed not only on river beds or ocean floors but also on ice surfaces, such as the surface of glaciers and underside of river ice (Carey 1966). In addition, owing to recent advancements of remote sensing technology, it has been found that the surfaces of the polar ice caps on Mars as well as on the Earth have step-like formations (Smith & Holt 2010) which are assumed to be boundary waves, because they are generated perpendicularly to the direction of the currents. These currents acting on the polar ice caps are density airflow, i.e. katabatic wind (Howard et al 2000). The comprehension of the formation process of the Martian polar ice caps may reveal climate changes which have occurred on Mars. Although the formation of boundary waves on river beds or ocean floors has been studied by a number of researchers, there are few works on their formation on ice surfaces. Yokokawa et al (2013) suggested that the temperature distribution of the ambient air, fluid and ice is a factor which determines the direction of migration of boundary waves formed on ice surfaces through their experiments. In this study, we propose a mathematical model in order to describe the formation process of the boundary waves and the direction of their migration. We consider that a liquid is flowing through a flume filled with a flat ice layer on the bottom. The flow is assumed to be turbulent and its temperature is assumed to merge with the ambient temperature at the flow surface and with the melting point of ice at the bottom (ice surface). The ice surface evolution is dependent on the unbalance between the interfacial heat flux of the liquid and ice, and we employ the Reynolds-averaged Navier-Stokes equation, the continuity equation, heat transfer equations for the liquid and ice, and a heat balance equation at the flow-ice interface. It is assumed that the interfacial heat fluxes of the liquid and ice are determined by the temperature profile, and the Reynolds stress and the turbulent heat flux are expressed by the eddy diffusivity of momentum and the eddy diffusivity of heat, respectively. In addition, the liquid can be divided into two layers; viscous sublayer and turbulent layer. In order to determine the velocity and temperature profile in the liquid, we employ the Prandtl-Taylor analogy which assumes that the velocity profile follows a linear law in the viscous sublayer and a logarithmic law in the turbulent layer, and the eddy diffusivity of heat is described by the eddy diffusivity of momentum and Prandtl number of the liquid. Finally, we obtain the temperature profiles (because the heat transfer equation for the ice reduces to the Laplace equation, the temperature profile in the ice can be easily estimated) and interfacial heat fluxes.
NASA Astrophysics Data System (ADS)
Zhang, Shouyin; Gao, Xiang; Li, Jiangang; Wan, Baonian; Kuang, Guangli; Mao, Jianshan; Zhang, Xiaodong; Xie, Jikang; Wan, Yuanxi; Team HT-7
2000-10-01
In HT-7 superconducting tokamak of circular limiter configuration (R0=122cm, a=30cm, Bt:1 ~2.2T), plasma profiles were modified and controlled by means of gas puffing, supersonic molecule injection, pellet injection, ICRF and IBW heating as well as LHW heating and current drive; improved plasma confinements were achieved either by application of one of the above measures or by the combination of them, study of the effects of the characteristics of plasma profiles on plasma confinements were performed. The results show that in most of the improved confinement plasmas in HT-7, there are very steep and strong peeking electron temperature profiles in core plasma, and/or large decrease of local temperature in radius of 0.5 ~0.7a which makes temperature gradient steeper when improvements begin, as temperature profile evolves back to previous normal shape the improvements end. Electron density profile and soft X-ray profiles were studied as well. This research was supported under Natural Science Foundation of China contract No.19905010.
The effects of welded joint characteristics on its properties in HDPE thermal fusion welding
NASA Astrophysics Data System (ADS)
Dai, Hongbin; Peng, Jun
2017-05-01
In this paper, PE100 pipes with the diameter of 200 mm and the thickness of 11.9 mm were used as material. The welded joints were obtained in different welding pressures with the optimal welding temperature of 220∘C. Reheating process on the welded joints with the temperature of 130∘C was carried out. The joints exhibited X-type, and the cause of X-type joints was discussed. The temperature field in the forming process of welded joints was measured, and tensile and bending tests on welded joints were carried out. The fracture surface of welded joints was observed by scanning electron microscopy (SEM), and crystallinity calculation was taken by X-ray diffraction (XRD). The mechanism of X-type weld profile effects on welded joints properties was analyzed. It was concluded that the mechanical properties of welded joints decrease with the reduced X distance between lines.
Fabrication of solid oxide fuel cell by electrochemical vapor deposition
Brian, Riley; Szreders, Bernard E.
1989-01-01
In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.
The temperature profile in a forest
H.A. Fowells
1948-01-01
The temperature profile of a mature forest seldom has been observed. Temperatures at specific locations are of interest to the forester because they may help explain many phenomena, such as growth or death of seedlings and freezing of terminals and floral parts of trees. The opportunity to combine a vertical succession of such temperature measurements into a...
Hafnium transistor process design for neural interfacing.
Parent, David W; Basham, Eric J
2009-01-01
A design methodology is presented that uses 1-D process simulations of Metal Insulator Semiconductor (MIS) structures to design the threshold voltage of hafnium oxide based transistors used for neural recording. The methodology is comprised of 1-D analytical equations for threshold voltage specification, and doping profiles, and 1-D MIS Technical Computer Aided Design (TCAD) to design a process to implement a specific threshold voltage, which minimized simulation time. The process was then verified with a 2-D process/electrical TCAD simulation. Hafnium oxide films (HfO) were grown and characterized for dielectric constant and fixed oxide charge for various annealing temperatures, two important design variables in threshold voltage design.
Quality and sensitivity of high-resolution numerical simulation of urban heat islands
NASA Astrophysics Data System (ADS)
Li, Dan; Bou-Zeid, Elie
2014-05-01
High-resolution numerical simulations of the urban heat island (UHI) effect with the widely-used Weather Research and Forecasting (WRF) model are assessed. Both the sensitivity of the results to the simulation setup, and the quality of the simulated fields as representations of the real world, are investigated. Results indicate that the WRF-simulated surface temperatures are more sensitive to the planetary boundary layer (PBL) scheme choice during nighttime, and more sensitive to the surface thermal roughness length parameterization during daytime. The urban surface temperatures simulated by WRF are also highly sensitive to the urban canopy model (UCM) used. The implementation in this study of an improved UCM (the Princeton UCM or PUCM) that allows the simulation of heterogeneous urban facets and of key hydrological processes, together with the so-called CZ09 parameterization for the thermal roughness length, significantly reduce the bias (<1.5 °C) in the surface temperature fields as compared to satellite observations during daytime. The boundary layer potential temperature profiles are captured by WRF reasonable well at both urban and rural sites; the biases in these profiles relative to aircraft-mounted senor measurements are on the order of 1.5 °C. Changing UCMs and PBL schemes does not alter the performance of WRF in reproducing bulk boundary layer temperature profiles significantly. The results illustrate the wide range of urban environmental conditions that various configurations of WRF can produce, and the significant biases that should be assessed before inferences are made based on WRF outputs. The optimal set-up of WRF-PUCM developed in this paper also paves the way for a confident exploration of the city-scale impacts of UHI mitigation strategies in the companion paper (Li et al 2014).
Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling
NASA Technical Reports Server (NTRS)
Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.;
2014-01-01
Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.
Gas Atomization of Molten Metal: Part I. Numerical Modeling Conception
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leon, Genaro Perez-de; Lamberti, Vincent E.; Seals, Roland D.
This numerical analysis study entails creating and assessing a model that is capable of simulating molten metal droplets and the production of metal powder during the Gas Atomization (GA) method. The essential goal of this research aims to gather more information on simulating the process of creating metal powder. The model structure and perspective was built through the application of governing equations and aspects that utilized factors such as gas dynamics, droplet dynamics, energy balance, heat transfer, fluid mechanics and thermodynamics that were proposed from previous studies. The model is very simple and can be broken down into having amore » set of inputs to produce outputs. The inputs are the processing parameters such as the initial temperature of the metal alloy, the gas pressure and the size of the droplets. Additional inputs include the selection of the metal alloy and the atomization gas and factoring in their properties. The outputs can be designated by the velocity and thermal profiles of the droplet and gas. These profiles illustrate the speed of both as well as the rate of temperature change or cooling rate of the droplets. Here, the main focus is the temperature change and finding the right parameters to ensure that the metal powder is efficiently produced. Once the model was conceptualized and finalized, it was employed to verify the results of other previous studies.« less
Gas Atomization of Molten Metal: Part I. Numerical Modeling Conception
Leon, Genaro Perez-de; Lamberti, Vincent E.; Seals, Roland D.; ...
2016-02-01
This numerical analysis study entails creating and assessing a model that is capable of simulating molten metal droplets and the production of metal powder during the Gas Atomization (GA) method. The essential goal of this research aims to gather more information on simulating the process of creating metal powder. The model structure and perspective was built through the application of governing equations and aspects that utilized factors such as gas dynamics, droplet dynamics, energy balance, heat transfer, fluid mechanics and thermodynamics that were proposed from previous studies. The model is very simple and can be broken down into having amore » set of inputs to produce outputs. The inputs are the processing parameters such as the initial temperature of the metal alloy, the gas pressure and the size of the droplets. Additional inputs include the selection of the metal alloy and the atomization gas and factoring in their properties. The outputs can be designated by the velocity and thermal profiles of the droplet and gas. These profiles illustrate the speed of both as well as the rate of temperature change or cooling rate of the droplets. Here, the main focus is the temperature change and finding the right parameters to ensure that the metal powder is efficiently produced. Once the model was conceptualized and finalized, it was employed to verify the results of other previous studies.« less
NASA Astrophysics Data System (ADS)
Mantz, A. B.; Allen, S. W.; Morris, R. G.; Schmidt, R. W.
2016-03-01
This is the third in a series of papers studying the astrophysics and cosmology of massive, dynamically relaxed galaxy clusters. Our sample comprises 40 clusters identified as being dynamically relaxed and hot (I.e. massive) in Papers I and II of this series. Here we consider the thermodynamics of the intracluster medium, in particular the profiles of density, temperature and related quantities, as well as integrated measurements of gas mass, average temperature, total luminosity and centre-excluded luminosity. We fit power-law scaling relations of each of these quantities as a function of redshift and cluster mass, which can be measured precisely and with minimal bias for these relaxed clusters using hydrostatic arguments. For the thermodynamic profiles, we jointly model the density and temperature and their intrinsic scatter as a function of radius, thus also capturing the behaviour of the gas pressure and entropy. For the integrated quantities, we also jointly fit a multidimensional intrinsic covariance. Our results reinforce the view that simple hydrodynamical models provide a good description of relaxed clusters outside their centres, but that additional heating and cooling processes are important in the inner regions (radii r ≲ 0.5 r2500 ≈ 0.15 r500). The thermodynamic profiles remain regular, with small intrinsic scatter, down to the smallest radii where deprojection is straightforward (˜20 kpc); within this radius, even the most relaxed systems show clear departures from spherical symmetry. Our results suggest that heating and cooling are continuously regulated in a tight feedback loop, allowing the cluster atmosphere to remain stratified on these scales.
Diagnostic and model dependent uncertainty of simulated Tibetan permafrost area
NASA Astrophysics Data System (ADS)
Wang, W.; Rinke, A.; Moore, J. C.; Cui, X.; Ji, D.; Li, Q.; Zhang, N.; Wang, C.; Zhang, S.; Lawrence, D. M.; McGuire, A. D.; Zhang, W.; Delire, C.; Koven, C.; Saito, K.; MacDougall, A.; Burke, E.; Decharme, B.
2015-03-01
We perform a land surface model intercomparison to investigate how the simulation of permafrost area on the Tibetan Plateau (TP) varies between 6 modern stand-alone land surface models (CLM4.5, CoLM, ISBA, JULES, LPJ-GUESS, UVic). We also examine the variability in simulated permafrost area and distribution introduced by 5 different methods of diagnosing permafrost (from modeled monthly ground temperature, mean annual ground and air temperatures, air and surface frost indexes). There is good agreement (99-135 x 104 km2) between the two diagnostic methods based on air temperature which are also consistent with the best current observation-based estimate of actual permafrost area (101 x 104 km2). However the uncertainty (1-128 x 104 km2) using the three methods that require simulation of ground temperature is much greater. Moreover simulated permafrost distribution on TP is generally only fair to poor for these three methods (diagnosis of permafrost from monthly, and mean annual ground temperature, and surface frost index), while permafrost distribution using air temperature based methods is generally good. Model evaluation at field sites highlights specific problems in process simulations likely related to soil texture specification and snow cover. Models are particularly poor at simulating permafrost distribution using definition that soil temperature remains at or below 0°C for 24 consecutive months, which requires reliable simulation of both mean annual ground temperatures and seasonal cycle, and hence is relatively demanding. Although models can produce better permafrost maps using mean annual ground temperature and surface frost index, analysis of simulated soil temperature profiles reveals substantial biases. The current generation of land surface models need to reduce biases in simulated soil temperature profiles before reliable contemporary permafrost maps and predictions of changes in permafrost distribution can be made for the Tibetan Plateau.
NASA Technical Reports Server (NTRS)
Kozlowski, Danielle; Zavodsky, Bradley T.; Jedlovec, Gary J.
2011-01-01
The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) Weather Forecasting Offices (WFO). As a part of the transition to operations process, SPoRT attempts to identify possible limitations in satellite observations and provide operational forecasters a product that will result in the most impact on their forecasts. One operational forecast challenge that some NWS offices face, is forecasting convection in data-void regions such as large bodies of water. The Atmospheric Infrared Sounder (AIRS) is a sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. This paper will demonstrate an approach to assimilate AIRS profile data into a regional configuration of the WRF model using its three-dimensional variational (3DVAR) assimilation component to be used as a proxy for the individual profiles.
Impact of boiling conditions on the molecular and sensory profile of a vegetable broth.
