Sample records for process vacuum system

  1. Apollo Experiment Report: Lunar-Sample Processing in the Lunar Receiving Laboratory High-Vacuum Complex

    NASA Technical Reports Server (NTRS)

    White, D. R.

    1976-01-01

    A high-vacuum complex composed of an atmospheric decontamination system, sample-processing chambers, storage chambers, and a transfer system was built to process and examine lunar material while maintaining quarantine status. Problems identified, equipment modifications, and procedure changes made for Apollo 11 and 12 sample processing are presented. The sample processing experiences indicate that only a few operating personnel are required to process the sample efficiently, safely, and rapidly in the high-vacuum complex. The high-vacuum complex was designed to handle the many contingencies, both quarantine and scientific, associated with handling an unknown entity such as the lunar sample. Lunar sample handling necessitated a complex system that could not respond rapidly to changing scientific requirements as the characteristics of the lunar sample were better defined. Although the complex successfully handled the processing of Apollo 11 and 12 lunar samples, the scientific requirement for vacuum samples was deleted after the Apollo 12 mission just as the vacuum system was reaching its full potential.

  2. Troubleshooting crude vacuum tower overhead ejector systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lines, J.R.; Frens, L.L.

    1995-03-01

    Routinely surveying tower overhead vacuum systems can improve performance and product quality. These vacuum systems normally provide reliable and consistent operation. However, process conditions, supplied utilities, corrosion, erosion and fouling all have an impact on ejector system performance. Refinery vacuum distillation towers use ejector systems to maintain tower top pressure and remove overhead gases. However, as with virtually all refinery equipment, performance may be affected by a number of variables. These variables may act independently or concurrently. It is important to understand basic operating principles of vacuum systems and how performance is affected by: utilities, corrosion and erosion, fouling, andmore » process conditions. Reputable vacuum-system suppliers have service engineers that will come to a refinery to survey the system and troubleshoot performance or offer suggestions for improvement. A skilled vacuum-system engineer may be needed to diagnose and remedy system problems. The affect of these variables on performance is discussed. A case history is described of a vacuum system on a crude tower in a South American refinery.« less

  3. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1984-01-01

    An apparatus is disclosed which includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a dc magnetron sputtering system. A gas inlet introduces various gases to the vacuum chamber and creates various gas plasma during the sputtering steps. The rotating turntables insure that the respective wafers are present under the sputtering guns for an average amount of time such that consistency in sputtering and deposition is achieved. By continuous and sequential processing of the wafers in a common vacuum chamber without removal, the adverse affects of exposure to atmospheric conditions are eliminated providing higher quality circuit contacts and functional device.

  4. Method for sequentially processing a multi-level interconnect circuit in a vacuum chamber

    NASA Technical Reports Server (NTRS)

    Routh, D. E.; Sharma, G. C. (Inventor)

    1982-01-01

    The processing of wafer devices to form multilevel interconnects for microelectronic circuits is described. The method is directed to performing the sequential steps of etching the via, removing the photo resist pattern, back sputtering the entire wafer surface and depositing the next layer of interconnect material under common vacuum conditions without exposure to atmospheric conditions. Apparatus for performing the method includes a vacuum system having a vacuum chamber in which wafers are processed on rotating turntables. The vacuum chamber is provided with an RF sputtering system and a DC magnetron sputtering system. A gas inlet is provided in the chamber for the introduction of various gases to the vacuum chamber and the creation of various gas plasma during the sputtering steps.

  5. Effective Porosity Measurements by Wet- and Dry-type Vacuum Saturations using Process-Programmable Vacuum Saturation System

    NASA Astrophysics Data System (ADS)

    Lee, T. J.; Lee, K. S., , Dr; Lee, S. K.

    2017-12-01

    One of the most important factors in measuring effective porosity by vacuum saturation method is that the air in the pore space can be fully substituted by water during the vacuum saturation process. International Society of Rock Mechanics (ISRM) suggests vacuuming a rock sample submerged in the water, while American Society of Test and Materials (ASTM) vacuuming the sample and water separately and then pour the water to the sample. In this study, we call the former wet-type vacuum saturation (WVS) method and the latter dry-type vacuum saturation (DVS) method, and compare the effective porosity measured by the two different vacuum saturation processes. For that purpose, a vacuum saturation system has been developed, which can support both WVS and DVS by only changing the process by programming. Comparison of effective porosity has been made for a cement mortar and rock samples. As a result, DVS can substitute more void volume to water than WVS, which in turn insists that DVS can provide more exact value of effective porosity than WVS.

  6. Vacuum pumps and systems: A review of current practice

    NASA Technical Reports Server (NTRS)

    Giles, Stuart

    1986-01-01

    A review of the fundamental characteristics of the many types of vacuum pumps and vacuum pumping systems is given. The optimum pumping range, relative cost, performance limitations, maintenance problems, system operating costs and similar subjects are discussed. Experiences from the thin film deposition, chemical processing, material handling, food processing and other industries, as well as space simulation are used to support conclusions and recommendations.

  7. Application of programmable logic controllers to space simulation

    NASA Technical Reports Server (NTRS)

    Sushon, Janet

    1992-01-01

    Incorporating a state-of-the-art process control and instrumentation system into a complex system for thermal vacuum testing is discussed. The challenge was to connect several independent control systems provided by various vendors to a supervisory computer. This combination will sequentially control and monitor the process, collect the data, and transmit it to color a graphic system for subsequent manipulation. The vacuum system upgrade included: replacement of seventeen diffusion pumps with eight cryogenic pumps and one turbomolecular pump, replacing a relay based control system, replacing vacuum instrumentation, and upgrading the data acquisition system.

  8. Robot design for a vacuum environment

    NASA Technical Reports Server (NTRS)

    Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.

    1987-01-01

    The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.

  9. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  10. Vacuum status-display and sector-conditioning programs

    NASA Astrophysics Data System (ADS)

    Skelly, J.; Yen, S.

    1990-08-01

    Two programs have been developed for observation and control of the AGS vacuum system, which include the following notable features: (1) they incorporate a graphical user interface and (2) they are driven by a relational database which describes the vacuum system. The vacuum system comprises some 440 devices organized into 28 vacuum sectors. The status-display program invites menu selection of a sector, interrogates the relational database for relevant vacuum devices, acquires live readbacks and posts a graphical display of their status. The sector-conditioning program likewise invites sector selection, produces the same status display and also implements process control logic on the sector devices to pump the sector down from atmospheric pressure to high vacuum over a period extending several hours. As additional devices are installed in the vacuum system, the devices are added to the relational database; these programs then automatically include the new devices.

  11. Internal motion in high vacuum systems

    NASA Astrophysics Data System (ADS)

    Frank, J. M.

    Three transfer and positioning mechanisms have been developed for the non-air exposed, multistep processing of components in vacuum chambers. The functions to be performed in all of the systems include ultraviolet/ozone cleaning, vacuum baking, deposition of thin films, and thermocompression sealing of the enclosures. Precise positioning of the components is required during the evaporation and sealing processes. The three methods of transporting and positioning the components were developed to accommodate the design criteria and goals of each individual system. The design philosophy, goals, and operation of the three mechanisms are discussed.

  12. Processing and Properties of a Phenolic Composite System

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Bai, J. M.; Baughman, James M.

    2006-01-01

    Phenolic resin systems generate water as a reaction by-product via condensation reactions during curing at elevated temperatures. In the fabrication of fiber reinforced phenolic resin matrix composites, volatile management is crucial in producing void-free quality laminates. A commercial vacuum-bag moldable phenolic prepreg system was selected for this study. The traditional single-vacuum-bag (SVB) process was unable to manage the volatiles effectively, resulting in inferior voidy laminates. However, a double vacuum bag (DVB) process was shown to afford superior volatile management and consistently yielded void-free quality parts. The DVB process cure cycle (temperature /pressure profiles) for the selected composite system was designed, with the vacuum pressure application point carefully selected, to avoid excessive resin squeeze-outs and achieve the net shape and target resin content in the final consolidated laminate parts. Laminate consolidation quality was characterized by optical photomicrography for the cross sections and measurements of mechanical properties. A 40% increase in short beam shear strength, 30% greater flexural strength, 10% higher tensile and 18% higher compression strengths were obtained in composite laminates fabricated by the DVB process.

  13. Fiber Bragg grating sensors for real-time monitoring of evacuation process

    NASA Astrophysics Data System (ADS)

    Guru Prasad, A. S.; Hegde, Gopalkrishna M.; Asokan, S.

    2010-03-01

    Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

  14. Development of a large low-cost double-chamber vacuum laminator

    NASA Technical Reports Server (NTRS)

    Burger, D. R.

    1983-01-01

    A double-chamber vacuum laminator was required to investigate the processing and control of the fabrication of large terrestrial photovoltaic modules, and economic problems arising therefrom. Major design considerations were low cost, process flexibility and the exploration of novel equipment approaches. Spherical end caps for industrial tanks were used for the vacuum chambers. A stepping programmer and adjustable timers were used for process flexibility. New processing options were obtained by use of vacuum sensors. The upper vacuum chamber was provided with a diaphragm support to reduce diaphragm stress. A counterweight was used for handling ease and safety. Heat was supplied by a large electrical strip heater. Thermal isolation and mechanical support were provided inexpensively by a bed of industrial marbles. Operational testing disclosed the need for a differential vacuum gauge and proportional valve. Reprogramming of the process control system was simple and quick.

  15. David Florida Laboratory Thermal Vacuum Data Processing System

    NASA Technical Reports Server (NTRS)

    Choueiry, Elie

    1994-01-01

    During 1991, the Space Simulation Facility conducted a survey to assess the requirements and analyze the merits for purchasing a new thermal vacuum data processing system for its facilities. A new, integrated, cost effective PC-based system was purchased which uses commercial off-the-shelf software for operation and control. This system can be easily reconfigured and allows its users to access a local area network. In addition, it provides superior performance compared to that of the former system which used an outdated mini-computer and peripheral hardware. This paper provides essential background on the old data processing system's features, capabilities, and the performance criteria that drove the genesis of its successor. This paper concludes with a detailed discussion of the thermal vacuum data processing system's components, features, and its important role in supporting our space-simulation environment and our capabilities for spacecraft testing. The new system was tested during the ANIK E spacecraft test, and was fully operational in November 1991.

  16. Evaluation of Double-Vacuum-Bag Process For Composite Fabrication

    NASA Technical Reports Server (NTRS)

    Hou, T. H.; Jensen, B. J.

    2004-01-01

    A non-autoclave vacuum bag process using atmospheric pressure alone that eliminates the need for external pressure normally supplied by an autoclave or a press is an attractive method for composite fabrication. This type of process does not require large capital expenditures for tooling and processing equipment. In the molding cycle (temperature/pressure profile) for a given composite system, the vacuum application point has to be carefully selected to achieve the final consolidated laminate net shape and resin content without excessive resin squeeze-out. The traditional single-vacuum- bag (SVB) process is best suited for molding epoxy matrix based composites because of their superior flow and the absence of reaction by-products or other volatiles. Other classes of materials, such as polyimides and phenolics, generate water during cure. In addition, these materials are commonly synthesized as oligomers using solvents to facilitate processability. Volatiles (solvents and reaction byproducts) management therefore becomes a critical issue. SVB molding, without additional pressure, normally fails to yield void-free quality composites for these classes of resin systems. A double-vacuum- bag (DVB) process for volatile management was envisioned, designed and built at the NASA Langley Research Center. This experimental DVB process affords superior volatiles management compared to the traditional SVB process. Void-free composites are consistently fabricated as measured by C-scan and optical photomicroscopy for high performance polyimide and phenolic resins.

  17. Spent nuclear fuel project cold vacuum drying facility operations manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IRWIN, J.J.

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of themore » CVDF until the CVDF final ORR is approved.« less

  18. [Laser-induced breakdown spectroscopy system for elements analysis in high-temperature and vacuum environment].

    PubMed

    Pan, Cong-Yuan; Du, Xue-Wei; An, Ning; Han, Zhen-Yu; Wang, Sheng-Bo; Wei, Wei; Wang, Qiu-Ping

    2013-12-01

    Laser-induced breakdown spectroscopy (LIBS) is one of the most promising technologies to be applied to metallurgical composition online monitoring in these days. In order to study the spectral characters of LIBS spectrum and to investigate the quantitative analysis method of material composition under vacuum and high temperature environment, a LIBS measurement system was designed and set up which can be used for conducting experiments with high-temperature or molten samples in different vacuum environment. The system consists of a Q-switched Nd : YAG laser used as the light source, lens with different focus lengths used for laser focusing and spectrum signal collecting, a spectrometer used for detecting the signal of LIBS spectrums, and a vacuum system for holding and heating the samples while supplying a vacuum environment. The vacuum was achieved and maintained by a vacuum pump and an electric induction furnace was used for heating the system. The induction coil was integrated to the vacuum system by attaching to a ceramic sealing flange. The system was installed and testified, and the results indicate that the vacuum of the system can reach 1X 10(-4) Pa without heating, while the heating temperature could be about 1 600 degreeC, the system can be used for melting metal samples such as steel and aluminum and get the LIBS spectrum of the samples at the same time. Utilizing this system, LIBS experiments were conducted using standard steel samples under different vacuum or high-temperature conditions. Results of comparison between LIBS spectrums of solid steel samples under different vacuum were achieved, and so are the spectrums of molten and solid steel samples under vacuum environment. Through data processing and theoretical analyzing of these spectrums, the initial results of those experiments are in good agreement with the results that are presently reported, which indicates that the whole system functions well and is available for molten metal LIBS experiment under vacuum environment.

  19. Note: A simple sample transfer alignment for ultra-high vacuum systems.

    PubMed

    Tamtögl, A; Carter, E A; Ward, D J; Avidor, N; Kole, P R; Jardine, A P; Allison, W

    2016-06-01

    The alignment of ultra-high-vacuum sample transfer systems can be problematic when there is no direct line of sight to assist the user. We present the design of a simple and cheap system which greatly simplifies the alignment of sample transfer devices. Our method is based on the adaptation of a commercial digital camera which provides live views from within the vacuum chamber. The images of the camera are further processed using an image recognition and processing code which determines any misalignments and reports them to the user. Installation has proven to be extremely useful in order to align the sample with respect to the transfer mechanism. Furthermore, the alignment software can be easily adapted for other systems.

  20. Out of the Autoclave Fabrication of LaRC[TradeMark] PETI-9 Polyimide Laminates

    NASA Technical Reports Server (NTRS)

    Cano, Robert J.; Jensen, Brian J.

    2013-01-01

    The NASA Langley Research Center developed polyimide system, LaRC PETI-9, has successfully been processed into composites by high temperature vacuum assisted resin transfer molding (HT-VARTM). To extend the application of this high use temperature material to other out-of-autoclave (OOA) processing techniques, the fabrication of PETI- 9 laminates was evaluated using only a vacuum bag and oven cure. A LaRC PETI-9 polyimide solution in NMP was prepared and successfully utilized to fabricate unidirectional IM7 carbon fiber prepreg that was subsequently processed into composites with a vacuum bag and oven cure OOA process. Composite panels of good quality were successfully fabricated and mechanically tested. Processing characteristics, composite panel quality and mechanical properties are presented in this work. The resultant properties are compared to previously developed LaRC material systems processed by both autoclave and OOA techniques including the well characterized, autoclave processed LaRC PETI-5.

  1. Cold Vacuum Drying facility civil structural system design description (SYS 06)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PITKOFF, C.C.

    This document describes the Cold Vacuum Drying (CVD) Facility civil - structural system. This system consists of the facility structure, including the administrative and process areas. The system's primary purpose is to provide for a facility to house the CVD process and personnel and to provide a tertiary level of containment. The document provides a description of the facility and demonstrates how the design meets the various requirements imposed by the safety analysis report and the design requirements document.

  2. Development of a Control System for the Teat-End Vacuum in Individual Quarter Milking Systems

    PubMed Central

    Ströbel, Ulrich; Rose-Meierhöfer, Sandra; Öz, Hülya; Brunsch, Reiner

    2013-01-01

    Progress in sensor technique and electronics has led to a decrease in the costs of electronic and sensor components. In modern dairy farms, having udders in good condition, a lower frequency of udder disease and an extended service life of dairy cows will help ensure competitiveness. The objective of this study was to develop a teat-end vacuum control system with individual quarter actor reaction. Based on a review of the literature, this system is assumed to protect the teat tissue. It reduces the mean teat-end vacuum in the maximum vacuum phase (b) to a level of 20 kPa at a flow rate of 0.25 L/min per quarter. At flow rates higher than 1.50 L/min per quarter, the teat-end vacuum can be controlled to a level of 30 kPa, because in this case it is desirable to have a higher vacuum for the transportation of the milk to the receiver. With this system it is possible for the first time to supply the teat end with low vacuum at low flow rates and with higher vacuum at increasing flow rates in a continuous process with a three second reaction-rate on individual quarter level. This system is completely automated. PMID:23765272

  3. Ejector/liquid ring pump provides <0. 30 mm Hg vacuum for polymerization vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockwood, A.; Gaines, A.

    1982-03-01

    Firestone Fibers and Textiles Company, a division of Firestone Tire and Rubber Company, manufactures tire and industrial yarns of polyester and nylon-6. Nylon-6 molding and extrusion resins are also produced at the plant in Hopewell, Virginia. The process for making polyester requires an extremely low vacuum on the polymerization reactor. A consistent polymerization vessel vacuum of 0.3 mm Hg is needed, but the existing vacuum source, a five-stage steam jet ejector, could only provide a 0.5 mm Hg level. Two options were considered when the company decided to replace the original system with a system designed for 0.15 mm Hgmore » with a non-condensible gas load of 10.8 lb/hr. A new five-stage jet ejector system to meet these requirements would use 1395 lb/hr of 100 psig steam. The other option was a hybrid vacuum source composed of a three-stage steam ejector system and a liquid ring vacuum pump that is more energy efficient than ejectors for low vacuum applications. The hybrid system was selected because the three-stage jet ejector would use only 1240 lb/hr of 100 psig steam. The liquid ring vacuum pump would increase the material and installation cost of the system by about $4000, but the savings in steam consumption would pay back the added cost in less than two years. The jet ejector/liquid ring vacuum pump system has provided both the capacity and the extremely low vacuum needed for the polyester polymerization vessel, after making a small modification. The hybrid vacuum source is reliable, requires only routine maintenance, and will contiue to save substantial amounts of steam each year compared to the five-stage steam jet ejector.« less

  4. Thermal Vacuum Control Systems Options for Test Facilities

    NASA Technical Reports Server (NTRS)

    Marchetti, John

    2008-01-01

    This presentation suggests several Thermal Vacuum System (TVAC) control design approach methods for TVAC facilities. Over the past several years many aerospace companies have or are currently upgrading their TVAC testing facilities whether it be by upgrading old equipment or purchasing new. In doing so they are updating vacuum pumping and thermal capabilities of their chambers as well as their control systems. Although control systems are sometimes are considered second to the vacuum or thermal system upgrade process, they should not be taken lightly and must be planned and implemented with the equipment it is to control. Also, emphasis should be placed on how the operators will use the system as well as the requirements of "their" customers. Presented will be various successful methods of TVAC control systems from Programmable Logic Controller (PLC) based to personal computer (PC) based control.

