Science.gov

Sample records for process transition models

  1. Modeling the transition region

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.

    1993-01-01

    The current status of transition-region models is reviewed in this report. To understand modeling problems, various flow features that influence the transition process are discussed first. Then an overview of the different approaches to transition-region modeling is given. This is followed by a detailed discussion of turbulence models and the specific modifications that are needed to predict flows undergoing laminar-turbulent transition. Methods for determining the usefulness of the models are presented, and an outlook for the future of transition-region modeling is suggested.

  2. Teacher in Transition: A Model of One Teacher's Change Process.

    ERIC Educational Resources Information Center

    Mahurt, Sarah Fleming

    Change in teaching practice is a popular theme in literacy education. A case study examined the nature of the change process in a teacher in a large Caribbean island school district who made a personal decision to change instructional practices from skills-based methods to whole language methods. Through data collection and analysis, a metaphor,…

  3. Transit Model Fitting in Processing Four Years of Kepler Science Data: New Features and Performance

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, Christopher; Jenkins, Jon Michael; Quintana, Elisa; Rowe, Jason; Seader, Shawn; Tenenbaum, Peter; Twicken, Joseph

    2015-08-01

    We present new transit model fitting features and performance of the latest release (9.3, March 2015) of the Kepler Science Operations Center (SOC) Pipeline, which will be used for the final processing of four years of Kepler science data later this year. Threshold Crossing Events (TCEs), which represent transiting planet detections, are generated by the Transiting Planet Search (TPS) component of the pipeline and subsequently processed in the Data Validation (DV) component. The transit model is used in DV to fit TCEs and derive parameters that are used in various diagnostic tests to validate the planet detections. The standard limb-darkened transit model includes five fit parameters: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. In the latest Kepler SOC pipeline codebase, the light curve of the target for which a TCE is generated is also fitted by a trapezoidal transit model with four parameters: transit epoch time, depth, duration and ratio of ingress time to duration. The fitted trapezoidal transit model is used in the diagnostic tests when the fit with the standard transit model fails or when the fit is not performed, e.g. for suspected eclipsing binaries. Additional parameters, such as the equilibrium temperature and effective stellar flux (i.e. insolation) of the planet candidate, are derived from the transit model fit parameters to characterize pipeline candidates for the search of Earth-size planets in the habitable zone. The uncertainties of all derived parameters are updated in the latest codebase to account for the propagated errors of the fit parameters as well as the uncertainties in stellar parameters. The results of the transit model fitting for the TCEs identified by the Kepler SOC Pipeline are included in the DV reports and one-page report summaries, which are accessible by the science community at NASA Exoplanet Archive

  4. Performance of Transit Model Fitting in Processing Four Years of Kepler Science Data

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, Christopher J.; Jenkins, Jon Michael; Quintana, Elisa V.; Rowe, Jason; Seader, Shawn; Tenenbaum, Peter; Twicken, Joseph D.

    2014-06-01

    We present transit model fitting performance of the Kepler Science Operations Center (SOC) Pipeline in processing four years of science data, which were collected by the Kepler spacecraft from May 13, 2009 to May 12, 2013. Threshold Crossing Events (TCEs), which represent transiting planet detections, are generated by the Transiting Planet Search (TPS) component of the pipeline and subsequently processed in the Data Validation (DV) component. The transit model is used in DV to fit TCEs and derive parameters that are used in various diagnostic tests to validate planetary candidates. The standard transit model includes five fit parameters: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. In the latest Kepler SOC pipeline codebase, the light curve of the target for which a TCE is generated is initially fitted by a trapezoidal model with four parameters: transit epoch time, depth, duration and ingress time. The trapezoidal model fit, implemented with repeated Levenberg-Marquardt minimization, provides a quick and high fidelity assessment of the transit signal. The fit parameters of the trapezoidal model with the minimum chi-square metric are converted to set initial values of the fit parameters of the standard transit model. Additional parameters, such as the equilibrium temperature and effective stellar flux of the planet candidate, are derived from the fit parameters of the standard transit model to characterize pipeline candidates for the search of Earth-size planets in the Habitable Zone. The uncertainties of all derived parameters are updated in the latest codebase to take into account for the propagated errors of the fit parameters as well as the uncertainties in stellar parameters. The results of the transit model fitting of the TCEs identified by the Kepler SOC Pipeline, including fitted and derived parameters, fit goodness metrics and

  5. Simulations of isothermal processes in the semilocalized transition (SLT) model of thermoluminescence (TL)

    NASA Astrophysics Data System (ADS)

    Pagonis, Vasilis; Kulp, Christopher

    2010-05-01

    Semilocalized transition (SLT) kinetic models for thermoluminescence (TL) contain characteristics of both a localized transition (LT) and of a single trap model. TL glow curves within SLT models typically contain contain two TL peaks; the first peak corresponds to the intra-pair luminescence due to LTs and the second TL peak corresponds to delocalized transitions involving the conduction band (CB). The latter delocalized TL peak has also been found to exhibit non-typical double-peak structure, in which the main TL peak is accompanied by a smaller peak called the displacement peak. This paper describes the simulation of isothermal luminescence signals using a previously published SLT model. It is found that these simulated isothermal signals exhibit several unusual time characteristics. Isothermal signals associated with the LTs follow first order kinetics and are therefore described by single decaying exponentials. However, isothermal signals associated with delocalized transitions show a non-typical complex structure characterized by several time regions with different decay characteristics. For certain values of the parameters in the SLT model the isothermal signals can also exhibit non-monotonic behaviour as a function of time. Another notable result from the simulations is that isothermal currents (which are proportional to the concentration of electrons in the CB) can persist for very long periods of time, even after the apparent termination of the isothermal luminescence signals. It is concluded that isothermal processes described by the SLT model depend strongly on the presence of SLTs, in contrast to previous studies using Monte Carlo simulations, which showed a weak interdependence of these phenomena. The simulations in this paper suggest that isothermal experiments offer a sensitive method for detecting the presence of SLTs in a dosimetric material.

  6. Generalized Hammersley Process and Phase Transition for Activated Random Walk Models

    NASA Astrophysics Data System (ADS)

    Rolla, Leonardo T.

    2008-12-01

    * ACTIVATED RANDOM WALK MODEL * This is a conservative particle system on the lattice, with a Markovian continuous-time evolution. Active particles perform random walks without interaction, and they may as well change their state to passive, then stopping to jump. When particles of both types occupy the same site, they all become active. This model exhibits phase transition in the sense that for low initial densities the system locally fixates and for high densities it keeps active. Though extensively studied in the physics literature, the matter of giving a mathematical proof of such phase transition remained as an open problem for several years. In this work we identify some variables that are sufficient to characterize fixation and at the same time are stochastically monotone in the model's parameters. We employ an explicit graphical representation in order to obtain the monotonicity. With this method we prove that there is a unique phase transition for the one-dimensional finite-range random walk. Joint with V. Sidoravicius. * BROKEN LINE PROCESS * We introduce the broken line process and derive some of its properties. Its discrete version is presented first and a natural generalization to the continuum is then proposed and studied. The broken lines are related to the Young diagram and the Hammersley process and are useful for computing last passage percolation values and finding maximal oriented paths. For a class of passage time distributions there is a family of boundary conditions that make the process stationary and reversible. One application is a simple proof of the explicit law of large numbers for last passage percolation with exponential and geometric distributions. Joint with V. Sidoravicius, D. Surgailis, and M. E. Vares.

  7. Exploring business process modelling paradigms and design-time to run-time transitions

    NASA Astrophysics Data System (ADS)

    Caron, Filip; Vanthienen, Jan

    2016-09-01

    The business process management literature describes a multitude of approaches (e.g. imperative, declarative or event-driven) that each result in a different mix of process flexibility, compliance, effectiveness and efficiency. Although the use of a single approach over the process lifecycle is often assumed, transitions between approaches at different phases in the process lifecycle may also be considered. This article explores several business process strategies by analysing the approaches at different phases in the process lifecycle as well as the various transitions.

  8. The Application of Global Kinetic Models to HMX Beta-Delta Transition and Cookoff Processes

    SciTech Connect

    Wemhoff, A P; Burnham, A K; Nichols III, A L

    2006-12-07

    The reduction of the number of reactions in kinetic models for both the HMX beta-delta phase transition and thermal cookoff provides an attractive alternative to traditional multi-stage kinetic models due to reduced calibration effort requirements. In this study, we use the LLNL code ALE3D to provide calibrated kinetic parameters for a two-reaction bidirectional beta-delta HMX phase transition model based on Sandia Instrumented Thermal Ignition (SITI) and Scaled Thermal Explosion (STEX) temperature history curves, and a Prout-Tompkins cookoff model based on One-Dimensional Time to Explosion (ODTX) data. Results show that the two-reaction bidirectional beta-delta transition model presented here agrees as well with STEX and SITI temperature history curves as a reversible four-reaction Arrhenius model, yet requires an order of magnitude less computational effort. In addition, a single-reaction Prout-Tompkins model calibrated to ODTX data provides better agreement with ODTX data than a traditional multi-step Arrhenius model, and can contain up to 90% less chemistry-limited time steps for low-temperature ODTX simulations. Manual calibration methods for the Prout-Tompkins kinetics provide much better agreement with ODTX experimental data than parameters derived from Differential Scanning Calorimetry (DSC) measurements at atmospheric pressure. The predicted surface temperature at explosion for STEX cookoff simulations is a weak function of the cookoff model used, and a reduction of up to 15% of chemistry-limited time steps can be achieved by neglecting the beta-delta transition for this type of simulation. Finally, the inclusion of the beta-delta transition model in the overall kinetics model can affect the predicted time to explosion by 1% for the traditional multi-step Arrhenius approach, while up to 11% using a Prout-Tompkins cookoff model.

  9. Models for transition clinics.

    PubMed

    Carrizosa, Jaime; An, Isabelle; Appleton, Richard; Camfield, Peter; Von Moers, Arpad

    2014-08-01

    Transition is a purposeful, planned process that addresses the medical, psychosocial, educational, and vocational needs of adolescents and young adults with chronic medical conditions, as they advance from a pediatric and family-centered to an adult, individual focused health care provider. This article describes some of the models for transition clinics or services for epilepsy in five countries (Canada, France, Colombia, Germany, and the United Kingdom). These models include joint adult and pediatric clinics, algorithm-driven service, and a check list system in the context of pediatric care. Evaluation of these models is limited, and it is not possible to choose an optimal program. The attitude and motivation of health care providers may be the most important elements. PMID:25209087

  10. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems.

    PubMed

    Chen, Li; Kang, Qinjun; Robinson, Bruce A; He, Ya-Ling; Tao, Wen-Quan

    2013-04-01

    A pore-scale model based on the lattice Boltzmann (LB) method is developed for multiphase reactive transport with phase transitions and dissolution-precipitation processes. The model combines the single-component multiphase Shan-Chen LB model [X. Shan and H. Chen, Phys. Rev. E 47, 1815 (1993)], the mass transport LB model [S. P. Sullivan et al., Chem. Eng. Sci. 60, 3405 (2005)], and the dissolution-precipitation model [Q. Kang et al., J. Geophys. Res. 111, B05203 (2006)]. Care is taken to handle information on computational nodes undergoing solid-liquid or liquid-vapor phase changes to guarantee mass and momentum conservation. A general LB concentration boundary condition is proposed that can handle various concentration boundaries including reactive and moving boundaries with complex geometries. The pore-scale model can capture coupled nonlinear multiple physicochemical processes including multiphase flow with phase separations, mass transport, chemical reactions, dissolution-precipitation processes, and dynamic evolution of the pore geometries. The model is validated using several multiphase flow and reactive transport problems and then used to study the thermal migration of a brine inclusion in a salt crystal. Multiphase reactive transport phenomena with phase transitions between liquid-vapor phases and dissolution-precipitation processes of the salt in the closed inclusion are simulated and the effects of the initial inclusion size and temperature gradient on the thermal migration are investigated.

  11. Secondary Education Transition Model.

    ERIC Educational Resources Information Center

    Colorado State Univ., Ft. Collins.

    The Secondary Education Transition Model project at Colorado State University-Fort Collins represents a local and state commitment to serve students with severe handicaps who are moving into community work and living roles. These comprehensive transition services begin at the secondary education level and extend into the adult service system. The…

  12. UTM: Universal Transit Modeller

    NASA Astrophysics Data System (ADS)

    Deeg, Hans J.

    2014-12-01

    The Universal Transit Modeller (UTM) is a light-curve simulator for all kinds of transiting or eclipsing configurations between arbitrary numbers of several types of objects, which may be stars, planets, planetary moons, and planetary rings. A separate fitting program, UFIT (Universal Fitter) is part of the UTM distribution and may be used to derive best fits to light-curves for any set of continuously variable parameters. UTM/UFIT is written in IDL code and its source is released in the public domain under the GNU General Public License.

  13. Phase transitions in multiplicative competitive processes

    SciTech Connect

    Shimazaki, Hideaki; Niebur, Ernst

    2005-07-01

    We introduce a discrete multiplicative process as a generic model of competition. Players with different abilities successively join the game and compete for finite resources. Emergence of dominant players and evolutionary development occur as a phase transition. The competitive dynamics underlying this transition is understood from a formal analogy to statistical mechanics. The theory is applicable to bacterial competition, predicting novel population dynamics near criticality.

  14. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H.

    2015-10-01

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2-6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  15. State and transition models: Theory, applications, and challenges. In: Briske, D.D. Rangeland Systems: Processes, Management and Challenges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    State and transition models (STMs) are used for communicating about ecosystem change in rangelands and other ecosystems, especially the implications for management. The fundamental premise that rangelands can exhibit multiple states is now widely accepted. The current application of STMs for managem...

  16. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    SciTech Connect

    Ren, X. D. Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H.

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  17. Conducting a Labor Market Trend Analysis: Process and Results. Working Paper 85-3. COMPETE: Community-Based Model for Public-School Exit and Transition to Employment.

    ERIC Educational Resources Information Center

    Sitlington, Patricia L.; Easterday, Joseph R.

    The purpose of Project COMPETE is to use previous research and exemplary practices to develop and validate a model and training sequence to assist retarded youth to make the transition from school to employment in the most competitive environment possible. This project working paper describes the process of using existing information sources to…

  18. Modelling the transitional boundary layer

    NASA Technical Reports Server (NTRS)

    Narasimha, R.

    1990-01-01

    Recent developments in the modelling of the transition zone in the boundary layer are reviewed (the zone being defined as extending from the station where intermittency begins to depart from zero to that where it is nearly unity). The value of using a new non-dimensional spot formation rate parameter, and the importance of allowing for so-called subtransitions within the transition zone, are both stressed. Models do reasonably well in constant pressure 2-dimensional flows, but in the presence of strong pressure gradients further improvements are needed. The linear combination approach works surprisingly well in most cases, but would not be so successful in situations where a purely laminar boundary layer would separate but a transitional one would not. Intermittency-weighted eddy viscosity methods do not predict peak surface parameters well without the introduction of an overshooting transition function whose connection with the spot theory of transition is obscure. Suggestions are made for further work that now appears necessary for developing improved models of the transition zone.

  19. Transition-Independent Decentralized Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Becker, Raphen; Silberstein, Shlomo; Lesser, Victor; Goldman, Claudia V.; Morris, Robert (Technical Monitor)

    2003-01-01

    There has been substantial progress with formal models for sequential decision making by individual agents using the Markov decision process (MDP). However, similar treatment of multi-agent systems is lacking. A recent complexity result, showing that solving decentralized MDPs is NEXP-hard, provides a partial explanation. To overcome this complexity barrier, we identify a general class of transition-independent decentralized MDPs that is widely applicable. The class consists of independent collaborating agents that are tied up by a global reward function that depends on both of their histories. We present a novel algorithm for solving this class of problems and examine its properties. The result is the first effective technique to solve optimally a class of decentralized MDPs. This lays the foundation for further work in this area on both exact and approximate solutions.

  20. Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents.

    PubMed

    Cho, Y S; Lee, J S; Herrmann, H J; Kahng, B

    2016-01-15

    Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2<τ(g)≤2.5. This pattern reveals a necessary condition for a hybrid transition in cluster aggregation processes, which is comparable to the power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks. PMID:26824550

  1. Modeling the "glass" transition in proteins.

    PubMed

    Sitnitsky, A E

    2002-02-01

    A model of a protein as a disordered system of identical spherical particles (which imitate protein side chains) interacting with each other via a repulsive soft sphere potential U(r) infinity r(-beta) is constructed. The particles undergo the conformational motion (CM) within their own harmonic conformational potentials around some mean equilibrium positions ascribed by the tertiary structure of the protein. A first principles calculation of the positional correlation functions for the CM is carried out. The general analysis is exemplified by the case in which the mean equilibrium positions of the particles form a cubic tightly-packed (face- centered) lattice (each particle has 12 nearest neighbors) with the step b(hydr) =6.6 A (the average distance between the centers of mass of hydrated protein subunits). The model yields dramatic slowing down of the relaxation with the decrease of temperature followed by a sharp glass transition at some crossover temperature T(c) < 200 K. At the transition the liquid-like dynamic behavior (the correlation functions tend to zero with time) is altered by the glass-like one (the correlation functions tend with time to some non-zero limit). In the liquid-like region above the crossover temperature the relaxation exhibits distinct alpha-process following the beta-one. The glass transition results from the interaction of the particles. Thus the model suggests that namely direct interactions of the fragments of protein structure rather than protein-solvent interactions are the origin of the phenomenon of the glass transition. The known increase of T(c) up to 300 K at dehydration of the protein is attributed to the known concomitant compression of the globule upon drying by about 4-6% so that positions of individual atoms displace by about 0.6 A (modeled by the decrease of the step of the lattice b by 0.6 A so that b(dehydr)=6 A). The model suggests that the solvent influences the phenomenon of the glass transition indirectly

  2. Application of Glass Transition in Food Processing.

    PubMed

    Balasubramanian, S; Devi, Apramita; Singh, K K; Bosco, S J D; Mohite, Ashish M

    2016-01-01

    The phenomenon of glass transition has been employed to food products to study their stability. It can be applied as an integrated approach along with water activity and physical and chemical changes in food in processing and storage to determine the food stability. Also associated with the changes during agglomeration crystallization, caking, sticking, collapse, oxidation reactions, nonenzymatic browning, and microbial stability of food system. Various techniques such as Differential Scanning Calorimetry, Nuclear Magnetic Resonance, etc. have been developed to determine the glass transition temperature (Tg) of food system. Also, various theories have been applied to explain the concept of Tg and its relation to changes in food system. This review summarizes the understanding of concept of glass transition, its measurement, and application in food technology.

  3. Discontinuous transition in a boundary driven contact process

    NASA Astrophysics Data System (ADS)

    Costa, A.; Blythe, R. A.; Evans, M. R.

    2010-09-01

    The contact process is a stochastic process which exhibits a continuous, absorbing state phase transition in the directed percolation (DP) universality class. In this work, we consider a contact process with a bias in conjunction with an active wall. This model exhibits waves of activity emanating from the active wall and, when the system is supercritical, propagating indefinitely as travelling (Fisher) waves. In the subcritical phase the activity is localized near the wall. We study the phase transition numerically and show that certain properties of the system, notably the wave velocity, are discontinuous across the transition. Using a modified Fisher equation to model the system we elucidate the mechanism by which the discontinuity arises. Furthermore we establish relations between properties of the travelling wave and DP critical exponents.

  4. Phase transitions for the Brusselator model

    NASA Astrophysics Data System (ADS)

    Ma, Tian; Wang, Shouhong

    2011-03-01

    Dynamic phase transitions of the Brusselator model is carefully analyzed, leading to a rigorous characterization of the types and structure of the phase transitions of the model from basic homogeneous states. The study is based on the dynamic transition theory developed recently by the authors.

  5. Transit Model Fitting in the Kepler Science Operations Center Pipeline

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, C. J.; Jenkins, J. M.; Quintana, E. V.; Rowe, J. F.; Seader, S. E.; Tenenbaum, P.; Twicken, J. D.

    2012-05-01

    We describe the algorithm and performance of the transit model fitting of the Kepler Science Operations Center (SOC) Pipeline. Light curves of long cadence targets are subjected to the Transiting Planet Search (TPS) component of the Kepler SOC Pipeline. Those targets for which a Threshold Crossing Event (TCE) is generated in the transit search are subsequently processed in the Data Validation (DV) component. The light curves may span one or more Kepler observing quarters, and data may not be available for any given target in all quarters. Transit model parameters are fitted in DV to transit-like signatures in the light curves of target stars with TCEs. The fitted parameters are used to generate a predicted light curve based on the transit model. The residual flux time series of the target star, with the predicted light curve removed, is fed back to TPS to search for additional TCEs. The iterative process of transit model fitting and transiting planet search continues until no TCE is generated from the residual flux time series or a planet candidate limit is reached. The transit model includes five parameters to be fitted: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. The initial values of the fit parameters are determined from the TCE values provided by TPS. A limb darkening model is included in the transit model to generate the predicted light curve. The transit model fitting results are used in the diagnostic tests in DV, such as the centroid motion test, eclipsing binary discrimination tests, etc., which helps to validate planet candidates and identify false positive detections. Funding for the Kepler Mission has been provided by the NASA Science Mission Directorate.

  6. Phase transitions in contagion processes mediated by recurrent mobility patterns

    NASA Astrophysics Data System (ADS)

    Balcan, Duygu; Vespignani, Alessandro

    2011-07-01

    Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases, diffusion of rumours, and emergence of consensus. These patterns however are often dominated by specific locations and recurrent flows and poorly modelled by the random diffusive dynamics generally used to study them. Here we develop a theoretical framework to analyse contagion within a network of locations where individuals recall their geographic origins. We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected. This transition cannot be uncovered by continuous deterministic models because of the stochastic features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance for controlling contagion spread by constraining mobility processes. We recover the threshold behaviour by analysing diffusion processes mediated by real human commuting data.

  7. The anova to mixed model transition.

    PubMed

    Boisgontier, Matthieu P; Cheval, Boris

    2016-09-01

    A transition towards mixed models is underway in science. This transition started up because the requirements for using analyses of variances are often not met and mixed models clearly provide a better framework. Neuroscientists have been slower than others in changing their statistical habits and are now urged to act.

  8. A Conceptual Model for Leadership Transition

    ERIC Educational Resources Information Center

    Manderscheid, Steven V.; Ardichvili, Alexandre

    2008-01-01

    The purpose of this study was to develop a model of leadership transition based on an integrative review of literature. The article establishes a compelling case for focusing on leadership transitions as an area for study and leadership development practitioner intervention. The proposed model in this study identifies important success factors…

  9. Phase transitions in Hidden Markov Models

    NASA Astrophysics Data System (ADS)

    Bechhoefer, John; Lathouwers, Emma

    In Hidden Markov Models (HMMs), a Markov process is not directly accessible. In the simplest case, a two-state Markov model ``emits'' one of two ``symbols'' at each time step. We can think of these symbols as noisy measurements of the underlying state. With some probability, the symbol implies that the system is in one state when it is actually in the other. The ability to judge which state the system is in sets the efficiency of a Maxwell demon that observes state fluctuations in order to extract heat from a coupled reservoir. The state-inference problem is to infer the underlying state from such noisy measurements at each time step. We show that there can be a phase transition in such measurements: for measurement error rates below a certain threshold, the inferred state always matches the observation. For higher error rates, there can be continuous or discontinuous transitions to situations where keeping a memory of past observations improves the state estimate. We can partly understand this behavior by mapping the HMM onto a 1d random-field Ising model at zero temperature. We also present more recent work that explores a larger parameter space and more states. Research funded by NSERC, Canada.

  10. A Correlation-Based Transition Model using Local Variables. Part 1; Model Formation

    NASA Technical Reports Server (NTRS)

    Menter, F. R.; Langtry, R. B.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.

    2006-01-01

    A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but from a framework for the implementation of correlation-based models into general-purpose CFD methods.

  11. Semiclassical theory of electronically nonadiabatic transitions in molecular collision processes

    NASA Technical Reports Server (NTRS)

    Lam, K. S.; George, T. F.

    1979-01-01

    An introductory account of the semiclassical theory of the S-matrix for molecular collision processes is presented, with special emphasis on electronically nonadiabatic transitions. This theory is based on the incorporation of classical mechanics with quantum superposition, and in practice makes use of the analytic continuation of classical mechanics into the complex space of time domain. The relevant concepts of molecular scattering theory and related dynamical models are described and the formalism is developed and illustrated with simple examples - collinear collision of the A+BC type. The theory is then extended to include the effects of laser-induced nonadiabatic transitions. Two bound continuum processes collisional ionization and collision-induced emission also amenable to the same general semiclassical treatment are discussed.

  12. Investigating Transitions in Planetary Dynamo Models

    NASA Astrophysics Data System (ADS)

    Soderlund, Krista Marie

    All planets in the solar system have or once had intrinsic magnetic fields, with the possible exception of Venus. The properties and characteristics of these fields are as diverse as the planets themselves. Given this diversity, the fundamental goal is to determine what controls the strength, morphology, and evolution of planetary magnetic fields. Since these fields are thought to result from dynamo action driven by thermochemical convection in electrically-conducting fluid regions, the coupling between magnetic fields, fluid flow, and heat/mass transfer must also be understood. We seek to investigate this coupling and to understand better the processes that occur in numerical dynamo models and, hopefully, in planetary cores as well. I have carried out a suite of dynamo and non-magnetic, but otherwise identical, models which are compared in order to quantify the influence of magnetic fields on convective dynamics systematically and to understand why the Lorentz force has a surprisingly weak dynamical role in magnetic systems. The characteristics of convection, including convective flow structures and speeds as well as heat transfer, are found to be only weakly affected by the presence of magnetic fields. We compare different parameterizations of the relative influence of magnetic and rotational forces and show that the traditional Elsasser number overestimates the role of the Lorentz force in dynamos. Instead, we argue that an alternatively defined 'dynamic Elsasser number' better represents the Lorentz to Coriolis force ratio. We also find a sharp transition between dipolar and multipolar dynamos. This morphological transition is linked to the breakdown of helical flow as inertial forces become stronger than viscous forces. Because viscous forces are negligible in planetary interiors, my findings imply that present day dynamo models with moderate rotation rates ( E ≳ 10-4) may be too viscous to reproduce the physical mechanisms of field generation in planetary

  13. Phase Transitions in Models of Bird Flocking

    NASA Astrophysics Data System (ADS)

    Christodoulidi, H.; van der Weele, K.; Antonopoulos, Ch. G.; Bountis, T.

    2014-12-01

    The aim of the present paper is to elucidate the transition from collective to random behavior exhibited by various mathematical models of bird flocking. In particular, we compare Vicsek's model [Vicsek et al., Phys. Rev. Lett. 75, 1226-1229 (1995)] with one based on topological considerations. The latter model is found to exhibit a first order phase transition from flocking to decoherence, as the "noise parameter" of the problem is increased, whereas Vicsek's model gives a second order transition. Refining the topological model in such a way that birds are influenced mostly by the birds in front of them, less by the ones at their sides and not at all by those behind them (because they do not see them), we find a behavior that lies in between the two models. Finally, we propose a novel mechanism for preserving the flock's cohesion, without imposing artificial boundary conditions or attractive forces.

  14. Factors and processes in children's transitive deductions

    PubMed Central

    Wright, Barlow C.; Smailes, Jennifer

    2015-01-01

    Transitive tasks are important for understanding how children develop socio-cognitively. However, developmental research has been restricted largely to questions surrounding maturation. We asked 6-, 7- and 8-year-olds (N = 117) to solve a composite of five different transitive tasks. Tasks included conditions asking about item-C (associated with the marked relation) in addition to the usual case of asking only about item-A (associated with the unmarked relation). Here, children found resolving item-C much easier than resolving item-A, a finding running counter to long-standing assumptions about transitive reasoning. Considering gender perhaps for the first time, boys exhibited higher transitive scores than girls overall. Finally, analysing in the context of one recent and well-specified theory of spatial transitive reasoning, we generated the prediction that reporting the full series should be easier than deducing any one item from that series. This prediction was not upheld. We discuss amendments necessary to accommodate all our earlier findings. PMID:26635950

  15. Modeling continuum of epithelial mesenchymal transition plasticity.

    PubMed

    Mandal, Mousumi; Ghosh, Biswajoy; Anura, Anji; Mitra, Pabitra; Pathak, Tanmaya; Chatterjee, Jyotirmoy

    2016-02-01

    Living systems respond to ambient pathophysiological changes by altering their phenotype, a phenomenon called 'phenotypic plasticity'. This program contains information about adaptive biological dynamism. Epithelial-mesenchymal transition (EMT) is one such process found to be crucial in development, wound healing, and cancer wherein the epithelial cells with restricted migratory potential develop motile functions by acquiring mesenchymal characteristics. In the present study, phase contrast microscopy images of EMT induced HaCaT cells were acquired at 24 h intervals for 96 h. The expression study of relevant pivotal molecules viz. F-actin, vimentin, fibronectin and N-cadherin was carried out to confirm the EMT process. Cells were intuitively categorized into five distinct morphological phenotypes. A population of 500 cells for each temporal point was selected to quantify their frequency of occurrence. The plastic interplay of cell phenotypes from the observations was described as a Markovian process. A model was formulated empirically using simple linear algebra, to depict the possible mechanisms of cellular transformation among the five phenotypes. This work employed qualitative, semi-quantitative and quantitative tools towards illustration and establishment of the EMT continuum. Thus, it provides a newer perspective to understand the embedded plasticity across the EMT spectrum. PMID:26762753

  16. Synthesis of Individual Transition Plans: Format and Process.

    ERIC Educational Resources Information Center

    La Mar, Kathleen; Rosenberg, Bill

    This document presents a prototype Individual Transition Plan (ITP) process and format for students receiving special education services. Following an overview of the role of transition, a section on the ITP process discusses pre-meeting activities, conducting an ITP meeting, monitoring and evaluating the ITP meeting, and a rationale for the…

  17. Transition Processes from College to Career.

    ERIC Educational Resources Information Center

    Hettich, Paul

    The transition from college to career is one of the most challenging jobs an individual will experience. This is particularly true for students who have limited work experience. The fact that 50-80% of new college graduates leave their first job within three years may be due to poor career planning and problems inherent in the college-to-work…

  18. A Process for Transition to Sustainability: Implementation

    ERIC Educational Resources Information Center

    Wooltorton, Sandra; Palmer, Marilyn; Steele, Fran

    2011-01-01

    This paper reports the outcomes of the second action cycle of an ongoing project at Edith Cowan University (ECU) called "Transition to Sustainability: ECU South West" which is located in a small, single faculty regional university campus. The overall project has comprised three action research cycles, the first of which was the planning cycle…

  19. Dynamic phase transition in diluted Ising model

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Sourav; Gorai, Gopal; Santra, S. B.

    2015-06-01

    Dynamic phase transition in disordered Ising model in two dimensions has been studied in presence of external time dependent oscillating magnetic field applying Glauber Monte Carlo techniques. Dynamic phase transitions are identified estimating dynamic order parameter against temperature for different concentrations of disorder. For a given field strength and frequency for which there was no hysteresis, it is observed that disorder is able induce hysteresis in the system. Effect of increasing concentration of disorder on hysteresis loop area has also been studied.

  20. Modeling and Fitting Exoplanet Transit Light Curves

    NASA Astrophysics Data System (ADS)

    Millholland, Sarah; Ruch, G. T.

    2013-01-01

    We present a numerical model along with an original fitting routine for the analysis of transiting extra-solar planet light curves. Our light curve model is unique in several ways from other available transit models, such as the analytic eclipse formulae of Mandel & Agol (2002) and Giménez (2006), the modified Eclipsing Binary Orbit Program (EBOP) model implemented in Southworth’s JKTEBOP code (Popper & Etzel 1981; Southworth et al. 2004), or the transit model developed as a part of the EXOFAST fitting suite (Eastman et al. in prep.). Our model employs Keplerian orbital dynamics about the system’s center of mass to properly account for stellar wobble and orbital eccentricity, uses a unique analytic solution derived from Kepler’s Second Law to calculate the projected distance between the centers of the star and planet, and calculates the effect of limb darkening using a simple technique that is different from the commonly used eclipse formulae. We have also devised a unique Monte Carlo style optimization routine for fitting the light curve model to observed transits. We demonstrate that, while the effect of stellar wobble on transit light curves is generally small, it becomes significant as the planet to stellar mass ratio increases and the semi-major axes of the orbits decrease. We also illustrate the appreciable effects of orbital ellipticity on the light curve and the necessity of accounting for its impacts for accurate modeling. We show that our simple limb darkening calculations are as accurate as the analytic equations of Mandel & Agol (2002). Although our Monte Carlo fitting algorithm is not as mathematically rigorous as the Markov Chain Monte Carlo based algorithms most often used to determine exoplanetary system parameters, we show that it is straightforward and returns reliable results. Finally, we show that analyses performed with our model and optimization routine compare favorably with exoplanet characterizations published by groups such as the

  1. Modeling of near wall turbulence and modeling of bypass transition

    NASA Technical Reports Server (NTRS)

    Yang, Z.

    1992-01-01

    The objectives for this project are as follows: (1) Modeling of the near wall turbulence: We aim to develop a second order closure for the near wall turbulence. As a first step of this project, we try to develop a kappa-epsilon model for near wall turbulence. We require the resulting model to be able to handle both near wall turbulence and turbulent flows away from the wall, computationally robust, and applicable for complex flow situations, flow with separation, for example, and (2) Modeling of the bypass transition: We aim to develop a bypass transition model which contains the effect of intermittency. Thus, the model can be used for both the transitional boundary layers and the turbulent boundary layers. We require the resulting model to give a good prediction of momentum and heat transfer within the transitional boundary and a good prediction of the effect of freestream turbulence on transitional boundary layers.

  2. Transitional Employment Experimental Model (TEEM). Final Report.

    ERIC Educational Resources Information Center

    California State Personnel Board, Sacramento.

    The final report of the Transitional Employemnt Experimental Model (TEEM) Project, a research and development project providing a potential model for a large scale manpower absorption program in times of economic need, is presented. One major purpose of the project was to demonstrate the viability of providing suitable job placement for the…

  3. Operationalizing resilience using state and transition models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In management, restoration, and policy contexts, the notion of resilience can be confusing. Systematic development of conceptual models of ecological state change (state transition models; STMs) can help overcome semantic confusion and promote a mechanistic understanding of resilience. Drawing on ex...

  4. A Model of Mental State Transition Network

    NASA Astrophysics Data System (ADS)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  5. The Work of Cultural Transition: An Emerging Model.

    PubMed

    Ryba, Tatiana V; Stambulova, Natalia B; Ronkainen, Noora J

    2016-01-01

    In today's uncertain, fluid job market, transnational mobility has intensified. Though the concept of cultural transition is increasingly used in sport and career research, insight into the processes of how individuals produce their own development through work and relationships in shifting cultural patterns of meaning remains limited. The transnational industry of sports, in which athletes' psychological adjustment to cultural transitions has implications for both performance and meaningful life, serves as a backdrop for this article. This study applied the life story method to interviews with 15 professional and semi-professional athletes, focusing particularly on the cultural transition aspect of their transnational athletic careers. The aims of the study were to identify the developmental tasks of cultural transitions and strategies/mechanisms through which cultural transitions were enacted. Three underlying mechanisms of the transition process that assisted athletic career adaptability were social repositioning, negotiation of cultural practices, and meaning reconstruction. Based on the data analyses, a temporal model of cultural transition is proposed. The results of this research provide professionals working in the fields of career counseling and migrant support with a content framework for enhancing migrant workers' adaptabilities and psychological wellbeing.

  6. The Work of Cultural Transition: An Emerging Model

    PubMed Central

    Ryba, Tatiana V.; Stambulova, Natalia B.; Ronkainen, Noora J.

    2016-01-01

    In today’s uncertain, fluid job market, transnational mobility has intensified. Though the concept of cultural transition is increasingly used in sport and career research, insight into the processes of how individuals produce their own development through work and relationships in shifting cultural patterns of meaning remains limited. The transnational industry of sports, in which athletes’ psychological adjustment to cultural transitions has implications for both performance and meaningful life, serves as a backdrop for this article. This study applied the life story method to interviews with 15 professional and semi-professional athletes, focusing particularly on the cultural transition aspect of their transnational athletic careers. The aims of the study were to identify the developmental tasks of cultural transitions and strategies/mechanisms through which cultural transitions were enacted. Three underlying mechanisms of the transition process that assisted athletic career adaptability were social repositioning, negotiation of cultural practices, and meaning reconstruction. Based on the data analyses, a temporal model of cultural transition is proposed. The results of this research provide professionals working in the fields of career counseling and migrant support with a content framework for enhancing migrant workers’ adaptabilities and psychological wellbeing. PMID:27047436

  7. The Work of Cultural Transition: An Emerging Model.

    PubMed

    Ryba, Tatiana V; Stambulova, Natalia B; Ronkainen, Noora J

    2016-01-01

    In today's uncertain, fluid job market, transnational mobility has intensified. Though the concept of cultural transition is increasingly used in sport and career research, insight into the processes of how individuals produce their own development through work and relationships in shifting cultural patterns of meaning remains limited. The transnational industry of sports, in which athletes' psychological adjustment to cultural transitions has implications for both performance and meaningful life, serves as a backdrop for this article. This study applied the life story method to interviews with 15 professional and semi-professional athletes, focusing particularly on the cultural transition aspect of their transnational athletic careers. The aims of the study were to identify the developmental tasks of cultural transitions and strategies/mechanisms through which cultural transitions were enacted. Three underlying mechanisms of the transition process that assisted athletic career adaptability were social repositioning, negotiation of cultural practices, and meaning reconstruction. Based on the data analyses, a temporal model of cultural transition is proposed. The results of this research provide professionals working in the fields of career counseling and migrant support with a content framework for enhancing migrant workers' adaptabilities and psychological wellbeing. PMID:27047436

  8. Stochastic Modeling of Laminar-Turbulent Transition

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Choudhari, Meelan

    2002-01-01

    Stochastic versions of stability equations are developed in order to develop integrated models of transition and turbulence and to understand the effects of uncertain initial conditions on disturbance growth. Stochastic forms of the resonant triad equations, a high Reynolds number asymptotic theory, and the parabolized stability equations are developed.

  9. A synergetic model for human gait transitions

    NASA Astrophysics Data System (ADS)

    Abdolvahab, Mohammad

    2015-09-01

    Gait transitions have been considered as bifurcations between states (e.g. walking or running modes) of a nonlinear dynamical system. A top-down synergetic approach to model gait transitions has been adapted from Frank et al. (2009) and applied to two sets of empirical observations. In this approach, it is assumed that the amplitudes of the spatio-temporal modes of locomotion satisfy a generic form of evolution equations that are known to hold for animate and inanimate self-organizing systems. The presented experimental results focus on hysteresis in human walk-to-run and run-to-walk transitions on a treadmill as a function of treadmill inclination and acceleration, the rate at which speed was increased or decreased during experimental trials. The bi-stability in the synergetic model is assumed to account for the hysteretic transitions. Accordingly, the relevant parameters of the model were estimated from the empirical data and the model's efficacy in predicting the observed hysteresis effects was evaluated.

  10. Modeling Developmental Transitions in Adaptive Resonance Theory

    ERIC Educational Resources Information Center

    Raijmakers, Maartje E. J.; Molenaar, Peter C. M.

    2004-01-01

    Neural networks are applied to a theoretical subject in developmental psychology: modeling developmental transitions. Two issues that are involved will be discussed: discontinuities and acquiring qualitatively new knowledge. We will argue that by the appearance of a bifurcation, a neural network can show discontinuities and may acquire…

  11. Transition matrix model for evolutionary game dynamics.

    PubMed

    Ermentrout, G Bard; Griffin, Christopher; Belmonte, Andrew

    2016-03-01

    We study an evolutionary game model based on a transition matrix approach, in which the total change in the proportion of a population playing a given strategy is summed directly over contributions from all other strategies. This general approach combines aspects of the traditional replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies. In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to hold for this model. PMID:27078323

  12. Transition matrix model for evolutionary game dynamics

    NASA Astrophysics Data System (ADS)

    Ermentrout, G. Bard; Griffin, Christopher; Belmonte, Andrew

    2016-03-01

    We study an evolutionary game model based on a transition matrix approach, in which the total change in the proportion of a population playing a given strategy is summed directly over contributions from all other strategies. This general approach combines aspects of the traditional replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies. In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to hold for this model.

  13. Transition matrix model for evolutionary game dynamics.

    PubMed

    Ermentrout, G Bard; Griffin, Christopher; Belmonte, Andrew

    2016-03-01

    We study an evolutionary game model based on a transition matrix approach, in which the total change in the proportion of a population playing a given strategy is summed directly over contributions from all other strategies. This general approach combines aspects of the traditional replicator model, such as preserving unpopulated strategies, with mutation-type dynamics, which allow for nonzero switching to unpopulated strategies, in terms of a single transition function. Under certain conditions, this model yields an endemic population playing non-Nash-equilibrium strategies. In addition, a Hopf bifurcation with a limit cycle may occur in the generalized rock-scissors-paper game, unlike the replicator equation. Nonetheless, many of the Folk Theorem results are shown to hold for this model.

  14. Simulation Model of Bus Rapid Transit

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Suharjito; Gunawan, Alexander A. S.

    2014-03-01

    Bus rapid transit system is modern solution for mass transportation system. The system, in comparison to the rail-based transportation system, is significantly cheaper and requires shorter development time, but lower performance. The BRT system performance strongly depends on variables related to station design and infrastructure. A numerical model offers an effective and efficient means to evaluate the system performance. This article offers a detailed numerical model on the basis of the discrete-event approach and demonstrates its application.

  15. Affinity and its derivatives in the glass transition process.

    PubMed

    Garden, J-L; Guillou, H; Richard, J; Wondraczek, L

    2012-07-14

    The thermodynamic treatment of the glass transition remains an issue of intense debate. When associated with the formalism of non-equilibrium thermodynamics, the lattice-hole theory of liquids can provide new insight in this direction, as has been shown by Schmelzer and Gutzow [J. Chem. Phys. 125, 184511 (2006)], by Möller et al. [J. Chem. Phys. 125, 094505 (2006)], and more recently by Tropin et al. [J. Non-Cryst. Solids 357, 1291 (2011); ibid. 357, 1303 (2011)]. Here, we employ a similar approach. We include pressure as an additional variable, in order to account for the freezing-in of structural degrees of freedom upon pressure increase. Second, we demonstrate that important terms concerning first order derivatives of the affinity-driving-force with respect to temperature and pressure have been previously neglected. We show that these are of crucial importance in the approach. Macroscopic non-equilibrium thermodynamics is used to enlighten these contributions in the derivation of C(p),κ(T), and α(p). The coefficients are calculated as a function of pressure and temperature following different theoretical protocols, revealing classical aspects of vitrification and structural recovery processes. Finally, we demonstrate that a simple minimalist model such as the lattice-hole theory of liquids, when being associated with rigorous use of macroscopic non-equilibrium thermodynamics, is able to account for the primary features of the glass transition phenomenology. Notwithstanding its simplicity and its limits, this approach can be used as a very pedagogical tool to provide a physical understanding on the underlying thermodynamics which governs the glass transition process. PMID:22803545

  16. Continuity of Care: The Transitional Care Model.

    PubMed

    Hirschman, Karen B; Shaid, Elizabeth; McCauley, Kathleen; Pauly, Mark V; Naylor, Mary D

    2015-09-30

    Older adults with multiple chronic conditions complicated by other risk factors, such as deficits in activities of daily living or social barriers, experience multiple challenges in managing their healthcare needs, especially during episodes of acute illness. Identifying effective strategies to improve care transitions and outcomes for this population is essential. One rigorously tested model that has consistently demonstrated effectiveness in addressing the needs of this complex population while reducing healthcare costs is the Transitional Care Model (TCM). The TCM is a nurse-led intervention targeting older adults at risk for poor outcomes as they move across healthcare settings and between clinicians. This article provides a detailed summary of the evidence base for the TCM and the model's nine core components. We also discuss measuring the TCM's core components and the overall impact of this evidence-based care management approach.

  17. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, C.E.

    1988-04-12

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites. 1 fig., 1 tab.

  18. Process for making transition metal nitride whiskers

    DOEpatents

    Bamberger, Carlos E.

    1989-01-01

    A process for making metal nitrides, particularly titanium nitride whiskers, using a cyanide salt as a reducing agent for a metal compound in the presence of an alkali metal oxide. Sodium cyanide, various titanates and titanium oxide mixed with sodium oxide react to provide titanium nitride whiskers that can be used as reinforcement to ceramic composites.

  19. RNG in turbulence and modeling of bypass transition

    NASA Technical Reports Server (NTRS)

    Yang, Zhigang

    1991-01-01

    Two projects are considered: the Renormalization Group (RNG) analysis of turbulence modeling, and the calculation of bypass transition through turbulence modeling. RNG is a process which eliminates small scales on the uneliminated large scales as the change in the transport properties. It is because of this property of RNG that it was previously suggested that RNG could be used as a model builder in turbulence modeling. The possibility is studied of constructing RNG based turbulence models, and to try to proceed to do the modeling through RNG in parallel with the classical approach. The numerical predictions made by RNG models and by classical models is compared against data from Direct Numerical Simulation. While in an environment with freestream turbulence, the transition initiated by the instability of the laminar boundary layer to Tollmien-Schlichting waves is found to be a bypass one in which turbulent spots are formed without T-S wave amplification. The formation is a random process, and flow within a turbulent spot is almost fully turbulent. This suggests the possibility of using turbulence modeling to describe and predict the bypass transition.

  20. Flow transitions in a 2D directional solidification model

    NASA Technical Reports Server (NTRS)

    Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.

    1992-01-01

    Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.

  1. MODEL UPDATING: TRANSITION FROM RESEARCH TO PRACTICE?

    SciTech Connect

    D. C. ZIMMERMAN; F. M. HEMEZ

    2000-10-01

    This session offers an open forum to discuss issues associated with the transition of nearly two decades of engineering research into computational guided model updating into industry state-of-the-practice. Related technical issues are the model updating technology, model reduction, test-analysis correlation and optimization strategies. The session is organized as follows. Technical presentations review the state-of-the-art in finite element model updating and present examples of industrial applications. The results of a recent survey on the potential and usefulness of the model updating technology are discussed. Panel discussions and interaction with the audience discuss industrial needs, future trends and challenges and why negative model updating results are never discussed within the structural dynamics community.

  2. Liberty High School Transition Project: Model Process for Assimilating School, Community, Business, Government and Service Groups of the Least Restrictive Environment for Nondisabled and Disabled.

    ERIC Educational Resources Information Center

    Grimes, Michael K.

    The panel presentation traces the development of and describes the operation of a Brentwood (California) project to prepare approximately 75 severely disabled individuals, ages 12-22, to function in the least restrictive recreation/leisure, vocational, and general community environments. Transition Steering Committee developed such project…

  3. Camera-Model Identification Using Markovian Transition Probability Matrix

    NASA Astrophysics Data System (ADS)

    Xu, Guanshuo; Gao, Shang; Shi, Yun Qing; Hu, Ruimin; Su, Wei

    Detecting the (brands and) models of digital cameras from given digital images has become a popular research topic in the field of digital forensics. As most of images are JPEG compressed before they are output from cameras, we propose to use an effective image statistical model to characterize the difference JPEG 2-D arrays of Y and Cb components from the JPEG images taken by various camera models. Specifically, the transition probability matrices derived from four different directional Markov processes applied to the image difference JPEG 2-D arrays are used to identify statistical difference caused by image formation pipelines inside different camera models. All elements of the transition probability matrices, after a thresholding technique, are directly used as features for classification purpose. Multi-class support vector machines (SVM) are used as the classification tool. The effectiveness of our proposed statistical model is demonstrated by large-scale experimental results.

  4. Engineering models of deflagration-to-detonation transition

    SciTech Connect

    Bdzil, J.B.; Son, S.F.

    1995-07-01

    For the past two years, Los Alamos has supported research into the deflagration-to-detonation transition (DDT) in damaged energetic materials as part of the explosives safety program. This program supported both a theory/modeling group and an experimentation group. The goal of the theory/modeling group was to examine the various modeling structures (one-phase models, two-phase models, etc.) and select from these a structure suitable to model accidental initiation of detonation in damaged explosives. The experimental data on low-velocity piston supported DDT in granular explosive was to serve as a test bed to help in the selection process. Three theoretical models have been examined in the course of this study: (1) the Baer-Nunziato (BN) model, (2) the Stewart-Prasad-Asay (SPA) model and (3) the Bdzil-Kapila-Stewart model. Here we describe these models, discuss their properties, and compare their features.

  5. Dual Morin transitions during the oriented attachment process

    NASA Astrophysics Data System (ADS)

    Ma, Ji; Chen, Kezheng

    2014-11-01

    In this work, two Morin transitions were observed in hematite product at the intermediate stage during the oriented attachment process, which is universal and plays an important role in biogeochemical processes that shape Earth's near-surface environments. Seemingly, these Morin transitions originate from the existence of two sizes of hematite particles. While in-depth study reveals that they were also interdependent on the defreezing behaviors of two different spin configurations at their interfaces. Such pioneering study on the magnetic performance during the oriented attachment process provides a fundamental and new physical basis for the materials' potential applications.

  6. Introducing Modeling Transition Diagrams as a Tool to Connect Mathematical Modeling to Mathematical Thinking

    ERIC Educational Resources Information Center

    Czocher, Jennifer A.

    2016-01-01

    This study contributes a methodological tool to reconstruct the cognitive processes and mathematical activities carried out by mathematical modelers. Represented as Modeling Transition Diagrams (MTDs), individual modeling routes were constructed for four engineering undergraduate students. Findings stress the importance and limitations of using…

  7. Biosphere Process Model Report

    SciTech Connect

    J. Schmitt

    2000-05-25

    To evaluate the postclosure performance of a potential monitored geologic repository at Yucca Mountain, a Total System Performance Assessment (TSPA) will be conducted. Nine Process Model Reports (PMRs), including this document, are being developed to summarize the technical basis for each of the process models supporting the TSPA model. These reports cover the following areas: (1) Integrated Site Model; (2) Unsaturated Zone Flow and Transport; (3) Near Field Environment; (4) Engineered Barrier System Degradation, Flow, and Transport; (5) Waste Package Degradation; (6) Waste Form Degradation; (7) Saturated Zone Flow and Transport; (8) Biosphere; and (9) Disruptive Events. Analysis/Model Reports (AMRs) contain the more detailed technical information used to support TSPA and the PMRs. The AMRs consists of data, analyses, models, software, and supporting documentation that will be used to defend the applicability of each process model for evaluating the postclosure performance of the potential Yucca Mountain repository system. This documentation will ensure the traceability of information from its source through its ultimate use in the TSPA-Site Recommendation (SR) and in the National Environmental Policy Act (NEPA) analysis processes. The objective of the Biosphere PMR is to summarize (1) the development of the biosphere model, and (2) the Biosphere Dose Conversion Factors (BDCFs) developed for use in TSPA. The Biosphere PMR does not present or summarize estimates of potential radiation doses to human receptors. Dose calculations are performed as part of TSPA and will be presented in the TSPA documentation. The biosphere model is a component of the process to evaluate postclosure repository performance and regulatory compliance for a potential monitored geologic repository at Yucca Mountain, Nevada. The biosphere model describes those exposure pathways in the biosphere by which radionuclides released from a potential repository could reach a human receptor

  8. A Correlation-Based Transition Model using Local Variables. Part 2; Test Cases and Industrial Applications

    NASA Technical Reports Server (NTRS)

    Langtry, R. B.; Menter, F. R.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.

    2006-01-01

    A new correlation-based transition model has been developed, which is built strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) methods using unstructured grids and massive parallel execution. The model is based on two transport equations, one for the intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models), but form a framework for the implementation of correlation-based models into general-purpose CFD methods.

  9. Mott transitions in the periodic Anderson model.

    PubMed

    Logan, David E; Galpin, Martin R; Mannouch, Jonathan

    2016-11-16

    The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott-Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger's theorem to the Mott insulator.

  10. Mott transitions in the periodic Anderson model

    NASA Astrophysics Data System (ADS)

    Logan, David E.; Galpin, Martin R.; Mannouch, Jonathan

    2016-11-01

    The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott-Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger’s theorem to the Mott insulator.