Mougin, Alice; Mauroux, Olivier; Matthey-Doret, Walter; Barcos, Eugenia Maria; Beaud, Fernand; Bousbaine, Ahmed; Viton, Florian; Smarrito-Menozzi, Candice
2015-02-11
Low-pressure cooking has recently been identified as an alternative to ambient and high-pressure cooking to provide food with enhanced organoleptic properties. This work investigates the impact of the cooking process at different pressures on the molecular and sensory profile of a vegetable broth. Experimental results showed similar sensory and chemical profiles of vegetable broths when boiling at 0.93 and 1.5 bar, while an enhancement of sulfur volatile compounds correlated with a greater leek content and savory aroma was observed when boiling at low pressure (80 °C/0.48 bar). Thus, low-pressure cooking would allow preserving the most labile volatiles likely due to the lower water boiling temperature and the reduced level of oxygen. This study evidenced chemical and sensory impact of pressure during cooking and demonstrated that the flavor profile of culinary preparations can be enhanced by applying low-pressure conditions.
Thermal Profiles for Selected River Reaches in the Yakima River Basin, Washington
Vaccaro, J.J.; Keys, M.E.; Julich, R.J.; Welch, W.B.
2008-01-01
Thermal profiles (data sets of longitudinal near-streambed temperature) that provide information on areas of potential ground-water discharge and salmonid habitat for 11 river reaches in the Yakima River basin, Washington, are available as Microsoft Excel? files that can be downloaded from the Internet. Two reaches were profiled twice resulting in 13 profiles. Data were collected for all but one thermal profile during 2001. Data consist of date and time (Pacific Daylight), near-streambed water temperature, and latitude and longitude collected concurrently using a temperature probe and a Global Positioning System. The data were collected from a watercraft towing the probe with an internal datalogger while moving downstream in a Lagrangian framework.
Weng, Jun-Jie; Liu, Yue-Xi; Zhu, Ya-Nan; Pan, Yang; Tian, Zhen-Yu
2017-11-01
With the aim to support the experimental tests in a circulating fluidized bed pilot plant, the pyrolysis processes of coal, corn, and coal-corn blend have been studied with an online pyrolysis photoionization time-of-flight mass spectrometry (Py-PI-TOFMS). The mass spectra at different temperatures (300-800°C) as well as time-evolved profiles of selected species were measured. The pyrolysis products such as alkanes, alkenes, phenols, aromatics, as well as nitrogen- and sulfur-containing species were detected. As temperature rises, the relative ion intensities of high molecular weight products tend to decrease, while those of aromatics increase significantly. During the co-pyrolysis, coal can promote the reaction temperature of cellulose in corn. Time-evolved profiles demonstrate that coal can affect pyrolysis rate of cellulose, hemicellulose, and lignin of corn in blend. This work shows that Py-PI-TOFMS is a powerful approach to permit a better understanding of the mechanisms underlying the co-pyrolysis of coal and biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Krapez, J.-C.
2016-09-01
The Darboux transformation is a differential transformation which, like other related methods (supersymmetry quantum mechanics-SUSYQM, factorization method) allows generating sequences of solvable potentials for the stationary 1D Schrodinger equation. It was recently shown that the heat equation in graded heterogeneous media, after a Liouville transformation, reduces to a pair of Schrödinger equations sharing the same potential function, one for the transformed temperature and one for the square root of effusivity. Repeated joint PROperty and Field Darboux Transformations (PROFIDT method) then yield two sequences of solutions: one of new solvable effusivity profiles and one of the corresponding temperature fields. In this paper we present and discuss the outcome in the case of a graded half-space domain. The interest in this methodology is that it provides closed-form solutions based on elementary functions. They are thus easily amenable to an implementation in an inversion process aimed, for example, at retrieving a subsurface effusivity profile from a modulated or transient surface temperature measurement (photothermal characterization).
Quantitative Detection of Cracks in Steel Using Eddy Current Pulsed Thermography.
Shi, Zhanqun; Xu, Xiaoyu; Ma, Jiaojiao; Zhen, Dong; Zhang, Hao
2018-04-02
Small cracks are common defects in steel and often lead to catastrophic accidents in industrial applications. Various nondestructive testing methods have been investigated for crack detection; however, most current methods focus on qualitative crack identification and image processing. In this study, eddy current pulsed thermography (ECPT) was applied for quantitative crack detection based on derivative analysis of temperature variation. The effects of the incentive parameters on the temperature variation were analyzed in the simulation study. The crack profile and position are identified in the thermal image based on the Canny edge detection algorithm. Then, one or more trajectories are determined through the crack profile in order to determine the crack boundary through its temperature distribution. The slope curve along the trajectory is obtained. Finally, quantitative analysis of the crack sizes was performed by analyzing the features of the slope curves. The experimental verification showed that the crack sizes could be quantitatively detected with errors of less than 1%. Therefore, the proposed ECPT method was demonstrated to be a feasible and effective nondestructive approach for quantitative crack detection.
Sealed symmetric multilayered microelectronic device package with integral windows
Peterson, Kenneth A.; Watson, Robert D.
2002-01-01
A sealed symmetric multilayered package with integral windows for housing one or more microelectronic devices. The devices can be a semiconductor chip, a CCD chip, a CMOS chip, a VCSEL chip, a laser diode, a MEMS device, or a IMEMS device. The multilayered package can be formed of a low-temperature cofired ceramic (LTCC) or high-temperature cofired ceramic (HTCC) multilayer processes with the windows being simultaneously joined (e.g. cofired) to the package body during LTCC or HTCC processing. The microelectronic devices can be flip-chip bonded and oriented so that the light-sensitive sides are optically accessible through the windows. The result is a compact, low-profile, sealed symmetric package, having integral windows that can be hermetically-sealed.
Pioneer-Venus radio occultation (ORO) data reduction: Profiles of 13 cm absorptivity
NASA Technical Reports Server (NTRS)
Steffes, Paul G.
1990-01-01
In order to characterize possible variations in the abundance and distribution of subcloud sulfuric acid vapor, 13 cm radio occultation signals from 23 orbits that occurred in late 1986 and 1987 (Season 10) and 7 orbits that occurred in 1979 (Season 1) were processed. The data were inverted via inverse Abel transform to produce 13 cm absorptivity profiles. Pressure and temperature profiles obtained with the Pioneer-Venus night probe and the northern probe were used along with the absorptivity profiles to infer upper limits for vertical profiles of the abundance of gaseous H2SO4. In addition to inverting the data, error bars were placed on the absorptivity profiles and H2SO4 abundance profiles using the standard propagation of errors. These error bars were developed by considering the effects of statistical errors only. The profiles show a distinct pattern with regard to latitude which is consistent with latitude variations observed in data obtained during the occultation seasons nos. 1 and 2. However, when compared with the earlier data, the recent occultation studies suggest that the amount of sulfuric acid vapor occurring at and below the main cloud layer may have decreased between early 1979 and late 1986.
Cao, Yanpeng; Tisse, Christel-Loic
2013-09-01
In uncooled long-wave infrared (LWIR) microbolometer imaging systems, temperature fluctuations of the focal plane array (FPA) result in thermal drift and spatial nonuniformity. In this paper, we present a novel approach based on single-image processing to simultaneously estimate temperature variances of FPAs and compensate the resulting temperature-dependent nonuniformity. Through well-controlled thermal calibrations, empirical behavioral models are derived to characterize the relationship between the responses of microbolometer and FPA temperature variations. Then, under the assumption that strong dependency exists between spatially adjacent pixels, we estimate the optimal FPA temperature so as to minimize the global intensity variance across the entire thermal infrared image. We make use of the estimated FPA temperature to infer an appropriate nonuniformity correction (NUC) profile. The performance and robustness of the proposed temperature-adaptive NUC method are evaluated on realistic IR images obtained by a 640 × 512 pixels uncooled LWIR microbolometer imaging system operating in a significantly changed temperature environment.
Simple construction and performance of a conical plastic cryocooler
NASA Technical Reports Server (NTRS)
Lambert, N.
1985-01-01
Low power cryocoolers with conical displacers offer several advantages over stepped displacers. The described fabrication process allows quick and reproducible manufacturing of plastic conical displacer units. This could be of commercial interest, but it also makes systematic optimization feasible by constructing a number of different models. The process allows for a wide range of displacer profiles. Low temperature performance as dominated by regenerator losses, and several effects are discussed. A simple device is described which controls gas flow during expansion.
Acoustic propagation in a thermally stratified atmosphere
NASA Technical Reports Server (NTRS)
Vanmoorhem, W. K.
1988-01-01
Acoustic propagation in an atmosphere with a specific form of a temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solutions have been considered, the primary emphasis has been on solutions of the acoustic wave equation with point source where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.
Acoustic propagation in a thermally stratified atmosphere
NASA Technical Reports Server (NTRS)
Vanmoorhem, W. K.
1987-01-01
Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.
Maine Geological Survey Borehole Temperature Profiles
Marvinney, Robert
2013-11-06
This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.
Processing of extraterrestrial materials by high temperature vacuum vaporization
NASA Technical Reports Server (NTRS)
Grimley, R. T.; Lipschutz, M. E.
1983-01-01
It is noted that problems associated with the extraction and concentration of elements and commpounds important for the construction and operation of space habitats have received little attention. High temperature vacuum vaporization is considered a promising approach; this is a technique for which the space environment offers advantages in the form of low ambient pressures and temperatures and the possibility of sustained high temperatures via solar thermal energy. To establish and refine this new technology, experimental determinations must be made of the material release profiles as a function of temperature, of the release kinetics and chemical forms of material being transported, and of the various means of altering release kinetics. Trace element data determined by neutron activation analysis of meteorites heated to 1400 C in vacuum is summarized. The principal tool, high temperature spectrometry, is used to examine the vaporization thermodynamics and kinetics of major and minor elements from complex multicomponent extraterrestrial materials.
A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer
NASA Astrophysics Data System (ADS)
Liu, Yuli; Buehler, Stefan; Liu, Heguang
2017-04-01
Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.
Integrity Testing of Pile Cover Using Distributed Fibre Optic Sensing
Rui, Yi; Kechavarzi, Cedric; O’Leary, Frank; Barker, Chris; Nicholson, Duncan; Soga, Kenichi
2017-01-01
The integrity of cast-in-place foundation piles is a major concern in geotechnical engineering. In this study, distributed fibre optic sensing (DFOS) cables, embedded in a pile during concreting, are used to measure the changes in concrete curing temperature profile to infer concrete cover thickness through modelling of heat transfer processes within the concrete and adjacent ground. A field trial was conducted at a high-rise building construction site in London during the construction of a 51 m long test pile. DFOS cables were attached to the reinforcement cage of the pile at four different axial directions to obtain distributed temperature change data along the pile. The monitoring data shows a clear development of concrete hydration temperature with time and the pattern of the change varies due to small changes in concrete cover. A one-dimensional axisymmetric heat transfer finite element (FE) model is used to estimate the pile geometry with depth by back analysing the DFOS data. The results show that the estimated pile diameter varies with depth in the range between 1.40 and 1.56 m for this instrumented pile. This average pile diameter profile compares well to that obtained with the standard Thermal Integrity Profiling (TIP) method. A parametric study is conducted to examine the sensitivity of concrete and soil thermal properties on estimating the pile geometry. PMID:29257094
Integrity Testing of Pile Cover Using Distributed Fibre Optic Sensing.
Rui, Yi; Kechavarzi, Cedric; O'Leary, Frank; Barker, Chris; Nicholson, Duncan; Soga, Kenichi
2017-12-19
The integrity of cast-in-place foundation piles is a major concern in geotechnical engineering. In this study, distributed fibre optic sensing (DFOS) cables, embedded in a pile during concreting, are used to measure the changes in concrete curing temperature profile to infer concrete cover thickness through modelling of heat transfer processes within the concrete and adjacent ground. A field trial was conducted at a high-rise building construction site in London during the construction of a 51 m long test pile. DFOS cables were attached to the reinforcement cage of the pile at four different axial directions to obtain distributed temperature change data along the pile. The monitoring data shows a clear development of concrete hydration temperature with time and the pattern of the change varies due to small changes in concrete cover. A one-dimensional axisymmetric heat transfer finite element (FE) model is used to estimate the pile geometry with depth by back analysing the DFOS data. The results show that the estimated pile diameter varies with depth in the range between 1.40 and 1.56 m for this instrumented pile. This average pile diameter profile compares well to that obtained with the standard Thermal Integrity Profiling (TIP) method. A parametric study is conducted to examine the sensitivity of concrete and soil thermal properties on estimating the pile geometry.
NASA Astrophysics Data System (ADS)
Schilperoort, B.; Coenders, M.; Savenije, H. H. G.
2017-12-01
In recent years, the accuracy and resolution of Distributed Temperature Sensing (DTS) machines has increased enough to expand its use in atmospheric sciences. With DTS the temperature of a fiber optic (FO) cable can be measured with a high frequency (1 Hz) and high resolution (0.30 m), for cable lengths up to kilometers. At our measurement site, a patch of 26 to 30 m tall Douglas Fir in mixed forest, we placed FO cables vertically along a 48 m tall flux tower. This gives a high resolution vertical temperature profile above, through, and below the canopy. By using a `bare' FO cable, with a diameter of 0.25 mm, we are able to measure variations in air temperature at a very small timescale, and are able to measure a vertical profile of the air temperature variance. The vertical temperature profiles can be used to study the formation of the stable boundary layer above and in the canopy at a high resolution. It also shows that a stable layer can develop below the canopy, which is not limited to night time conditions but also occurs during daytime. The high frequency measurements can be used to study the gradient of the variance of air temperature over the height. To study how the flux tower itself affects temperature variance measurements, the `bare' FO cable can be placed horizontally under a support structure away from the flux tower. Lastly, by using the hot-wire anemometer principle with DTS, the measurements can be expanded to also include vertical wind profile.
Constantz, J.; Thomas, C.L.