  5. U.S. Army Oxygen Generation System Development

    DTIC Science & Technology

    2010-04-01

    engines), scroll pumps , and rotary vane pumps . The turbo compressor is a design that trades the size and weight of the low speed compressors for a...is exposed to water. A guard bed of silica gel is used to protect the bed from moisture. A variation of the process ends the cycle using a vacuum ...phase. With the vacuum assist the total change of pressure is the same as the PSA process, but the maximum pressure is lower. Not only does the vacuum

  6. Magnetron Sputtering System for Novel Intrinsically Switchable Thin Film Ferroelectric Resonators and Filters

    DTIC Science & Technology

    2012-08-03

    the growth conditions and to improve film quality.    Mechanical  Scroll   Pump   The sputtering system requires a mechanical  scroll   pump  to bring the...load lock and main processing  chamber from atmospheric pressure to medium  vacuum . This particular type of  pump  does not expose  any part of the  vacuum ...additional  pump  to bring the main processing chamber from medium  vacuum  to ultrahigh  vacuum . Cryogenic  pumps  have no mechanical components and are

  7. Particle monitoring and control in vacuum processing equipment

    NASA Astrophysics Data System (ADS)

    Borden, Peter G., Dr.; Gregg, John

    1989-10-01

    Particle contamination during vacuum processes has emerged as the largest single source of yield loss in VLSI manufacturing. While a number of tools have been available to help understand the sources and nature of this contamination, only recently has it been possible to monitor free particle levels within vacuum equipment in real-time. As a result, a better picture is available of how particle contamination can affect a variety of processes. This paper reviews some of the work that has been done to monitor particles in vacuum loadlocks and in processes such as etching, sputtering and ion implantation. The aim has been to make free particles in vacuum equipment a measurable process parameter. Achieving this allows particles to be controlled using statistical process control. It will be shown that free particle levels in load locks correlate to wafer surface counts, device yield and process conditions, but that these levels are considerable higher during production than when dummy wafers are run to qualify a system. It will also be shown how real-time free particle monitoring can be used to monitor and control cleaning cycles, how major episodic events can be detected, and how data can be gathered in a format suitable for statistical process control.

  8. Assessment of Performance of the Industrial Process of Bulk Vacuum Packaging of Raw Meat with Nondestructive Optical Oxygen Sensing Systems.

    PubMed

    Kelly, Caroline A; Cruz-Romero, Malco; Kerry, Joseph P; Papkovsky, Dmitri P

    2018-05-02

    The commercially-available optical oxygen-sensing system Optech-O₂ Platinum was applied to nondestructively assess the in situ performance of bulk, vacuum-packaged raw beef in three ~300 kg containers. Twenty sensors were attached to the inner surface of the standard bin-contained laminate bag (10 on the front and back sides), such that after filling with meat and sealing under vacuum, the sensors were accessible for optical interrogation with the external reader device. After filling and sealing each bag, the sensors were measured repetitively and nondestructively over a 15-day storage period at 1 °C, thus tracking residual oxygen distribution in the bag and changes during storage. The sensors revealed a number of unidentified meat quality and processing issues, and helped to improve the packaging process by pouring flakes of dry ice into the bag. Sensor utility in mapping the distribution of residual O₂ in sealed bulk containers and optimising and improving the packaging process, including handling and storage of bulk vacuum-packaged meat bins, was evident.

  9. A low cost imaging displacement measurement system for spacecraft thermal vacuum testing

    NASA Technical Reports Server (NTRS)

    Dempsey, Brian

    2006-01-01

    A low cost imaging displacement technique suitable for use in thermal vacuum testing was built and tested during thermal vacuum testing of the space infrared telescope facility (SIRTF, later renamed Spitzer infrared telescope facility). The problem was to measure the relative displacement of different portions of the spacecraft due to thermal expansion or contraction. Standard displacement measuring instrumentation could not be used because of the widely varying temperatures on the spacecraft and for fear of invalidating the thermal vacuum testing. The imaging system was conceived, designed, purchased, and installed in approximately 2 months at very low cost. The system performed beyond expectations proving that sub millimeter displacements could be measured from over 2 meters away. Using commercial optics it was possible to make displacement measurements down to 10 (mu)m. An automated image processing tool was used to process the data, which not only speeded up data reduction, but showed that velocities and accelerations could also be measured. Details of the design and capabilities of the system are discussed along with the results of the test on the observatory. Several images from the actual test are presented.

  10. Modernization of NASA's Johnson Space Center Chamber: A Liquid Nitrogen System to Support Cryogenic Vacuum Optical Testing of the James Webb Space Telescope (JWST)

    NASA Technical Reports Server (NTRS)

    Garcia, Sammy; Homan, Jonathan; Montz, Michael

    2016-01-01

    NASA is the mission lead for the James Webb Space Telescope (JWST), the next of the “Great Observatories”, scheduled for launch in 2018. It is directly responsible for the integration and test (I&T) program that will culminate in an end-to-end cryo vacuum optical test of the flight telescope and instrument module in Chamber A at NASA Johnson Space Center. Historic Chamber A is the largest thermal vacuum chamber at Johnson Space Center and one of the largest space simulation chambers in the world. Chamber A has undergone a major modernization effort to support the deep cryogenic, vacuum and cleanliness requirements for testing the JWST. This paper describes the steps performed in efforts to convert the existing the 60’s era Liquid Nitrogen System from a forced flow (pumped) process to a natural circulation (thermo-siphon) process. In addition, the paper will describe the dramatic conservation of liquid nitrogen to support the long duration thermal vacuum testing. Lastly, describe the simplistic and effective control system which results in zero to minimal human inputs during steady state conditions.

  11. Process Options for Nominal 2-K Helium Refrigeration System Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Knudsen, Venkatarao Ganni

    Nominal 2-K helium refrigeration systems are frequently used for superconducting radio frequency and magnet string technologies used in accelerators. This paper examines the trade-offs and approximate performance of four basic types of processes used for the refrigeration of these technologies; direct vacuum pumping on a helium bath, direct vacuum pumping using full or partial refrigeration recovery, cold compression, and hybrid compression (i.e., a blend of cold and warm sub-atmospheric compression).

  12. Solar cells for lunar applications by vacuum evaporation of lunar regolith materials

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex

    1991-01-01

    The National Space Exploration Initiative, specifically the Lunar component, has major requirements for technology development of critical systems, one of which is electrical power. The availability of significant electrical power on the surface of the Moon is a principal driver defining the complexity of the lunar base. Proposals to generate power on the Moon include both nuclear and solar (photovoltaic) systems. A more efficient approach is to attempt utilization of the existing lunar resources to generate the power systems. Synergism may occur from the fact that there have already been lunar materials processing techniques proposed for the extraction of oxygen that would have, as by-products, materials that could be specifically used to generate solar cells. The lunar environment is a vacuum with pressures generally in the 1 x 10(exp -10) torr range. Such conditions provide an ideal environment for direct vacuum deposition of thin film solar cells using the waste silicon, iron, and TiO2 available from the lunar regolith processing meant to extract oxygen. It is proposed, therefore, to grow by vacuum deposition, thin film silicon solar cells from the improved regolith processing by-products.

  13. Technology Development of Salak (Salacca Zalacca) Chips With Vacuum Frying Machine Base On Expert System In Kramat-Bangkalan Regency

    NASA Astrophysics Data System (ADS)

    Rosida, D. F.; Happyanto; Anggraeni; Sugiarto; Hapsari

    2018-01-01

    Agropolitan Program is one form of regional development to improve agribusiness system and effort to improve the welfare of the community. One of the leading commodities in Bangkalan agroclimates is salak which is a potentially very large commodity to be developed. Salak commodities in Kramat Bangkalan Indonesia have developed varous salak produced such as dates of salak, syrup and dodol salak. Salak chips was the target of innovation from processed salak. The Production of salak chips using frying technology with vacuum system to obtain crunchy chips. To get the results need to be developed synergy technology to combine the process conditions and the right system in producing good quality salak chips. Bangkalan Regency is the potential to continue to develop products using a variety of salak to the processed form of vacuum frying machine based on expert system so that the resulting product would be great texture, aroma and taste. This will make the area of Bangkalan, Indonesia be more independent in producing and increasing revenue.

  14. Quartz resonator processing system

    DOEpatents

    Peters, Roswell D. M.

    1983-01-01

    Disclosed is a single chamber ultra-high vacuum processing system for the oduction of hermetically sealed quartz resonators wherein electrode metallization and sealing are carried out along with cleaning and bake-out without any air exposure between the processing steps. The system includes a common vacuum chamber in which is located a rotatable wheel-like member which is adapted to move a plurality of individual component sets of a flat pack resonator unit past discretely located processing stations in said chamber whereupon electrode deposition takes place followed by the placement of ceramic covers over a frame containing a resonator element and then to a sealing stage where a pair of hydraulic rams including heating elements effect a metallized bonding of the covers to the frame.

  15. All-aluminum-alloy UHV chamber for molecular beam epitaxy, 1

    NASA Astrophysics Data System (ADS)

    Suemitsu, M.; Miyamoto, N.

    1984-03-01

    The first all aluminum alloy (ex. JIS.6263-t6,2219-t87 etc) MBE chamber is constructed and described. After exposure to atmosphere, the chamber is drown to 10(-9) torr in 24 hours, and reaches an ultrahigh vacuum of 1.6x10(-10) torr by a 115 C, 24 bakeout process. The light weight and low cost as well as the short pump-down time and the law outgassing rate of the all aluminum alloy vacuum system seems to have a considerable applicative potentiality for equipment used in semiconductor ultrahigh vacuum processes.

  16. Integration Test of the High Voltage Hall Accelerator System Components

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  17. Vacuum-integrated electrospray deposition for highly reliable polymer thin film.

    PubMed

    Park, Soohyung; Lee, Younjoo; Yi, Yeonjin

    2012-10-01

    Vacuum electrospray deposition (ESD) equipment was designed to prepare polymer thin films. The polymer solution can be injected directly into vacuum system through multi-stage pumping line, so that the solvent residues and ambient contaminants are highly reduced. To test the performance of ESD system, we fabricated organic photovoltaic cells (OPVCs) by injecting polymer solution directly onto the substrate inside a high vacuum chamber. The OPVC fabricated has the structure of Al∕P3HT:PCBM∕PEDOT:PSS∕ITO and was optimized by varying the speed of solution injection and concentration of the solution. The power conversion efficiency (PCE) of the optimized OPVC is 3.14% under AM 1.5G irradiation without any buffer layer at the cathode side. To test the advantages of the vacuum ESD, we exposed the device to atmosphere between the deposition steps of the active layer and cathode. This showed that the PCE of the vacuum processed device is 24% higher than that of the air exposed device and confirms the advantages of the vacuum prepared polymer film for high performance devices.

  18. Cold Vacuum Drying (CVD) Set Point Determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHILIPP, B.L.

    2000-03-21

    The Safety Class Instrumentation and Control (SCIC) system provides active detection and response to process anomalies that, if unmitigated, would result in a safety event. Specifically, actuation of the SCIC system includes two portions. The portion which isolates the MCO and initiates the safety-class helium (SCHe) purge, and the portion which detects and stops excessive heat input to the MCO on high tempered water MCO inlet temperature. For the MCO isolation and purge, the SCIC receives signals from MCO pressure (both positive pressure and vacuum), helium flow rate, bay high temperature switches, seismic trips and time under vacuum trips.

  19. Surface cleaning for negative electron affinity GaN photocathode

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Yin, Yingpeng; Gao, Youtang; Niu, Jun; Qian, Yunsheng; Chang, Benkang

    2012-10-01

    In the preparation process for negative electron affinity (NEA) GaN photocathode, the surface cleanness is very important to activation, it influences the sensitivity and stability of NEA GaN photocathode. The traditional corrosion methods based on oxidizing and dissolving can't remove oxygen (O) and carbon (C) on GaN surface effectively. How to get an ideal atom clean surface is still an important question at present. The cleaning techniques for GaN photocathode was studied by using NEA photocathode activation system and XPS surface analysis system. The experiment sample is p-type GaN doped with Mg, doped concentration is 1.37×1017 cm-3, the transfer rate is 3.08 cm2/V-S, and the thickness of activation layer is 0.51 μm, the substrate is 300 μm thick sapphire. The sample was dealed with chemical cleaning depuration at first. And to get the atom clean surface, the vacuum heat cleaning process was needed. The methods of chemical cleaning and the vacuum heating cleaning were given in detail. According to the X-ray photoelectron spectroscopy of GaN surface after chemical cleaning and the vacuum degree curve of the activation chamber during the heat cleaning, the cleaning effect and the cleaning mechanism were discussed. After the effective chemical cleaning and the heating of 700 Centigrade degree about 20 minutes in ultrahigh vacuum system, the oxides and carbon contaminants on cathode surface can be removed effectively, and the ideal atom clean surface can be obtained. The purpose of heating depuration process is that not only to get the atom clean GaN surface, but also to guarantee the contents of Ga, N on GaN surface stabilize and to keep the system ultra-high vacuum degree. Because of the volatilization of oxide and carbon impurity on the cathode surface, the vacuum degree curve drops with the rising of temperature on the whole.

  20. Matrix Characterization and Development for the Vacuum Assisted Resin Transfer Molding Process

    NASA Technical Reports Server (NTRS)

    Grimsley, B. W.; Hubert, P.; Hou, T. H.; Cano, R. J.; Loos, A. C.; Pipes, R. B.

    2001-01-01

    The curing kinetics and viscosity of an epoxy resin system, SI-ZG-5A, have been characterized for application in the vacuum assisted resin transfer molding (VARTM) process. Impregnation of a typical carbon fiber perform provided the test bed for the characterization. Process simulations were carried out using the process model, COMPRO, to examine heat transfer and curing kinetics for a fully impregnated panel, neglecting resin flow. The predicted viscosity profile and final degree of cure were found to be in good agreement with experimental observations.

  1. Development and fabrication of the vacuum systems for an elliptically polarized undulator at Taiwan Photon Source

    NASA Astrophysics Data System (ADS)

    Chang, Chin-Chun; Chan, Che-Kai; Wu, Ling-Hui; Shueh, Chin; Shen, I.-Ching; Cheng, Chia-Mu; Yang, I.-Chen

    2017-05-01

    Three sets of a vacuum system were developed and fabricated for elliptically polarized undulators (EPU) of a 3-GeV synchrotron facility. These chambers were shaped with low roughness extrusion and oil-free machining; the design combines aluminium and stainless steel. The use of a bimetallic material to connect the EPU to the vacuum system achieves the vacuum sealing and to resolve the leakage issue due to bake process induced thermal expansion difference. The interior of the EPU chamber consists of a non-evaporable-getter strip pump in a narrow space to absorb photon-stimulated desorption and to provide a RF bridge design to decrease impedance effect in the two ends of EPU chamber. To fabricate these chambers and to evaluate the related performance, we performed a computer simulation to optimize the structure. During the machining and welding, the least deformation was achieved, less than 0.1 mm near 4 m. In the installation, the linear slider can provide a stable and precision moved along parallel the electron beam direction smoothly for the EPU chamber to decrease the twist issue during baking process. The pressure of the EPU chamber attained less than 2×10-8 Pa through baking. These vacuum systems of the EPU magnet have been installed in the electron storage ring of Taiwan Photon Source in 2015 May and have normally operated at 300 mA continuously since, and to keep beam life time achieved over than 12 h.

  2. Power and Thermal Technologies for Air and Space -- Scientific Research Program. Delivery Order 0016: Developing and Processing High Energy Density Polymer Film Dielectrics for High Temperature Air Force Power Electronic Applications

    DTIC Science & Technology

    2010-01-01

    a vacuum controller. A vacuum of < 1 µ torr was achieved with a combination of a turbo pump and a scroll pump system. The sample probing is...the polymer was reprecipitated in heptane non-solvent. The filtered polymer was washed with heptane and was finally dried in vacuum at 100ºC for three...solution was added to a large excess of methanol to precipitate the polymer. After soxhlet extraction with methanol and vacuum drying, the polymer was

  3. Advanced performance of small diaphragm vacuum pumps through the use of mechatronics

    NASA Astrophysics Data System (ADS)

    Lachenmann, R.; Dirscherl, J.

    Oil-free diaphragm vacuum pumps have proven to be the best way in vacuum generation for the chemical laboratory and they also find increasing use as backing pumps for modern wide-range turbo molecular pumps. The majority of vacuum pumps in practical use pump only a rather small percentage of their lifetime at full gas load. A pump backing a turbo molecular pump does not have to pump a significant gas load when the high-vacuum pump is running at ultimate vacuum pressure. Also, for a vacuum distillation the vacuum pump has to operate at full speed only at the beginning to lower the pressure inside the system to a vacuum level where evaporation starts. In a rather leak-tight system the distillation process continues by evaporating from the hot liquid and condensing at the cold condenser without the need of a mechanical vacuum pump. Rotational speed controlled diaphragm pumps are now available through progress in mechatronics and offer high pumping speed capability for fast pump-down cycles and precise pressure control for distillations. At low gas load the rotational speed can be reduced, improving maintenance intervals, power consumption, noise, vibration and - surprisingly - also ultimate pressure. The different behaviour in pumping speed and ultimate pressure of rotational speed controlled diaphragm pumps in comparison to constant-speed pumps is related to the mechanical properties of the valves and gas dynamics .

  4. Research on Melt Degassing Processes of High Conductivity Hard Drawn Aluminum Wire

    NASA Astrophysics Data System (ADS)

    Xu, Xuexia; Feng, Yanting; Wang, Qing; Li, Wenbin; Fan, Hui; Wang, Yong; Li, Guowei; Zhang, Daoqian

    2018-03-01

    Degassing effects of ultrasonic and vacuum processes on high conductivity hard drawn aluminum melt were studied. Results showed that the degassing efficiency improved with the increase of ultrasonic power within certain range, stabilizing at 70% with 240W. For vacuum degassing process, hydrogen content of aluminum melt decreased with the loading time and was linear with logarithm of vacuum degree. Comparison of degassing effects of ultrasonic, vacuum, vacuum-ultrasonic degassing process showed that vacuum-ultrasonic process presented optimal effect.

  5. PREFACE: International Symposium on `Vacuum Science and Technology' (IVS 2007)

    NASA Astrophysics Data System (ADS)

    Mittal, K. C.; Gupta, S. K.