  11. Mott transitions in the periodic Anderson model.

    PubMed

    Logan, David E; Galpin, Martin R; Mannouch, Jonathan

    2016-11-16

    The periodic Anderson model (PAM) is studied within the framework of dynamical mean-field theory, with particular emphasis on the interaction-driven Mott transition it contains, and on resultant Mott insulators of both Mott-Hubbard and charge-transfer type. The form of the PAM phase diagram is first deduced on general grounds using two exact results, over the full range of model parameters and including metallic, Mott, Kondo and band insulator phases. The effective low-energy model which describes the PAM in the vicinity of a Mott transition is then shown to be a one-band Hubbard model, with effective hoppings that are not in general solely nearest neighbour, but decay exponentially with distance. This mapping is shown to have a range of implications for the physics of the problem, from phase boundaries to single-particle dynamics; all of which are confirmed and supplemented by NRG calculations. Finally we consider the locally degenerate, non-Fermi liquid Mott insulator, to describe which requires a two-self-energy description. This is shown to yield a number of exact results for the associated local moment, charge, and interaction-renormalised levels, together with a generalisation of Luttinger's theorem to the Mott insulator. PMID:27618214

  12. Foam process models.

    SciTech Connect

    Moffat, Harry K.; Noble, David R.; Baer, Thomas A.; Adolf, Douglas Brian; Rao, Rekha Ranjana; Mondy, Lisa Ann

    2008-09-01

    In this report, we summarize our work on developing a production level foam processing computational model suitable for predicting the self-expansion of foam in complex geometries. The model is based on a finite element representation of the equations of motion, with the movement of the free surface represented using the level set method, and has been implemented in SIERRA/ARIA. An empirically based time- and temperature-dependent density model is used to encapsulate the complex physics of foam nucleation and growth in a numerically tractable model. The change in density with time is at the heart of the foam self-expansion as it creates the motion of the foam. This continuum-level model uses an homogenized description of foam, which does not include the gas explicitly. Results from the model are compared to temperature-instrumented flow visualization experiments giving the location of the foam front as a function of time for our EFAR model system.

  13. Models of transition regions in hybrid stars

    NASA Technical Reports Server (NTRS)

    Brosius, J. W.; Mullan, D. J.

    1986-01-01

    Models for the transition regions of six hybrid stars, four bright giants and two supergiants, are calculated. The models include mass loss and prescribe Alfven waves as the source of mechanical energy. The momentum and energy deposition rates required at each level of the atmosphere are evaluated. The final models for all six stars have mass loss rates lying below the current VLA upper limits by factors of two to ten, and have densities which agree with those derived by density-sensitive line ratios. The density vs. temperature structure in Alpha TrA agree well with that derived by Hartmann et al. (1985). Wave amplitudes and magnetic field strengths are derived as functions of height, and the amplitudes are found to agree well with the observed line widths in Alpha TrA.

  14. Facility Will Help Transition Models Into Operations

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2009-02-01

    The U.S. National Oceanic and Atmospheric Administration's Space Weather Prediction Center (NOAA SWPC), in partnership with the U.S. Air Force Weather Agency (AFWA), is establishing a center to promote and facilitate the transition of space weather models to operations. The new facility, called the Developmental Testbed Center (DTC), will take models used by researchers and rigorously test them to see if they can withstand continued use as viable warning systems. If a model used in a space weather warning system crashes or fails to perform well, severe consequences can result. These include increased radiation risks to astronauts and people traveling on high-altitude flights, national security vulnerabilities from the loss of military satellite communications, and the cost of replacing damaged military and commercial spacecraft.

  15. Intelligent card processing terminal of urban rail transit in Nanjing

    NASA Astrophysics Data System (ADS)

    Xia, Dechuan; Zhang, Xiaojun; Song, Yana; He, Tiejun

    2011-10-01

    In order to improve the compatibility, security and expandability of Automatic Fare Collection System in rail transit, and reduce the maintenance cost, intelligent card processing terminal is proposed in this paper. The operation flow and features of intelligent card processing terminal are analyzed in detailed, and the software and hardware structures and business treatment process are designed. Finally, the security mechanism of intelligent card processing terminal is summarized. The application results shows that Intelligent card processing terminal makes interconnection among lines easier, creates considerable economic efficiency and the social efficiency, and can be widely used.

  16. Sabin-to-Mahoney Transition Model of Quasispecies Replication

    SciTech Connect

    2009-05-31

    Qspp is an agent-based stochastic simulation model of the Poliovirus Sabin-to-Mahoney transition. This code simulates a cell-to-cell model of Poliovirus replication. The model tracks genotypes (virus genomes) as they are replicated in cells, and as the cells burst and release particles into the medium of a culture dish. An inoculum is then taken from the pool of virions and is used to inoculate cells on a new dish. This process repeats. The Sabin genotype comprises the initial inoculum. Nucleotide positions that match the Sabin1 (vaccine strain) and Mahoney (wild type) genotypes, as well as the neurovirulent phenotype (from the literature) are enumerated as constants.

  17. Software Transition Project Retrospectives and the Application of SEL Effort Estimation Model and Boehm's COCOMO to Complex Software Transition Projects

    NASA Technical Reports Server (NTRS)

    McNeill, Justin

    1995-01-01

    The Multimission Image Processing Subsystem (MIPS) at the Jet Propulsion Laboratory (JPL) has managed transitions of application software sets from one operating system and hardware platform to multiple operating systems and hardware platforms. As a part of these transitions, cost estimates were generated from the personal experience of in-house developers and managers to calculate the total effort required for such projects. Productivity measures have been collected for two such transitions, one very large and the other relatively small in terms of source lines of code. These estimates used a cost estimation model similar to the Software Engineering Laboratory (SEL) Effort Estimation Model. Experience in transitioning software within JPL MIPS have uncovered a high incidence of interface complexity. Interfaces, both internal and external to individual software applications, have contributed to software transition project complexity, and thus to scheduling difficulties and larger than anticipated design work on software to be ported.

  18. Becoming Counselors through Growth and Learning: The Entry Transition Process

    ERIC Educational Resources Information Center

    Wagner, Holly H.; Hill, Nicole R.

    2015-01-01

    This article explored counselor development within the entry transition into counselor education programs using 4 interviews and interpretive dialogues with 8 beginning counselors. Six categories resulted from the authors' grounded theory analysis: Anticipation, Evolving Identity, Growth and Learning, Coping, Choosing to Trust the Process, and…

  19. Detecting critical state before phase transition of complex systems by hidden Markov model

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Chen, Pei; Li, Yongjun; Chen, Luonan

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e., before-transition state, pre-transition state, and after-transition state, which can be considered as three different Markov processes. Thus, based on this dynamical feature, we present a novel computational method, i.e., hidden Markov model (HMM), to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e., the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin, and HCV-induced dysplasia and hepatocellular carcinoma.

  20. When University Faculty Retire: A Study of the Transition Process.

    ERIC Educational Resources Information Center

    Pappas, John G.; Goodman, Jane

    This study examined the retirement transitions of college faculty based on the Schlossberg (1984) model, which suggests that successful coping depends on an evaluation of the retiree's unique situation, the qualities of the individual, the support available, and the strategies employed. A total of 55 emeritus faculty from the College of Education…

  1. A new model for broadband waveguide to microstrip transition design

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Downey, Alan N.

    1986-01-01

    A new model is presented which permits the prediction of the resonant frequencies created by antipodal finline waveguide to microstrip transitions. The transition is modeled as a tapered transmission line in series with an infinite set of coupled resonant circuits. The resonant circuits are modeled as simple microwave resonant cavities of which the resonant frequencies are easily determined. The model is developed and the resonant frequencies determined for several different transitions. Experimental results are given to confirm the models.

  2. The Transition to Independence Process: Promoting Self-Efficacy in Transition-Aged Youths.

    PubMed

    Kalinyak, Christopher M; Gary, Faye A; Killion, Cheryl M; Suresky, M Jane

    2016-02-01

    Transition to adulthood is a developmental stage that presents unique and challenging problems. For individuals with dual diagnoses of mental disorders and substance abuse, the tragic dilemma confronting them is one of limited or nonexistent options as they attempt to navigate their way from child and adolescent services to adult programs. The Transition to Independence Process (TIP) is designed to facilitate more successful outcomes in the transition to adulthood by offering continuity of support. Nursing plays a crucial role in enabling young adults to develop a healthy sense of self-efficacy, thus facilitating the success of a TIP program. [Journal of Psychosocial Nursing and Mental Health Services, 54(2), 49-53.]. PMID:27648874

  3. Transition from a planar interface to cellular and dendritic structures during rapid solidification processing

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.

  4. Chaos Theory as a Model for Life Transitions Counseling: Nonlinear Dynamics and Life's Changes

    ERIC Educational Resources Information Center

    Bussolari, Cori J.; Goodell, Judith A.

    2009-01-01

    Chaos theory is presented for counselors working with clients experiencing life transitions. It is proposed as a model that considers disorder, unpredictability, and lack of control as normal parts of transition processes. Nonlinear constructs from physics are adapted for use in counseling. The model provides a method clients can use to…

  5. Relaxation processes in a lower disorder order transition diblock copolymer

    SciTech Connect

    Sanz, Alejandro; Ezquerra, Tiberio A.; Nogales, Aurora

    2015-02-14

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition T{sub ODT}, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system.

  6. Relaxation processes in a lower disorder order transition diblock copolymer.

    PubMed

    Sanz, Alejandro; Ezquerra, Tiberio A; Hernández, Rebeca; Sprung, Michael; Nogales, Aurora

    2015-02-14

    The dynamics of lower disorder-order temperature diblock copolymer leading to phase separation has been observed by X ray photon correlation spectroscopy. Two different modes have been characterized. A non-diffusive mode appears at temperatures below the disorder to order transition, which can be associated to compositional fluctuations, that becomes slower as the interaction parameter increases, in a similar way to the one observed for diblock copolymers exhibiting phase separation upon cooling. At temperatures above the disorder to order transition TODT, the dynamics becomes diffusive, indicating that after phase separation in Lower Disorder-Order Transition (LDOT) diblock copolymers, the diffusion of chain segments across the interface is the governing dynamics. As the segregation is stronger, the diffusive process becomes slower. Both observed modes have been predicted by the theory describing upper order-disorder transition systems, assuming incompressibility. However, the present results indicate that the existence of these two modes is more universal as they are present also in compressible diblock copolymers exhibiting a lower disorder-order transition. No such a theory describing the dynamics in LDOT block copolymers is available, and these experimental results may offer some hints to understanding the dynamics in these systems. The dynamics has also been studied in the ordered state, and for the present system, the non-diffusive mode disappears and only a diffusive mode is observed. This mode is related to the transport of segment in the interphase, due to the weak segregation on this system. PMID:25681940

  7. Transitioning GONG data processing to NOAA SWPC operations

    NASA Astrophysics Data System (ADS)

    Reinard, Alysha; Marble, Andrew R.; Berger, Thomas

    2016-05-01

    The NOAA Space Weather Prediction Center (SWPC) is the nation's official source of space weather watches, warnings, and alerts, providing 24x7 forecasting and support to critical infrastructure operators around the world. Observations of the conditions on the Sun are crucial for determining when and if a warning is needed. The Global Oscillation Network Group (GONG) operated by the National Solar Observatory (NSO) consists of six ground stations, allowing continuous observations of the Sun. Of particular interest for space weather purposes are the H-alpha images and magnetograms. The H-alpha data are used to identify filaments and their eruptions, to assess active region evolution and plage extent, and to help localize flare locations. The magnetograms are used to identify neutral lines, to examine potential shearing areas and to characterize the magnetic structure of active regions. GONG magnetograms also provide the initial condition for models of solar wind expansion through the heliosphere such as the WSA-Enlil model. Although beyond the scope of current space weather applications, GONG helioseismology products can be used to assess active region emergence on the far side of the Sun and to indicate the flaring potential of a front-side active region. These products are being examined as future tools in flare prediction.NSO has operated GONG as a science facility since 1995 and has provided processed space weather data products to NOAA via for the past several years. In 2014 the White House Office of Management and Budget (OMB) requested that NOAA transition the GONG network to an operational space weather asset in order to ensure the continued flow of critical data for solar wind models. NSO will continue to operate and manage the instruments and sites, but the H-alpha images and 10 minute averaged magnetogram data will be sent directly to SWPC for processing and use in space weather modeling. SWPC will make these data available to NSO and the public via the

  8. Transitioning GONG data processing to NOAA SWPC operations

    NASA Astrophysics Data System (ADS)

    Reinard, A.; Marble, A.; Hill, F.; Berger, T. E.

    2015-12-01

    The NOAA Space Weather Prediction Center (SWPC) is the nation's official source of space weather watches, warnings, and alerts, providing 24x7 forecasting and support to critical infrastructure operators around the world. Observations of the conditions on the Sun are crucial for determining when and if a warning is needed. The Global Oscillation Network Group (GONG) operated by the National Solar Observatory (NSO) consists of six ground stations, allowing continuous observations of the Sun. Of particular interest for space weather purposes are the H-alpha images and magnetograms. The H-alpha data are used to identify filaments and their eruptions, to assess active region evolution and plage extent, and to help localize flare locations. The magnetograms are used to identify neutral lines, to examine potential shearing areas and to characterize the magnetic structure of active regions. GONG magnetograms also provide the initial condition for models of solar wind expansion through the heliosphere such as the WSA-Enlil model. Although beyond the scope of current space weather applications, GONG helioseismology products can be used to assess active region emergence on the far side of the Sun and to indicate the flaring potential of a front-side active region. These products are being examined as future tools in flare prediction. NSO has operated GONG as a science facility since 1995 and has provided processed space weather data products to NOAA via public internet connections for the past several years. In 2014 the White House Office of Management and Budget (OMB) requested that NOAA transition the GONG network to an operational space weather asset in order to ensure the continued flow of critical magnetogram data for solar wind models. NSO will continue to operate and manage the instruments and sites, but the H-alpha images and 10 minute averaged magnetogram data will be sent directly to SWPC for processing and use in space weather modeling. SWPC will make these data

  9. Phase transitions in Thirring’s model

    NASA Astrophysics Data System (ADS)

    Campa, Alessandro; Casetti, Lapo; Latella, Ivan; Pérez-Madrid, Agustín; Ruffo, Stefano

    2016-07-01

    In his pioneering work on negative specific heat, Walter Thirring introduced a model that is solvable in the microcanonical ensemble. Here, we give a complete description of the phase-diagram of this model in both the microcanonical and the canonical ensemble, highlighting the main features of ensemble inequivalence. In both ensembles, we find a line of first-order phase transitions which ends in a critical point. However, neither the line nor the point have the same location in the phase-diagram of the two ensembles. We also show that the microcanonical and canonical critical points can be analytically related to each other using a Landau expansion of entropy and free energy, respectively, in analogy with what has been done in (Cohen and Mukamel 2012 J. Stat. Mech. P12017). Examples of systems with certain symmetries restricting the Landau expansion have been considered in this reference, while no such restrictions are present in Thirring’s model. This leads to a phase diagram that can be seen as a prototype for what happens in systems of particles with kinematic degrees of freedom dominated by long-range interactions.

  10. 'Biogeneric' developmental processes: drivers of major transitions in animal evolution.

    PubMed

    Newman, Stuart A

    2016-08-19

    Using three examples drawn from animal systems, I advance the hypothesis that major transitions in multicellular evolution often involved the constitution of new cell-based materials with unprecedented morphogenetic capabilities. I term the materials and formative processes that arise when highly evolved cells are incorporated into mesoscale matter 'biogeneric', to reflect their commonality with, and distinctiveness from, the organizational properties of non-living materials. The first transition arose by the innovation of classical cell-adhesive cadherins with transmembrane linkage to the cytoskeleton and the appearance of the morphogen Wnt, transforming some ancestral unicellular holozoans into 'liquid tissues', and thereby originating the metazoans. The second transition involved the new capabilities, within a basal metazoan population, of producing a mechanically stable basal lamina, and of planar cell polarization. This gave rise to the eumetazoans, initially diploblastic (two-layered) forms, and then with the addition of extracellular matrices promoting epithelial-mesenchymal transformation, three-layered triploblasts. The last example is the fin-to-limb transition. Here, the components of a molecular network that promoted the development of species-idiosyncratic endoskeletal elements in gnathostome ancestors are proposed to have evolved to a dynamical regime in which they constituted a Turing-type reaction-diffusion system capable of organizing the stereotypical arrays of elements of lobe-finned fish and tetrapods. The contrasting implications of the biogeneric materials-based and neo-Darwinian perspectives for understanding major evolutionary transitions are discussed.This article is part of the themed issue 'The major synthetic evolutionary transitions'. PMID:27431521

  11. Simplified modeling of transition to detonation in porous energetic materials

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Asay, Blaine W.; Prasad, Kuldeep

    1994-07-01

    A simplified model that can predict the transitions from compaction to detonation and shock to detonation is given with the aim of describing experiments in beds of porous HMX. In the case of compaction to detonation, the energy of early impact generates a slowly moving, convective-reactive deflagration that expands near the piston face and evolves in a manner that is characteristic of confined deflagration to detonation transition. A single-phase state variable theory is adopted in contrast to a two-phase axiomatic mixture theory. The ability of the porous material to compact is treated as an endothermic process. Reaction is treated as an exothermic process. The algebraic (Rankine-Hugoniot) steady wave analysis is given for inert compaction waves and steady detonation waves in a piston supported configuration, typical of the experiments carried out in porous HMX. A structure analysis of the steady compaction wave is given. Numerical simulations of deflagration to detonation are carried out for parameters that describe an HMX-like material and compared with the experiments. The simple model predicts the high density plug that is observed in the experiments and suggests that the leading front of the plug is a secondary compaction wave. A shock to detonation transition is also numerically simulated.

  12. Simplified modeling of transition to detonation in porous energetic materials

    SciTech Connect

    Stewart, D.S. ); Asay, B.W. ); Prasad, K. )

    1994-07-01

    A simplified model that can predict the transitions from compaction to detonation and shock to detonation is given with the aim of describing experiments in beds of porous HMX. In the case of compaction to detonation, the energy of early impact generates a slowly moving, convective-reactive deflagration that expands near the piston face and evolves in a manner that is characteristic of confined deflagration to detonation transition. A single-phase state variable theory is adopted in contrast to a two-phase axiomatic mixture theory. The ability of the porous material to compact is treated as an endothermic process. Reaction is treated as an exothermic process. The algebraic (Rankine--Hugoniot) steady wave analysis is given for inert compaction waves and steady detonation waves in a piston supported configuration, typical of the experiments carried out in porous HMX. A structure analysis of the steady compaction wave is given. Numerical simulations of deflagration to detonation are carried out for parameters that describe an HMX-like material and compared with the experiments. The simple model predicts the high density plug that is observed in the experiments and suggests that the leading front of the plug is a secondary compaction wave. A shock to detonation transition is also numerically simulated.

  13. Phase Transitions in Model Active Systems

    NASA Astrophysics Data System (ADS)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  14. Safety models incorporating graph theory based transit indicators.

    PubMed

    Quintero, Liliana; Sayed, Tarek; Wahba, Mohamed M

    2013-01-01

    There is a considerable need for tools to enable the evaluation of the safety of transit networks at the planning stage. One interesting approach for the planning of public transportation systems is the study of networks. Network techniques involve the analysis of systems by viewing them as a graph composed of a set of vertices (nodes) and edges (links). Once the transport system is visualized as a graph, various network properties can be evaluated based on the relationships between the network elements. Several indicators can be calculated including connectivity, coverage, directness and complexity, among others. The main objective of this study is to investigate the relationship between network-based transit indicators and safety. The study develops macro-level collision prediction models that explicitly incorporate transit physical and operational elements and transit network indicators as explanatory variables. Several macro-level (zonal) collision prediction models were developed using a generalized linear regression technique, assuming a negative binomial error structure. The models were grouped into four main themes: transit infrastructure, transit network topology, transit route design, and transit performance and operations. The safety models showed that collisions were significantly associated with transit network properties such as: connectivity, coverage, overlapping degree and the Local Index of Transit Availability. As well, the models showed a significant relationship between collisions and some transit physical and operational attributes such as the number of routes, frequency of routes, bus density, length of bus and 3+ priority lanes.

  15. Liquid-Liquid Phase Transition and Glass Transition in a Monoatomic Model System

    PubMed Central

    Xu, Limei; Buldyrev, Sergey V.; Giovambattista, Nicolas; Stanley, H. Eugene

    2010-01-01

    We review our recent study on the polyamorphism of the liquid and glass states in a monatomic system, a two-scale spherical-symmetric Jagla model with both attractive and repulsive interactions. This potential with a parametrization for which crystallization can be avoided and both the glass transition and the liquid-liquid phase transition are clearly separated, displays water-like anomalies as well as polyamorphism in both liquid and glassy states, providing a unique opportunity to study the interplay between the liquid-liquid phase transition and the glass transition. Our study on a simple model may be useful in understanding recent studies of polyamorphism in metallic glasses. PMID:21614201

  16. Implicit Value Updating Explains Transitive Inference Performance: The Betasort Model.

    PubMed

    Jensen, Greg; Muñoz, Fabian; Alkan, Yelda; Ferrera, Vincent P; Terrace, Herbert S

    2015-01-01

    Transitive inference (the ability to infer that B > D given that B > C and C > D) is a widespread characteristic of serial learning, observed in dozens of species. Despite these robust behavioral effects, reinforcement learning models reliant on reward prediction error or associative strength routinely fail to perform these inferences. We propose an algorithm called betasort, inspired by cognitive processes, which performs transitive inference at low computational cost. This is accomplished by (1) representing stimulus positions along a unit span using beta distributions, (2) treating positive and negative feedback asymmetrically, and (3) updating the position of every stimulus during every trial, whether that stimulus was visible or not. Performance was compared for rhesus macaques, humans, and the betasort algorithm, as well as Q-learning, an established reward-prediction error (RPE) model. Of these, only Q-learning failed to respond above chance during critical test trials. Betasort's success (when compared to RPE models) and its computational efficiency (when compared to full Markov decision process implementations) suggests that the study of reinforcement learning in organisms will be best served by a feature-driven approach to comparing formal models. PMID:26407227

  17. Implicit Value Updating Explains Transitive Inference Performance: The Betasort Model

    PubMed Central

    Jensen, Greg; Muñoz, Fabian; Alkan, Yelda; Ferrera, Vincent P.; Terrace, Herbert S.

    2015-01-01

    Transitive inference (the ability to infer that B > D given that B > C and C > D) is a widespread characteristic of serial learning, observed in dozens of species. Despite these robust behavioral effects, reinforcement learning models reliant on reward prediction error or associative strength routinely fail to perform these inferences. We propose an algorithm called betasort, inspired by cognitive processes, which performs transitive inference at low computational cost. This is accomplished by (1) representing stimulus positions along a unit span using beta distributions, (2) treating positive and negative feedback asymmetrically, and (3) updating the position of every stimulus during every trial, whether that stimulus was visible or not. Performance was compared for rhesus macaques, humans, and the betasort algorithm, as well as Q-learning, an established reward-prediction error (RPE) model. Of these, only Q-learning failed to respond above chance during critical test trials. Betasort’s success (when compared to RPE models) and its computational efficiency (when compared to full Markov decision process implementations) suggests that the study of reinforcement learning in organisms will be best served by a feature-driven approach to comparing formal models. PMID:26407227

  18. Quantum phase transition in a pseudo-Hermitian Dicke model

    SciTech Connect

    Deguchi, Tetsuo; Ghosh, Pijush K.

    2009-08-15

    We show that a Dicke-type non-Hermitian Hamiltonian admits entirely real spectra by mapping it to the 'dressed Dicke model' through a similarity transformation. We find a positive-definite metric in the Hilbert space of the non-Hermitian Hamiltonian so that the time evolution is unitary and allows a consistent quantum description. We then show that this non-Hermitian Hamiltonian describing nondissipative quantum processes undergoes quantum phase transition. The exactly solvable limit of the non-Hermitian Hamiltonian has also been discussed.

  19. Empirical refinements to boundary layer transition noise models

    NASA Astrophysics Data System (ADS)

    Marboe, Richard C.; Lauchle, Gerald C.

    We have discussed two similar theoretical models for direct radiation from a transitioning boundary layer zone. When Ffowcs Williams suggested that a turbulent spot may yield 'intense sound radiation', he suggested that analysis was insufficient to resolve the growth mechanism and that empiricism was necessary. The predicted radiated noise levels due to the transition process are sensitive to several factors which will require such empirical description in order to practically use the models, whether applied to flow over a wall, around a body of revolution, or over an airfoil or hydrofoil. They include: the effect of the dynamics of the spot substructures identified by Sankaran et al. on the normal surface velocity, v(sub n); accurate displacement thickness rise time, t(sub i) and spatially-dependent normal velocity measurements; and effects of adverse pressure gradient including the possibility of laminar separation prior to transition. The radiated noise component magnitude can be added to the convective and low wavenumber contribution to find the wall pressure forcing spectrum as input to the fluid-structure interaction problems of interest.

  20. A multinomial choice model approach for dynamic driver vision transitions.

    PubMed

    Huang, Shih-Hsuan; Wong, Jinn-Tsai

    2015-01-01

    Exploring the continual process of drivers allocating their attention under varying conditions could be vital for preventing motor vehicle crashes. This study aims to model visual behaviors and to estimate the effects of various contributing factors on driver's vision transitions. A visual attention allocation framework, based on certain contributing attributes related to driving tasks and environmental conditions, has been developed. The associated logit type models for determining driver choices for focal points were successfully formulated and estimated by using naturalistic glance data from the 100-car event database. The results offer insights into driver visual behavior and patterns of visual attention allocation. The three focal points that drivers most frequently rely on and glance at are the forward, left and rear view mirror. The sample drivers were less likely to demonstrate troublesome transition patterns, particularly in mentally demanding situations. Additionally, instead of shifting vision directly between two non-forward focal points, the sample drivers frequently had an intermediate forward glance. Thus, seemingly unrelated paths could be grouped into explanatory patterns of driver attention allocation. Finally, in addition to the vision-transition patterns, the potential pitfalls of such patterns and possible countermeasures to improving safety are illustrated, focusing on situations when drivers are distracted, traveling at high speeds and approaching intersections.

  1. Phase transition in the ABC model.

    PubMed

    Clincy, M; Derrida, B; Evans, M R

    2003-06-01

    Recent studies have shown that one-dimensional driven systems can exhibit phase separation even if the dynamics is governed by local rules. The ABC model, which comprises three particle species that diffuse asymmetrically around a ring, shows anomalous coarsening into a phase separated steady state. In the limiting case in which the dynamics is symmetric and the parameter q describing the asymmetry tends to one, no phase separation occurs and the steady state of the system is disordered. In the present work, we consider the weak asymmetry regime q=exp(-beta/N), where N is the system size, and study how the disordered state is approached. In the case of equal densities, we find that the system exhibits a second-order phase transition at some nonzero beta(c). The value of beta(c)=2pi square root 3 and the optimal profiles can be obtained by writing the exact large deviation functional. For nonequal densities, we write down mean-field equations and analyze some of their predictions. PMID:16241312

  2. Human driven transitions in complex model ecosystems

    NASA Astrophysics Data System (ADS)

    Harfoot, Mike; Newbold, Tim; Tittinsor, Derek; Purves, Drew

    2015-04-01

    Human activities have been observed to be impacting ecosystems across the globe, leading to reduced ecosystem functioning, altered trophic and biomass structure and ultimately ecosystem collapse. Previous attempts to understand global human impacts on ecosystems have usually relied on statistical models, which do not explicitly model the processes underlying the functioning of ecosystems, represent only a small proportion of organisms and do not adequately capture complex non-linear and dynamic responses of ecosystems to perturbations. We use a mechanistic ecosystem model (1), which simulates the underlying processes structuring ecosystems and can thus capture complex and dynamic interactions, to investigate boundaries of complex ecosystems to human perturbation. We explore several drivers including human appropriation of net primary production and harvesting of animal biomass. We also present an analysis of the key interactions between biotic, societal and abiotic earth system components, considering why and how we might think about these couplings. References: M. B. J. Harfoot et al., Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model., PLoS Biol. 12, e1001841 (2014).

  3. Data support for a state-and-transition model: What have we learned?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    State-and-transition models (STMs) were conceived as a means to synthesize knowledge about alternative plant communities and the processes that lead to transitions among them for specific land areas. STMs that have been developed over the past decade have often been limited by 1) a lack of detail on...

  4. Thermodynamic model of nonequilibrium phase transitions.

    PubMed

    Martyushev, L M; Konovalov, M S

    2011-07-01

    Within the scope of a thermodynamic description using the maximum entropy production principle, transitions from one nonequilibrium (kinetic) regime to another are considered. It is shown that in the case when power-law dependencies of thermodynamic flux on force are similar for two regimes, only a transition accompanied by a positive jump of thermodynamic flux is possible between them. It is found that the difference in powers of the dependencies of thermodynamic fluxes on forces results in a number of interesting nonequilibrium transitions between kinetic regimes, including the reentrant one with a negative jump of thermodynamic flux. PMID:21867119

  5. Electronic Relaxation Processes of Transition Metal Atoms in Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Kautsch, Andreas; Lindebner, Friedrich; Koch, Markus; Ernst, Wolfgang E.

    2014-06-01

    Spectroscopy of doped superfluid helium nanodroplets (He_N) gives information about the influence of this cold, chemically inert, and least interacting matrix environment on the excitation and relaxation dynamics of dopant atoms and molecules. We present the results from laser induced fluorescence (LIF), photoionization (PI), and mass spectroscopy of Cr and Cu doped He_N. From these results, we can draw a comprehensive picture of the complex behavior of such transition metal atoms in He_N upon photo-excitation. The strong Cr and Cu ground state transitions show an excitation blueshift and broadening with respect to the bare atom transitions which can be taken as indication for the solvation inside the droplet. From the originally excited states the atoms relax to energetically lower states and are ejected from the He_N. The relaxation processes include bare atom spin-forbidden transitions, which clearly bears the signature of the He_N influence. Two-color resonant two-photon ionization (2CR2PI) also shows the formation of bare atoms and small Cr-He_n and Cu-He_n clusters in their ground and metastable states ^c. Currently, Cr dimer excitation studies are in progress and a brief outlook on the available results will be given. C. Callegari and W. E. Ernst, Helium Droplets as Nanocryostats for Molecular Spectroscopy - from the Vacuum Ultraviolet to the Microwave Regime, in Handbook of High-Resolution Spectroscopy, eds. M. Quack and F. Merkt, John Wiley & Sons, Chichester, 2011. A. Kautsch, M. Koch, and W. E. Ernst, J. Phys. Chem. A, 117 (2013) 9621-9625, DOI: 10.1021/jp312336m F. Lindebner, A. Kautsch, M. Koch, and W. E. Ernst, Int. J. Mass Spectrom. (2014) in press, DOI: 10.1016/j.ijms.2013.12.022 M. Koch, A. Kautsch, F. Lackner, and W. E. Ernst, submitted to J. Phys. Chem. A

  6. Preon model and cosmological quantum-hyperchromodynamic phase transition

    SciTech Connect

    Nishimura, H.; Hayashi, Y.

    1987-05-15

    From the cosmological viewpoint, we investigate whether or not recent preon models are compatible with the picture of the first-order phase transition from the preon phase to the composite quark-lepton phase. It is shown that the current models accepting the 't Hooft anomaly-matching condition together with quantum hyperchromodynamics are consistent with the cosmological first-order phase transition.

  7. Preon model and cosmological quantum-hyperchromodynamic phase transition

    NASA Astrophysics Data System (ADS)

    Nishimura, H.; Hayashi, Y.

    1987-05-01

    From the cosmological viewpoint, we investigate whether or not recent preon models are compatible with the picture of the first-order phase transition from the preon phase to the composite quark-lepton phase. It is shown that the current models accepting the 't Hooft anomaly-matching condition together with quantum hyperchromodynamics are consistent with the cosmological first-order phase transition.

  8. Transitional Jobs: Background, Program Models, and Evaluation Evidence

    ERIC Educational Resources Information Center

    Bloom, Dan

    2010-01-01

    The budget for the U.S. Department of Labor for Fiscal Year 2010 includes a total of $45 million to support and study transitional jobs. This paper describes the origins of the transitional jobs models that are operating today, reviews the evidence on the effectiveness of this approach and other subsidized employment models, and offers some…

  9. Sabin-to-Mahoney Transition Model of Quasispecies Replication

    2009-05-31

    Qspp is an agent-based stochastic simulation model of the Poliovirus Sabin-to-Mahoney transition. This code simulates a cell-to-cell model of Poliovirus replication. The model tracks genotypes (virus genomes) as they are replicated in cells, and as the cells burst and release particles into the medium of a culture dish. An inoculum is then taken from the pool of virions and is used to inoculate cells on a new dish. This process repeats. The Sabin genotype comprisesmore » the initial inoculum. Nucleotide positions that match the Sabin1 (vaccine strain) and Mahoney (wild type) genotypes, as well as the neurovirulent phenotype (from the literature) are enumerated as constants.« less

  10. Transitional paleointensities from Kauai, Hawaii, and geomagnetic reversal models

    USGS Publications Warehouse

    Bogue, Scott W.; Coe, Robert S.

    1984-01-01

    Previously presented paleointensity results from an R-N transition zone in Kauai, Hawaii, show that field intensity dropped from 0. 431 Oe to 0. 101 Oe while the field remained within 30 degree of the reversed axial dipole direction. A recovery in intensity and the main directional change followed this presumably short period of low field strength. As the reversal neared completion, the field has an intensity of 0. 217 Oe while still 40 degree from the final direction. The relationship of paleointensity to field direction during the early part of the reversal thus differs from that toward the end, a feature that only some reversal models are consistent with. For example, a model in which a standing nondipole component persists through the dipole reversal predicts only symmetric intensity patterns. In contrast, zonal flooding models generate suitably complex field behavior if multiple flooding schemes operate during a single reversal or if the flooding process is itself asymmetric.

  11. Implementation and Validation of a Laminar-to-Turbulent Transition Model in the Wind-US Code

    NASA Technical Reports Server (NTRS)

    Denissen, Nicholas A.; Yoder, Dennis A.; Georgiadis, Nicholas J.

    2008-01-01

    A bypass transition model has been implemented in the Wind-US Reynolds Averaged Navier-Stokes (RANS) solver. The model is based on the Shear Stress Transport (SST) turbulence model and was built starting from a previous SST-based transition model. Several modifications were made to enable (1) consistent solutions regardless of flow field initialization procedure and (2) fully turbulent flow beyond the transition region. This model is intended for flows where bypass transition, in which the transition process is dominated by large freestream disturbances, is the key transition mechanism as opposed to transition dictated by modal growth. Validation of the new transition model is performed for flows ranging from incompressible to hypersonic conditions.

  12. A Simple Model for Complex Dynamical Transitions in Epidemics

    NASA Astrophysics Data System (ADS)

    Earn, David J. D.; Rohani, Pejman; Bolker, Benjamin M.; Grenfell, Bryan T.

    2000-01-01

    Dramatic changes in patterns of epidemics have been observed throughout this century. For childhood infectious diseases such as measles, the major transitions are between regular cycles and irregular, possibly chaotic epidemics, and from regionally synchronized oscillations to complex, spatially incoherent epidemics. A simple model can explain both kinds of transitions as the consequences of changes in birth and vaccination rates. Measles is a natural ecological system that exhibits different dynamical transitions at different times and places, yet all of these transitions can be predicted as bifurcations of a single nonlinear model.

  13. Stockpile Transition Enabling Program (STEP): Process and project requirements

    SciTech Connect

    Ma, Kwok Kee

    1993-06-01

    The Stockpile Transition Enabling Program (STEP) is aimed at identifying weapon components suitable for use in more than one weapon and for qualifying components so identified for multiple use. Work includes identifying the means to maintain the manufacturing capability for these items. This document provides the participants in STEP a common, consistent understanding of the process and requirements. The STEP objectives are presented and the activities are outlined. The STEP project selections are based on the customer needs, product applicability, and maturity of the technology used. A formal project selection process is described and the selection criteria are defined. The concept of {open_quotes}production readiness{close_quotes} is introduced, along with a summary of the project requirements and deliverables to demonstrate production readiness.

  14. GREENSCOPE: Sustainable Process Modeling

    EPA Science Inventory

    EPA researchers are responding to environmental problems by incorporating sustainability into process design and evaluation. EPA researchers are also developing a tool that allows users to assess modifications to existing and new chemical processes to determine whether changes in...

  15. Processed foods and the nutrition transition: evidence from Asia.

    PubMed

    Baker, P; Friel, S

    2014-07-01

    This paper elucidates the role of processed foods and beverages in the 'nutrition transition' underway in Asia. Processed foods tend to be high in nutrients associated with obesity and diet-related non-communicable diseases: refined sugar, salt, saturated and trans-fats. This paper identifies the most significant 'product vectors' for these nutrients and describes changes in their consumption in a selection of Asian countries. Sugar, salt and fat consumption from processed foods has plateaued in high-income countries, but has rapidly increased in the lower-middle and upper-middle-income countries. Relative to sugar and salt, fat consumption in the upper-middle- and lower-middle-income countries is converging most rapidly with that of high-income countries. Carbonated soft drinks, baked goods, and oils and fats are the most significant vectors for sugar, salt and fat respectively. At the regional level there appears to be convergence in consumption patterns of processed foods, but country-level divergences including high levels of consumption of oils and fats in Malaysia, and soft drinks in the Philippines and Thailand. This analysis suggests that more action is needed by policy-makers to prevent or mitigate processed food consumption. Comprehensive policy and regulatory approaches are most likely to be effective in achieving these goals. PMID:24735161

  16. Magnetization Processes During FM Transitions of Supercooled Er Films

    NASA Astrophysics Data System (ADS)

    Durfee, C. S.; Flynn, C. P.

    2000-03-01

    FM transitions are generally accompanied by dimensional changes of the crystal lattice. In magnetic films, the in-plane dimensional changes are inhibited by clamping to the substrate, creating a rich variety of phenomena (e.g. supercooling, dislocation formation and motion, bowing of dislocations, and altered magnetization processes), which can be directly observed with x-rays. Here we characterize the magnetization processes exhibited by unstrained Er films. Below the Curie temperature, the film exhibits supercooling, remaining in a metastable non-FM state and only relaxing to the FM state when a magnetic field is applied. This occurs by two distinct processes. The first process, which broadens the x-ray line shape, is nucleation and growth of FM domains. The second, which produces no line broadening, is isotropic magnetization of the entire film. Once magnetized, the film remains in the FM state until the temperature is raised several degrees above the Curie temperature, at which point the film relaxes to the non-FM state via one of these two paths. This process depends on the temperature when the field is removed.

  17. Processed foods and the nutrition transition: evidence from Asia.

    PubMed

    Baker, P; Friel, S

    2014-07-01

    This paper elucidates the role of processed foods and beverages in the 'nutrition transition' underway in Asia. Processed foods tend to be high in nutrients associated with obesity and diet-related non-communicable diseases: refined sugar, salt, saturated and trans-fats. This paper identifies the most significant 'product vectors' for these nutrients and describes changes in their consumption in a selection of Asian countries. Sugar, salt and fat consumption from processed foods has plateaued in high-income countries, but has rapidly increased in the lower-middle and upper-middle-income countries. Relative to sugar and salt, fat consumption in the upper-middle- and lower-middle-income countries is converging most rapidly with that of high-income countries. Carbonated soft drinks, baked goods, and oils and fats are the most significant vectors for sugar, salt and fat respectively. At the regional level there appears to be convergence in consumption patterns of processed foods, but country-level divergences including high levels of consumption of oils and fats in Malaysia, and soft drinks in the Philippines and Thailand. This analysis suggests that more action is needed by policy-makers to prevent or mitigate processed food consumption. Comprehensive policy and regulatory approaches are most likely to be effective in achieving these goals.

  18. Correlation-based Transition Modeling for External Aerodynamic Flows

    NASA Astrophysics Data System (ADS)

    Medida, Shivaji

    Conventional turbulence models calibrated for fully turbulent boundary layers often over-predict drag and heat transfer on aerodynamic surfaces with partially laminar boundary layers. A robust correlation-based model is developed for use in Reynolds-Averaged Navier-Stokes simulations to predict laminar-to-turbulent transition onset of boundary layers on external aerodynamic surfaces. The new model is derived from an existing transition model for the two-equation k-omega Shear Stress Transport (SST) turbulence model, and is coupled with the one-equation Spalart-Allmaras (SA) turbulence model. The transition model solves two transport equations for intermittency and transition momentum thickness Reynolds number. Experimental correlations and local mean flow quantities are used in the model to account for effects of freestream turbulence level and pressure gradients on transition onset location. Transition onset is triggered by activating intermittency production using a vorticity Reynolds number criterion. In the new model, production and destruction terms of the intermittency equation are modified to improve consistency in the fully turbulent boundary layer post-transition onset, as well as ensure insensitivity to freestream eddy viscosity value specified in the SA model. In the original model, intermittency was used to control production and destruction of turbulent kinetic energy. Whereas, in the new model, only the production of eddy viscosity in SA model is controlled, and the destruction term is not altered. Unlike the original model, the new model does not use an additional correction to intermittency for separation-induced transition. Accuracy of drag predictions are improved significantly with the use of the transition model for several two-dimensional single- and multi-element airfoil cases over a wide range of Reynolds numbers. The new model is able to predict the formation of stable and long laminar separation bubbles on low-Reynolds number airfoils that

  19. First-order phase transitions in outbreaks of co-infectious diseases and the extended general epidemic process

    NASA Astrophysics Data System (ADS)

    Janssen, Hans-Karl; Stenull, Olaf

    2016-01-01

    In co-infections, positive feedback between multiple diseases can accelerate outbreaks. In a recent letter Chen, Ghanbarnejad, Cai, and Grassberger (CGCG) introduced a spatially homogeneous mean-field model system for such co-infections, and studied this system numerically with focus on the possible existence of discontinuous phase transitions. We show that their model coincides in mean-field theory with the homogenous limit of the extended general epidemic process (EGEP). Studying the latter analytically, we argue that the discontinuous transition observed by CGCG is basically a spinodal phase transition and not a first-order transition with phase coexistence. We derive the conditions for this spinodal transition along with predictions for important quantities such as the magnitude of the discontinuity. We also shed light on a true first-order transition with phase coexistence by discussing the EGEP with spatial inhomogeneities.

  20. Entropy, chaos, and excited-state quantum phase transitions in the Dicke model.

    PubMed

    Lóbez, C M; Relaño, A

    2016-07-01

    We study nonequilibrium processes in an isolated quantum system-the Dicke model-focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy. PMID:27575109

  1. Glass transition and relaxation processes of nanocomposite polymer electrolytes.

    PubMed

    Money, Benson K; Hariharan, K; Swenson, Jan

    2012-07-01

    This study focus on the effect of δ-Al(2)O(3) nanofillers on the dc-conductivity, glass transition, and dielectric relaxations in the polymer electrolyte (PEO)(4):LiClO(4). The results show that there are three dielectric relaxation processes, α, β, and γ, in the systems, although the structural α-relaxation is hidden in the strong conductivity contribution and could therefore not be directly observed. However, by comparing an enhanced dc-conductivity, by approximately 2 orders of magnitude with 4 wt % δ-Al(2)O(3) added, with a decrease in calorimetric glass transition temperature, we are able to conclude that the dc-conductivity is directly coupled to the hidden α-relaxation, even in the presence of nanofillers (at least in the case of δ-Al(2)O(3) nanofillers at concentrations up to 4 wt %). This filler induced speeding up of the segmental polymer dynamics, i.e., the α-relaxation, can be explained by the nonattractive nature of the polymer-filler interactions, which enhance the "free volume" and mobility of polymer segments in the vicinity of filler surfaces. PMID:22686254

  2. Phase transitions for rotational states within an algebraic cluster model

    NASA Astrophysics Data System (ADS)

    López Moreno, E.; Morales Hernández, G. E.; Hess, P. O.; Yépez Martínez, H.

    2016-07-01

    The ground state and excited, rotational phase transitions are investigated within the Semimicroscopic Algebraic Cluster Model (SACM). The catastrophe theory is used to describe these phase transitions. Short introductions to the SACM and the catastrophe theory are given. We apply the formalism to the case of 16O+α→20Ne.

  3. The Consolidation/Transition Model in Moral Reasoning Development.

    ERIC Educational Resources Information Center

    Walker, Lawrence J.; Gustafson, Paul; Hennig, Karl H.

    2001-01-01

    This longitudinal study with 62 children and adolescents examined the validity of the consolidation/transition model in the context of moral reasoning development. Results of standard statistical and Bayesian techniques supported the hypotheses regarding cyclical patterns of change and predictors of stage transition, and demonstrated the utility…

  4. Processing-induced-transformations (PITs) during direct compression: Impact of tablet composition and compression load on phase transition of caffeine.

    PubMed

    Juban, Audrey; Briançon, Stéphanie; Puel, François

    2016-03-30

    In the pharmaceutical field, solid-state transitions that may occur during manufacturing of pharmaceuticals are of great importance. The phase transition of a model API, caffeine Form I (CFI), was studied during direct compression process by analysing the impacts of the operating conditions (process and formulation). This work is focused on two formulation parameters: nature of the diluent and impact of the caffeine dilution, and one process parameter: the compression pressure that may impact the phase transition of CFI. Tablets were made from pure CFI and from binary mixture of CFI/diluent (microcrystalline cellulose or anhydrous dicalcium phosphate). A kinetic study performed during six months helped to highlight the influence of these parameters on the CFI transition degree. Results showed a triggering effect of the direct compression process, transformation was higher in tablets than in uncompressed powders. Whatever the pressure applied, CFI transition degree was almost constant and uniformly occurring throughout the tablet volume. Nevertheless, several differences on the evolution of the CFI transition degree were observed between binary mixtures of CFI/diluent. An analysis of the transition mechanism with a stretched exponential law of the Johnson-Mehl-Avrami model shows that tableting accelerates the polymorphic transition without modifying its mechanism controlled by nucleation only. PMID:26853314

  5. Using the Research and Development in Organisations Model to Improve Transition to High School

    ERIC Educational Resources Information Center

    Ashton, Rebecca

    2009-01-01

    This article describes the application of the Research and Development in Organisations (RADIO) model to five action research projects carried out in schools around transition processes. The RADIO model is mapped onto all five studies, and adapting the model in order to include greater stakeholder participation is suggested. Reflections are made…

  6. Testing Transition State Theory on Kac-Zwanzig Model

    NASA Astrophysics Data System (ADS)

    Ariel, G.; vanden-Eijnden, E.

    2007-01-01

    A variant of the Kac-Zwanzig model is used to test the prediction of transition state theory (TST) and variational transition state theory (VTST). The model describes the evolution of a distinguished particle moving in a double-well external potential and coupled to N free particles through linear springs. While the Kac-Zwanzig model is deterministic, under appropriate choice of the model parameters the evolution of the distinguished particle can be approximated by a two-state Markov chain whose transition rate constants can be computed exactly in suitable limit. Here, these transition rate constants are compared with the predictions of TST and VTST. It is shown that the application of TST with a naive (albeit natural) choice of dividing surface leads to the wrong prediction of the transition rate constants. This is due to crossings of the dividing surface that do not correspond to actual transition events. However, optimizing over the dividing surface within VTST allows one to eliminate completely these spurious crossings, and therefore derive the correct transition rate constants for the model. The reasons why VTST is successful in this model are discussed, which allows one to speculate on the reliability of VTST in more complicated systems.

  7. Combining fixed- and moving-grid methods to study direct dissociation processes involving nonadiabatic transitions

    SciTech Connect

    Gindensperger, Etienne; Meier, Christoph; Beswick, J. Alberto; Parlant, Gerard

    2005-12-01

    We present a novel quantum-dynamics approach suitable for computing direct dissociation processes, including electronic transitions. This approach combines quantum trajectories in the Lagrangian reference frame with standard fixed-grid wave packets in order to overcome the limitations and difficulties of both techniques. As a model application, we consider the ultrafast photodissociation of H{sub 2} excited by a femtosecond extreme UV laser pulse.

  8. The electroweak phase transition in the Inert Doublet Model

    SciTech Connect

    Blinov, Nikita; Profumo, Stefano; Stefaniak, Tim

    2015-07-21

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  9. Critical behavior of the absorbing state transition in the contact process with relaxing immunization

    NASA Astrophysics Data System (ADS)

    Cruz, Claudia P. T.; Lyra, M. L.; Fulco, U. L.; Corso, Gilberto

    2012-11-01

    We introduce a model for the Contact Process with relaxing immunization CPRI. In this model, local memory is introduced by a time and space dependence of the contamination probability. The model has two parameters: a typical immunization time τ and a maximum contamination probability a. The system presents an absorbing state phase transition whenever the contamination probability a is above a minimum threshold. For short immunization times, the system evolves to a statistically stationary active state. Above τc(a), immunization predominates and the system evolves to the absorbing vacuum state. We employ a finite-size scaling analysis to show that the transition belongs to the standard directed percolation universality class. The critical immunization time diverges in the limit of a→1. In this regime, the density of active sites decays exponentially as τ increases, but never reaches the vacuum state in the thermodynamic limit.

  10. Integrability and Quantum Phase Transitions in Interacting Boson Models

    NASA Astrophysics Data System (ADS)

    Dukelsky, J.; Arias, J. M.; Garcia-Ramos, J. E.; Pittel, S.

    2004-04-01

    The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.

  11. PYTRANSIT: fast and easy exoplanet transit modelling in PYTHON

    NASA Astrophysics Data System (ADS)

    Parviainen, Hannu

    2015-07-01

    We present a fast and user friendly exoplanet transit light-curve modelling package PYTRANSIT, implementing optimized versions of the Giménez and Mandel & Agol transit models. The package offers an object-oriented PYTHON interface to access the two models implemented natively in FORTRAN with OpenMP parallelization. A partial OpenCL version of the quadratic Mandel-Agol model is also included for GPU-accelerated computations. The aim of PYTRANSIT is to facilitate the analysis of photometric time series of exoplanet transits consisting of hundreds of thousands of data points, and of multipassband transit light curves from spectrophotometric observations, as a part of a researcher's programming toolkit for building complex, problem-specific analyses.

  12. Security Transition Program Office (STPO), technology transfer of the STPO process, tools, and techniques

    SciTech Connect

    Hauth, J.T.; Forslund, C.R.J.; Underwood, J.A.

    1994-09-01

    In 1990, with the transition from a defense mission to environmental restoration, the U.S. Department of Energy`s (DOE`s) Hanford Site began a significant effort to diagnose, redesign, and implement new safeguards and security (SAS) processes. In 1992 the Security Transition Program Office (STPO) was formed to address the sweeping changes that were being identified. Comprised of SAS and other contractor staff with extensive experience and supported by staff experienced in organizational analysis and work process redesign, STPO undertook a series of tasks designed to make fundamental changes to SAS processes throughout the Hanford Site. The goal of STPO is to align the SAS work and organization with the new Site mission. This report describes the key strategy, tools, methods, and techniques used by STPO to change SAS processes at Hanford. A particular focus of this review is transferring STPO`s experience to other DOE sites and federal agency efforts: that is, to extract, analyze, and provide a critical review of the approach, tools, and techniques used by STPO that will be useful to other DOE sites and national laboratories in transitioning from a defense production mode to environmental restoration and other missions. In particular, what lessons does STPO provide as a pilot study or model for implementing change in other transition activities throughout the DOE complex? More broadly, what theoretical and practical contributions do DOE transition efforts, such as STPO, provide to federal agency streamlining efforts and attempts to {open_quotes}reinvent{close_quotes} government enterprises in the public sector? The approach used by STPO should provide valuable information to those examining their own processes in light of new mission requirements.

  13. A Transitional Care Model Using Faith Community Nurses.

    PubMed

    Ziebarth, Deborah; Campbell, Katora P

    2016-01-01

    The Medicare mandatory readmission reduction program has hospitals scrambling to reduce 30-day readmissions. A Faith Community Nurse (FCN) Transitional Care Model was developed from systematic literature review of predictive factors of readmission and pre- and postdischarge interventions that decrease readmission. The model presents specific FCN care that occurs pre- and posthospital discharge to support the patient in transitioning from one level of care to another, move toward wholistic health, and avoid unnecessary readmission.

  14. A Transitional Care Model Using Faith Community Nurses.

    PubMed

    Ziebarth, Deborah; Campbell, Katora P

    2016-01-01

    The Medicare mandatory readmission reduction program has hospitals scrambling to reduce 30-day readmissions. A Faith Community Nurse (FCN) Transitional Care Model was developed from systematic literature review of predictive factors of readmission and pre- and postdischarge interventions that decrease readmission. The model presents specific FCN care that occurs pre- and posthospital discharge to support the patient in transitioning from one level of care to another, move toward wholistic health, and avoid unnecessary readmission. PMID:27119808

  15. Model potential calculations of lithium transitions.

    NASA Technical Reports Server (NTRS)

    Caves, T. C.; Dalgarno, A.

    1972-01-01

    Semi-empirical potentials are constructed that have eigenvalues close in magnitude to the binding energies of the valence electron in lithium. The potentials include the long range polarization force between the electron and the core. The corresponding eigenfunctions are used to calculate dynamic polarizabilities, discrete oscillator strengths, photoionization cross sections and radiative recombination coefficients. A consistent application of the theory imposes a modification on the transition operator, but its effects are small for lithium. The method presented can be regarded as a numerical generalization of the widely used Coulomb approximation.

  16. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  17. Immunolocalization of endocan during the endothelial-mesenchymal transition process

    PubMed Central

    Carrillo, L.M.; Arciniegas, E.; Rojas, H.; Ramírez, R.