1997-01-01
Stream bed temperature profiles were monitored continuously during water year 1990 and 1991 (WY90 and 91) in two New Mexico arroyos, similar in their meteorological features and dissimilar in their hydrological features. Stream bed temperature profiles between depths of 30 and 300 cm were examined to determine whether temporal changes in temperature profiles represent accurate indicators of the timing, depth and duration of percolation in each stream bed. These results were compared with stream flow, air temperature, and precipitation records for WY90 and 91, to evaluate the effect of changing surface conditions on temperature profiles. Temperature profiles indicate a persistently high thermal gradient with depth beneath Grantline Arroyo, except during a semi-annual thermal reversal in spring and autumn. This typifies the thermal response of dry sediments with low thermal conductivities. High thermal gradients were disrupted only during infrequent stream flows, followed by rapid re-establishment of high gradients. The stream bed temperature at 300 cm was unresponsive to individual precipitation or stream flow during WY90 and 91. This thermal pattern provides strong evidence that most seepage into Grantline Arroyo failed to percolate at a sufficient rate to reach 300 cm before being returned to the atmosphere. A distinctly different thermal pattern was recorded beneath Tijeras Arroyo. Low thermal gradients between 30 and 300 cm and large diurnal variations in temperature, suggest that stream flow created continuous, advection-dominated heat transport for over 300 days, annually. Beneath Tijeras Arroyo, low thermal gradients were interrupted only briefly during periodic, dry summer conditions. Comparisons of stream flow records for WY90 and 91 with stream bed temperature profiles indicate that independent analysis of thermal patterns provides accurate estimates of the timing, depth and duration of percolation beneath both arroyos. Stream flow loss estimates indicate that seepage rates were 15 times greater for Tijeras Arroyo than for Grantline Arroyo, which supports qualitative conclusions derived from analysis of stream bed temperature responses to surface conditions. ?? 1997 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Rodionova, N. S.; Popov, E. S.; Pozhidaeva, E. A.; Pynzar, S. S.; Ryaskina, L. O.
2018-05-01
The aim of this study is to develop a mathematical model of the heat exchange process of LT-processing to estimate the dynamics of temperature field changes and optimize the regime parameters, due to the non-stationarity process, the physicochemical and thermophysical properties of food systems. The application of LT-processing, based on the use of low-temperature modes in thermal culinary processing of raw materials with preliminary vacuum packaging in a polymer heat- resistant film is a promising trend in the development of technics and technology in the catering field. LT-processing application of food raw materials guarantees the preservation of biologically active substances in food environments, which are characterized by a certain thermolability, as well as extend the shelf life and high consumer characteristics of food systems that are capillary-porous bodies. When performing the mathematical modeling of the LT-processing process, the packet of symbolic mathematics “Maple” was used, as well as the mathematical packet flexPDE that uses the finite element method for modeling objects with distributed parameters. The processing of experimental results was evaluated with the help of the developed software in the programming language Python 3.4. To calculate and optimize the parameters of the LT processing process of polycomponent food systems, the differential equation of non-stationary thermal conductivity was used, the solution of which makes it possible to identify the temperature change at any point of the solid at different moments. The present study specifies data on the thermophysical characteristics of the polycomponent food system based on plant raw materials, with the help of which the physico-mathematical model of the LT- processing process has been developed. The obtained mathematical model allows defining of the dynamics of the temperature field in different sections of the LT-processed polycomponent food systems on the basis of calculating the evolution profiles of temperature fields, which enable one to analyze the efficiency of the regime parameters of heat treatment.
Bernini, Patrizia; Bertini, Ivano; Luchinat, Claudio; Nincheri, Paola; Staderini, Samuele; Turano, Paola
2011-04-01
(1)H NMR metabolic profiling of urine, serum and plasma has been used to monitor the impact of the pre-analytical steps on the sample quality and stability in order to propose standard operating procedures (SOPs) for deposition in biobanks. We analyzed the quality of serum and plasma samples as a function of the elapsed time (t = 0-4 h) between blood collection and processing and of the time from processing to freezing (up to 24 h). The stability of the urine metabolic profile over time (up to 24 h) at various storage temperatures was monitored as a function of the different pre-analytical treatments like pre-storage centrifugation, filtration, and addition of the bacteriostatic preservative sodium azide. Appreciable changes in the profiles, reflecting changes in the concentration of a number of metabolites, were detected and discussed in terms of chemical and enzymatic reactions for both blood and urine samples. Appropriate procedures for blood derivatives collection and urine preservation/storage that allow maintaining as much as possible the original metabolic profile of the fresh samples emerge, and are proposed as SOPs for biobanking.
NASA Astrophysics Data System (ADS)
Hagimoto, Y.; Cuenca, R. H.
2015-12-01
Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.
Thermoregulatory and Orthostatic Responses to Wearing the Advanced Crew Escape Suit
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Jacobs, Tamara N.; McDaniel, Angela; Schneider, Suzanne M.
2006-01-01
Current NASA flight rules limit the maximum cabin temperature (23.9 C) during re-entry and landing to protect crewmembers from heat stress while wearing the Advanced Crew Escape Suit (ACES) and Liquid Cooling Garment (LCG). The primary purpose of this ground-based project was to determine whether the LCG could provide adequate cooling if ambient temperature reached 26.7 "C. The secondary objective was to determine whether there would be a graded effect of ambient temperature profiles with maximum temperatures of 23.9 (LO), 26.7 (MPD), and 29.4 C (HI). METHODS: Eight subjects underwent a 5-h temperature profile (22.8,26.7 C) in an environmental chamber while wearing the ACES and LCG. Subjects controlled the amount of cooling provided by the LCG. Core (T(sub core)),skin temperatures (T(sub sk)) and heart rate (HR) were measured every 15-min. A 10-minute stand test was administered pre- and post-chamber. Additionally, 4 subjects underwent the three 5-h temperature profiles (LO, MID, and HI) with the same measurements. RESULTS: In the 8 subjects completing the MID profile, T(sub core), and T(sub sk) decreased from the start' to the end of the chamber stay. Subjects completed the stand test without signs of orthostatic intolerance. In the 4 subjects who underwent all 3 profiles, there was no discernible pattern in T(sub core), T(sub sk), and HR responses across the temperature profiles. CONCLUSIONS: In the range of temperatures tested, subjects were able to sufficiently utilize the self-selected cooling to avoid any potential deleterious effects of wearing the ACES. However, these subjects were not microgravity exposed, which has been suggested to impair thermoregulation.
Vay, Kerstin; Frieß, Wolfgang; Scheler, Stefan
2012-06-01
Biodegradable poly(D,L-lactide-co-glycolide) microspheres were prepared by a well-controlled emulsion solvent extraction/evaporation process. The objective of this study was to investigate how drug release can be modified by changing the morphology of the polymer matrix. The matrix structure was controlled by the preparation temperature which was varied between 10 and 35 °C, thus changing the 4 weeks release pattern from almost linear kinetics to a sigmoidal profile with a distinct lag phase and furthermore decreasing the encapsulation efficiency. By monitoring the glass transition temperature during the extraction process, it was shown that the preparation temperature determines the particle morphology by influencing the time span in which the polymer chains were mobile and flexible during the extraction process. Further factors determining drug release were found to be the molecular weight of the polymer and the rate of solvent removal. The latter, however, has also influence on the encapsulation efficiency with slow removal causing a higher drug loss. A secondary modification of the outer particle structure could be achieved by ethanolic post-treatment of the particles, which caused an extension of the lag phase and subsequently an accelerated drug release. Copyright © 2012. Published by Elsevier B.V.
A Fully Integrated Quartz MEMS VHF TCXO.
Kubena, Randall L; Stratton, Frederic P; Nguyen, Hung D; Kirby, Deborah J; Chang, David T; Joyce, Richard J; Yong, Yook-Kong; Garstecki, Jeffrey F; Cross, Matthew D; Seman, S E
2018-06-01
We report on a 32-MHz quartz temperature compensated crystal oscillator (TCXO) fully integrated with commercial CMOS electronics and vacuum packaged at wafer level using a low-temperature MEMS-after quartz process. The novel quartz resonator design provides for stress isolation from the CMOS substrate, thereby yielding classical AT-cut f/T profiles and low hysteresis which can be compensated to < ±0.2 parts per million over temperature using on-chip third-order compensation circuitry. The TCXO operates at low power of 2.5 mW and can be thinned to as part of the wafer-level eutectic encapsulation. Full integration with large state-of-the-art CMOS wafers is possible using carrier wafer techniques.
High pressure and high temperature apparatus
Voronov, Oleg A.
2005-09-13
A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.
Statistical analysis and modeling of the temperature-dependent sleep behavior of drosophila
NASA Astrophysics Data System (ADS)
Shih, Chi-Tin; Lin, Hsuan-Wen; Chiang, Ann-Shyn
2011-01-01
The sleep behavior of drosophila is analyzed under different temperatures. The activity per minute of the flies is recorded automatically. Sleep for a fruit fly is defined as the periods without any activity and longer than 5 minutes. Several parameters such as total sleep time, circadian sleep profile, quality of sleep are analyzed. The sleep behaviors are significantly different for flies at different temperature. Interestingly, the durations of daytime sleep periods show a common scale-free power law distribution. We propose a stochastic model to simulate the activities of the population of neurons which regulate the dynamics of sleep-wake process to explain the distribution of daytime sleep.
Analysis of the combustion and pyrolysis of dried sewage sludge by TGA and MS.
Magdziarz, Aneta; Werle, Sebastian
2014-01-01
In this study, the combustion and pyrolysis processes of three sewage sludge were investigated. The sewage sludge came from three wastewater treatment plants. Proximate and ultimate analyses were performed. The thermal behaviour of studied sewage sludge was investigated by thermogravimetric analysis with mass spectrometry (TGA-MS). The samples were heated from ambient temperature to 800 °C at a constant rate 10 °C/min in air (combustion process) and argon flows (pyrolysis process). The thermal profiles presented in form of TG/DTG curves were comparable for studied sludges. All TG/DTG curves were divided into three stages. The main decomposition of sewage sludge during the combustion process took place in the range 180-580 °C with c.a. 70% mass loss. The pyrolysis process occurred in lower temperature but with less mass loss. The evolved gaseous products (H2, CH4, CO2, H2O) from the decomposition of sewage sludge were identified on-line. Copyright © 2013 Elsevier Ltd. All rights reserved.
Separation processes during binary monotectic alloy production
NASA Technical Reports Server (NTRS)
Frazier, D. O.; Facemire, B. R.; Kaukler, W. F.; Witherow, W. K.; Fanning, U.
1984-01-01
Observation of microgravity solidification processes indicates that outside of sedimentation, at least two other important effects can separate the phases: critical-point wetting and spreading; and thermal migration of second-phase droplets due to interfacial tension gradients. It is difficult to study these surface tension effects while in a unit gravity field. In order to investigate the processes occurring over a temperature range, i.e., between a consolute point and the monotectic temperature, it is necessary to use a low-gravity environment. The MSFC drop tube (and tower), the ballistic trajectory KC-135 airplane, and the Space Shuttle are ideal facilities to aid formation and testing of hypotheses. Much of the early work in this area focuses on transparent materials so that process dynamics may be studied by optical techniques such as photography for viewing macro-processes; holography for studying diffusional growth; spinodal decomposition and coalescence; ellipsometry for surface wetting and spreading effects; and interferometry and spectroscopy for small-scale spatial resolution of concentration profiles.
NASA Astrophysics Data System (ADS)
Isliker, H.; Pisokas, Th.; Strintzi, D.; Vlahos, L.
2010-08-01
A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R /LT is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results.
Strength analysis of welded corners of PVC window profiles
NASA Astrophysics Data System (ADS)
Postawa, P.; Stachowiak, T.; Gnatowski, A.
2017-08-01
The article presents the results of researches which main purpose was to define the influence of welding parameters on strength of welded corners of PVC window profile. PVC profiles of a branded name GENEO® produced by Rehau Company were used for this research. The profiles were made by using a co-extrusion method. The surface of the profile was made of PVC mixture with no additives. Its main task was to get a smooth surface resistant to a smudge. The use of an unfilled polyester provides an aesthetic look and improves the resistance of extrudate to water getting into inner layers. The profile's inner layers have been filled up with glass fibre in order to improve its stiffness and mechanical properties. Window frames with cut corners used for this research, were produced on technological line of EUROCOLOR Company based in Pyskowice (Poland). The main goal of this analysis was to evaluate the influence of the main welding parameter (temperature upsetting) on hardness of welds we received in whole process. A universal testing machine was used for the research.
NASA Astrophysics Data System (ADS)
Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.
2014-05-01
Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and RMS profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.
NASA Astrophysics Data System (ADS)
Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.
2014-11-01
Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and rms profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.
Comparison of potential temperature gradient estimates from various temperature profile data sources
DOT National Transportation Integrated Search
2017-01-22
From July through September 2015, concurrent and collocated measurements of temperature profiles from two passive radiometers and a RADAR-RASS (Radio Acoustic Sounding System) were made at a site near the ocean just to the west of Los Angeles Interna...
Automated system for measuring temperature profiles inside ITS-90 fixed-point cells
NASA Astrophysics Data System (ADS)
Hiti, Miha; Bojkovski, Jovan; Batagelj, Valentin; Drnovsek, Janko
2005-11-01
The defining fixed points of the International Temperature Scale of 1990 (ITS-90) are temperature reference points for temperature calibration. The measured temperature inside the fixed-point cell depends on thermometer immersion, since measurements are made below the surface of the fixed-point material and the additional effect of the hydrostatic pressure has to be taken into account. Also, the heat flux along the thermometer stem can affect the measured temperature. The paper presents a system that enables accurate and reproducible immersion profile measurements for evaluation of measurement sensitivity and adequacy of thermometer immersion. It makes immersion profile measurements possible, where a great number of repetitions and long measurement periods are required, and reduces the workload on the user for performing such measurements. The system is flexible and portable and was developed for application to existing equipment in the laboratory. Results of immersion profile measurements in a triple point of water fixed-point cell are presented.
Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia.