    2008-03-01

    The Indian Vacuum Society (established in 1970) has organized a symposium every alternate year on various aspects of vacuum science and technology. There has been considerable participation from R & D establishments, universities and Indian industry in this event. In view of the current global scenario and emerging trends in vacuum technology, this year, the executive committee of IVS felt it appropriate to organize an international symposium at Tata Institute of Fundamental Research, Colaba, Mumbai 400 005 from 29-30 November 2007. This symposium provided a forum for exchange of information among vacuum scientists, technologists and industrialists on recent advances made in the areas of large vacuum systems, vacuum production, its measurement and applications in industry, and material processing in vacuum. Vacuum science and technology has made vital contributions in high tech areas like space, high energy particle accelerators, large plasma systems, electronics, thin films, melting and refining of metals, extraction and processing of advanced materials etc. The main areas covered in the symposium were the production and measurement of vacuums, leak detection, large vacuum systems, vacuum metallurgy, vacuum materials and processing inclusive of applications of vacuum in industry. Large vacuum systems for high energy particle accelerators, plasma devices and light sources are of special significance for this symposium. Vacuum evaporation, hard coatings, thin films, joining techniques, sintering, melting and heat treatment, furnaces and thermo dynamics are also covered in this symposium. There were eighteen invited talks from the best experts in the respective fields and more than one hundred contributed papers. This fact itself indicates the interest that has been generated amongst the scientists, technologists and industrialists in this field. In view of the industrial significance of the vacuum technology, an exhibition of vacuum and vacuum processing related equipments, accessories, products etc by different manufacturers and suppliers has been organized at the venue of the symposium hall for the benefit of the participants. The interest shown by the exhibitors reveals that the industry has come of age and the advances that have taken place over the years is quite significant. During the symposium, the Indian Vacuum Society felicitated two distinguished personalities who have contributed significantly for the development of vacuum science and technology in the country. The C AMBASANKARAN memorial and Smt SHAKUNTALABAI VYAWAHARE memorial Awards were also conferred on the two best contributed papers. A committee constituted by the Symposium Organizing Committee evaluated the relevance, scientific content, and clarity of presentation to decide the award winning papers. It is hoped that the discussion generated by the delegates at the symposium will help in a better understanding vacuum science and technology. K C Mittal Convener S K Gupta Co Convener International Advisory Committee Kakodkar, Anil DAE/India, Chairman Badve, Cdr A.V.(IN Retd.) Pfeiffer Vac India Banerjee, S. BARC/India Bhandari, R.K. BRNS/India Chander, Shekhar CEERI/India Chopra, K.L. IIT Delhi/India Day, Chris ITER Grover, R.B DAE,BARC/India Jakub, Szajman VSA/ Australia Jayaraj, R.N. NFC/India Kamath, H.S. BARC/India Kaw, P.K. IPR/India Kobayashi, M. VSJ/Japan Kumar, Lalit MTRDC, India Kumar, Vikram NPL., India Langley, Robert AVS, USA Larour, Jean Ecole/France Mendonsa, R.H. Lawrence and Mayo Myneni, Ganapatirao Jlab/USA Narsaiah, S.V. HHV Padamsee, Hasan Cornell/USA Pillay, R.G. TIFR Raj, Baldev IGCAR/India Raju, P.T. IVS/India Ramasami, T. DST/India Ray, A.K. BARC/India Reid, RJ IUVSTA/UK Roy, Amit IUAC/india Sahni, V.C. RRCAT, BARC/India Schamiloglu, E. UNM/USA Shankara, K.N. VSSC,ISRO/India Sinha, Bikash VEC,SINP/India Strubin, P. CERN/Switzerland Local Organizing Committee Ray, A.K. BARC (Chairman) Kailas, S. BARC, (Co Chairman) Chakravarty, D.P. BARC Chandrachoodan, P.P. BRNS Desai, Tushar Mumbai Univ. Dhamija, Lokesh BOC Edwards Dixit, Anand New Poona Ind. Gadkari, S.C. BARC Gantayet, L.M BARC Gupta, A.C. NPL Gupta, S.K. BARC (Co Convener) Handu, V.K. BARC Jathar, Rajendra Varian Joshi, S.N. CEERI Korgaonkar, A.V. IVS Kotaiah, S. CAT Kumar, Vijay BARC Matkar, A.W. BARC Mittal, K.C. BARC (Convener) Nema, P.K. BRNS Pandit, V.S. VEC Puranik, S.G. Ashwani Enterprises Puri, R.R. BARC Ranga Rao, Y. Vac. Techniques Sabharwal, Rajat Alcatel Sakhamuri, Prashant HHV Bangalore Sanyal, T. NFC Sarkar, S.K. TIFR Sarma, K.R. Atomic Vacuum Saxena, Y.C. IPR Sharma, B.P. BARC Shukla, S.K. RRCAT Singh, R.P. BARC Suri, A.K. BARC Suthar ,R.L. BARC Venugopa,l V. BARC Vyavahare, Mohan Ultimate Technologies Yakhmi, J.V. BARC

  6. Generation of high-power subpicosecond pulses at 155 nm.

    PubMed

    Mossavi, K; Fricke, L; Liu, P; Wellegehausen, B

    1995-06-15

    Subpicosecond vacuum-ultraviolet radiation at 155 nm with pulse energies above 0.2 mJ has been obtained by near-resonant four-wave difference-frequency mixing in a Xe gas jet. Laser fields for the mixing process have been generated by a short-pulse KrF dye excimer laser system and a Raman converter. The process permits tuning in a broad vacuum-ultraviolet range and can be scaled up to higher output energies.

  7. Generation of a medium vacuum pressure by using two different pumping methods in the KRISS dynamic flow-control system

    NASA Astrophysics Data System (ADS)

    Hong, S. S.; Lim, J. Y.; Khan, W.

    2014-02-01

    Pumping systems with large vacuum chambers have numerous applications in the process industry: for example, mixing of various types of gases as in the semiconductor industry, the calibration of vacuum gauges, the measurement of outgassing rates of various materials in the field of space technology, etc. Most often, these systems are used in the medium vacuum range (10-1 Pa-102 Pa) and in the dynamically-generated pressure mode. We have designed and developed a new dynamic flow system at the KRISS (Korea Research Institute of Standards and Science) that can be used for such applications with reliability in the range from 0.1 Pa - 133 Pa. In this report, the design philosophy, operational procedure and experimental data for the generated stable pressure points in the chamber of the system are discussed. The data consist the pressure points generated in the medium vacuum range while pumping the chamber of the system by using two different methods: first by using a dry scroll pump and then by using a combination of a turbomolecular pump backed by the same scroll pump. The relative standard deviations in the pressure points were calculated and were found to be greater than 1.5% for the scroll pump and less than 0.5% for the turbomolecular pump.

  8. Thermodynamic performance of multi-stage gradational lead screw vacuum pump

    NASA Astrophysics Data System (ADS)

    Zhao, Fan; Zhang, Shiwei; Sun, Kun; Zhang, Zhijun

    2018-02-01

    As a kind of dry mechanical vacuum pump, the twin-screw vacuum pump has an outstanding pumping performance during operation, widely used in the semiconductor industry. Compared with the constant lead screw (CLS) vacuum pump, the gradational lead screw (GLS) vacuum pump is more popularly applied in recent years. Nevertheless, not many comparative studies on the thermodynamic performance of GLS vacuum pump can be found in the literature. Our study focuses on one type of GLS vacuum pump, the multi-stage gradational lead screw (MGLS) vacuum pump, gives a detailed description of its construction and illustrates it with the drawing. Based on the structural analysis, the thermodynamic procedure is divided into four distinctive processes, including sucking process, transferring (compressing) process, backlashing process and exhausting process. The internal mechanism of each process is qualitatively illustrated and the mathematical expressions of seven thermodynamic parameters are given under the ideal situation. The performance curves of MGLS vacuum pump are plotted by MATLAB software and compared with those of the CLS vacuum pump in the same case. The results can well explain why the MGLS vacuum pump has more favorable pumping performance than the CLS vacuum pump in saving energy, reducing noise and heat dissipation.

  9. Application of Vacuum Swing Adsorption for Carbon Dioxide and Water Vapor Removal from Manned Spacecraft Atmospheres

    NASA Technical Reports Server (NTRS)

    Knox, J.; Fulda, P.; Howard, D.; Ritter, J.; Levan, M.

    2007-01-01

    The design and testing of a vacuum-swing adsorption process to remove metabolic 'water and carbon dioxide gases from NASA's Orion crew exploration vehicle atmosphere is presented. For the Orion spacecraft, the sorbent-based atmosphere revitalization (SBAR) system must remove all metabolic water, a technology approach 1Lhathas not been used in previous spacecraft life support systems. Design and testing of a prototype SBAR in sub-scale and full-scale configurations is discussed. Experimental and analytical investigations of dual-ended and single-ended vacuum desorption are presented. An experimental investigation of thermal linking between adsorbing and desorbing columns is also presented.

  10. Recent advancements in low cost solar cell processing

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.

    1975-01-01

    A proof-of-concept solar cell process has been developed that is adaptable to automation. This involved the development of a new contact system, a new antireflection coating system, a drift field cell design and a new contoured surface treatment. All these processes are performed without the use of vacuum chambers and expensive masking techniques, thus providing the possibility of reduced costs by automation using conventional semiconductor processing machinery. The contacts were printed on the cells by conventional silk screen machinery. The P(+) back field was formed by diffusing in aluminum from a printed aluminum back contact. The antireflection coating was formed by spinning on and baking a TiO2-SiO2 glass film. Air-mass-zero efficiencies of over 10% were achieved using this completely vacuum-free process.

  11. Ethanol production from food waste at high solids content with vacuum recovery technology.

    PubMed

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis).

  12. Wafer-Level Vacuum Packaging of Smart Sensors.

    PubMed

    Hilton, Allan; Temple, Dorota S

    2016-10-31

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors-"low cost" for ubiquitous presence, and "smart" for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology.

  13. Wafer-Level Vacuum Packaging of Smart Sensors

    PubMed Central

    Hilton, Allan; Temple, Dorota S.

    2016-01-01

    The reach and impact of the Internet of Things will depend on the availability of low-cost, smart sensors—“low cost” for ubiquitous presence, and “smart” for connectivity and autonomy. By using wafer-level processes not only for the smart sensor fabrication and integration, but also for packaging, we can further greatly reduce the cost of sensor components and systems as well as further decrease their size and weight. This paper reviews the state-of-the-art in the wafer-level vacuum packaging technology of smart sensors. We describe the processes needed to create the wafer-scale vacuum microchambers, focusing on approaches that involve metal seals and that are compatible with the thermal budget of complementary metal-oxide semiconductor (CMOS) integrated circuits. We review choices of seal materials and structures that are available to a device designer, and present techniques used for the fabrication of metal seals on device and window wafers. We also analyze the deposition and activation of thin film getters needed to maintain vacuum in the ultra-small chambers, and the wafer-to-wafer bonding processes that form the hermetic seal. We discuss inherent trade-offs and challenges of each seal material set and the corresponding bonding processes. Finally, we identify areas for further research that could help broaden implementations of the wafer-level vacuum packaging technology. PMID:27809249

  14. Cyclic membrane separation process

    DOEpatents

    Nemser, Stuart M.

    2005-05-03

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In the first part of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the second part, the membrane is inoperative while gas pressure rises in the ullage. In one aspect of this invention, a vacuum is drawn in the membrane separation unit thus reducing overall VOC emissions.

  15. Giant vacuum forces via transmission lines

    PubMed Central

    Shahmoon, Ephraim; Mazets, Igor; Kurizki, Gershon

    2014-01-01

    Quantum electromagnetic fluctuations induce forces between neutral particles, known as the van der Waals and Casimir interactions. These fundamental forces, mediated by virtual photons from the vacuum, play an important role in basic physics and chemistry and in emerging technologies involving, e.g., microelectromechanical systems or quantum information processing. Here we show that these interactions can be enhanced by many orders of magnitude upon changing the character of the mediating vacuum modes. By considering two polarizable particles in the vicinity of any standard electric transmission line, along which photons can propagate in one dimension, we find a much stronger and longer-range interaction than in free space. This enhancement may have profound implications on many-particle and bulk systems and impact the quantum technologies mentioned above. The predicted giant vacuum force is estimated to be measurable in a coplanar waveguide line. PMID:25002503

  16. Waveguide quantum electrodynamics in squeezed vacuum

    NASA Astrophysics Data System (ADS)

    You, Jieyu; Liao, Zeyang; Li, Sheng-Wen; Zubairy, M. Suhail

    2018-02-01

    We study the dynamics of a general multiemitter system coupled to the squeezed vacuum reservoir and derive a master equation for this system based on the Weisskopf-Wigner approximation. In this theory, we include the effect of positions of the squeezing sources which is usually neglected in the previous studies. We apply this theory to a quasi-one-dimensional waveguide case where the squeezing in one dimension is experimentally achievable. We show that while dipole-dipole interaction induced by ordinary vacuum depends on the emitter separation, the two-photon process due to the squeezed vacuum depends on the positions of the emitters with respect to the squeezing sources. The dephasing rate, decay rate, and the resonance fluorescence of the waveguide-QED in the squeezed vacuum are controllable by changing the positions of emitters. Furthermore, we demonstrate that the stationary maximum entangled NOON state for identical emitters can be reached with arbitrary initial state when the center-of-mass position of the emitters satisfies certain conditions.

  17. Ionization-Assisted Getter Pumping for Ultra-Stable Trapped Ion Frequency Standards

    NASA Technical Reports Server (NTRS)

    Tjoelker, Robert L.; Burt, Eric A.

    2010-01-01

    A method eliminates (or recovers from) residual methane buildup in getter-pumped atomic frequency standard systems by applying ionizing assistance. Ultra-high stability trapped ion frequency standards for applications requiring very high reliability, and/or low power and mass (both for ground-based and space-based platforms) benefit from using sealed vacuum systems. These systems require careful material selection and system processing (cleaning and high-temperature bake-out). Even under the most careful preparation, residual hydrogen outgassing from vacuum chamber walls typically limits the base pressure. Non-evaporable getter pumps (NEGs) provide a convenient pumping option for sealed systems because of low mass and volume, and no power once activated. An ion gauge in conjunction with a NEG can be used to provide a low mass, low-power method for avoiding the deleterious effects of methane buildup in high-performance frequency standard vacuum systems.

  18. System for Continuous Deaeration of Hydraulic Oil

    NASA Technical Reports Server (NTRS)

    Anderson, Christopher W.

    2006-01-01

    A system for continuous, rapid deaeration of hydraulic oil has been built to replace a prior system that effected deaeration more slowly in a cyclic pressure/ vacuum process. Such systems are needed because (1) hydraulic oil has an affinity for air, typically containing between 10 and 15 volume percent of air and (2) in the original application for which these systems were built, there is a requirement to keep the proportion of dissolved air below 1 volume percent because a greater proportion can lead to pump cavitation and excessive softness in hydraulic-actuator force-versus-displacement characteristics. In addition to overcoming several deficiencies of the prior deaeration system, the present system removes water from the oil. The system (see figure) includes a pump that continuously circulates oil at a rate of 10 gal/min (38 L/min) between an 80-gal (303-L) airless reservoir and a tank containing a vacuum. When the circulation pump is started, oil is pumped, at a pressure of 120 psi (827 kPa), through a venturi tube below the tank with a connection to a stand-pipe in the tank. This action draws oil out of the tank via the standpipe. At the same time, oil is sprayed into the tank in a fine mist, thereby exposing a large amount of oil to the vacuum. When the oil level in the tank falls below the lower of two level switches, a vacuum pump is started, drawing a hard vacuum on the tank through a trap that collects any oil and water entrained in the airflow. When the oil level rises above higher of the two level switches or when the system is shut down, a solenoid valve between the tank and the vacuum pump is closed to prevent suction of oil into the vacuum pump. Critical requirements that the system is designed to satisfy include the following: 1) The circulation pump must have sufficient volume and pressure to operate the venturi tube and spray nozzles. 2) The venturi tube must be sized to empty the tank (except for the oil retained by the standpipe) and maintain a vacuum against the vacuum pump. 3) The tank must be strong enough to withstand atmospheric pressure against the vacuum inside and must have sufficient volume to enable exposure of a sufficiently large amount of sprayed oil to the vacuum. 4) The spray nozzles must be sized to atomize the oil and to ensure that the rate of flow of sprayed oil does not exceed the rate at which the venturi action can empty the tank. 5) The vacuum pump must produce a hard vacuum against the venturi tube and continue to work when it ingests some oil and water. 6) Fittings must be made vacuum tight (by use of O-rings) to prevent leakage of air into the system. The system is fully automatic, and can be allowed to remain in operation with very little monitoring. It is capable of reducing the air content of the oil from 11 to less than 1 volume percent in about 4 hours and to keep the water content below 100 parts per million.

  19. Automated Postattack Damage Assessment System (APUDAS) for Sewage and Mission-Critical HVAC Systems

    DTIC Science & Technology

    1990-10-01

    immediately thickened and processed for disposal. Common methods of sludge processing include: digestion, vacuum filtration, and centrifugation . The most...Paddle TYDe Switches for ’Flow-No Flow’ DAetection f r PEiino Systems " and Up catalog. 20. Newark (Potter and Brumfield) Relays, Buzzers, Contactors

  20. Dynamic simulation of relief line during loss of insulation vacuum of the ITER cryoline

    NASA Astrophysics Data System (ADS)

    Badgujar, S.; Kosek, J.; Grillot, D.; Forgeas, A.; Sarkar, B.; Shah, N.; Choukekar, K.; Chang, H.-S.

    2017-12-01

    The ITER cryoline (CL) system consists of 37 types of vacuum jacketed transfer lines which forms a complex structured network with a total length of about 5 km, spread inside the Tokamak building, on a dedicated plant bridge and in the Cryoplant building/area. One of them, the low pressure relief line (RL) recovers helium discharged from process safety relief valves of the different cryogenic users and is sent it back to the Cryoplant via heater and recovery system. The process pipe diameters of the RL vary from DN 50 to DN 200 and the length is more than 1500 m. Loss of insulation vacuum (LIV) of a CL is one of the worst scenarios apart from LIV in Auxiliary Cold Boxes (ACBs). The Torus and Cryostat CL is chosen to simulate the virtual LIV and to study the anticipated behavior of the RL. Both helium LIV (LIV due to leak in helium pipe) and air LIV (LIV due to air ingress in outer vacuum jacket of the cryoline) with and without fire) have been simulated during this study. After the brief description of the CL system, the paper will describe the EcosimPro® model prepared for the dynamic study. The paper will also describe the results like minimum temperature of RL, mass flow and maximum pressure in the RL which are essentially used to choose the type and location of safety relief devices to protect the CL process pipes.