    2011-01-01

    Endocan is a dermatan sulfate proteoglycan (DSPG) that has been observed in the cytoplasm of endothelial cells of small and large vessels in lung, kidney, liver, colon, ovary and brain tumors. This DSPG has been implicated in the regulation of cellular activities such as adhesion, migration, and proliferation. Given the important roles played by endocan in such processes, we sought to determine whether this DSPG is present in the chicken embryo aortic wall in embryonic days 12 and 14, when intimal thickening and endothelial transformation are notorious. Immunolabeling of serial paraffin cross-sections revealed endocan immunoreactivity at the endothelium and some mesenchymal cells constituting the intimal thickening but not in the cells arranged in lamellar layers. We also investigated whether endocan was present in monolayers of primary embryonic aortic endothelial cells attached to fibronectin when they were deprived of serum and stimulated with epidermal growth factor. Immunofluorescence determined that in the epidermal growth factor (EGF) condition where separating, detaching, and migrating cells were observed, endocan appeared organized in arrays typical of focal complexes in the leading edge of these cells. In serum-free medium condition in which the endothelial cells displayed a cobblestone appearance, endocan appeared mainly delineating the margin of many cells. This study demonstrates for the first time the presence of endocan during the aortic wall remodeling, and provides evidence that suggests a possible contribution of this DSPG in the endothelial-mesenchymal transition (EndoMT) process. PMID:22201190

  18. TGF-β induced epithelial-mesenchymal transition modeling

    NASA Astrophysics Data System (ADS)

    Xenitidis, P.; Seimenis, I.; Kakolyris, S.; Adamopoulos, A.

    2015-09-01

    Epithelial cells may undergo a process called epithelial to mesenchymal transition (EMT). During EMT, cells lose their epithelial characteristics and acquire a migratory ability. Transforming growth factor-beta (TGF-β) signaling is considered to play an important role in EMT by regulating a set of genes through a gene regulatory network (GRN). This work aims at TGF-β induced EMT GRN modeling using publicly available experimental data (gene expression microarray data). The time-series network identification (TSNI) algorithm was used for inferring the EMT GRN. Receiver operating characteristic (ROC) and precision-recall (P-R) curves were constructed and the areas under them were used for evaluating the algorithm performance regarding network inference.

  19. TRANSIT MODEL FITTING IN THE KEPLER SCIENCE OPERATIONS CENTER PIPELINE: NEW FEATURES AND PERFORMANCE

    NASA Astrophysics Data System (ADS)

    Li, Jie; Burke, C. J.; Jenkins, J. M.; Quintana, E. V.; Rowe, J. F.; Seader, S. E.; Tenenbaum, P.; Twicken, J. D.

    2013-10-01

    We describe new transit model fitting features and performance of the latest release (9.1, July 2013) of the Kepler Science Operations Center (SOC) Pipeline. The targets for which a Threshold Crossing Event (TCE) is generated in the Transiting Planet Search (TPS) component of the pipeline are subsequently processed in the Data Validation (DV) component. Transit model parameters are fitted in DV to transit-like signatures in the light curves of the targets with TCEs. The transit model fitting results are used in diagnostic tests in DV, which help to validate planet candidates and identify false positive detections. The standard transit model includes five fit parameters: transit epoch time (i.e. central time of first transit), orbital period, impact parameter, ratio of planet radius to star radius and ratio of semi-major axis to star radius. Light curves for many targets do not contain enough information to uniquely determine the impact parameter, which results in poor convergence performance of the fitter. In the latest release of the Kepler SOC pipeline, a reduced parameter fit is included in DV: the impact parameter is set to a fixed value and the four remaining parameters are fitted. The standard transit model fit is implemented after a series of reduced parameter fits in which the impact parameter is varied between 0 and 1. Initial values for the standard transit model fit parameters are determined by the reduced parameter fit with the minimum chi-square metric. With reduced parameter fits, the robustness of the transit model fit is improved significantly. Diagnostic plots of the chi-square metrics and reduced parameter fit results illustrate how the fitted parameters vary as a function of impact parameter. Essentially, a family of transiting planet characteristics is determined in DV for each Pipeline TCE. Transit model fitting performance of release 9.1 of the Kepler SOC pipeline is demonstrated with the results of the processing of 16 quarters of flight data

  20. Radiolysis Process Model

    SciTech Connect

    Buck, Edgar C.; Wittman, Richard S.; Skomurski, Frances N.; Cantrell, Kirk J.; McNamara, Bruce K.; Soderquist, Chuck Z.

    2012-07-17

    Assessing the performance of spent (used) nuclear fuel in geological repository requires quantification of time-dependent phenomena that may influence its behavior on a time-scale up to millions of years. A high-level waste repository environment will be a dynamic redox system because of the time-dependent generation of radiolytic oxidants and reductants and the corrosion of Fe-bearing canister materials. One major difference between used fuel and natural analogues, including unirradiated UO2, is the intense radiolytic field. The radiation emitted by used fuel can produce radiolysis products in the presence of water vapor or a thin-film of water (including OH• and H• radicals, O2-, eaq, H2O2, H2, and O2) that may increase the waste form degradation rate and change radionuclide behavior. H2O2 is the dominant oxidant for spent nuclear fuel in an O2 depleted water environment, the most sensitive parameters have been identified with respect to predictions of a radiolysis model under typical conditions. As compared with the full model with about 100 reactions it was found that only 30-40 of the reactions are required to determine [H2O2] to one part in 10–5 and to preserve most of the predictions for major species. This allows a systematic approach for model simplification and offers guidance in designing experiments for validation.

  1. Simple solvable energy-landscape model that shows a thermodynamic phase transition and a glass transition.

    PubMed

    Naumis, Gerardo G

    2012-06-01

    When a liquid melt is cooled, a glass or phase transition can be obtained depending on the cooling rate. Yet, this behavior has not been clearly captured in energy-landscape models. Here, a model is provided in which two key ingredients are considered in the landscape, metastable states and their multiplicity. Metastable states are considered as in two level system models. However, their multiplicity and topology allows a phase transition in the thermodynamic limit for slow cooling, while a transition to the glass is obtained for fast cooling. By solving the corresponding master equation, the minimal speed of cooling required to produce the glass is obtained as a function of the distribution of metastable states.

  2. Development of one-equation transition/turbulence models

    SciTech Connect

    Edwards, J.R.; Roy, C.J.; Blottner, F.G.; Hassan, H.A.

    2000-01-14

    This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity--transport equation for nonturbulent fluctuation growth based on that proposed by Warren and Hassan is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittency function based on the work of Dhawan and Narasimha. The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test cases include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the grid-dependence of selected predictions is analyzed.

  3. Thermal and Nonthermal Processes on Single Crystal Transition Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Guo, Xingcai

    investigated with polarized light. Photon-induced desorption of CO from oxidized Ni(111) (Chapter 13) is observed to be initiated by substrate interband transition. The photodesorption process is first -order in photon flux and in CO coverage. The cross section is measured to be 5 times 10 ^{-18} cm^2 at a photon energy of 4.1 eV. The appendices list abstracts of additional published results on HCN/Pt(111),(112); HCN + O/Pt(111),(112); HCN + O_2/Pt(111); CN + H(s)/Pd(111); HCN/Pd(111); Azo-methane/Pd(111); Methanol/Pd(111); Dimethyl methyl phosphonate/Pd(111), Ni(111); NO + O,S/Ni(111); Xe/Pt(111), (557), (112).

  4. Modeled and Observed Transitions Between Rip Currents and Alongshore Flows

    NASA Astrophysics Data System (ADS)

    Moulton, M.; Elgar, S.; Warner, J. C.; Raubenheimer, B.

    2014-12-01

    Predictions of rip currents, alongshore currents, and the temporal transitions between these circulation patterns are important for swimmer safety and for estimating the transport of sediments, biota, and pollutants in the nearshore. Here, field observations are combined with hydrodynamic modeling to determine the dominant processes that lead rip currents to turn on and off with changing waves, bathymetry, and tidal elevation. Waves, currents, mean sea levels, and bathymetry were measured near and within five shore-perpendicular channels (on average 2-m deep, 30-m wide) that were dredged with the propellers of a landing craft at different times on a long straight Atlantic Ocean beach near Duck, NC in summer 2012. The circulation was measured for a range of incident wave conditions and channel sizes, and included rapid transitions between strong (0.5 to 1 m/s) rip current jets flowing offshore through the channels and alongshore currents flowing across the channels with no rip currents. Meandering alongshore currents (alongshore currents combined with an offshore jet at the downstream edge of the channel) also were observed. Circulation patterns near and within idealized rip channels simulated with COAWST (a three-dimensional phase-averaged model that couples ROMS and SWAN) are compared with the observations. In addition, the model is used to investigate the hydrodynamic response to a range of wave conditions (angle, height, period) and bathymetries (channel width, depth, and length; tidal elevations; shape of sandbar or terrace). Rip current speeds are largest for the deepest perturbations, and decrease as incident wave angles become more oblique. For obliquely incident waves, the rip currents are shifted in the direction of the alongshore flow, with an increasing shift for increasing alongshore current speed or increasing bathymetric perturbation depth.

  5. Testing a Theoretical Model of Immigration Transition and Physical Activity.

    PubMed

    Chang, Sun Ju; Im, Eun-Ok

    2015-01-01

    The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity. PMID:26502554

  6. Testing a Theoretical Model of Immigration Transition and Physical Activity.

    PubMed

    Chang, Sun Ju; Im, Eun-Ok

    2015-01-01

    The purposes of the study were to develop a theoretical model to explain the relationships between immigration transition and midlife women's physical activity and test the relationships among the major variables of the model. A theoretical model, which was developed based on transitions theory and the midlife women's attitudes toward physical activity theory, consists of 4 major variables, including length of stay in the United States, country of birth, level of acculturation, and midlife women's physical activity. To test the theoretical model, a secondary analysis with data from 127 Hispanic women and 123 non-Hispanic (NH) Asian women in a national Internet study was used. Among the major variables of the model, length of stay in the United States was negatively associated with physical activity in Hispanic women. Level of acculturation in NH Asian women was positively correlated with women's physical activity. Country of birth and level of acculturation were significant factors that influenced physical activity in both Hispanic and NH Asian women. The findings support the theoretical model that was developed to examine relationships between immigration transition and physical activity; it shows that immigration transition can play an essential role in influencing health behaviors of immigrant populations in the United States. The NH theoretical model can be widely used in nursing practice and research that focus on immigrant women and their health behaviors. Health care providers need to consider the influences of immigration transition to promote immigrant women's physical activity.

  7. Chemical Process Modeling and Control.

    ERIC Educational Resources Information Center

    Bartusiak, R. Donald; Price, Randel M.

    1987-01-01

    Describes some of the features of Lehigh University's (Pennsylvania) process modeling and control program. Highlights the creation and operation of the Chemical Process Modeling and Control Center (PMC). Outlines the program's philosophy, faculty, technical program, current research projects, and facilities. (TW)

  8. Phase transition of the one-dimensional coagulation-production process

    SciTech Connect

    Odor, Geza

    2001-06-01

    Recently an exact solution has been found by M. Henkel and H. Hinrichsen [J. Phys. A >34, 1561 (2001)] for the one-dimensional coagulation-production process: 2A{r_arrow}A, A0A{r_arrow}3A with equal diffusion and coagulation rates. This model evolves into the inactive phase independently of the production rate with t{sup {minus}1/2} density decay law. This paper shows that cluster mean-field approximations and Monte Carlo simulations predict a continuous phase transition for higher diffusion/coagulation rates as considered by the exact solution. Numerical evidence is given that the phase transition universality agrees with that of the annihilation-fission model with low diffusions.

  9. Hearing Loss Severity: Impaired Processing of Formant Transition Duration

    ERIC Educational Resources Information Center

    Coez, A.; Belin, P.; Bizaguet, E.; Ferrary, E.; Zilbovicius, M.; Samson, Y.

    2010-01-01

    Normal hearing listeners exploit the formant transition (FT) detection to identify place of articulation for stop consonants. Neuro-imaging studies revealed that short FT induced less cortical activation than long FT. To determine the ability of hearing impaired listeners to distinguish short and long formant transitions (FT) from vowels of the…

  10. Student Engagement and Leadership of the Transition Planning Process

    ERIC Educational Resources Information Center

    Martin, James E.; Williams-Diehm, Kendra

    2013-01-01

    The Council for Exceptional Children's Division on Career Development and Transition (DCDT) has been a longstanding leader and advocate in the field of secondary education for students with disabilities. This paper traces the history of student engagement in transition planning primarily through the lens of DCDT's journal "Career…

  11. Social Influence and Selection Processes as Predictors of Normative Perceptions and Alcohol Use across the Transition to College

    ERIC Educational Resources Information Center

    Abar, Caitlin C.; Maggs, Jennifer L.

    2010-01-01

    Research indicates that social influences impact college students' alcohol consumption; however, how selection processes may serve as an influential factor predicting alcohol use in this population has not been widely addressed. A model of influence and selection processes contributing to alcohol use across the transition to college was examined…

  12. Modeling nuclear processes by Simulink

    SciTech Connect

    Rashid, Nahrul Khair Alang Md

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  13. Modeling nuclear processes by Simulink

    NASA Astrophysics Data System (ADS)

    Rashid, Nahrul Khair Alang Md

    2015-04-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  14. Business process modeling in healthcare.

    PubMed

    Ruiz, Francisco; Garcia, Felix; Calahorra, Luis; Llorente, César; Gonçalves, Luis; Daniel, Christel; Blobel, Bernd

    2012-01-01

    The importance of the process point of view is not restricted to a specific enterprise sector. In the field of health, as a result of the nature of the service offered, health institutions' processes are also the basis for decision making which is focused on achieving their objective of providing quality medical assistance. In this chapter the application of business process modelling - using the Business Process Modelling Notation (BPMN) standard is described. Main challenges of business process modelling in healthcare are the definition of healthcare processes, the multi-disciplinary nature of healthcare, the flexibility and variability of the activities involved in health care processes, the need of interoperability between multiple information systems, and the continuous updating of scientific knowledge in healthcare. PMID:22925789

  15. Conceptual models of information processing

    NASA Technical Reports Server (NTRS)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  16. Business process modeling in healthcare.

    PubMed

    Ruiz, Francisco; Garcia, Felix; Calahorra, Luis; Llorente, César; Gonçalves, Luis; Daniel, Christel; Blobel, Bernd

    2012-01-01

    The importance of the process point of view is not restricted to a specific enterprise sector. In the field of health, as a result of the nature of the service offered, health institutions' processes are also the basis for decision making which is focused on achieving their objective of providing quality medical assistance. In this chapter the application of business process modelling - using the Business Process Modelling Notation (BPMN) standard is described. Main challenges of business process modelling in healthcare are the definition of healthcare processes, the multi-disciplinary nature of healthcare, the flexibility and variability of the activities involved in health care processes, the need of interoperability between multiple information systems, and the continuous updating of scientific knowledge in healthcare.

  17. Lifshitz Transitions in Magnetic Phases of the Periodic Anderson Model

    NASA Astrophysics Data System (ADS)

    Kubo, Katsunori

    2015-09-01

    We investigate the reconstruction of a Fermi surface, which is called a Lifshitz transition, in magnetically ordered phases of the periodic Anderson model on a square lattice with a finite Coulomb interaction between f electrons. We apply the variational Monte Carlo method to the model by using the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge-density-wave states. We find that an antiferromagnetic phase is realized around half-filling and a ferromagnetic phase is realized when the system is far away from half-filling. In both magnetic phases, Lifshitz transitions take place. By analyzing the electronic states, we conclude that the Lifshitz transitions to large ordered-moment states can be regarded as itinerant-localized transitions of the f electrons.

  18. Modeling delayed processes in biological systems

    NASA Astrophysics Data System (ADS)

    Feng, Jingchen; Sevier, Stuart A.; Huang, Bin; Jia, Dongya; Levine, Herbert

    2016-09-01

    Delayed processes are ubiquitous in biological systems and are often characterized by delay differential equations (DDEs) and their extension to include stochastic effects. DDEs do not explicitly incorporate intermediate states associated with a delayed process but instead use an estimated average delay time. In an effort to examine the validity of this approach, we study systems with significant delays by explicitly incorporating intermediate steps. We show that such explicit models often yield significantly different equilibrium distributions and transition times as compared to DDEs with deterministic delay values. Additionally, different explicit models with qualitatively different dynamics can give rise to the same DDEs revealing important ambiguities. We also show that DDE-based predictions of oscillatory behavior may fail for the corresponding explicit model.

  19. Transition to Operations Support at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, M.

    2005-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the rapid prototyping centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center, as well as distributed computing facilities provided by the US Air Force. CCMC also provides, to the research community, access to state-of-the-art space research models. This paper will focus on a status report on CCMC activities in support of model transition to operations at US space weather forecasting centers. In particular, an update will be given on past and present transition activities, on developments that address operational needs, and on future opportunities for transition-to-operations support.

  20. Phase transitions in models of human cooperation

    NASA Astrophysics Data System (ADS)

    Perc, Matjaž

    2016-08-01

    If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.

  1. Electrophysiological models of neural processing.

    PubMed

    Nelson, Mark E

    2011-01-01

    The brain is an amazing information processing system that allows organisms to adaptively monitor and control complex dynamic interactions with their environment across multiple spatial and temporal scales. Mathematical modeling and computer simulation techniques have become essential tools in understanding diverse aspects of neural processing ranging from sub-millisecond temporal coding in the sound localization circuity of barn owls to long-term memory storage and retrieval in humans that can span decades. The processing capabilities of individual neurons lie at the core of these models, with the emphasis shifting upward and downward across different levels of biological organization depending on the nature of the questions being addressed. This review provides an introduction to the techniques for constructing biophysically based models of individual neurons and local networks. Topics include Hodgkin-Huxley-type models of macroscopic membrane currents, Markov models of individual ion-channel currents, compartmental models of neuronal morphology, and network models involving synaptic interactions among multiple neurons. PMID:21064164

  2. Role of secondary instability theory and parabolized stability equations in transition modeling

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.; Dinavahi, Surya P.; Chang, Chau-Lyan; Zang, Thomas A.

    1993-01-01

    In modeling the laminar-turbulent transition region, the designer depends largely on benchmark data from experiments and/or direct numerical simulations that are usually extremely expensive. An understanding of the evolution of the Reynolds stresses, turbulent kinetic energy, and quantifies in the transport equations like the dissipation and production is essential in the modeling process. The secondary instability theory and the parabolized stability equations method are used to calculate these quantities, which are then compared with corresponding quantities calculated from available direct numerical simulation data for the incompressible boundary-layer flow of laminar-turbulent transition conditions. The potential of the secondary instability theory and the parabolized stability equations approach in predicting these quantities is discussed; results indicate that inexpensive data that are useful for transition modeling in the early stages of the transition region can be provided by these tools.

  3. The transition to emerging revenue models.

    PubMed

    Harris, John M; Hemnani, Rashi

    2013-04-01

    A financial assessment aimed at gauging the true impact of the healthcare industry's new value-based payment models for a health system should begin with separate analyses of the following: The direct contract results, The impact of volume changes on net income, The impact of operational improvements, Net income at risk from competitor actions. The results of these four analyses then should be evaluated in combination to identify the ultimate impact of the new revenue models on the health system's bottom line.

  4. Models of the Reading Process

    PubMed Central

    Rayner, Keith; Reichle, Erik D.

    2010-01-01

    Reading is a complex skill involving the orchestration of a number of components. Researchers often talk about a “model of reading” when talking about only one aspect of the reading process (for example, models of word identification are often referred to as “models of reading”). Here, we review prominent models that are designed to account for (1) word identification, (2) syntactic parsing, (3) discourse representations, and (4) how certain aspects of language processing (e.g., word identification), in conjunction with other constraints (e g., limited visual acuity, saccadic error, etc.), guide readers’ eyes. Unfortunately, it is the case that these various models addressing specific aspects of the reading process seldom make contact with models dealing with other aspects of reading. Thus, for example, the models of word identification seldom make contact with models of eye movement control, and vice versa. While this may be unfortunate in some ways, it is quite understandable in other ways because reading itself is a very complex process. We discuss prototypical models of aspects of the reading process in the order mentioned above. We do not review all possible models, but rather focus on those we view as being representative and most highly recognized. PMID:21170142

  5. Models of the Reading Process.

    PubMed

    Rayner, Keith; Reichle, Erik D

    2010-11-01

    Reading is a complex skill involving the orchestration of a number of components. Researchers often talk about a "model of reading" when talking about only one aspect of the reading process (for example, models of word identification are often referred to as "models of reading"). Here, we review prominent models that are designed to account for (1) word identification, (2) syntactic parsing, (3) discourse representations, and (4) how certain aspects of language processing (e.g., word identification), in conjunction with other constraints (e g., limited visual acuity, saccadic error, etc.), guide readers' eyes. Unfortunately, it is the case that these various models addressing specific aspects of the reading process seldom make contact with models dealing with other aspects of reading. Thus, for example, the models of word identification seldom make contact with models of eye movement control, and vice versa. While this may be unfortunate in some ways, it is quite understandable in other ways because reading itself is a very complex process. We discuss prototypical models of aspects of the reading process in the order mentioned above. We do not review all possible models, but rather focus on those we view as being representative and most highly recognized.

  6. Closure models for transitional blunt-body flows

    NASA Astrophysics Data System (ADS)

    Nance, Robert Paul

    1998-12-01

    A mean-flow modeling approach is proposed for the prediction of high-speed blunt-body wake flows undergoing transition to turbulence. This method couples the k- /zeta (Enstrophy) compressible turbulence model with a procedure for characterizing non-turbulent fluctuations upstream of transition. Two different instability mechanisms are examined in this study. In the first model, transition is brought about by streamwise disturbance modes, whereas the second mechanism considers instabilities in the free shear layer associated with the wake flow. An important feature of this combined approach is the ability to specify or predict the location of transition onset. Solutions obtained using the new approach are presented for a variety of perfect-gas hypersonic flows over blunt- cone configurations. These results are shown to provide better agreement with experimental heating data than earlier laminar predictions by other researchers. In addition, it is demonstrated that the free-shear-layer instability mechanism is superior to the streamwise mechanism in terms of comparisons with heating measurements. The favorable comparisons are a strong indication that transition to turbulence is indeed present in the flowfields considered. They also show that the present method is a useful predictive tool for transitional blunt-body wake flows.

  7. Analog modelling of obduction processes

    NASA Astrophysics Data System (ADS)

    Agard, P.; Zuo, X.; Funiciello, F.; Bellahsen, N.; Faccenna, C.; Savva, D.

    2012-04-01

    Obduction corresponds to one of plate tectonics oddities, whereby dense, oceanic rocks (ophiolites) are presumably 'thrust' on top of light, continental ones, as for the short-lived, almost synchronous Peri-Arabic obduction (which took place along thousands of km from Turkey to Oman in c. 5-10 Ma). Analog modelling experiments were performed to study the mechanisms of obduction initiation and test various triggering hypotheses (i.e., plate acceleration, slab hitting the 660 km discontinuity, ridge subduction; Agard et al., 2007). The experimental setup comprises (1) an upper mantle, modelled as a low-viscosity transparent Newtonian glucose syrup filling a rigid Plexiglas tank and (2) high-viscosity silicone plates (Rhodrosil Gomme with PDMS iron fillers to reproduce densities of continental or oceanic plates), located at the centre of the tank above the syrup to simulate the subducting and the overriding plates - and avoid friction on the sides of the tank. Convergence is simulated by pushing on a piston at one end of the model with velocities comparable to those of plate tectonics (i.e., in the range 1-10 cm/yr). The reference set-up includes, from one end to the other (~60 cm): (i) the piston, (ii) a continental margin containing a transition zone to the adjacent oceanic plate, (iii) a weakness zone with variable resistance and dip (W), (iv) an oceanic plate - with or without a spreading ridge, (v) a subduction zone (S) dipping away from the piston and (vi) an upper, active continental margin, below which the oceanic plate is being subducted at the start of the experiment (as is known to have been the case in Oman). Several configurations were tested and over thirty different parametric tests were performed. Special emphasis was placed on comparing different types of weakness zone (W) and the extent of mechanical coupling across them, particularly when plates were accelerated. Displacements, together with along-strike and across-strike internal deformation in all

  8. Testing of transition-region models: Test cases and data

    NASA Technical Reports Server (NTRS)

    Singer, Bart A.; Dinavahi, Surya; Iyer, Venkit

    1991-01-01

    Mean flow quantities in the laminar turbulent transition region and in the fully turbulent region are predicted with different models incorporated into a 3-D boundary layer code. The predicted quantities are compared with experimental data for a large number of different flows and the suitability of the models for each flow is evaluated.

  9. batman: BAsic Transit Model cAlculatioN in Python

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura

    2015-10-01

    batman provides fast calculation of exoplanet transit light curves and supports calculation of light curves for any radially symmetric stellar limb darkening law. It uses an integration algorithm for models that cannot be quickly calculated analytically, and in typical use, the batman Python package can calculate a million model light curves in well under ten minutes for any limb darkening profile.

  10. Conformational transitions in random heteropolymer models

    NASA Astrophysics Data System (ADS)

    Blavatska, Viktoria; Janke, Wolfhard

    2014-01-01

    We study the conformational properties of heteropolymers containing two types of monomers A and B, modeled as self-attracting self-avoiding random walks on a regular lattice. Such a model can describe in particular the sequences of hydrophobic and hydrophilic residues in proteins [K. F. Lau and K. A. Dill, Macromolecules 22, 3986 (1989)] and polyampholytes with oppositely charged groups [Y. Kantor and M. Kardar, Europhys. Lett. 28, 169 (1994)]. Treating the sequences of the two types of monomers as quenched random variables, we provide a systematic analysis of possible generalizations of this model. To this end we apply the pruned-enriched Rosenbluth chain-growth algorithm, which allows us to obtain the phase diagrams of extended and compact states coexistence as function of both the temperature and fraction of A and B monomers along the heteropolymer chain.

  11. Modelling of CWS combustion process

    NASA Astrophysics Data System (ADS)

    Rybenko, I. A.; Ermakova, L. A.

    2016-10-01

    The paper considers the combustion process of coal water slurry (CWS) drops. The physico-chemical process scheme consisting of several independent parallel-sequential stages is offered. This scheme of drops combustion process is proved by the particle size distribution test and research stereomicroscopic analysis of combustion products. The results of mathematical modelling and optimization of stationary regimes of CWS combustion are provided. During modeling the problem of defining possible equilibrium composition of products, which can be obtained as a result of CWS combustion processes at different temperatures, is solved.

  12. Relativistic diffusion processes and random walk models

    SciTech Connect

    Dunkel, Joern; Talkner, Peter; Haenggi, Peter

    2007-02-15

    The nonrelativistic standard model for a continuous, one-parameter diffusion process in position space is the Wiener process. As is well known, the Gaussian transition probability density function (PDF) of this process is in conflict with special relativity, as it permits particles to propagate faster than the speed of light. A frequently considered alternative is provided by the telegraph equation, whose solutions avoid superluminal propagation speeds but suffer from singular (noncontinuous) diffusion fronts on the light cone, which are unlikely to exist for massive particles. It is therefore advisable to explore other alternatives as well. In this paper, a generalized Wiener process is proposed that is continuous, avoids superluminal propagation, and reduces to the standard Wiener process in the nonrelativistic limit. The corresponding relativistic diffusion propagator is obtained directly from the nonrelativistic Wiener propagator, by rewriting the latter in terms of an integral over actions. The resulting relativistic process is non-Markovian, in accordance with the known fact that nontrivial continuous, relativistic Markov processes in position space cannot exist. Hence, the proposed process defines a consistent relativistic diffusion model for massive particles and provides a viable alternative to the solutions of the telegraph equation.

  13. Processing-induced-transformations (PITs) during direct compression: impact of compression speeds on phase transition of caffeine.

    PubMed

    Juban, Audrey; Briancon, Stephanie; Puel, François

    2016-11-01

    For pharmaceutical industry, understanding solid-phase transition of the active pharmaceutical ingredient (API) induced by the manufacturing process is a key issue. Caffeine was chosen as a model API since it exhibits a polymorphic transformation during tableting. This study investigated the impact of the compression speed on the phase transition of anhydrous Form I (CFI) into Form II. Tablets were made from pure CFI and binary mixtures of CFI/microcrystalline cellulose, with an electric press well instrumented at three different compression speeds (50, 500 and 4500 mm min(-1)). For each velocity of the mobile punch studied, tablets made from three compression pressures (50, 100 and 200 MPa) were analyzed. The determination of the CFI transition degree was performed using a Differential Scanning Calorimetry (DSC). The CFI transition degree was monitored during three months in order to obtain the transformation profile of the API in tablets and in uncompressed powder. The modeling of the profile with a stretched exponential kinetic law (Johnson-Mehl-Avrami model) was used for the identification of the transition mechanism. The direct compression process triggered the polymorphic transformation in tablet when a sufficient compression pressure is applied. The velocity of the punch did neither impact the transition degree just after compression nor the transformation profile. The transition mechanism remained driven by nucleation for several operating conditions. Consequently, the punch velocity is not a decisive process parameter for avoiding such phase transition in tableting. As already observed, the compression pressure did not influence the transition whatever the compression speed and the velocity. PMID:27109544

  14. Transition modeling of neuropsychiatric impairment in HIV.

    PubMed

    Bisaso, Kuteesa R; Mukonzo, Jackson K; Ette, Ene I

    2016-06-01

    Few studies have reported analyses of neuropsychiatric impairment (NPI) data from HIV patients, in a real world clinical setting with the aim of establishing association between anti-retroviral drug concentrations and NPI development and resolution. No study has modeled the effect of efavirenz exposure beyond the pre-steady state period on the frequency and duration of NPI. The data used consists of 196 HIV patients whose efavirenz pharmacokinetic parameters were previously determined. Neuropsychiatric evaluation was done at baseline, week 2 and week 12. Patients were classified into NORMAL and NPI states. The duration of NPI was further classified as transient (NPI at week 2 but not at week 12), persistent (NPI at week 2 and 12) and delayed (NPI at week 12 but not at week 2). The proportion of patients in each duration category out of the total NPI patients was calculated. A continuous time Markov model was developed in NONMEM 7.3 and used to describe the relationship between efavirenz exposure and the duration of NPI. Monte Carlo simulations with the model were used to describe the effect of efavirenz dose reduction from 600mg to 400mg on the duration of NPI. The model adequately described the data. The influence of efavirenz exposure on the rate of development of NPI decayed with a half-life of 8.4 days. Efavirenz dose reduction to 400mg significantly reduces the duration of NPI, but has no impact on delayed NPI symptoms or efficacy.

  15. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  16. A process algebra model of QED

    NASA Astrophysics Data System (ADS)

    Sulis, William

    2016-03-01

    The process algebra approach to quantum mechanics posits a finite, discrete, determinate ontology of primitive events which are generated by processes (in the sense of Whitehead). In this ontology, primitive events serve as elements of an emergent space-time and of emergent fundamental particles and fields. Each process generates a set of primitive elements, using only local information, causally propagated as a discrete wave, forming a causal space termed a causal tapestry. Each causal tapestry forms a discrete and finite sampling of an emergent causal manifold (space-time) M and emergent wave function. Interactions between processes are described by a process algebra which possesses 8 commutative operations (sums and products) together with a non-commutative concatenation operator (transitions). The process algebra possesses a representation via nondeterministic combinatorial games. The process algebra connects to quantum mechanics through the set valued process and configuration space covering maps, which associate each causal tapestry with sets of wave functions over M. Probabilities emerge from interactions between processes. The process algebra model has been shown to reproduce many features of the theory of non-relativistic scalar particles to a high degree of accuracy, without paradox or divergences. This paper extends the approach to a semi-classical form of quantum electrodynamics.

  17. Kinetic Modeling of Microbiological Processes

    SciTech Connect

    Liu, Chongxuan; Fang, Yilin

    2012-08-26

    Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.

  18. Robust, automated processing of IR thermography for quantitative boundary-layer transition measurements

    NASA Astrophysics Data System (ADS)

    Crawford, Brian K.; Duncan, Glen T.; West, David E.; Saric, William S.

    2015-07-01

    A technique for automated, quantitative, global boundary-layer transition detection using IR thermography is developed. Transition data are rigorously mapped onto model coordinates in an automated fashion on moving targets. Statistical analysis of transition data that is robust to environmental contamination is presented.

  19. Quantum phase transitions studied within the interacting boson model

    PubMed

    Cejnar; Jolie

    2000-06-01

    We study quasicritical phenomena in transitions between two "quantum phases" of a finite boson system, described by the interacting boson model 1 used in nuclear physics. The model is formulated in the algebraic framework and has a simple geometrical interpretation; the "phases" represented by dynamical symmetries U(5) and SU(3) correspond to spherical and deformed nuclear shapes. The quasicriticality of the U(5)-SU(3) transition is shown to be connected with the following phenomena simultaneously occurring in a narrow parameter region between the symmetries: (a) abrupt structural changes of eigenstates, (b) multiple avoided crossing of levels, (c) peaked density of exceptional points, (d) qualitative changes of the corresponding classical potential. We show that these spectroscopic features influence the dynamics of intersymmetry transitions in the model parameter space if the parameters themselves become dynamical variables. PMID:11088296

  20. A MATLAB GUI to study Ising model phase transition

    NASA Astrophysics Data System (ADS)

    Thornton, Curtislee; Datta, Trinanjan

    We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.

  1. Social Models: Blueprints or Processes?

    ERIC Educational Resources Information Center

    Little, Graham R.

    1981-01-01

    Discusses the nature and implications of two different models for societal planning: (1) the problem-solving process approach based on Karl Popper; and (2) the goal-setting "blueprint" approach based on Karl Marx. (DC)

  2. Pre-selection of optical transitions in rare-earth ions in crystals perspective for quantum information processing

    NASA Astrophysics Data System (ADS)

    Basiev, T. T.; Basieva, I. T.; Kornienko, A. A.; Osiko, V. V.; Pukhov, K. K.; Sekatskii, S. K.

    2012-01-01

    A systematic analysis of decoherence rates due to electron-phonon interactions for optical transitions of rare-earth dopant ions in crystals is presented in the frame of the point charge model. For this model, the large value of any one of the matrix elements of the unit tensor operator U ( k ) of rank k for transitions within the 4f-electronic configuration, viz. U2, U4 or U6, is enough to ensure the strong optical transition between different levels, while the Stark-Stark transitions within the multiplet can be characterized by the matrix element U2 alone, the influence of elements U4, U6 being of much smaller order of magnitude and neglected. The circumstance that exactly such Stark-Stark transitions within the multiplet define the efficiency of electron-phonon interaction and, consequently, the decoherence rate (except for the case of lowest, less than approximately 2-4 K, temperatures), enables selection of optical transitions which are strong enough and at the same time are characterized by relatively small decoherence rates. Correspondingly, these optical transitions, provided that they lie in an appropriate spectral range and the gap to the nearest neighboring energy level is large enough (>500 cm-1) to prevent eventual fast phonon-assisted relaxation, should be considered as prospective for subsequent use in quantum informatics processing and communication. The list of such pre-selected transitions is given; the applicability area and limitations of our approach are discussed.

  3. How to measure the agroecological performance of farming in order to assist with the transition process.

    PubMed

    Trabelsi, Meriam; Mandart, Elisabeth; Le Grusse, Philippe; Bord, Jean-Paul

    2016-01-01

    The use of plant protection products enables farmers to maximize economic performance and yields, but in return, the environment and human health can be greatly affected because of their toxicity. There are currently strong calls for farmers to reduce the use of these toxic products for the preservation of the environment and the human health, and it has become urgent to invest in more sustainable models that help reduce these risks. One possible solution is the transition toward agroecological production systems. These new systems must be beneficial economically, socially, and environmentally in terms of human health. There are many tools available, based on a range of indicators, for assessing the sustainability of agricultural systems on conventional farm holdings. These methods are little suitable to agroecological farms and do not measure the performance of agroecological transition farms. In this article, we therefore develop a model for the strategic definition, guidance, and assistance for a transition to agroecological practices, capable of assessing performance of this transition and simulating the consequences of possible changes. This model was built by coupling (i) a decision-support tool and a technico-economic simulator with (ii) a conceptual model built from the dynamics of agroecological practices. This tool is currently being tested in the framework of a Compte d'Affectation Spéciale pour le Développement Agricole et Rural (CASDAR) project (CASDAR: project launched in 2013 by the French Ministry of Agriculture, Food and Forestry, on the theme "collective mobilisation for agroecology," http://agriculture.gouv.fr/Appel-a-projets-CASDAR ) using data from farms, most of which are engaged in agroenvironmental process and reducing plant protection treatments since 2008.

  4. Suggestion for a theoretical model for secondary-tertiary transition in mathematics

    NASA Astrophysics Data System (ADS)

    Clark, Megan; Lovric, Miroslav

    2008-09-01

    One of most notable features of existing body of research in transition seems to be the absence of a theoretical model. The suggestion we present in this paper—to view and understand the high school to university transition in mathematics as a modern-day rite of passage—is an attempt at defining such framework. Although dominantly reflecting North-American reality, we believe that the model could be found useful in other countries as well. Let us emphasize that our model is not new in the sense that it recognizes the transition as such. In this paper, we try to determine whether (and, if so, how) the notion of a rite of passage—which is a well-understood concept in anthropology, as well as in some other disciplines (e.g. culture shock in cultural studies)—can help us understand mathematics transition issues better. Can it help us systematize existing body of research, and enhance our understanding of transition in mathematics; does it point at something new? We believe so, and by elaborating some traditional aspects of rites of passage, we hope to provide a useful lens through which we can examine the process of transition in mathematics, and make suggestions for improved management of some transitional issues.

  5. Transition characteristic analysis of traffic evolution process for urban traffic network.

    PubMed

    Wang, Longfei; Chen, Hong; Li, Yang

    2014-01-01

    The characterization of the dynamics of traffic states remains fundamental to seeking for the solutions of diverse traffic problems. To gain more insights into traffic dynamics in the temporal domain, this paper explored temporal characteristics and distinct regularity in the traffic evolution process of urban traffic network. We defined traffic state pattern through clustering multidimensional traffic time series using self-organizing maps and construct a pattern transition network model that is appropriate for representing and analyzing the evolution progress. The methodology is illustrated by an application to data flow rate of multiple road sections from Network of Shenzhen's Nanshan District, China. Analysis and numerical results demonstrated that the methodology permits extracting many useful traffic transition characteristics including stability, preference, activity, and attractiveness. In addition, more information about the relationships between these characteristics was extracted, which should be helpful in understanding the complex behavior of the temporal evolution features of traffic patterns.

  6. Characterizing Phase Transitions in a Model of Neutral Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Scott, Adam; King, Dawn; Bahar, Sonya

    2013-03-01

    An evolutionary model was recently introduced for sympatric, phenotypic evolution over a variable fitness landscape with assortative mating (Dees & Bahar 2010). Organisms in the model are described by coordinates in a two-dimensional phenotype space, born at random coordinates with limited variation from their parents as determined by a mutation parameter, mutability. The model has been extended to include both neutral evolution and asexual reproduction in Scott et al (submitted). It has been demonstrated that a second order, non-equilibrium phase transition occurs for the temporal dynamics as the mutability is varied, for both the original model and for neutral conditions. This transition likely belongs to the directed percolation universality class. In contrast, the spatial dynamics of the model shows characteristics of an ordinary percolation phase transition. Here, we characterize the phase transitions exhibited by this model by determining critical exponents for the relaxation times, characteristic lengths, and cluster (species) mass distributions. Missouri Research Board; J.S. McDonnell Foundation

  7. A Model for NASA-KSC's Privatization Transition

    NASA Technical Reports Server (NTRS)

    Lavelle, Jerome P.; Krumwiede, Dennis W.; Flowers, Jean

    1996-01-01

    This paper describes a model for government agencies that are considering privatization of all or part of their functions. Privatization encompasses the transitioning of government functions from government run to contractor run. The model developed in this paper is used to analyze the National Aeronautics and Space Administration's (NASA) decision to privatize space shuttle operations at the Kennedy Space Center (KSC). Several specific recommendations are given to KSC as they attempt to operationalize this privatization decision at the Center and to transition to a new relationship with their contractors.

  8. Laminar-turbulent transition on the flying wing model

    NASA Astrophysics Data System (ADS)

    Pavlenko, A. M.; Zanin, B. Yu.; Katasonov, M. M.

    2016-10-01

    Results of an experimental study of a subsonic flow past aircraft model having "flying wing" form and belonging to the category of small-unmanned aerial vehicles are reported. Quantitative data about the structure of the flow near the model surface were obtained by hot-wire measurements. It was shown, that with the wing sweep angle 34 °the laminar-turbulent transition scenario is identical to the one on a straight wing. The transition occurs through the development of a package of unstable oscillations in the boundary layer separation.

  9. Phase transition of p-adic Ising λ-model

    SciTech Connect

    Dogan, Mutlay; Akın, Hasan; Mukhamedov, Farrukh

    2015-09-18

    We consider an interaction of the nearest-neighbors and next nearest-neighbors for the mixed type p-adic λ-model with spin values (−1, +1) on a Cayley tree of order two. In the previous work we have proved the existence of the p-adic Gibbs measure for the model. In this work we have proved the existence of the phase transition occurs for the model.

  10. Command Process Modeling & Risk Analysis

    NASA Technical Reports Server (NTRS)

    Meshkat, Leila

    2011-01-01

    Commanding Errors may be caused by a variety of root causes. It's important to understand the relative significance of each of these causes for making institutional investment decisions. One of these causes is the lack of standardized processes and procedures for command and control. We mitigate this problem by building periodic tables and models corresponding to key functions within it. These models include simulation analysis and probabilistic risk assessment models.

  11. Processing of transition metal silicides for high-temperature applications

    SciTech Connect

    Deevi, S.C.; Sikka, V.K.

    1995-12-31

    The authors review and discuss recent developments in the processing and mechanical properties of MoSi{sub 2} and its composites. High-temperature creep rates of MoSi{sub 2} and its composites are compared to those of several intermetallics and discussed in relation to grain-size effects. Thermophysical properties of MoSi{sub 2} and Si{sub 3}N{sub 4} are compared, and the need for functionally graded composites of MoSi{sub 2}-Si{sub 3}N{sub 4} is discussed. This is followed by a discussion of combustion synthesis, reaction synthesis and densification, in-situ composite development, and reactive hot extrusion of metal-silicon mixtures. In combustion synthesis, a heterogeneous reaction occurs between liquid Si and Mo powder to form MoSi{sub 2}. This technique can be applied to obtain composites and alloys of MoSi{sub 2} and various other transition-metal silicides. In-situ synthesis of a composite of MoSi{sub 2}-Al{sub 2}O{sub 3} was carried out by reacting a thermite mixture consisting of MoO{sub 3}, Al, and Si powders. X-ray characterization of the products obtained at various temperatures reveals that the mechanism consists of a reduction of MoO{sub 3} by Al to MoO{sub 2}, followed by a simultaneous oxidation of Al to Al{sub 2}O{sub 3} and a synthesis reaction between reduced Mo and Si to form MoSi{sub 2}. The rate-determining step is found to be reduction of MoO{sub 2} by Al and oxidation of Al to Al{sub 2}O{sub 3}. The thermite reaction was moderated by adding Mo and Si to the mixture of MoO{sub 3}, Al, and Si, such that the ratio of MoSi{sub 2} to the thermite was in the range of 60:40 to 90:10. Reactive extrusion of metal-silicon mixtures of 3Ni-Si and Co-2Si results in a dense product with at least two phases.

  12. A dynamic model for the solar transition region

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    1984-01-01

    A model is developed for the lower transition region that can account for the persistent and ubiquitous redshifts that are observed in the UV emission lines formed at these temperatures. It is shown that these shifts are not likely to be due either to falling spicular material or to steady-state siphon flows. The model consists of two key ingredients. The redshifted radiation originates from a minority of flux tubes which have higher gas pressures than their surroundings, and consequently have their transition regions situated below the transition regions of their surroundings. The coronal heating in these loops is impulsive in nature, and this is responsible for the transient mass flows. The studies, therefore, favor theories for coronal heating which involve flare-like magnetic-energy release. Previously announced in STAR as N83-29163

  13. Skin Friction and Transition Location Measurement on Supersonic Transport Models

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Goodsell, Aga M.; Olsen, Lawrence E. (Technical Monitor)

    2000-01-01

    Flow visualization techniques were used to obtain both qualitative and quantitative skin friction and transition location data in wind tunnel tests performed on two supersonic transport models at Mach 2.40. Oil-film interferometry was useful for verifying boundary layer transition, but careful monitoring of model surface temperatures and systematic examination of the effects of tunnel start-up and shutdown transients will be required to achieve high levels of accuracy for skin friction measurements. A more common technique, use of a subliming solid to reveal transition location, was employed to correct drag measurements to a standard condition of all-turbulent flow on the wing. These corrected data were then analyzed to determine the additional correction required to account for the effect of the boundary layer trip devices.

  14. Turbulence and transition modeling for high-speed flows

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1993-01-01

    Research conducted during the past three and a half years aimed at developing and testing a turbulence/transition model applicable to high-speed turbulent flows is summarized. The first two years of the project focused on fully turbulent flows, while emphasis shifted to boundary-layer development in the transition region during the final year and a half. A brief summary of research accomplished during the first three years is included and publications that describe research results in greater detail are cited. Research conducted during the final six months of the period of performance is summarized. The primary results of the last six months of the project are elimination of the k-omega model's sensitivity to the freestream value of omega and development of a method for triggering transition at a specified location, independent of the freestream turbulence level.

  15. Doping induced Mott transition in the two dimensional Hubbard model

    NASA Astrophysics Data System (ADS)

    Sordi, Giovanni; Tremblay, A.-M. S.

    2010-03-01

    The description of the Mott transition by single-site dynamical mean-field theory is exact in infinite dimensions but, in two dimensions, substantial deviations from those results have been found for the interaction driven transition [1]. In addition, the experimentally relevant transition for layered systems such as the high-Tc cuprates is doping driven. We thus study this transition in the two dimensional Hubbard model on the square lattice using cluster dynamical mean-field theory with continuous-time quantum Monte Carlo in the hybridization expansion [2]. We find that the Mott transition is strongly influenced by the inclusion of short-range antiferromagnetic correlations. Doping of the Mott insulating state occurs gradually in the different momentum sectors, as found in previous studies [3], but in addition we find a first order transition between an incoherent metal and an insulator or between two incoherent metals, depending on interaction strength. Short range spin correlations create a pseudogap in a doping range that increases with interaction. [1] H. Park et al., PRL 101, 186403 (2008) [2] K. Haule, PRB 75, 155113 (2007) [3] E. Gull et al., arXiv:0909.1795 (2009)

  16. [A theoretical model of the transition phase in human locomotion].

    PubMed

    Beuter, A; Lefebvre, R

    1988-12-01

    In this study we examine the bifurcation of the transition between walking and running. Beuter and Lalonde (1986) have conjectured that the pertinent parameters separating walking and running can be described by a cusp singularity (Thom, 1972). In this model, the unidimensional state space is characterized by support duration and the bidimensional parameter space is characterized by the subject's weight and speed. To test this model eight males walked and ran on a motor driven treadmill at an increasing or decreasing speed with or without additional loads corresponding to 0%, 7% and 14% of their body weight. Velocities corresponding to transitions between the two modes of locomotion indicate that on the average the walk-run transition occurs at higher speed than the run-walk transition illustrating an hysteresis effect. In addition, the average difference between the transitions decreases as the load increases [mean 0 = 0.235 m/s, +/- 0.09 m/s, mean 7 = 0.104 m/s, +/- 0.07 m/s and mean 14 = 0.041 m/s, +/- 0.06 m/s] corresponding to an F ratio of F = 2.72, 0.05 less than p less than 0.1. A comparison of the differences in transition velocity at 0% and 14% is statistically different (t = 2.8, p less than 0.025). These results tend to support the existence of an elementary cusp singularity separating the two locomotion modes and suggest that the mechanisms controlling these transitions can be described by a hysterisis cycle and a small number of parameters. PMID:3219673

  17. Study on the Mechanism of the Deflagration to Detonation Transition Process of Explosive

    NASA Astrophysics Data System (ADS)

    Wei, Lan; Dong, Hefei; Pan, Hao; Hu, Xiaomian; Zhu, Jianshi

    2014-10-01

    We present a numerical study of the mechanisms of the deflagration to detonation transition (DDT) process of explosives to assess its thermal stability. We treated the modeling system as a mixture of solid explosives and gaseous reaction products. We utilized a one-dimensional two-phase flow modeling approach with a space-time conservation element and solution element (CE/SE) method. Simulation results show that in the chemical reaction process a plug area of high density with relatively slow chemical reactions preceeds the new violent reactions and the consequent detonation. We found that steady detonation occurs at the regions where physical characteristics, such as pressure, density, temperature, and velocity, peak simultaneously. These simulation results agree well with high-temperature DDT tube experiments.

  18. Fibrin polymerization as a phase transition wave: A mathematical model

    NASA Astrophysics Data System (ADS)

    Lobanov, A. I.

    2016-06-01

    A mathematical model of fibrin polymerization is described. The problem of the propagation of phase transition wave is reduced to a nonlinear Stefan problem. A one-dimensional discontinuity fitting difference scheme is described, and the results of one-dimensional computations are presented.

  19. Spatially-explicit representation of state-and-transition models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The broad-scale assessment of natural resource conditions (e.g., rangeland health, restoration needs) requires knowledge of their spatial distribution. We argue that creating a database that links state-and-transition models (STMs) to spatial units is a valuable management tool for structuring groun...

  20. Practical guidance for developing state-and-transition models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    State-and-transition models (STMs) are synthetic descriptions of the dynamics of vegetation and surface soils occurring within specific ecological sites. STMs consist of a diagram and narratives that describe the dynamics and its causes. STMs are developed using a broad array of evidence including h...

  1. Modeling Pedagogy for Teachers Transitioning to the Virtual Classroom

    ERIC Educational Resources Information Center

    Canuel, Michael J.; White, Beverley J.

    2014-01-01

    This study is a review of the creation and evolution of a professional development program modeled on social constructivist principles and designed for online educators in a virtual high school who transitioned from the conventional classroom to the virtual educational environment. The narrative inquiry focuses on the critical events within the…

  2. Resilience-based application of state-and-transition models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We recommend that several conceptual modifications be incorporated into the state-and-transition model (STM) framework to: 1) explicitly link this framework to the concept of ecological resilience, 2) direct management attention away from thresholds and toward the maintenance of state resilience, an...

  3. Modeling the impact of roadway emissions in light wind, stable and transition conditions

    EPA Science Inventory

    This paper examines the processes that govern air pollution dispersion under light wind, stable and transition conditions by using a state-of-the-art dispersion model to interpret measurements from a tracer experiment conducted next to US highway 99 in Sacramento in 1981–1982 dur...

  4. Apparent Transition Behavior of Widely-Used Turbulence Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2007-01-01

    The Spalart-Allmaras and the Menter SST k-omega turbulence models are shown to have the undesirable characteristic that, for fully turbulent computations, a transition region can occur whose extent varies with grid density. Extremely fine two-dimensional grids over the front portion of an airfoil are used to demonstrate the effect. As the grid density is increased, the laminar region near the nose becomes larger. In the Spalart-Allmaras model this behavior is due to convergence to a laminar-behavior fixed point that occurs in practice when freestream turbulence is below some threshold. It is the result of a feature purposefully added to the original model in conjunction with a special trip function. This degenerate fixed point can also cause non-uniqueness regarding where transition initiates on a given grid. Consistent fully turbulent results can easily be achieved by either using a higher freestream turbulence level or by making a simple change to one of the model constants. Two-equation k-omega models, including the SST model, exhibit strong sensitivity to numerical resolution near the area where turbulence initiates. Thus, inconsistent apparent transition behavior with grid refinement in this case does not appear to stem from the presence of a degenerate fixed point. Rather, it is a fundamental property of the k-omega model itself, and is not easily remedied.

  5. Apparent Transition Behavior of Widely-Used Turbulence Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2006-01-01

    The Spalart-Allmaras and the Menter SST kappa-omega turbulence models are shown to have the undesirable characteristic that, for fully turbulent computations, a transition region can occur whose extent varies with grid density. Extremely fine two-dimensional grids over the front portion of an airfoil are used to demonstrate the effect. As the grid density is increased, the laminar region near the nose becomes larger. In the Spalart-Allmaras model this behavior is due to convergence to a laminar-behavior fixed point that occurs in practice when freestream turbulence is below some threshold. It is the result of a feature purposefully added to the original model in conjunction with a special trip function. This degenerate fixed point can also cause nonuniqueness regarding where transition initiates on a given grid. Consistent fully turbulent results can easily be achieved by either using a higher freestream turbulence level or by making a simple change to one of the model constants. Two-equation kappa-omega models, including the SST model, exhibit strong sensitivity to numerical resolution near the area where turbulence initiates. Thus, inconsistent apparent transition behavior with grid refinement in this case does not appear to stem from the presence of a degenerate fixed point. Rather, it is a fundamental property of the kappa-omega model itself, and is not easily remedied.

  6. Assessment of One- and Two-Equation Turbulence Models for Hypersonic Transitional Flows

    SciTech Connect

    ROY,CHRISTOPHER J.; BLOTTNER,FREDERICK G.