Giordano, Mauricio A; Gutierrez, Gustavo; Rinaldi, Carlos
2010-01-01
Methods of predicting temperature profiles during local hyperthermia treatment are very important to avoid damage to healthy tissue. With this aim, fundamental solutions of Pennes' bioheat equation are derived in rectangular, cylindrical, and spherical coordinates. The medium is idealised as isotropic with effective thermal properties. Temperature distributions due to space- and time-dependent heat sources are obtained by the solution method presented. Applications of the fundamental solutions are addressed with emphasis on a particular problem of Magnetic Fluid Hyperthermia (MFH) consisting of a thin shell of magnetic nanoparticles in the outer surface of a spherical solid tumour. It is observed from the solution of this particular problem that the temperature profiles are strongly dependent on the distribution of the magnetic nanoparticles within the tissue. An almost uniform temperature profile is obtained inside the tumour with little penetration of therapeutic temperatures to the outer region of healthy tissue. The fundamental solutions obtained can be used to develop boundary element methods to predict temperature profiles with more complicated geometries.
Rotational temperatures of Venus upper atmosphere as measured by SOIR on board Venus Express
NASA Astrophysics Data System (ADS)
Mahieux, A.; Vandaele, A. C.; Robert, S.; Wilquet, V.; Drummond, R.; López Valverde, M. A.; López Puertas, M.; Funke, B.; Bertaux, J. L.
2015-08-01
SOIR is a powerful infrared spectrometer flying on board the Venus Express spacecraft since mid-2006. It sounds the Venus atmosphere above the cloud layer using the solar occultation technique. In the recorded spectra, absorption structures from many species are observed, among them carbon dioxide, the main constituent of the Venus atmosphere. Previously, temperature vertical profiles were derived from the carbon dioxide density retrieved from the SOIR spectra by assuming hydrostatic equilibrium. These profiles show a permanent cold layer at 125 km with temperatures of ~100 K, surrounded by two warmer layers at 90 and 140 km, reaching temperatures of ~200 K and 250-300 K, respectively. In this work, temperature profiles are derived from the SOIR spectra using another technique based on the ro-vibrational structure of carbon dioxide observed in the spectra. The error budget is extensively investigated. Temperature profiles obtained by both techniques are comparable within their respective uncertainties and they confirm the vertical structure previously determined from SOIR spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toropovs, N., E-mail: nikolajs.toropovs@rtu.lv; Riga Technical University, Institute of Materials and Structures, Riga; Lo Monte, F.
2015-02-15
High-Performance Concrete (HPC) is particularly prone to explosive spalling when exposed to high temperature. Although the exact causes that lead to spalling are still being debated, moisture transport during heating plays an important role in all proposed mechanisms. In this study, slabs made of high-performance, low water-to-binder ratio mortars with addition of superabsorbent polymers (SAP) and polypropylene fibers (PP) were heated from one side on a temperature-controlled plate up to 550 °C. A combination of measurements was performed simultaneously on the same sample: moisture profiles via neutron radiography, temperature profiles with embedded thermocouples and pore pressure evolution with embedded pressuremore » sensors. Spalling occurred in the sample with SAP, where sharp profiles of moisture and temperature were observed. No spalling occurred when PP-fibers were introduced in addition to SAP. The experimental procedure described here is essential for developing and verifying numerical models and studying measures against fire spalling risk in HPC.« less
High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar
NASA Astrophysics Data System (ADS)
Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin
2010-05-01
Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to derive vertical profiles of aerosol backscatter ratio and aerosol extinction at 355 nm. Set of Stokes and anti-Stokes PRR lines are separated by the polychromator to derive temperature profiles. The humidity profiles have vertical resolution from 15 m (within the boundary layer) to 100-450 m (within the free troposphere), time resolution of 30 min and 5 km vertical range at daytime and 10 km at night-time. The aerosol backscatter ratio and extinction profiles have similar resolution with vertical range of approximately 10 km. The temperature profiles are derived from PRR lidar signals, simultaneously recorded in analog and photon counting mode, allowing vertical range of approximately 10 km. Vaisala RS-92 and Snow-White chilled mirror hygrometer radiosondes were used for calibration of the water vapor and temperature channels. Continuous temperature profiles were obtained and were coupled with the available water vapor mixing ratio profiles to obtain relative humidity time series. Lidar derived aerosol backscatter ratio profiles will be used for estimation of the boundary layer height and validation of NWP model results. Optical thickness time series are currently compared to independent measurements from a collocated sun photometer to assess the performance of the aerosol channel.
Differential absorption lidar measurements of atmospheric temperature and pressure profiles
NASA Technical Reports Server (NTRS)
Korb, C. L.
1981-01-01
The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.
Floris, Patrick; Curtin, Sean; Kaisermayer, Christian; Lindeberg, Anna; Bones, Jonathan
2018-07-01
The compatibility of CHO cell culture medium formulations with all stages of the bioprocess must be evaluated through small-scale studies prior to scale-up for commercial manufacturing operations. Here, we describe the development of a bespoke small-scale device for assessing the compatibility of culture media with a widely implemented upstream viral clearance strategy, high-temperature short-time (HTST) treatment. The thermal stability of undefined medium formulations supplemented with soy hydrolysates was evaluated upon variations in critical HTST processing parameters, namely, holding times and temperatures. Prolonged holding times of 43 s at temperatures of 110 °C did not adversely impact medium quality while significant degradation was observed upon treatment at elevated temperatures (200 °C) for shorter time periods (11 s). The performance of the device was benchmarked against a commercially available mini-pilot HTST system upon treatment of identical formulations on both platforms. Processed medium samples were analyzed by untargeted LC-MS/MS for compositional profiling followed by chemometric evaluation, which confirmed the observed degradation effects caused by elevated holding temperatures but revealed comparable performance of our developed device with the commercial mini-pilot setup. The developed device can assist medium optimization activities by reducing volume requirements relative to commercially available mini-pilot instrumentation and by facilitating fast throughput evaluation of heat-induced effects on multiple medium lots.
Harmonic Chain with Velocity Flips: Thermalization and Kinetic Theory
NASA Astrophysics Data System (ADS)
Lukkarinen, Jani; Marcozzi, Matteo; Nota, Alessia
2016-12-01
We consider the detailed structure of correlations in harmonic chains with pinning and a bulk velocity flip noise during the heat relaxation phase which occurs on diffusive time scales, for t=O(L^2) where L is the chain length. It has been shown earlier that for non-degenerate harmonic interactions these systems thermalize, and the dominant part of the correlations is given by local thermal equilibrium determined by a temperature profile which satisfies a linear heat equation. Here we are concerned with two new aspects about the thermalization process: the first order corrections in 1 / L to the local equilibrium correlations and the applicability of kinetic theory to study the relaxation process. Employing previously derived explicit uniform estimates for the temperature profile, we first derive an explicit form for the first order corrections to the particle position-momentum correlations. By suitably revising the definition of the Wigner transform and the kinetic scaling limit we derive a phonon Boltzmann equation whose predictions agree with the explicit computation. Comparing the two results, the corrections can be understood as arising from two different sources: a current-related term and a correction to the position-position correlations related to spatial changes in the phonon eigenbasis.
The Atmospheric Infrared Sounder- An Overview
NASA Technical Reports Server (NTRS)
Larnbrigtsen, Bjorn; Fetzer, Eric; Lee, Sung-Yung; Irion, Fredrick; Hearty, Thomas; Gaiser, Steve; Pagano, Thomas; Aumann, Hartmut; Chahine, Moustafa
2004-01-01
The Atmospheric Infrared Sounder (AIRS) was launched in May 2002. Along with two companion microwave sensors, it forms the AIRS Sounding Suite. This system is the most advanced atmospheric sounding system to date, with measurement accuracies far surpassing those available on current weather satellites. The data products are calibrated radiances from all three sensors and a number of derived geophysical parameters, including vertical temperature and humidity profiles, surface temperature, cloud fraction, cIoud top pressure, and profiles of ozone. These products are generated under cloudy as well as clear conditions. An ongoing calibration validation effort has confirmed that the system is very accurate and stable, and many of the geophysical parameters have been validated. AIRS is in some cases more accurate than any other source and can therefore be difficult to validate, but this offers interesting new research opportunities. The applications for the AIRS products range from numerical weather prediction to atmospheric research - where the AIRS water vapor products near the surface and in the mid to upper troposphere will make it possible to characterize and model phenomena that are key for short-term atmospheric processes, such as weather patterns, to long-term processes, such as interannual cycles (e.g., El Nino) and climate change.
Influence of the arc plasma parameters on the weld pool profile in TIG welding
NASA Astrophysics Data System (ADS)
Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.
2014-11-01
Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.
Hepburn, Sophie; Cairns, David A.; Jackson, David; Craven, Rachel A.; Riley, Beverley; Hutchinson, Michelle; Wood, Steven; Smith, Matthew Welberry; Thompson, Douglas
2015-01-01
Purpose We have examined the impact of sample processing time delay, temperature, and the addition of protease inhibitors (PIs) on the urinary proteome and peptidome, an important aspect of biomarker studies. Experimental design Ten urine samples from patients with varying pathologies were each divided and PIs added to one‐half, with aliquots of each then processed and frozen immediately, or after a delay of 6 h at 4°C or room temperature (20–22°C), effectively yielding 60 samples in total. Samples were then analyzed by 2D‐PAGE, SELDI‐TOF‐MS, and immunoassay. Results Interindividual variability in profiles was the dominant feature in all analyses. Minimal changes were observed by 2D‐PAGE as a result of delay in processing, temperature, or PIs and no changes were seen in IgG, albumin, β2‐microglobulin, or α1‐microglobulin measured by immunoassay. Analysis of peptides showed clustering of some samples by presence/absence of PIs but the extent was very patient‐dependent with most samples showing minimal effects. Conclusions and clinical relevance The extent of processing‐induced changes and the benefit of PI addition are patient‐ and sample‐dependent. A consistent processing methodology is essential within a study to avoid any confounding of the results. PMID:25400092
Not Available
1981-01-29
Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.
Tokarz, Richard D.
1983-01-01
Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.
Quantum-dot temperature profiles during laser irradiation for semiconductor-doped glasses
NASA Astrophysics Data System (ADS)
Nagpal, Swati
2002-12-01
Temperature profiles around laser irradiated CdX (X=S, Se, and Te) quantum dots in borosilicate glasses were theoretically modeled. Initially the quantum dots heat up rapidly, followed by a gradual increase of temperature. Also it is found that larger dots reach higher temperatures for the same pulse characteristics. After the pulse is turned off, the dots initially cool rapidly, followed by a gradual decrease in temperature.
NASA Astrophysics Data System (ADS)
Overhagen, Christian; Mauk, Paul Josef
2018-05-01
For flat rolled products, the thickness profile in the transversal direction is one of the most important product properties. For further processing, a defined crown of the product is necessary. In the rolling process, several mechanical and thermal influences interact with each other to form the strip shape at the roll gap exit. In the present analysis, a process model for rolling of strip and sheet is presented. The core feature of the process model is a two-dimensional stress distribution model based on von Karman's differential equation. Sub models for the mechanical influences of work roll flattening as well as work and backup roll deflection and the thermal influence of work roll expansion have been developed or extended. The two-dimensional stress distribution serves as an input parameter for the roll deformation models. For work roll flattening, a three-dimensional model based on the Boussinesq problem is adopted, while the work and backup roll deflection, including contact flattening is calculated by means of finite beam elements. The thermal work roll crown is calculated with help of an axisymmetric numerical solution of the heat equation for the work roll, considering azimuthal averaging for the boundary conditions at the work roll surface. Results are presented for hot rolling of a strip in a seven-stand finishing train of a hot strip mill, showing the calculated evolution of the strip profile. A variation of the strip profile from the first to the 20th rolled strip is shown. This variation is addressed to the progressive increase of work roll temperature during the first 20 strips. It is shown that a CVC® system can lead to improvements in strip profile and therefore flatness.
NASA Technical Reports Server (NTRS)
Buchele, D. R.
1977-01-01
A computer program to calculate the temperature profile of a flame or hot gas was presented in detail. Emphasis was on profiles found in jet engine or rocket engine exhaust streams containing H2O or CO2 radiating gases. The temperature profile was assumed axisymmetric with an assumed functional form controlled by two variable parameters. The parameters were calculated using measurements of gas radiation at two wavelengths in the infrared. The program also gave some information on the pressure profile. A method of selection of wavelengths was given that is likely to lead to an accurate determination of the parameters. The program is written in FORTRAN IV language and runs in less than 60 seconds on a Univac 1100 computer.
Weathering profiles in soils and rocks on Earth and Mars
NASA Astrophysics Data System (ADS)
Hausrath, E.; Adcock, C. T.; Bamisile, T.; Baumeister, J. L.; Gainey, S.; Ralston, S. J.; Steiner, M.; Tu, V.
2017-12-01
Interactions of liquid water with rock, soil, or sediments can result in significant chemical and mineralogical changes with depth. These changes can include transformation from one phase to another as well as translocation, addition, and loss of material. The resulting chemical and mineralogical depth profiles can record characteristics of the interacting liquid water such as pH, temperature, duration, and abundance. We use a combined field, laboratory, and modeling approach to interpret the environmental conditions preserved in soils and rocks. We study depth profiles in terrestrial field environments; perform dissolution experiments of primary and secondary phases important in soil environments; and perform numerical modeling to quantitatively interpret weathering environments. In our field studies we have measured time-integrated basaltic mineral dissolution rates, and interpreted the impact of pH and temperature on weathering in basaltic and serpentine-containing rocks and soils. These results help us interpret fundamental processes occurring in soils on Earth and on Mars, and can also be used to inform numerical modeling and laboratory experiments. Our laboratory experiments provide fundamental kinetic data to interpret processes occurring in soils. We have measured dissolution rates of Mars-relevant phosphate minerals, clay minerals, and amorphous phases, as well as dissolution rates under specific Mars-relevant conditions such as in concentrated brines. Finally, reactive transport modeling allows a quantitative interpretation of the kinetic, thermodynamic, and transport processes occurring in soil environments. Such modeling allows the testing of conditions under longer time frames and under different conditions than might be possible under either terrestrial field or laboratory conditions. We have used modeling to examine the weathering of basalt, olivine, carbonate, phosphate, and clay minerals, and placed constraints on the duration, pH, and solution chemistry of past aqueous alteration occurring on Mars.
Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi
2014-10-06
Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.
NASA Technical Reports Server (NTRS)
Moore, D. G. (Principal Investigator); Heilman, J.; Tunheim, J. A.; Baumberger, V.
1978-01-01
The author has identified the following significant results. To investigate the general relationship between surface temperature and soil moisture profiles, a series of model calculations were carried out. Soil temperature profiles were calculated during a complete diurnal cycle for a variety of moisture profiles. Preliminary results indicate the surface temperature difference between two sites measured at about 1400 hours is related to the difference in soil moisture within the diurnal damping depth (about 50 cm). The model shows this temperature difference to vary considerably throughout the diurnal cycle.
Advances in atmospheric temperature profile measurements using high spectral resolution lidar
NASA Astrophysics Data System (ADS)
Razenkov, Ilya I.; Eloranta, Edwin W.
2018-04-01
This paper reports the atmospheric temperature profile measurements using a University of Wisconsin-Madison High Spectral Resolution Lidar (HSRL) and describes improvements in the instrument performance. HSRL discriminates between Mie and Rayleigh backscattering [1]. Thermal motion of molecules broadens the spectrum of the transmitted laser light due to Doppler effect. The HSRL exploits this property to allow the absolute calibration of the lidar and measurements of the aerosol volume backscatter coefficient. Two iodine absorption filters with different line widths are used to resolve temperature sensitive changes in Rayleigh backscattering for atmospheric temperature profile measurements.
Tropospheric temperature measurements using a rotational raman lidar
NASA Astrophysics Data System (ADS)
Lee, Robert Benjamin, III
Using the Hampton University (HU) Mie and Raman lidar, tropospheric temperature profiles were inferred from lidar measurements of anti-Stokes rotational Raman (RR) backscattered laser light from atmospheric nitrogen and oxygen molecules. The molecules were excited by 354.7 nanometer (nm) laser light emitted by the HU lidar. Averaged over 60-minute intervals, RR backscattered signals were detected in narrow 353.35 nm and 354.20 nm spectral bands with full-widths-at-half-maxima (FWHM) of 0.3 nm. During the special April 19-30, 2012, Ground-Based Remote Atmospheric Sounding Program (GRASP) campaign, the lidar temperature calibration coefficients were empirically derived using linear least squares and second order polynomial analyses of the lidar backscattered RR signals and of reference temperature profiles, obtained from radiosondes. The GRASP radiosondes were launched within 400 meters of the HU lidar site. Lidar derived temperature profiles were obtained at altitudes from the surface to over 18 kilometers (km) at night, and up to 5 km during the day. Using coefficients generated from least squares analyses, nighttime profiles were found to agree with profiles from reference radiosonde measurements within 3 K, at altitudes between 4 km and 9 km. Coefficients generated from the second order analyses yielded profiles which agreed with the reference profiles within 1 K uncertainty level in the 4 km to 10 km altitude region. Using profiles from GRASP radiosondes, the spatial and temporal homogeneities of the atmosphere, over HU, were estimated at the 1.5 K level within a 10 km radius of HU, and for observational periods approaching 3 hours. Theoretical calibration coefficients were derived from the optical and physical properties of the HU RR lidar and from the spectroscopic properties of atmospheric molecular nitrogen and oxygen. The theoretical coefficients along with lidar measurements of sky background radiances were used to evaluate the temporal stability of the empirically derived temperature profiles from the RR lidar measurements. The evaluations revealed systematic drifts in the coefficients. Frequent reference radiosonde temperature profiles should be used to correct for the drifts in the coefficients. For the first time, the cause of the coefficient drifts has been identified as the differences in the aging of the spectral responses of the HU lidar detector pairs. For the first time, the use of lidar sky background measurements was demonstrated as a useful technique to correct for the coefficient drift. This research should advance the derivations of lidar temperature calibration coefficients which can be used for long observational periods of temperature fields without the need for frequent lidar calibrations using radiosondes.
Raising of Operating a Motor Vehicle Effects on Environment in Winter
NASA Astrophysics Data System (ADS)
Ertman, S. A.; Ertman, J. A.; Zakharov, D. A.
2016-08-01
Severe low-temperature conditions, in which considerable part of Russian Motor Park is operated, affect vehicles negatively. Cold weather causes higher fuel consumption and C02 emissions always. It is because of temperature profile changing of automobile motors, other systems and materials. For enhancement of car operation efficiency in severe winter environment the dependency of engine warm-up and cooling time on ambient air temperature and wind speed described by multifactorial mathematical models is established. -On the basis of experimental research it was proved that the coolant temperature constitutes the engine representative temperature and may be used as representative temperature of engine at large. The model of generation of integrated index for vehicle adaptability to winter operating conditions by temperature profile of engines was developed. the method for evaluation of vehicle adaptability to winter operating conditions by temperature profile of engines allows to decrease higher fuel consumption in cold climate.
A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine
NASA Astrophysics Data System (ADS)
Brito, C. H. G.; Maia, C. B.; Sodré, J. R.
2015-09-01
This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.
BOREAS AFM-06 Mean Temperature Profile Data
NASA Technical Reports Server (NTRS)
Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)
2000-01-01
The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from the National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) tower from 21 May 1994 to 20 Sep 1994. The data set provides temperature profiles at 15 heights, containing the variables of virtual temperature, vertical velocity, the speed of sound, and w-bar. The data are stored in tabular ASCII files. The mean temperature profile data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).
The Implications of 3D Thermal Structure on 1D Atmospheric Retrieval
NASA Astrophysics Data System (ADS)
Blecic, Jasmina; Dobbs-Dixon, Ian; Greene, Thomas
2017-10-01
Using the atmospheric structure from a 3D global radiation-hydrodynamic simulation of HD 189733b and the open-source Bayesian Atmospheric Radiative Transfer (BART) code, we investigate the difference between the secondary-eclipse temperature structure produced with a 3D simulation and the best-fit 1D retrieved model. Synthetic data are generated by integrating the 3D models over the Spitzer, the Hubble Space Telescope (HST), and the James Web Space Telescope (JWST) bandpasses, covering the wavelength range between 1 and 11 μm where most spectroscopically active species have pronounced features. Using the data from different observing instruments, we present detailed comparisons between the temperature-pressure profiles recovered by BART and those from the 3D simulations. We calculate several averages of the 3D thermal structure and explore which particular thermal profile matches the retrieved temperature structure. We implement two temperature parameterizations that are commonly used in retrieval to investigate different thermal profile shapes. To assess which part of the thermal structure is best constrained by the data, we generate contribution functions for our theoretical model and each of our retrieved models. Our conclusions are strongly affected by the spectral resolution of the instruments included, their wavelength coverage, and the number of data points combined. We also see some limitations in each of the temperature parametrizations, as they are not able to fully match the complex curvatures that are usually produced in hydrodynamic simulations. The results show that our 1D retrieval is recovering a temperature and pressure profile that most closely matches the arithmetic average of the 3D thermal structure. When we use a higher resolution, more data points, and a parametrized temperature profile that allows more flexibility in the middle part of the atmosphere, we find a better match between the retrieved temperature and pressure profile and the arithmetic average. The Spitzer and HST simulated observations sample deep parts of the planetary atmosphere and provide fewer constraints on the temperature and pressure profile, while the JWST observations sample the middle part of the atmosphere, providing a good match with the middle and most complex part of the arithmetic average of the 3D temperature structure.
Finite Element Modelling and Analysis of Conventional Pultrusion Processes
NASA Astrophysics Data System (ADS)
Akishin, P.; Barkanov, E.; Bondarchuk, A.
2015-11-01
Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.
REMPI-TOFMS for on-line monitoring and controlling the coffee roasting process
NASA Astrophysics Data System (ADS)
Dorfner, Ralph; Ferge, Thomas; Yeretzian, Chahan; Zimmermann, Ralf; Kettrup, Antonius
2001-08-01
REMPI@266nm-TOFMS is used for on-line analysis of the coffee roasting process. Volatile and flavor active compounds of coffee were ionized by REMPI@266nm and monitored on-line and in real-time by TOFMS during the coffee roasting process. The phenol and 4-vinylguaiacol time-intensity profiles, for example, show typical behavior for different roasting temperatures and provide an indicator to the achieved degree of roasting. The impact of the moisture level of the green coffee beans on the time shift of a typical (commercial) roasting time, correlates with REMPI-TOFMS measurements and literature data.
Piezoresistive Cantilever Performance—Part I: Analytical Model for Sensitivity
Park, Sung-Jin; Doll, Joseph C.; Pruitt, Beth L.
2010-01-01
An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors. PMID:20336183
Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity.
Park, Sung-Jin; Doll, Joseph C; Pruitt, Beth L
2010-02-01
An accurate analytical model for the change in resistance of a piezoresistor is necessary for the design of silicon piezoresistive transducers. Ion implantation requires a high-temperature oxidation or annealing process to activate the dopant atoms, and this treatment results in a distorted dopant profile due to diffusion. Existing analytical models do not account for the concentration dependence of piezoresistance and are not accurate for nonuniform dopant profiles. We extend previous analytical work by introducing two nondimensional factors, namely, the efficiency and geometry factors. A practical benefit of this efficiency factor is that it separates the process parameters from the design parameters; thus, designers may address requirements for cantilever geometry and fabrication process independently. To facilitate the design process, we provide a lookup table for the efficiency factor over an extensive range of process conditions. The model was validated by comparing simulation results with the experimentally determined sensitivities of piezoresistive cantilevers. We performed 9200 TSUPREM4 simulations and fabricated 50 devices from six unique process flows; we systematically explored the design space relating process parameters and cantilever sensitivity. Our treatment focuses on piezoresistive cantilevers, but the analytical sensitivity model is extensible to other piezoresistive transducers such as membrane pressure sensors.
NASA Technical Reports Server (NTRS)
Tiao, G. C.
1992-01-01
Work performed during the project period July 1, 1990 to June 30, 1992 on the statistical analysis of stratospheric temperature data, rawinsonde temperature data, and ozone profile data for the detection of trends is described. Our principal topics of research are trend analysis of NOAA stratospheric temperature data over the period 1978-1989; trend analysis of rawinsonde temperature data for the period 1964-1988; trend analysis of Umkehr ozone profile data for the period 1977-1991; and comparison of observed ozone and temperature trends in the lower stratosphere. Analysis of NOAA stratospheric temperature data indicates the existence of large negative trends at 0.4 mb level, with magnitudes increasing with latitudes away from the equator. Trend analysis of rawinsonde temperature data over 184 stations shows significant positive trends about 0.2 C per decade at surface to 500 mb range, decreasing to negative trends about -0.3 C at 100 to 50 mb range, and increasing slightly at 30 mb level. There is little evidence of seasonal variation in trends. Analysis of Umkehr ozone data for 12 northern hemispheric stations shows significant negative trends about -.5 percent per year in Umkehr layers 7-9 and layer 3, but somewhat less negative trends in layers 4-6. There is no pronounced seasonal variation in trends, especially in layers 4-9. A comparison was made of empirical temperature trends from rawinsonde data in the lower stratosphere with temperature changes determined from a one-dimensional radiative transfer calculation that prescribed a given ozone change over the altitude region, surface to 50 km, obtained from trend analysis of ozonsonde and Umkehr profile data. The empirical and calculated temperature trends are found in substantive agreement in profile shape and magnitude.
2002-02-26
VANDENBERG AFB, CALIF. -- The Aqua-EOS satellite rests on a stand in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002
2002-02-27
VANDENBERG AFB, CALIF. -- The Aqua-EOS satellite is lifted to vertical in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002
2002-02-27
VANDENBERG AFB, CALIF. -- The Aqua-EOS satellite is lifted by an overhead crane in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002
2002-02-28
VANDENBERG AFB, CALIF. -- The Aqua-EOS satellite is again horizontal for instrument deployment while in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002
2002-02-28
VANDENBERG AFB, CALIF. -- Workers in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB work on instrument deployment of the Aqua-EOS satellite. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002
2002-02-26
VANDENBERG AFB, CALIF. -- The Aqua-EOS satellite is uncovered in the Spaceport Systems International (SSI) payload processing facility on South Vandenberg AFB. Aqua will provide a six year chronology of the planet and its processes. Comprehensive measurements taken by its onboard instruments will allow scientists to assess long-term change, identify its human and natural causes and advance the development of models for long-term forecasting. The Focus for the Aqua Project is the multi-disciplinary study of the Earth's Interrelated Processes (atmosphere, oceans, and land surface) and their relationship to earth system changes. The global change research emphasized with the Aqua instrument data sets include: atmospheric temperature and humidity profiles, clouds, precipitation and radiative balance; terrestrial snow and sea ice; sea surface temperature and ocean productivity; soil moisture; and the improvement of numerical weather prediction. Aqua-EOS is scheduled for launch aboard a Delta II 7920-10L vehicle on April 18, 2002
Groups and the Entropy Floor: XMM-Newton Observations of Two Groups
NASA Technical Reports Server (NTRS)
Mushotzky, R. F.; Figueroa-Feliciano, E.; Loewenstein, M.; Snowden, S. L.