  1. Thick SS316 materials TIG welding development activities towards advanced fusion reactor vacuum vessel applications

    NASA Astrophysics Data System (ADS)

    Kumar, B. Ramesh; Gangradey, R.

    2012-11-01

    Advanced fusion reactors like ITER and up coming Indian DEMO devices are having challenges in terms of their materials design and fabrication procedures. The operation of these devices is having various loads like structural, thermo-mechanical and neutron irradiation effects on major systems like vacuum vessel, divertor, magnets and blanket modules. The concept of double wall vacuum vessel (VV) is proposed in view of protecting of major reactor subsystems like super conducting magnets, diagnostic systems and other critical components from high energy 14 MeV neutrons generated from fusion plasma produced by D-T reactions. The double walled vacuum vessel is used in combination with pressurized water circulation and some special grade borated steel blocks to shield these high energy neutrons effectively. The fabrication of sub components in VV are mainly used with high thickness SS materials in range of 20 mm- 60 mm of various grades based on the required protocols. The structural components of double wall vacuum vessel uses various parts like shields, ribs, shells and diagnostic vacuum ports. These components are to be developed with various welding techniques like TIG welding, Narrow gap TIG welding, Laser welding, Hybrid TIG laser welding, Electron beam welding based on requirement. In the present paper the samples of 20 mm and 40 mm thick SS 316 materials are developed with TIG welding process and their mechanical properties characterization with Tensile, Bend tests and Impact tests are carried out. In addition Vickers hardness tests and microstructural properties of Base metal, Heat Affected Zone (HAZ) and Weld Zone are done. TIG welding application with high thick SS materials in connection with vacuum vessel requirements and involved criticalities towards welding process are highlighted.

  2. Comparison of three different collectors for process heat applications

    NASA Astrophysics Data System (ADS)

    Brunold, Stefan; Frey, R.; Frei, Ulrich

    1994-09-01

    In general vacuum tube collectors are used in solar process heat systems. Another possibility is to use transparent insulated flat plate collectors. A critical point however, is that most of the common transparent insulating materials can not withstand high temperatures because they consist of plastics. Thus, temperature resistive collector covers combining a high tranmisivity with a low U-value are required. One possibility is to use capillaries made of glass instead of plastics. Measurement results of collector efficiency and incident angle modifier will be presented as well as calculated energy gains for three different collectors: a vacuum tube collector (Giordano Ind., France), a CPC vacuum tube collector (microtherm Energietechnik Germany; a new flat plate collector using glass capillary as transparent insulation (SET, Germany).

  3. Numerical Study on Radiation Effects to Evaporator in Natural Vacuum Solar Desalination System

    NASA Astrophysics Data System (ADS)

    Siregar, R. E. T.; Ronowikarto, A. D.; Setyawan, E. Y.; Ambarita, H.

    2018-01-01

    The need for clean water is increasing day by day due to the increasing factor of living standard of mankind, hence designed natural vacuum solar desalination. The natural vacuum Solar desalination is studied experimentally. A small-scale natural vacuum desalination study consists of evaporator and condenser as the main components designed and manufactured. To transfer heat from the solar collector into the evaporator, the fluid transfer system uses a pump powered by a solar cell. Thus, solar collectors are called hybrid solar collectors. The main purpose of this exposure is to know the characteristics of the radiation effects on incoming energy on the evaporator during the process. This system is tested by exposing the unit to the solar radiation in the 4th floor building in Medan. The experiment was conducted from 8.00 to 16.00 local time. The results show that natural vacuum solar desalination with hybrid solar collectors can be operated perfectly. If the received radiation is high, then the incoming energy received by the evaporator will also be high. From measurements with HOBO microstation, obtained the highest radiation 695.6 W/m2, and the calculation result of incoming energy received evaporator obtained highest result 1807.293 W.

  4. 40 CFR 63.441 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or live steam. Closed-vent system means a system that is not open to the atmosphere and is composed... emissions from individual process vents, stacks, open pieces of process equipment, equipment leaks... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...

  5. 40 CFR 63.441 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or live steam. Closed-vent system means a system that is not open to the atmosphere and is composed... emissions from individual process vents, stacks, open pieces of process equipment, equipment leaks... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...

  6. Investigating steam penetration using thermometric methods in dental handpieces with narrow internal lumens during sterilizing processes with non-vacuum or vacuum processes.

    PubMed

    Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B

    2017-12-01

    Dental handpieces are required to be sterilized between patient use. Vacuum steam sterilization processes with fractionated pre/post-vacuum phases or unique cycles for specified medical devices are required for hollow instruments with internal lumens to assure successful air removal. Entrapped air will compromise achievement of required sterilization conditions. Many countries and professional organizations still advocate non-vacuum sterilization processes for these devices. To investigate non-vacuum downward/gravity displacement, type-N steam sterilization of dental handpieces, using thermometric methods to measure time to achieve sterilization temperature at different handpiece locations. Measurements at different positions within air turbines were undertaken with thermocouples and data loggers. Two examples of widely used UK benchtop steam sterilizers were tested: a non-vacuum benchtop sterilizer (Little Sister 3; Eschmann, Lancing, UK) and a vacuum benchtop sterilizer (Lisa; W&H, Bürmoos, Austria). Each sterilizer cycle was completed with three handpieces and each cycle in triplicate. A total of 140 measurements inside dental handpiece lumens were recorded. The non-vacuum process failed (time range: 0-150 s) to reliably achieve sterilization temperatures within the time limit specified by the international standard (15 s equilibration time). The measurement point at the base of the handpiece failed in all test runs (N = 9) to meet the standard. No failures were detected with the vacuum steam sterilization type B process with fractionated pre-vacuum and post-vacuum phases. Non-vacuum downward/gravity displacement, type-N steam sterilization processes are unreliable in achieving sterilization conditions inside dental handpieces, and the base of the handpiece is the site most likely to fail. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  7. Control of vacuum induction brazing system for sealing of instrumentation feed-through

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung Ho Ahn; Jintae Hong; Chang Young Joung

    2015-07-01

    The integrity of instrumentation cables is an important performance parameter in addition to the sealing performance in the brazing process. An accurate brazing control was developed for the brazing of the instrumentation feed-through in the vacuum induction brazing system in this paper. The experimental results show that the accurate brazing temperature control performance is achieved by the developed control scheme. Consequently, the sealing performances of the instrumentation feed-through and the integrities of the instrumentation cables were satisfied after brazing. (authors)

  8. Control of Vacuum Induction Brazing System for Sealing of Instrumentation Feedthrough

    NASA Astrophysics Data System (ADS)

    Ahn, Sung Ho; Hong, Jintae; Joung, Chang Young; Heo, Sung Ho

    2017-04-01

    The integrity of instrumentation cables is an important performance parameter in the brazing process, along with the sealing performance. In this paper, an accurate control scheme for brazing of the instrumentation feedthrough in a vacuum induction brazing system was developed. The experimental results show that the accurate brazing temperature control performance is achieved by the developed control scheme. It is demonstrated that the sealing performances of the instrumentation feedthrough and the integrity of the instrumentation cables are to be acceptable after brazing.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omkar, S.; Srikanth, R., E-mail: srik@poornaprajna.org; Banerjee, Subhashish

    A protocol based on quantum error correction based characterization of quantum dynamics (QECCD) is developed for quantum process tomography on a two-qubit system interacting dissipatively with a vacuum bath. The method uses a 5-qubit quantum error correcting code that corrects arbitrary errors on the first two qubits, and also saturates the quantum Hamming bound. The dissipative interaction with a vacuum bath allows for both correlated and independent noise on the two-qubit system. We study the dependence of the degree of the correlation of the noise on evolution time and inter-qubit separation.

  10. Sodium Heat Pipe Module Processing For the SAFE-100 Reactor Concept

    NASA Technical Reports Server (NTRS)

    Martin, James; Salvail, Pat

    2003-01-01

    To support development and hardware-based testing of various space reactor concepts, the Early Flight Fission-Test Facility (EFF-TF) team established a specialized glove box unit with ancillary systems to handle/process alkali metals. Recently, these systems have been commissioned with sodium supporting the fill of stainless steel heat pipe modules for use with a 100 kW thermal heat pipe reactor design. As part of this effort, procedures were developed and refined to govern each segment of the process covering: fill, leak check, vacuum processing, weld closeout, and final "wet in". A series of 316 stainless steel modules, used as precursors to the actual 321 stainless steel modules, were filled with 35 +/- 1 grams of sodium using a known volume canister to control the dispensed mass. Each module was leak checked to less than10(exp -10) std cc/sec helium and vacuum conditioned at 250 C to assist in the removal of trapped gases. A welding procedure was developed to close out the fill stem preventing external gases from entering the evacuated module. Finally the completed modules were vacuum fired at 750 C allowing the sodium to fully wet the internal surface and wick structure of the heat pipe module.

  11. Sodium Heat Pipe Module Processing For the SAFE-100 Reactor Concept

    NASA Astrophysics Data System (ADS)

    Martin, James; Salvail, Pat

    2004-02-01

    To support development and hardware-based testing of various space reactor concepts, the Early Flight Fission-Test Facility (EFF-TF) team established a specialized glove box unit with ancillary systems to handle/process alkali metals. Recently, these systems have been commissioned with sodium supporting the fill of stainless steel heat pipe modules for use with a 100 kW thermal heat pipe reactor design. As part of this effort, procedures were developed and refined to govern each segment of the process covering: fill, leak check, vacuum processing, weld closeout, and final ``wet in''. A series of 316 stainless steel modules, used as precursors to the actual 321 stainless steel modules, were filled with 35 +/-1 grams of sodium using a known volume canister to control the dispensed mass. Each module was leak checked to <10-10 std cc/sec helium and vacuum conditioned at 250 °C to assist in the removal of trapped gases. A welding procedure was developed to close out the fill stem preventing external gases from entering the evacuated module. Finally the completed modules were vacuum fired at 750 °C allowing the sodium to fully wet the internal surface and wick structure of the heat pipe module.

  12. 40 CFR 63.441 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flash steam from the digester or live steam. Closed-vent system means a system that is not open to the... this subpart, including emissions from individual process vents, stacks, open pieces of process... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...

  13. 40 CFR 63.441 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flash steam from the digester or live steam. Closed-vent system means a system that is not open to the... this subpart, including emissions from individual process vents, stacks, open pieces of process... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...

  14. 40 CFR 63.441 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flash steam from the digester or live steam. Closed-vent system means a system that is not open to the... this subpart, including emissions from individual process vents, stacks, open pieces of process... stock chests, and their associated vacuum pumps, filtrate tanks, foam breakers or tanks, and any other...

  15. Formation of liquid-metal jets in a vacuum arc cathode spot: Analogy with drop impact on a solid surface

    NASA Astrophysics Data System (ADS)

    Gashkov, M. A.; Zubarev, N. M.

    2018-01-01

    Conditions of the liquid-metal jets formation in a cathode spot of a vacuum arc discharge are studied. Our consideration is based on the analogy between the processes, occurring in the liquid phase of the cathode spot, and the processes, accompanying a liquid drop impact on a flat solid surface. In the latter case there exists a wide variety of experimental data on the conditions under which the spreading regime of fluid motion (i.e., without formation of jets and secondary droplets) changes into the splashing one. In the present work, using the hydrodynamic similarity principle (processes in geometrically similar systems will proceed similarly when their Weber and Reynolds numbers coincide), criteria for molten metal splashing are formulated for different materials of the cathode. They are compared with the experimental data on the threshold conditions for vacuum arc burning.

  16. Production development of organic nonflammable spacecraft potting encapsulating and conformal coating compounds. Volume 2: Tables

    NASA Technical Reports Server (NTRS)

    Lieberman, S. L.

    1974-01-01

    Tables are presented which include: material properties; elemental analysis; silicone RTV formulations; polyester systems and processing; epoxy preblends and processing; urethane materials and processing; epoxy-urethanes elemental analysis; flammability test results, and vacuum effects.

  17. Vacuum Pyrolysis and Related ISRU Techniques

    NASA Technical Reports Server (NTRS)

    Cardiff, Eric H.; Pomeroy, Brian R.; Banks, Ian S.; Benz, Alexis

    2007-01-01

    A number of ISRU-related techniques have been developed at NASA Goddard Space Flight Center. The focus of the team has been on development of the vacuum pyrolysis technique for the production of oxygen from the lunar regolith. However, a number of related techniques have also been developed, including solar concentration, solar heating of regolith, resistive heating of regolith, sintering, regolith boiling, process modeling, parts manufacturing, and instrumentation development. An initial prototype system was developed to vaporize regolith simulants using a approx. l square meter Fresnel lens. This system was successfully used to vaporize quantities of approx. lg, and both mass spectroscopy of the gasses produced and Scanning Electron Microscopy (SEM) of the slag were done to show that oxygen was produced. Subsequent tests have demonstrated the use of a larger system With a 3.8m diameter reflective mirror to vaporize the regolith. These results and modeling of the vacuum pyrolysis reaction have indicated that the vaporization of the oxides in the regolith will occur at lower temperature for stronger vacuums. The chemical modeling was validated by testing of a resistive heating system that vaporized quantities of approx. 10g of MLS-1A. This system was also used to demonstrate the sintering of regolith simulants at reduced temperatures in high vacuum. This reduction in the required temperature prompted the development of a small-scale resistive heating system for application as a scientific instrument as well as a proof-of principle experiment for oxygen production.

  18. JPRS Report, Science and Technology, Europe.

    DTIC Science & Technology

    1991-02-15

    VIDP furnace is a further development of the conventional vacuum induction melter (VIM). It has an independent smelting and processing unit, to...which various casting systems can be linked according to the modular principle. Unlike the conventional vacuum induction melter, the VIDP furnace does... induction coil and the crucible. The furnace body can be extracted for relining or replacement with another, ready-lined, fur- nace body. This

  19. Vacuum-induced quantum memory in an opto-electromechanical system

    NASA Astrophysics Data System (ADS)

    Qin, Li-Guo; Wang, Zhong-Yang; Wu, Shi-Chao; Gong, Shang-Qing; Ma, Hong-Yang; Jing, Jun

    2018-03-01

    We propose a scheme to implement electrically controlled quantum memory based on vacuum-induced transparency (VIT) in a high-Q tunable cavity, which is capacitively coupled to a mechanically variable capacitor by a charged mechanical cavity mirror as an interface. We analyze the changes of the cavity photons arising from vacuum-induced-Raman process and discuss VIT in an atomic ensemble trapped in the cavity. By slowly adjusting the voltage on the capacitor, the VIT can be adiabatically switched on or off, meanwhile, the transfer between the probe photon state and the atomic spin state can be electrically and adiabatically modulated. Therefore, we demonstrate a vacuum-induced quantum memory by electrically manipulating the mechanical mirror of the cavity based on electromagnetically induced transparency mechanism.

  20. Densification control and analysis of outer shell of new high-temperature vacuum insulated composite

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Chen, Zhaofeng; Jiang, Yun; Yu, Shengjie; Xu, Tengzhou; Li, Binbin; Chen, Zhou

    2017-11-01

    A novel high temperature vacuum insulated composite with low thermal conductivity composed of SiC foam core material and sealing outer shell is discussed, which will have a great potential to be used as thermal protection system material. In this composite, the outer shell is the key to maintain its internal vacuum, which is consisted of 2.5D C/C and SiC coating. So the densification processes of outer shell, including 2.5D braiding process, chemical vapor infiltration (CVI) pyrolytic carbon (PyC) process, polymer infiltration and pyrolysis (PIP) glassy carbon (GC) process and chemical vapor deposition (CVD) SiC process, are focused in this paper. The measuring result of the gas transmission quantity of outer shell is only 0.14 cm3/m2 · d · Pa after 5 times CVD processes, which is two order of magnitude lower than that sample deposited one time. After 10 times thermal shock cycles, the gas transmission quantity increases to 1.2 cm3/m2 · d · Pa. The effective thermal conductivity of high temperature vacuum insulated composite ranged from 0.19 W m-1 K-1 to 0.747 W m-1 K-1 within the temperature from 20 °C to 900 °C. Even after 10 thermal shock cycles, the variation of the effective thermal conductivity is still consistent with that without treatments.

  1. Redesigning the continuous vacuum sealer packaging machine to improve the processing speed

    NASA Astrophysics Data System (ADS)

    Belo, J. B.; Widyanto, S. A.; Jamari, J.

    2017-01-01

    Vacuum sealer as a product packaging tool of food products to be able to vacuum air inside the plastic which is filled with food products and it causes the pressure lower. In this condition, the optimal heating temperature is reached in a shorter time, so that damage on plastic sealer of vacuumed food products could be prevented to be more effective and efficient. The purpose of this redesigning is to design a vacuum sealer packaging machine continuously through a conveyor mechanism on the packaging quality, time of processing speed of vacuuming food product in the plastic package. This designing process is conducted through several steps of designing and constructing tools until the products are ready to operate. Data analysis is done through quality test of vacuum and sealer to the plastic thickness of 75 µm, 80 µm, and 100 µm with temperature of 170°C, 180°C, 190°C and vacuum duration of 5 seconds, 8 seconds, and 60 seconds. Results of this designing process indicate that vacuum sealer works practically and more optimally with the time of vacuum processing speed of 0 to 1 minute/s; whereas, the pressure of vacuuming suction is until 1e-5 MPa. The results of tensile strength test are at a maximum of 32,796 (N/mm2) and a minimum of 20,155 (N/mm2) and the analysis of plastic composite with EDX. This result shows that the vacuum pressure and the quality of vacuum sealer are better and more efficient.

  2. Degradation kinetics of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside during hot air and vacuum drying in mulberry (Morus alba L.) fruit: A comparative study based on solid food system.

    PubMed

    Zhou, Mo; Chen, Qinqin; Bi, Jinfeng; Wang, Yixiu; Wu, Xinye

    2017-08-15

    The aim of this study is to ascertain the degradation kinetic of anthocyanin in dehydration process of solid food system. Mulberry fruit was treated by hot air and vacuum drying at 60 and 75°C. The contents of cyanidin 3-O-glucoside and cyanidin 3-O-rutinoside were determined by using high performance liquid chromatography. Kinetic and thermodynamic parameters were calculated for analysing the degradation characteristics. Model fitting results showed monomeric anthocyanin degradations were followed the second-order kinetic. Vacuum drying presented high kinetic rate constants and low t 1/2 values. Thermodynamic parameters including the activation energy, enthalpy change and entropy change appeared significant differences between hot air and vacuum drying. Both heating techniques showed similar effects on polyphenol oxidase activities. These results indicate the anthocyanin degradation kinetic in solid food system is different from that in liquid and the oxygen can be regarded as a catalyst to accelerate the degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Germanium detector vacuum encapsulation

    NASA Technical Reports Server (NTRS)

    Madden, N. W.; Malone, D. F.; Pehl, R. H.; Cork, C. P.; Luke, P. N.; Landis, D. A.; Pollard, M. J.