    2000-01-14

    Many Navier-Stokes codes require that the governing equations be written in conservation form with a source term. The Spalart-Allmaras one-equation model was originally developed in substantial derivative form and when rewritten in conservation form, a density gradient term appears in the source term. This density gradient term causes numerical problems and has a small influence on the numerical predictions. Further work has been performed to understand and to justify the neglect of this term. The transition trip term has been included in the one-equation eddy viscosity model of Spalart-Allmaras. Several problems with this model have been discovered when applied to high-speed flows. For the Mach 8 flat plate boundary layer flow with the standard transition method, the Baldwin-Barth and both k-{omega} models gave transition at the specified location. The Spalart-Allmaras and low Reynolds number k-{var_epsilon} models required an increase in the freestream turbulence levels in order to give transition at the desired location. All models predicted the correct skin friction levels in both the laminar and turbulent flow regions. For Mach 8 flat plate case, the transition location could not be controlled with the trip terms as given in the Spalart-Allmaras model. Several other approaches have been investigated to allow the specification of the transition location. The approach that appears most appropriate is to vary the coefficient that multiplies the turbulent production term in the governing partial differential equation for the eddy viscosity (Method 2). When this coefficient is zero, the flow remains laminar. The coefficient is increased to its normal value over a specified distance to crudely model the transition region and obtain fully turbulent flow. While this approach provides a reasonable interim solution, a separate effort should be initiated to address the proper transition procedure associated with the turbulent production term. Also, the transition process

  7. Neuroscientific Model of Motivational Process

    PubMed Central

    Kim, Sung-il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment. PMID:23459598

  8. Neuroscientific model of motivational process.

    PubMed

    Kim, Sung-Il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment.

  9. THE HANLE EFFECT OF Ly{alpha} IN A MAGNETOHYDRODYNAMIC MODEL OF THE SOLAR TRANSITION REGION

    SciTech Connect

    Stepan, J.; Trujillo Bueno, J.; Carlsson, M.; Leenaarts, J.

    2012-10-20

    In order to understand the heating of the solar corona it is crucial to obtain empirical information on the magnetic field in its lower boundary (the transition region). To this end, we need to measure and model the linear polarization produced by scattering processes in strong UV lines, such as the hydrogen Ly{alpha} line. The interpretation of the observed Stokes profiles will require taking into account that the outer solar atmosphere is highly structured and dynamic, and that the height of the transition region may well vary from one place in the atmosphere to another. Here, we report on the Ly{alpha} scattering polarization signals we have calculated in a realistic model of an enhanced network region, resulting from a state-of-the-art radiation magnetohydrodynamic simulation. This model is characterized by spatially complex variations of the physical quantities at transition region heights. The results of our investigation lead us to emphasize that scattering processes in the upper solar chromosphere should indeed produce measurable linear polarization in Ly{alpha}. More importantly, we show that via the Hanle effect the model's magnetic field produces significant changes in the emergent Q/I and U/I profiles. Therefore, we argue that by measuring the polarization signals produced by scattering processes and the Hanle effect in Ly{alpha} and contrasting them with those computed in increasingly realistic atmospheric models, we should be able to decipher the magnetic, thermal, and dynamic structure of the upper chromosphere and transition region of the Sun.

  10. Mesoscopic Modeling of Reactive Transport Processes

    NASA Astrophysics Data System (ADS)

    Kang, Q.; Chen, L.; Deng, H.

    2012-12-01

    Reactive transport processes involving precipitation and/or dissolution are pervasive in geochemical, biological and engineered systems. Typical examples include self-assembled patterns such as Liesegang rings or bands, cones of stalactites in limestones caves, biofilm growth in aqueous environment, formation of mineral deposits in boilers and heat exchangers, uptake of toxic metal ions from polluted water by calcium carbonate, and mineral trapping of CO2. Compared to experimental studies, a numerical approach enables a systematic study of the reaction kinetics, mass transport, and mechanisms of nucleation and crystal growth, and hence provides a detailed description of reactive transport processes. In this study, we enhance a previously developed lattice Boltzmann pore-scale model by taking into account the nucleation process, and develop a mesoscopic approach to simulate reactive transport processes involving precipitation and/or dissolution of solid phases. The model is then used to simulate the formation of Liesegang precipitation patterns and investigate the effects of gel on the morphology of the precipitates. It is shown that this model can capture the porous structures of the precipitates and can account for the effects of the gel concentration and material. A wide range of precipitation patterns is predicted under different gel concentrations, including regular bands, treelike patterns, and for the first time with numerical models, transition patterns from regular bands to treelike patterns. The model is also applied to study the effect of secondary precipitate on the dissolution of primary mineral. Several types of dissolution and precipitation processes are identified based on the morphology and structures of the precipitates and on the extent to which the precipitates affect the dissolution of the primary mineral. Finally the model is applied to study the formation of pseudomorph. It is demonstrated for the first time by numerical simulation that a

  11. A biological marker model for predicting disease transitions.

    PubMed

    Klein, J P; Klotz, J H; Grever, M R

    1984-12-01

    For patients with chronic myelogenous leukemia (CML), the effect of elevated blood levels of adenosine deaminase (ADA) is studied as a marker for transitions from stable disease to blast crisis and then to death. Data in the form of snapshots over time, with day, state of disease, and ADA level, are analyzed for 55 patients. A simple three-state Markov model with one-way transition probabilities dependent on ADA is used to determine if the marker has a significant effect on the prediction of changes from stable disease to blast crisis. PMID:6598390

  12. Transition under noise in the Sznajd model on square lattice

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.

    2016-08-01

    In order to describe the formation of a consensus in human opinion dynamics, in this paper, we study the Sznajd model with probabilistic noise in two dimensions. The time evolution of this system is performed via Monte Carlo simulations. This social behavior model with noise presents a well defined second-order phase transition. For small enough noise q < 0.33 most agents end up sharing the same opinion.

  13. batman: BAsic Transit Model cAlculatioN in Python

    NASA Astrophysics Data System (ADS)

    Kreidberg, Laura

    2015-11-01

    I introduce batman, a Python package for modeling exoplanet transit and eclipse light curves. The batman package supports calculation of light curves for any radially symmetric stellar limb darkening law, using a new integration algorithm for models that cannot be quickly calculated analytically. The code uses C extension modules to speed up model calculation and is parallelized with OpenMP. For a typical light curve with 100 data points in transit, batman can calculate one million quadratic limb-darkened models in 30 s with a single 1.7 GHz Intel Core i5 processor. The same calculation takes seven minutes using the four-parameter nonlinear limb darkening model (computed to 1 ppm accuracy). Maximum truncation error for integrated models is an input parameter that can be set as low as 0.001 ppm, ensuring that the community is prepared for the precise transit light curves we anticipate measuring with upcoming facilities. The batman package is open source and publicly available at https://github.com/lkreidberg/batman.

  14. Transitioning Space Weather Models Into Operations: The Basic Building Blocks

    NASA Astrophysics Data System (ADS)

    Araujo-Pradere, Eduardo A.

    2009-10-01

    New and improved space weather models that provide real-time or near-real time operational awareness to the long list of customers that the NOAA Space Weather Prediction Center (SWPC) serves are critically needed. Recognizing this, SWPC recently established a Developmental Testbed Center (DTC [see Kumar, 2009]) at which models will be vetted for operational use. What characteristics should models have if they are to survive this transition? The difficulties around the implementation of real-time models are many. From the stability of the data input (frequently coming from third parties) to the elevated information technology (IT) security atmosphere present everywhere, scientists and developers are confronting a series of challenges in the implementation of their models. Quinn et al. [2009] noted that “the transition challenges are numerous and require ongoing interaction between model developers and users.” However, the 2006 Report of the Assessment Committee for the National Space Weather Program (NSWP; see http://www.nswp.gov/nswp_acreport0706.pdf) found that “there is an absence of suitable connection[s] for ‘academia-to-operations’ knowledge transfer and for the transition of research to operations in general.”

  15. Reversibility in Quantum Models of Stochastic Processes

    NASA Astrophysics Data System (ADS)

    Gier, David; Crutchfield, James; Mahoney, John; James, Ryan

    Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.

  16. Development of a One-Equation Transition/Turbulence Model

    SciTech Connect

    EDWARDS,JACK R.; ROY,CHRISTOPHER J.; BLOTTNER,FREDERICK G.; HASSAN,HASSAN A.

    2000-09-26

    This paper reports on the development of a unified one-equation model for the prediction of transitional and turbulent flows. An eddy viscosity - transport equation for non-turbulent fluctuation growth based on that proposed by Warren and Hassan (Journal of Aircraft, Vol. 35, No. 5) is combined with the Spalart-Allmaras one-equation model for turbulent fluctuation growth. Blending of the two equations is accomplished through a multidimensional intermittence function based on the work of Dhawan and Narasimha (Journal of Fluid Mechanics, Vol. 3, No. 4). The model predicts both the onset and extent of transition. Low-speed test cases include transitional flow over a flat plate, a single element airfoil, and a multi-element airfoil in landing configuration. High-speed test cases include transitional Mach 3.5 flow over a 5{degree} cone and Mach 6 flow over a flared-cone configuration. Results are compared with experimental data, and the spatial accuracy of selected predictions is analyzed.

  17. Phase transition and surface sublimation of a mobile Potts model.

    PubMed

    Bailly-Reyre, A; Diep, H T; Kaufman, M

    2015-10-01

    We study in this paper the phase transition in a mobile Potts model by the use of Monte Carlo simulation. The mobile Potts model is related to a diluted Potts model, which is also studied here by a mean-field approximation. We consider a lattice where each site is either vacant or occupied by a q-state Potts spin. The Potts spin can move from one site to a nearby vacant site. In order to study the surface sublimation, we consider a system of Potts spins contained in a recipient with a concentration c defined as the ratio of the number of Potts spins N(s) to the total number of lattice sites N(L)=N(x)×N(y)×N(z). Taking into account the attractive interaction between the nearest-neighboring Potts spins, we study the phase transitions as functions of various physical parameters such as the temperature, the shape of the recipient, and the spin concentration. We show that as the temperature increases, surface spins are detached from the solid phase to form a gas in the empty space. Surface order parameters indicate different behaviors depending on the distance to the surface. At high temperatures, if the concentration is high enough, the interior spins undergo a first-order phase transition to an orientationally disordered phase. The mean-field results are shown as functions of temperature, pressure, and chemical potential, which confirm in particular the first-order character of the transition. PMID:26565221

  18. Phase Transition Behavior in a Neutral Evolution Model

    NASA Astrophysics Data System (ADS)

    King, Dawn; Scott, Adam; Maric, Nevena; Bahar, Sonya

    2014-03-01

    The complexity of interactions among individuals and between individuals and the environment make agent based modeling ideal for studying emergent speciation. This is a dynamically complex problem that can be characterized via the critical behavior of a continuous phase transition. Concomitant with the main tenets of natural selection, we allow organisms to reproduce, mutate, and die within a neutral phenotype space. Previous work has shown phase transition behavior in an assortative mating model with variable fitness landscapes as the maximum mutation size (μ) was varied (Dees and Bahar, 2010). Similarly, this behavior was recently presented in the work of Scott et al. (2013), even on a completely neutral landscape, for bacterial-like fission as well as for assortative mating. Here we present another neutral model to investigate the `critical' phase transition behavior of three mating types - assortative, bacterial, and random - in a phenotype space as a function of the percentage of random death. Results show two types of phase transitions occurring for the parameters of the population size and the number of clusters (an analogue of species), indicating different evolutionary dynamics for system survival and clustering. This research was supported by funding from: University of Missouri Research Board and James S. McDonnell Foundation.

  19. Entanglement driven phase transitions in spin-orbital models

    NASA Astrophysics Data System (ADS)

    You, Wen-Long; Oleś, Andrzej M.; Horsch, Peter

    2015-08-01

    To demonstrate the role played by the von Neumann entropy (vNE) spectra in quantum phase transitions we investigate the one-dimensional anisotropic SU(2)\\otimes {XXZ} spin-orbital model with negative exchange parameter. In the case of classical Ising orbital interactions we discover an unexpected novel phase with Majumdar-Ghosh-like spin-singlet dimer correlations triggered by spin-orbital entanglement (SOE) and having k=π /2 orbital correlations, while all the other phases are disentangled. For anisotropic XXZ orbital interactions both SOE and spin-dimer correlations extend to the antiferro-spin/alternating-orbital phase. This quantum phase provides a unique example of two coupled order parameters which change the character of the phase transition from first-order to continuous. Hereby we have established the vNE spectral function as a valuable tool to identify the change of ground state degeneracies and of the SOE of elementary excitations in quantum phase transitions.

  20. Nonequilibrium Dynamics and Phase Transitions in Holographic Models.

    PubMed

    Janik, Romuald A; Jankowski, Jakub; Soltanpanahi, Hesam

    2016-08-26

    We study the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to a first order phase transition. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We establish that near the transition, in all cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta than in the conformal case. We establish the appearance of the spinodal region in the case of the first order phase transition at temperatures for which the speed of sound squared is negative. An estimate of the preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive regime for sound modes for a range of wavelengths. PMID:27610844

  1. Nonequilibrium Dynamics and Phase Transitions in Holographic Models

    NASA Astrophysics Data System (ADS)

    Janik, Romuald A.; Jankowski, Jakub; Soltanpanahi, Hesam

    2016-08-01

    We study the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to a first order phase transition. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We establish that near the transition, in all cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta than in the conformal case. We establish the appearance of the spinodal region in the case of the first order phase transition at temperatures for which the speed of sound squared is negative. An estimate of the preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive regime for sound modes for a range of wavelengths.

  2. Phase transition in the Sznajd model with independence

    NASA Astrophysics Data System (ADS)

    Sznajd-Weron, K.; Tabiszewski, M.; Timpanaro, A. M.

    2011-11-01

    We propose a model of opinion dynamics which describes two major types of social influence —conformity and independence. Conformity in our model is described by the so-called outflow dynamics (known as Sznajd model). According to sociologists' suggestions, we introduce also a second type of social influence, known in social psychology as independence. Various social experiments have shown that the level of conformity depends on the society. We introduce this level as a parameter of the model and show that there is a continuous phase transition between conformity and independence.

  3. Computer Simulations of Phase Transitions in Potts Models

    NASA Astrophysics Data System (ADS)

    Challa, Murty S. S.

    Methods are developed to identify and characterize first-order and Kosterlitz-Thouless transitions through computer simulations. Finite-size effects at temperature-driven first -order transitions are analyzed by introducing a double -Gaussian approximation for the probability distribution of the internal energy and predictions are made for various moments of the distribution. It is found that all finite -size effects vary as the volume, L('d). The predictions are tested by simulating the 10-state Potts model in two dimensions which has a known first-order transition in zero-field. Extensive Monte Carlo simulations were performed on the Cyber 205 with L = 18 to 50 and using between 1 x 10('6) and 40 x 10('6) MCS per data point. The results are in good agreement with the Gaussian formalism enabling accurate estimates of various thermodynamic quantities of the model. The analysis is applied to an Ising model with competing interactions on a triangular lattice and the first-order transition in this model is confirmed. The Kosterlitz-Thouless transitions in the 6-state vector Potts model are studied through Monte Carlo simulations on the Cyber 750 using lattices of size 4 x 4 to 72 x 72 and up to 200,000 MCS. Two independent methods--finite -size scaling and a cumulant method--were used to analyze the data. Both methods identify the two Kosterlitz-Thouless transitions separating a low-temperature ordered phase, a high-temperature disordered phase and an intermediate with xy-like phase. The phase transitions occur at kT(,1)/J = 0.68 (+OR-) 0.02 and kT(,2)/J = 0.92 (+OR-) 0.01. The susceptibility is infinite in the intermediate phase and the exponent (eta) varies between 0.100 at T(,1) and 0.275 at T(,2). The results are in good agreement with theoretical predictions and are shown to be more accurate than previous simulational treatments.

  4. The antiferromagnetic transition for the square-lattice Potts model

    NASA Astrophysics Data System (ADS)

    Jacobsen, Jesper L.; Saleur, Hubert

    2006-05-01

    We solve in this paper the problem of the antiferromagnetic transition for the Q-state Potts model (defined geometrically for Q generic using the loop/cluster expansion) on the square lattice. This solution is based on the detailed analysis of the Bethe ansatz equations (which involve staggered source terms of the type "real" and "anti-string") and on extensive numerical diagonalization of transfer matrices. It involves subtle distinctions between the loop/cluster version of the model, and the associated RSOS and (twisted) vertex models. The essential result is that the twisted vertex model on the transition line has a continuum limit described by two bosons, one which is compact and twisted, and the other which is not, with a total central charge c=2-6/t, for √{Q}=2cosπ/t. The non-compact boson contributes a continuum component to the spectrum of critical exponents. For Q generic, these properties are shared by the Potts model. For Q a Beraha number, i.e., Q=4cosπ/n with n integer, and in particular Q integer, the continuum limit is given by a "truncation" of the two boson theory, and coincides essentially with the critical point of parafermions Z. Moreover, the vertex model, and, for Q generic, the Potts model, exhibit a first-order critical point on the transition line—that is, the antiferromagnetic critical point is not only a point where correlations decay algebraically, but is also the locus of level crossings where the derivatives of the free energy are discontinuous. In that sense, the thermal exponent of the Potts model is generically equal to ν=1/2 >. Things are however profoundly different for Q a Beraha number. In this case, the antiferromagnetic transition is second order, with the thermal exponent determined by the dimension of the ψ parafermion, ν=t-2/2. As one enters the adjacent "Berker-Kadanoff" phase, the model flows, for t odd, to a minimal model of CFT with central charge c=1-6/(t-1)t, while for t even it becomes massive. This provides

  5. Network inoculation: Heteroclinics and phase transitions in an epidemic model.

    PubMed

    Yang, Hui; Rogers, Tim; Gross, Thilo

    2016-08-01

    In epidemiological modelling, dynamics on networks, and, in particular, adaptive and heterogeneous networks have recently received much interest. Here, we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model, qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description, one of these corresponds to a local bifurcation, whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region, exposure of the system to a pathogen will lead to an outbreak that collapses but leaves the network in a configuration where the disease cannot reinvade, despite every agent returning to the susceptible class. We argue that this behaviour and the associated phase transitions can be expected to occur in a wide class of models of sufficient complexity. PMID:27586612

  6. NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Lee-Rausch, E. M.

    2012-01-01

    Flow about the NASA Trapezoidal Wing is computed with several turbulence models by using grids from the first High Lift Prediction Workshop in an effort to advance understanding of computational fluid dynamics modeling for this type of flowfield. Transition is accounted for in many of the computations. In particular, a recently-developed 4-equation transition model is utilized and works well overall. Accounting for transition tends to increase lift and decrease moment, which improves the agreement with experiment. Upper surface flap separation is reduced, and agreement with experimental surface pressures and velocity profiles is improved. The predicted shape of wakes from upstream elements is strongly influenced by grid resolution in regions above the main and flap elements. Turbulence model enhancements to account for rotation and curvature have the general effect of increasing lift and improving the resolution of the wing tip vortex as it convects downstream. However, none of the models improve the prediction of surface pressures near the wing tip, where more grid resolution is needed.

  7. Modeling of Flow Transition Using an Intermittency Transport Equation

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.

    1999-01-01

    A new transport equation for intermittency factor is proposed to model transitional flows. The intermittent behavior of the transitional flows is incorporated into the computations by modifying the eddy viscosity, mu(sub t), obtainable from a turbulence model, with the intermittency factor, gamma: mu(sub t, sup *) = gamma.mu(sub t). In this paper, Menter's SST model (Menter, 1994) is employed to compute mu(sub t) and other turbulent quantities. The proposed intermittency transport equation can be considered as a blending of two models - Steelant and Dick (1996) and Cho and Chung (1992). The former was proposed for near-wall flows and was designed to reproduce the streamwise variation of the intermittency factor in the transition zone following Dhawan and Narasimha correlation (Dhawan and Narasimha, 1958) and the latter was proposed for free shear flows and was used to provide a realistic cross-stream variation of the intermittency profile. The new model was used to predict the T3 series experiments assembled by Savill (1993a, 1993b) including flows with different freestream turbulence intensities and two pressure-gradient cases. For all test cases good agreements between the computed results and the experimental data are observed.

  8. Network inoculation: Heteroclinics and phase transitions in an epidemic model

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Rogers, Tim; Gross, Thilo

    2016-08-01

    In epidemiological modelling, dynamics on networks, and, in particular, adaptive and heterogeneous networks have recently received much interest. Here, we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model, qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description, one of these corresponds to a local bifurcation, whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region, exposure of the system to a pathogen will lead to an outbreak that collapses but leaves the network in a configuration where the disease cannot reinvade, despite every agent returning to the susceptible class. We argue that this behaviour and the associated phase transitions can be expected to occur in a wide class of models of sufficient complexity.

  9. Transits

    NASA Astrophysics Data System (ADS)

    Gilliland, Ronald L.

    Transits of the planets Mercury and especially Venus have been exciting events in the development of astronomy over the past few hundred years. Just two years ago the first transiting extra-solar planet, HD 209458b, was discovered, and subsequent studies during transit have contributed fundamental new knowledge. From the photometric light curve during transit one obtains a basic confirmation that the radial velocity detected object is indeed a planet by allowing precise determination of its mass and radius relative to these stellar quantities. From study of spectroscopic changes during transit it has been possible to probe for individual components of the transiting planets atmosphere. Planet transits are likely to become a primary tool for detection of new planets, especially other Earth-like planets with the Kepler Discovery Mission. Looking ahead, the additional aperture of the James Webb Space Space Telescope promises to allow the first possibility of studying the atmosphere of extra-solar Earth-analogue planets, perhaps even providing the first evidence of direct relevance to the search for signs of life on other planets.

  10. Center for modeling of turbulence and transition: Research briefs, 1993

    NASA Technical Reports Server (NTRS)

    Liou, William W. (Editor)

    1994-01-01

    This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from June 1992 to July 1993. It is also an annual report to the Institute for Computational Mechanics in Propulsion located at Ohio Aerospace Institute and NASA Lewis Research Center. The main objectives of the research activities at CMOTT are to develop, validate, and implement turbulence and transition models for flows of interest in propulsion systems. Currently, our research covers eddy viscosity one- and two-equation models, Reynolds-stress algebraic equation models, Reynolds-stress transport equation models, nonequilibrium multiple-scale models, bypass transition models, joint scalar probability density function models, and Renormalization Group Theory and Direct Interaction Approximation methods. Some numerical simulations (LES and DNS) have also been carried out to support the development of turbulence modeling. Last year was CMOTT's third year in operation. During this period, in addition to the above mentioned research, CMOTT has also hosted the following programs: an eighteen-hour short course on 'Turbulence--Fundamentals and Computational Modeling (Part I)' given by CMOTT at the NASA Lewis Research Center; a productive summer visitor research program that has generated many encouraging results; collaborative programs with industry customers to help improve their turbulent flow calculations for propulsion system designs; a biweekly CMOTT seminar series with speakers from within and without the NASA Lewis Research Center including foreign speakers. In addition, CMOTT members have been actively involved in the national and international turbulence research activities. The current CMOTT roster and organization are listed in Appendix A. Listed in Appendix B are the abstracts of the biweekly CMOTT seminar. Appendix C lists the papers contributed by CMOTT members.

  11. Thermoplastic matrix composite processing model

    NASA Technical Reports Server (NTRS)

    Dara, P. H.; Loos, A. C.

    1985-01-01

    The effects the processing parameters pressure, temperature, and time have on the quality of continuous graphite fiber reinforced thermoplastic matrix composites were quantitatively accessed by defining the extent to which intimate contact and bond formation has occurred at successive ply interfaces. Two models are presented predicting the extents to which the ply interfaces have achieved intimate contact and cohesive strength. The models are based on experimental observation of compression molded laminates and neat resin conditions, respectively. Identified as the mechanism explaining the phenomenon by which the plies bond to themselves is the theory of autohesion (or self diffusion). Theoretical predictions from the Reptation Theory between autohesive strength and contact time are used to explain the effects of the processing parameters on the observed experimental strengths. The application of a time-temperature relationship for autohesive strength predictions is evaluated. A viscoelastic compression molding model of a tow was developed to explain the phenomenon by which the prepreg ply interfaces develop intimate contact.

  12. Models for a liquid-liquid phase transition

    NASA Astrophysics Data System (ADS)

    Buldyrev, S. V.; Franzese, G.; Giovambattista, N.; Malescio, G.; Sadr-Lahijany, M. R.; Scala, A.; Skibinsky, A.; Stanley, H. E.

    2002-02-01

    We use molecular dynamics simulations to study two- and three-dimensional models with the isotropic double-step potential which in addition to the hard core has a repulsive soft core of larger radius. Our results indicate that the presence of two characteristic repulsive distances (hard core and soft core) is sufficient to explain liquid anomalies and a liquid-liquid phase transition, but these two phenomena may occur independently. Thus liquid-liquid transitions may exist in systems like liquid metals, regardless of the presence of the density anomaly. For 2D, we propose a model with a specific set of hard core and soft core parameters, that qualitatively reproduces the phase diagram and anomalies of liquid water. We identify two solid phases: a square crystal (high density phase), and a triangular crystal (low density phase) and discuss the relation between the anomalies of liquid and the polymorphism of the solid. Similarly to real water, our 2D system may have the second critical point in the metastable liquid phase beyond the freezing line. In 3D, we find several sets of parameters for which two fluid-fluid phase transition lines exist: the first line between gas and liquid and the second line between high-density liquid (HDL) and low-density liquid (LDL). In all cases, the LDL phase shows no density anomaly in 3D. We relate the absence of the density anomaly with the positive slope of the LDL-HDL phase transition line.

  13. Planet formation in transition disks: Modeling, spectroscopy, and theory

    NASA Astrophysics Data System (ADS)

    Liskowsky, Joseph Paul

    due to either a massive planet accreting the material onto it or via a photoevaporation process whereby the central star's radiation field ejects material from the inner disk out of the bound system in the the interstellar medium. It is presumed that this phase is the last gasp of the planetary disk's evolution before the debris disk stage and before a fully formed solar system evolves. Our work specifically focuses on one object of this transition disk class: HD100546. We add to the understanding of transition disks by showing that a model where ro-vibrational OH emission in the NIR is preferentially emitted along the 'wall' of the disk is consistent with observations, and furthermore that adding an eccentricity to this `wall' component is required to generate the necessary observed line shape. In conjunction with this observation we present supporting material which motivates the usage of such an eccentric wall component in light of predictions of the influence of giant planet formation occurring within the disk.

  14. Extratropical transitioning in the RMS Japan typhoon wind field model

    NASA Astrophysics Data System (ADS)

    Loridan, Thomas; Scherer, Emilie; Khare, Shree

    2013-04-01

    Given its meridional extent and location within the Pacific basin, Japan is regularly impacted by strong winds from cyclones at different stages of their lifecycle. To quantify the associated risk of damage to properties, catastrophe models such as the ones developed by RMS aim to simulate wind fields from thousands of stochastic storms that extrapolate historical events. In a recent study using 25 years of reanalysis data, Kitabatake (2011) estimated that 40 % of all Pacific tropical cyclones completed their transition as an extra tropical system. From a cat modelling point of view it is the increase in wind field asymmetry observed during these transitioning episodes that is critical, with examples like typhoon Tokage in 2004 showing the potential for damaging gusts on both sides of the storm track. In this context a compromise has to be found between the need for complex numerical models able to simulate wind field variability around the cyclone during its entire evolution, and obvious running time constrains. The RMS wind field model is based on an optimized version of the Willoughby parametric profile (Willoughby et al., 2006) which requires calibration against targets representative of cyclone wind fields throughout their lifecycle. We here present the different sources of data involved in the development of this model. This includes (1) satellite products to characterize wind fields from fully tropical storms, (2) high resolution simulations of key transitioning events using the WRF mesoscale model to complement the database at other stages (i.e. for transitioning and fully extra tropical wind fields), and (3) reanalysis data which can be used with Hart (2003)'s cyclone phase space methodology to provide an estimate of the mean duration of transitioning episodes in the Pacific. Kitabatake, N., 2011: Climatology of extratropical transition of tropical cyclones in the Western North Pacific defined by using cyclone phase space. J. Meteor. Soc. Japan, 89, 309

  15. Welding process modelling and control

    NASA Technical Reports Server (NTRS)

    Romine, Peter L.; Adenwala, Jinen A.

    1993-01-01

    The research and analysis performed, and software developed, and hardware/software recommendations made during 1992 in development of the PC-based data acquisition system for support of Welding Process Modeling and Control is reported. A need was identified by the Metals Processing Branch of NASA Marshall Space Flight Center, for a mobile data aquisition and analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC-based system was chosen. The Welding Measurement System (WMS) is a dedicated instrument, strictly for the use of data aquisition and analysis. Although the WMS supports many of the functions associated with the process control, it is not the intention for this system to be used for welding process control.

  16. Two-Gaussian excitations model for the glass transition

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.; Angell, C. A.

    2005-07-01

    We develop a modified "two-state" model with Gaussian widths for the site energies of both ground and excited states, consistent with expectations for a disordered system. The thermodynamic properties of the system are analyzed in configuration space and found to bridge the gap between simple two-state models ("logarithmic" model in configuration space) and the random energy model ("Gaussian" model in configuration space). The Kauzmann singularity given by the random energy model remains for very fragile liquids but is suppressed or eliminated for stronger liquids. The sharp form of constant-volume heat capacity found by recent simulations for binary mixed Lennard-Jones and soft-sphere systems is reproduced by the model, as is the excess entropy and heat capacity of a variety of laboratory systems, strong and fragile. The ideal glass in all cases has a narrow Gaussian, almost invariant among molecular and atomic glassformers, while the excited-state Gaussian depends on the system and its width plays a role in the thermodynamic fragility. The model predicts the possibility of first-order phase transitions for fragile liquids. The analysis of laboratory data for toluene and o-terphenyl indicates that fragile liquids resolve the Kauzmann paradox by a first-order transition from supercooled liquid to ideal-glass state at a temperature between Tg and Kauzmann temperature extrapolated from experimental data. We stress the importance of the temperature dependence of the energy landscape, predicted by the fluctuation-dissipation theorem, in analyzing the liquid thermodynamics.

  17. Characterisation and modelling of transition edge sensor distributed read-out imaging devices

    NASA Astrophysics Data System (ADS)

    Smith, Stephen J.; Whitford, Chris H.; Fraser, George W.; Goldie, David J.

    2006-04-01

    We report on the experimental characterisation and modelling of Transition Edge Sensor (TES)-based Distributed Read-Out Imaging Devices (DROIDs), for use as position-sensitive detectors in X-ray astronomy. Latest experimental results from prototype DROIDs using Ir TESs with Au absorbers are reported. Through modelling and the development of signal processing algorithms we are able to design the DROID for optimum spectral and spatial resolution depending upon application.

  18. Relaxation processes and glass transition in confined 1,4-polybutadiene films: A Molecular Dynamics study

    NASA Astrophysics Data System (ADS)

    Paul, Wolfgang; Solar, Mathieu

    We will present results from Molecular Dynamics simulations of a chemically realistic model of 1,4-polybutadiene (PB) chains confined by graphite walls. Relaxation processes in this system are heterogeneous and anisotropic. We will present evidence for a slow additional relaxation process related to chain desorption from the walls. We also study the structural relaxation resolved with respect to the distance from the graphite walls and show the influence of structural changes on the relaxation behavior. The temperature dependence of the dielectric relaxation in layers of different thickness near the walls shows no indication of a shift of Tg as a function of thickness when analyzed with a Vogel-Fulcher fit. We explain this by the importance of intramolecular dihedral barriers for the glass transition in PB which dominate over the density changes next to a wall except for a 1 nm thick layer directly at the wall.

  19. Process for preparing high-transition-temperature superconductors in the Nb-Al-Ge system

    DOEpatents

    Giorgi, A.L.; Szklarz, E.G.

    1973-01-30

    The patent describes a process for preparing superconducting materials in the Nb-Al-Ge system having transition temperatures in excess of 19K. The process comprises premixing powdered constituents, pressing them into a plug, heating the plug to 1,450-1,800C for 30 minutes to an hour under vacuum or an inert atmosphere, and annealing at moderate temperatures for reasonably long times (approximately 50 hours). High transition-temperature superconductors, including those in the Nb3(Al,Ge) system, prepared in accordance with this process exhibit little degradation in the superconducting transition temperature on being ground to -200 mesh powder. (GRA)

  20. Theories of Human Development that Enhance an Understanding of the College Transition Process

    ERIC Educational Resources Information Center

    Guiffrida, Douglas A.

    2009-01-01

    Background/Context: Although theories of human development often play a central role in K-12 pedagogical practices, evidence suggests that developmental theories have not been used extensively to understand the college transition process or to develop programs to support students during these transitions. Purpose/Objective/Research Question/Focus…

  1. Kujichagalia! Self-Determination in Young African American Women with Disabilities during the Transition Process

    ERIC Educational Resources Information Center

    Gillis, La Tonya L.

    2011-01-01

    The purpose of this study was to examine the role that self-determination played in the transition process for young African American women with disabilities who exited high school with a special diploma and participated in a local transition program. Factors under study included the young women's autonomy, self-regulation, psychological…

  2. Student Knowledge and Perceptions of Individual Transition Planning and Its Process

    ERIC Educational Resources Information Center

    Williams-Diehm, Kendra L.; Lynch, Patricia S.

    2007-01-01

    Although increased attention in special education has been given to individual transition planning, little research has been done to assess student opinions and knowledge on this process. The majority of research has focused on "best practice" to ensure quality transition planning for students. This study surveyed 103 students receiving special…

  3. Socio-technical transition as a co-evolutionary process: Innovation and the role of niche markets in the transition to motor vehicles

    NASA Astrophysics Data System (ADS)

    Birky, Alicia K.

    2008-10-01

    Significant reductions in greenhouse emissions from personal transportation will require a transition to an alternative technology regime based on renewable energy sources. Two bodies of research, the quasi-evolutionary (QE) model and the multi-level perspective (MLP) assert that processes within niches play a fundamental role in such transitions. This research asks whether the description of transitions based on this niche hypothesis and its underlying assumptions is consistent with the historical U.S. transition to motor vehicles at the beginning of the 20th century. Unique to this dissertation is the combination of the perspective of the entrepreneur with co-evolutionary approaches to socio-technical transitions. This approach is augmented with concepts from the industry life-cycle model and with a taxonomy of mechanisms of learning. Using this analytic framework, I examine specifically the role of entrepreneurial behavior and processes within and among firms in the co-evolution of technologies and institutions during the transition to motor vehicles. I find that niche markets played an important role in the development of the technology, institutions, and the industry. However, I also find that the diffusion of the automobile is not consistent with the niche hypothesis in the following ways: (1) product improvements and cost reductions were not realized in niche markets, but were achieved simultaneously with diffusion into mass markets; (2) in addition to learning-by-doing and learning-by-interacting with users, knowledge spillovers and interacting with suppliers were critical in this process; (3) cost reductions were not automatic results of expanding markets, but rather arose from the strategies of entrepreneurs based on personal perspectives and values. This finding supports the use of a behavioral approach with a micro-focus in the analysis of socio-technical change. I also find that the emergence and diffusion of the motor vehicle can only be understood by

  4. Phase transitions in the sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.; Bouldjedri, A.; Zerguine, S.

    2010-05-01

    A geometric analysis of the sdg interacting boson model is performed. A coherent state is used in terms of three types of deformation: axial quadrupole ( β), axial hexadecapole ( β) and triaxial ( γ). The phase-transitional structure is established for a schematic sdg Hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9), the (prolate and oblate) deformed SU(3) and the γ-soft SO(15) limits. For realistic choices of the Hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sd version of the model and, in particular, no transition towards a stable triaxial shape is found.

  5. Phase transition of the Ising model on a fractal lattice.

    PubMed

    Genzor, Jozef; Gendiar, Andrej; Nishino, Tomotoshi

    2016-01-01

    The phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of 4. The free energy and the spontaneous magnetization of the system are obtained by means of the higher-order tensor renormalization group method. The system exhibits the order-disorder phase transition, where the critical indices are different from those of the square-lattice Ising model. An exponential decay is observed in the density-matrix spectrum even at the critical point. It is possible to interpret that the system is less entangled because of the fractal geometry. PMID:26871057

  6. Animal models and conserved processes

    PubMed Central

    2012-01-01

    Background The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? Methods We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. Results Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. Conclusion We conclude that even the presence of conserved processes is insufficient for inter

  7. Experience Transitioning Models and Data at the NOAA Space Weather Prediction Center

    NASA Astrophysics Data System (ADS)

    Berger, Thomas

    2016-07-01

    The NOAA Space Weather Prediction Center has a long history of transitioning research data and models into operations and with the validation activities required. The first stage in this process involves demonstrating that the capability has sufficient value to customers to justify the cost needed to transition it and to run it continuously and reliably in operations. Once the overall value is demonstrated, a substantial effort is then required to develop the operational software from the research codes. The next stage is to implement and test the software and product generation on the operational computers. Finally, effort must be devoted to establishing long-term measures of performance, maintaining the software, and working with forecasters, customers, and researchers to improve over time the operational capabilities. This multi-stage process of identifying, transitioning, and improving operational space weather capabilities will be discussed using recent examples. Plans for future activities will also be described.

  8. Novel, discontinuous polaron transition in a two-band model

    NASA Astrophysics Data System (ADS)

    Moeller, Mirko M.; Sawatzky, George A.; Berciu, Mona

    The coupling of charge carriers (electrons or holes) to phonons leads to the formation of a polaron, a coherent quasi-particle consisting of the charge carrier and the cloud of phonons surrounding it and moving coherently with it. Here we present exact diagonalization and momentum average approximation results for the single polaron properties of a two-band model with phonon modulated hopping, inspired by the perovskite BaBiO3. For large coupling we find that the ground state momentum changes discontinuously from k = π to k = 0 . Such sharp transitions of the polaron's ground state properties cannot occur in the well-studied models of the Holstein or Fröhlich type in which the carrier-phonon coupling modulates the on-site energies. However, they can occur in models where the carrier-phonon coupling modulates the hopping integrals such as the SSH model for which a similar yet smooth transition of the ground state momentum was recently shown to exist. We compare our findings to the SSH model and point out qualitative differences which we believe to be due to the two band nature of our model versus the single band SSH model. This work was supported by NSERC, QMI and the UBC 4YF.

  9. Modeling and computation of deflagration-to-detonation transition in reactive granular materials

    SciTech Connect

    Baer, M.R.; Benner, R.E.; Gross, R.J.; Nunziato, J.W.

    1985-01-01

    In this paper, we present a multiphase flow model of the combustion of a gas-permeable reactive granular material. In particular, we focus on a model of the physical-chemical processes associated with the transition from deflagration to detonation in granular explosives and propellants. Two numerical strategies are discussed that are aimed toward multidimensional computations. Comparison of our results with experimental data for the explosives CP and HMX suggests that a thermodynamically consistent model can describe the flame spread processes associated with convective burning, compressive deflagration, and detonation.

  10. Face Processing: Models For Recognition

    NASA Astrophysics Data System (ADS)

    Turk, Matthew A.; Pentland, Alexander P.

    1990-03-01

    The human ability to process faces is remarkable. We can identify perhaps thousands of faces learned throughout our lifetime and read facial expression to understand such subtle qualities as emotion. These skills are quite robust, despite sometimes large changes in the visual stimulus due to expression, aging, and distractions such as glasses or changes in hairstyle or facial hair. Computers which model and recognize faces will be useful in a variety of applications, including criminal identification, human-computer interface, and animation. We discuss models for representing faces and their applicability to the task of recognition, and present techniques for identifying faces and detecting eye blinks.

  11. The glass transition process in humid biopolymers. DSC study

    NASA Astrophysics Data System (ADS)

    Grunina, N. A.; Belopolskaya, T. V.; Tsereteli, G. I.

    2006-05-01

    Thermal properties of native and denatured biopolymers with quite different chemical and steric structure (globular and fibrillar proteins, DNA, starches) were studied by means of differential scanning calorimetry in a wide range of temperatures and concentrations of water. It was shown that both native and denatured humid biopolymers are glassy systems. The glass transition temperature of these systems strongly depends on percentage of water, with water being simultaneously an intrinsic element of systems' ordered structure and a plasticizer of its amorphous state. On the base of the absolute values of heat capacities for biopolymer-water systems as a whole, heat capacities for biopolymers themselves were calculated as functions on water concentration at fixed temperatures. The S-shaped change of heat capacity observed on diagrams of state both for native and denatured biopolymers is the manifestation of biopolymers' passing through the vitrification region, as it occurs for denatured samples at heating.

  12. Employment, Production and Consumption model: Patterns of phase transitions

    NASA Astrophysics Data System (ADS)

    Lavička, H.; Lin, L.; Novotný, J.

    2010-04-01

    We have simulated the model of Employment, Production and Consumption (EPC) using Monte Carlo. The EPC model is an agent based model that mimics very basic rules of industrial economy. From the perspective of physics, the nature of the interactions in the EPC model represents multi-agent interactions where the relations among agents follow the key laws for circulation of capital and money. Monte Carlo simulations of the stochastic model reveal phase transition in the model economy. The two phases are the phase with full unemployment and the phase with nearly full employment. The economy switches between these two states suddenly as a reaction to a slight variation in the exogenous parameter, thus the system exhibits strong non-linear behavior as a response to the change of the exogenous parameters.

  13. Theoretical Models of Astrochemical Processes

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    Interstellar chemistry provides a natural laboratory for studying exotic species and processes at densities, temperatures, and reaction rates. that are difficult or impractical to address in the laboratory. Thus, many chemical reactions considered too sloe by the standards of terrestrial chemistry, can be 'observed and modeled. Curious proposals concerning the nature and chemistry of complex interstellar organic molecules will be described. Catalytic reactions on "rain surfaces can, in principle, lead to a lame variety of species and this has motivated many laboratory and theoretical studies. Gas phase processes may also build lame species in molecular clouds. Future laboratory data and computational tools needed to construct accurate chemical models of various astronomical sources to be observed by Herschel and ALMA will be outlined.

  14. Specificity in Transition State Binding: The Pauling Model Revisited

    PubMed Central

    Amyes, Tina L.; Richard, John P.

    2013-01-01

    Linus Pauling proposed that the large rate accelerations for enzymes are due to the high specificity of the protein catalyst for binding the reaction transition state. The observation that stable analogs of the transition states for enzymatic reactions often act as tight-binding binding inhibitors provided early support for this simple and elegant proposal. We review experimental results which support the proposal that Pauling’s model provides a satisfactory explanation for the rate accelerations for many heterolytic enzymatic reactions through high energy reaction intermediates, such as proton transfer and decarboxylation. Specificity in transition state binding is obtained when the total intrinsic binding energy of the substrate is significantly larger than the binding energy observed at the Michaelis complex. The results of recent studies to characterize the specificity in binding of the enolate oxygen at the transition state for the 1,3-isomerization reaction catalyzed by ketosteroid isomerase are reviewed. Interactions between pig heart succinyl-CoA:3-oxoacid coenzyme A transferase (SCOT) and the nonreacting portions of CoA are responsible for a rate increase of 3 × 1012-fold, which is close to the estimated total 5 × 1013-fold enzymatic rate acceleration. Studies that partition the interactions between SCOT and CoA into their contributing parts are reviewed. Interactions of the protein with the substrate phosphodianion group provide a ca. 12 kcal/mol stabilization of the transition state for the reactions catalyzed by triosephosphate isomerase, orotidine 5′-monophosphate decarboxylase and α-glycerol phosphate dehydrogenase. The interactions of these enzymes with the substrate piece phosphite dianion provide a 6 – 8 kcal/mol stabilization of the transition state for reaction of the appropriate truncated substrate. Enzyme activation by phosphite dianion reflects the higher dianion affinity for binding to the enzyme-transition state complex compared

  15. Modeling multipulsing transition in ring cavity lasers with proper orthogonal decomposition

    SciTech Connect

    Ding, Edwin; Shlizerman, Eli; Kutz, J. Nathan

    2010-08-15

    A low-dimensional model is constructed via the proper orthogonal decomposition (POD) to characterize the multipulsing phenomenon in a ring cavity laser mode locked by a saturable absorber. The onset of the multipulsing transition is characterized by an oscillatory state (created by a Hopf bifurcation) that is then itself destabilized to a double-pulse configuration (by a fold bifurcation). A four-mode POD analysis, which uses the principal components, or singular value decomposition modes, of the mode-locked laser, provides a simple analytic framework for a complete characterization of the entire transition process and its associated bifurcations. These findings are in good agreement with the full governing equation.

  16. Coupling and noise induced spiking-bursting transition in a parabolic bursting model.

    PubMed

    Ji, Lin; Zhang, Jia; Lang, Xiufeng; Zhang, Xiuhui

    2013-03-01

    The transition from tonic spiking to bursting is an important dynamic process that carry physiologically relevant information. In this work, coupling and noise induced spiking-bursting transition is investigated in a parabolic bursting model with specific discussion on their cooperation effects. Fast/slow analysis shows that weak coupling may help to induce the bursting by changing the geometric property of the fast subsystem so that the original unstable periodical solution are stabilized. It turned out that noise can play the similar stabilization role and induce bursting at appropriate moderate intensity. However, their cooperation may either strengthen or weaken the overall effect depending on the choice of noise level.

  17. Process induced transformations during tablet manufacturing: phase transition analysis of caffeine using DSC and low frequency micro-Raman spectroscopy.

    PubMed

    Hubert, Sébastien; Briancon, Stéphanie; Hedoux, Alain; Guinet, Yannick; Paccou, Laurent; Fessi, Hatem; Puel, François

    2011-11-25

    The phase transition of a model API, caffeine Form I, was studied during tableting process monitored with an instrumented press. The formulation used had a plastic flow behavior according to the Heckel model in the compression pressure range of 70-170 MPa. The quantitative methods of analysis used were Differential Scanning Calorimetry (DSC) and low frequency Micro Raman Spectroscopy (MRS) which was used for the first time for the mapping of polymorphs in tablets. They brought complementary contributions since MRS is a microscopic spectral analysis with a spatial resolution of 5 μm(3) and DSC takes into account a macroscopic fraction (10mg) of the tablet. Phase transitions were present at the surfaces, borders and center of the tablets. Whatever the pressure applied during the compression process, the transition degree of caffeine Form I toward Form II was almost constant. MRS provided higher transition degrees (50-60%) than DSC (20-35%). MRS revealed that caffeine Form I particles were partially transformed in all parts of the tablets at a microscopic scale. Moreover, tablet surfaces showed local higher transition degree compared to the other parts.

  18. The NCEP-NCAR Stratocumulus-to-Cumulus Transition Climate Process Team

    NASA Astrophysics Data System (ADS)

    Bretherton, C. S.; Teixeira, J.; Blossey, P. N.; Caldwell, P.; Fletcher, J. K.; Han, J.; Jones, C. R.; Klein, S. A.; Mechoso, C. R.; Pan, H.; Park, S.; Sun, R.; Suselj, K.; Witek, M. L.; Xiao, H.

    2012-12-01

    The NCEP-NCAR Stratocumulus-to-Cumulus Transition Climate Process Team (Sc-Cu CPT) is a NOAA-funded collaboration started in 2010 between two universities, two climate modeling centers, and two other national labs to improve the representation of low clouds in the NCEP Global Forecast System (GFS) and the NCAR Community Atmosphere Model (CAM5). Highlights of CPT activities will be presented. The GFS is not only the U.S. operational global weather forecast model, it is also periodically used as a starting point for the Climate Forecast System (CFS), NCEP's operational coupled seasonal-to-interannual forecast model. As strategic preparation for developing version 3 of the CFS, two CPT goals were (1) to evaluate the free-running climate of GFS coupled to an ocean model using customary metrics for climate modeling, and (2) to reduce model biases in subtropical low cloud cover. The AMWG diagnostics package used for evaluating CAM5 was adapted to 50-year coupled GFS simulations, as well as to version 2 of the CFS. Both models had low overall circulation, precipitation and temperature biases, but had serious global energy conservation errors and cloud radiative forcing 40-50% too small in global mean. Using short coupled runs, the first issue was addressed by adding missing heating due to dissipation of turbulent kinetic energy, and the second issue has been partly addressed through a suite of minor changes to the moist physics parameterizations. Improvements to the boundary-layer scheme are also under development. CPT members also have refined the moist physics parameterizations in the CAM5, including unification of shallow and deep cumulus convection, improvement of cloud fraction and microphysics schemes, and diagnosis of systematic biases in the simulation of aerosol indirect effects in precipitating boundary-layer clouds. Lastly, CPT members have performed LES simulations of boundary-layer cloud sensitivities and of the stratocumulus-to-cumulus transition that help

  19. Center for Modeling of Turbulence and Transition: Research Briefs, 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from July 1993 to July 1995. It also constitutes a progress report to the Institute of Computational Mechanics in Propulsion located at the Ohio Aerospace Institute and the Lewis Research Center. CMOTT has been in existence for about four years. In the first three years, its main activities were to develop and validate turbulence and combustion models for propulsion systems, in an effort to remove the deficiencies of existing models. Three workshops on computational turbulence modeling were held at LeRC (1991, 1993, 1994). At present, CMOTT is integrating the CMOTT developed/improved models into CFD tools which can be used by the propulsion systems community. This activity has resulted in an increased collaboration with the Lewis CFD researchers.

  20. Process for preparing transition metal nitrides and transition metal carbonitrides and their reaction intermediates

    DOEpatents

    Maya, Leon

    1988-05-24

    A process for making ammonolytic precursors to nitride and carbonitride ceramics. Extreme reaction conditions are not required and the precursor is a powder-like substance that produces ceramics of improved purity and morphology upon pyrolysis.

  1. Excited-state quantum phase transitions in Dicke superradiance models.

    PubMed

    Brandes, Tobias

    2013-09-01

    We derive analytical results for various quantities related to the excited-state quantum phase transitions in a class of Dicke superradiance models in the semiclassical limit. Based on a calculation of a partition sum restricted to Dicke states, we discuss the singular behavior of the derivative of the density of states and find observables such as the mean (atomic) inversion and the boson (photon) number and its fluctuations at arbitrary energies. Criticality depends on energy and a parameter that quantifies the relative weight of rotating versus counterrotating terms, and we find a close analogy to the logarithmic and jump-type nonanalyticities known from the Lipkin-Meshkov-Glick model. PMID:24125239

  2. Improved model for the transit entropy of monatomic liquids

    NASA Astrophysics Data System (ADS)

    Wallace, Duane C.; Chisolm, Eric D.; Bock, Nicolas

    2009-05-01

    In the original formulation of vibration-transit (V-T) theory for monatomic liquid dynamics, the transit contribution to entropy was taken to be a universal constant, calibrated to the constant-volume entropy of melting. This model suffers two deficiencies: (a) it does not account for experimental entropy differences of ±2% among elemental liquids and (b) it implies a value of zero for the transit contribution to internal energy. The purpose of this paper is to correct these deficiencies. To this end, the V-T equation for entropy is fitted to an overall accuracy of ±0.1% to the available experimental high-temperature entropy data for elemental liquids. The theory contains two nuclear motion contributions: (a) the dominant vibrational contribution Svib(T/θ0) , where T is temperature and θ0 is the vibrational characteristic temperature, and (b) the transit contribution Str(T/θtr) , where θtr is a scaling temperature for each liquid. The appearance of a common functional form of Str for all the liquids studied is a property of the experimental data, when analyzed via the V-T formula. The resulting Str implies the correct transit contribution to internal energy. The theoretical entropy of melting is derived in a single formula applying to normal and anomalous melting alike. An ab initio calculation of θ0 , based on density-functional theory, is reported for liquid Na and Cu. Comparison of these calculations with the above analysis of experimental entropy data provides verification of V-T theory. In view of the present results, techniques currently being applied in ab initio simulations of liquid properties can be employed to advantage in the further testing and development of V-T theory.

  3. Modeling liquid-liquid phase transitions and quasicrystal formation

    NASA Astrophysics Data System (ADS)

    Skibinsky, Anna

    In this thesis, studies which concern two different subjects related to phase transitions in fluids and crystalline solids are presented. Condensed matter formation, structure, and phase transitions are modeled using molecular dynamics simulations of simple discontinuous potentials with attractive and repulsive interactions. Novel phase diagrams are proposed for quasicrystals, crystals, and liquids. In the first part of the thesis, the formation of a quasicrystal in a two dimensional monodisperse system is investigated using molecular dynamics simulations of hard sphere particles interacting via a two-dimensional square-well potential. It is found that for certain values of the square-well parameters more than one stable crystalline phase can form. By quenching the liquid phase at a very low temperature, an amorphous phase is obtained. When this the amorphous phase is heated, a quasicrystalline structure with five-fold symmetry forms. From estimations of the Helmholtz potentials of the stable crystalline phases and of the quasicrystal, it is concluded that within a specific temperature range, the observed quasicrystal phase can be the stable phase. The second part of the thesis concerns a study of the liquid-liquid phase transition for a single-component system in three dimensions, interacting via an isotropic potential with a repulsive soft-core shoulder at short distance and an attractive well at an intermediate distance. The potential is similar to potentials used to describe such liquid systems as colloids, protein solutions, or liquid metals. It is shown that the phase diagram for such a potential can have two lines of first-order fluid-fluid phase transitions: one separating a gas and a low-density liquid (LDL), and another between the LDL and a high-density liquid (HDL). Both phase transition lines end in a critical point, a gas-LDL critical point and, depending on the potential parameters, either a gas-HDL critical point or a LDL-HDL critical point. A

  4. Modeling enzymatic transition states by force field methods

    NASA Astrophysics Data System (ADS)

    Hansen, M. B.; Jensen, H. J. A.; Jensen, F.