2002-01-01
Using XMM-Newton spatially resolved X-ray imaging spectroscopy we obtain the temperature, density, entropy, gas mass, and total mass profiles for two groups of galaxies out to approximately 0.3 R(sub vir)(R(sub vir), the virial radius). Our density profiles agree well with those derived previously, and the temperature data are broadly consistent with previous results but are considerably more precise. Both of these groups are at the mass scale of 2x10(exp 13) M(solar mass), but have rather different properties. Both have considerably lower gas mass fractions at r < 0.3 R(sub vir), than the rich clusters. NGC2563, one of the least luminous groups for its X-ray temperature, has a very low gas mass fraction of approximately 0.004 inside 0.1 R(sub vir), which increases with radius. NGC4325, one of the most luminous groups at the same average temperature, has a higher gas mass fraction of 0.02. The entropy profiles and the absolute values of the entropy as a function of virial radius also differ, with NGC4325 having a value of approximately 100 keV cm(exp -2) and NGC2563 a value of approximately 300 keV cm(exp -2) at r approximately 0.1 R(sub vir). For both groups the profiles rise monotonically with radius and there is no sign of an entropy 'floor'. These results are inconsistent with pre-heating scenarios that have been developed to explain a possible entropy floor in groups, but are broadly consistent with models of structure formation that include the effects of heating and/or the cooling of the gas. The total entropy in these systems provides a strong constraint on all models of galaxy and group formation, and on the poorly defined feedback process that controls the transformation of gas into stars and thus the formation of structure in the universe.
LOFAR observations of the quiet solar corona
NASA Astrophysics Data System (ADS)
Vocks, C.; Mann, G.; Breitling, F.; Bisi, M. M.; Dąbrowski, B.; Fallows, R.; Gallagher, P. T.; Krankowski, A.; Magdalenić, J.; Marqué, C.; Morosan, D.; Rucker, H.
2018-06-01
Context. The quiet solar corona emits meter-wave thermal bremsstrahlung. Coronal radio emission can only propagate above that radius, Rω, where the local plasma frequency equals the observing frequency. The radio interferometer LOw Frequency ARray (LOFAR) observes in its low band (10-90 MHz) solar radio emission originating from the middle and upper corona. Aims: We present the first solar aperture synthesis imaging observations in the low band of LOFAR in 12 frequencies each separated by 5 MHz. From each of these radio maps we infer Rω, and a scale height temperature, T. These results can be combined into coronal density and temperature profiles. Methods: We derived radial intensity profiles from the radio images. We focus on polar directions with simpler, radial magnetic field structure. Intensity profiles were modeled by ray-tracing simulations, following wave paths through the refractive solar corona, and including free-free emission and absorption. We fitted model profiles to observations with Rω and T as fitting parameters. Results: In the low corona, Rω < 1.5 solar radii, we find high scale height temperatures up to 2.2 × 106 K, much more than the brightness temperatures usually found there. But if all Rω values are combined into a density profile, this profile can be fitted by a hydrostatic model with the same temperature, thereby confirming this with two independent methods. The density profile deviates from the hydrostatic model above 1.5 solar radii, indicating the transition into the solar wind. Conclusions: These results demonstrate what information can be gleaned from solar low-frequency radio images. The scale height temperatures we find are not only higher than brightness temperatures, but also than temperatures derived from coronograph or extreme ultraviolet (EUV) data. Future observations will provide continuous frequency coverage. This continuous coverage eliminates the need for local hydrostatic density models in the data analysis and enables the analysis of more complex coronal structures such as those with closed magnetic fields.
Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter
NASA Technical Reports Server (NTRS)
Sada, P. V.; Bjoraker, G. L.; Jennings, D. E.; McCabe, G. H.; Romani, P. N.
1998-01-01
We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. c1998 Academic Press.
Effects of Cross-Shelf Physical Forcing on Satellite Bio-Optical Properties
NASA Astrophysics Data System (ADS)
Ladner, S. D.; Teague, W. J.; Mitchell, D. A.; Goode, W. A.; Gould, R. W.; Arnone, R. A.
2005-05-01
Our goal is to determine the effects of cross-shelf physical forcing on the optical properties in the northern Gulf of Mexico using in situ optical profiles and surface ocean color satellite images from SeaWiFS. The Naval Research Laboratory at Stennis Space Center is conducting an extensive monitoring program in the Northeast Gulf of Mexico west of the Desoto Canyon. During the Slope to Shelf Energetics and Exchange Dynamics (SEED) project, 14 bottom mounted Acoustic Doppler Current Profilers (ADCP's) were deployed from May-December 2004 along the shelf break at depths ranging from 60 to 1000 meters to improve understanding of cross-shelf exchange processes. Analysis of the May current data indicate abnormal events, including 30 cm/s off-shelf currents throughout the water column and a 3° Celsius elevation in bottom temperature. Coincident optical profiles were collected in May (absorption, scattering coefficients) and are compared with currents and physical properties (temperature, salinity). Similar subsurface abnormalities with stronger currents occurred in September during the passing of Hurricane Ivan over the mooring sites. We will show a time series of near-surface current speeds and their effect on the surface-satellite optical properties over the entire SEED sampling exercise.
Satellite radio occultation investigations of internal gravity waves in the planetary atmospheres
NASA Astrophysics Data System (ADS)
Kirillovich, Ivan; Gubenko, Vladimir; Pavelyev, Alexander
Internal gravity waves (IGWs) modulate the structure and circulation of the Earth’s atmosphere, producing quasi-periodic variations in the wind velocity, temperature and density. Similar effects are anticipated for the Venus and Mars since IGWs are a characteristic of stably stratified atmosphere. In this context, an original method for the determination of IGW parameters from a vertical temperature profile measurement in a planetary atmosphere has been developed [Gubenko et al., 2008, 2011, 2012]. This method does not require any additional information not contained in the profile and may be used for the analysis of profiles measured by various techniques. The criterion for the IGW identification has been formulated and argued. In the case when this criterion is satisfied, the analyzed temperature fluctuations can be considered as wave-induced. The method is based on the analysis of relative amplitudes of the wave field and on the linear IGW saturation theory in which these amplitudes are restricted by dynamical (shear) instability processes in the atmosphere. When the amplitude of an internal wave reaches the shear instability threshold, energy is assumed to be dissipated in such a way that the IGW amplitude is maintained at the instability threshold level as the wave propagates upwards. We have extended the developed technique [Gubenko et al., 2008] in order to reconstruct the complete set of wave characteristics including such important parameters as the wave kinetic and potential energy per unit mass and IGW fluxes of the energy and horizontal momentum [Gubenko et al., 2011]. We propose also an alternative method to estimate the relative amplitudes and to extract IGW parameters from an analysis of perturbations of the Brunt-Vaislala frequency squared [Gubenko et al., 2011]. An application of the developed method to the radio occultation (RO) temperature data has given the possibility to identify the IGWs in the Earth's, Martian and Venusian atmospheres and to determine the magnitudes of key wave parameters such as the intrinsic frequency, amplitudes of vertical and horizontal wind velocity perturbations, vertical and horizontal wavelengths, intrinsic vertical and horizontal phase (and group) speeds, kinetic and potential energy per unit mass, vertical fluxes of the wave energy and horizontal momentum. Vertical profiles of temperature retrieved from RO measurements of the CHAMP (Earth), Mars Global Surveyor (Mars), Magellan and Venus Express (Venus) missions are used and analyzed to identify discrete or “narrow spectral” wave events and to determine IGW characteristics in the Earth’s, Martian and Venusian atmospheres. This work was partially supported by the RFBR grant 13-02-00526-a and Program 22 of the RAS Presidium. References. Gubenko V.N., Pavelyev A.G., Andreev V.E. Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement // J. Geophys. Res. 2008. V. 113. No.D08109, doi:10.1029/2007JD008920. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Pavelyev A.A. Reconstruction of internal gravity wave parameters from radio occultation retrievals of vertical temperature profiles in the Earth’s atmosphere // Atmos. Meas. Tech. 2011. V. 4. No.10. P. 2153-2162, doi:10.5194/amt-4-2153-2011. Gubenko V.N., Pavelyev A.G., Salimzyanov R.R., Andreev V.E. A method for determination of internal gravity wave parameters from a vertical temperature or density profile measurement in the Earth’s atmosphere // Cosmic Res. 2012. V. 50. No.1. P. 21-31, doi: 10.1134/S0010952512010029.
NASA Technical Reports Server (NTRS)
Batur, Celal
1991-01-01
The objective of this research is to control the dynamics of multizone programmable crystal growth furnaces. Due to the inevitable heat exchange among different heating zones and the transient nature of the process, the dynamics of multizone furnaces is time varying, distributed, and therefore complex in nature. Electrical power to heating zones and the translational speed of the ampoule are employed as inputs to control the dynamics. Structural properties of the crystal is the ultimate aim of this adaptive control system. These properties can be monitored in different ways. Following an order of complexity, these may include: (1) on line measurement of the material optical properties such as the refractive index of crystal; (2) on line x-ray imaging of the interface topology; (3) on line optical quantification of the interface profile such as the determination of concavity or convexity of the interface shape; and (4) on line temperature measurement at points closest to the material such as measurements of the ampoule's outside and inside surface temperatures. The research performed makes use of the temperature and optical measurements, specified in (3) and (4) as the outputs of furnace dynamics. However, if the instrumentation is available, the proposed control methodology can be extended to the measurements listed in (1) and (2).
Evaluation of brightness temperature from a forward model of ground-based microwave radiometer
NASA Astrophysics Data System (ADS)
Rambabu, S.; Pillai, J. S.; Agarwal, A.; Pandithurai, G.
2014-06-01
Ground-based microwave radiometers are getting great attention in recent years due to their capability to profile the temperature and humidity at high temporal and vertical resolution in the lower troposphere. The process of retrieving these parameters from the measurements of radiometric brightness temperature ( T B ) includes the inversion algorithm, which uses the back ground information from a forward model. In the present study, an algorithm development and evaluation of this forward model for a ground-based microwave radiometer, being developed by Society for Applied Microwave Electronics Engineering and Research (SAMEER) of India, is presented. Initially, the analysis of absorption coefficient and weighting function at different frequencies was made to select the channels. Further the range of variation of T B for these selected channels for the year 2011, over the two stations Mumbai and Delhi is discussed. Finally the comparison between forward-model simulated T B s and radiometer measured T B s at Mahabaleshwar (73.66 ∘E and 17.93∘N) is done to evaluate the model. There is good agreement between model simulations and radiometer observations, which suggests that these forward model simulations can be used as background for inversion models for retrieving the temperature and humidity profiles.
Molecular rotational line profiles from oxygen-rich red giant winds
NASA Technical Reports Server (NTRS)
Justtanont, K.; Skinner, C. J.; Tielens, A. G. G. M.
1994-01-01
We have developed a radiative transfer model of the dust and gas envelopes around late-type stars. The gas kinetic temperature for each star is calculated by solving equations of motion and the energy balance simultaneously. The main processes include viscous heating and adiabatic and radiative cooling. Heating is dominated by viscosity as the grains stream outward through the gas, with some contribution in oxygen-rich stars by near-IR pumping of H2O followed by collisional de-excitation in the inner envelope. For O-rich stars, rotational H2O cooling is a dominant mechanism in the middle part of the envelope, with CO cooling being less significant. We have applied our model to three well-studied oxygen-rich red giant stars. The three stars cover a wide range of mass-loss rates, and hence they have different temperature structures. The derived temperature structures are used in calculating CO line profiles for these objects. Comparison of the dust and gas mass-loss rates suggests that mass-loss rates are not constant during the asymptotic giant branch phase. In particular, the results show that the low CO 1-0 antenna temperatures of OH/IR stars reflect an earlier phase of much lower mass-loss rate.
NASA Astrophysics Data System (ADS)
Potter, A. E.; Morgan, T. H.
1997-07-01
In the course of mapping the sodium emission from Mercury, we found that the sodium exosphere appears to extend to considerable altitudes above the planet (Potter and Morgan, 1997). This suggests that some of the sodium is at a high temperature, but blurring of the data by atmospheric seeing makes it difficult to estimate a temperature from the altitude dependence of the emission. Another way to estimate temperature is to measure the broadening of the emission line caused by thermal motions. We attempted this approach earlier (Potter and Morgan, 1987), but the signal-to-noise in the spectrum was low, and the result was somewhat questionable. We have repeated the measurement,using a modern CCD detector, and obtained a spectrum with excellent signal-to- noise at a spectral resolution of about 600,000. The resulting line profile clearly shows a temperature in excess of a thousand degrees. We are initiating detailed analysis of the line profile, and expect that it will provide new insights into the processes that produce sodium in the exosphere of Mercury. Potter, A.E. and T.H. Morgan, 1987, Variation of sodium on Mercury with solar radiation pressure. Icarus 71, 472-477 Potter, A.E. and T.H. Morgan, 1997, Evidence for suprathermal sodium on Mercury. Presented 31st COSPAR meeting, July 14-21, 1996. To be published, Advances in Space Research.
Mohammed, Muzaffer; Aslan, Kadir
2013-01-01
We demonstrate the design and the proof-of-concept use of a new, circular poly(methyl methacrylate)-based bioassay platform (PMMA platform), which affords for the rapid processing of 16 samples at once. The circular PMMA platform (5 cm in diameter) was coated with a silver nanoparticle film to accelerate the bioassay steps by microwave heating. A model colorimetric bioassay for biotinylated albumin (using streptavidin-labeled horse radish peroxidase) was performed on the PMMA platform coated with and without silver nanoparticles (a control experiment), and at room temperature and using microwave heating. It was shown that the simulated temperature profile of the PMMA platform during microwave heating were comparable to the real-time temperature profile during actual microwave heating of the constructed PMMA platform in a commercial microwave oven. The model colorimetric bioassay for biotinylated albumin was successfully completed in ~2 min (total assay time) using microwave heating, as compared to 90 min at room temperature (total assay time), which indicates a ~45-fold decrease in assay time. Our PMMA platform design afforded for significant reduction in non-specific interactions and low background signal as compared to non-silvered PMMA surfaces when employed in a microwave-accelerated bioassay carried out in a conventional microwave cavity.