    1991-01-01

    This paper describes an encapsulation technology that should significantly improve the viability of germanium gamma-ray detectors for a number of important applications. A specialized vacuum chamber has been constructed in which the detector and the encapsulating module are processed in high vacuum. Very high vacuum conductance is achieved within the valveless encapsulating module. The detector module is then sealed without breaking the chamber vacuum. The details of the vacuum chamber, valveless module, processing, and sealing method are presented.

  4. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum to...

  5. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum to...

  6. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum to...

  7. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum to...

  8. 21 CFR 864.9125 - Vacuum-assisted blood collection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vacuum-assisted blood collection system. 864.9125... Blood and Blood Products § 864.9125 Vacuum-assisted blood collection system. (a) Identification. A vacuum-assisted blood collection system is a device intended for medical purposes that uses a vacuum to...

  9. Measurement of Outgassing Rates of Steels.

    PubMed

    Park, Chongdo; Kim, Se-Hyun; Ki, Sanghoon; Ha, Taekyun; Cho, Boklae

    2016-12-13

    Steels are commonly used materials in the fabrication of vacuum systems because of their good mechanical, corrosion, and vacuum properties. A variety of steels meet the criterion of low outgassing required for high or ultrahigh vacuum applications. However, a given material can present different outgassing rates depending on its manufacturing process or the various pretreatment processes involved during the fabrication. Thus, the measurement of outgassing rates is highly desirable for a specific vacuum application. For this reason, the rate-of-pressure rise (RoR) method is often used to measure the outgassing of hydrogen after bakeout. In this article, a detailed description of the design and execution of the experimental protocol involved in the RoR method is provided. The RoR method uses a spinning rotor gauge to minimize errors that stem from outgassing or the pumping action of a vacuum gauge. The outgassing rates of two ordinary steels (stainless steel and mild steel) were measured. The measurements were made before and after the heat pretreatment of the steels. The heat pretreatment of steels was performed to reduce the outgassing. Extremely low rates of outgassing (on the order of 10 - 11 Pa m 3 sec - 1 m - 2 ) can be routinely measured using relatively small samples.

  10. Cosmological implications of the transition from the false vacuum to the true vacuum state

    NASA Astrophysics Data System (ADS)

    Stachowski, Aleksander; Szydłowski, Marek; Urbanowski, Krzysztof

    2017-06-01

    We study cosmology with running dark energy. The energy density of dark energy is obtained from the quantum process of transition from the false vacuum state to the true vacuum state. We use the Breit-Wigner energy distribution function to model the quantum unstable systems and obtain the energy density of the dark energy parametrization ρ _ {de}(t). We also use Krauss and Dent's idea linking properties of the quantum mechanical decay of unstable states with the properties of the observed Universe. In the cosmological model with this parametrization there is an energy transfer between dark matter and dark energy. The intensity of this process, measured by a parameter α , distinguishes two scenarios. As the Universe starts from the false vacuum state, for the small value of α (0<α <0.4) it goes through an intermediate oscillatory (quantum) regime of the density of dark energy, while for α > 0.4 the density of the dark energy jumps down. In both cases the present value of the density of dark energy is reached. From a statistical analysis we find this model to be in good agreement with the astronomical data and practically indistinguishable from the Λ CDM model.

  11. Enhancement of water removing and the quality of fried purple-fleshed sweet potato in the vacuum frying by combined power ultrasound and microwave technology.

    PubMed

    Su, Ya; Zhang, Min; Bhandari, Bhesh; Zhang, Weiming

    2018-06-01

    The combination of ultrasound and microwave in vacuum frying system was investigated to achieve higher drying efficiency and quality attributes of fried products. Purple-fleshed potato were used as test specimen and different power levels of microwave (0 W, 600 W, 800 W) and ultrasound (0 W, 300 W, 600 W) during vacuum frying. Drying kinetics, dielectric properties, moisture state variation and quality attributes of fried samples were measured in a vacuum frying (VF), and an innovatively designed ultrasound and microwave assisted vacuum frying (USMVF) equipment. The USMVF process markedly increased the moisture evaporation rate and effective moisture diffusivity compared to VF process. The oil uptake was reduced by about 16-34%, the water activity and the shrinkage was lowered, the texture (crispness) and the color of fried samples were greatly improved. The higher ultrasound and microwave power level in USMVF made a greater improvement. The total anthocyanin levels and retention of fried purple-fleshed potato chips was the highest (123.52 mg/100 g solids and 79.51% retention, respectively) among all treatments in US600M800VF process. The SEM analysis revealed a more porous and disruption microstructure in USMVF sample. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. James Webb Space Telescope (JWST) Integrated Sciene Instrument Module (ISIM) Cryo-Vac 3 (CV3) Thermal Vacuum Test

    NASA Technical Reports Server (NTRS)

    Packard, Ed

    2016-01-01

    This presentation describes the test objectives, test summary, test configuration and test performance of the James Webb Space Telescope Integrated Science Instrument Module CryoVac 3 Thermal Vacuum Test. Verify the ISIM System in its final configuration after environmental exposure and provide a post-environmental performance baseline, including critical ground calibrations needed for science data processing in flight.

  13. Vacuum MOCVD fabrication of high efficience cells

    NASA Technical Reports Server (NTRS)

    Partain, L. D.; Fraas, L. M.; Mcleod, P. S.; Cape, J. A.

    1985-01-01

    Vacuum metal-organic-chemical-vapor-deposition (MOCVD) is a new fabrication process with improved safety and easier scalability due to its metal rather than glass construction and its uniform multiport gas injection system. It uses source materials more efficiently than other methods because the vacuum molecular flow conditions allow the high sticking coefficient reactants to reach the substrates as undeflected molecular beams and the hot chamber walls cause the low sticking coefficient reactants to bounce off the walls and interact with the substrates many times. This high source utilization reduces the materials costs power device and substantially decreases the amounts of toxic materials that must be handled as process effluents. The molecular beams allow precise growth control. With improved source purifications, vacuum MOCVD has provided p GaAs layers with 10-micron minority carrier diffusion lengths and GaAs and GaAsSb solar cells with 20% AMO efficiencies at 59X and 99X sunlight concentration ratios. Mechanical stacking has been identified as the quickest, most direct and logical path to stacked multiple-junction solar cells that perform better than the best single-junction devices. The mechanical stack is configured for immediate use in solar arrays and allows interconnections that improve the system end-of-life performance in space.

  14. Automated Cryocooler Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Britcliffe, Michael J.; Hanscon, Theodore R.; Fowler, Larry E.

    2011-01-01

    A system was designed to automate cryogenically cooled low-noise amplifier systems used in the NASA Deep Space Network. It automates the entire operation of the system including cool-down, warm-up, and performance monitoring. The system is based on a single-board computer with custom software and hardware to monitor and control the cryogenic operation of the system. The system provides local display and control, and can be operated remotely via a Web interface. The system controller is based on a commercial single-board computer with onboard data acquisition capability. The commercial hardware includes a microprocessor, an LCD (liquid crystal display), seven LED (light emitting diode) displays, a seven-key keypad, an Ethernet interface, 40 digital I/O (input/output) ports, 11 A/D (analog to digital) inputs, four D/A (digital to analog) outputs, and an external relay board to control the high-current devices. The temperature sensors used are commercial silicon diode devices that provide a non-linear voltage output proportional to temperature. The devices are excited with a 10-microamp bias current. The system is capable of monitoring and displaying three temperatures. The vacuum sensors are commercial thermistor devices. The output of the sensors is a non-linear voltage proportional to vacuum pressure in the 1-Torr to 1-millitorr range. Two sensors are used. One measures the vacuum pressure in the cryocooler and the other the pressure at the input to the vacuum pump. The helium pressure sensor is a commercial device that provides a linear voltage output from 1 to 5 volts, corresponding to a gas pressure from 0 to 3.5 MPa (approx. = 500 psig). Control of the vacuum process is accomplished with a commercial electrically operated solenoid valve. A commercial motor starter is used to control the input power of the compressor. The warm-up heaters are commercial power resistors sized to provide the appropriate power for the thermal mass of the particular system, and typically provide 50 watts of heat. There are four basic operating modes. "Cool " mode commands the system to cool to normal operating temperature. "Heat " mode is used to warm the device to a set temperature near room temperature. "Pump " mode is a maintenance function that allows the vacuum system to be operated alone to remove accumulated contaminants from the vacuum area. In "Off " mode, no power is applied to the system.

  15. Solid-state electron spin lifetime limited by phononic vacuum modes.

    PubMed

    Astner, T; Gugler, J; Angerer, A; Wald, S; Putz, S; Mauser, N J; Trupke, M; Sumiya, H; Onoda, S; Isoya, J; Schmiedmayer, J; Mohn, P; Majer, J

    2018-04-01

    Longitudinal relaxation is the process by which an excited spin ensemble decays into its thermal equilibrium with the environment. In solid-state spin systems, relaxation into the phonon bath usually dominates over the coupling to the electromagnetic vacuum 1-9 . In the quantum limit, the spin lifetime is determined by phononic vacuum fluctuations 10 . However, this limit was not observed in previous studies due to thermal phonon contributions 11-13 or phonon-bottleneck processes 10, 14,15 . Here we use a dispersive detection scheme 16,17 based on cavity quantum electrodynamics 18-21 to observe this quantum limit of spin relaxation of the negatively charged nitrogen vacancy (NV - ) centre 22 in diamond. Diamond possesses high thermal conductivity even at low temperatures 23 , which eliminates phonon-bottleneck processes. We observe exceptionally long longitudinal relaxation times T 1 of up to 8 h. To understand the fundamental mechanism of spin-phonon coupling in this system we develop a theoretical model and calculate the relaxation time ab initio. The calculations confirm that the low phononic density of states at the NV - transition frequency enables the spin polarization to survive over macroscopic timescales.

  16. A model for the effect of real leaks on the transport of microorganisms into a vacuum freeze-dryer.

    PubMed

    Jennings, T A

    1990-01-01

    This paper proposes a model for determining the effect that real leaks, whose flow is viscous in nature, could have on the microorganism density in a vacuum freeze-dryer during a drying process. The model considers the entry of microorganisms to result from real leaks stemming from an environment containing a known bioburden. A means for determining the relationship between the rate of pressure rise of the system (ROR) and the density of microorganisms in a system, stemming from an environment of a known bioburden, is examined. The model also considers the change in the bioburden of the dryer with respect to variations in the primary and secondary drying process.

  17. Design and qualification of an UHV system for operation on sounding rockets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosse, Jens, E-mail: jens.grosse@dlr.de; Braxmaier, Claus; Seidel, Stephan Tobias

    The sounding rocket mission MAIUS-1 has the objective to create the first Bose–Einstein condensate in space; therefore, its scientific payload is a complete cold atom experiment built to be launched on a VSB-30 sounding rocket. An essential part of the setup is an ultrahigh vacuum system needed in order to sufficiently suppress interactions of the cooled atoms with the residual background gas. Contrary to vacuum systems on missions aboard satellites or the international space station, the required vacuum environment has to be reached within 47 s after motor burn-out. This paper contains a detailed description of the MAIUS-1 vacuum system, asmore » well as a description of its qualification process for the operation under vibrational loads of up to 8.1 g{sub RMS} (where RMS is root mean square). Even though a pressure rise dependent on the level of vibration was observed, the design presented herein is capable of regaining a pressure of below 5 × 10{sup −10} mbar in less than 40 s when tested at 5.4 g{sub RMS}. To the authors' best knowledge, it is the first UHV system qualified for operation on a sounding rocket.« less

  18. DWPF Melt Cell Crawler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.R.

    2003-04-08

    On December 2, 2002, Remote and Specialty Equipment Systems (RSES) of the Savannah River Technology Center (SRTC) was requested to build a remotely operated crawler to assist in cleaning the Defense Waste Processing Facility (DWPF) melt cell floor of glass, tools, and other debris. The crawler was to assist a grapple and vacuum system in cleaning the cell. The crawler was designed to push glass and debris into piles so that the grapple could pick up the material and place it in waste bins. The crawler was also designed to maneuver the end of the vacuum hose, if needed. Inmore » addition, the crawler was designed to clean the area beneath the cell worktable that was inaccessible to the grapple and vacuum system. Originally, the system was to be ready for deployment by December 17. The date was moved up to December 12 to better utilize the available time for clean up. The crawler was designed and built in 10 days and completed cleaning the melt cell in 8 days. Due to initial problems with the grapple and vacuum system, the crawler completed essentially all of the cleanup tasks by itself. The crawler also cleaned an area on the west side of the cell that was not initially slated for cleaning.« less

  19. Ultrahigh vacuum process for the deposition of nanotubes and nanowires

    DOEpatents

    Das, Biswajit; Lee, Myung B

    2015-02-03

    A system and method A method of growing an elongate nanoelement from a growth surface includes: a) cleaning a growth surface on a base element; b) providing an ultrahigh vacuum reaction environment over the cleaned growth surface; c) generating a reactive gas of an atomic material to be used in forming the nanoelement; d) projecting a stream of the reactive gas at the growth surface within the reactive environment while maintaining a vacuum of at most 1.times.10.sup.-4 Pascal; e) growing the elongate nanoelement from the growth surface within the environment while maintaining the pressure of step c); f) after a desired length of nanoelement is attained within the environment, stopping direction of reactive gas into the environment; and g) returning the environment to an ultrahigh vacuum condition.

  20. An experimental study of permeability within an out-of-autoclave vacuum-bag-only CFRP laminate

    NASA Astrophysics Data System (ADS)

    Wallace, Landon F.

    The out-of-autoclave vacuum-bag-only (OOA-VBO) manufacturing process is a process that eliminates an autoclave when manufacturing aerospace quality carbon fiber reinforced plastics (CFRP). OOA-VBO pre-impregnated resin tow systems rely on air channel networks that guide unwanted voids out of the laminate. The air path networks can be characterized by measuring the permeability of a pre-cured laminate. Permeability results were successfully obtained for a laminate with a compaction similar to that found in a typical vacuum bagging setup. A study was done to find the relationship between compaction of the laminate and permeability. Permeability was measured as the laminate cured, using a constant temperature ramp rate. An experimental nodal analysis was performed to find the permeability at the midpoint of the in-plane direction.

  1. Switching Circuit for Shop Vacuum System

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1987-01-01

    No internal connections to machine tools required. Switching circuit controls vacuum system draws debris from grinders and sanders in machine shop. Circuit automatically turns on vacuum system whenever at least one sander or grinder operating. Debris safely removed, even when operator neglects to turn on vacuum system manually. Pickup coils sense alternating magnetic fields just outside operating machines. Signal from any coil or combination of coils causes vacuum system to be turned on.

  2. 25th Space Simulation Conference. Environmental Testing: The Earth-Space Connection

    NASA Technical Reports Server (NTRS)

    Packard, Edward

    2008-01-01

    Topics covered include: Methods of Helium Injection and Removal for Heat Transfer Augmentation; The ESA Large Space Simulator Mechanical Ground Support Equipment for Spacecraft Testing; Temperature Stability and Control Requirements for Thermal Vacuum/Thermal Balance Testing of the Aquarius Radiometer; The Liquid Nitrogen System for Chamber A: A Change from Original Forced Flow Design to a Natural Flow (Thermo Siphon) System; Return to Mercury: A Comparison of Solar Simulation and Flight Data for the MESSENGER Spacecraft; Floating Pressure Conversion and Equipment Upgrades of Two 3.5kw, 20k, Helium Refrigerators; Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load; Special ISO Class 6 Cleanroom for the Lunar Reconnaissance Orbiter (LRO) Project; A State-of-the-Art Contamination Effects Research and Test Facility Martian Dust Simulator; Cleanroom Design Practices and Their Influence on Particle Counts; Extra Terrestrial Environmental Chamber Design; Contamination Sources Effects Analysis (CSEA) - A Tool to Balance Cost/Schedule While Managing Facility Availability; SES and Acoustics at GSFC; HST Super Lightweight Interchangeable Carrier (SLIC) Static Test; Virtual Shaker Testing: Simulation Technology Improves Vibration Test Performance; Estimating Shock Spectra: Extensions beyond GEVS; Structural Dynamic Analysis of a Spacecraft Multi-DOF Shaker Table; Direct Field Acoustic Testing; Manufacture of Cryoshroud Surfaces for Space Simulation Chambers; The New LOTIS Test Facility; Thermal Vacuum Control Systems Options for Test Facilities; Extremely High Vacuum Chamber for Low Outgassing Processing at NASA Goddard; Precision Cleaning - Path to Premier; The New Anechoic Shielded Chambers Designed for Space and Commercial Applications at LIT; Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar; Thermal (Silicon Diode) Data Acquisition System; Aquarius's Instrument Science Data System (ISDS) Automated to Acquire, Process, Trend Data and Produce Radiometric System Assessment Reports; Exhaustive Thresholds and Resistance Checkpoints; Reconfigurable HIL Testing of Earth Satellites; FPGA Control System for the Automated Test of MicroShutters; Ongoing Capabilities and Developments of Re-Entry Plasma Ground Tests at EADS-ASTRIUM; Operationally Responsive Space Standard Bus Battery Thermal Balance Testing and Heat Dissipation Analysis; Galileo - The Serial-Production AIT Challenge; The Space Systems Environmental Test Facility Database (SSETFD), Website Development Status; Simulated Reentry Heating by Torching; Micro-Vibration Measurements on Thermally Loaded Multi-Layer Insulation Samples in Vacuum; High Temperature Life Testing of 80Ni-20Cr Wire in a Simulated Mars Atmosphere for the Sample Analysis at Mars (SAM) Instrument Suit Gas Processing System (GPS) Carbon Dioxide Scrubber; The Planning and Implementation of Test Facility Improvements; and Development of a Silicon Carbide Molecular Beam Nozzle for Simulation Planetary Flybys and Low-Earth Orbit.

  3. Sensor for the working surface cleanliness definition in vacuum

    NASA Astrophysics Data System (ADS)

    Deulin, E. A.; Mashurov, S. S.; Gatsenko, A. A.

    2016-07-01

    Modern development of nanotechnology as one of the modern science priority directions is impossible to imagine without the use of vacuum systems and technologies. And the better the vacuum (lower the pressure), the “cleaner” we get a surface, which is very important for nanotechnology. Determination of the cleanliness of the surface or the amount of molecular layers of adsorbed gases on the working surface of the products especially in industry, where the cleanliness of the working surface is a key parameter of the technological process and has a significant influence on the output parameters of the final product is the main goal of this work.