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5prime-monophosphate decarboxylase enzyme. The dependence of the TS geometry on the flexibility of the system has been probed by fixing layers of atoms around the active site and using increasingly larger nonbonded cutoffs. The variability over the 20 structures is found to decrease as the system is made more flexible. Relative energies have been calculated by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part of this variation is due to changes in the enzyme structure at distances more than 5 Å from the active site. There are significant differences between the results obtained by pure quantum methods and those from mixed quantum and molecular mechanics methods.

  5. Investigation of Quantum Phase Transition and Entanglement in Spin Models

    NASA Astrophysics Data System (ADS)

    Shik, Hoi Yin

    In this thesis, the critical behaviour of concurrence in spin models and its relationship to quantum phase transitions (QPT) are explored. The relation between the ground state entanglement and excited states, in connection with quantum phase transitions, is studied. Besides, a generalization of the Majumdar-Ghosh model [1, 2], studied in my M.Phil research, to finite temperatures is also studied. Firstly, the relationship between quantum entanglement and QPT is studied. In this thesis, concurrence is chosen as the measure of pairwise entanglement. The quantum phase transitions in the XXZ and J1- J2 models are investigated by examining contributions of excited states to the ground state concurrence. The critical behaviour of the concurrence at the quantum critical points is explained by the excited states' contributions. Also, the dependence of the concurrence at the quantum critical points with lattice size is investigated. Secondly, under open boundary conditions, the different quantum phases in the XXZ and J1-J2 models are distinguished by investigating the responses of the end spins to a small perturbation. Meanwhile, the properties of the concurrence of the spin models under different boundary conditions are compared. Finally, the thermodynamic properties of a spin-half ladder system are studied. We find that a completely dimerized state exists in one kind of twoleg spin-half ladder, which has local anti-ferromagnetic ordering and frustration effect at the same time. The system's low-lying excitations can be obtained exactly and this enables us to calculate thermodynamic quantities at low temperatures. Our results also show that a subset of the energy spectrum is a good approximation to the whole spectrum when used in the calculation of specific heat capacities and magnetic susceptibilities, even for the two-leg spin-half ladder without frustration.

  6. Multiple phase transitions in extended hard-core lattice gas models in two dimensions.

    PubMed

    Nath, Trisha; Rajesh, R

    2014-07-01

    We study the k-NN hard-core lattice gas model in which the first k next-nearest-neighbor sites of a particle are excluded from occupation by other particles on a two-dimensional square lattice. This model is the lattice version of the hard-disk system with increasing k corresponding to decreasing lattice spacing. While the hard-disk system is known to undergo a two-step freezing process with increasing density, the lattice model has been known to show only one transition. Here, based on Monte Carlo simulations and high-density expansions of the free energy and density, we argue that for k = 4,10,11,14,⋯, the lattice model undergoes multiple transitions with increasing density. Using Monte Carlo simulations, we confirm the same for k = 4,...,11. This, in turn, resolves an existing puzzle as to why the 4-NN model has a continuous transition against the expectation of a first-order transition.

  7. Multiple phase transitions in extended hard-core lattice gas models in two dimensions.

    PubMed

    Nath, Trisha; Rajesh, R

    2014-07-01

    We study the k-NN hard-core lattice gas model in which the first k next-nearest-neighbor sites of a particle are excluded from occupation by other particles on a two-dimensional square lattice. This model is the lattice version of the hard-disk system with increasing k corresponding to decreasing lattice spacing. While the hard-disk system is known to undergo a two-step freezing process with increasing density, the lattice model has been known to show only one transition. Here, based on Monte Carlo simulations and high-density expansions of the free energy and density, we argue that for k = 4,10,11,14,⋯, the lattice model undergoes multiple transitions with increasing density. Using Monte Carlo simulations, we confirm the same for k = 4,...,11. This, in turn, resolves an existing puzzle as to why the 4-NN model has a continuous transition against the expectation of a first-order transition. PMID:25122264

  8. Dynamical phase transition in the open Dicke model

    PubMed Central

    Klinder, Jens; Keßler, Hans; Wolke, Matthias; Mathey, Ludwig; Hemmerich, Andreas

    2015-01-01

    The Dicke model with a weak dissipation channel is realized by coupling a Bose–Einstein condensate to an optical cavity with ultranarrow bandwidth. We explore the dynamical critical properties of the Hepp–Lieb–Dicke phase transition by performing quenches across the phase boundary. We observe hysteresis in the transition between a homogeneous phase and a self-organized collective phase with an enclosed loop area showing power-law scaling with respect to the quench time, which suggests an interpretation within a general framework introduced by Kibble and Zurek. The observed hysteretic dynamics is well reproduced by numerically solving the mean-field equation derived from a generalized Dicke Hamiltonian. Our work promotes the understanding of nonequilibrium physics in open many-body systems with infinite range interactions. PMID:25733892

  9. Quantum phase transitions in holographic models of magnetism and superconductors

    SciTech Connect

    Iqbal, Nabil; Liu Hong; Mezei, Mark; Si Qimiao

    2010-08-15

    We study a holographic model realizing an 'antiferromagnetic' phase in which a global SU(2) symmetry representing spin is broken down to a U(1) by the presence of a finite electric charge density. This involves the condensation of a neutral scalar field in a charged anti-de Sitter black hole. We observe that the phase transition for both neutral and charged (as in the standard holographic superconductor) order parameters can be driven to zero temperature by a tuning of the UV conformal dimension of the order parameter, resulting in a quantum phase transition of the Berezinskii-Kosterlitz-Thouless-type. We also characterize the antiferromagnetic phase and an externally forced ferromagnetic phase by showing that they contain the expected spin waves with linear and quadratic dispersions, respectively.

  10. Topological phase transitions in the gauged BPS baby Skyrme model

    NASA Astrophysics Data System (ADS)

    Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.

    2015-05-01

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P, H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V = V( P,H) at zero temperature, where V is the "volume", i.e., area of the solitons.

  11. A nursing information model process for interoperability.

    PubMed

    Chow, Marilyn; Beene, Murielle; O'Brien, Ann; Greim, Patricia; Cromwell, Tim; DuLong, Donna; Bedecarré, Diane

    2015-05-01

    The ability to share nursing data across organizations and electronic health records is a key component of improving care coordination and quality outcomes. Currently, substantial organizational and technical barriers limit the ability to share and compare essential patient data that inform nursing care. Nursing leaders at Kaiser Permanente and the U.S. Department of Veterans Affairs collaborated on the development of an evidence-based information model driven by nursing practice to enable data capture, re-use, and sharing between organizations and disparate electronic health records. This article describes a framework with repeatable steps and processes to enable the semantic interoperability of relevant and contextual nursing data. Hospital-acquired pressure ulcer prevention was selected as the prototype nurse-sensitive quality measure to develop and test the model. In a Health 2.0 Developer Challenge program from the Office of the National Coordinator for Health, mobile applications implemented the model to help nurses assess the risk of hospital-acquired pressure ulcers and reduce their severity. The common information model can be applied to other nurse-sensitive measures to enable data standardization supporting patient transitions between care settings, quality reporting, and research.

  12. Unpacking the Evaluation Process: A Study of Transitional Bilingual Education

    ERIC Educational Resources Information Center

    Hofstetter, C.H.

    2004-01-01

    This article examines the process of an ongoing, independent evaluation of atransitional Spanish/English bilingual program housed at a large, urban school district in Northern California. The program is designed to enhance Kindergarten through Grade 5 (K-5) students' English language proficiency, as well as their English performance in academic…

  13. Relational Processes in Career Transition: Extending Theory, Research, and Practice

    ERIC Educational Resources Information Center

    Motulsky, Sue L.

    2010-01-01

    A growing body of work in relational theory and career decision making explores how relational processes, not just people's relationships but more broadly their connections to self, others, and society, inform career development and counseling. This article presents the results of a qualitative research study of midlife women in career transition…

  14. Transitivity vs. intransitivity in decision making process - an example in quantum game theory

    NASA Astrophysics Data System (ADS)

    Makowski, Marcin

    2009-06-01

    We compare two different ways of quantum modification in a simple sequential game called Cat's Dilemma in the context of the debate on intransitive and transitive preferences. This kind of analysis can have essential meaning for research on artificial intelligence (some possibilities are discussed). Nature has both transitive and intransitive properties and perhaps quantum models will be more able to capture this dualism than the classical models. We also present an electoral interpretation of the game.

  15. [The health transition in Mexico: a proper model].

    PubMed

    Frenk, J; Bobadilla, J L; Sepulveda, J

    1988-01-01

    An intense process of epidemiological transition due to the change in mortality has superseded the eras of pestilence, pandemic disease, and chronic-degenerative diseases in Mexico. But the change has not been uniformly progressive, for instance, recurrence of malaria after its eradication indicates reverse transition. Enteritis, influenza, and pneumonia ranked among the primary causes of death between 1955 and 1957, whereas by 1980 heart disease became the leading cause followed by accidents, influenza, and enteritis. A polarized epidemiology can be observed in the post-transitional period: the poorest segment of the population continues to have high rates of infections and nutritional deficiencies. According to Mexican health service mortality data gathered in 1981 industrial workers had similar rates of infectious and chronic-degenerative diseases (11.7% and 12.0%, respectively), while agricultural workers had high rates of infectious and parasitic diseases (26.7%) and a low rate of chronic-degenerative diseases (5.6%). Illnesses of perinatal origin were also higher in agricultural workers than in industrial workers (26.1% vs. 13.7%), whereas circulatory diseases were more frequent among industrial workers (14.2% vs. 7.2%). It is the task of the health care system to meet the challenge of the complexity of this epidemiological mosaic.

  16. Student-Directed Transition Planning: Increasing Student Knowledge and Self-Efficacy in the Transition Planning Process

    ERIC Educational Resources Information Center

    Woods, Lee L.; Sylvester, Lorraine; Martin, James E.

    2010-01-01

    This study examined the effectiveness of a new school to adult life transition planning lesson package titled "Student-Directed Transition Planning". The "Student-Directed Transition Planning" lessons teach transition terms and concepts to provide a means to increase self-determination skills and student participation in transition IEP…

  17. Unified Dark Matter scalar field models with fast transition

    SciTech Connect

    Bertacca, Daniele; Bruni, Marco; Piattella, Oliver F.; Pietrobon, Davide E-mail: marco.bruni@port.ac.uk E-mail: davide.pietrobon@jpl.nasa.gov

    2011-02-01

    We investigate the general properties of Unified Dark Matter (UDM) scalar field models with Lagrangians with a non-canonical kinetic term, looking specifically for models that can produce a fast transition between an early Einstein-de Sitter CDM-like era and a later Dark Energy like phase, similarly to the barotropic fluid UDM models in JCAP01(2010)014. However, while the background evolution can be very similar in the two cases, the perturbations are naturally adiabatic in fluid models, while in the scalar field case they are necessarily non-adiabatic. The new approach to building UDM Lagrangians proposed here allows to escape the common problem of the fine-tuning of the parameters which plague many UDM models. We analyse the properties of perturbations in our model, focusing on the the evolution of the effective speed of sound and that of the Jeans length. With this insight, we can set theoretical constraints on the parameters of the model, predicting sufficient conditions for the model to be viable. An interesting feature of our models is that what can be interpreted as w{sub DE} can be < −1 without violating the null energy conditions.

  18. Model of High Temperature Phase Transitions in Metals

    NASA Astrophysics Data System (ADS)

    Filippov, E. S.

    2016-04-01

    On the basis of the assumption of the electron density fluctuation at the band degradation, a calculation parameter (the radius R) of the half-width of the probability distribution over the coordinate R is identified at the level of the maximum electron density fluctuation (at a maximum of the Gaussian function). Based on an analysis of the crystallization process and high polymorphic transformations bcc → fcc, the reasons for the formation of bcc, fcc, hexagonal, and tetragonal structures from the liquid phase, as well as for the high temperature bcc → hcp transition in the solid phase are established using the calculated parameter (the radius R) in the solid and liquid phases.

  19. Quantum phase transitional patterns in the SD-pair shell model

    SciTech Connect

    Luo Yanan; Meng Xiangfei; Zhang Yu; Pan Feng; Draayer, Jerry P.

    2009-07-15

    Patterns of shape-phase transition in the proton-neutron coupled systems are studied within the SD-pair shell model. The results show that some transitional patterns in the SD-pair shell model are similar to the U(5)-SU(3) and U(5)-SO(6) transitions with signatures of the critical point symmetry of the interacting boson model.

  20. Phase transition in a spatial Lotka-Volterra model.

    PubMed

    Szabó, G; Czárán, T

    2001-06-01

    Spatial evolution is investigated in a simulated system of nine competing and mutating bacterium strains, which mimics the biochemical war among bacteria capable of producing two different bacteriocins (toxins) at most. Random sequential dynamics on a square lattice is governed by very symmetrical transition rules for neighborhood invasions of sensitive strains by killers, killers by resistants, and resistants by sensitives. The community of the nine possible toxicity/resistance types undergoes a critical phase transition as the uniform transmutation rates between the types decreases below a critical value P(c) above that all the nine types of strains coexist with equal frequencies. Passing the critical mutation rate from above, the system collapses into one of three topologically identical (degenerated) states, each consisting of three strain types. Of the three possible final states each accrues with equal probability and all three maintain themselves in a self-organizing polydomain structure via cyclic invasions. Our Monte Carlo simulations support that this symmetry-breaking transition belongs to the universality class of the three-state Potts model.

  1. Hysteretic transitions in the Kuramoto model with inertia

    NASA Astrophysics Data System (ADS)

    Torcini, Alessandro; Olmi, Simona; Navas, Adrian; Boccaletti, Stefano

    2015-03-01

    We report finite size numerical investigations and mean field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean field theory developed by Tanaka, Lichtenberg, and Oishi allows to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of coherently drifting oscillators. Financial support has been provided by the Italian Ministry of University and Research within the project CRISIS LAB PNR 2011-2013.

  2. Phase transition in a spatial Lotka-Volterra model

    NASA Astrophysics Data System (ADS)

    Szabó, György; Czárán, Tamás

    2001-06-01

    Spatial evolution is investigated in a simulated system of nine competing and mutating bacterium strains, which mimics the biochemical war among bacteria capable of producing two different bacteriocins (toxins) at most. Random sequential dynamics on a square lattice is governed by very symmetrical transition rules for neighborhood invasions of sensitive strains by killers, killers by resistants, and resistants by sensitives. The community of the nine possible toxicity/resistance types undergoes a critical phase transition as the uniform transmutation rates between the types decreases below a critical value Pc above that all the nine types of strains coexist with equal frequencies. Passing the critical mutation rate from above, the system collapses into one of three topologically identical (degenerated) states, each consisting of three strain types. Of the three possible final states each accrues with equal probability and all three maintain themselves in a self-organizing polydomain structure via cyclic invasions. Our Monte Carlo simulations support that this symmetry-breaking transition belongs to the universality class of the three-state Potts model.

  3. Modeling transiting exoplanet and spots For interferometric study

    NASA Astrophysics Data System (ADS)

    Ligi, Roxanne; Mourard, Denis; Perraut, Karine; Bério, Philippe; Bigot, Lionel; Chiavassa, Andrea; Lagrange, Anne-Marie; Nardetto, Nicolas

    2014-08-01

    Up to now, many techniques have been developed to detect and observe exoplanets, the radial velocity (RV) method being the most prolific one. However, stellar magnetic spots can mimic an exoplanet transit signal and lead to a false detection. A few models have already been developed to constrain the different signature of exoplanets and spots, but they only concern RV measurements or photometry. An interferometric approach, with high angular resolution capabilities, could resolve this problem. Optical interferometry is a powerful method to measure accurate stellar diameters, and derive fundamental parameters of stars and exoplanets minimum masses. We have built an analytical code able to calculate visibility moduli and closure phases of stars with a transiting exoplanet, to be compared with a star with no exoplanet. From the difference of interferometric signal, we can derive the presence of the exoplanet, but this requires that the star is resolved enough. We have tested this code with current available facilities like VEGA/CHARA and determined which already discovered exoplanets systems can be resolved enough to test this method. To make a more general study, we also tested different parameters (exoplanet and stellar diameters, exoplanet position) that can lead to a variation of the minimum baseline length required to see the exoplanet signal on the visibility modulus and the phase. Stellar spots act in the same way, but the difference of local intensity between an exoplanet transit and a spot can easily be studied thanks to the interferometric measurements.

  4. Systematic Reviews of Research: Postsecondary Transitions. Identifying Effective Models and Practices

    ERIC Educational Resources Information Center

    Valentine, Jeffrey C.; Hirschy, Amy S.; Bremer, Christine D.; Novillo, Walter; Castellano, Marisa; Banister, Aaron

    2009-01-01

    This paper focuses on transition programs for youth to postsecondary education, broadly considered. It addresses the following questions: (1) What models or programs of transition exist? (2) On what basis can we say one transition program is more effective than another? In other words, how is successful transition defined? (3) How are…

  5. Analysis of Phase Transition in Traffic Flow based on a New Model of Driving Decision

    NASA Astrophysics Data System (ADS)

    Peng, Yu; Shang, Hua-Yan; Lu, Hua-Pu

    2011-07-01

    Different driving decisions will cause different processes of phase transition in traffic flow. To reveal the inner mechanism, this paper built a new cellular automaton (CA) model, based on the driving decision (DD). In the DD model, a driver's decision is divided into three stages: decision-making, action, and result. The acceleration is taken as a decision variable and three core factors, i.e. distance between adjacent vehicles, their own velocity, and the preceding vehicle's velocity, are considered. Simulation results show that the DD model can simulate the synchronized flow effectively and describe the phase transition in traffic flow well. Further analyses illustrate that various density will cause the phase transition and the random probability will impact the process. Compared with the traditional NaSch model, the DD model considered the preceding vehicle's velocity, the deceleration limitation, and a safe distance, so it can depict closer to the driver preferences on pursuing safety, stability and fuel-saving and has strong theoretical innovation for future studies.

  6. Modeling the solid-liquid phase transition in saturated triglycerides

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Hanna, Charles B.; Sandt, Christophe; MacDonald, Adam J.; MacEachern, Ronald; Corkery, Robert; Rousseau, Dérick

    2010-02-01

    We investigated theoretically two competing published scenarios for the melting transition of the triglyceride trilaurin (TL): those of (1) Corkery et al. [Langmuir 23, 7241 (2007)], in which the average state of each TL molecule in the liquid phase is a discotic "Y" conformer whose three chains are dynamically twisted, with an average angle of ˜120° between them, and those of (2) Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid-state conformation of the TL molecule in the liquid phase is a nematic h∗-conformer whose three chains are in a modified "chair" conformation. We developed two competing models for the two scenarios, in which TL molecules are in a nematic compact-chair (or "h") conformation, with extended, possibly all-trans, chains at low-temperatures, and in either a Y conformation or an h∗ conformation in the liquid state at temperatures higher than the phase-transition temperature, T∗=319 K. We defined an h-Y model as a realization of the proposal of Corkery et al. [Langmuir 23, 7241 (2007)], and explored its predictions by mapping it onto an Ising model in a temperature-dependent field, performing a mean-field approximation, and calculating the transition enthalpy ΔH. We found that the most plausible realization of the h-Y model, as applied to the solid-liquid phase transition in TL, and likely to all saturated triglycerides, gave a value of ΔH in reasonable agreement with the experiment. We then defined an alternative h-h∗ model as a realization of the proposal of Cebula et al. [J. Am. Oil Chem. Soc. 69, 130 (1992)], in which the liquid phase exhibits an average symmetry breaking similar to an h conformation, but with twisted chains, to see whether it could describe the TL phase transition. The h-h∗ model gave a value of ΔH that was too small by a factor of ˜3-4. We also predicted the temperature dependence of the 1132 cm-1 Raman band for both models, and performed measurements of the ratios of three TL Raman

  7. Constraining snow model choices in a transitional snow environment with intensive observations

    NASA Astrophysics Data System (ADS)

    Wayand, N. E.; Massmann, A.; Clark, M. P.; Lundquist, J. D.

    2014-12-01

    The performance of existing energy balance snow models exhibits a large spread in the simulated snow water equivalent, snow depth, albedo, and surface temperature. Indentifying poor model representations of physical processes within intercomparison studies is difficult due to multiple differences between models as well as non-orthogonal metrics used. Efforts to overcome these obstacles for model development have focused on a modeling framework that allows multiple representations of each physical process within one structure. However, there still exists a need for snow study sites within complex terrain that observe enough model states and fluxes to constrain model choices. In this study we focus on an intensive snow observational site located in the maritime-transitional snow climate of Snoqualmie Pass WA (Figure 1). The transitional zone has been previously identified as a difficult climate to simulate snow processes; therefore, it represents an ideal model-vetting site. From two water years of intensive observational data, we have learned that a more honest comparison with observations requires that the modeled states or fluxes be as similar to the spatial and temporal domain of the instrument, even if it means changing the model to match what is being observed. For example, 24-hour snow board observations do not capture compaction of the underlying snow; therefore, a modeled "snow board" was created that only includes new snow accumulation and new snow compaction. We extend this method of selective model validation to all available Snoqualmie observations to constrain model choices within the Structure for Understanding Multiple Modeling Alternatives (SUMMA) framework. Our end goal is to provide a more rigorous and systematic method for diagnosing problems within snow models at a site given numerous snow observations.

  8. Integrated modelling of transitions in mechanical conditions during casting and heat treatment

    NASA Astrophysics Data System (ADS)

    Thorborg, J.; Klinkhammer, J.; Heitzer, M.

    2015-06-01

    The mechanical material behaviour of a cast component changes significantly during casting and heat treatment. The big difference in temperature levels during the different process steps causes different deformation mechanisms to be active. The thermal gradients promote transient stresses that can lead to inelastic deformations, residual stresses and in some cases to defects in the final part. It is a big challenge to make a reasonable transition in the mechanical model, and hence material data, when modelling several different coupled process steps. It is important to use an integrated approach where the transition is included in the full load history of the part. When industrial examples are considered, the sequence of process steps typically also changes the thermal and mechanical boundary conditions significantly e.g. going from being mechanically constrained during casting to being supported point-wise during the heat treatment process. This change includes mapping of results and obtaining equilibrium in a new global system, where the further reaction forces from the supports must be handled with contact conditions to e.g. predict deformations due to gravity during solution heat treatment. The work presented in this paper is focused on modelling the mechanical fields, taking into account the changes in the mechanical material model at different temperature levels, and the transition in mechanical behaviour when the microstructure is changing during the different steps of the heat treatment process. The approach used is based on a unified model where creep effects are considered at high temperature and rate effects are included in general during cooling. Proposals are made to include cooling rate sensitivity, annealing and precipitation hardening via modification of mechanical properties in the different process steps.

  9. An improved model for the transit entropy of monatomic liquids

    SciTech Connect

    Wallace, Duane C; Chisolm, Eric D; Bock, Nicolas

    2009-01-01

    In the original formulation of V-T theory for monatomic liquid dynamics, the transit contribution to entropy was taken to be a universal constant, calibrated to the constant-volume entropy of melting. This model suffers two deficiencies: (a) it does not account for experimental entropy differences of {+-}2% among elemental liquids, and (b) it implies a value of zero for the transit contribution to internal energy. The purpose of this paper is to correct these deficiencies. To this end, the V-T equation for entropy is fitted to an overall accuracy of {+-}0.1% to the available experimental high temperature entropy data for elemental liquids. The theory contains two nuclear motion contributions: (a) the dominant vibrational contribution S{sub vib}(T/{theta}{sub 0}), where T is temperature and {theta}{sub 0} is the vibrational characteristic temperature, and (b) the transit contribution S{sub tr}(T/{theta}{sub tr}), where {theta}{sub tr} is a scaling temperature for each liquid. The appearance of a common functional form of S{sub tr} for all the liquids studied is a property of the experimental data, when analyzed via the V-T formula. The resulting S{sub tr} implies the correct transit contribution to internal energy. The theoretical entropy of melting is derived, in a single formula applying to normal and anomalous melting alike. An ab initio calculation of {theta}{sub 0}, based on density functional theory, is reported for liquid Na and Cu. Comparison of these calculations with the above analysis of experimental entropy data provides verification of V-T theory. In view of the present results, techniques currently being applied in ab initio simulations of liquid properties can be employed to advantage in the further testing and development of V-T theory.

  10. Cyclic transition to turbulence in rigid abdominal aortic aneurysm models

    NASA Astrophysics Data System (ADS)

    Yip, T. H.; Yu, S. C. M.

    2001-08-01

    The hydrodynamic stability of cyclic flows inside rigid abdominal aortic aneurysm (AAA) models was investigated. Rectified sine waveforms were used to simulate aortic flow conditions (Re mean=1600-2100 and α=7.2-12.2). Depending on the bulge geometry ( D/ d and L/ d ratios), AAA flows can be broadly classified into three regimes, namely types A, B and C, respectively. While type A has no vortex formation, type B and C have distinctive laminar vortical structures that are very different from one another. The type of flow regimes would also determine where and when the transition to turbulence would occur and the portion of the cycle at which the flow remains turbulent in the bulge. The stability characteristics of types B and C are obtained from the linear stability analysis performed on the unsteady velocity profiles measured at different phases of a cycle. Based on the linear stability analyses, instability is found to initiate in the bulge for types B and C through the formation of vortical structures. Instability grows progressively during the acceleration phase and transition to turbulence in the bulge occurs shortly after the commencement of the deceleration phase in all cases investigated. The mechanisms of transition to turbulence for types B and C are discussed. Although transition to turbulence appears in all the cases investigated here, fully laminar flows in types B and C are predicted to exist by the linear stability theory under extreme flow conditions. Finally, the in vivo biological implications of the in vitro results were discussed.

  11. Hysteretic transitions in the Kuramoto model with inertia.

    PubMed

    Olmi, Simona; Navas, Adrian; Boccaletti, Stefano; Torcini, Alessandro

    2014-10-01

    We report finite-size numerical investigations and mean-field analysis of a Kuramoto model with inertia for fully coupled and diluted systems. In particular, we examine, for a gaussian distribution of the frequencies, the transition from incoherence to coherence for increasingly large system size and inertia. For sufficiently large inertia the transition is hysteretic, and within the hysteretic region clusters of locked oscillators of various sizes and different levels of synchronization coexist. A modification of the mean-field theory developed by Tanaka, Lichtenberg, and Oishi [Physica D 100, 279 (1997)] allows us to derive the synchronization curve associated to each of these clusters. We have also investigated numerically the limits of existence of the coherent and of the incoherent solutions. The minimal coupling required to observe the coherent state is largely independent of the system size, and it saturates to a constant value already for moderately large inertia values. The incoherent state is observable up to a critical coupling whose value saturates for large inertia and for finite system sizes, while in the thermodinamic limit this critical value diverges proportionally to the mass. By increasing the inertia the transition becomes more complex, and the synchronization occurs via the emergence of clusters of whirling oscillators. The presence of these groups of coherently drifting oscillators induces oscillations in the order parameter. We have shown that the transition remains hysteretic even for randomly diluted networks up to a level of connectivity corresponding to a few links per oscillator. Finally, an application to the Italian high-voltage power grid is reported, which reveals the emergence of quasiperiodic oscillations in the order parameter due to the simultaneous presence of many competing whirling clusters.

  12. Process indicators of quality clinical pharmacy services during transitions of care.

    PubMed

    Kirwin, Jennifer; Canales, Ann E; Bentley, Michael L; Bungay, Kathy; Chan, Tammy; Dobson, Erica; Holder, Renee M; Johnson, Daniel; Lilliston, Andrea; Mohammad, Rima A; Spinler, Sarah A

    2012-11-01

    The American College of Clinical Pharmacy charged the Public and Professional Relations Committee to develop a short white paper describing quality measures of clinical pharmacists' patient care services in transitional care settings. Transitional care describes patient movement from one health care setting or service to another. Care transitions are associated with an increased risk of adverse events for patients. Pharmacists play an important role in ensuring that medication errors and adverse events are minimized during these transitions, largely through the reconciliation of medications and assurance of continuity of care. Quality measures are often divided into three domains: structure, process, and outcome. Given the typical nature of the pharmacist's role, process indicators are best suited to evaluate quality clinical pharmacist services. However, process indicators relevant to pharmacists' activities are not yet fully described in the literature. The committee searched available literature describing quality measures that are directly influenced by the pharmacist during care transitions. This white paper describes these process indicators as quality measures of clinical pharmacists' services, identifies the transitional settings and activities to which they are most applicable, and provides the published sources from which indicators were derived. For process indicators that could not be found in published sources, we propose relevant measures that can be adapted for use in a given setting. As pharmacists become more involved in diverse and emerging patient care areas such as transitional care, it will be critical that they use these types of measures to document the quality of new services and reinforce the need for pharmacist participation during transitions of care.

  13. Altered transition metal homeostasis in the cuprizone model of demyelination.

    PubMed

    Moldovan, Nataliya; Al-Ebraheem, Alia; Lobo, Lianne; Park, Raina; Farquharson, Michael J; Bock, Nicholas A

    2015-05-01

    In the cuprizone model of demyelination, the neurotoxin cuprizone is fed to mice to induce a reproducible pattern of demyelination in the brain. Cuprizone is a copper chelator and it has been hypothesized that it induces a copper deficiency in the brain, which leads to demyelination. To test this hypothesis and investigate the possible role of other transition metals in the model, we fed C57Bl/6 mice a standard dose of cuprizone (0.2% dry chemical to dry food weight) for 6 weeks then measured levels of copper, manganese, iron, and zinc in regions of the brain and visceral organs. As expected, this treatment induced demyelination in the mice. We found, however, that while the treatment significantly reduced copper concentrations in the blood and liver in treated animals, there was no significant difference in concentrations in brain regions relative to control. Interestingly, cuprizone disrupted concentrations of the other transition metals in the visceral organs, with the most notable changes being decreased manganese and increased iron in the liver. In the brain, manganese concentrations were also significantly reduced in the cerebellum and striatum. These data suggest a possible role of manganese deficiency in the brain in the cuprizone model. PMID:25749275

  14. Transitions between patterned states in vegetation models for semiarid ecosystems

    NASA Astrophysics Data System (ADS)

    Gowda, Karna; Riecke, Hermann; Silber, Mary

    2014-02-01

    A feature common to many models of vegetation pattern formation in semiarid ecosystems is a sequence of qualitatively different patterned states, "gaps → labyrinth → spots," that occurs as a parameter representing precipitation decreases. We explore the robustness of this "standard" sequence in the generic setting of a bifurcation problem on a hexagonal lattice, as well as in a particular reaction-diffusion model for vegetation pattern formation. Specifically, we consider a degeneracy of the bifurcation equations that creates a small bubble in parameter space in which stable small-amplitude patterned states may exist near two Turing bifurcations. Pattern transitions between these bifurcation points can then be analyzed in a weakly nonlinear framework. We find that a number of transition scenarios besides the standard sequence are generically possible, which calls into question the reliability of any particular pattern or sequence as a precursor to vegetation collapse. Additionally, we find that clues to the robustness of the standard sequence lie in the nonlinear details of a particular model.

  15. Transitions between patterned states in vegetation models for semiarid ecosystems.

    PubMed

    Gowda, Karna; Riecke, Hermann; Silber, Mary

    2014-02-01

    A feature common to many models of vegetation pattern formation in semiarid ecosystems is a sequence of qualitatively different patterned states, "gaps → labyrinth → spots," that occurs as a parameter representing precipitation decreases. We explore the robustness of this "standard" sequence in the generic setting of a bifurcation problem on a hexagonal lattice, as well as in a particular reaction-diffusion model for vegetation pattern formation. Specifically, we consider a degeneracy of the bifurcation equations that creates a small bubble in parameter space in which stable small-amplitude patterned states may exist near two Turing bifurcations. Pattern transitions between these bifurcation points can then be analyzed in a weakly nonlinear framework. We find that a number of transition scenarios besides the standard sequence are generically possible, which calls into question the reliability of any particular pattern or sequence as a precursor to vegetation collapse. Additionally, we find that clues to the robustness of the standard sequence lie in the nonlinear details of a particular model.

  16. Topological phase transition in the Scheidegger model of river networks

    NASA Astrophysics Data System (ADS)

    Oppenheim, Jacob N.; Magnasco, Marcelo O.

    2012-08-01

    Transport networks are found at the heart of myriad natural systems, yet are poorly understood, except for the case of river networks. The Scheidegger model, in which rivers are convergent random walks, has been studied only in the case of flat topography, ignoring the variety of curved geometries found in nature. Embedding this model on a cone, we find a convergent and a divergent phase, corresponding to few, long basins and many, short basins, respectively, separated by a singularity, indicating a phase transition. Quantifying basin shape using Hacks law l˜ah gives distinct values for h, providing a method of testing our hypotheses. The generality of our model suggests implications for vascular morphology, in particular, differing number and shapes of arterial and venous trees.

  17. Between the Rock and a Hard Place: The CCMC as a Transit Station Between Modelers and Forecasters

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2009-01-01

    The Community Coordinated Modeling Center (CCMC) is a US inter-agency activity aiming at research in support of the generation of advanced space weather models. As one of its main functions, the CCMC provides to researchers the use of space science models, even if they are not model owners themselves. The second CCMC activity is to support Space Weather forecasting at national Space Weather Forecasting Centers. This second activity involved model evaluations, model transitions to operations, and the development of draft Space Weather forecasting tools. This presentation will focus on the latter element. Specifically, we will discuss the process of transition research models, or information generated by research models, to Space Weather Forecasting organizations. We will analyze successes as well as obstacles to further progress, and we will suggest avenues for increased transitioning success.

  18. Transition and separation process in brine channels formation

    NASA Astrophysics Data System (ADS)

    Berti, Alessia; Bochicchio, Ivana; Fabrizio, Mauro

    2016-02-01

    In this paper, we discuss the formation of brine channels in sea ice. The model includes a time-dependent Ginzburg-Landau equation for the solid-liquid phase change, a diffusion equation of the Cahn-Hilliard kind for the solute dynamics, and the heat equation for the temperature change. The macroscopic motion of the fluid is also considered, so the resulting differential system couples with the Navier-Stokes equation. The compatibility of this system with the thermodynamic laws and a maximum theorem is proved.

  19. NUMERICAL MODELING OF FINE SEDIMENT PHYSICAL PROCESSES.

    USGS Publications Warehouse

    Schoellhamer, David H.

    1985-01-01

    Fine sediment in channels, rivers, estuaries, and coastal waters undergo several physical processes including flocculation, floc disruption, deposition, bed consolidation, and resuspension. This paper presents a conceptual model and reviews mathematical models of these physical processes. Several general fine sediment models that simulate some of these processes are reviewed. These general models do not directly simulate flocculation and floc disruption, but the conceptual model and existing functions are shown to adequately model these two processes for one set of laboratory data.

  20. A simple model for /f-->d transitions of rare-earth ions in crystals

    NASA Astrophysics Data System (ADS)

    Duan, C. K.; Reid, M. F.

    2003-02-01

    Theoretical simulation and interpretation of f→ d transitions of rare earth ions in crystals are more difficult than for f→ f transitions, because f→ d transitions involve many more energy levels and are further complicated by strong vibronic transitions, so the experimental spectra contain many fewer resolvable peaks. In order to better understand the structure of the spectra, a simple model is developed to take into account the main interactions in the fN-1 d configuration. This model leads to quantum numbers characterizing the states and the associated transition selection rules. Relative transition intensities can be quantitatively estimated. The model is applied to Eu 2+ and Sm 3+ ions in crystals.

  1. Providing Transition Planning for the Secondary Student through the Community Based Inservice Model.

    ERIC Educational Resources Information Center

    Glasenapp, Gary

    This paper provides an overview of the transition process for students with severe handicaps. For secondary age youths with severe handicaps, explicit and intensive transition planning is necessary to bridge the gap between school experiences and adult life. The transition planning process is designed to build the skills necessary for an…

  2. Quantum phase transitions in the Kondo-necklace model

    NASA Astrophysics Data System (ADS)

    Ghassemi, Nader; Hemmatiyan, Shayan; Rahimi Movassagh, Mahsa; Kargarian, Mahdi; Rezakhani, Ali T.; Langari, Abdollah

    2015-03-01

    Kondo-necklace model can describe the magnetic low-energy limit of strongly correlated heavy fermion materials. There exist multiple energy scales in this model corresponding to each phase of the system. Here, we study quantum phase transitions between these different phases, and show the effect of anisotropies in terms of quantum information properties and vanishing energy gap. We employ the perturbative unitary transformations to calculate the energy gap and spin-spin correlations for the model one, two, and three spatial dimensions as well as for the spin ladders. In particular, we show that the method, although being perturbative, can predict the expected quantum critical point by imposing the spontaneous symmetry breaking, which is in good agreement with the results of numerical and Green's function analyses. We also use concurrence, a bipartite entanglement measure, to study the criticality of the model. Absence of singularities in the derivative of the concurrence in 2d and 3d in Kondo-necklace model shows this model has multipartite entanglement. We also discuss the crossover from the one-dimensional to the two-dimensional model via the ladder structure. Sharif University of Technology.

  3. Catalytic Efficiency Is a Function of How Rhodium(I) (5 + 2) Catalysts Accommodate a Conserved Substrate Transition State Geometry: Induced Fit Model for Explaining Transition Metal Catalysis

    PubMed Central

    Mustard, Thomas J. L.; Wender, Paul A.; Cheong, Paul Ha-Yeon

    2015-01-01

    The origins of differential catalytic reactivities of four Rh(I) catalysts and their derivatives in the (5 + 2) cycloaddition reaction were elucidated using density functional theory. Computed free energy spans are in excellent agreement with known experimental rates. For every catalyst, the substrate geometries in the transition state remained constant (<0.1 Å RMSD for atoms involved in bond-making and -breaking processes). Catalytic efficiency is shown to be a function of how well the catalyst accommodates the substrate transition state geometry and electronics. This shows that the induced fit model for explaining biological catalysis may be relevant to transition metal catalysis. This could serve as a general model for understanding the origins of efficiencies of catalytic reactions. PMID:26146588

  4. TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS

    SciTech Connect

    Tusnski, Luis Ricardo M.; Valio, Adriana E-mail: avalio@craam.mackenzie.br

    2011-12-10

    Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons and planetary rings around a planet. The moon's orbit is considered to be circular and coplanar with the planetary orbit. The other physical and orbital parameters of the star, planet, moon, and rings can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit. White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using photometry. The results show that it is possible to detect moons with radii as little as 1.3 R{sub Circled-Plus} with CoRoT and 0.3 R{sub Circled-Plus} with Kepler.

  5. Progress in Modeling of Laminar to Turbulent Transition on Turbine Vanes and Blades

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Ashpis, David E.

    1996-01-01

    The progress in modeling of transition on turbine vanes and blades performed under the sponsorship of NASA Lewis Research Center is reviewed. Past work in bypass transition modeling for accurate heat transfer predictions, show that transition onset can be reasonably predicted by modified k - epsilon models, but fall short of predicting transition length. Improvements in the predictions of the transition region itself were made with intermittency models based on turbulent spot dynamics. Needs and proposals for extending the modeling to include wake passing and separation effects are outlined.

  6. Study on the Mechanism of the Deflagration to Detonation Transition Process of Explosive

    NASA Astrophysics Data System (ADS)

    Ying, Yangjun; Hu, Xiaomian; Wei, Lan

    2014-03-01

    In this paper we presented a numerical study of the mechanisms of the deflagration to detonation transition (DDT) process of explosives to assess its thermal stability. We treated the modeling system as a mixture of solid explosives and gaseous reaction products. We utilized a one-dimensional two-phase flow modeling approach with space-time conservation element and solution element (CE/SE) method. Simulation results show a plug area of high density with relatively slow chemical reactions, whose forward boundary is the fast running shock wave, and rearward boundary is the burning wave.We identified a criterion of steady detonation through a detailed analysis of the characteristics of the reaction process: steady detonation occurs at locations where different physical quantities, such as pressure, density, temperature and velocity, reach peak values simultaneously.We also simulated the high temperature DDT tube experiments of HMX-based high explosive. We found good agreement between the simulation results of detonation velocity and run length determined by the above criterion and the experimental results.

  7. Time-dependent Mott transition in the periodic Anderson model with nonlocal hybridization

    NASA Astrophysics Data System (ADS)

    Hofmann, Felix; Potthoff, Michael

    2016-08-01

    The time-dependent Mott transition in a periodic Anderson model with off-site, nearest-neighbor hybridization is studied within the framework of nonequilibrium self-energy functional theory. Using the two-site dynamical-impurity approximation, we compute the real-time dynamics of the optimal variational parameter and of different observables initiated by sudden quenches of the Hubbard-U and identify the critical interaction. The time-dependent transition is orbital selective, i.e., in the final state, reached in the long-time limit after the quench to the critical interaction, the Mott gap opens in the spectral function of the localized orbitals only. We discuss the dependence of the critical interaction and of the final-state effective temperature on the hybridization strength and point out the various similarities between the nonequilibrium and the equilibrium Mott transition. It is shown that these can also be smoothly connected to each other by increasing the duration of a U-ramp from a sudden quench to a quasi-static process. The physics found for the model with off-site hybridization is compared with the dynamical Mott transition in the single-orbital Hubbard model and with the dynamical crossover found for the real-time dynamics of the conventional Anderson lattice with on-site hybridization.

  8. Liquid-crystal anchoring transitions on aligning substrates processed by a plasma beam.

    PubMed

    Yaroshchuk, Oleg V; Kiselev, Alexei D; Kravchuk, Ruslan M

    2008-03-01

    We have studied a sequence of anchoring transitions observed in nematic liquid crystals (NLCs) sandwiched between hydrophobic polyimide substrates treated with a plasma beam. There is a pronounced continuous transition from a homeotropic to a slightly tilted (nearly planar) alignment with the easy axis parallel to the incidence plane of the plasma beam (the zenithal transition) which takes place as the exposure dose increases. In NLCs with positive dielectric anisotropy, a further increase in the exposure dose results in in-plane reorientation of the easy axis by 90 degrees (the azimuthal transition). This transition occurs through the twofold degenerate alignment characteristic of second-order anchoring transitions. In contrast to the critical behavior of anchoring, the contact angle of the NLC and water on the treated substrates declines monotonically with increasing exposure dose. It follows that the surface concentration of hydrophobic chains decreases continuously. The anchoring transitions under consideration are qualitatively interpreted by using a simple phenomenological model of competing easy axes which is studied by analyzing anchoring diagrams of generalized polar and nonpolar anchoring models.

  9. Liquid-crystal anchoring transitions on aligning substrates processed by a plasma beam.

    PubMed

    Yaroshchuk, Oleg V; Kiselev, Alexei D; Kravchuk, Ruslan M

    2008-03-01

    We have studied a sequence of anchoring transitions observed in nematic liquid crystals (NLCs) sandwiched between hydrophobic polyimide substrates treated with a plasma beam. There is a pronounced continuous transition from a homeotropic to a slightly tilted (nearly planar) alignment with the easy axis parallel to the incidence plane of the plasma beam (the zenithal transition) which takes place as the exposure dose increases. In NLCs with positive dielectric anisotropy, a further increase in the exposure dose results in in-plane reorientation of the easy axis by 90 degrees (the azimuthal transition). This transition occurs through the twofold degenerate alignment characteristic of second-order anchoring transitions. In contrast to the critical behavior of anchoring, the contact angle of the NLC and water on the treated substrates declines monotonically with increasing exposure dose. It follows that the surface concentration of hydrophobic chains decreases continuously. The anchoring transitions under consideration are qualitatively interpreted by using a simple phenomenological model of competing easy axes which is studied by analyzing anchoring diagrams of generalized polar and nonpolar anchoring models. PMID:18517405

  10. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2012-12-01

    Descending subducted slabs affect both plate tectonics at the surface and overall mantle flow (e.g. Conrad and Lithgow-Bertelloni, 2002). For time-dependent numerical models, the potential evolution of these slabs, ranging from immediate penetration into the lower mantle to prior buckling and stagnation, are affected by parameters such as the plate age, the viscosity jump into the lower mantle, the presence of phase transitions, trench motion and the chosen governing equation approximation (e.g. Billen and Hirth, 2007). Similarly, the overall deviatoric stress within the slab, especially where modified by the phase transitions, may explain the uneven distribution of deep earthquakes with depth (e.g. Bina, 1997). Better understanding of these processes may arise from a more realistic 2-D model that is fully-dynamic, with an overriding plate, freely-moving trench, compositionally-layered slab and seven major phase transitions, in addition to using the compressible (TALA) form of the governing equations. Though the thermodynamic parameters of certain phase transitions may be uncertain, this study aims to test the latest data and encourage further mineralogical research. We will present fully-dynamic models, which explore the importance of the phase transitions, especially those that have been previously excluded such as the wadsleyite to ringwoodite and the pyroxene and garnet phase transitions. These phase transitions, coupled with the modeled compositionally distinct crust, harzburgite, and pyrolite lithosphere layers, may produce new large-scale dynamic behavior not seen in past numerical models, as well as stress variations within the slab related to deep slab seismicity. Feedback from the compositionally complex slab to the dynamic trench may provide further insight on the mechanics of slab stagnation and behavior in the upper and lower mantle. Billen, M. I., and G. Hirth, Rheologic controls on slab dynamics, Geochemistry, Geophysics and Geosystems, 8 (Q08012

  11. An Anderson-like model of the QCD chiral transition

    NASA Astrophysics Data System (ADS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  12. Bifurcation and Spike Adding Transition in Chay-Keizer Model

    NASA Astrophysics Data System (ADS)

    Lu, Bo; Liu, Shenquan; Liu, Xuanliang; Jiang, Xiaofang; Wang, Xiaohui

    Electrical bursting is an activity which is universal in excitable cells such as neurons and various endocrine cells, and it encodes rich physiological information. As burst delay identifies that the signal integration has reached the threshold at which it can generate an action potential, the number of spikes in a burst may have essential physiological implications, and the transition of bursting in excitable cells is associated with the bifurcation phenomenon closely. In this paper, we focus on the transition of the spike count per burst of the pancreatic β-cells within a mathematical model and bifurcation phenomenon in the Chay-Keizer model, which is utilized to simulate the pancreatic β-cells. By the fast-slow dynamical bifurcation analysis and the bi-parameter bifurcation analysis, the local dynamics of the Chay-Keizer system around the Bogdanov-Takens bifurcation is illustrated. Then the variety of the number of spikes per burst is discussed by changing the settings of a single parameter and bi-parameter. Moreover, results on the number of spikes within a burst are summarized in ISIs (interspike intervals) sequence diagrams, maximum and minimum, and the number of spikes under bi-parameter value changes.

  13. Multi-state succession in wetlands: a novel use of state and transition models

    USGS Publications Warehouse

    Zweig, Christa L.; Kitchens, Wiley M.

    2009-01-01

    The complexity of ecosystems and mechanisms of succession are often simplified by linear and mathematical models used to understand and predict system behavior. Such models often do not incorporate multivariate, nonlinear feedbacks in pattern and process that include multiple scales of organization inherent within real-world systems. Wetlands are ecosystems with unique, nonlinear patterns of succession due to the regular, but often inconstant, presence of water on the landscape. We develop a general, nonspatial state and transition (S and T) succession conceptual model for wetlands and apply the general framework by creating annotated succession/management models and hypotheses for use in impact analysis on a portion of an imperiled wetland. The S and T models for our study area, Water Conservation Area 3A South (WCA3), Florida, USA, included hydrologic and peat depth values from multivariate analyses and classification and regression trees. We used the freeware Vegetation Dynamics Development Tool as an exploratory application to evaluate our S and T models with different management actions (equal chance [a control condition], deeper conditions, dry conditions, and increased hydrologic range) for three communities: slough, sawgrass (Cladium jamaicense), and wet prairie. Deeper conditions and increased hydrologic range behaved similarly, with the transition of community states to deeper states, particularly for sawgrass and slough. Hydrology is the primary mechanism for multi-state transitions within our study period, and we show both an immediate and lagged effect on vegetation, depending on community state. We consider these S and T succession models as a fraction of the framework for the Everglades. They are hypotheses for use in adaptive management, represent the community response to hydrology, and illustrate which aspects of hydrologic variability are important to community structure. We intend for these models to act as a foundation for further restoration

  14. Multi-state succession in wetlands: a novel use of state and transition models.

    PubMed

    Zweig, C L; Kitchens, W M

    2009-07-01

    The complexity of ecosystems and mechanisms of succession are often simplified by linear and mathematical models used to understand and predict system behavior. Such models often do not incorporate multivariate, nonlinear feedbacks in pattern and process that include multiple scales of organization inherent within real-world systems. Wetlands are ecosystems with unique, nonlinear patterns of succession due to the regular, but often inconstant, presence of water on the landscape. We develop a general, nonspatial state and transition (S and T) succession conceptual model for wetlands and apply the general framework by creating annotated succession/management models and hypotheses for use in impact analysis on a portion of an imperiled wetland. The S and T models for our study area, Water Conservation Area 3A South (WCA3), Florida, U.S.A., included hydrologic and peat depth values from multivariate analyses and classification and regression trees. We used the freeware Vegetation Dynamics Development Tool as an exploratory application to evaluate our S and T models with different management actions (equal chance [a control condition], deeper conditions, dry conditions, and increased hydrologic range) for three communities: slough, sawgrass (Cladium jamaicense), and wet prairie. Deeper conditions and increased hydrologic range behaved similarly, with the transition of community states to deeper states, particularly for sawgrass and slough. Hydrology is the primary mechanism for multi-state transitions within our study period, and we show both an immediate and lagged effect on vegetation, depending on community state. We consider these S and T succession models as a fraction of the framework for the Everglades. They are hypotheses for use in adaptive management, represent the community response to hydrology, and illustrate which aspects of hydrologic variability are important to community structure. We intend for these models to act as a foundation for further

  15. Jamming transitions in force-based models for pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Chraibi, Mohcine; Ezaki, Takahiro; Tordeux, Antoine; Nishinari, Katsuhiro; Schadschneider, Andreas; Seyfried, Armin

    2015-10-01

    Force-based models describe pedestrian dynamics in analogy to classical mechanics by a system of second order ordinary differential equations. By investigating the linear stability of two main classes of forces, parameter regions with unstable homogeneous states are identified. In this unstable regime it is then checked whether phase transitions or stop-and-go waves occur. Results based on numerical simulations show, however, that the investigated models lead to unrealistic behavior in the form of backwards moving pedestrians and overlapping. This is one reason why stop-and-go waves have not been observed in these models. The unrealistic behavior is not related to the numerical treatment of the dynamic equations but rather indicates an intrinsic problem of this model class. Identifying the underlying generic problems gives indications how to define models that do not show such unrealistic behavior. As an example we introduce a force-based model which produces realistic jam dynamics without the appearance of unrealistic negative speeds for empirical desired walking speeds.

  16. Jamming transitions in force-based models for pedestrian dynamics.

    PubMed

    Chraibi, Mohcine; Ezaki, Takahiro; Tordeux, Antoine; Nishinari, Katsuhiro; Schadschneider, Andreas; Seyfried, Armin

    2015-10-01

    Force-based models describe pedestrian dynamics in analogy to classical mechanics by a system of second order ordinary differential equations. By investigating the linear stability of two main classes of forces, parameter regions with unstable homogeneous states are identified. In this unstable regime it is then checked whether phase transitions or stop-and-go waves occur. Results based on numerical simulations show, however, that the investigated models lead to unrealistic behavior in the form of backwards moving pedestrians and overlapping. This is one reason why stop-and-go waves have not been observed in these models. The unrealistic behavior is not related to the numerical treatment of the dynamic equations but rather indicates an intrinsic problem of this model class. Identifying the underlying generic problems gives indications how to define models that do not show such unrealistic behavior. As an example we introduce a force-based model which produces realistic jam dynamics without the appearance of unrealistic negative speeds for empirical desired walking speeds. PMID:26565291

  17. Exact results for models of multichannel quantum nonadiabatic transitions

    SciTech Connect

    Sinitsyn, N. A.

    2014-12-11

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicit expressions for scattering probabilities in such systems.

  18. Exact results for models of multichannel quantum nonadiabatic transitions

    DOE PAGES

    Sinitsyn, N. A.

    2014-12-11

    We consider nonadiabatic transitions in explicitly time-dependent systems with Hamiltonians of the form Hˆ(t)=Aˆ+Bˆt+Cˆ/t, where t is time and Aˆ,Bˆ,Cˆ are Hermitian N × N matrices. We show that in any model of this type, scattering matrix elements satisfy nontrivial exact constraints that follow from the absence of the Stokes phenomenon for solutions with specific conditions at t→–∞. This allows one to continue such solutions analytically to t→+∞, and connect their asymptotic behavior at t→–∞ and t→+∞. This property becomes particularly useful when a model shows additional discrete symmetries. Specifically, we derive a number of simple exact constraints and explicitmore » expressions for scattering probabilities in such systems.« less

  19. Excited-state quantum phase transition in the Rabi model

    NASA Astrophysics Data System (ADS)

    Puebla, Ricardo; Hwang, Myung-Joong; Plenio, Martin B.