Controlled meteorological (CMET) balloon profiling of the Arctic atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Roberts, Tjarda; Hole, Lars; Voss, Paul
2017-04-01
We demonstrate profiling of the atmospheric boundary layer over Arctic ice-free and sea-ice covered regions by free-floating controllable CMET balloons. The CMET observations (temperature, humidity, wind-speed, pressure) provide in-situ meteorological datasets in very remote regions for comparison to atmospheric models. Controlled Meteorological (CMET) balloons are small airborne platforms that use reversible lift-gas compression to regulate altitude. These balloons have approximately the same payload mass as standard weather balloons but can float for many days, change altitude on command, and transmit meteorological and system data in near-real time via satellite. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard (Spitsbergen) over 5-12 May 2011 and measured vertical atmospheric profiles (temperature, humidity, wind) over coastal and remote areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic atmospheric boundary layer (ABL) over a period of more than 10 h. Profiles from two CMET flights are compared to model output from ECMWF Era-Interim reanalysis (ERA-I) and to a high-resolution (15 km) Arctic System Reanalysis (ASR) product. To the east of Svalbard over sea-ice, the CMET observed a stable ABL profile with a temperature inversion that was reproduced by ASR but not captured by ERA-I. In a coastal ice-free region to the west of Svalbard, the CMET observed a stable ABL with strong wind-shear. The CMET profiles document increases in ABL temperature and humidity that are broadly reproduced by both ASR and ERA-I. The ASR finds a more stably stratified ABL than observed but captured the wind shear in contrast to ERA-I. Detailed analysis of the coastal CMET-automated soundings identifies small-scale temperature and humidity variations with a low-level flow and provides an estimate of local wind fields. We show that CMET balloons are a valuable approach for profiling the free atmosphere and atmospheric boundary layer in remote regions such as the Arctic, where few other in-situ observations are available to trace processes and for model evaluation. References: Roberts, T. J., Dütsch, M., Hole, L. R., and Voss, P. B.: Controlled meteorological (CMET) free balloon profiling of the Arctic atmospheric boundary layer around Spitsbergen compared to ERA-Interim and Arctic System Reanalyses. Atmos. Chem. Phys., 16, 12383-12396, doi:10.5194/acp-16-12383-2016, 2016. Hole L. R., Bello A. P., Roberts T. J., Voss P. B., Vihma T.: Measurements by controlled meteorological balloons in coastal areas of Antarctica. Antarctic Science, 1-8, doi:10.1017/S0954102016000213, 2016. Voss P. B., Hole L. R., Helbling E. F., Roberts T. J.: Continuous in-situ soundings in the arctic boundary layer: a new atmospheric measurement technique using controlled meteorological balloons. Journal of Intelligent Robot Systems, 70, 609-617, doi 10.1007/s10846-012-9758-6, 2013.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Cacciani, Marco; Summa, Donato; Scoccione, Andrea; De Rosa, Benedetto; Behrendt, Andreas; Wulfmeyer, Volker
2017-01-01
Measurements carried out by the University of Basilicata Raman lidar system (BASIL) are reported to demonstrate the capability of this instrument to characterise turbulent processes within the convective boundary layer (CBL). In order to resolve the vertical profiles of turbulent variables, high-resolution water vapour and temperature measurements, with a temporal resolution of 10 s and vertical resolutions of 90 and 30 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of autocovariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (11:30-13:30 UTC, 20 April 2013) from the High Definition Clouds and Precipitation for Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE), held in western Germany in the spring 2013. A new correction scheme for the removal of the elastic signal crosstalk into the low quantum number rotational Raman signal is applied. The noise errors are small enough to derive up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations.To the best of our knowledge, BASIL is the first Raman lidar with a demonstrated capability to simultaneously retrieve daytime profiles of water vapour turbulent fluctuations up to the fourth order throughout the atmospheric CBL. This is combined with the capability of measuring daytime profiles of temperature fluctuations up to the fourth order. These measurements, in combination with measurements from other lidar and in situ systems, are important for verifying and possibly improving turbulence and convection parameterisation in weather and climate models at different scales down to the grey zone (grid increment ˜ 1 km; Wulfmeyer et al., 2016).For the considered case study, which represents a well-mixed and quasi-stationary CBL, the mean boundary layer height is found to be 1290 ± 75 m above ground level (a.g.l.). Values of the integral scale for water vapour and temperature fluctuations at the top of the CBL are in the range of 70-125 and 75-225 s, respectively; these values are much larger than the temporal resolution of the measurements (10 s), which testifies that the temporal resolution considered for the measurements is sufficiently high to resolve turbulent processes down to the inertial subrange and, consequently, to resolve the major part of the turbulent fluctuations. Peak values of all moments are found in the interfacial layer in the proximity of the top of the CBL. Specifically, water vapour and temperature second-order moments (variance) have maximum values of 0.29 g2 kg-2 and 0.26 K2; water vapour and temperature third-order moments have peak values of 0.156 g3 kg-3 and -0.067 K3, while water vapour and temperature fourth-order moments have maximum values of 0.28 g4 kg-4 and 0.24 K4. Water vapour and temperature kurtosis have values of ˜ 3 in the upper portion of the CBL, which indicate normally distributed humidity and temperature fluctuations. Reported values of the higher-order moments are in good agreement with previous measurements at different locations, thus providing confidence in the possibility of using these measurements for turbulence parameterisation in weather and climate models.In the determination of the temperature profiles, particular care was dedicated to minimise potential effects associated with elastic signal crosstalk on the rotational Raman signals. For this purpose, a specific algorithm was defined and tested to identify and remove the elastic signal crosstalk and to assess the residual systematic uncertainty affecting temperature measurements after correction. The application of this approach confirms that, for the present Raman lidar system, the crosstalk factor remains constant with time; consequently an appropriate assessment of its constant value allows for a complete removal of the leaking elastic signal from the rotational Raman lidar signals at any time (with a residual error on temperature measurements after correction not exceeding 0.18 K).
Abbott, Sunshine S; Harrison, T Mark; Schmitt, Axel K; Mojzsis, Stephen J
2012-08-21
Few terrestrial localities preserve more than a trace lithic record prior to ca. 3.8 Ga greatly limiting our understanding of the first 700 Ma of Earth history, a period inferred to have included a spike in the bolide flux to the inner solar system at ca. 3.85-3.95 Ga (the Late Heavy Bombardment, LHB). An accessible record of this era may be found in Hadean detrital zircons from the Jack Hills, Western Australia, in the form of μm-scale epitaxial overgrowths. By comparing crystallization temperatures of pre-3.8 Ga zircon overgrowths to the archive of zircon temperature spectra, it should, in principle, be possible to identify a distinctive impact signature. We have developed Ti-U-Th-Pb ion microprobe depth profiling to obtain age and temperature information within these zircon overgrowths and undertaken a feasibility study of its possible use in identifying impact events. Of eight grains profiled in this fashion, four have overgrowths of LHB-era age. Age vs. temperature profiles reveal a period between ca. 3.85-3.95 Ga (i.e., LHB era) characterized by significantly higher temperatures (approximately 840-875 °C) than do older or younger zircons or zircon domains (approximately 630-750 °C). However, temperatures approaching 900 °C can result in Pb isotopic exchange rendering interpretation of these profiles nonunique. Coupled age-temperature depth profiling shows promise in this role, and the preliminary data we report could represent the first terrestrial evidence for impact-related heating during the LHB.
The effect of safety factor profile on transport in steady-state, high-performance scenarios
Holcomb, C. T.; Ferron, J. R.; Luce, T. C.; ...
2012-03-09
In this study, an analysis of the dependence of transport on the safety factor profile in high-performance, steady-state scenario discharges is presented. This is based on experimental scans of q 95 and q min taken with fixed β N, toroidal field, double-null plasma shape, divertor pumping, and electron cyclotron current drive input. The temperature and thermal diffusivity profiles were found to vary considerably with the q-profile, and these variations were significantly different for electrons and ions. With fixed q 95, both temperature profiles increase and broaden as q min is increased and the magnetic shear becomes low or negative inmore » the inner half radius, but these temperature profile changes are stronger for the electrons. Power balance calculations show the peak in the ion thermal diffusivity (χ i) at ρ – 0.6 – 0.8 increases with q 95 or q min.« less
NASA Astrophysics Data System (ADS)
Wang, S.; Zhan, H.; Chen, X.; Hu, Y.
2017-12-01
There were a great many projects of reconstruction soil profile filled with gangue to restore ecological environment and land resources in coal mining areas. A simulation experimental system in laboratory was designed for studying water transport and gas-heat diffusion of the reconstruction soil as to help the process of engineering and soil-ripening technology application. The system could be used for constantly measuring soil content, temperature and soil CO2 concentration by laid sensors and detectors in different depth of soil column. The results showed that soil water infiltration process was slowed down and the water-holding capacity of the upper soil was increased because of good water resistance from coal gangue layer. However, the water content of coal gangue layer, 10% approximately, was significantly lower than that of topsoil for the poor water-holding capacity of gangue. The temperature of coal gangue layer was also greater than that of soil layer and became easily sustainable temperature gradient under the condition with heating in reconstruction soil due to the higher thermal diffusivity from gangue, especially being plenty of temperature difference between gangue and soil layers. The effects of heated from below on topsoil was small, which it was mainly influenced from indoor temperature in the short run. In addition, the temperature changing curve of topsoil is similar with the temperature of laboratory and its biggest fluctuation range was for 2.89°. The effects of aerating CO2 from column bottom on CO2 concentration of topsoil soil was also very small, because gas transport from coal gangue layers to soil ones would easily be cut off as so to gas accumulated below the soil layer. The coal gangue could have a negative impact on microbial living environment to adjacent topsoil layers and declined microorganism activities. The effects of coal gangue on topsoil layer were brought down when the cove soil thickness was at 60 cm. And the influences gradually would be weakened with the thickness increasing.
Içten, Elçin; Giridhar, Arun; Nagy, Zoltan K; Reklaitis, Gintaras V
2016-04-01
The features of a drop-on-demand-based system developed for the manufacture of melt-based pharmaceuticals have been previously reported. In this paper, a supervisory control system, which is designed to ensure reproducible production of high quality of melt-based solid oral dosages, is presented. This control system enables the production of individual dosage forms with the desired critical quality attributes: amount of active ingredient and drug morphology by monitoring and controlling critical process parameters, such as drop size and product and process temperatures. The effects of these process parameters on the final product quality are investigated, and the properties of the produced dosage forms characterized using various techniques, such as Raman spectroscopy, optical microscopy, and dissolution testing. A crystallization temperature control strategy, including controlled temperature cycles, is presented to tailor the crystallization behavior of drug deposits and to achieve consistent drug morphology. This control strategy can be used to achieve the desired bioavailability of the drug by mitigating variations in the dissolution profiles. The supervisor control strategy enables the application of the drop-on-demand system to the production of individualized dosage required for personalized drug regimens.
Thermal modeling of the lithium/polymer battery
NASA Astrophysics Data System (ADS)
Pals, C. R.
1994-10-01
Research in the area of advanced batteries for electric-vehicle applications has increased steadily since the 1990 zero-emission-vehicle mandate of the California Air Resources Board. Due to their design flexibility and potentially high energy and power densities, lithium/polymer batteries are an emerging technology for electric-vehicle applications. Thermal modeling of lithium/polymer batteries is particularly important because the transport properties of the system depend exponentially on temperature. Two models have been presented for assessment of the thermal behavior of lithium/polymer batteries. The one-cell model predicts the cell potential, the concentration profiles, and the heat-generation rate during discharge. The cell-stack model predicts temperature profiles and heat transfer limitations of the battery. Due to the variation of ionic conductivity and salt diffusion coefficient with temperature, the performance of the lithium/polymer battery is greatly affected by temperature. Because of this variation, it is important to optimize the cell operating temperature and design a thermal management system for the battery. Since the thermal conductivity of the polymer electrolyte is very low, heat is not easily conducted in the direction perpendicular to cell layers. Temperature profiles in the cells are not as significant as expected because heat-generation rates in warmer areas of the cell stack are lower than heat-generation rates in cooler areas of the stack. This nonuniform heat-generation rate flattens the temperature profile. Temperature profiles as calculated by this model are not as steep as those calculated by previous models that assume a uniform heat-generation rate.
Soil Temperature and Moisture Profile (STAMP) System Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, David R.
The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are alsomore » useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.« less
N-15 NMR Spectroscopy as a Method for Comparing the Rates of Imidization of Several Diamines
NASA Technical Reports Server (NTRS)
Johnson, J. Christopher; Kuczmarski, Maria A.
2006-01-01
The relative rates of the conversion of amide-acid to imide was measured for a series or aromatic diamines that have been identified as potential replacements for 4,4'-methylene dianiline (MDA) in high-temperature polyimides and polymer composites. These rates were compared with the N-15 NMR resonances of the unreacted amines. The initial rates of imidization track with the difference in chemical shift between the amine nitrogens in MDA and those in the subject diamines. This comparison demonstrated that N-15 NMR spectroscopy is appropriate for the rapid screening of candidate diamines to determine their reactivity relative to MDA, and can serve to provide guidance to the process of creating the time-temperature profiles used in processing these materials into polymer matrix composites.
Ashton, Gage P; Harding, Lindsay P; Parkes, Gareth M B
2017-12-19
This paper describes a new analytical instrument that combines a precisely temperature-controlled hot-stage with digital microscopy and Direct Analysis in Real Time-mass spectrometry (DART-MS) detection. The novelty of the instrument lies in its ability to monitor processes as a function of temperature through the simultaneous recording of images, quantitative color changes, and mass spectra. The capability of the instrument was demonstrated through successful application to four very varied systems including profiling an organic reaction, decomposition of silicone polymers, and the desorption of rhodamine B from an alumina surface. The multidimensional, real-time analytical data provided by this instrument allow for a much greater insight into thermal processes than could be achieved previously.