  4. 49 CFR 570.56 - Vacuum brake assist unit and vacuum brake system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... The following requirements apply to vehicles with vacuum brake assist units and vacuum brake systems. (a) Vacuum brake assist unit integrity. The vacuum brake assist unit shall demonstrate integrity as... maintained on the pedal. (1) Inspection procedure. Stop the engine and apply service brake several times to...

  5. Design and performance of vacuum system for high heat flux test facility

    NASA Astrophysics Data System (ADS)

    Swamy Kidambi, Rajamannar; Mokaria, Prakash; Khirwadkar, Samir; Belsare, Sunil; Khan, M. S.; Patel, Tushar; Krishnan, Deepu S.

    2017-04-01

    High heat flux test facility (HHFTF) at IPR is used for testing thermal performance of plasma facing materials or components. It consists of various subsystems like vacuum system, high power electron beam system, diagnostic and calibration system, data acquisition and control system and high pressure high temperature water circulation system. Vacuum system consists of large D-shaped chamber, target handling system, pumping systems and support structure. The net volume of vacuum chamber is 5 m3 was maintained at the base pressure of the order of 10-6 mbar for operation of electron gun with minimum beam diameter which is achieved with turbo-molecular pump (TMP) and cryo pump. A variable conductance gate valve is used for maintaining required vacuum in the chamber. Initial pumping of the chamber was carried out by using suitable rotary and root pumps. PXI and PLC based faster real time data acquisition and control system is implemented for performing the various operations like remote operation, online vacuum data measurements, display and status indication of all vacuum equipments. This paper describes in detail the design and implementation of various vacuum system for HHFTF.

  6. Examinations on Laser Remote Welding of Ultra-thin Metal Foils Under Vacuum Conditions

    NASA Astrophysics Data System (ADS)

    Petrich, Martin; Stambke, Martin; Bergmann, Jean Pierre

    Metal foils are commonly used for catalytic converters, vacuum insulations, in medical and electrical industry as well as for sensor applications and packaging. The investigations in this paper determine the influence of reduced atmospheric pressure during the welding process with a highly brilliant 400 W single-mode fiber laser combined with a 2D-scanning system. The laser beam is transmitted through a highly transparent glass into a vacuum chamber, where AISI 304 stainless steel foils with a thickness of 25 μm, 50 μm and 100 μm are positioned. The effects of reduced atmospheric pressure on the plasma formation are investigated by means of high-speed videography. Furthermore, the geometry of the weld seam is compared to atmospheric conditions as well as means of the process stability and the process efficiency. The welds were also evaluated by means of metallography. The research is a contribution for extending the range of micro welding applications and shows new aspects for future developments.

  7. Apparatus and process for passivating an SRF cavity

    DOEpatents

    Myneni, Ganapati Rao; Wallace, John P

    2014-12-02

    An apparatus and process for the production of a niobium cavity exhibiting high quality factors at high gradients is provided. The apparatus comprises a first chamber positioned within a second chamber, an RF generator and vacuum pumping systems. The process comprises placing the niobium cavity in a first chamber of the apparatus; thermally treating the cavity by high temperature in the first chamber while maintaining high vacuum in the first and second chambers; and applying a passivating thin film layer to a surface of the cavity in the presence of a gaseous mixture and an RF field. Further a niobium cavity exhibiting high quality factors at high gradients produced by the method of the invention is provided.

  8. Comparison of vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification systems.

    PubMed

    Han, Young Keun; Miller, Kevin M

    2009-08-01

    To compare vacuum rise time, vacuum limit accuracy, and occlusion break surge of 3 new phacoemulsification machines. Jules Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA. The vacuum rise time under normal and enhanced aspiration modes, vacuum limit accuracy, and occlusion break surge of the Infiniti Vision System, Stellaris Vision Enhancement System, and WhiteStar Signature Phacoemulsification System were tested. Vacuum rise time and limit accuracy were measured at limit settings of 400 mm Hg and 600 mm Hg. Surge area was recorded at vacuum limit settings of 200 mm Hg, 300 mm Hg, 400 mm Hg, and 500 mm Hg. The Infiniti had the fastest vacuum rise times under normal and enhanced aspiration modes. At 4 seconds, the vacuum limit accuracy was greatest with the Infiniti at the 400 mm Hg limit and the Signature at the 600 mm Hg limit. The Stellaris did not reach either vacuum target. The Infiniti performed better than the other 2 machines during testing of occlusion break surge at all vacuum limit settings above 200 mm Hg. Under controlled laboratory test conditions, the Infiniti had the fastest vacuum rise time, greatest vacuum limit accuracy at 400 mm Hg, and least occlusion break surge. These results can be explained by the lower compliance of the Infiniti system.

  9. Development of an Experimental Setup for the Measurement of the Coefficient of Restitution under Vacuum Conditions

    PubMed Central

    Drücker, Sven; Krautstrunk, Isabell; Paulick, Maria; Saleh, Khashayar; Morgeneyer, Martin; Kwade, Arno

    2016-01-01

    The Discrete Element Method is used for the simulation of particulate systems to describe and analyze them, to predict and afterwards optimize their behavior for single stages of a process or even an entire process. For the simulation with occurring particle-particle and particle-wall contacts, the value of the coefficient of restitution is required. It can be determined experimentally. The coefficient of restitution depends on several parameters like the impact velocity. Especially for fine particles the impact velocity depends on the air pressure and under atmospheric pressure high impact velocities cannot be reached. For this, a new experimental setup for free-fall tests under vacuum conditions is developed. The coefficient of restitution is determined with the impact and rebound velocity which are detected by a high-speed camera. To not hinder the view, the vacuum chamber is made of glass. Also a new release mechanism to drop one single particle under vacuum conditions is constructed. Due to that, all properties of the particle can be characterized beforehand. PMID:27077671

  10. Development of an Experimental Setup for the Measurement of the Coefficient of Restitution under Vacuum Conditions.

    PubMed

    Drücker, Sven; Krautstrunk, Isabell; Paulick, Maria; Saleh, Khashayar; Morgeneyer, Martin; Kwade, Arno

    2016-03-29

    The Discrete Element Method is used for the simulation of particulate systems to describe and analyze them, to predict and afterwards optimize their behavior for single stages of a process or even an entire process. For the simulation with occurring particle-particle and particle-wall contacts, the value of the coefficient of restitution is required. It can be determined experimentally. The coefficient of restitution depends on several parameters like the impact velocity. Especially for fine particles the impact velocity depends on the air pressure and under atmospheric pressure high impact velocities cannot be reached. For this, a new experimental setup for free-fall tests under vacuum conditions is developed. The coefficient of restitution is determined with the impact and rebound velocity which are detected by a high-speed camera. To not hinder the view, the vacuum chamber is made of glass. Also a new release mechanism to drop one single particle under vacuum conditions is constructed. Due to that, all properties of the particle can be characterized beforehand.

  11. Effect of vacuum roasting on acrylamide formation and reduction in coffee beans.

    PubMed

    Anese, Monica; Nicoli, Maria Cristina; Verardo, Giancarlo; Munari, Marina; Mirolo, Giorgio; Bortolomeazzi, Renzo

    2014-02-15

    Coffea arabica beans were roasted in an oven at 200 °C for increasing lengths of time under vacuum (i.e. 0.15 kPa). The samples were then analysed for colour, weight loss, acrylamide concentration and sensory properties. Data were compared with those obtained from coffee roasted at atmospheric pressure (i.e. conventional roasting), as well as at atmospheric pressure for 10 min followed by vacuum treatment (0.15 kPa; i.e. conventional-vacuum roasting). To compare the different treatments, weight loss, colour and acrylamide changes were expressed as a function of the thermal effect received by the coffee beans during the different roasting processes. Vacuum-processed coffee with medium roast degree had approximately 50% less acrylamide than its conventionally roasted counterpart. It was inferred that the low pressure generated inside the oven during the vacuum process exerted a stripping effect preventing acrylamide from being accumulated. Vacuum-processed coffee showed similar colour and sensory properties to conventionally roasted coffee. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Heat pump processes induced by laser radiation

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.

    1980-01-01

    A carbon dioxide laser system was constructed for the demonstration of heat pump processes induced by laser radiation. The system consisted of a frequency doubling stage, a gas reaction cell with its vacuum and high purity gas supply system, and provisions to measure the temperature changes by pressure, or alternatively, by density changes. The theoretical considerations for the choice of designs and components are dicussed.

  13. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 29.1433 Section 29.1433... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a.... (b) Each vacuum air system line and fitting on the discharge side of the pump that might contain...

  14. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  15. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  16. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  17. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  18. 21 CFR 884.5070 - Vacuum abortion system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Vacuum abortion system. 884.5070 Section 884.5070 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... § 884.5070 Vacuum abortion system. (a) Identification. A vacuum abortion system is a device designed to...

  19. A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics

    PubMed Central

    Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf

    2016-01-01

    Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419

  20. Rapid bonding of Pyrex glass microchips.

    PubMed

    Akiyama, Yoshitake; Morishima, Keisuke; Kogi, Atsuna; Kikutani, Yoshikuni; Tokeshi, Manabu; Kitamori, Takehiko

    2007-03-01

    A newly developed vacuum hot press system has been specially designed for the thermal bonding of glass substrates in the fabrication process of Pyrex glass microchemical chips. This system includes a vacuum chamber equipped with a high-pressure piston cylinder and carbon plate heaters. A temperature of up to 900 degrees C and a force of as much as 9800 N could be applied to the substrates in a vacuum atmosphere. The Pyrex substrates bonded with this system under different temperatures, pressures, and heating times were evaluated by tensile strength tests, by measurements of thickness, and by observations of the cross-sectional shapes of the microchannels. The optimal bonding conditions of the Pyrex glass substrates were 570 degrees C for 10 min under 4.7 N/mm(2) of applied pressure. Whereas more than 16 h is required for thermal bonding with a conventional furnace, the new system could complete the whole bonding processes within just 79 min, including heating and cooling periods. Such improvements should considerably enhance the production rate of Pyrex glass microchemical chips. Whereas flat and dust-free surfaces are required for conventional thermal bonding, especially without long and repeated heating periods, our hot press system could press a fine dust into glass substrates so that even the areas around the dust were bonded. Using this capability, we were able to successfully integrate Pt/Ti thin film electrodes into a Pyrex glass microchip.

  1. Comparison of blood specimens from plain and gel vacuum blood collection tubes.

    PubMed

    Wiwanitkit, V

    2001-05-01

    This study was set in the Division of Laboratory Medicine, Chulalongkorn Hospital. All 2,000 blood specimens were randomly collected using evacuated blood collection by plain or gel vacuum tubes. After collection, each specimen was considered and judged using criteria of specimen rejection to determine how proper the specimen presentations were. All data were reviewed, collected and interpreted. It revealed that there were only 20 (1%) improper specimens and all were improper in quality. There was no significant difference between the ratio of improper specimens in both groups (P > 0.30). From this study, it revealed that efficacy of both types of vacuum tubes was not different. The new gel vacuum tube seems to be an effective tool in the evacuated blood collection system due to its advantage in reduction of time in specimen processing.

  2. The Generating Mechanism of Non-Sustained Disruptive Discharges in Vacuum Interrupters

    NASA Astrophysics Data System (ADS)

    Hara, Daisuke; Taki, Masayuki; Tanaka, Hitoshi; Okawa, Mikio; Yanabu, Satoru

    To develop vacuum circuit breaker (VCB) for higher voltage application, it may be important to understand generating mechanism and its influence of non-sustained disruptive discharges (NSDD) to the systems. So, we carried out the tests using equivalent testing circuit and observed the contacts after testing, For the test, by using commercial vacuum circuit interrupters, AC voltages of 50Hz was applied between contacts for 4 seconds after current interruption, and measured generating frequencies of NSDD vs. the voltages and vs. currents. Typical contact material used in the commercial switching equipment, such as AgWC, CuW, CuCr were tested and compared. Then CuCr's of different composition and manufacturing process are investigated. And CuCr-50 (manufactured by melting process) showed the best performance in all tests. We point out that surface condition may affect the generation of NSDD and also conditioning effect is very important.

  3. Does vacuum delivery carry a higher risk of shoulder dystocia? Review and meta-analysis of the literature.

    PubMed

    Dall'Asta, Andrea; Ghi, Tullio; Pedrazzi, Giuseppe; Frusca, Tiziana

    2016-09-01

    Vacuum extractor has been increasingly used over the last decades and is acknowledged as a risk factor for shoulder dystocia (SD). In this meta-analysis we assess the actual risk of SD following a vacuum delivery compared to spontaneous vaginal delivery (SVD) and forceps. Systematic literature search (English literature only) on MEDLINE, EMBASE, ScienceDirect, the Cochrane library and ClinicalTrials.gov conducted up to May 2015. Key search terms included: Operative/Vacuum/Forceps delivery [Mesh] and shoulder dystocia and subheadings. 2 stage-process study selection. We included only studies where data concerning the occurrence of SD following operative vaginal delivery were reported as adjusted odds ratio (AOR) and no significant difference in confounding factors for SD was recorded. Included trials clustered according to the delivery mode (1) vacuum vs. SVD, (2) forceps vs. vacuum. Methodological quality of each study evaluated with the Newcastle-Ottawa System (NOS). 87 potentially relevant papers. After applying inclusion and exclusion criteria only 7 were selected for the meta-analysis. Vacuum delivery appeared associated with a higher risk of SD than SVD in both fixed and random model (OR 2.87 and 2.98 respectively). No difference in the rate of SD was found between vacuum and forceps (p>0.05). Vacuum extractor carries an increased risk of SD compared with spontaneous vaginal delivery whereas the occurrence of SD does not seem to vary following vacuum or forceps. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. 31-mode piezoelectric micromachined ultrasonic transducer with PZT thick film by granule spraying in vacuum process

    NASA Astrophysics Data System (ADS)

    Jung, Joontaek; Annapureddy, Venkateswarlu; Hwang, Geon-Tae; Song, Youngsup; Lee, Wonjun; Kang, Woojin; Ryu, Jungho; Choi, Hongsoo

    2017-05-01

    A piezoelectric micromachined ultrasonic transducer (pMUT) is an ideal device for portable medical diagnosis systems, intravascular ultrasound systems, and ultrasonic cameras because of its favorable characteristics including small size, acoustic impedance matching with the body, low power consumption, and simple integration with the systems. Despite these advantages, practical applications are limited because of insufficient acoustic pressure of the pMUT caused by the thin active piezoelectric layer. Here, we report the fabrication of a thick piezoelectric Pb(Zr,Ti)O3 (PZT) film-based pMUT device having high deflection at low driving voltage using the granule spraying in vacuum (GSV) process. Pre-patterned high-density thick (exceeding 8 μm) PZT films were grown on 6-inch-diameter Si/SiO2/Ti/Pt silicon-on-insulator wafers at room temperature at a high deposition rate of ˜5 μm min-1. The fabrication process using the proposed GSV process was simple and fast, and the deflection of the pMUT exhibited a high value of 0.8 μm.

  5. Tubing vs. buckets: a cost comparison

    Treesearch

    Neil K. Huyler

    1975-01-01

    Equipment investment for tubing-vacuum systems was significantly less than that for bucket systems. Tubing-vacuum systems required about 22 percent less labor input, the major labor input being completed before sap-flow periods. Annual cost of operation was less for tubing-vacuum than the bucket system. Small tubing-vacuum operations showed more profit potential than...

  6. Robust Multilayer Insulation for Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Fesmire, J. E.; Scholtens, B. F.; Augustynowicz, S. D.

    2007-01-01

    New requirements for thermal insulation include robust Multilayer insulation (MU) systems that work for a range of environments from high vacuum to no vacuum. Improved MLI systems must be simple to install and maintain while meeting the life-cycle cost and thermal performance objectives. Performance of actual MLI systems has been previously shown to be much worse than ideal MLI. Spacecraft that must contain cryogens for both lunar service (high vacuum) and ground launch operations (no vacuum) are planned. Future cryogenic spacecraft for the soft vacuum environment of Mars are also envisioned. Industry products using robust MLI can benefit from improved cost-efficiency and system safety. Novel materials have been developed to operate as excellent thermal insulators at vacuum levels that are much less stringent than the absolute high vacuum requirement of current MLI systems. One such robust system, Layered Composite Insulation (LCI), has been developed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. The experimental testing and development of LCI is the focus of this paper. LCI thermal performance under cryogenic conditions is shown to be six times better than MLI at soft vacuum and similar to MLI at high vacuum. The experimental apparent thermal conductivity (k-value) and heat flux data for LCI systems are compared with other MLI systems.

  7. Parametrically driven hybrid qubit-photon systems: Dissipation-induced quantum entanglement and photon production from vacuum

    NASA Astrophysics Data System (ADS)

    Remizov, S. V.; Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-10-01

    We consider a dissipative evolution of a parametrically driven qubit-cavity system under the periodic modulation of coupling energy between two subsystems, which leads to the amplification of counter-rotating processes. We reveal a very rich dynamical behavior of this hybrid system. In particular, we find that the energy dissipation in one of the subsystems can enhance quantum effects in another subsystem. For instance, optimal cavity decay assists the stabilization of entanglement and quantum correlations between qubits even in the steady state and the compensation of finite qubit relaxation. On the contrary, energy dissipation in qubit subsystems results in enhanced photon production from vacuum for strong modulation but destroys both quantum concurrence and quantum mutual information between qubits. Our results provide deeper insights to nonstationary cavity quantum electrodynamics in the context of quantum information processing and might be of importance for dissipative quantum state engineering.

  8. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol

    2014-09-01

    Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties

  9. Drosophila as an unconventional substrate for microfabrication

    NASA Astrophysics Data System (ADS)

    Shum, Angela J.; Parviz, Babak A.

    2007-02-01

    We present the application of Drosophila fruit flies as an unconventional substrate for microfabrication. Drosophila by itself represents a complex system capable of many functions not attainable with current microfabrication technology. By using Drosophila as a substrate, we are able to capitalize on these natural functions while incorporating additional functionality into a superior hybrid system. In the following, development of microfabrication processes for Drosophila substrates is discussed. In particular, results of a study on Drosophila tolerance to vacuum pressure during multiple stages of development are given. A remarkable finding that adult Drosophila may withstand up to 3 hours of exposure to vacuum with measurable survival is noted. This finding opens a number of new opportunities for performing fabrication processes, similar to the ones performed on a silicon wafer, on a fruit fly as a live substrate. As a model microfabrication process, it is shown how a collection of Drosophila can be made to self-assemble into an array of microfabricated recesses on a silicon wafer and how a shadow mask can be used to thermally evaporate 100 nm of indium on flies. The procedure resulted in the production of a number of live flies with a pre-designed metal micropattern on their wings. This demonstration of vacuum microfabrication on a live organism provides the first step towards the development of a hybrid biological/solid-state manufacturing process for complex microsystems.