    2016-08-01

    The Rabi model, a two-level atom coupled to a harmonic oscillator, can undergo a second-order quantum phase transition (QPT) [M.-J. Hwang et al., Phys. Rev. Lett. 115, 180404 (2015), 10.1103/PhysRevLett.115.180404]. Here we show that the Rabi QPT accompanies critical behavior in the higher-energy excited states, i.e., the excited-state QPT (ESQPT). We derive analytic expressions for the semiclassical density of states, which show a logarithmic divergence at a critical energy eigenvalue in the broken symmetry (superradiant) phase. Moreover, we find that the logarithmic singularities in the density of states lead to singularities in the relevant observables in the system such as photon number and atomic polarization. We corroborate our analytical semiclassical prediction of the ESQPT in the Rabi model with its numerically exact quantum mechanical solution.

  20. Model for the {Delta}(1600) resonance and {gamma}N{yields}{Delta}(1600) transition

    SciTech Connect

    Ramalho, G.; Tsushima, K.

    2010-10-01

    A covariant spectator constituent quark model is applied to study the {gamma}N{yields}{Delta}(1600) transition. Two processes are important in the transition: a photon couples to the individual quarks of the {Delta}(1600) core (quark core), and a photon couples to the intermediate pion-baryon states (pion cloud). While the quark core contributions are estimated assuming {Delta}(1600) as the first radial excitation of {Delta}(1232), the pion cloud contributions are estimated based on an analogy with the {gamma}N{yields}{Delta}(1232) transition. To estimate the pion cloud contributions in the {gamma}N{yields}{Delta}(1600) transition, we include the relevant intermediate states, {pi}N, {pi}{Delta}, {pi}N(1440) and {pi}{Delta}(1600). Dependence on the four-momentum transfer squared, Q{sup 2}, is predicted for the magnetic dipole transition form factor, G{sub M}*(Q{sup 2}), as well as the helicity amplitudes, A{sub 1/2}(Q{sup 2}) and A{sub 3/2}(Q{sup 2}). The results at Q{sup 2}=0 are compared with the existing data.

  1. A model for the Delta(1600) resonance and gamma N -> Delta(1600) transition

    SciTech Connect

    G. Ramalho, K. Tsushima

    2010-10-01

    A covariant spectator constituent quark model is applied to study the gamma N -> Delta(1600) transition. Two processes are important in the transition: a photon couples to the individual quarks of the Delta(1600) core (quark core), and a photon couples to the intermediate pion-baryon states (pion cloud). While the quark core contributions are estimated assuming Delta(1600) as the first radial excitation of Delta(1232), the pion cloud contributions are estimated based on an analogy with the gamma N -> Delta(1232) transition. To estimate the pion cloud contributions in the gamma N -> Delta(1600) transition, we include the relevant intermediate states, pi-N, pi-Delta, pi-N(1440) and pi-Delta(1600). Dependence on the four-momentum transfer squared, Q2, is predicted for the magnetic dipole transition form factor, GM*(Q2), as well as the helicity amplitudes, A_1/2(Q2) and A_3/2(Q2). The results at Q2=0 are compared with the existing data.

  2. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2013-12-01

    While slab pull is considered the dominant force controlling plate motion and speed, its magnitude is controlled by slab behavior in the mantle, where tomographic studies show a wide range of possibilities from direct penetration to folding, or stagnation directly above the lower mantle (e.g. Fukao et al., 2009). Geodynamic studies have investigated various parameters, such as plate age and two phase transitions, to recreate observed behavior (e.g. Běhounková and Cízková, 2008). However, past geodynamic models have left out known slab characteristics that may have a large impact on slab behavior and our understanding of subduction processes. Mineral experiments and seismic observations have indicated the existence of additional phase transitions in the mantle transition zone that may produce buoyancy forces large enough to affect the descent of a subducting slab (e.g. Ricard et al., 2005). The current study systematically tests different common assumptions used in geodynamic models: kinematic versus free-slip boundary conditions, the effects of adiabatic heating, viscous dissipation and latent heat, compositional layering and a more complete suite of phase transitions. Final models have a complete energy equation, with eclogite, harzburgite and pyrolite lithosphere compositional layers, and seven composition-dependent phase transitions within the olivine, pyroxene and garnet polymorph minerals. Results show important feedback loops between different assumptions and new behavior from the most complete models. Kinematic models show slab weakening or breaking above the 660 km boundary and between compositional layers. The behavior in dynamic models with a free-moving trench and overriding plate is compared to the more commonly found kinematic models. The new behavior may have important implications for the depth distribution of deep earthquakes within the slab. Though the thermodynamic parameters of certain phase transitions may be uncertain, their presence and

  3. Migration and Marriage: Modeling the Joint Process

    PubMed Central

    Jang, Joy Bohyun; Casterline, John B; Snyder, Anastasia

    2016-01-01

    Background Previous research on inter-relations between migration and marriage has relied on overly simplistic assumptions about the structure of dependency between the two events. However, there is good reason to posit that each of the two transitions has an impact on the likelihood of the other, and that unobserved common factors may affect both migration and marriage, leading to a distorted impression of the causal impact of one on the other. Objective We will investigate relationships between migration and marriage in the United States using data from the National Longitudinal Survey of Youth 1979. We allow for inter-dependency between the two events and examine whether unobserved common factors affect the estimates of both migration and marriage. Methods We estimate a multi-process model in which migration and marriage are considered simultaneously in regression analysis and there is allowance for correlation between disturbances; the latter feature accounts for possible endogeneity between shared unobserved determinants. The model also includes random effects for persons, exploiting the fact that many people experience both events multiple times throughout their lives. Results Unobserved factors appear to significantly influence both migration and marriage, resulting in upward bias in estimates of the effects of each on the other when these shared common factors are not accounted for. Estimates from the multi-process model indicate that marriage significantly increases the hazard of migration while migration does not affect the hazard of marriage. Conclusions Omitting inter-dependency between life course events can lead to a mistaken impression of the direct effects of certain features of each event on the other. PMID:27182198

  4. The effects of radiative and microphysical processes on simulated warm and transition season arctic stratus

    NASA Astrophysics Data System (ADS)

    Harrington, Jerry Y.

    radiative influence; this is attributed to the spurious production of cloud top supersaturations by Eulerian models (Stevens et al., 1996a). Simulations of transition season ASC shows that boundary layer stability is strongly dependent upon ice processes, illustrating that the rapid reduction in fall stratus cloud cover may be forced, in part, by microphysical processes. Cloud stability is shown to be strongly dependent upon the cloud temperature, ice concentration, precipitation rate and the indirect effects of ice crystals on cloud top radiative cooling while ice aggregation has a weak effect. Transitions from predominately mixed to stable boundary layers occur and are a function of ice sublimation and precipitation; ice habit strongly constrains the effect. Frequently observed autumnal stable layers may be formed in this fashion. A new method of multiple cloud layer formation is discussed and occurs through the rapid loss of ice from the upper cloud layer, which moistens and cools (sublimation and radiation) the lower layers causing droplet activation.

  5. Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model

    NASA Astrophysics Data System (ADS)

    Doup, Benjamin Casey

    Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32

  6. New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents

    NASA Astrophysics Data System (ADS)

    Sultan, Nabil; Garziglia, Sébastien; Ruffine, Livio

    2016-05-01

    Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to anaerobic oxidation of methane (AOM). Here, we model sulfate reduction coupled with AOM as a two-dimensional (2D) problem including, advective and diffusive transport. This is applied to a case study from a deep-water site off Nigeria’s coast where lateral methane advection through turbidite layers was suspected. We show by analyzing the acquired data in combination with computational modeling that a two-dimensional approach is able to accurately describe the recent past dynamics of such a complex natural system. Our results show that the sulfate-methane-transition-zone (SMTZ) is not a vertical barrier for dissolved sulfate and methane. We also show that such a modeling is able to assess short timescale variations in the order of decades to centuries.

  7. New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents.

    PubMed

    Sultan, Nabil; Garziglia, Sébastien; Ruffine, Livio

    2016-05-27

    Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to anaerobic oxidation of methane (AOM). Here, we model sulfate reduction coupled with AOM as a two-dimensional (2D) problem including, advective and diffusive transport. This is applied to a case study from a deep-water site off Nigeria's coast where lateral methane advection through turbidite layers was suspected. We show by analyzing the acquired data in combination with computational modeling that a two-dimensional approach is able to accurately describe the recent past dynamics of such a complex natural system. Our results show that the sulfate-methane-transition-zone (SMTZ) is not a vertical barrier for dissolved sulfate and methane. We also show that such a modeling is able to assess short timescale variations in the order of decades to centuries.

  8. New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents

    PubMed Central

    Sultan, Nabil; Garziglia, Sébastien; Ruffine, Livio

    2016-01-01

    Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to anaerobic oxidation of methane (AOM). Here, we model sulfate reduction coupled with AOM as a two-dimensional (2D) problem including, advective and diffusive transport. This is applied to a case study from a deep-water site off Nigeria’s coast where lateral methane advection through turbidite layers was suspected. We show by analyzing the acquired data in combination with computational modeling that a two-dimensional approach is able to accurately describe the recent past dynamics of such a complex natural system. Our results show that the sulfate-methane-transition-zone (SMTZ) is not a vertical barrier for dissolved sulfate and methane. We also show that such a modeling is able to assess short timescale variations in the order of decades to centuries. PMID:27230887

  9. New insights into the transport processes controlling the sulfate-methane-transition-zone near methane vents.

    PubMed

    Sultan, Nabil; Garziglia, Sébastien; Ruffine, Livio

    2016-01-01

    Over the past years, several studies have raised concerns about the possible interactions between methane hydrate decomposition and external change. To carry out such an investigation, it is essential to characterize the baseline dynamics of gas hydrate systems related to natural geological and sedimentary processes. This is usually treated through the analysis of sulfate-reduction coupled to anaerobic oxidation of methane (AOM). Here, we model sulfate reduction coupled with AOM as a two-dimensional (2D) problem including, advective and diffusive transport. This is applied to a case study from a deep-water site off Nigeria's coast where lateral methane advection through turbidite layers was suspected. We show by analyzing the acquired data in combination with computational modeling that a two-dimensional approach is able to accurately describe the recent past dynamics of such a complex natural system. Our results show that the sulfate-methane-transition-zone (SMTZ) is not a vertical barrier for dissolved sulfate and methane. We also show that such a modeling is able to assess short timescale variations in the order of decades to centuries. PMID:27230887

  10. Process modeling and control in foundry operations

    NASA Astrophysics Data System (ADS)

    Piwonka, T. S.

    1989-02-01

    Initial uses of process modeling were limited to phenomenological descriptions of the physical processes in foundry operations, with the aim of decreasing scrap and rework. It is now clear that process modeling can be used to select, design and optimize foundry processes so that on-line process control can be achieved. Computational, analogue and empirical process models have been developed for sand casting operations, and they are being applied in the foundry with beneficial effects.

  11. The Functional Transitions Model: Maximizing Ability in the Context of Progressive Disability Associated with Alzheimer's Disease

    ERIC Educational Resources Information Center

    Slaughter, Susan; Bankes, Jane

    2007-01-01

    The Functional Transitions Model (FTM) integrates the theoretical notions of progressive functional decline associated with Alzheimer's disease (AD), excess disability, and transitions occurring intermittently along the trajectory of functional decline. Application of the Functional Transitions Model to clinical practice encompasses the paradox of…

  12. The Biological Big Bang model for the major transitions in evolution

    PubMed Central

    Koonin, Eugene V

    2007-01-01

    Background Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. Hypothesis I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model of evolution incorporates the

  13. Managing Analysis Models in the Design Process

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2006-01-01

    Design of large, complex space systems depends on significant model-based support for exploration of the design space. Integrated models predict system performance in mission-relevant terms given design descriptions and multiple physics-based numerical models. Both the design activities and the modeling activities warrant explicit process definitions and active process management to protect the project from excessive risk. Software and systems engineering processes have been formalized and similar formal process activities are under development for design engineering and integrated modeling. JPL is establishing a modeling process to define development and application of such system-level models.

  14. Transition process of abrupt climate change based on global sea surface temperature over the past century

    NASA Astrophysics Data System (ADS)

    Yan, Pengcheng; Hou, Wei; Feng, Guolin

    2016-05-01

    A new detection method has been proposed to study the transition process of abrupt climate change. With this method, the climate system transiting from one stable state to another can be verified clearly. By applying this method to the global sea surface temperature over the past century, several climate changes and their processes are detected, including the start state (moment), persist time, and end state (moment). According to the spatial distribution, the locations of climate changes mainly have occurred in the Indian Ocean and western Pacific before the middle twentieth century, in the 1970s in the equatorial middle-eastern Pacific, and in the middle and southern Pacific since the end of the twentieth century. In addition, the quantitative relationship between the transition process parameters is verified in theory and practice: (1) the relationship between the rate and stability parameters is linear, and (2) the relationship between the rate and change amplitude parameters is quadratic.

  15. Implementation of dose superimposition to introduce multiple doses for a mathematical absorption model (transit compartment model).

    PubMed

    Shen, Jun; Boeckmann, Alison; Vick, Andrew

    2012-06-01

    A mathematical absorption model (e.g. transit compartment model) is useful to describe complex absorption process. However, in such a model, an assumption has to be made to introduce multiple doses that a prior dose has been absorbed nearly completely when the next dose is administered. This is because the drug input cannot be determined from drug depot compartment through integration of the differential equation system and has to be analytically calculated. We propose a method of dose superimposition to introduce multiple doses; thereby eliminating the assumption. The code for implementing the dose superimposition in WinNonlin and NONMEM was provided. For implementation in NONMEM, we discussed a special case (SC) and a general case (GC). In a SC, dose superimposition was implemented solely using NM-TRAN abbreviated code and the maximum number of the doses that can be administered for any subject must be pre-defined. In a GC, a user-supplied function (FUNCA) in FORTRAN code was defined to perform dose superimposition to remove the restriction that the maximum number of doses must be pre-defined. PMID:22555854

  16. Computational simulation of transition to turbulence through inverse modeling

    NASA Technical Reports Server (NTRS)

    Sepri, Paavo

    1989-01-01

    The present investigation has focused on a computational methodology for the fundamental case of transition in channel flow, in which recently published experimental data are utilized both as a stimulus and as a measure of merit of the method. The research has proceeded along three avenues in parallel. The first task has consisted of the development and verification of a computer code which calculates the mean evolution of flow in a channel similar to the one employed experimentally by Blair and Anderson. An analytical test case was created for the dual purposes of code verification and of highlighting the interactions between the Reynolds stress and the mean velocity profile. This test case generated a Reynolds stress by the residue in the momentum equation which is produced by a typical analytical velocity profile. By a substitution of this Reynolds stress into the appropriate code module, the correctness of the code may be verified, along with the accuracy of the computational method. The second task pursued has involved the development of a triple layer model for the Reynolds stress profile, which was suggested and derived from experimental velocity profiles. It is demonstrated that the innermost length scale is based on the local friction velocity, the intermediate layer corresponds to the usual logarithmic law of the wall region in which the normalized Reynolds stress is approximately unity, and the outermost layer is represented by a closed mathematical form depending explicitly on the velocity profile in the wake region. The third task was comprised of scrutiny of the excellent databases developed by Blair and others, and the planning of its incorporation into the transition analysis. These extensive measurements indicate that turbulent statistics in the transition regime may be considered to alternate between laminar and fully turbulent types, the proportions of which are quantified by a measured intermittency function.

  17. Phase transitions in Ising models on directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof

    2015-11-01

    We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.

  18. Cupola Furnace Computer Process Model

    SciTech Connect

    Seymour Katz

    2004-12-31

    The cupola furnace generates more than 50% of the liquid iron used to produce the 9+ million tons of castings annually. The cupola converts iron and steel into cast iron. The main advantages of the cupola furnace are lower energy costs than those of competing furnaces (electric) and the ability to melt less expensive metallic scrap than the competing furnaces. However the chemical and physical processes that take place in the cupola furnace are highly complex making it difficult to operate the furnace in optimal fashion. The results are low energy efficiency and poor recovery of important and expensive alloy elements due to oxidation. Between 1990 and 2004 under the auspices of the Department of Energy, the American Foundry Society and General Motors Corp. a computer simulation of the cupola furnace was developed that accurately describes the complex behavior of the furnace. When provided with the furnace input conditions the model provides accurate values of the output conditions in a matter of seconds. It also provides key diagnostics. Using clues from the diagnostics a trained specialist can infer changes in the operation that will move the system toward higher efficiency. Repeating the process in an iterative fashion leads to near optimum operating conditions with just a few iterations. More advanced uses of the program have been examined. The program is currently being combined with an ''Expert System'' to permit optimization in real time. The program has been combined with ''neural network'' programs to affect very easy scanning of a wide range of furnace operation. Rudimentary efforts were successfully made to operate the furnace using a computer. References to these more advanced systems will be found in the ''Cupola Handbook''. Chapter 27, American Foundry Society, Des Plaines, IL (1999).

  19. Process-Response Modeling and the Scientific Process.

    ERIC Educational Resources Information Center

    Fichter, Lynn S.

    1988-01-01

    Discusses the process-response model (PRM) in its theoretical and practical forms. Describes how geologists attempt to reconstruct the process from the response (the geologic phenomenon) being studied. (TW)

  20. The electro-mechanical phase transition of Gent model dielectric elastomer tube with two material constants

    NASA Astrophysics Data System (ADS)

    Liu, Liwu; Luo, Xiaojian; Fei, Fan; Wang, Yixing; Leng, Jinsong; Liu, Yanju

    2013-04-01

    Applied to voltage, a dielectric elastomer membrane may deform into a mixture of two states under certain conditions. One of which is the flat state and the other is the wrinkled state. In the flat state, the membrane is relatively thick with a small area, while on the contrary, in the wrinkled state, the membrane is relatively thin with a large area. The coexistence of these two states may cause the electromechanical phase transition of dielectric elastomer. The phase diagram of idea dielectric elastomer membrane under unidirectional stress and voltage inspired us to think about the liquid-to-vapor phase transition of pure substance. The practical working cycle of a steam engine includes the thermodynamical process of liquid-to-vapor phase transition, the fact is that the steam engine will do the maximum work if undergoing the phase transition process. In this paper, in order to consider the influence of coexistent state of dielectric elastomer, we investigate the homogeneous deformation of the dielectric elastomer tube. The theoretical model is built and the relationship between external loads and stretch are got, we can see that the elastomer tube experiences the coexistent state before reaching the stretching limit from the diagram. We think these results can guide the design and manufacture of energy harvesting equipments.

  1. Optimal Control of Markov Processes with Age-Dependent Transition Rates

    SciTech Connect

    Ghosh, Mrinal K. Saha, Subhamay

    2012-10-15

    We study optimal control of Markov processes with age-dependent transition rates. The control policy is chosen continuously over time based on the state of the process and its age. We study infinite horizon discounted cost and infinite horizon average cost problems. Our approach is via the construction of an equivalent semi-Markov decision process. We characterise the value function and optimal controls for both discounted and average cost cases.

  2. Process modeling and industrial energy use

    SciTech Connect

    Howe, S O; Pilati, D A; Sparrow, F T

    1980-11-01

    How the process models developed at BNL are used to analyze industrial energy use is described and illustrated. Following a brief overview of the industry modeling program, the general methodology of process modeling is discussed. The discussion highlights the important concepts, contents, inputs, and outputs of a typical process model. A model of the US pulp and paper industry is then discussed as a specific application of process modeling methodology. Case study results from the pulp and paper model illustrate how process models can be used to analyze a variety of issues. Applications addressed with the case study results include projections of energy demand, conservation technology assessment, energy-related tax policies, and sensitivity analysis. A subsequent discussion of these results supports the conclusion that industry process models are versatile and powerful tools for energy end-use modeling and conservation analysis. Information on the current status of industry models at BNL is tabulated.

  3. Simulating Society Transitions: Standstill, Collapse and Growth in an Evolving Network Model

    PubMed Central

    Xu, Guanghua; Yang, Junjie; Li, Guoqing

    2013-01-01

    We developed a model society composed of various occupations that interact with each other and the environment, with the capability of simulating three widely recognized societal transition patterns: standstill, collapse and growth, which are important compositions of society evolving dynamics. Each occupation is equipped with a number of inhabitants that may randomly flow to other occupations, during which process new occupations may be created and then interact with existing ones. Total population of society is associated with productivity, which is determined by the structure and volume of the society. We ran the model under scenarios such as parasitism, environment fluctuation and invasion, which correspond to different driving forces of societal transition, and obtained reasonable simulation results. This work adds to our understanding of societal evolving dynamics as well as provides theoretical clues to sustainable development. PMID:24086530

  4. Negotiating uncertainty: the transitional process of adapting to life with HIV.

    PubMed

    Perrett, Stephanie E; Biley, Francis C

    2013-01-01

    Glaser's (1978) grounded-theory method was used to investigate the transitional process of adapting to life with HIV. Semistructured interviews took place with 8 male HIV-infected participants recruited from a clinic in South Wales, United Kingdom. Data analysis used open, substantive, and theoretical coding. Adapting to a life with HIV infection emerged as a process of adapting to uncertainty with "negotiating uncertainty" as a core concept. Seven subcategories represented movements between bipolar opposites labeled "anticipating hopelessness" and "regaining optimism." This work progresses the theoretical concepts of transitions, uncertainty, and adaptation in relation to the HIV experience.

  5. Potential energy landscapes for the 2D XY model: Minima, transition states, and pathways

    NASA Astrophysics Data System (ADS)

    Mehta, Dhagash; Hughes, Ciaran; Schröck, Mario; Wales, David J.

    2013-11-01

    We describe a numerical study of the potential energy landscape for the two-dimensional XY model (with no disorder), considering up to 100 spins and central processing unit and graphics processing unit implementations of local optimization, focusing on minima and saddles of index one (transition states). We examine both periodic and anti-periodic boundary conditions, and show that the number of stationary points located increases exponentially with increasing lattice size. The corresponding disconnectivity graphs exhibit funneled landscapes; the global minima are readily located because they exhibit relatively large basins of attraction compared to the higher energy minima as the lattice size increases.

  6. Elastic Model Transitions Using Quadratic Inequality Constrained Least Squares

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2012-01-01

    A technique is presented for initializing multiple discrete finite element model (FEM) mode sets for certain types of flight dynamics formulations that rely on superposition of orthogonal modes for modeling the elastic response. Such approaches are commonly used for modeling launch vehicle dynamics, and challenges arise due to the rapidly time-varying nature of the rigid-body and elastic characteristics. By way of an energy argument, a quadratic inequality constrained least squares (LSQI) algorithm is employed to e ect a smooth transition from one set of FEM eigenvectors to another with no requirement that the models be of similar dimension or that the eigenvectors be correlated in any particular way. The physically unrealistic and controversial method of eigenvector interpolation is completely avoided, and the discrete solution approximates that of the continuously varying system. The real-time computational burden is shown to be negligible due to convenient features of the solution method. Simulation results are presented, and applications to staging and other discontinuous mass changes are discussed

  7. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon.

    PubMed

    Aguiar, Ana Paula Dutra; Vieira, Ima Célia Guimarães; Assis, Talita Oliveira; Dalla-Nora, Eloi L; Toledo, Peter Mann; Santos-Junior, Roberto Araújo Oliveira; Batistella, Mateus; Coelho, Andrea Santos; Savaget, Elza Kawakami; Aragão, Luiz Eduardo Oliveira Cruz; Nobre, Carlos Afonso; Ometto, Jean Pierre H

    2016-05-01

    Following an intense occupation process that was initiated in the 1960s, deforestation rates in the Brazilian Amazon have decreased significantly since 2004, stabilizing around 6000 km(2) yr(-1) in the last 5 years. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring systems, and credit restriction mechanisms. Nevertheless, other threats remain, including the rapidly expanding global markets for agricultural commodities, large-scale transportation and energy infrastructure projects, and weak institutions. We propose three updated qualitative and quantitative land-use scenarios for the Brazilian Amazon, including a normative 'Sustainability' scenario in which we envision major socio-economic, institutional, and environmental achievements in the region. We developed an innovative spatially explicit modelling approach capable of representing alternative pathways of the clear-cut deforestation, secondary vegetation dynamics, and the old-growth forest degradation. We use the computational models to estimate net deforestation-driven carbon emissions for the different scenarios. The region would become a sink of carbon after 2020 in a scenario of residual deforestation (~1000 km(2) yr(-1)) and a change in the current dynamics of the secondary vegetation - in a forest transition scenario. However, our results also show that the continuation of the current situation of relatively low deforestation rates and short life cycle of the secondary vegetation would maintain the region as a source of CO2 - even if a large portion of the deforested area is covered by secondary vegetation. In relation to the old-growth forest degradation process, we estimated average gross emission corresponding to 47% of the clear-cut deforestation from 2007 to 2013 (using the DEGRAD system data), although the aggregate effects of the postdisturbance regeneration can partially offset these emissions. Both processes (secondary

  8. From boy to man: recommendations for the transition process in haemophilia.

    PubMed

    Young, Guy

    2012-07-01

    Haemophilia is a life-long genetic disorder most often diagnosed in early childhood which results in bleeding into deep tissues and can result in arthropathy and, rarely, other serious complications. As a result of the natural physical and cognitive development in children, combined with the manner in which haemophilia is treated, there is a continuous process of changes in the approach to patient management, which collectively are called transitional issues. It is important to point out that while some traditional definitions of transition are limited to the stage when an adolescent becomes an adult and how the mode and delivery of care change during this time, a broader definition incorporating all the changes that occur from birth through adulthood will be described in this article. As such, transition should be thought of as a continuous process, though for the sake of clarity and practicality, we will divide the process into several phases. The transition issues to be discussed will be divided into medical issues and psychosocial issues, though there is clearly overlap between the two. A well-developed transition plan from birth to adulthood for patients with haemophilia facilitates the necessary change from total dependence on caregivers to complete independence by the time one reaches 18 years of age.

  9. Perceptions of Effectiveness: Two Case Studies of Transition Model Programs.

    ERIC Educational Resources Information Center

    Stake, Robert E.; And Others

    This monograph describes the activities of the second year of a 5-year program of Transition Institute research to understand and assist evaluation of demonstration transition programs for students moving from special education to work and adult living. A case study approach was used to create a description of two transition programs, based on the…

  10. Transitioning of power flow in beam models with bends

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.

    1990-01-01

    The propagation of power flow through a dynamically loaded beam model with 90 degree bends is investigated using NASTRAN and McPOW. The transitioning of power flow types (axial, torsional, and flexural) is observed throughout the structure. To get accurate calculations of the torsional response of beams using NASTRAN, torsional inertia effects had to be added to the mass matrix calculation section of the program. Also, mass effects were included in the calculation of BAR forces to improve the continuity of power flow between elements. The importance of including all types of power flow in an analysis, rather than only flexural power, is indicated by the example. Trying to interpret power flow results that only consider flexural components in even a moderately complex problem will result in incorrect conclusions concerning the total power flow field.

  11. Growth of transition metals on cerium tungstate model catalyst layers

    NASA Astrophysics Data System (ADS)

    Skála, T.; Tsud, N.; Stetsovych, V.; Mysliveček, J.; Matolín, V.

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed.

  12. Growth of transition metals on cerium tungstate model catalyst layers.

    PubMed

    Skála, T; Tsud, N; Stetsovych, V; Mysliveček, J; Matolín, V

    2016-10-01

    Two model catalytic metal/oxide systems were investigated by photoelectron spectroscopy and scanning tunneling microscopy. The mixed-oxide support was a cerium tungstate epitaxial thin layer grown in situ on the W(1 1 0) single crystal. Active particles consisted of palladium and platinum 3D islands deposited on the tungstate surface at 300 K. Both metals were found to interact weakly with the oxide support and the original chemical state of both support and metals was mostly preserved. Electronic and morphological changes are discussed during the metal growth and after post-annealing at temperatures up to 700 K. Partial transition-metal coalescence and self-cleaning from the CO and carbon impurities were observed. PMID:27494195

  13. Semiphenomenological model for gas-liquid phase transitions

    NASA Astrophysics Data System (ADS)

    Benilov, E. S.; Benilov, M. S.

    2016-03-01

    We examine a rarefied gas with inter-molecular attraction. It is argued that the attraction force amplifies random density fluctuations by pulling molecules from lower-density regions into high-density regions and thus may give rise to an instability. To describe this effect, we use a kinetic equation where the attraction force is taken into account in a way similar to how electromagnetic forces in plasma are treated in the Vlasov model. It is demonstrated that the instability occurs when the temperature T is lower than a certain threshold value Ts depending on the gas density. It is further shown that, even if T is only marginally lower than Ts, the instability generates clusters with density much higher than that of the gas. These results suggest that the instability should be interpreted as a gas-liquid phase transition, with Ts being the temperature of saturated vapor and the high-density clusters representing liquid droplets.

  14. Topological phase transitions in the golden string-net model.

    PubMed

    Schulz, Marc Daniel; Dusuel, Sébastien; Schmidt, Kai Phillip; Vidal, Julien

    2013-04-01

    We examine the zero-temperature phase diagram of the two-dimensional Levin-Wen string-net model with Fibonacci anyons in the presence of competing interactions. Combining high-order series expansions around three exactly solvable points and exact diagonalizations, we find that the non-Abelian doubled Fibonacci topological phase is separated from two nontopological phases by different second-order quantum critical points, the positions of which are computed accurately. These trivial phases are separated by a first-order transition occurring at a fourth exactly solvable point where the ground-state manifold is infinitely many degenerate. The evaluation of critical exponents suggests unusual universality classes. PMID:25167030

  15. Process correlation analysis model for process improvement identification.

    PubMed

    Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong

    2014-01-01

    Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.

  16. Process Correlation Analysis Model for Process Improvement Identification

    PubMed Central

    Park, Sooyong

    2014-01-01

    Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data. PMID:24977170

  17. Spin reorientation transition process in single crystal NdFeO3

    NASA Astrophysics Data System (ADS)

    Song, Gaibei; Jiang, Junjie; Kang, Baojuan; Zhang, Jincang; Cheng, Zhenxiang; Ma, Guohong; Cao, Shixun

    2015-06-01

    The spin reorientation transition in single crystal NdFeO3 is studied using AC magnetic susceptibility, hysteresis loops, and polarized terahertz (THz) time domain spectroscopy measurements. Different frequency dependence behaviors of AC susceptibility reflect that the dynamic response of magnetization inside the spin reorientation region differs from the phase outside the transition region. The magnetization hysteresis loops at different temperatures reveal that domains formed during the spin reorientation process, which coincides with the abrupt increase of AC magnetic susceptibility during the transition. In addition, temperature dependent THz wave excitation of quasi-antiferromagnetic mode indicates the process of spin reorientation as a continuous rotation of Fe3+ spins rather than a mixed phase of Γ4 and Γ2.

  18. Choices in Transition: A Model for Career Development. Information Brief. Volume 5, Issue 1

    ERIC Educational Resources Information Center

    Balcazar, Fabricio E.; Ostrander, R. Noam; Garate, Teresa

    2006-01-01

    This brief describes the Choices in Transition program for low-income ethnic minority youth with disabilities in Chicago. The program's goal is to support participants in the process of transition in order to improve educational and vocational success and to increase self-determination. Recommendations for improving the transition outcomes of…

  19. Technology Transition a Model for Infusion and Commercialization

    NASA Technical Reports Server (NTRS)

    McMillan, Vernotto C.

    2006-01-01

    The National Aeronautics and Space Administration has as part of its charter the mission of transferring technologies developed for the space program into the private sector for the purpose of affording back to the American people the economical and improved quality of life benefits associated with the technologies developed. In recent years considerable effort has been made to use this program for not only transitioning technologies out of the NASA Mission Directorate Programs, but also to transfer technologies into the Mission Directorate Programs and leverage the impact of government and private sector innovation. The objective of this paper is to outline an approach and the creation of a model that brings together industry, government, and commercialization strategies. When these elements are integrated, the probability of successful technology development, technology infusion into the Mission Programs, and commercialization into the private sector is increased. This model primarily addresses technology readiness levels between TRL 3 and TRL 6. This is typically a gap area known as the valley of death. This gap area is too low for commercial entities to invest heavily and not developed enough for major programs to actively pursue. This model has shown promise for increasing the probably of TRL advancement to an acceptable level for NASA programs and/or commercial entities to afford large investments toward either commercialization or infusion.

  20. Effective tight-binding model for transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Ho, Yen-Hung; Cazalilla, Miguel; Ochoa, Hector

    For transition metal dichalcogenides, various band models have been developed to describe the novel subband features. In this work, we propose a new effective minimum-band model by preforming a canonical transformation on the full-band Hamiltonian. We found that, depending on the form of transformation, both the Γ- and K-valley electrons can be well captured, including the frequency and band effective mass. And, for the full-band parameters used, starting from Wannier function basis set leads to a better result than from Slater-Koster basis set. A close inspection of the transformation projection also enables us to extract the modification on the site energy, as well as the orbital hopping between several nearest neighboring atoms. Instead of pure empirical fitting, our effective models preserve rich orbital physics inside, which is shown to be versatile in studying a variety of fundamental physical properties. Ministry of Science and Technology of Taiwan (NSC 102-2112-M-007-024-MY5).

  1. The ferroelectric phase transition of calcium barium niobate: experimental evidence of Smolenskii's model for diffuse phase transitions?

    NASA Astrophysics Data System (ADS)

    Heine, Urs; Voelker, Uwe; Betzler, Klaus; Burianek, Manfred; Muehlberg, Manfred

    2009-08-01

    We present investigations on temperature-dependent changes in the size distribution of ferroelectric domains in single crystals of the novel tungsten bronze type calcium barium niobate (CBN). Since its congruently melting composition has a relatively high ferroelectric phase transition temperature of about 265 °C, CBN can be considered as an interesting material for various future applications. Using k-space spectroscopy, both unpoled polydomain crystals and crystals poled at room temperature have been investigated in the vicinity of the ferroelectric phase transition. In unpoled CBN, an intermixture of domain-size dependent phase transitions has been observed, which can be described with the model for diffuse phase transitions established by Smolenskii.

  2. Reversible Folding of Lysozyme by a Quasi-static Process: A First-Order-Like State Transition

    NASA Astrophysics Data System (ADS)

    Xu-Cheng, Yeh; Po-Yen, Lin; Chia-Ching, Chang; Lou-Sing, Kan

    2004-03-01

    First-order-like state transition is a novel global reaction model of protein folding. In order to elucidate the general applicability of this mechanism, a stepwise thermal equilibrate dialysis process is used, and a model protein, lysozyme is selected. Within this study, four stable intermediates and renature lysozyme were obtained and their secondary structure, particle size distribution, thermal stability, and oxidation state of disulfide bonds were analyzed by circular dichroism, dynamic light scattering, differential scanning calorimetry, and Raman spectra, respectively. According to the experimental evidences in this study, not only first-order-like state transition model has been verified, both collapse and sequential models were observed and verified by an overcritical reaction folding process. We also found that the glassy state which obtained from directly folding process can convert into the molten globule state and this indicated the protein folding under difference reaction path may follow the same folding mechanism. Namely, the mechanism that is revealed by overcritical folding intermediates may represent the real mechanism of protein folding. The helix formed prior to the beta-sheet might indicate that the protein folding was initiated by local interactions.

  3. Presumption of Incompetence: The Systematic Assignment of Guardianship within the Transition Process

    ERIC Educational Resources Information Center

    Rood, Carrie E.; Kanter, Arlene; Causton, Julie

    2014-01-01

    This article describes the potential impact that state guardianship laws may have on the transition planning process for students identified with intellectual and developmental disabilities under the Individuals with Disabilities in Education Improvement Act. The authors utilize a disability studies framework to describe how the goals of…

  4. Distress in the Transition Process: The Role of Loss, Community, and Coping

    ERIC Educational Resources Information Center

    Budge, Stephanie L.

    2011-01-01

    Given the extensiveness of rejection and discrimination that transgender individuals experience (Lombardi, Wilchins, Priesing, & Malouf, 2001), the purpose of the current study was to examine the process of coping and how this relates to well-being at different stages of the gender transition. A total of 357 transsexual individuals (n = 226…

  5. Collaborative Assessment for Employment Planning: Transition Assessment and the Discovery Process

    ERIC Educational Resources Information Center

    Stevenson, Bradley S.; Fowler, Catherine H.

    2016-01-01

    As the Workforce Innovation and Opportunities Act (WIOA) is implemented across the nation, special education and vocational rehabilitation professionals will need to increase their level of collaboration. One area of potential collaboration is assessment--transition assessment for the field of special education and the discovery process for adult…

  6. Whose Future Is It Anyway? A Student-Directed Transition Planning Process.

    ERIC Educational Resources Information Center

    Wehmeyer, Michael; Kelchner, Kathy

    This docment consists of a large student manual and a small 17-page "Coach's Guide" that has the same main title. The program covered is designed to help students with mild cognitive and developmental disabilities to participate in the transition planning process. It explores issues of self-awareness and attempts to help students develop problem…

  7. The Transition Process for Adolescents with Learning Disabilities: Perspectives of Five Families

    ERIC Educational Resources Information Center

    Fullarton, Stephanie; Duquette, Cheryll

    2015-01-01

    This qualitative study examines, from the perspective of the families, the transition process to employment or postsecondary education for adolescents with learning disabilities (LDs) and the interplay of the roles of parents, students with LDs, and teachers. Using a case study design, series of three in-depth interviews were conducted with five…

  8. Discontinuous phase transition in a core contact process on complex networks

    NASA Astrophysics Data System (ADS)

    Chae, Huiseung; Yook, Soon-Hyung; Kim, Yup

    2015-02-01

    To understand the effect of generalized infection processes, we suggest and study the core contact process (CCP) on complex networks. In CCP an uninfected node is infected when at least k different infected neighbors of the node select the node for the infection. The healing process is the same as that of the normal CP. It is analytically and numerically shown that discontinuous transitions occur in CCP on random networks and scale-free networks depending on infection rate and initial density of infected nodes. The discontinuous transitions include hybrid transitions with β = 1/2 and β = 1. The asymptotic behavior of the phase boundary related to the initial density is found analytically and numerically. The mapping between CCP with k and static (k+1)-core percolation is supposed from the (k+1)-core structure in the active phase and the hybrid transition with β = 1/2. From these properties of CCP one can see that CCP is one of the dynamical processes for the k-core structure on real networks.

  9. Implementation of a Transition Model in a NASA Code and Validation Using Heat Transfer Data on a Turbine Blade

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2012-01-01

    The purpose of this report is to summarize and document the work done to enable a NASA CFD code to model laminar-turbulent transition process on an isolated turbine blade. The ultimate purpose of the present work is to down-select a transition model that would allow the flow simulation of a variable speed power turbine to be accurately performed. The flow modeling in its final form will account for the blade row interactions and their effects on transition which would lead to accurate accounting for losses. The present work only concerns itself with steady flows of variable inlet turbulence. The low Reynolds number k- model of Wilcox and a modified version of the same model will be used for modeling of transition on experimentally measured blade pressure and heat transfer. It will be shown that the k- model and its modified variant fail to simulate the transition with any degree of accuracy. A case is thus made for the adoption of more accurate transition models. Three-equation models based on the work of Mayle on Laminar Kinetic Energy were explored. The three-equation model of Walters and Leylek was thought to be in a relatively mature state of development and was implemented in the Glenn-HT code. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Surface heat transfer rate serves as sensitive indicator of transition. With the newly implemented model, it was shown that the simulation of transition process is much improved over the baseline k- model for the single Reynolds number and pressure ratio attempted; while agreement with heat transfer data became more satisfactory. Armed with the new transition model, total-pressure losses of computed three-dimensional flow of E3 tip section cascade were compared to the experimental data for a range of incidence angles. The results obtained, form a partial loss bucket for the chosen blade

  10. A phase transition model for the speed-accuracy trade-off in response time experiments.

    PubMed

    Dutilh, Gilles; Wagenmakers, Eric-Jan; Visser, Ingmar; van der Maas, Han L J

    2011-03-01

    Most models of response time (RT) in elementary cognitive tasks implicitly assume that the speed-accuracy trade-off is continuous: When payoffs or instructions gradually increase the level of speed stress, people are assumed to gradually sacrifice response accuracy in exchange for gradual increases in response speed. This trade-off presumably operates over the entire range from accurate but slow responding to fast but chance-level responding (i.e., guessing). In this article, we challenge the assumption of continuity and propose a phase transition model for RTs and accuracy. Analogous to the fast guess model (Ollman, 1966), our model postulates two modes of processing: a guess mode and a stimulus-controlled mode. From catastrophe theory, we derive two important predictions that allow us to test our model against the fast guess model and against the popular class of sequential sampling models. The first prediction--hysteresis in the transitions between guessing and stimulus-controlled behavior--was confirmed in an experiment that gradually changed the reward for speed versus accuracy. The second prediction--bimodal RT distributions--was confirmed in an experiment that required participants to respond in a way that is intermediate between guessing and accurate responding.

  11. State-transition modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--3.

    PubMed

    Siebert, Uwe; Alagoz, Oguzhan; Bayoumi, Ahmed M; Jahn, Beate; Owens, Douglas K; Cohen, David J; Kuntz, Karen M

    2012-01-01

    State-transition modeling is an intuitive, flexible, and transparent approach of computer-based decision-analytic modeling including both Markov model cohort simulation and individual-based (first-order Monte Carlo) microsimulation. Conceptualizing a decision problem in terms of a set of (health) states and transitions among these states, state-transition modeling is one of the most widespread modeling techniques in clinical decision analysis, health technology assessment, and health-economic evaluation. State-transition models have been used in many different populations and diseases, and their applications range from personalized health care strategies to public health programs. Most frequently, state-transition models are used in the evaluation of risk factor interventions, screening, diagnostic procedures, treatment strategies, and disease management programs. The goal of this article was to provide consensus-based guidelines for the application of state-transition models in the context of health care. We structured the best practice recommendations in the following sections: choice of model type (cohort vs. individual-level model), model structure, model parameters, analysis, reporting, and communication. In each of these sections, we give a brief description, address the issues that are of particular relevance to the application of state-transition models, give specific examples from the literature, and provide best practice recommendations for state-transition modeling. These recommendations are directed both to modelers and to users of modeling results such as clinicians, clinical guideline developers, manufacturers, or policymakers. PMID:22999130

  12. From Boots to Books: Applying Schlossberg's Model to Transitioning American Veterans

    ERIC Educational Resources Information Center

    Ryan, Shawn W.; Carlstrom, Aaron H.; Hughey, Kenneth F.; Harris, Brandonn S.

    2011-01-01

    This introduction to the strengths, needs, and challenges of veterans as they transition from the military to higher education is presented within the framework of Schlossberg's transition model (Schlossberg, Waters, & Goodman, 1995). Academic advisors must understand the way that veteran transitions to college are both similar to and different…

  13. Modeling Discontinuous Phase Transitions in Gel Membranes: Focus on Hysteresis and Feedback Mechanisms

    NASA Astrophysics Data System (ADS)

    Kuksenok, Olga

    Feedback mechanisms are vital in a number of processes in biological systems. For example, feedback loops play an essential role during a limb development in mammals and are responsible for the asymmetric cell division to constrain the growth in plants to the specific regions. An integration of well-controlled feedback loops into the fully synthetic materials is an important step in designing a range of biomimetic functionalities. Herein, we focus on hydrogels functionalized with light-sensitive trisodium salt of copper chlorophyllin and study discontinuous phase transitions in these systems. Prior experimental studies had shown that illumination of these functionalized gels results in their heating and in discontinuous, first order phase transition upon the variation in temperature. Herein, we develop the first computational model for these gels; the framework of the model is based on the gel Lattice Spring Model, in this work we account for the gel heating under the illumination. The results of our simulations are in a good agreement with prior experimental studies. We focus on pattern development during the volume phase transitions in membranes of various thicknesses and show that one can effectively utilize light intensity to remotely control feedback loops in these systems.

  14. Model-based software process improvement

    NASA Technical Reports Server (NTRS)

    Zettervall, Brenda T.

    1994-01-01

    The activities of a field test site for the Software Engineering Institute's software process definition project are discussed. Products tested included the improvement model itself, descriptive modeling techniques, the CMM level 2 framework document, and the use of process definition guidelines and templates. The software process improvement model represents a five stage cyclic approach for organizational process improvement. The cycles consist of the initiating, diagnosing, establishing, acting, and leveraging phases.

  15. Can the glass transition in bulk polymers be modeled by percolation picture?

    PubMed

    Yilmaz, Yaşar; Kaya, Demet; Pekcan, Onder

    2004-09-01

    Recent observations (Eur. Phys. J. E 9, 135 (2002)) showed that the vitrification process, which sets in during the linear bulk methyl methacrylate (MMA) polymerization carried out below glass transition temperatures, can be modelled by static percolation picture. To generalize this observation for different kind of bulk linear or crosslinked polymers not enough data are present in the literature. To cover partly this deficit we studied the glass transition of MMA and styrene (Sty) crosslinking copolymerization in varying ratios of MMA and Sty. Both the fluorescence intensity I and the lifetime tau of pyrene (Py) used as a nanosecond in situ fluoroprobe were monitored during the gelation time. Both I and tau increase dramatically as a result of the reduced mobility of the probes trapped in the "glassy" regions, appearing near the glass transition point. The average size of the glassy regions just below, and the strength of the infinite network formed upon the connection of the glassy regions above the glass transition point tg obey power law relations. The data around tg were interpreted on the basis of the percolation theory and we observed that the corresponding exponents gamma and beta give static percolation values independent of the polymer composition.

  16. Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach

    NASA Astrophysics Data System (ADS)

    Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.

    Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.

  17. Geometric entanglement and quantum phase transitions in two-dimensional quantum lattice models

    NASA Astrophysics Data System (ADS)

    Shi, Qian-Qian; Wang, Hong-Lei; Li, Sheng-Hao; Cho, Sam Young; Batchelor, Murray T.; Zhou, Huan-Qiang

    2016-06-01

    Geometric entanglement (GE), as a measure of multipartite entanglement, has been investigated as a universal tool to detect phase transitions in quantum many-body lattice models. In this paper we outline a systematic method to compute GE for two-dimensional (2D) quantum many-body lattice models based on the translational invariant structure of infinite projected entangled pair state (iPEPS) representations. By employing this method, the q -state quantum Potts model on the square lattice with q ∈{2 ,3 ,4 ,5 } is investigated as a prototypical example. Further, we have explored three 2D Heisenberg models: the antiferromagnetic spin-1/2 X X X and anisotropic X Y X models in an external magnetic field, and the antiferromagnetic spin-1 X X Z model. We find that continuous GE does not guarantee a continuous phase transition across a phase transition point. We observe and thus classify three different types of continuous GE across a phase transition point: (i) GE is continuous with maximum value at the transition point and the phase transition is continuous, (ii) GE is continuous with maximum value at the transition point but the phase transition is discontinuous, and (iii) GE is continuous with nonmaximum value at the transition point and the phase transition is continuous. For the models under consideration, we find that the second and the third types are related to a point of dual symmetry and a fully polarized phase, respectively.

  18. Birth/death process model

    NASA Technical Reports Server (NTRS)

    Solloway, C. B.; Wakeland, W.

    1976-01-01

    First-order Markov model developed on digital computer for population with specific characteristics. System is user interactive, self-documenting, and does not require user to have complete understanding of underlying model details. Contains thorough error-checking algorithms on input and default capabilities.

  19. Mathematical Modeling: A Structured Process

    ERIC Educational Resources Information Center

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2015-01-01

    Mathematical modeling, in which students use mathematics to explain or interpret physical, social, or scientific phenomena, is an essential component of the high school curriculum. The Common Core State Standards for Mathematics (CCSSM) classify modeling as a K-12 standard for mathematical practice and as a conceptual category for high school…

  20. Transition between Functional Regimes in an Integrate-And-Fire Network Model of the Thalamus

    PubMed Central

    Barardi, Alessandro; Mazzoni, Alberto

    2016-01-01

    The thalamus is a key brain element in the processing of sensory information. During the sleep and awake states, this brain area is characterized by the presence of two distinct dynamical regimes: in the sleep state activity is dominated by spindle oscillations (7 − 15 Hz) weakly affected by external stimuli, while in the awake state the activity is primarily driven by external stimuli. Here we develop a simple and computationally efficient model of the thalamus that exhibits two dynamical regimes with different information-processing capabilities, and study the transition between them. The network model includes glutamatergic thalamocortical (TC) relay neurons and GABAergic reticular (RE) neurons described by adaptive integrate-and-fire models in which spikes are induced by either depolarization or hyperpolarization rebound. We found a range of connectivity conditions under which the thalamic network composed by these neurons displays the two aforementioned dynamical regimes. Our results show that TC-RE loops generate spindle-like oscillations and that a minimum level of clustering (i.e. local connectivity density) in the RE-RE connections is necessary for the coexistence of the two regimes. We also observe that the transition between the two regimes occurs when the external excitatory input on TC neurons (mimicking sensory stimulation) is large enough to cause a significant fraction of them to switch from hyperpolarization-rebound-driven firing to depolarization-driven firing. Overall, our model gives a novel and clear description of the role that the two types of neurons and their connectivity play in the dynamical regimes observed in the thalamus, and in the transition between them. These results pave the way for the development of efficient models of the transmission of sensory information from periphery to cortex. PMID:27598260

  1. Transition between Functional Regimes in an Integrate-And-Fire Network Model of the Thalamus.

    PubMed

    Barardi, Alessandro; Garcia-Ojalvo, Jordi; Mazzoni, Alberto

    2016-01-01

    The thalamus is a key brain element in the processing of sensory information. During the sleep and awake states, this brain area is characterized by the presence of two distinct dynamical regimes: in the sleep state activity is dominated by spindle oscillations (7 - 15 Hz) weakly affected by external stimuli, while in the awake state the activity is primarily driven by external stimuli. Here we develop a simple and computationally efficient model of the thalamus that exhibits two dynamical regimes with different information-processing capabilities, and study the transition between them. The network model includes glutamatergic thalamocortical (TC) relay neurons and GABAergic reticular (RE) neurons described by adaptive integrate-and-fire models in which spikes are induced by either depolarization or hyperpolarization rebound. We found a range of connectivity conditions under which the thalamic network composed by these neurons displays the two aforementioned dynamical regimes. Our results show that TC-RE loops generate spindle-like oscillations and that a minimum level of clustering (i.e. local connectivity density) in the RE-RE connections is necessary for the coexistence of the two regimes. We also observe that the transition between the two regimes occurs when the external excitatory input on TC neurons (mimicking sensory stimulation) is large enough to cause a significant fraction of them to switch from hyperpolarization-rebound-driven firing to depolarization-driven firing. Overall, our model gives a novel and clear description of the role that the two types of neurons and their connectivity play in the dynamical regimes observed in the thalamus, and in the transition between them. These results pave the way for the development of efficient models of the transmission of sensory information from periphery to cortex. PMID:27598260

  2. Transition Heat Transfer Modeling Based on the Characteristics of Turbulent Spots

    NASA Technical Reports Server (NTRS)

    Simon, Fred; Boyle, Robert

    1998-01-01

    While turbulence models are being developed which show promise for simulating the transition region on a turbine blade or vane, it is believed that the best approach with the greatest potential for practical use is the use of models which incorporate the physics of turbulent spots present in the transition region. This type of modeling results in the prediction of transition region intermittency which when incorporated in turbulence models give a good to excellent prediction of the transition region heat transfer. Some models are presented which show how turbulent spot characteristics and behavior can be employed to predict the effect of pressure gradient and Mach number on the transition region. The models predict the spot formation rate which is needed, in addition to the transition onset location, in the Narasimha concentrated breakdown intermittency equation. A simplified approach is taken for modeling turbulent spot growth and interaction in the transition region which utilizes the turbulent spot variables governing transition length and spot generation rate. The models are expressed in terms of spot spreading angle, dimensionless spot velocity, dimensionless spot area, disturbance frequency and Mach number. The models are used in conjunction with a computer code to predict the effects of pressure gradient and Mach number on the transition region and compared with VKI experimental turbine data.

  3. Transition from intelligence cycle to intelligence process: the network-centric intelligence in narrow seas

    NASA Astrophysics Data System (ADS)

    Büker, Engin

    2015-05-01

    The defence technologies which have been developing and changing rapidly, today make it difficult to be able to foresee the next environment and spectrum of warfare. When said change and development is looked in specific to the naval operations, it can be said that the possible battlefield and scenarios to be developed in the near and middle terms (5-20 years) are more clarified with compare to other force components. Network Centric Naval Warfare Concept that was developed for the floating, diving and flying fleet platforms which serves away from its own mainland for miles, will keep its significance in the future. Accordingly, Network Centric Intelligence structure completely integrating with the command and control systems will have relatively more importance. This study will firstly try to figure out the transition from the traditional intelligence cycle that is still used in conventional war to Network Centric Intelligence Production Process. In the last part, the use of this new approach on the base of UAV that is alternative to satellite based command control and data transfer systems in the joint operations in narrow seas will be examined, a model suggestion for the use of operative and strategic UAVs which are assured within the scope of the NATO AGS2 for this aim will be brought.