A review on solder reflow and flux application for flip chip
NASA Astrophysics Data System (ADS)
Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Visvanathan, Susthitha Menon; Retnasamy, Vithyacharan
2017-09-01
This paper encompassed of the evolution and key findings, critical technical challenges, solutions and bonding equipment of solder reflow in flip chip bonding. Upon scrutinizing researches done by others, it can be deduced that peak temperature, time above liquidus, soak temperature, soak time, cooling rate and reflow environment played a vital role in achieving the desired bonding profile. In addition, flux is also needed with the purpose of removing oxides/contaminations on bump surface as well as to promote wetting of solder balls. Electromigration and warpage are the two main challenges faced by solder reflow process which can be overcome by the advancement in under bump metallization (UBM) and substrate technology. The review is ended with a brief description of the current equipment used in solder reflow process.
NASA Astrophysics Data System (ADS)
Du, Huarong; Jhang, Hogun; Hahm, T. S.; Dong, J. Q.; Wang, Z. X.
2017-12-01
We perform a numerical study of linear stability of the ion temperature gradient (ITG) mode and the trapped electron mode (TEM) in tokamak plasmas with inverted density profiles. A local gyrokinetic integral equation is applied for this study. From comprehensive parametric scans, we obtain stability diagrams for ITG modes and TEMs in terms of density and temperature gradient scale lengths. The results show that, for the inverted density profile, there exists a normalized threshold temperature gradient above which the ITG mode and the TEM are either separately or simultaneously unstable. The instability threshold of the TEM for the inverted density profile is substantially different from that for normal and flat density profiles. In addition, deviations are found on the ITG threshold from an early analytic theory in sheared slab geometry with the adiabatic electron response [T. S. Hahm and W. M. Tang, Phys. Fluids B 1, 1185 (1989)]. A possible implication of this work on particle transport in pellet fueled tokamak plasmas is discussed.
Experimental study on temperature profile of fixed - bed gasification of oil-palm fronds
NASA Astrophysics Data System (ADS)
Atnaw, Samson M.; Sulaiman, Shaharin A.; Moni, M. Nazmi Z.
2012-06-01
Currently the world's second largest palm oil producer Malaysia produces large amount of oil palm biomass each year. The abundance of the biomass introduces a challenge to utilize them as main feedstock for heat and energy generation. Although some oil palm parts and derivatives like empty fruit bunch and fibre have been commercialized as fuel, less attention has been given to oil palm fronds (OPF). Initial feasibility and characterization studies of OPF showed that it is highly feasible as fuel for gasification to produce high value gaseous fuel or syngas. This paper discusses the experimental gasification attempt carried out on OPF using a 50 kW lab scale downdraft gasifier and its results. The conducted study focused on the temperature distributions within the reactor and the characteristics of the dynamic temperature profile for each temperature zones during operation. OPF feedstock of one cubic inch in individual size with 15% average moisture content was utilized. An average pyrolysis zone temperature of 324°Cand an average oxidation zone temperature of 796°Cwere obtained over a total gasification period of 74 minutes. A maximum oxidation zone temperature of 952°Cwas obtained at 486 lpm inlet air flow rate and 10 kg/hr feedstock consumption rate. Stable bluish flare was produced for more than 70% of the total gasification time. The recorded temperature profiles produced closely similar patterns with the temperature profiles recorded from the gasification of woody materials. Similar temperature profile was obtained comparing the results from OPF gasification with that of woody biomass. Furthermore, the successful ignition of the syngas produced from OPF gasification ascertained that OPF indeed has a higher potential as gasification feedstock. Hence, more detailed studies need to be done for better understanding in exploiting the biomass as a high prospect alternative energy solution. In addition, a study of the effect of initial moisture content of OPF feedstock on the temperature distribution profile along the gasifier bed showed that initial moisture content of feedstock in the range of 15% gives satisfactory result, while experiment with feedstock having higher moisture content resulted in lower zone temperature values.
NASA Astrophysics Data System (ADS)
Khan, Najeeb Alam; Saeed, Umair Bin; Sultan, Faqiha; Ullah, Saif; Rehman, Abdul
2018-02-01
This study deals with the investigation of boundary layer flow of a fourth grade fluid and heat transfer over an exponential stretching sheet. For analyzing two heating processes, namely, (i) prescribed surface temperature (PST), and (ii) prescribed heat flux (PHF), the temperature distribution in a fluid has been considered. The suitable transformations associated with the velocity components and temperature, have been employed for reducing the nonlinear model equation to a system of ordinary differential equations. The flow and temperature fields are revealed by solving these reduced nonlinear equations through an effective analytical method. The important findings in this analysis are to observe the effects of viscoelastic, cross-viscous, third grade fluid, and fourth grade fluid parameters on the constructed analytical expression for velocity profile. Likewise, the heat transfer properties are studied for Prandtl and Eckert numbers.
Self-assembled patches in PtSi/n-Si (111) diodes
NASA Astrophysics Data System (ADS)
Afandiyeva, I. M.; Altιndal, Ş.; Abdullayeva, L. K.; Bayramova, A. İ.
2018-05-01
Using the effect of the temperature on the capacitance–voltage (C–V) and conductance–voltage (G/ω–V) characteristics of PtSi/n-Si (111) Schottky diodes the profile of apparent doping concentration (N Dapp), the potential difference between the Fermi energy level and the bottom of the conduction band (V n), apparent barrier height (Φ Bapp), series resistance (R s) and the interface state density N ss have been investigated. From the temperature dependence of (C–V) it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K. The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells, which formed due to the process of PtSi formation on semiconductor and the presence of hexagonal voids of Si (111).
NASA Technical Reports Server (NTRS)
Mathews, V. K.; Gross, T. S.
1987-01-01
The mechanical behavior of dendritic web Si ribbons close the melting point was studied experimentally. The goal of the study was to generate data for modeling the generation of stresses and dislocation structures during growth of dendritic web Si ribbons, thereby permitting modifications to the production process, i.e., the temperature profile, to lower production costs for the photovoltaic ribbons. A laser was used to cut specimens in the direction of growth of sample ribbons, which were then subjected to tensile tests at temperatures up to 1300 C in an Ar atmosphere. The tensile strengths of the samples increased when the temperature rose above 1200 C, a phenomena which was attributed to the diffusion of oxygen atoms to the quasi-dislocation sites. The migration to the potential dislocations sites effectively locked the dislocations.
NASA Astrophysics Data System (ADS)
Tsujimura, T., Ii; Kubo, S.; Takahashi, H.; Makino, R.; Seki, R.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Ida, K.; Suzuki, C.; Emoto, M.; Yokoyama, M.; Kobayashi, T.; Moon, C.; Nagaoka, K.; Osakabe, M.; Kobayashi, S.; Ito, S.; Mizuno, Y.; Okada, K.; Ejiri, A.; Mutoh, T.
2015-11-01
The central electron temperature has successfully reached up to 7.5 keV in large helical device (LHD) plasmas with a central high-ion temperature of 5 keV and a central electron density of 1.3× {{10}19} m-3. This result was obtained by heating with a newly-installed 154 GHz gyrotron and also the optimisation of injection geometry in electron cyclotron heating (ECH). The optimisation was carried out by using the ray-tracing code ‘LHDGauss’, which was upgraded to include the rapid post-processing three-dimensional (3D) equilibrium mapping obtained from experiments. For ray-tracing calculations, LHDGauss can automatically read the relevant data registered in the LHD database after a discharge, such as ECH injection settings (e.g. Gaussian beam parameters, target positions, polarisation and ECH power) and Thomson scattering diagnostic data along with the 3D equilibrium mapping data. The equilibrium map of the electron density and temperature profiles are then extrapolated into the region outside the last closed flux surface. Mode purity, or the ratio between the ordinary mode and the extraordinary mode, is obtained by calculating the 1D full-wave equation along the direction of the rays from the antenna to the absorption target point. Using the virtual magnetic flux surfaces, the effects of the modelled density profiles and the magnetic shear at the peripheral region with a given polarisation are taken into account. Power deposition profiles calculated for each Thomson scattering measurement timing are registered in the LHD database. The adjustment of the injection settings for the desired deposition profile from the feedback provided on a shot-by-shot basis resulted in an effective experimental procedure.
Optimal Detection of Global Warming using Temperature Profiles
NASA Technical Reports Server (NTRS)
Leroy, Stephen S.
1997-01-01
Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.
Dompierre, Kathryn A; Barbour, S Lee
2016-06-01
Soft tailings pose substantial challenges for mine reclamation due to their high void ratios and low shear strengths, particularly for conventional terrestrial reclamation practices. Oil sands mine operators have proposed the development of end pit lakes to contain the soft tailings, called fluid fine tailings (FFT), generated when bitumen is removed from oil sands ore. End pit lakes would be constructed within mined-out pits with FFT placed below the lake water. However, the feasibility of isolating the underlying FFT has yet to be fully evaluated. Chemical constituents of interest may move from the FFT into the lake water via two key processes: (1) advective-diffusive mass transport with upward pore water flow caused by settling of the FFT; and (2) mixing created by wind events or unstable density profiles through the lake water and upper portion of the FFT. In 2013 and 2014, temperature and stable isotopes of water profiles were measured through the FFT and lake water in the first end pit lake developed by Syncrude Canada Ltd. Numerical modelling was undertaken to simulate these profiles to identify the key mechanisms controlling conservative mass transport in the FFT. Shallow mixing of the upper 1.1 m of FFT with lake water was required to explain the observed temperature and isotopic profiles. Following mixing, the re-establishment of both the temperature and isotope profiles required an upward advective flux of approximately 1.5 m/year, consistent with average FFT settling rates measured at the study site. These findings provide important insight on the ability to sequester soft tailings in an end pit lake, and offer a foundation for future research on the development of end pit lakes as an oil sands reclamation strategy. Copyright © 2016 Elsevier B.V. All rights reserved.
Ferguson, William J; Louie, Richard F; Tang, Chloe S; Paw U, Kyaw Tha; Kost, Gerald J
2014-02-01
During disasters and complex emergencies, environmental conditions can adversely affect the performance of point-of-care (POC) testing. Knowledge of these conditions can help device developers and operators understand the significance of temperature and humidity limits necessary for use of POC devices. First responders will benefit from improved performance for on-site decision making. To create dynamic temperature and humidity profiles that can be used to assess the environmental robustness of POC devices, reagents, and other resources (eg, drugs), and thereby, to improve preparedness. Surface temperature and humidity data from the National Climatic Data Center (Asheville, North Carolina USA) was obtained, median hourly temperature and humidity were calculated, and then mathematically stretched profiles were created to include extreme highs and lows. Profiles were created for: (1) Banda Aceh, Indonesia at the time of the 2004 Tsunami; (2) New Orleans, Louisiana USA just before and after Hurricane Katrina made landfall in 2005; (3) Springfield, Massachusetts USA for an ambulance call during the month of January 2009; (4) Port-au-Prince, Haiti following the 2010 earthquake; (5) Sendai, Japan for the March 2011 earthquake and tsunami with comparison to the colder month of January 2011; (6) New York, New York USA after Hurricane Sandy made landfall in 2012; and (7) a 24-hour rescue from Hawaii USA to the Marshall Islands. Profiles were validated by randomly selecting 10 days and determining if (1) temperature and humidity points fell inside and (2) daily variations were encompassed. Mean kinetic temperatures (MKT) were also assessed for each profile. Profiles accurately modeled conditions during emergency and disaster events and enclosed 100% of maximum and minimum temperature and humidity points. Daily variations also were represented well with 88.6% (62/70) of temperature readings and 71.1% (54/70) of relative humidity readings falling within diurnal patterns. Days not represented well primarily had continuously high humidity. Mean kinetic temperature was useful for severity ranking. Simulating temperature and humidity conditions clearly reveals operational challenges encountered during disasters and emergencies. Understanding of environmental stresses and MKT leads to insights regarding operational robustness necessary for safe and accurate use of POC devices and reagents. Rescue personnel should understand these principles before performing POC testing in adverse environments.
Climate Prediction Center - Stratosphere: Polar Stratosphere and Ozone
depletion processes can occur. In addition, the latitudinal-time cross sections shows the thermal evolution UV Daily Dosage Estimate South Polar Vertical Ozone Profile Time Series of Size of S.H. Polar Vortex Time Series of Size of S.H. PSC Temperature Time Series of Size of N.H. Polar Vortex Time Series of
Autonomous Microstructure EM-APEX Floats
2016-01-01
Autonomous Microstructure_EM-APEX_Float 4/8/16 at 3:21 PM 1 Title: Autonomous Microstructure EM-APEX Floats Authors: Ren-Chieh Lien1,2...Street Seattle, WA 98105 rcl@uw.edu Abstract: Fast responding FP-07 thermistors have been incorporated on profiling EM-APEX floats to measure...storage board. The raw and processed temperature observations are stored on a microSD card. Results from eight microstructure EM-APEX floats
Heat Transfer during Blanching and Hydrocooling of Broccoli Florets.
Iribe-Salazar, Rosalina; Caro-Corrales, José; Hernández-Calderón, Óscar; Zazueta-Niebla, Jorge; Gutiérrez-Dorado, Roberto; Carrazco-Escalante, Marco; Vázquez-López, Yessica
2015-12-01
The objective of this work was to simulate heat transfer during blanching (90 °C) and hydrocooling (5 °C) of broccoli florets (Brassica oleracea L. Italica) and to evaluate the impact of these processes on the physicochemical and nutrimental quality properties. Thermophysical properties (thermal conductivity [line heat source], specific heat capacity [differential scanning calorimetry], and bulk density [volume displacement]) of stem and inflorescence were measured as a function of temperature (5, 10, 20, 40, 60, and 80 °C). The activation energy and the frequency factor (Arrhenius model) of these thermophysical properties were calculated. A 3-dimensional finite element model was developed to predict the temperature history at different points inside the product. Comparison of the theoretical and experimental temperature histories was carried out. Quality parameters (firmness, total color difference, and vitamin C content) and peroxidase activity were measured. The satisfactory validation of the finite element model allows the prediction of temperature histories and profiles under different process conditions, which could lead to an eventual optimization aimed to minimize the nutritional and sensorial losses in broccoli florets. © 2015 Institute of Food Technologists®