  10. In situ electrical resistivity measurements of vanadium thin films performed in vacuum during different annealing cycles

    NASA Astrophysics Data System (ADS)

    Pedrosa, Paulo; Cote, Jean-Marc; Martin, Nicolas; Arab Pour Yazdi, Mohammad; Billard, Alain

    2017-02-01

    The present study describes a sputtering and in situ vacuum electrical resistivity setup that allows a more efficient sputtering-oxidation coupling process for the fabrication of oxide compounds like vanadium dioxide, VO2. After the sputtering deposition of pure V thin films, the proposed setup enables the sample holder to be transferred from the sputtering to the in situ annealing + resistivity chamber without venting the whole system. The thermal oxidation of the V films was studied by implementing two different temperature cycles up to 550 °C, both in air (using a different resistivity setup) and vacuum conditions. Main results show that the proposed system is able to accurately follow the different temperature setpoints, presenting clean and low-noise resistivity curves. Furthermore, it is possible to identify the formation of different vanadium oxide phases in air, taking into account the distinct temperature cycles used. The metallic-like electrical properties of the annealed coatings are maintained in vacuum whereas those heated in air produce a vanadium oxide phase mixture.

  11. In situ electrical resistivity measurements of vanadium thin films performed in vacuum during different annealing cycles.

    PubMed

    Pedrosa, Paulo; Cote, Jean-Marc; Martin, Nicolas; Arab Pour Yazdi, Mohammad; Billard, Alain

    2017-02-01

    The present study describes a sputtering and in situ vacuum electrical resistivity setup that allows a more efficient sputtering-oxidation coupling process for the fabrication of oxide compounds like vanadium dioxide, VO 2 . After the sputtering deposition of pure V thin films, the proposed setup enables the sample holder to be transferred from the sputtering to the in situ annealing + resistivity chamber without venting the whole system. The thermal oxidation of the V films was studied by implementing two different temperature cycles up to 550 °C, both in air (using a different resistivity setup) and vacuum conditions. Main results show that the proposed system is able to accurately follow the different temperature setpoints, presenting clean and low-noise resistivity curves. Furthermore, it is possible to identify the formation of different vanadium oxide phases in air, taking into account the distinct temperature cycles used. The metallic-like electrical properties of the annealed coatings are maintained in vacuum whereas those heated in air produce a vanadium oxide phase mixture.

  12. An integrated wire harp and readout electronics inside vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Mou; Nabhiraj, P. Y.

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10{sup −7} Torr) to make the system much simpler, easy to operate, and measure small beammore » current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.« less

  13. An integrated wire harp and readout electronics inside vacuum.

    PubMed

    Chatterjee, Mou; Nabhiraj, P Y

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10(-7) Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  14. An integrated wire harp and readout electronics inside vacuum

    NASA Astrophysics Data System (ADS)

    Chatterjee, Mou; Nabhiraj, P. Y.

    2015-03-01

    A wire harp is a well known instrument used in ion beam profile measurement and beam diagnostics. Till date, for beam instrumentation, the harp is placed inside the vacuum chamber or beam line in direct exposure to the beam profile to be measured, whereas the related readout electronics is placed outside somewhere at a convenient place. Here, a harp has been developed along with the readout electronics as an integrated part of it and both were placed inside the beam line vacuum (order of 10-7 Torr) to make the system much simpler, easy to operate, and measure small beam current more accurately. The entire signal conversion and processing is done inside the vacuum unlike other systems; hence, the electronics is kept inside. This results in a lesser number (only 4 pin) of electrical connections (feedthrough) including power which otherwise would have required 32 feedthrough pins only for signal readout for a 13 × 13 (X × Y) channel harp. This paper describes a completely new approach to the design of a conventional beam harp widely used for beam instrumentation.

  15. Evaporation in equilibrium, in vacuum, and in hydrogen gas

    NASA Technical Reports Server (NTRS)

    Nagahara, Hiroko

    1993-01-01

    Evaporation experiments were conducted for SiO2 in three different conditions: in equilibrium, in vacuum, and in hydrogen gas. Evaporation rate in vacuum is about two orders of magnitude smaller than that in equilibrium, which is consistent with previous works. The rate in hydrogen gas changes depending on hydrogen pressure. The rate at 10 exp -7 bar of hydrogen pressure is as small as that of free evaporation, but at 10 exp -5 bar of hydrogen pressure it is larger than that in equilibrium. In equilibrium and in vacuum, the evaporation rate is limited by decomposition of SiO2 on the crystal surface, but it is limited by a diffusion process for evaporation in hydrogen gas. Therefore, evaporation rate of minerals in the solar nebula can be shown neither by that in equilibrium nor by that in vacuum. The maximum temperature of the solar nebula at the midplane at 2-3 AU where chondrites are believed to have originated is calculated to be as low as 150 K, 1500 K, or in between them. The temperature is, in any case, not high enough for total evaporation of the interstellar materials. Therefore, evaporation of interstellar materials is one of the most important processes for the origin and fractionation of solid materials. The fundamental process of evaporation of minerals has been intensively studied for these several years. Those experiments were carried out either in equilibrium or in vacuum; however, evaporation in the solar nebula is in hydrogen (and much smaller amount of helium) gas. In order to investigate evaporation rate and compositional (including isotopic) fractionation during evaporation, vaporization experiments for various minerals in various conditions are conducted. At first, SiO2 was adopted for a starting material, because thermochemical data and its nature of congruent vaporization are well known. Experiments were carried out in a vacuum furnace system.

  16. Boronization on NSTX using Deuterated Trimethylboron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W.R. Blanchard; R.C. Gernhardt; H.W. Kugel

    2002-01-28

    Boronization on the National Spherical Torus Experiment (NSTX) has proved to be quite beneficial with increases in confinement and density, and decreases in impurities observed in the plasma. The boron has been applied to the interior surfaces of NSTX, about every 2 to 3 weeks of plasma operation, by producing a glow discharge in the vacuum vessel using deuterated trimethylboron (TMB) in a 10% mixture with helium. Special NSTX requirements restricted the selection of the candidate boronization method to the use of deuterated boron compounds. Deuterated TMB met these requirements, but is a hazardous gas and special care in themore » execution of the boronization process is required. This paper describes the existing GDC, Gas Injection, and Torus Vacuum Pumping System hardware used for this process, the glow discharge process, and the automated control system that allows for remote operation to maximize both the safety and efficacy of applying the boron coating. The administrative requirements and the detailed procedure for the setup, operation and shutdown of the process are also described.« less

  17. 14 CFR 29.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1433 Vacuum systems. (a... the discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. (b) Each vacuum air system line and fitting on the discharge side of the pump that might contain...

  18. Rapid Cycle Amine (RCA 2.0) System Development

    NASA Technical Reports Server (NTRS)

    Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin

    2012-01-01

    The Rapid Cycle Amine (RCA) system is a low power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water vapor, while during the regeneration mode, the sorbent rejects the adsorbed CO2 and water vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low power controller design with several modes of operation available to the user. Together with NASA, United Technologies Corporation Aerospace Systems has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA-JSC in September 2012. This paper will provide an overview on the RCA system design and results of pre-delivery testing.

  19. Rapid Cycle Amine (RCA 2.0) System Development

    NASA Technical Reports Server (NTRS)

    Papale, William; O'Coin, James; Wichowski, Robert; Chullen, Cinda; Campbell, Colin

    2013-01-01

    The Rapid Cycle Amine (RCA) system is a low-power assembly capable of simultaneously removing carbon dioxide (CO2) and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. Two solid amine sorbent beds are alternated between an uptake mode and a regeneration mode. During the uptake mode, the sorbent is exposed to an air steam (ventilation loop) to adsorb CO2 and water (H2O) vapor, whereas during the regeneration mode, the sorbent rejects the adsorbed CO2 and H2O vapor to a vacuum source. The two beds operate such that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. A novel valve assembly provides a simple means of diverting the process air flow through the uptake bed while simultaneously directing the vacuum source to the regeneration bed. Additionally, the valve assembly is designed to allow for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The process can be controlled by a compact, low-power controller design with several modes of operation available to the user. Together with NASA Johnson Space Center, Hamilton Sundstrand Space Systems International, Inc. has been developing RCA 2.0 based on performance and design feedback on several sorbent bed test articles and valve design concepts. A final design of RCA 2.0 was selected in November 2011 and fabricated and assembled between March and August 2012, with delivery to NASA Johnson Space Center in September 2012. This paper provides an overview of the RCA system design and results of pre-delivery testing.

  20. Development of a pilot system for converting sweet potato starch into glucose syrup

    NASA Technical Reports Server (NTRS)

    Silayo, Valerian C K.; Lu, John Y.; Aglan, Heshmat A.; Bovell-Benjamin, A. C. (Principal Investigator)

    2003-01-01

    Sweet potato has been chosen as one of NASA's crops to support human beings in future space missions. One of the possible uses is to make syrup that can be used as a general sweetener. In this work a simple engineering system for converting sweet potato starch into glucose syrup was studied on a laboratory scale. The system comprises the following main units: a blender, continuous stirred tank reactor (CSTR), centrifugal and vacuum filters, deionization column and vacuum evaporator. The system was tested by carrying out conversion processes from fresh sweet potato roots. The roots were pealed, sliced, homogenized, heated and hydrolyzed by diastase of malt and Dextrozyme C (Novo Nordisk BioChem, North America, Inc.) enzymes in the CSTR. After hydrolysis the slurry was filtered, de-ionized and concentrated to get glucose syrup. The performance of the system was evaluated based on the quality of the conversion. The main factor was the level of reducing sugars except for the deionization where ash content and color were the main factors. Through careful control of the system units, good heating performance in the CSTR was obtained and the hydrolysis process attained sufficient conversion. The filtration process that incorporated the centrifuge was faster than when it was by-passed to the vacuum filter but losses in sugars were higher. Deionization removed more than 90% of the ash and reduced pigmentation, with probable insignificant losses in sugars during the deionization process. Recovery levels when the centrifuge was used and when it was by-passed could reach about 65% and 78%, respectively. These correspond to reducing sugar concentration of 259 and 310 mg/ml in 150-ml syrups from 300 g of sweet potatoes in each process. However, from concentration trials, syrups with volumes of 100 and 70 ml with the respective dextrose equivalence of 281 and 213 mg/ml were obtained. The syrups obtained were brownish in color and the process that employed centrifugal filtration gave a product with color that resembled the original color of the sweet potatoes. Further work is required to improve the overall system performance.

  1. Approximating Fluid Flow from Ambient to Very Low Pressures: Modeling ISS Experiments that Vent to Vacuum

    NASA Technical Reports Server (NTRS)

    Minor, Robert

    2002-01-01

    Two ISS (International Space Station) experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems. The following tasks are required: Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems; Determine the vent duration required to achieve desired pressure within the experiment modules; Update the analysis as systems and operations definitions mature.

  2. Impact of vacuum cooking process on the texture degradation of selected apple cultivars.

    PubMed

    Bourles, E; Mehinagic, E; Courthaudon, J L; Jourjon, F

    2009-01-01

    Thermal treatments are known to affect the textural properties of fruits and vegetables. This study was conducted to evaluate the influence of vacuum cooking process on the mechanical properties of various apple cultivars. A total of 10 apple cultivars were industrially processed by vacuum pasteurization at 95 degrees C for 25 min. The raw material was characterized by penetrometry, uniaxial double compression, soluble solid content, and titrable acidity. Textural properties of processed apples were analyzed by uniaxial double compression. As expected, for all cultivars, fruit resistance was lower after processing than before. Results showed that texture degradation due to vacuum pasteurization was different from one cultivar to another. Indeed, some cultivars, initially considered as the most resistant ones, such as Braeburn, were less suitable for processing, and became softer than others after thermal treatment. Consequently, it is worth noting that the texture classification of the investigated apple cultivars was changed by the vacuum-cooking process.

  3. Developments in Test Facility and Data Networking for the Altitude Test Stand at the John C. Stennis Space Center: A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W.

    2008-01-01

    NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.

  4. Vacuum transfer system increases sugar maple sap yield

    Treesearch

    Russell S. Walters

    1978-01-01

    Yields of sugar maple sap collected from three plastic pipeline systems by gravity, vacuum pump, and a vacuum pump with a transfer tank were compared during 2 years in northern Vermont. The transfer system yielded 27 percent more sap one year and 17 percent more the next year. Higher vacuum levels at the tapholes were observed in the transfer system.

  5. 40 CFR 60.661 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (such as reboiler, condenser, vacuum pump, steam jet, etc.), plus any associated recovery system. Flame.... Process heater means a device that transfers heat liberated by burning fuel to fluids contained in tubes... chemicals in § 60.667. A process unit can operate independently if supplied with sufficient fuel or raw...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Restivo, M.

    SRNL Environmental and Chemical Process Technology (E&CPT) was requested to perform testing of vacuum pumps per a verbal request from the Customer, SRNL Hydrogen Processing Technology. Tritium Operations is currently having difficulties procuring the Normetex™® Model 15 m 3/hr (9 CFM) vacuum pump (formerly Normetex Pompes, now Eumeca SARL). One possible solution proposed by Hydrogen Processing Technology personnel is to use two Senior Aerospace Metal Bellows MB-601 vacuum pumps piped with the heads in series, and the pumps in series (Figure 1 below). This memorandum documents the ultimate vacuum testing that was performed to determine if this concept was amore » viable alternate vacuum pump strategy. This testing dovetails with previous pump evaluations documented in references 1 and 2.« less

  7. Comparison of vacuum and non-vacuum urine tubes for urinary sediment analysis.

    PubMed

    Topcuoglu, Canan; Sezer, Sevilay; Kosem, Arzu; Ercan, Mujgan; Turhan, Turan

    2017-12-01

    Urine collection systems with aspiration system for vacuum tubes are becoming increasingly common for urinalysis, especially for microscopic examination of the urine. In this study, we aimed to examine whether vacuum aspiration of the urine sample has any adverse effect on sediment analysis by comparing results from vacuum and non-vacuum urine tubes. The study included totally 213 urine samples obtained from inpatients and outpatients in our hospital. Urine samples were collected to containers with aspiration system for vacuum tubes. Each sample was aliquoted to both vacuum and non-vacuum urine tubes. Urinary sediment analysis was performed using manual microscope. Results were evaluated using chi-square test. Comparison of the sediment analysis results from vacuum and non-vacuum urine tubes showed that results were highly concordant for erythrocyte, leukocyte and epithelial cells (gamma values 1, 0.997, and 0.994, respectively; p < .001). Results were also concordant for urinary casts, crystals and yeast (kappa values 0.815, 0.945 and 1, respectively; p < .001). The results show that in urinary sediment analysis, vacuum aspiration has no adverse effect on the cellular components except on casts.

  8. Economic viability and critical influencing factors assessment of black water and grey water source-separation sanitation system.

    PubMed

    Thibodeau, C; Monette, F; Glaus, M; Laflamme, C B

    2011-01-01

    The black water and grey water source-separation sanitation system aims at efficient use of energy (biogas), water and nutrients but currently lacks evidence of economic viability to be considered a credible alternative to the conventional system. This study intends to demonstrate economic viability, identify main cost contributors and assess critical influencing factors. A technico-economic model was built based on a new neighbourhood in a Canadian context. Three implementation scales of source-separation system are defined: 500, 5,000 and 50,000 inhabitants. The results show that the source-separation system is 33% to 118% more costly than the conventional system, with the larger cost differential obtained by lower source-separation system implementation scales. A sensitivity analysis demonstrates that vacuum toilet flow reduction from 1.0 to 0.25 L/flush decreases source-separation system cost between 23 and 27%. It also shows that high resource costs can be beneficial or unfavourable to the source-separation system depending on whether the vacuum toilet flow is low or normal. Therefore, the future of this configuration of the source-separation system lies mainly in vacuum toilet flow reduction or the introduction of new efficient effluent volume reduction processes (e.g. reverse osmosis).

  9. Vacuum Powder Injector

    NASA Technical Reports Server (NTRS)

    Working, Dennis C.

    1991-01-01

    Method developed to provide uniform impregnation of bundles of carbon-fiber tow with low-solubility, high-melt-flow polymer powder materials to produce composite prepregs. Vacuum powder injector expands bundle of fiber tow, applies polymer to it, then compresses bundle to hold powder. System provides for control of amount of polymer on bundle. Crystallinity of polymer maintained by controlled melt on takeup system. All powder entrapped, and most collected for reuse. Process provides inexpensive and efficient method for making composite materials. Allows for coating of any bundle of fine fibers with powders. Shows high potential for making prepregs of improved materials and for preparation of high-temperature, high-modulus, reinforced thermoplastics.

  10. Vacuum leak detector and method

    DOEpatents

    Edwards, Jr., David

    1983-01-01

    Apparatus and method for detecting leakage in a vacuum system involves a moisture trap chamber connected to the vacuum system and to a pressure gauge. Moisture in the trap chamber is captured by freezing or by a moisture adsorbent to reduce the residual water vapor pressure therein to a negligible amount. The pressure gauge is then read to determine whether the vacuum system is leaky. By directing a stream of carbon dioxide or helium at potentially leaky parts of the vacuum system, the apparatus can be used with supplemental means to locate leaks.

  11. Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Yao, S. C.

    2015-01-01

    Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.

  12. Self-powered switch-controlled nucleic acid extraction system.

    PubMed

    Han, Kyungsup; Yoon, Yong-Jin; Shin, Yong; Park, Mi Kyoung

    2016-01-07

    Over the past few decades, lab-on-a-chip (LOC) technologies have played a great role in revolutionizing the way in vitro medical diagnostics are conducted and transforming bulky and expensive laboratory instruments and labour-intensive tests into easy to use, cost-effective miniaturized systems with faster analysis time, which can be used for near-patient or point-of-care (POC) tests. Fluidic pumps and valves are among the key components for LOC systems; however, they often require on-line electrical power or batteries and make the whole system bulky and complex, therefore limiting its application to POC testing especially in low-resource setting. This is particularly problematic for molecular diagnostics where multi-step sample processing (e.g. lysing, washing, elution) is necessary. In this work, we have developed a self-powered switch-controlled nucleic acid extraction system (SSNES). The main components of SSNES are a powerless vacuum actuator using two disposable syringes and a switchgear made of PMMA blocks and an O-ring. In the vacuum actuator, an opened syringe and a blocked syringe are bound together and act as a working syringe and an actuating syringe, respectively. The negative pressure in the opened syringe is generated by a restoring force of the compressed air inside the blocked syringe and utilized as the vacuum source. The Venus symbol shape of the switchgear provides multiple functions including being a reagent reservoir, a push-button for the vacuum actuator, and an on-off valve. The SSNES consists of three sets of vacuum actuators, switchgears and microfluidic components. The entire system can be easily fabricated and is fully disposable. We have successfully demonstrated DNA extraction from a urine sample using a dimethyl adipimidate (DMA)-based extraction method and the performance of the DNA extraction has been confirmed by genetic (HRAS) analysis of DNA biomarkers from the extracted DNAs using the SSNES. Therefore, the SSNES can be widely used as a powerless and disposable system for DNA extraction and the syringe-based vacuum actuator would be easily utilized for diverse applications with various microchannels as a powerless fluidic pump.