  4. A Comparative of business process modelling techniques

    NASA Astrophysics Data System (ADS)

    Tangkawarow, I. R. H. T.; Waworuntu, J.

    2016-04-01

    In this era, there is a lot of business process modeling techniques. This article is the research about differences of business process modeling techniques. For each technique will explain about the definition and the structure. This paper presents a comparative analysis of some popular business process modelling techniques. The comparative framework is based on 2 criteria: notation and how it works when implemented in Somerleyton Animal Park. Each technique will end with the advantages and disadvantages. The final conclusion will give recommend of business process modeling techniques that easy to use and serve the basis for evaluating further modelling techniques.

  5. Negative Binomial Process Count and Mixture Modeling.

    PubMed

    Zhou, Mingyuan; Carin, Lawrence

    2013-10-17

    The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to a NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions distributions, and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters. PMID:24144977

  6. Negative Binomial Process Count and Mixture Modeling.

    PubMed

    Zhou, Mingyuan; Carin, Lawrence

    2015-02-01

    The seemingly disjoint problems of count and mixture modeling are united under the negative binomial (NB) process. A gamma process is employed to model the rate measure of a Poisson process, whose normalization provides a random probability measure for mixture modeling and whose marginalization leads to an NB process for count modeling. A draw from the NB process consists of a Poisson distributed finite number of distinct atoms, each of which is associated with a logarithmic distributed number of data samples. We reveal relationships between various count- and mixture-modeling distributions and construct a Poisson-logarithmic bivariate distribution that connects the NB and Chinese restaurant table distributions. Fundamental properties of the models are developed, and we derive efficient Bayesian inference. It is shown that with augmentation and normalization, the NB process and gamma-NB process can be reduced to the Dirichlet process and hierarchical Dirichlet process, respectively. These relationships highlight theoretical, structural, and computational advantages of the NB process. A variety of NB processes, including the beta-geometric, beta-NB, marked-beta-NB, marked-gamma-NB and zero-inflated-NB processes, with distinct sharing mechanisms, are also constructed. These models are applied to topic modeling, with connections made to existing algorithms under Poisson factor analysis. Example results show the importance of inferring both the NB dispersion and probability parameters. PMID:26353243

  7. Information-Processing Models and Curriculum Design

    ERIC Educational Resources Information Center

    Calfee, Robert C.

    1970-01-01

    "This paper consists of three sections--(a) the relation of theoretical analyses of learning to curriculum design, (b) the role of information-processing models in analyses of learning processes, and (c) selected examples of the application of information-processing models to curriculum design problems." (Author)

  8. RSRM Chamber Pressure Oscillations: Transit Time Models and Unsteady CFD

    NASA Technical Reports Server (NTRS)

    Nesman, Tom; Stewart, Eric

    1996-01-01

    Space Shuttle solid rocket motor low frequency internal pressure oscillations have been observed since early testing. The same type of oscillations also are present in the redesigned solid rocket motor (RSRM). The oscillations, which occur during RSRM burn, are predominantly at the first three motor cavity longitudinal acoustic mode frequencies. Broadband flow and combustion noise provide the energy to excite these modes at low levels throughout motor burn, however, at certain times during burn the fluctuating pressure amplitude increases significantly. The increased fluctuations at these times suggests an additional excitation mechanism. The RSRM has inhibitors on the propellant forward facing surface of each motor segment. The inhibitors are in a slot at the segment field joints to prevent burning at that surface. The aft facing segment surface at a field joint slot burns and forms a cavity of time varying size. Initially the inhibitor is recessed in the field joint cavity. As propellant burns away the inhibitor begins to protrude into the bore flow. Two mechanisms (transit time models) that are considered potential pressure oscillation excitations are cavity-edge tones, and inhibitor hole-tones. Estimates of frequency variation with time of longitudinal acoustic modes, cavity edge-tones, and hole-tones compare favorably with frequencies measured during motor hot firing. It is believed that the highest oscillation amplitudes occur when vortex shedding frequencies coincide with motor longitudinal acoustic modes. A time accurate computational fluid dynamic (CFD) analysis was made to replicate the observations from motor firings and to observe the transit time mechanisms in detail. FDNS is the flow solver used to detail the time varying aspects of the flow. The fluid is approximated as a single-phase ideal gas. The CFD model was an axisymmetric representation of the RSRM at 80 seconds into burn.Deformation of the inhibitors by the internal flow was determined

  9. The epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome.

    PubMed

    Romero-Valdovinos, M; Bobadilla-Sandoval, N; Flisser, A; Vadillo-Ortega, F

    2014-09-01

    The etiology of the amniotic band syndrome is unknown, and has been subject of debate since the time of Hippocrates. The most accepted theories fail to cover all the abnomalities found in affected children. During organogenesis the epithelial-mesenchymal transition process (EMTP) participates in adequate formation of different organs from three embryo layers. Altered activation of EMTP occurs when the epithelial homeostasis is disturbed, the resulting myofibroblasts are able to secrete extracellular matrix proteins and deposit them on the tissues contributing to a fibrotic phenotype. If injury occurs during organogenesis, wound healing could be exaggerated and fibrotic response could be triggered. The molecule that regulates both of these processes (EMTP and fibrosis) is the transforming growth factor β (TGFβ); indeed null animals for TGFβ isoforms show similar defects than those seen in the amniotic band syndrome. Based on documented evidence this review intends to explain how the epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome. PMID:24998668

  10. A Hierarchical Process-Dissociation Model

    ERIC Educational Resources Information Center

    Rouder, Jeffrey N.; Lu, Jun; Morey, Richard D.; Sun, Dongchu; Speckman, Paul L.

    2008-01-01

    In fitting the process-dissociation model (L. L. Jacoby, 1991) to observed data, researchers aggregate outcomes across participant, items, or both. T. Curran and D. L. Hintzman (1995) demonstrated how biases from aggregation may lead to artifactual support for the model. The authors develop a hierarchical process-dissociation model that does not…

  11. Transition From Pediatric to Adult Epilepsy Care: A Difficult Process Marked by Medical and Social Crisis

    PubMed Central

    Camfield, Peter; Camfield, Carol; Pohlmann-Eden, Bernd

    2012-01-01

    When epilepsy does not remit in childhood, transition and transfer to adult care is eventually required. Youth must leave the family-centered approach of pediatric care for the individual focus of adult medicine. Evidence from population-based studies indicates that many of those with childhood-onset epilepsy have major social difficulties in adulthood even if their epilepsy has resolved. Epilepsy may have major effects on normal adolescent development, and societal attitudes confound this difficult period in the lives of young people with epilepsy. Very little objective data are available to assist in the designing of models of care for youth with epilepsy; however, based on our clinical experience and the limited available literature, it appears that a transition program to prepare children for adult care is best started during childhood and adolescence. The formal transfer to adult services may be assisted by a transition clinic jointly attended by pediatric and adult epilepsy specialists. PMID:23476118

  12. ISS-Experiments of Columnar-to-Equiaxed Transition in Solidification Processing

    NASA Technical Reports Server (NTRS)

    Sturz, Laszlo; Zimmermann, Gerhard; Gandin, Charles, Andre; Billia, Bernard; Magelinck, Nathalie; Nguyen-Thi, Henry; Browne, David John; Mirihanage, Wajira U.; Voss, Daniela; Beckermann, Christoph; Karma, Alain

    2012-01-01

    The main topic of the research project CETSOL in the framework of the Microgravity Application Promotion (MAP) programme of the European Space Agency (ESA) is the investigation of the transition from columnar to equiaxed grain growth during solidification. Microgravity environment allows for suppression of buoyancy-driven melt flow and for growth of equiaxed grains free of sedimentation and buoyancy effects. This contribution will present first experimental results obtained in microgravity using hypo-eutectic AlSi alloys in the Materials Science Laboratory (MSL) on-board the International Space Station (ISS). The analysis of the experiments confirms the existence of a columnar to equiaxed transition, especially in the refined alloy. Temperature evolution and grain structure analysis provide critical values for the position, the temperature gradient and the solidification velocity at the columnar to equiaxed transition. These data will be used to improve modeling of solidification microstructures and grain structure on different lengths scales.

  13. Computational Process Modeling for Additive Manufacturing

    NASA Technical Reports Server (NTRS)

    Bagg, Stacey; Zhang, Wei

    2014-01-01

    Computational Process and Material Modeling of Powder Bed additive manufacturing of IN 718. Optimize material build parameters with reduced time and cost through modeling. Increase understanding of build properties. Increase reliability of builds. Decrease time to adoption of process for critical hardware. Potential to decrease post-build heat treatments. Conduct single-track and coupon builds at various build parameters. Record build parameter information and QM Meltpool data. Refine Applied Optimization powder bed AM process model using data. Report thermal modeling results. Conduct metallography of build samples. Calibrate STK models using metallography findings. Run STK models using AO thermal profiles and report STK modeling results. Validate modeling with additional build. Photodiode Intensity measurements highly linear with power input. Melt Pool Intensity highly correlated to Melt Pool Size. Melt Pool size and intensity increase with power. Applied Optimization will use data to develop powder bed additive manufacturing process model.

  14. The Ballet Dancing Profession: A Career Transition Model

    ERIC Educational Resources Information Center

    Roncaglia, Irina

    2008-01-01

    What type of emotional transition is experienced by professional dancers who face the end of their career? What does this journey imply? This article discusses the transition experiences of two case studies out of a total sample of fourteen (N = 14) international professional ballet dancers who left their careers between the ages of 21 and 49…

  15. An Epidemiological Model of Transition and Postschool Outcomes

    ERIC Educational Resources Information Center

    Flexer, Robert W.; Daviso, Alfred W., III; Baer, Robert M.; Queen, Rachel McMahan; Meindl, Richard S.

    2011-01-01

    This longitudinal transition study was conducted in collaboration with teachers who interviewed students who graduated from 177 school districts in a Great Lakes state. Special education students were interviewed at exit and 1 year following graduation using a survey based on the National Longitudinal Transition Study. The data were analyzed using…

  16. Modeling and Simulation of the MIDREX Shaft Furnace: Reduction, Transition and Cooling Zones

    NASA Astrophysics Data System (ADS)

    Shams, Alireza; Moazeni, Faegheh

    2015-11-01

    Metallic iron used in steel industries is mostly obtained from a direct reduction process. The focus of this study is to simulate the furnace of the MIDREX technology. MIDREX technology which is the most important gas-based direct reduced iron (DRI) process in the world, includes reduction, transition and cooling zones. The reduction zone considered as a counter current gas-solid reactor produces sponge iron from iron ore pellets. The transition zone has sufficient height to isolate the reduction zone and cooling zone from each other and the cooling zone cools the solid product down to around 50°C. Each zone has a system of reactions. Simultaneous mass and energy balances along the reduction zone lead to a set of ordinary differential equations with two points of boundary conditions. The transitions and cooling zone are investigated at the equilibrium condition leading to a set of algebraic equations. By solving these systems of equations, we determined the materials concentration, temperature, and pressure along the furnace. Our results are in a good agreement with data reported by Parisi and Laborde (2004) for a real MIDREX plant. Using this model, the effect of reactor length and cooling gas flow on the metallization and the effect of cooling gas flow on the outlet temperature of the solid phase have been studied. These new findings can be used to minimize the consumed energy.

  17. Estimation of State Transition Probabilities: A Neural Network Model

    NASA Astrophysics Data System (ADS)

    Saito, Hiroshi; Takiyama, Ken; Okada, Masato

    2015-12-01

    Humans and animals can predict future states on the basis of acquired knowledge. This prediction of the state transition is important for choosing the best action, and the prediction is only possible if the state transition probability has already been learned. However, how our brains learn the state transition probability is unknown. Here, we propose a simple algorithm for estimating the state transition probability by utilizing the state prediction error. We analytically and numerically confirmed that our algorithm is able to learn the probability completely with an appropriate learning rate. Furthermore, our learning rule reproduced experimentally reported psychometric functions and neural activities in the lateral intraparietal area in a decision-making task. Thus, our algorithm might describe the manner in which our brains learn state transition probabilities and predict future states.

  18. How nanochannel confinement affects the DNA melting transition within the Poland-Scheraga model

    NASA Astrophysics Data System (ADS)

    Reiter-Schad, Michaela; Werner, Erik; Tegenfeldt, Jonas O.; Mehlig, Bernhard; Ambjörnsson, Tobias

    2015-09-01

    When double-stranded DNA molecules are heated, or exposed to denaturing agents, the two strands are separated. The statistical physics of this process has a long history and is commonly described in terms of the Poland-Scheraga (PS) model. Crucial to this model is the configurational entropy for a melted region (compared to the entropy of an intact region of the same size), quantified by the loop factor. In this study, we investigate how confinement affects the DNA melting transition, by using the loop factor for an ideal Gaussian chain. By subsequent numerical solutions of the PS model, we demonstrate that the melting temperature depends on the persistence lengths of single-stranded and double-stranded DNA. For realistic values of the persistence lengths, the melting temperature is predicted to decrease with decreasing channel diameter. We also demonstrate that confinement broadens the melting transition. These general findings hold for the three scenarios investigated: 1. homo-DNA, i.e., identical basepairs along the DNA molecule, 2. random sequence DNA, and 3. "real" DNA, here T4 phage DNA. We show that cases 2 and 3 in general give rise to broader transitions than case 1. Case 3 exhibits a similar phase transition as case 2 provided the random sequence DNA has the same ratio of AT to GC basepairs (A - adenine, T - thymine, G - guanine, C - cytosine). A simple analytical estimate for the shift in melting temperature is provided as a function of nanochannel diameter. For homo-DNA, we also present an analytical prediction of the melting probability as a function of temperature.

  19. Semiphenomenological model for gas-liquid phase transitions.

    PubMed

    Benilov, E S; Benilov, M S

    2016-03-01

    We examine a rarefied gas with inter-molecular attraction. It is argued that the attraction force amplifies random density fluctuations by pulling molecules from lower-density regions into high-density regions and thus may give rise to an instability. To describe this effect, we use a kinetic equation where the attraction force is taken into account in a way similar to how electromagnetic forces in plasma are treated in the Vlasov model. It is demonstrated that the instability occurs when the temperature T is lower than a certain threshold value T(s) depending on the gas density. It is further shown that, even if T is only marginally lower than T(s), the instability generates clusters with density much higher than that of the gas. These results suggest that the instability should be interpreted as a gas-liquid phase transition, with T(s) being the temperature of saturated vapor and the high-density clusters representing liquid droplets.

  20. Simulation Modeling of Software Development Processes

    NASA Technical Reports Server (NTRS)

    Calavaro, G. F.; Basili, V. R.; Iazeolla, G.

    1996-01-01

    A simulation modeling approach is proposed for the prediction of software process productivity indices, such as cost and time-to-market, and the sensitivity analysis of such indices to changes in the organization parameters and user requirements. The approach uses a timed Petri Net and Object Oriented top-down model specification. Results demonstrate the model representativeness, and its usefulness in verifying process conformance to expectations, and in performing continuous process improvement and optimization.

  1. Myosin-V stepping kinetics: a molecular model for processivity.

    PubMed

    Rief, M; Rock, R S; Mehta, A D; Mooseker, M S; Cheney, R E; Spudich, J A

    2000-08-15

    Myosin-V is a molecular motor that moves processively along its actin track. We have used a feedback-enhanced optical trap to examine the stepping kinetics of this movement. By analyzing the distribution of time periods separating discrete approximately 36-nm mechanical steps, we characterize the number and duration of rate-limiting biochemical transitions preceding each such step. These data show that myosin-V is a tightly coupled motor whose cycle time is limited by ADP release. On the basis of these results, we propose a model for myosin-V processivity.

  2. A unified approach to the transition matrices of DNA substitution models.

    PubMed

    Yap, Von Bing

    2013-04-01

    For a reversible finite-state continuous-time Markov chain containing similar states, the computation of the transition matrix can be expressed quite elegantly in terms of the transition matrix of an associated lumped Markov chain. This result is immensely useful for obtaining explicit transition matrices for many DNA substitution models, without diagonalizing a matrix or solving a differential equation. Furthermore, the technique works for the analogous problem in the discrete-time DNA substitution models.

  3. Random-diluted triangular plaquette model: Study of phase transitions in a kinetically constrained model

    NASA Astrophysics Data System (ADS)

    Franz, Silvio; Gradenigo, Giacomo; Spigler, Stefano

    2016-03-01

    We study how the thermodynamic properties of the triangular plaquette model (TPM) are influenced by the addition of extra interactions. The thermodynamics of the original TPM is trivial, while its dynamics is glassy, as usual in kinetically constrained models. As soon as we generalize the model to include additional interactions, a thermodynamic phase transition appears in the system. The additional interactions we consider are either short ranged, forming a regular lattice in the plane, or long ranged of the small-world kind. In the case of long-range interactions we call the new model the random-diluted TPM. We provide arguments that the model so modified should undergo a thermodynamic phase transition, and that in the long-range case this is a glass transition of the "random first-order" kind. Finally, we give support to our conjectures studying the finite-temperature phase diagram of the random-diluted TPM in the Bethe approximation. This corresponds to the exact calculation on the random regular graph, where free energy and configurational entropy can be computed by means of the cavity equations.

  4. Random-diluted triangular plaquette model: Study of phase transitions in a kinetically constrained model.

    PubMed

    Franz, Silvio; Gradenigo, Giacomo; Spigler, Stefano

    2016-03-01

    We study how the thermodynamic properties of the triangular plaquette model (TPM) are influenced by the addition of extra interactions. The thermodynamics of the original TPM is trivial, while its dynamics is glassy, as usual in kinetically constrained models. As soon as we generalize the model to include additional interactions, a thermodynamic phase transition appears in the system. The additional interactions we consider are either short ranged, forming a regular lattice in the plane, or long ranged of the small-world kind. In the case of long-range interactions we call the new model the random-diluted TPM. We provide arguments that the model so modified should undergo a thermodynamic phase transition, and that in the long-range case this is a glass transition of the "random first-order" kind. Finally, we give support to our conjectures studying the finite-temperature phase diagram of the random-diluted TPM in the Bethe approximation. This corresponds to the exact calculation on the random regular graph, where free energy and configurational entropy can be computed by means of the cavity equations. PMID:27078408

  5. Modification of nuclear transitions in stellar plasma by electronic processes: K isomers in {sup 176}Lu and {sup 180}Ta under s-process conditions

    SciTech Connect

    Gosselin, G.; Morel, P.; Mohr, P.

    2010-05-15

    The influence of the stellar plasma on the production and destruction of K isomers is studied for the examples {sup 176}Lu and {sup 180}Ta. Individual electromagnetic transitions are enhanced predominantly by nuclear excitation by electron capture, whereas the other mechanisms of electron scattering and nuclear excitation by electron transition give only minor contributions. It is found that individual transitions can be enhanced significantly for low transition energies below 100 keV. Transitions with higher energies above 200 keV are practically not affected. Although one low-energy transition in {sup 180}Ta is enhanced by up to a factor of 10, the stellar transition rates from low-K to high-K states via so-called intermediate states in {sup 176}Lu and {sup 180}Ta do not change significantly under s-process conditions. The s-process nucleosynthesis of {sup 176}Lu and {sup 180}Ta remains essentially unchanged.

  6. Validation of a RANS transition model using a high-order weighted compact nonlinear scheme

    NASA Astrophysics Data System (ADS)

    Tu, GuoHua; Deng, XiaoGang; Mao, MeiLiang

    2013-04-01

    A modified transition model is given based on the shear stress transport (SST) turbulence model and an intermittency transport equation. The energy gradient term in the original model is replaced by flow strain rate to saving computational costs. The model employs local variables only, and then it can be conveniently implemented in modern computational fluid dynamics codes. The fifth-order weighted compact nonlinear scheme and the fourth-order staggered scheme are applied to discrete the governing equations for the purpose of minimizing discretization errors, so as to mitigate the confusion between numerical errors and transition model errors. The high-order package is compared with a second-order TVD method on simulating the transitional flow of a flat plate. Numerical results indicate that the high-order package give better grid convergence property than that of the second-order method. Validation of the transition model is performed for transitional flows ranging from low speed to hypersonic speed.

  7. Modeling the Reading Process: Promise and Problems.

    ERIC Educational Resources Information Center

    Geyer, John J.

    The problems of modeling a process as complex as reading are discussed, including such factors as the lack of agreement surrounding definitions of modeling, varying levels of rigor within and between models, the disjunctive categories within which models fall, and the difficulty of synthesis across fields which employ very different technical…

  8. [Transsexuality: experiencing the transition process in the context of health care services].

    PubMed

    Carvalho, Irene Palmares

    2010-01-01

    Genital reconstruction surgery and hormonal treatment for transsexuals are performed in health care services following a long and complex evaluation process generally based on the guidelines proposed by the World Professional Association for Transgender Health. Though important to ensure these individuals' health and well-being, such procedures may conflict with their reality, raising obstacles not only for the candidates but also for professionals who deal with them. The reality of this population has been the focus of recent studies, whose results are to be considered in the new version (the seventh) of the procedures, currently under elaboration. In Portugal, the experience transsexuals have of their transition process, and of that process within health care services is still unknown. Yet, integrating that experience with these guidelines may contribute to better adapting procedures to their target population, decreasing obstacles facing the parties involved and improving available services. Seeking to bridge this gap and to contribute to the increased integration of population's needs and professionals' procedures, the current work examines transsexuals' experiences of their transition process, highlighting aspects that constitute difficulties to it or else facilitate it. The study is based on in-depth interviews with biological male transsexuals who request hormonal and surgical interventions to acquire a female physiology. Data were content-analyzed in the software program NUD*IST. The analysis reveals several themes associated with positive experiences in the sample's transition process (e.g., presence and accessibility of services dealing with this issue, presence of guidelines, setting the surgery date), negative experiences (e.g., process duration and uncertainties, professional treatment received), and experiences which cut across both (e.g., quality and variety of available services), as well as some paradoxes. In general, the interviewees defend the

  9. Turbulence kinetic energy budget during the afternoon transition - Part 2: A simple TKE model

    NASA Astrophysics Data System (ADS)

    Nilsson, Erik; Lothon, Marie; Lohou, Fabienne; Pardyjak, Eric; Hartogensis, Oscar; Darbieu, Clara

    2016-07-01

    A simple model for turbulence kinetic energy (TKE) and the TKE budget is presented for sheared convective atmospheric conditions based on observations from the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) field campaign. It is based on an idealized mixed-layer approximation and a simplified near-surface TKE budget. In this model, the TKE is dependent on four budget terms (turbulent dissipation rate, buoyancy production, shear production and vertical transport of TKE) and only requires measurements of three available inputs (near-surface buoyancy flux, boundary layer depth and wind speed at one height in the surface layer) to predict vertical profiles of TKE and TKE budget terms.This simple model is shown to reproduce some of the observed variations between the different studied days in terms of near-surface TKE and its decay during the afternoon transition reasonably well. It is subsequently used to systematically study the effects of buoyancy and shear on TKE evolution using idealized constant and time-varying winds during the afternoon transition. From this, we conclude that many different TKE decay rates are possible under time-varying winds and that generalizing the decay with simple scaling laws for near-surface TKE of the form tα may be questionable.The model's errors result from the exclusion of processes such as elevated shear production and horizontal advection. The model also produces an overly rapid decay of shear production with height. However, the most influential budget terms governing near-surface TKE in the observed sheared convective boundary layers are included, while only second-order factors are neglected. Comparison between modeled and averaged observed estimates of dissipation rate illustrates that the overall behavior of the model is often quite reasonable. Therefore, we use the model to discuss the low-turbulence conditions that form first in the upper parts of the boundary layer during the afternoon transition and are only

  10. Transition in the deformation mode of nanocrystalline tantalum processed by high-pressure torsion

    SciTech Connect

    Ligda, J.P.; Schuster, B.E.; Wei, Q.

    2012-10-11

    We present quasi-static room temperature compression and nanoindentation data for nanocrystalline and ultrafine grained tantalum processed by high-pressure torsion. Because bulk samples possess an inherent gradient in properties, microstructures were characterized using site-specific transmission electron microscopy and synchrotron X-ray diffraction. Nanocrystalline Ta shows appreciable homogeneous plastic deformation in compression; however, specimens with the smallest grain sizes exhibit localized plastic deformation via shear bands. Microstructural changes associated with this transition in deformation mode are discussed.

  11. Dark matter and strong electroweak phase transition in a radiative neutrino mass model

    SciTech Connect

    Ahriche, Amine; Nasri, Salah E-mail: snasri@uaeu.ac.ae

    2013-07-01

    We consider an extension of the standard model (SM) with charged singlet scalars and right handed (RH) neutrinos all at the electroweak scale. In this model, the neutrino masses are generated at three loops, which provide an explanation for their smallness, and the lightest RH neutrino, N{sub 1}, is a dark matter candidate. We find that for three generations of RH neutrinos, the model can be consistent with the neutrino oscillation data, lepton flavor violating processes, N{sub 1} can have a relic density in agreement with the recent Planck data, and the electroweak phase transition can be strongly first order. We also show that the charged scalars may enhance the branching ratio h→γγ, where as h→γZ get can get few percent suppression. We also discuss the phenomenological implications of the RH neutrinos at the collider.

  12. Two ecological models of academic achievement among diverse students with and without disabilities in transition.

    PubMed

    Williams, Terrinieka T; McMahon, Susan D; Keys, Christopher B

    2014-01-01

    School experiences can have positive effects on student academic achievement, yet less is known about intermediary processes that contribute to these positive effects. We examined pathways between school experiences and academic achievement among 117 low-income urban students of color, many with disabilities, who transitioned to other schools following a school closure. Using structural equation modeling, we tested two ecological models that examined the relationships among self-reported school experiences, school support, academic self-efficacy, and school-reported academic achievement. The model in which the relationship between school experiences and academic achievement is mediated by both school support and academic self-efficacy, and that takes previous academic achievement into account, was an excellent fit with the data. The roles of contextual and individual factors as they relate to academic achievement, and the implications of these findings, are discussed.

  13. b {r-arrow} s transitions in family-dependent U(1)' models.

    SciTech Connect

    Barger, V.; Everett, L.; Jiang, J.; Langacker, P.; Liu, T.; Wagner, C. E. M.; High Energy Physics; Univ. of Chicago; Univ. of Wisconsin; Inst. for Advanced Study

    2009-01-01

    We analyze flavor-changing-neutral-current (FCNC) effects in the b {yields} s transitions that are induced by family non-universal U(1){prime} gauge symmetries. After systematically developing the necessary formalism, we present a correlated analysis for the {Delta}B = 1,2 processes. We adopt a model-independent approach in which we only require family-universal charges for the first and second generations and small fermion mixing angles. We analyze the constraints on the resulting parameter space from B{sub s}-{bar B} mixing and the time-dependent CP asymmetries of the penguin-dominated B{sub d} {yields} ({pi},{phi}, {eta}{prime}, {rho},{omega},f0)K{sub S} decays. Our results indicate that the currently observed discrepancies in some of these modes with respect to the Standard Model predictions can be consistently accommodated within this general class of models.

  14. Inferring Transition Rates of Networks from Populations in Continuous-Time Markov Processes.

    PubMed

    Dixit, Purushottam D; Jain, Abhinav; Stock, Gerhard; Dill, Ken A

    2015-11-10

    We are interested inferring rate processes on networks. In particular, given a network's topology, the stationary populations on its nodes, and a few global dynamical observables, can we infer all the transition rates between nodes? We draw inferences using the principle of maximum caliber (maximum path entropy). We have previously derived results for discrete-time Markov processes. Here, we treat continuous-time processes, such as dynamics among metastable states of proteins. The present work leads to a particularly important analytical result: namely, that when the network is constrained only by a mean jump rate, the rate matrix is given by a square-root dependence of the rate, kab ∝ (πb/πa)(1/2), on πa and πb, the stationary-state populations at nodes a and b. This leads to a fast way to estimate all of the microscopic rates in the system. As an illustration, we show that the method accurately predicts the nonequilibrium transition rates in an in silico gene expression network and transition probabilities among the metastable states of a small peptide at equilibrium. We note also that the method makes sensible predictions for so-called extra-thermodynamic relationships, such as those of Bronsted, Hammond, and others. PMID:26574334

  15. Combining In-situ and In-transit Processing to Enable Extreme-Sscale Scientific Analysis

    SciTech Connect

    Bennett, Janine C.; Abbasi, Hasan; Bremer, Peer-Timo; Grout, Ray; Gyulassy, Attila; Jin, Tong; Klasky, Scott A; Kolla, Hemanth; Parashar, Manish; Pascucci, Valerio; Pebay, Philippe; Thompson, David; Yu, Hongfeng; Zhang, Fan; Chen, Jacqueline H

    2012-01-01

    With the onset of extreme-scale computing, I/O constraints make it increasingly difficult for scientists to save a sufficient amount of raw simulation data to persistent storage. One potential solution is to change the data analysis pipeline from a post-process centric to a concurrent approach based on either in-situ or in-transit processing. In this context computations are considered in-situ if they utilize the primary compute resources, while in-transit processing refers to offloading computations to a set of secondary resources using asynchronous data transfers. In this paper we explore the design and implementation of three common analysis techniques typically performed on large-scale scientific simulations: topological analysis, descriptive statistics, and visualization. We summarize algorithmic developments, describe a resource scheduling system to coordinate the execution of various analysis workflows, and discuss our implementation using the DataSpaces and ADIOS frameworks that support efficient data movement between in-situ and in-transit computations. We demonstrate the efficiency of our lightweight, flexible framework by deploying it on the Jaguar XK6 to analyze data generated by S3D, a massively parallel turbulent combustion code. Our framework allows scientists dealing with the data deluge at extreme scale to perform analyses at increased temporal resolutions, mitigate I/O costs, and significantly improve the time to insight.

  16. Transition probabilities for general birth-death processes with applications in ecology, genetics, and evolution.

    PubMed

    Crawford, Forrest W; Suchard, Marc A

    2012-09-01

    A birth-death process is a continuous-time Markov chain that counts the number of particles in a system over time. In the general process with n current particles, a new particle is born with instantaneous rate λ(n) and a particle dies with instantaneous rate μ(n). Currently no robust and efficient method exists to evaluate the finite-time transition probabilities in a general birth-death process with arbitrary birth and death rates. In this paper, we first revisit the theory of continued fractions to obtain expressions for the Laplace transforms of these transition probabilities and make explicit an important derivation connecting transition probabilities and continued fractions. We then develop an efficient algorithm for computing these probabilities that analyzes the error associated with approximations in the method. We demonstrate that this error-controlled method agrees with known solutions and outperforms previous approaches to computing these probabilities. Finally, we apply our novel method to several important problems in ecology, evolution, and genetics.

  17. Large-scale evaluation of β -decay rates of r -process nuclei with the inclusion of first-forbidden transitions

    NASA Astrophysics Data System (ADS)

    Marketin, T.; Huther, L.; Martínez-Pinedo, G.

    2016-02-01

    Background: r -process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are β -decay half-lives of neutron-rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. Purpose: Our goal is to provide a table of β -decay half-lives and β -delayed neutron emission probabilities, including first-forbidden transitions, calculated within a fully self-consistent microscopic theoretical framework. The results are used in an r -process nucleosynthesis calculation to asses the sensitivity of heavy element nucleosynthesis to weak interaction reaction rates. Method: We use a fully self-consistent covariant density functional theory (CDFT) framework. The ground state of all nuclei is calculated with the relativistic Hartree-Bogoliubov (RHB) model, and excited states are obtained within the proton-neutron relativistic quasiparticle random phase approximation (p n -RQRPA). Results: The β -decay half-lives, β -delayed neutron emission probabilities, and the average number of emitted neutrons have been calculated for 5409 nuclei in the neutron-rich region of the nuclear chart. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced for even-even, odd-A , and odd-odd nuclei, in particular for short-lived nuclei. The resulting data table is included with the article as Supplemental Material. Conclusions: In certain regions of the nuclear chart, first-forbidden transitions constitute a large fraction of the total decay rate and must be

  18. Drought processes, modeling, and mitigation

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok K.; Sivakumar, Bellie; Singh, Vijay P.

    2015-07-01

    Accurate assessment of droughts is crucial for proper planning and management of our water resources, environment, and ecosystems. The combined influence of increasing water demands and the anticipated impacts of global climate change has already raised serious concerns about worsening drought conditions in the future and their social, economic, and environmental impacts. As a result, studies on droughts are currently a major focal point for a broad range of research communities, including civil engineers, hydrologists, environmentalists, ecologists, meteorologists, geologists, agricultural scientists, economists, policy makers, and water managers. There is, therefore, an urgent need for enhancing our understanding of droughts (e.g. occurrence, modeling), making more reliable assessments of their impacts on various sectors of our society (e.g. domestic, agricultural, industrial), and undertaking appropriate adaptation and mitigation measures, especially in the face of global climate change.

  19. Hardening transition in a one-dimensional model for ferrogels.

    PubMed

    Annunziata, Mario Alberto; Menzel, Andreas M; Löwen, Hartmut

    2013-05-28

    We introduce and investigate a coarse-grained model for quasi one-dimensional ferrogels. In our description the magnetic particles are represented by hard spheres with a magnetic dipole moment in their centers. Harmonic springs connecting these spheres mimic the presence of a cross-linked polymer matrix. A special emphasis is put on the coupling of the dipolar orientations to the elastic deformations of the matrix, where a memory effect of the orientations is included. Although the particles are displaced along one spatial direction only, the system already shows rich behavior: as a function of the magnetic dipole moment, we find a phase transition between "soft-elastic" states with finite interparticle separation and finite compressive elastic modulus on the one hand, and "hardened" states with touching particles and therefore diverging compressive elastic modulus on the other hand. Corresponding phase diagrams are derived neglecting thermal fluctuations of the magnetic particles. In addition, we consider a situation in which a spatially homogeneous magnetization is initially imprinted into the material. Depending on the strength of the magneto-mechanical coupling between the dipole orientations and the elastic deformations, the system then relaxes to a uniaxially ferromagnetic, an antiferromagnetic, or a spiral state of magnetization to minimize its energy. One purpose of our work is to provide a largely analytically solvable approach that can provide a benchmark to test future descriptions of higher complexity. From an applied point of view, our results could be exploited, for example, for the construction of novel damping devices of tunable shock absorbance.

  20. Bypass Transitional Flow Calculations Using a Navier-Stokes Solver and Two-Equation Models

    NASA Technical Reports Server (NTRS)

    Liuo, William W.; Shih, Tsan-Hsing; Povinelli, L. A. (Technical Monitor)

    2000-01-01

    Bypass transitional flows over a flat plate were simulated using a Navier-Stokes solver and two equation models. A new model for the bypass transition, which occurs in cases with high free stream turbulence intensity (TI), is described. The new transition model is developed by including an intermittency correction function to an existing two-equation turbulence model. The advantages of using Navier-Stokes equations, as opposed to boundary-layer equations, in bypass transition simulations are also illustrated. The results for two test flows over a flat plate with different levels of free stream turbulence intensity are reported. Comparisons with the experimental measurements show that the new model can capture very well both the onset and the length of bypass transition.

  1. Bifurcation analysis and dimension reduction of a predator-prey model for the L-H transition

    SciTech Connect

    Dam, Magnus; Brøns, Morten; Juul Rasmussen, Jens; Naulin, Volker; Xu, Guosheng

    2013-10-15

    The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a fusion reactor. A model of the L-H transition is required to simulate the time dependence of tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the L-H transition is investigated with bifurcation theory of dynamical systems. The analysis shows that the model contains three types of transitions: an oscillating transition, a sharp transition with hysteresis, and a smooth transition. The model is recognized as a slow-fast system. A reduced 2-ODE model consisting of the full model restricted to the flow on the critical manifold is found to contain all the same dynamics as the full model. This means that all the dynamics in the system is essentially 2-dimensional, and a minimal model of the L-H transition could be a 2-ODE model.

  2. Bifurcation analysis and dimension reduction of a predator-prey model for the L-H transition

    NASA Astrophysics Data System (ADS)

    Dam, Magnus; Brøns, Morten; Juul Rasmussen, Jens; Naulin, Volker; Xu, Guosheng

    2013-10-01

    The L-H transition denotes a shift to an improved confinement state of a toroidal plasma in a fusion reactor. A model of the L-H transition is required to simulate the time dependence of tokamak discharges that include the L-H transition. A 3-ODE predator-prey type model of the L-H transition is investigated with bifurcation theory of dynamical systems. The analysis shows that the model contains three types of transitions: an oscillating transition, a sharp transition with hysteresis, and a smooth transition. The model is recognized as a slow-fast system. A reduced 2-ODE model consisting of the full model restricted to the flow on the critical manifold is found to contain all the same dynamics as the full model. This means that all the dynamics in the system is essentially 2-dimensional, and a minimal model of the L-H transition could be a 2-ODE model.

  3. Declarative business process modelling: principles and modelling languages

    NASA Astrophysics Data System (ADS)

    Goedertier, Stijn; Vanthienen, Jan; Caron, Filip

    2015-02-01

    The business process literature has proposed a multitude of business process modelling approaches or paradigms, each in response to a different business process type with a unique set of requirements. Two polar paradigms, i.e. the imperative and the declarative paradigm, appear to define the extreme positions on the paradigm spectrum. While imperative approaches focus on explicitly defining how an organisational goal should be reached, the declarative approaches focus on the directives, policies and regulations restricting the potential ways to achieve the organisational goal. In between, a variety of hybrid-paradigms can be distinguished, e.g. the advanced and adaptive case management. This article focuses on the less-exposed declarative approach on process modelling. An outline of the declarative process modelling and the modelling approaches is presented, followed by an overview of the observed declarative process modelling principles and an evaluation of the declarative process modelling approaches.

  4. Lithography process window analysis with calibrated model

    NASA Astrophysics Data System (ADS)

    Zhou, Wenzhan; Yu, Jin; Lo, James; Liu, Johnson

    2004-05-01

    As critical-dimension shrink below 0.13 μm, the SPC (Statistical Process Control) based on CD (Critical Dimension) control in lithography process becomes more difficult. Increasing requirements of a shrinking process window have called on the need for more accurate decision of process window center. However in practical fabrication, we found that systematic error introduced by metrology and/or resist process can significantly impact the process window analysis result. Especially, when the simple polynomial functions are used to fit the lithographic data from focus exposure matrix (FEM), the model will fit these systematic errors rather than filter them out. This will definitely impact the process window analysis and determination of the best process condition. In this paper, we proposed to use a calibrated first principle model to do process window analysis. With this method, the systematic metrology error can be filtered out efficiently and give a more reasonable window analysis result.

  5. Fusion Process Model Implementation Case Studies

    NASA Astrophysics Data System (ADS)

    Kaur, Rupinder; Sengupta, Jyotsna

    2012-07-01

    In this paper we have discussed, three case studies. The first one is applied at Web Shrub Solutions, a software development organization, second is applied at web based job portal (stepintojob.com) for leading Indian firm and the third is web design and development for SCL limited, to observe the results of Fusion Process Model. Fusion Process Model follows component driven approach; it applies 3C Model to generalize the process of solving the problem in each phase, which provides firm control over the software development process.

  6. Distillation modeling for a uranium refining process

    SciTech Connect

    Westphal, B.R.

    1996-03-01

    As part of the spent fuel treatment program at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a salt electrolyte, containing a eutectic mixture of lithium and potassium chlorides, from uranium is achieved by a simple batch operation and is termed {open_quotes}cathode processing{close_quotes}. The incremental distillation of electrolyte salt will be modeled by an equilibrium expression and on a molecular basis since the operation is conducted under moderate vacuum conditions. As processing continues, the two models will be compared and analyzed for correlation with actual operating results. Possible factors that may contribute to aberrations from the models include impurities at the vapor-liquid boundary, distillate reflux, anomalous pressure gradients, and mass transport phenomena at the evaporating surface. Ultimately, the purpose of either process model is to enable the parametric optimization of the process.

  7. VARTM Process Modeling of Aerospace Composite Structures

    NASA Technical Reports Server (NTRS)

    Song, Xiao-Lan; Grimsley, Brian W.; Hubert, Pascal; Cano, Roberto J.; Loos, Alfred C.

    2003-01-01

    A three-dimensional model was developed to simulate the VARTM composite manufacturing process. The model considers the two important mechanisms that occur during the process: resin flow, and compaction and relaxation of the preform. The model was used to simulate infiltration of a carbon preform with an epoxy resin by the VARTM process. The model predicted flow patterns and preform thickness changes agreed qualitatively with the measured values. However, the predicted total infiltration times were much longer than measured most likely due to the inaccurate preform permeability values used in the simulation.

  8. Simple Models for Airport Delays During Transition to a Trajectory-Based Air Traffic System

    NASA Astrophysics Data System (ADS)

    Brooker, Peter

    It is now widely recognised that a paradigm shift in air traffic control concepts is needed. This requires state-of-the-art innovative technologies, making much better use of the information in the air traffic management (ATM) system. These paradigm shifts go under the names of NextGen in the USA and SESAR in Europe, which inter alia will make dramatic changes to the nature of airport operations. A vital part of moving from an existing system to a new paradigm is the operational implications of the transition process. There would be business incentives for early aircraft fitment, it is generally safer to introduce new technologies gradually, and researchers are already proposing potential transition steps to the new system. Simple queuing theory models are used to establish rough quantitative estimates of the impact of the transition to a more efficient time-based navigational and ATM system. Such models are approximate, but they do offer insight into the broad implications of system change and its significant features. 4D-equipped aircraft in essence have a contract with the airport runway and, in return, they would get priority over any other aircraft waiting for use of the runway. The main operational feature examined here is the queuing delays affecting non-4D-equipped arrivals. These get a reasonable service if the proportion of 4D-equipped aircraft is low, but this can deteriorate markedly for high proportions, and be economically unviable. Preventative measures would be to limit the additional growth of 4D-equipped flights and/or to modify their contracts to provide sufficient space for the non-4D-equipped flights to operate without excessive delays. There is a potential for non-Poisson models, for which there is little in the literature, and for more complex models, e.g. grouping a succession of 4D-equipped aircraft as a batch.

  9. Magnetization processes and transitions between two antiferromagnetic spin configurations in single-crystalline MnSn2

    NASA Astrophysics Data System (ADS)

    Duan, T. F.; Ren, W. J.; Liu, W.; Zhang, Z. D.

    2016-08-01

    The magnetic structure of MnSn2 and magnetic phase transitions in this compound have been investigated by magnetic measurements on single crystals. The results show that two antiferromagnetic (AFM) states exist below 325 K and that a transition between these two phases occurs at 74 K. Applying a magnetic field (H) has great influence on the transition temperature. An anomalous magnetization process at low fields occurs when the magnetic field applied along the [110] direction, which is ascribed to the contribution of the basal anisotropy. Based on the data for the magnetization processes and the phase transition of the present single crystal, the H-T phase diagram has been established.

  10. Phase transitions and charge ordering in a square spin ice model with conserved monopole density

    NASA Astrophysics Data System (ADS)

    Xie, Yunlong; Zhou, Xiaohui; Liu, Jun-Ming

    2015-03-01

    Artificial spin ices represent a class of highly interested frustrated magnetic systems under intensive investigations for fascinating ground states and thermodynamics/dynamics of spin excitations in recent years. As one of these issues, magnetic charge ordering and the corresponding phase transitions in the two-dimensional system are emerging topics in condensed matter physics. In this work, we investigate all the monopole-ordered phases of the square spin ice model using the conserved monopole density algorithm. In low monopole density (ρ ~ 0), the Coulomb potential determines the monopoles' dynamics. We test the Coulomb's law in a two-dimension lattice and justify the monopole dimerization which is quite different from the three-dimensional pyrochlore spin ice. These monopole dimers are charge neutral, and the interactions between them have also been investigated using our algorithm. In the cases of high monopole density (ρ ~ 1), the system is similar to the dipolar kagome spin ice model, and our simulation results show that there exists an intermediate phase between the paramagnetic phase and the ordered magnetic phase. Such intermediate phase can be distinguished by the order of magnetic charges. In a cooling process, the system undergoes a two-stage magnetic phase transition before freezing to the long range magnetic ordered phase via a staggered charge ordering. Furthermore, a liquefaction process of monopole dimers can be justified upon the increasing effective internal pressure in the isothermal condition.

  11. Towards a general growth model for graphene CVD on transition metal catalysts

    NASA Astrophysics Data System (ADS)

    Cabrero-Vilatela, Andrea; Weatherup, Robert S.; Braeuninger-Weimer, Philipp; Caneva, Sabina; Hofmann, Stephan

    2016-01-01

    The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture.The chemical vapour deposition (CVD) of graphene on three polycrystalline transition metal catalysts, Co, Ni and Cu, is systematically compared and a first-order growth model is proposed which can serve as a reference to optimize graphene growth on any elemental or alloy catalyst system. Simple thermodynamic considerations of carbon solubility are insufficient to capture even basic growth behaviour on these most commonly used catalyst materials, and it is shown that kinetic aspects such as carbon permeation have to be taken into account. Key CVD process parameters are discussed in this context and the results are anticipated to be highly useful for the design of future strategies for integrated graphene manufacture. Electronic supplementary information (ESI) available: Fig. S1. See DOI: 10.1039/c5nr06873h

  12. Eye Gaze Behavior at Turn Transition: How Aphasic Patients Process Speakers' Turns during Video Observation.

    PubMed

    Preisig, Basil C; Eggenberger, Noëmi; Zito, Giuseppe; Vanbellingen, Tim; Schumacher, Rahel; Hopfner, Simone; Gutbrod, Klemens; Nyffeler, Thomas; Cazzoli, Dario; Annoni, Jean-Marie; Bohlhalter, Stephan; Müri, René M

    2016-10-01

    The human turn-taking system regulates the smooth and precise exchange of speaking turns during face-to-face interaction. Recent studies investigated the processing of ongoing turns during conversation by measuring the eye movements of noninvolved observers. The findings suggest that humans shift their gaze in anticipation to the next speaker before the start of the next turn. Moreover, there is evidence that the ability to timely detect turn transitions mainly relies on the lexico-syntactic content provided by the conversation. Consequently, patients with aphasia, who often experience deficits in both semantic and syntactic processing, might encounter difficulties to detect and timely shift their gaze at turn transitions. To test this assumption, we presented video vignettes of natural conversations to aphasic patients and healthy controls, while their eye movements were measured. The frequency and latency of event-related gaze shifts, with respect to the end of the current turn in the videos, were compared between the two groups. Our results suggest that, compared with healthy controls, aphasic patients have a reduced probability to shift their gaze at turn transitions but do not show significantly increased gaze shift latencies. In healthy controls, but not in aphasic patients, the probability to shift the gaze at turn transition was increased when the video content of the current turn had a higher lexico-syntactic complexity. Furthermore, the results from voxel-based lesion symptom mapping indicate that the association between lexico-syntactic complexity and gaze shift latency in aphasic patients is predicted by brain lesions located in the posterior branch of the left arcuate fasciculus. Higher lexico-syntactic processing demands seem to lead to a reduced gaze shift probability in aphasic patients. This finding may represent missed opportunities for patients to place their contributions during everyday conversation. PMID:27243612

  13. Dynamical phase transitions and Loschmidt echo in the infinite-range XY model.

    PubMed

    Žunkovič, Bojan; Silva, Alessandro; Fabrizio, Michele

    2016-06-13

    We compare two different notions of dynamical phase transitions in closed quantum systems. The first is identified through the time-averaged value of the equilibrium-order parameter, whereas the second corresponds to non-analyticities in the time behaviour of the Loschmidt echo. By exactly solving the dynamics of the infinite-range XY model, we show that in this model non-analyticities of the Loschmidt echo are not connected to standard dynamical phase transitions and are not robust against quantum fluctuations. Furthermore, we show that the existence of either of the two dynamical transitions is not necessarily connected to the equilibrium quantum phase transition.

  14. Dynamical phase transitions and Loschmidt echo in the infinite-range XY model.

    PubMed

    Žunkovič, Bojan; Silva, Alessandro; Fabrizio, Michele

    2016-06-13

    We compare two different notions of dynamical phase transitions in closed quantum systems. The first is identified through the time-averaged value of the equilibrium-order parameter, whereas the second corresponds to non-analyticities in the time behaviour of the Loschmidt echo. By exactly solving the dynamics of the infinite-range XY model, we show that in this model non-analyticities of the Loschmidt echo are not connected to standard dynamical phase transitions and are not robust against quantum fluctuations. Furthermore, we show that the existence of either of the two dynamical transitions is not necessarily connected to the equilibrium quantum phase transition. PMID:27140975

  15. INTEGRATED FISCHER TROPSCH MODULAR PROCESS MODEL

    SciTech Connect

    Donna Post Guillen; Richard Boardman; Anastasia M. Gribik; Rick A. Wood; Robert A. Carrington

    2007-12-01

    With declining petroleum reserves, increased world demand, and unstable politics in some of the world’s richest oil producing regions, the capability for the U.S. to produce synthetic liquid fuels from domestic resources is critical to national security and economic stability. Coal, biomass and other carbonaceous materials can be converted to liquid fuels using several conversion processes. The leading candidate for large-scale conversion of coal to liquid fuels is the Fischer Tropsch (FT) process. Process configuration, component selection, and performance are interrelated and dependent on feed characteristics. This paper outlines a flexible modular approach to model an integrated FT process that utilizes a library of key component models, supporting kinetic data and materials and transport properties allowing rapid development of custom integrated plant models. The modular construction will permit rapid assessment of alternative designs and feed stocks. The modeling approach consists of three thrust areas, or “strands” – model/module development, integration of the model elements into an end to end integrated system model, and utilization of the model for plant design. Strand 1, model/module development, entails identifying, developing, and assembling a library of codes, user blocks, and data for FT process unit operations for a custom feedstock and plant description. Strand 2, integration development, provides the framework for linking these component and subsystem models to form an integrated FT plant simulation. Strand 3, plant design, includes testing and validation of the comprehensive model and performing design evaluation analyses.

  16. Overlap and activity glass transitions in plaquette spin models with hierarchical dynamics

    NASA Astrophysics Data System (ADS)

    Turner, Robert M.; Jack, Robert L.; Garrahan, Juan P.

    2015-08-01

    We consider thermodynamic and dynamic phase transitions in plaquette spin models of glasses. The thermodynamic transitions involve coupled (annealed) replicas of the model. We map these coupled-replica systems to a single replica in a magnetic field, which allows us to analyze the resulting phase transitions in detail. For the triangular plaquette model (TPM), we find for the coupled-replica system a phase transition between high- and low-overlap phases, occurring at a coupling ɛ*(T ) , which vanishes in the low-temperature limit. Using computational path sampling techniques, we show that a single TPM also displays "space-time" transitions between active and inactive dynamical phases. These first-order dynamical transitions occur at a critical counting field sc(T ) ≳0 that appears to vanish at zero temperature in a manner reminiscent of the thermodynamic overlap transition. In order to extend the ideas to three dimensions, we introduce the square pyramid model, which also displays both overlap and activity transitions. We discuss a possible common origin of these various phase transitions, based on long-lived (metastable) glassy states.

  17. Communicative processes: a model of communication

    SciTech Connect

    Kimura, T.D.; Gillett, W.D.

    1982-01-01

    The authors introduce a conceptual model of communicative organization as a part of the formal semantic study of distributed computation. The model includes, as communication primitives, three independent modes of communication: mailing, posting and broadcasting. Mailing models thin-wire communication, and posting models shared memory communication. While broadcasting is not prominent in today's parallel programming languages, it has an important role to play in distributed computation. Other fundamental notions in the model are process, symbol, site, process class, symbol class and site class. 8 references.

  18. Urban public transit systems modeling capabilities. Final report, January 1993-August 1994

    SciTech Connect

    Tyer, K.D.; Rao, K.S.; Oumarou, A.; Krammes, R.A.

    1995-02-01

    A former assessment of current transit and HOV modeling capabilities was conducted, with emphasis on CORFLO, which is uniquely suited among U.S. public-domain models for detailed evaluations of traffic conditions in urban corridors. Other models assessed include CONTRAM, INTEGRATION, JAM, LATM, MICRO-ASSIGNMENT, NETSIM, SATURN, TRAFFICQ, and TRANSYT. SATURN and CORFLO were the most highly rated with respect to their modeling approach, transit and HOV supply/demand modeling, and output measures of effectiveness. A detailed analysis of CORFLO`s logic and code and a case study evaluation of transit and HOV alternatives using a CORFLO model of the North Central Expressway Corridor in Dallas, Texas, revealed several areas in which CORFLO should be enhanced to improve its urban public transit systems modeling capabilities.

  19. Models of Problem Solving Processes and Abilities.

    ERIC Educational Resources Information Center

    Feldhusen, John F.; Guthrie, Virginia A.

    1979-01-01

    This paper reviews current models of problem solving to identify results relevant to teachers or instructional developers. Four areas are covered: information processing models, approaches stressing human abilities and factors, creative problem solving models, and other aspects of problem solving. Part of a theme issue on intelligence. (Author/SJL)

  20. Configurable product design considering the transition of multi-hierarchical models

    NASA Astrophysics Data System (ADS)

    Ren, Bin; Qiu, Lemiao; Zhang, Shuyou; Tan, Jianrong; Cheng, Jin

    2013-03-01

    The current research of configurable product design mainly focuses on how to convert a predefined set of components into a valid set of product structures. With the scale and complexity of configurable products increasing, the interdependencies between customer demands and product structures grow up as well. The result is that existing product structures fails to satisfy the individual customer requirements and hence product variants are needed. This paper is aimed to build a bridge between customer demands and product structures in order to make demand-driven fast response design feasible. First of all, multi-hierarchical models of configurable product design are established with customer demand model, technical requirement model and product structure model. Then, the transition of multi-hierarchical models among customer demand model, technical requirement model and product structure model is solved with fuzzy analytic hierarchy process (FAHP) and the algorithm of multi-level matching. Finally, optimal structure according to the customer demands is obtained with the calculation of Euclidean distance and similarity of some cases. In practice, the configuration design of a clamping unit of injection molding machine successfully performs an optimal search strategy for the product variants with reasonable satisfaction to individual customer demands. The proposed method can automatically generate a configuration design with better alternatives for each product structures, and shorten the time of finding the configuration of a product.

  1. A comparative study on the flow over an airfoil using transitional turbulence models

    NASA Astrophysics Data System (ADS)

    Lin, Mou; Sarlak, Hamid

    2016-06-01

    This work addresses the simulation of the flow over NREL S826 airfoil under a relatively low Reynolds number (Re = 1 × 105) using the CFD solvers OpenFoam and ANSYS Fluent. The flow is simulated using two different transition models, γ-Reθ and k - kL - ω model, and the results are examined against the k - ω SST model without transitional formulations. By comparing the simulations with the available experimental data, we find that the using the transitional model can effectively improve the flow prediction, especially the drag coefficient results, before the stall.

  2. An observational and modeling study of extratropical transition of Hurricane Sandy in 2012

    NASA Astrophysics Data System (ADS)

    Fu, Dan; Li, Pengyuan; Fu, Gang

    2015-10-01

    Around 30 October 2012, Hurricane Sandy made landfall along the New Jersey shoreline after its completion of extratropical transition and transformation into an extratropical cyclone. The strong gale induced a catastrophic storm surge, and caused 72 death and damage of more than 50 billion. In this paper, the evolutionary process and spatial structure of the Hurricane Sandy during its extratropical transition were investigated by using Weather Research and Forecasting (WRF) version 3.3.1 modeling results and National Center for Environmental Prediction (NCEP) Coupled Forecast System model version 2 reanalysis datasets (CFSv2). It is found that during the upper-level trough interaction on 29 October, Sandy gradually fused with a pre-existing mid-latitude low-pressure system, and finished the re-intensification. WRF modeling results showed that the second peak occurred mainly due to the enhanced vertical motion, reduced vertical wind shear as well as the supplement of potential vorticity resulting from trough interaction over the southeast of Great Lakes. The cold continental air from the back of trough was encircled within the warm core system cyclonically, forming the characteristic of warm seclusion.

  3. Tropical precipitation regimes and mechanisms of regime transitions: contrasting two aquaplanet general circulation models

    NASA Astrophysics Data System (ADS)

    Oueslati, Boutheina; Bellon, Gilles

    2013-05-01

    The atmospheric general circulation models ARPEGE-climate and LMDz are used in an aquaplanet configuration to study the response of a zonally symmetric atmosphere to a range of sea surface temperature (SST) forcing. We impose zonally-symmetric SST distributions that are also symmetric about the equator, with varying off-equatorial SST gradients. In both models, we obtain the characteristic inter-tropical convergence zone (ITCZ) splitting that separates two regimes of equilibrium (in terms of precipitations): one with one ITCZ over the equator for large SST gradients in the tropics, and one with a double ITCZ for small tropical SST gradients. Transition between these regimes is mainly driven by changes in the low-level convergence that are forced by the SST gradients. Model-dependent, dry and moist feedbacks intervene to reinforce or weaken the effect of the SST forcing. In ARPEGE, dry advective processes reinforce the SST forcing, while a competition between sensible heat flux and convective cooling provides a complex feedback on the SST forcing in the LMDz. It is suggested that these feedbacks influence the location of the transition in the parameter range.

  4. Computational Modeling For The Transitional Flow Over A Multi-Element Airfoil

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, Chris L. (Technical Monitor)

    2000-01-01

    The transitional flow over a multi-element airfoil in a landing configuration are computed using a two equation transition model. The transition model is predictive in the sense that the transition onset is a result of the calculation and no prior knowledge of the transition location is required. The computations were performed using the INS2D) Navier-Stokes code. Overset grids are used for the three-element airfoil. The airfoil operating conditions are varied for a range of angle of attack and for two different Reynolds numbers of 5 million and 9 million. The computed results are compared with experimental data for the surface pressure, skin friction, transition onset location, and velocity magnitude. In general, the comparison shows a good agreement with the experimental data.

  5. Transition metal-catalyzed process for addition of amines to carbon-carbon double bonds

    DOEpatents

    Hartwig, John F.; Kawatsura, Motoi; Loeber, Oliver

    2002-01-01

    The present invention is directed to a process for addition of amines to carbon-carbon double bonds in a substrate, comprising: reacting an amine with a compound containing at least one carbon-carbon double bond in the presence a transition metal catalyst under reaction conditions effective to form a product having a covalent bond between the amine and a carbon atom of the former carbon-carbon double bond. The transition metal catalyst comprises a Group 8 metal and a ligand containing one or more 2-electron donor atoms. The present invention is also directed to enantioselective reactions of amine compounds with compounds containing carbon-carbon double bonds, and a calorimetric assay to evaluate potential catalysts in these reactions.

  6. Relaxation transition due to different cooling processes in a superconducting levitation system

    NASA Astrophysics Data System (ADS)

    Zhou, You-He; Zhang, Xing-Yi; Zhou, Jun

    2008-06-01

    We present an experimental study of relaxation of vertical and horizontal force components in a high-temperature superconducting levitation system, with different initial cooling process after fixing the levitated body in an expected position statically. In the experiment, the bulk YBaCuO cylinder superconductor and the permanent magnet disk are employed. For a selected levitation height (LH) and a lateral displacement (LD) of the system, the experimental results show that the relaxations of the vertical and horizontal forces are strongly dependent on the initial cooling height (CH). With CH decreasing, the transition of the lateral force from repulsion to attraction is found as well as the changing characteristics with time from decrease to increase. Additionally, when LH is fixed at the CH, the transition phenomenon is also observed in the levitation force behavior and their relaxation under different LDs.

  7. Moving beyond readmission penalties: creating an ideal process to improve transitional care

    PubMed Central

    Burke, Robert E.; Kripalani, Sunil; Vasilevskis, Eduard E.; Schnipper, Jeffrey L.

    2013-01-01

    Hospital readmissions are common and costly; this has resulted in their emergence as a key target and quality indicator in the current era of renewed focus on cost containment. However, many concerns remain about the use of readmissions as a hospital quality indicator and about how to reduce hospital readmissions. These concerns stem in part from deficiencies in the state of the science of transitional care. A conceptualization of the “ideal” discharge process could help address these deficiencies and move the state of the science forward. We describe an ideal transition in care, explicate the key components, discuss its implications in the context of recent efforts to reduce readmissions, and suggest next steps for policymakers, researchers, health care administrators, practitioners, and educators. PMID:23184714

  8. Preform Characterization in VARTM Process Model Development

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal; Loos, Alfred C.; Kellen, Charles B.; Jensen, Brian J.

    2004-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) is a Liquid Composite Molding (LCM) process where both resin injection and fiber compaction are achieved under pressures of 101.3 kPa or less. Originally developed over a decade ago for marine composite fabrication, VARTM is now considered a viable process for the fabrication of aerospace composites (1,2). In order to optimize and further improve the process, a finite element analysis (FEA) process model is being developed to include the coupled phenomenon of resin flow, preform compaction and resin cure. The model input parameters are obtained from resin and fiber-preform characterization tests. In this study, the compaction behavior and the Darcy permeability of a commercially available carbon fabric are characterized. The resulting empirical model equations are input to the 3- Dimensional Infiltration, version 5 (3DINFILv.5) process model to simulate infiltration of a composite panel.

  9. Transition Studies on a Swept-Wing Model

    NASA Technical Reports Server (NTRS)

    Saric, William S.

    1996-01-01

    The present investigation contributes to the understanding of boundary-layer stability and transition by providing detailed measurements of carefully-produced stationary crossflow vortices. It is clear that a successful prediction of transition in swept-wing flows must include an understanding of the detailed physics involved. Receptivity and nonlinear effects must not be ignored. Linear stability theory correctly predicts the expected wavelengths and mode shapes for stationary crossflow, but fails to predict the growth rates, even for low amplitudes. As new computational and analytical methods are developed to deal with three-dimensional boundary layers, the data provided by this experiment will serve as a useful benchmark for comparison.

  10. Two Distinct Synchronization Processes in the Transition to Sleep: A High-Density Electroencephalographic Study

    PubMed Central

    Siclari, Francesca; Bernardi, Giulio; Riedner, Brady A.; LaRocque, Joshua J.; Benca, Ruth M.; Tononi, Giulio

    2014-01-01

    Objectives: To assess how the characteristics of slow waves and spindles change in the falling-asleep process. Design: Participants undergoing overnight high-density electroencephalographic recordings were awakened at 15- to 30-min intervals. One hundred forty-one falling-asleep periods were analyzed at the scalp and source level. Setting: Sleep laboratory. Participants: Six healthy participants. Interventions: Serial awakenings. Results: The number and amplitude of slow waves followed two dissociated, intersecting courses during the transition to sleep: slow wave number increased slowly at the beginning and rapidly at the end of the falling-asleep period, whereas amplitude at first increased rapidly and then decreased linearly. Most slow waves occurring early in the transition to sleep had a large amplitude, a steep slope, involved broad regions of the cortex, predominated over frontomedial regions, and preferentially originated from the sensorimotor and the posteromedial parietal cortex. Most slow waves occurring later had a smaller amplitude and slope, involved more circumscribed parts of the cortex, and had more evenly distributed origins. Spindles were initially sparse, fast, and involved few cortical regions, then became more numerous and slower, and involved more areas. Conclusions: Our results provide evidence for two types of slow waves, which follow dissociated temporal courses in the transition to sleep and have distinct cortical origins and distributions. We hypothesize that these two types of slow waves result from two distinct synchronization processes: (1) a “bottom-up,” subcorticocortical, arousal system-dependent process that predominates in the early phase and leads to type I slow waves, and (2) a “horizontal,” corticocortical synchronization process that predominates in the late phase and leads to type II slow waves. The dissociation between these two synchronization processes in time and space suggests that they may be differentially

  11. Simple Model Study of Phase Transition Properties of Isolated and Aggregated Protein

    NASA Astrophysics Data System (ADS)

    Ji, Yong-Yun; Yi, Wei-Qi; Zhang, Lin-Xi

    2011-03-01

    We investigate the phase transition properties of isolated and aggregated protein by exhaustive numerical study in the confined conformation space with maximally compact lattice model. The study within the confined conformation space shows some general folding properties. Various sequences show different folding properties: two-state folding, three-state folding and prion-like folding behavior. We find that the aggregated protein holds a more evident transition than isolated one and the transition temperature is generally lower than that in isolated case.

  12. Modeling Cellular Processes in 3-D

    PubMed Central

    Mogilner, Alex; Odde, David

    2011-01-01

    Summary Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated, we must address the issue of modeling cellular processes in 3-D. Here, we highlight recent advances related to 3-D modeling in cell biology. While some processes require full 3-D analysis, we suggest that others are more naturally described in 2-D or 1-D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3-D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling. PMID:22036197

  13. Software-Engineering Process Simulation (SEPS) model

    NASA Technical Reports Server (NTRS)

    Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.

    1992-01-01

    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.

  14. Probabilistic models of language processing and acquisition.

    PubMed

    Chater, Nick; Manning, Christopher D

    2006-07-01

    Probabilistic methods are providing new explanatory approaches to fundamental cognitive science questions of how humans structure, process and acquire language. This review examines probabilistic models defined over traditional symbolic structures. Language comprehension and production involve probabilistic inference in such models; and acquisition involves choosing the best model, given innate constraints and linguistic and other input. Probabilistic models can account for the learning and processing of language, while maintaining the sophistication of symbolic models. A recent burgeoning of theoretical developments and online corpus creation has enabled large models to be tested, revealing probabilistic constraints in processing, undermining acquisition arguments based on a perceived poverty of the stimulus, and suggesting fruitful links with probabilistic theories of categorization and ambiguity resolution in perception.

  15. Calibration of the 7—Equation Transition Model for High Reynolds Flows at Low Mach

    NASA Astrophysics Data System (ADS)

    Colonia, S.; Leble, V.; Steijl, R.; Barakos, G.

    2016-09-01

    The numerical simulation of flows over large-scale wind turbine blades without considering the transition from laminar to fully turbulent flow may result in incorrect estimates of the blade loads and performance. Thanks to its relative simplicity and promising results, the Local-Correlation based Transition Modelling concept represents a valid way to include transitional effects into practical CFD simulations. However, the model involves coefficients that need tuning. In this paper, the γ—equation transition model is assessed and calibrated, for a wide range of Reynolds numbers at low Mach, as needed for wind turbine applications. An aerofoil is used to evaluate the original model and calibrate it; while a large scale wind turbine blade is employed to show that the calibrated model can lead to reliable solutions for complex three-dimensional flows. The calibrated model shows promising results for both two-dimensional and three-dimensional flows, even if cross-flow instabilities are neglected.

  16. Fuel Conditioning Facility Electrorefiner Process Model

    SciTech Connect

    DeeEarl Vaden

    2005-10-01

    The Fuel Conditioning Facility at the Idaho National Laboratory processes spent nuclear fuel from the Experimental Breeder Reactor II using electro-metallurgical treatment. To process fuel without waiting for periodic sample analyses to assess process conditions, an electrorefiner process model predicts the composition of the electrorefiner inventory and effluent streams. For the chemical equilibrium portion of the model, the two common methods for solving chemical equilibrium problems, stoichiometric and non stoichiometric, were investigated. In conclusion, the stoichiometric method produced equilibrium compositions close to the measured results whereas the non stoichiometric method did not.

  17. Multistakeholder Perspectives on the Transition to a Graduate-Level Athletic Training Educational Model

    PubMed Central

    Mazerolle, Stephanie M.; Bowman, Thomas G.; Pitney, William A.

    2015-01-01

    Context  The decision has been made to move away from the traditional bachelor's degree professional program to a master's degree professional program. Little is known about the perceptions about this transition from those involved with education. Objective  To examine multiple stakeholders' perspectives within athletic training education on the effect that a change to graduate-level education could have on the profession and the educational and professional development of the athletic trainer. Design  Qualitative study. Setting  Web-based survey. Patients or Other Participants  A total of 18 athletic training students (6 men, 12 women; age = 24 ± 5 years), 17 athletic training faculty (6 men, 9 women, 2 unspecified; 7 program directors, 5 faculty members, 3 clinical coordinators, 2 unidentified; age = 45 ± 8 years), and 15 preceptors (7 men, 7 women, 1 unspecified; age = 34 ± 7 years) completed the study. Data Collection and Analysis  Participants completed a structured Web-based questionnaire. Each cohort responded to questions matching their roles within an athletic training program. Data were analyzed following a general inductive process. Member checks, multiple-analyst triangulation, and peer review established credibility. Results  Thirty-one (62%) participants supported the transition, 14 (28%) were opposed, and 5 (10%) were neutral or undecided. Advantages of and support for transitioning and disadvantages of and against transitioning emerged. The first higher-order theme, advantages, revealed 4 benefits: (1) alignment of athletic training with other health care professions, (2) advanced coursework and curriculum delivery, (3) improved student and professional retention, and (4) student maturity. The second higher-order theme, disadvantages, was defined by 3 factors: (1) limited time for autonomous practice, (2) financial concerns, and (3) lack of evidence for the transition. Conclusions  Athletic training students, faculty, and

  18. The Challenge of Change: The Transition Model and Its Applications

    ERIC Educational Resources Information Center

    Schlossberg, Nancy K.

    2011-01-01

    Work transitions are particularly complex because individuals will change jobs and careers many times, and the structure of work itself is always changing. It is critical that individuals understand change, how it affects their clients, and how they can apply this knowledge to their lives and their clients' lives. In this article, the author…

  19. Model of Learning for Career and Labour Market Transitions

    ERIC Educational Resources Information Center

    Brown, Alan; Bimrose, Jenny

    2014-01-01

    The study, upon which this special issue focuses, used narrative interviews to investigate how learning can support workers' transitions in the labour market in five European countries (Denmark, France, Germany, Italy and Spain). The five countries were chosen to represent very different contexts in the way learning can support career and…

  20. Improved model for the transit entropy of monatomic liquids

    NASA Astrophysics Data System (ADS)

    Chisolm, Eric; Bock, Nicolas; Wallace, Duane

    2010-03-01

    In the original formulation of vibration-transit (V-T) theory for monatomic liquid dynamics, the transit contribution to entropy was taken to be a universal constant, calibrated to the constant-volume entropy of melting. This implied that the transit contribution to energy vanishes, which is incorrect. Here we develop a new formulation that corrects this deficiency. The theory contains two nuclear motion contributions: (a) the dominant vibrational contribution Svib(T/θ0), where T is temperature and θ0 is the vibrational characteristic temperature, and (b) the transit contribution Str(T/θtr), where θtr is a scaling temperature for each liquid. The appearance of a common functional form of Str for all the liquids studied is deduced from the experimental data, when analyzed via the V-T formula. The theoretical entropy of melting is derived, in a single formula applying to normal and anomalous melting alike. An ab initio calculation of θ0 for Na and Cu, based on density functional theory, provides verification of our analysis and V-T theory. In view of the present results, techniques currently being applied in ab initio simulations of liquid properties can be employed to advantage in the further testing and development of V-T theory.

  1. Entropy, chaos, and excited-state quantum phase transitions in the Dicke model

    NASA Astrophysics Data System (ADS)

    Lóbez, C. M.; Relaño, A.

    2016-07-01

    We study nonequilibrium processes in an isolated quantum system—the Dicke model—focusing on the role played by the transition from integrability to chaos and the presence of excited-state quantum phase transitions. We show that both diagonal and entanglement entropies are abruptly increased by the onset of chaos. Also, this increase ends in both cases just after the system crosses the critical energy of the excited-state quantum phase transition. The link between entropy production, the development of chaos, and the excited-state quantum phase transition is more clear for the entanglement entropy.

  2. Topics of Higher Order Electroweak Processes and Nonleptonic Weak Processes in Standard Model.

    NASA Astrophysics Data System (ADS)

    Chong-Huah, Lo.

    This thesis is devoted to the calculation of higher order electroweak processes and nonleptonic weak interaction processes in the framework of the standard model. Primarily to standardize the notation, the thesis begins with a brief discussion of the Feynman rules and the dimensional regularization in a general renormalizable gauge for a spontaneously broken gauge theory. A typical process where higher order corrections are significant is the s(--->)d(gamma) transition. Amplitude including QCD radiative corrections for this process is calculated using a free quark model, which is then used to compute hyperon weak radiative decays. Explicit evaluation of the transition amplitude of the (SIGMA)(--->)P(gamma) mode is given. The quark fields are expanded in terms of MIT bag modes, so as to be consistent with quark confinement. We rederive the traditional baryon-pole model result and discover some evidence for a (V + A) weak hadronic current. The thesis also contains a phenomenological Lagrangian model for charmed meson decays. The model consists of a SU(,L)(3) x SU(,R)(3) nonlinear chiral Lagrangian with gauge fields. The charmed meson triplet (D('0), D('-), F('-)) is incorporated into the Lagrangian following the general framework proposed by Coleman, Wess and Zumino. The model can describe many body decay processes as well as two body decay processes. It also gives a unified description of pseudo-scalar, vector and axial vector meson decay modes of the charmed mesons. The model gives a one-parameter prediction of all two body and three body decay data. We predict the life time ratio (tau)(D)/(tau)(D('0)) = 3.75 and branching ratio of D('0) decay modes, namely B(,r)(D('0)( --->)K('0)(pi)('0))/B(,r)(D('0)(--->)K('-)(pi)('+)) = 1.04. These are in good agreement with experimental results. Several results of the flavor symmetry model, e.g. the sum rule for the D meson decay amplitudes, are rederived in the model. Dalitz plots of three body decay processes are also

  3. Physical processes in the transition zone between North Sea and Baltic Sea. Numerical simulations and observations

    NASA Astrophysics Data System (ADS)

    Stanev, Emil V.; Lu, Xi; Grashorn, Sebastian

    2015-09-01

    The dynamics in the transition zone between the North Sea and Baltic Sea are analyzed here using data from a 22-year-long climatic simulation with a focus on the periods 1992-1994 and 2001-2003 when two recent major inflow events occurred. Observations from gauges and in situ measurements are used to validate the model. Parameters, which cannot be easily measured, such as water and salt transports through straits, have been compared against similar previous estimates. The good performance of simulations is attributed to the finer resolution of the model compared to earlier set ups. The outflow in the Kattegat, which is an analogue of the tidal outflows, tends to propagate to the North over the shallows without showing a substantial deflection to the right due to the Earth's rotation. The inflow follows the topography. The different inflow and outflow pathways are explained as a consequence of the specific combination of bathymetry, axial and lateral processes. The circulation in Kattegat is persistently clockwise with an eastern intensification during inflow and a western one during outflow regimes. The tidal wave there propagates as Kelvin wave, keeping the coast on its right. The flows in the two main straits reveal very different responses to tides, which are also highly asymmetric during inflow and outflow conditions. The circulation has a typical two-layer structure, the correlation between salinity and velocity tends to increase the salt transport in the salinity conveyor belt. The transversal circulation in the entrance of the Sound enhances the vertical mixing of the saltier North Sea water. The long-term averaged ratio of the water transports through the Great Belt and the Sound is ∼2.6-2.7 but this number changes reaching lower values during the major inflow in 1993. The transports in the straits are asymmetric. During inflow events the repartition of water penetrating the Baltic Sea is strongly in favor of the pathway through the Sound, which provides

  4. Critical transition for the edge shear layer formation: Comparison of model and experiment

    SciTech Connect

    Carreras, B. A.; Garcia, L.; Pedrosa, M. A.; Hidalgo, C.

    2006-12-15

    The experimental results for the emergence of the plasma edge shear flow layer in TJ-II [C. Alehaldre et al.Fusion Technol. 17, 131 (1990)] can be explained using a simple model for a second-order transition based on the sheared flow amplification by Reynolds stress and turbulence suppression by shearing. In the dynamics of the model, the resistive interchange instability is used. This model gives power dependence on density gradients before and after the transition, consistent with experiment.

  5. Caregivers' Experience during Their Children's Transition Process from Early Childhood Special Education Services to School-Aged Special Education Services

    ERIC Educational Resources Information Center

    Hicks, Linda Yvonne

    2011-01-01

    This study investigates caregivers' perceptions of the transition process for children transitioning from Early Childhood Special Education (ECSE) to School Age Special Education services (SA). Interest in this topic developed during the researcher's 18 years of experience as an Itinerant Early Childhood Special Education Teacher during which she…

  6. Using snowboards and lysimeters to constrain snow model choices in a rain-snow transitional environment

    NASA Astrophysics Data System (ADS)

    Wayand, N. E.; Massmann, A.; Clark, M. P.; Lundquist, J. D.

    2015-12-01

    Physically based models of the hydrological cycle are critical for testing our understanding of the natural world and enabling forecasting of extreme events. Previous intercomparison studies (i.e. SNOWMIP I & II, PILPS) of existing snow models that vary in complexity have been hampered by multiple differences in model structure. Recent efforts to encompass multiple model hypothesizes into a single framework (i.e. the Structure for Understanding Multiple Modeling Alternatives [SUMMA] model), have provided the tools necessary for a more rigorous validation of process representation. However, there exist few snow observatories that measure sufficient physical states and fluxes to fully constrain the possible combinations within these multiple model frameworks. In practice, observations of bulk snow states, such as the snow water equivalent (SWE) or snow depth, are most commonly available. The downfall of calibrating a snow model using such single bulk variables can lead to parameter equanimity and compensatory errors, which ultimately impacts the skill of a model as a predictive tool. This study provides two examples of diagnosing modeled snow processes through novel error source identification. Simulations were performed at a recently upgraded (Oct. 2012) snow study site located at Snoqualmie Pass (917 m), in the Washington Cascades, USA. We focused on two physical processes, new snow accumulation and snowpack outflow during mid-winter rain-on-snow events, for their importance towards controlling runoff and flooding in this rain-snow transitional basin. Main results were: 1) modifying the snow model structure to match what was actually observed (i.e. a snow board), allowed the attribution of daily errors in model new snow accumulation to either partitioning, new snow density, or compaction. 2) Observed snow pit temperature profiles from infrared cameras and manual thermometers found that cold biases in the model snowpack temperature prior to rain-on-snow events could

  7. Integral definition of transition time in the Landau-Zener model

    SciTech Connect

    Yan Yue; Wu Biao

    2010-02-15

    We give a general definition for the transition time in the Landau-Zener model. This definition allows us to compute numerically the Landau-Zener transition time at any sweeping rate without ambiguity in both diabatic and adiabatic bases. With this new definition, analytical results are obtained in both the adiabatic limit and the sudden limit.

  8. Suggestion for a Theoretical Model for Secondary-Tertiary Transition in Mathematics

    ERIC Educational Resources Information Center

    Clark, Megan; Lovric, Miroslav

    2008-01-01

    One of most notable features of existing body of research in transition seems to be the absence of a theoretical model. The suggestion we present in this paper--to view and understand the high school to university transition in mathematics as a modern-day rite of passage--is an attempt at defining such framework. Although dominantly reflecting…

  9. The Effect of Transition Modeling on the Prediction of Compressible Deep Dynamic Stall

    NASA Technical Reports Server (NTRS)

    Geissler, W.; Chandrasekhara, M. S.; Platzer, M. F.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)

    1997-01-01

    The importance of transition modeling in the computation of compressible, unsteady separated flows is discussed. The study showed that it is critical to predict the experimentally attained transition point properly in order to obtain good agreement with data it the same Mach number and Reynolds number.

  10. Obesity status transitions across the elementary years: Use of Markov chain modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Overweight and obesity status transition probabilities using first-order Markov transition models applied to elementary school children were assessed. Complete longitudinal data across eleven assessments were available from 1,494 elementary school children (from 7,599 students in 41 out of 45 school...

  11. Digital soil mapping as a tool for quantifying state-and-transition models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecological sites and associated state-and-transition models (STMs) are rapidly becoming important land management tools in rangeland systems in the US and around the world. Descriptions of states and transitions are largely developed from expert knowledge and generally accepted species and community...

  12. Mixed-order phase transition in a minimal, diffusion-based spin model

    NASA Astrophysics Data System (ADS)

    Fronczak, Agata; Fronczak, Piotr

    2016-07-01

    In this paper we exactly solve, within the grand canonical ensemble, a minimal spin model with the hybrid phase transition. We call the model diffusion based because its Hamiltonian can be recovered from a simple dynamic procedure, which can be seen as an equilibrium statistical mechanics representation of a biased random walk. We outline the derivation of the phase diagram of the model, in which the triple point has the hallmarks of the hybrid transition: discontinuity in the average magnetization and algebraically diverging susceptibilities. At this point, two second-order transition curves meet in equilibrium with the first-order curve, resulting in a prototypical mixed-order behavior.

  13. Mixed-order phase transition in a minimal, diffusion-based spin model.

    PubMed

    Fronczak, Agata; Fronczak, Piotr

    2016-07-01

    In this paper we exactly solve, within the grand canonical ensemble, a minimal spin model with the hybrid phase transition. We call the model diffusion based because its Hamiltonian can be recovered from a simple dynamic procedure, which can be seen as an equilibrium statistical mechanics representation of a biased random walk. We outline the derivation of the phase diagram of the model, in which the triple point has the hallmarks of the hybrid transition: discontinuity in the average magnetization and algebraically diverging susceptibilities. At this point, two second-order transition curves meet in equilibrium with the first-order curve, resulting in a prototypical mixed-order behavior. PMID:27575073

  14. Ethnographic process evaluation of a quality improvement project to improve transitions of care for older people

    PubMed Central

    Sutton, Elizabeth; Dixon-Woods, Mary; Tarrant, Carolyn

    2016-01-01

    Objectives Quality improvement projects to address transitions of care across care boundaries are increasingly common but meet with mixed success for reasons that are poorly understood. We aimed to characterise challenges in a project to improve transitions for older people between hospital and care homes. Design Independent process evaluation, using ethnographic observations and interviews, of a quality improvement project. Setting and participants An English hospital and two residential care homes for older people. Data 32 hours of non-participant observations and 12 semistructured interviews with project members, hospital and care home staff. Results A hospital-based improvement team sought to reduce unplanned readmissions from residential care homes using interventions including a community-based geriatric team that could be accessed directly by care homes and a communication tool intended to facilitate transfer of information between homes and hospital. Only very modest (if any) impacts of these interventions on readmission rates could be detected. The process evaluation identified multiple challenges in implementing interventions and securing improvement. Many of these arose because of lack of consensus on the nature of the problem and the proper solutions: while the hospital team was keen to reduce readmissions and saw the problems as lying in poor communication and lack of community-based support for care homes, the care home staff had different priorities. Care home staff were unconvinced that the improvement interventions were aligned with their needs or addressed their concerns, resulting in compromised implementation. Conclusions Process evaluations have a valuable role in quality improvement. Our study suggests that a key task for quality improvement projects aimed at transitions of care is that of developing a shared view of the problem to be addressed. A more participatory approach could help to surface assumptions, interpretations and interests

  15. Towards a Fully Distributed Characterization of Water Residence and Transit Time by Coupled Hydrology-Transport Modeling

    NASA Astrophysics Data System (ADS)

    Remondi, F.; Fatichi, S.; Burlando, P.

    2015-12-01

    Water residence and transit time are crucial elements in flow pathways and catchment response characterization. The temporal distribution of catchment transit times has been generally studied and modelled with lumped parameter approaches. However, understanding the dominant controls in a more holistic manner requires attention to the spatially distributed catchment properties also in relation to their control on the basin response to different type of precipitation events. A tool that looks both at the time and space distribution of water residence and transport can be useful for predicting water and solute fluxes and ultimately for better understanding the dependence of catchment transit and residence times on geomorphological and climatic factors. To this purpose we couple a fully distributed, yet essential, process-based watershed model with a component to simulate solute transport. Key features of the developed tool include: (a) reduced complexity spatially-distributed hydrological model; (b) spatially-distributed water age and conservative tracer concentration; (c) possibility to explicitly compute transit time distributions for different precipitation events and locations. The presented framework is tested on the Plynlimon watershed (UK), where long-term records of hydrological variables are available. Among them, discharge and chloride concentration are used to investigate the model behavior. We present the integrated model concept, the underlying methodologies, the results from the case study application, as well as preliminary virtual experiments that allow exploring the full statistical space of travel and residence times.

  16. Generic incommensurate transition in the two-dimensional boson Hubbard model

    NASA Astrophysics Data System (ADS)

    Alet, Fabien; Sørensen, Erik S.

    2004-07-01

    The generic transition in the boson Hubbard model, occurring at an incommensurate chemical potential, is studied in the link-current representation using the recently developed directed geometrical worm algorithm. We find clear evidence for a multipeak structure in the energy distribution for finite lattices, usually indicative of a first-order phase transition. However, this multipeak structure is shown to disappear in the thermodynamic limit, revealing that the true phase transition is second order. These findings cast doubts over the conclusion drawn in a number of previous works considering the relevance of disorder at this transition.

  17. Heterogeneous recurrence representation and quantification of dynamic transitions in continuous nonlinear processes

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Yang, Hui

    2016-06-01

    Many real-world systems are evolving over time and exhibit dynamical behaviors. In order to cope with system complexity, sensing devices are commonly deployed to monitor system dynamics. Online sensing brings the proliferation of big data that are nonlinear and nonstationary. Although there is rich information on nonlinear dynamics, significant challenges remain in realizing the full potential of sensing data for system control. This paper presents a new approach of heterogeneous recurrence analysis for online monitoring and anomaly detection in nonlinear dynamic processes. A partition scheme, named as Q-tree indexing, is firstly introduced to delineate local recurrence regions in the multi-dimensional continuous state space. Further, we design a new fractal representation of state transitions among recurrence regions, and then develop new measures to quantify heterogeneous recurrence patterns. Finally, we develop a multivariate detection method for on-line monitoring and predictive control of process recurrences. Case studies show that the proposed approach not only captures heterogeneous recurrence patterns in the transformed space, but also provides effective online control charts to monitor and detect dynamical transitions in the underlying nonlinear processes.

  18. Reaction-diffusion processes and metapopulation models in heterogeneous networks

    NASA Astrophysics Data System (ADS)

    Colizza, Vittoria; Pastor-Satorras, Romualdo; Vespignani, Alessandro

    2007-04-01

    Dynamical reaction-diffusion processes and metapopulation models are standard modelling approaches for a wide array of phenomena in which local quantities-such as density, potentials and particles-diffuse and interact according to the physical laws. Here, we study the behaviour of the basic reaction-diffusion process (given by the reaction steps B-->A and B+A-->2B) defined on networks with heterogeneous topology and no limit on the nodes' occupation number. We investigate the effect of network topology on the basic properties of the system's phase diagram and find that the network heterogeneity sustains the reaction activity even in the limit of a vanishing density of particles, eventually suppressing the critical point in density-driven phase transitions, whereas phase transition and critical points independent of the particle density are not altered by topological fluctuations. This work lays out a theoretical and computational microscopic framework for the study of a wide range of realistic metapopulation and agent-based models that include the complex features of real-world networks.

  19. Discontinuous phase transition in an annealed multi-state majority-vote model

    NASA Astrophysics Data System (ADS)

    Li, Guofeng; Chen, Hanshuang; Huang, Feng; Shen, Chuansheng

    2016-07-01

    In this paper, we generalize the original majority-vote (MV) model with noise from two states to arbitrary q states, where q is an integer no less than two. The main emphasis is paid to the comparison on the nature of phase transitions between the two-state MV (MV2) model and the three-state MV (MV3) model. By extensive Monte Carlo simulation and mean-field analysis, we find that the MV3 model undergoes a discontinuous order-disorder phase transition, in contrast to a continuous phase transition in the MV2 model. A central feature of such a discontinuous transition is a strong hysteresis behavior as noise intensity goes forward and backward. Within the hysteresis region, the disordered phase and ordered phase are coexisting.

  20. Articulating Roles and Responsibilities in the Transition Planning Process: A Practice Aimed at Figuring out How to Work Together. Transitions

    ERIC Educational Resources Information Center

    Murphy, Marianne; Golden, Thomas

    2004-01-01

    It is clear that the intention of the Rehabilitation Act of 1973 and the Individual with Disabilities Education Act of 1997 require both the Education Agency and the Vocational Rehabilitation Agency (VESID, in New York State) to jointly participate in the development of transition plans for students with disabilities as they prepare for employment…

  1. The role of the posterior superior temporal sulcus in the processing of unmarked transitivity.

    PubMed

    Grewe, Tanja; Bornkessel-Schlesewsky, Ina; Zysset, Stefan; Wiese, Richard; von Cramon, D Yves; Schlesewsky, Matthias

    2007-03-01

    Is it living or not? The ability to differentiate between animate and inanimate entities is of considerable value in everyday life, since it allows for the dissociation of individuals that may willfully cause an action from objects that cannot. The present fMRI study aimed to shed light on the neural correlates of animacy at a relational-interpretive level, i.e. on the role of animacy in the establishment of relations between entities that are more or less likely to cause an event and differ in their potential to act volitionally. To this end, we investigated the processing of visually presented transitive German sentences (nominative-accusative structures) in which the factors animacy and argument order were manipulated. The relations between the arguments differed in that the animate subject either acted on an inanimate object (a very natural construction in terms of transitivity) or on an animate object (resulting in a sentence deviating from an unmarked transitive structure). Participants performed an acceptability judgment task. Violations of unmarked transitivity yielded a significant activation increase within the posterior left superior temporal sulcus (pSTS), thus suggesting a specific role of this cortical region in the relational use of animacy information. This result indicates that the influence of animacy as a relational feature differs from the impact of this parameter on the word level and is in line with other neuroimaging studies showing an engagement of the pSTS when a matching between syntax and semantics is required. A comparison between object- and subject-initial conditions further revealed a robust effect of argument order in the pars opercularis of the left inferior frontal gyrus (a subregion of Broca's area), thereby replicating previous findings demonstrating a sensitivity of this region to fine-grained language-specific linearization rules. PMID:17222565

  2. Phase transition processes and magnetocaloric effects in the Heusler alloys NiMnGa with concurrence of magnetic and structural phase transition

    NASA Astrophysics Data System (ADS)

    Long, Y.; Zhang, Z. Y.; Wen, D.; Wu, G. H.; Ye, R. C.; Chang, Y. Q.; Wan, F. R.

    2005-08-01

    The Ni2MnGa-based Heusler alloys with high magnetocaloric effect have attracted considerable attention as a promising magnetic refrigerant. The phase-transition processes and magnetic entropy changes in the NiMnGa alloys with the concurrence of magnetic and structural phase transitions were studied. The ac magnetic susceptibility results showed the magnetic transition occurred during the reverse martensitic phase transition in the Ni55.5Mn20Ga24.5 alloy and the direct transition from the ferromagnetic matrensitic phase to the paramagnetic austenitic phase occurred in the Ni54.9Mn20.5Ga24.6 alloy. When the magnetic field had changed to 2 T, a comparable large magnetic entropy change was observed in both the Ni55.5Mn20Ga24.5 and Ni54.9Mn20.5Ga24.6 alloys, which is speculated as the result of the discontinuous change of magnetization near the phase transition.

  3. Modeling approach for business process reengineering

    NASA Astrophysics Data System (ADS)

    Tseng, Mitchell M.; Chen, Yuliu

    1995-08-01

    The purpose of this paper is to introduce a modeling approach to define, simulate, animate, and control business processes. The intent is to introduce the undergoing methodology to build tools for designing and managing business processes. Similar to computer aided design (CAD) for mechanical parts, CAD tools are needed for designing business processes. It emphasizes the dynamic behavior of business process. The proposed modeling technique consists of a definition of each individual activity, the network of activities, a control mechanism that describes coordination of these activities, and events that will flow through these activities. Based on the formalism introduced in this modeling technique, users will be able to define business process with minimum ambiguity, take snap shots of particular events in the process, describe the accountability of participants, and view a replay of event streams in the process flow. This modeling approach, mapped on top of a commercial software, has been tested by using examples from real life business process. The examples and testing helped us to identify some of the strengths and weaknesses of this proposed approach.

  4. A transferable coarse-grained model for diphenylalanine: How to represent an environment driven conformational transition

    SciTech Connect

    Dalgicdir, Cahit; Sensoy, Ozge; Sayar, Mehmet; Peter, Christine

    2013-12-21

    One of the major challenges in the development of coarse grained (CG) simulation models that aim at biomolecular structure formation processes is the correct representation of an environment-driven conformational change, for example, a folding/unfolding event upon interaction with an interface or upon aggregation. In the present study, we investigate this transferability challenge for a CG model using the example of diphenylalanine. This dipeptide displays a transition from a trans-like to a cis-like conformation upon aggregation as well as upon transfer from bulk water to the cyclohexane/water interface. Here, we show that one can construct a single CG model that can reproduce both the bulk and interface conformational behavior and the segregation between hydrophobic/hydrophilic medium. While the general strategy to obtain nonbonded interactions in the present CG model is to reproduce solvation free energies of small molecules representing the CG beads in the respective solvents, the success of the model strongly depends on nontrivial decisions one has to make to capture the delicate balance between the bonded and nonbonded interactions. In particular, we found that the peptide's conformational behavior is qualitatively affected by the cyclohexane/water interaction potential, an interaction that does not directly involve the peptide at all but merely influences the properties of the hydrophobic/hydrophilic interface. Furthermore, we show that a small modification to improve the structural/conformational properties of the CG model could dramatically alter the thermodynamic properties.

  5. The (Mathematical) Modeling Process in Biosciences

    PubMed Central

    Torres, Nestor V.; Santos, Guido

    2015-01-01

    In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology. PMID:26734063

  6. Modeling aerosol processes at the local scale

    SciTech Connect

    Lazaridis, M.; Isukapalli, S.S.; Georgopoulos, P.G.

    1998-12-31

    This work presents an approach for modeling photochemical gaseous and aerosol phase processes in subgrid plumes from major localized (e.g. point) sources (plume-in-grid modeling), thus improving the ability to quantify the relationship between emission source activity and ambient air quality. This approach employs the Reactive Plume Model (RPM-AERO) which extends the regulatory model RPM-IV by incorporating aerosol processes and heterogeneous chemistry. The physics and chemistry of elemental carbon, organic carbon, sulfate, sodium, chloride and crustal material of aerosols are treated and attributed to the PM size distribution. A modified version of the Carbon Bond IV chemical mechanism is included to model the formation of organic aerosol, and the inorganic multicomponent atmospheric aerosol equilibrium model, SEQUILIB is used for calculating the amounts of inorganic species in particulate matter. Aerosol dynamics modeled include mechanisms of nucleation, condensation and gas/particle partitioning of organic matter. An integrated trajectory-in-grid modeling system, UAM/RPM-AERO, is under continuing development for extracting boundary and initial conditions from the mesoscale photochemical/aerosol model UAM-AERO. The RPM-AERO is applied here to case studies involving emissions from point sources to study sulfate particle formation in plumes. Model calculations show that homogeneous nucleation is an efficient process for new particle formation in plumes, in agreement with previous field studies and theoretical predictions.

  7. Modeling phase transitions during the crystallization of a multicomponent fat under shear

    SciTech Connect

    Mazzanti, Gianfranco; Marangoni, Alejandro G.; Idziak, Stefan H.J.

    2005-04-01

    The crystallization of multicomponent systems involves several competing physicochemical processes that depend on composition, temperature profiles, and shear rates applied. Research on these mechanisms is necessary in order to understand how natural materials form crystalline structures. Palm oil was crystallized in a Couette cell at 17 and 22 deg. C under shear rates ranging from 0 to 2880 s{sup -1} at a synchrotron beamline. Two-dimensional x-ray diffraction patterns were captured at short time intervals during the crystallization process. Radial analysis of these patterns showed shear-induced acceleration of the phase transition from {alpha} to {beta}{sup '}. This effect can be explained by a simple model where the {alpha} phase nucleates from the melt, a process which occurs independently of shear rate. The {alpha} phase grows according to an Avrami growth model. The {beta}{sup '} phase nucleates on the {alpha} crystallites, with the amount of {beta}{sup '} crystal formation dependent on the rate of transformation of {alpha} to {beta}{sup '} as well as the growth rate of the {beta}{sup '} phase from the melt. The shear induced {alpha}-{beta}{sup '} phase transition acceleration occurs because under shear, the {alpha} nuclei form many distinct small crystallites which can easily transform to the {beta}{sup '} form, while at lower shear rates, the {alpha} nuclei tend to aggregate, thus retarding the nucleation of the {beta}{sup '} crystals. The displacement of the diffraction peak positions revealed that increased shear rate promotes the crystallization of the higher melting fraction, affecting the composition of the crystallites. Crystalline orientation was observed only at shear rates above 180 s{sup -1} at 17 deg. C and 720 s{sup -1} at 22 deg. C.

  8. The Epidemic Process and The Contagion Model

    ERIC Educational Resources Information Center

    Worthen, Dennis B.

    1973-01-01

    Goffman's epidemic theory is presented and compared to the contagion theory developed by Menzel. An attempt is made to compare the two models presented and examine their similarities and differences. The conclusion drawn is that the two models are very similar in their approach to understanding communication processes. (14 references) (Author/SJ)

  9. Dynamic process modeling with recurrent neural networks

    SciTech Connect

    You, Yong; Nikolaou, M. . Dept. of Chemical Engineering)

    1993-10-01

    Mathematical models play an important role in control system synthesis. However, due to the inherent nonlinearity, complexity and uncertainty of chemical processes, it is usually difficult to obtain an accurate model for a chemical engineering system. A method of nonlinear static and dynamic process modeling via recurrent neural networks (RNNs) is studied. An RNN model is a set of coupled nonlinear ordinary differential equations in continuous time domain with nonlinear dynamic node characteristics as well as both feed forward and feedback connections. For such networks, each physical input to a system corresponds to exactly one input to the network. The system's dynamics are captured by the internal structure of the network. The structure of RNN models may be more natural and attractive than that of feed forward neural network models, but computation time for training is longer. Simulation results show that RNNs can learn both steady-state relationships and process dynamics of continuous and batch, single-input/single-output and multi-input/multi-output systems in a simple and direct manner. Training of RNNs shows only small degradation in the presence of noise in the training data. Thus, RNNs constitute a feasible alternative to layered feed forward back propagation neural networks in steady-state and dynamic process modeling and model-based control.

  10. Modeling of fluidized bed silicon deposition process

    NASA Technical Reports Server (NTRS)

    Kim, K.; Hsu, G.; Lutwack, R.; PRATURI A. K.

    1977-01-01

    The model is intended for use as a means of improving fluidized bed reactor design and for the formulation of the research program in support of the contracts of Silicon Material Task for the development of the fluidized bed silicon deposition process. A computer program derived from the simple modeling is also described. Results of some sample calculations using the computer program are shown.

  11. Theoretical Models and Processes of Reading.

    ERIC Educational Resources Information Center

    Singer, Harry, Ed.; Ruddell, Robert B., Ed.

    The first section of this two-part collection of articles contains six papers and their discussions read at a symposium on Theoretical Models and Processes of Reading. The papers cover the linguistic, perceptual, and cognitive components involved in reading. The models attempt to integrate the variables that influence the perception, recognition,…

  12. Modeling biochemical transformation processes and information processing with Narrator

    PubMed Central

    Mandel, Johannes J; Fuß, Hendrik; Palfreyman, Niall M; Dubitzky, Werner

    2007-01-01

    Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a flexible and intuitive systems

  13. Spiked Dirichlet Process Priors for Gaussian Process Models

    PubMed Central

    Savitsky, Terrance; Vannucci, Marina

    2013-01-01

    We expand a framework for Bayesian variable selection for Gaussian process (GP) models by employing spiked Dirichlet process (DP) prior constructions over set partitions containing covariates. Our approach results in a nonparametric treatment of the distribution of the covariance parameters of the GP covariance matrix that in turn induces a clustering of the covariates. We evaluate two prior constructions: the first one employs a mixture of a point-mass and a continuous distribution as the centering distribution for the DP prior, therefore, clustering all covariates. The second one employs a mixture of a spike and a DP prior with a continuous distribution as the centering distribution, which induces clustering of the selected covariates only. DP models borrow information across covariates through model-based clustering. Our simulation results, in particular, show a reduction in posterior sampling variability and, in turn, enhanced prediction performances. In our model formulations, we accomplish posterior inference by employing novel combinations and extensions of existing algorithms for inference with DP prior models and compare performances under the two prior constructions. PMID:23950763

  14. Filament winding cylinders. I - Process model

    NASA Technical Reports Server (NTRS)

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    A model was developed which describes the filament winding process of composite cylinders. The model relates the significant process variables such as winding speed, fiber tension, and applied temperature to the thermal, chemical and mechanical behavior of the composite cylinder and the mandrel. Based on the model, a user friendly code was written which can be used to calculate (1) the temperature in the cylinder and the mandrel, (2) the degree of cure and viscosity in the cylinder, (3) the fiber tensions and fiber positions, (4) the stresses and strains in the cylinder and in the mandrel, and (5) the void diameters in the cylinder.

  15. Lower solar chromosphere-corona transition region. I - Theoretical models with small temperature gradients

    NASA Technical Reports Server (NTRS)

    Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.

    1990-01-01

    A study of transition region models including the effects of classical thermal conduction, heating, and radiative cooling is carried out with attention directed toward the problem of understanding the observed emission in the lower transition region. It is found that the observationally inferred emission measure curve implies a near-balance between heating and radiative cooling in the lower transition region, and that the presence of strong hydrogen Ly-alpha cooling leads to the existence of singularities in the solutions of the force balance and energy balance equations when such a near-balance between heating and cooling is assumed. These singularities place strong constraints on the nature of viable models of the lower transition region and must be considered when Ly-alpha cooling is important. Previously suggested explanations of the observed emission from the lower transition region are considered in the context of the results of the present study, and conditions for the applicability of these suggested explanations are discussed.

  16. Alternative method to characterize continuous and discontinuous phase transitions in surface reaction models

    NASA Astrophysics Data System (ADS)

    Fernandes, Henrique A.; da Silva, Roberto; Santos, Eder D.; Gomes, Paulo F.; Arashiro, Everaldo

    2016-08-01

    In this paper we revisited the Ziff-Gulari-Barshad model to study its phase transitions and critical exponents through time-dependent Monte Carlo simulations. We use a method proposed recently to locate the nonequilibrium second-order phase transitions and that has been successfully used in systems with defined Hamiltonians and with absorbing states. This method, which is based on optimization of the coefficient of determination of the order parameter, was able to characterize the continuous phase transition of the model, as well as its upper spinodal point, a pseudocritical point located near the discontinuous phase transition. The static critical exponents β , ν∥, and ν⊥, as well as the dynamic critical exponents θ and z for the continuous transition point, were also estimated and are in excellent agreement with results found in literature.

  17. Alternative method to characterize continuous and discontinuous phase transitions in surface reaction models.

    PubMed

    Fernandes, Henrique A; da Silva, Roberto; Santos, Eder D; Gomes, Paulo F; Arashiro, Everaldo

    2016-08-01

    In this paper we revisited the Ziff-Gulari-Barshad model to study its phase transitions and critical exponents through time-dependent Monte Carlo simulations. We use a method proposed recently to locate the nonequilibrium second-order phase transitions and that has been successfully used in systems with defined Hamiltonians and with absorbing states. This method, which is based on optimization of the coefficient of determination of the order parameter, was able to characterize the continuous phase transition of the model, as well as its upper spinodal point, a pseudocritical point located near the discontinuous phase transition. The static critical exponents β, ν_{∥}, and ν_{⊥}, as well as the dynamic critical exponents θ and z for the continuous transition point, were also estimated and are in excellent agreement with results found in literature. PMID:27627268

  18. Using Perspective to Model Complex Processes

    SciTech Connect

    Kelsey, R.L.; Bisset, K.R.

    1999-04-04

    The notion of perspective, when supported in an object-based knowledge representation, can facilitate better abstractions of reality for modeling and simulation. The object modeling of complex physical and chemical processes is made more difficult in part due to the poor abstractions of state and phase changes available in these models. The notion of perspective can be used to create different views to represent the different states of matter in a process. These techniques can lead to a more understandable model. Additionally, the ability to record the progress of a process from start to finish is problematic. It is desirable to have a historic record of the entire process, not just the end result of the process. A historic record should facilitate backtracking and re-start of a process at different points in time. The same representation structures and techniques can be used to create a sequence of process markers to represent a historic record. By using perspective, the sequence of markers can have multiple and varying views tailored for a particular user's context of interest.

  19. Modeling the VARTM Composite Manufacturing Process

    NASA Technical Reports Server (NTRS)

    Song, Xiao-Lan; Loos, Alfred C.; Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal

    2004-01-01

    A comprehensive simulation model of the Vacuum Assisted Resin Transfer Modeling (VARTM) composite manufacturing process has been developed. For isothermal resin infiltration, the model incorporates submodels which describe cure of the resin and changes in resin viscosity due to cure, resin flow through the reinforcement preform and distribution medium and compaction of the preform during the infiltration. The accuracy of the model was validated by measuring the flow patterns during resin infiltration of flat preforms. The modeling software was used to evaluate the effects of the distribution medium on resin infiltration of a flat preform. Different distribution medium configurations were examined using the model and the results were compared with data collected during resin infiltration of a carbon fabric preform. The results of the simulations show that the approach used to model the distribution medium can significantly effect the predicted resin infiltration times. Resin infiltration into the preform can be accurately predicted only when the distribution medium is modeled correctly.

  20. From Business Value Model to Coordination Process Model

    NASA Astrophysics Data System (ADS)

    Fatemi, Hassan; van Sinderen, Marten; Wieringa, Roel

    The increased complexity of business webs calls for modeling the collaboration of enterprises from different perspectives, in particular the business and process perspectives, and for mutually aligning these perspectives. Business value modeling and coordination process modeling both are necessary for a good e-business design, but these activities have different goals and use different concepts. Nevertheless, the resulting models should be consistent with each other because they refer to the same system from different perspectives. Hence, checking the consistency between these models or producing one based on the other would be of high value. In this paper we discuss the issue of achieving consistency in multi-level e-business design and give guidelines to produce consistent coordination process models from business value models in a stepwise manner.