  13. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng

    2016-06-15

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under amore » higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.« less

  14. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    NASA Astrophysics Data System (ADS)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng

    2016-06-01

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  15. Modification of fast-growing Chinese Fir wood with unsaturated polyester resin: Impregnation technology and efficiency

    NASA Astrophysics Data System (ADS)

    Ma, Qing; Zhao, Zijian; Yi, Songlin; Wang, Tianlong

    In this study, Chinese Fir was impregnated with unsaturated polyester resin to enhance its properties. Samples 20 mm × 20 mm × 20 mm in size were split into different sections with epoxy resin and tinfoil and subjected to an impregnation experiment under various parameters. Vacuum degree was -0.04 MPa, -0.06 MPa or -0.08 MPa and vacuum duration was 15 min, 30 min, or 45 min. The results indicated that impregnation weight percent gain is linearly dependent on curing weight percent gain. Vacuum duration appears to have less influence on the curing weight percent gain than vacuum degree, and impregnation was most successful at the transverse section compared to other sections. The optimal impregnation parameters were 30 min modification under -0.08 MPa vacuum followed by 120 min at atmospheric pressure for samples 200 mm × 100 mm × 20 mm in size. Uneven distribution of weight percent gain and cracking during the curing process suggested that 30 min post-processing at -0.09 MPa vacuum was the most effective way to complete the impregnation process. The sample's bending strength and modulus of elasticity increased after impregnation treatment. Bending strength after impregnation without post-processing reached 112.85%, but reached 71.65% with vacuum-processing; modulus of elasticity improved 67.13% and 58.28% without and with post-processing, respectively.

  16. Microgravity

    NASA Image and Video Library

    2004-04-15

    The Wake Shield Facility is a free-flying research and development facility that is designed to use the pure vacuum of space to conduct scientific research in the development of new materials. The thin film materials technology developed by the WSF could some day lead to applications such as faster electronics components for computers. The WSF Free-Flyer is a 12-foot-diameter stainless steel disk that, while traveling in orbit at approximately 18,000 mph, leaves in its wake a vacuum 1,000 to 10,000 times better than the best vacuums currently achieved on Earth. While it is carried into orbit by the Space Shuttle, the WSF is a fully equipped spacecraft in its own right, with cold gas propulsion for separation from the orbiter and a momentum bias attitude control system. All WSF functions are undertaken by a spacecraft computer with the WSF remotely controlled from the ground. The ultra vacuum, nearly empty of all molecules, is then used to conduct a series of thin film growths by a process called epitaxy which produces exceptionally pure and atomically ordered thin films of semiconductor compounds such as gallium arsenide. Using this process, the WSF offers the potential of producing thin film materials, and the devices they will make possible.

  17. How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO 2/SiO 2 antireflection and high reflection coatings.

    DOE PAGES

    Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.

    2016-06-01

    Optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. Finally, the coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence, and high reflection coatings for 527 nm, 45⁰ angle of incidence (AOI), in P-polarization (P-pol).« less

  18. How reduced vacuum pumping capability in a coating chamber affects the laser damage resistance of HfO 2/SiO 2 antireflection and high-reflection coatings

    DOE PAGES

    Field, Ella S.; Bellum, John C.; Kletecka, Damon E.

    2016-07-15

    Here, optical coatings with the highest laser damage thresholds rely on clean conditions in the vacuum chamber during the coating deposition process. A low-base pressure in the coating chamber, as well as the ability of the vacuum system to maintain the required pressure during deposition, are important aspects of limiting the amount of defects in an optical coating that could induce laser damage. Our large optics coating chamber at Sandia National Laboratories normally relies on three cryo pumps to maintain low pressures for e-beam coating processes. However, on occasion, one or more of the cryo pumps have been out ofmore » commission. In light of this circumstance, we explored how deposition under compromised vacuum conditions resulting from the use of only one or two cryo pumps affects the laser-induced damage thresholds of optical coatings. The coatings of this study consist of HfO 2 and SiO 2 layer materials and include antireflection coatings for 527 nm at normal incidence and high-reflection coatings for 527 nm at 45-deg angle of incidence in P-polarization.« less

  19. Three stage vacuum system for ultralow temperature installation

    NASA Astrophysics Data System (ADS)

    Das, N. K.; Pradhan, J.; Naser, Md Z. A.; Mandal, B. Ch; Roy, A.; Kumar, P.; Mallik, C.; Bhandari, R. K.

    2012-11-01

    We use a three stage vacuum system for developing a dilution fridge at VECC, Kolkata. We aim at achieving a cooling power of 20μW at 100mK for various experiments especially in the field of condensed matter and nuclear physics. The system is essentially composed of four segments-bath cryostat, vacuum system, dilution insert and 3He circulation circuit. Requirement of vacuum system at different stages are different. The vacuum system for cryostat and for internal vacuum chamber located within the helium bath is a common turbo molecular pump backed by scroll pump as to maintain a vacuum ~10-6mbar. For bringing down the temperature of the helium evaporator, we use a high throughput Roots pump backed by a dry pump. The pumping system for 3He distillation chamber (still) requires a high pumping speed, so a turbo drag pump backed by a scroll pump has been installed. As the fridge use precious 3He gas for operation, the entire system has been made to be absolutely leak proof with respect to the 3He gas.

  20. Quartz crystal fabrication facility

    NASA Astrophysics Data System (ADS)

    Ney, R. J.

    1980-05-01

    The report describes the design and operation of a five chamber, interconnected vacuum system, which is capable of cleaning, plating, and sealing precision quartz crystal units in ceramic flatpack enclosures continuously in a high vacuum environment. The production rate design goal was 200 units per eight hour day. A unique nozzle beam gold deposition source was developed to operate for extended periods of time without reloading. The source puts out a narrow beam of gold typically in the order of 2 1/2 deg included cone angle. Maximum deposition rates are in the order of 400 a/min at 5.5 in. 'throw' distance used. Entrance and exit air lock chambers expedite the material throughput, so that the processing chambers are at high vacuum for extended periods of time. A stainless steel conveyor belt, in conjunction with three vacuum manipulators, transport the resonator components to the various work stations. Individual chambers are normally separated from each other by gate valves. The crystal resonators, mounted in flatpack frames but unplated, are loaded into transport trays in a lid-frame-lid sequency for insertion into the system and exit as completed crystal units. The system utilizes molybdenum coated ball bearings at essentially all friction surfaces. The gold sources and plating mask heads are equipped with elevators and gate valves, so that they can be removed from the system for maintenance without exposing the chambers to atmosphere.

  1. Wireless Integrated Microelectronic Vacuum Sensor System

    NASA Technical Reports Server (NTRS)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum-gauge measurements automatically and wirelessly, in near-real time - using a low-maintenance, lowpower sensor mesh network. The WIMVSS operates by using a self-configuring mesh network of wireless sensor units. Mesh networking is a type of networking where each sensor or node can capture and disseminate its own data, but also serve as a relay to receive and transmit data from other sensors. Each sensor node can synchronize with adjacent sensors, and propagate data from one sensor to the next, until the destination is reached. In this case, the destination is a Network Interface Unit (NIU). The WIMVSS sensors are mounted on the existing vacuum gauges. Information gathered by the sensors is sent to the NIU. Because of the mesh networking, if a sensor cannot directly send the data to the NIU, it can be propagated through the network of sensors. The NIU requires antenna access to the sensor units, AC power, and an Ethernet connection. The NIU bridges the sensor network to a WIMVSS server via an Ethernet connection. The server is configured with a database, a Web server, and proprietary interface software that makes it possible for the vacuum measurements from vacuum jacketed fluid lines to be saved, retrieved, and then displayed from any Web-enabled PC that has access to the Internet. Authorized users can then simply access the data from any PC with Internet connection. Commands can also be sent directly from the Web interface for control and maintenance of the sensor network. The technology enabled by the WIMVSS decreases labor required for gathering vacuum measurements, increases access to vacuum data by making it available on any computer with access to the Internet, increases the frequency with which data points can be acquired for evaluating the system, and decreases the recurring cost of the sensors by using off-the-shelf components and integrating these with heritage vacuum gauges.

  2. Vacuum system transient simulator and its application to TFTR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sredniawski, J.

    The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTSmore » has been used in many applications. Two applications selected for presentation are: torus vacuum pumping system performance between 400 Ci tritium pulses and tritium backstreaming to neutral beams during pulses.« less

  3. Vacuum system of the cyclotrons in VECC, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anindya; Bhole, R.B.; Akhtar, J.

    2011-07-01

    The vacuum system of the K=130 Room Temperature Cyclotron (RTC) (operational since 1978) has been recently modernized and the same of the K{sub bend}=520 Superconducting Cyclotron (SCC), currently under commissioning, is being deployed for remote monitoring and control. The vacuum system of RTC is designed to achieve and maintain vacuum level of 2 X 10{sup -6} mbar inside 23 m{sup 3} volume of Resonator tank and DEE tank. This has been upgraded by replacing several valves, Freon units, gauges and pumps. The relay based manual control system has been replaced by PLC based automated system. The SCC vacuum system alsomore » has an elaborate arrangement comprising of turbo molecular pumping modules with associated isolation valves and characteristic gauges. This paper describes essential elements, typically used to obtain high (1X10{sup -7} mbar) vacuum using rotary pumps, diffusion pumps and cold traps/turbo-molecular pumps and other system components such as valves, gauges and baffles. The supervisory control methodology/scheme of both the vacuum systems, developed in-house using EPICS (Experimental Physics and Industrial Control System), a standard open-source software tool for designing distributed control system, is also elaborated here. (author)« less

  4. A comparison between atmospheric/humidity and vacuum cyanoacrylate fuming of latent fingermarks.

    PubMed

    Farrugia, Kevin J; Fraser, Joanna; Friel, Lauren; Adams, Duncan; Attard-Montalto, Nicola; Deacon, Paul

    2015-12-01

    A number of pseudo-operational trials were set up to compare the atmospheric/humidity and vacuum cyanoacrylate fuming processes on plastic carrier bags. The fuming processes were compared using two-step cyanoacrylate fuming with basic yellow 40 (BY40) staining and a one-step fluorescent cyanoacrylate fuming, Lumicyano 4%. Preliminary work using planted fingermarks and split depletions were performed to identify the optimum vacuum fuming conditions. The first pseudo-operational trial compared the different fuming conditions (atmospheric/humidity vs. vacuum) for the two-step process where an additional 50% more marks were detected with the atmospheric/humidity process. None of the marks by the vacuum process could be observed visually; however, a significant number of marks were detected by fluorescence after BY40 staining. The second trial repeated the same work in trial 1 using the one-step cyanoacrylate process, Lumicyano at a concentration of 4%. Trial 2 provided comparable results to trial 1 and all the items were then re-treated with Lumicyano 4% at atmospheric/humidity conditions before dyeing with BY40 to provide the sequences of process A (Lumicyano 4% atmospheric-Lumicyano 4% atmospheric-BY40) and process B (Lumicyano 4% vacuum-Lumicyano 4% atmospheric-BY40). The number of marks (visual and fluorescent) was counted after each treatment with a substantial increase in the number of detected marks in the second and third treatments of the process. The increased detection rate after the double Lumicyano process was unexpected and may have important implications. Trial 3 was performed to investigate whether the amount of cyanoacrylate and/or fuming time had an impact on the results observed in trial 2 whereas trial 4 assessed if the double process using conventional cyanoacrylate, rather than Lumicyano 4%, provided an increased detection rate. Trials 3 and 4 confirmed that doubling the amount of Lumicyano 4% cyanoacrylate and fuming time produced a lower detection rate than the double process with Lumicyano 4%. Furthermore, the double process with conventional cyanoacrylate did not provide any benefit. Scanning electron microscopy was also performed to investigate the morphology of the cyanoacrylate polymer under different conditions. The atmospheric/humidity process appears to be superior to the vacuum process for both the two-step and one-step cyanoacrylate fuming, although the two-step process performed better in comparison to the one-step process under vacuum conditions. Nonetheless, the use of vacuum cyanoacrylate fuming may have certain operational advantages and its use does not adversely affect subsequent cyanoacrylate fuming with atmospheric/humidity conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Vacuum mechatronics

    NASA Technical Reports Server (NTRS)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  6. Local aspects of disentanglement induced by spontaneous emission

    NASA Astrophysics Data System (ADS)

    Jamróz, Anna

    2006-06-01

    We consider spontaneous emission of two two-level atoms interacting with vacuum fluctuations. We study the process of disentanglement in this system and show the possibility of changing disentanglement time by local unitary operations.

  7. Simulating Pressure Profiles for the Free-Electron Laser Photoemission Gun Using Molflow+

    NASA Astrophysics Data System (ADS)

    Song, Diego; Hernandez-Garcia, Carlos

    2012-10-01

    The Jefferson Lab Free Electron Laser (FEL) generates tunable laser light by passing a relativistic electron beam generated in a high-voltage DC electron gun with a semiconducting photocathode through a magnetic undulator. The electron gun is in stringent vacuum conditions in order to guarantee photocathode longevity. Considering an upgrade of the electron gun, this project consists of simulating pressure profiles to determine if the novel design meets the electron gun vacuum requirements. The method of simulation employs the software Molflow+, developed by R. Kersevan at the Organisation Europ'eene pour la Recherche Nucl'eaire (CERN), which uses the test-particle Monte Carlo method to simulate molecular flows in 3D structures. Pressure is obtained along specified chamber axes. Results are then compared to measured pressure values from the existing gun for validation. Outgassing rates, surface area, and pressure were found to be proportionally related. The simulations indicate that the upgrade gun vacuum chamber requires more pumping compared to its predecessor, while it holds similar vacuum conditions. The ability to simulate pressure profiles through tools like Molflow+, allows researchers to optimize vacuum systems during the engineering process.

  8. A vacuum-sealed compact x-ray tube based on focused carbon nanotube field-emission electrons

    NASA Astrophysics Data System (ADS)

    Jeong, Jin-Woo; Kim, Jae-Woo; Kang, Jun-Tae; Choi, Sungyoul; Ahn, Seungjoon; Song, Yoon-Ho

    2013-03-01

    We report on a fully vacuum-sealed compact x-ray tube based on focused carbon nanotube (CNT) field-emission electrons for various radiography applications. The specially designed two-step brazing process enabled us to accomplish a good vacuum level for the stable and reliable operation of the x-ray tube without any active vacuum pump. Also, the integrated focusing electrodes in the field-emission electron gun focused electron beams from the CNT emitters onto the anode target effectively, giving a small focal spot of around 0.3 mm with a large current of above 50 mA. The active-current control through the cathode electrode of the x-ray tube led a fast digital modulation of x-ray dose with a low voltage of below 5 V. The fabricated compact x-ray tube showed a stable and reliable operation, indicating good maintenance of a vacuum level of below 5 × 10-6 Torr and the possibility of field-emission x-ray tubes in a stand-alone device without an active pumping system.

  9. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    NASA Astrophysics Data System (ADS)

    Roy, Anindya; Bhole, R. B.; Nandy, Partha P.; Yadav, R. C.; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  10. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata.

    PubMed

    Roy, Anindya; Bhole, R B; Nandy, Partha P; Yadav, R C; Pal, Sarbajit; Roy, Amitava

    2015-03-01

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A set of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.

  11. Vaporizable Scaffolds for Fabricating Thermoelectric Modules

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Yen, Shiao-pin; Fleurial, Jean-Pierre; Paik, Jong-Ah

    2006-01-01

    A process for fabricating thermoelectric modules with vacuum gaps separating the thermoelectric legs has been conceived, and the feasibility of some essential parts of the process has been demonstrated. The vacuum gaps are needed to electrically insulate the legs from each other. The process involves the use of scaffolding in the form of sheets of a polymer to temporarily separate the legs by the desired distance, which is typically about 0.5 mm. During a bonding subprocess that would take place in a partial vacuum at an elevated temperature, the polymer would be vaporized, thereby creating the vacuum gaps.

  12. Status of the Development of Low Cost Radiator for Surface Fission Power - II

    NASA Technical Reports Server (NTRS)

    Tarau, Calin; Maxwell, Taylor; Anderson, William G.; Wagner, Corey; Wrosch, Matthew; Briggs, Maxwell H.

    2016-01-01

    NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar and Martian surface power applications. The systems are envisioned in the 10 to 100kWe range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kWe non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. The paper reports on the development of the heat pipe radiator to reject the waste heat from the Stirling convertors. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water Variable Conductance Heat Pipes (VCHPs). By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POCO"TM" foam saddles, aluminum honeycomb, and a second facesheet. As mentioned in previous papers by the authors, the final design of the waste heat radiator is described as being modular with independent GFRC panels for each heat pipe. The present paper reports on test results for a single radiator module as well as a radiator cluster consisting of eight integral modules. These tests were carried out in both ambient and vacuum conditions. While the vacuum testing of the single radiator module was performed in the ACT's vacuum chamber, the vacuum testing of the eight heat pipe radiator cluster took place in NASA GRC's vacuum chamber to accommodate the larger size of the cluster. The results for both articles show good agreement with the predictions and are presented in the paper.

  13. Safety studies on vacuum insulated liquid helium cryostats

    NASA Astrophysics Data System (ADS)

    Weber, C.; Henriques, A.; Zoller, C.; Grohmann, S.

    2017-12-01

    The loss of insulating vacuum is often considered as a reasonable foreseeable accident for the dimensioning of cryogenic safety relief devices (SRD). The cryogenic safety test facility PICARD was designed at KIT to investigate such events. In the course of first experiments, discharge instabilities of the spring loaded safety relief valve (SRV) occurred, the so-called chattering and pumping effects. These instabilities reduce the relief flow capacity, which leads to impermissible over-pressures in the system. The analysis of the process dynamics showed first indications for a smaller heat flux than the commonly assumed 4W/cm2. This results in an oversized discharge area for the reduced relief flow rate, which corresponds to the lower heat flux. This paper presents further experimental investigations on the venting of the insulating vacuum with atmospheric air under variation of the set pressure (p set) of the SRV. Based on dynamic process analysis, the results are discussed with focus on effective heat fluxes and operating characteristics of the spring-loaded SRV.

  14. Vis-NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying.

    PubMed

    Pu, Yuan-Yuan; Sun, Da-Wen

    2015-12-01

    Mango slices were dried by microwave-vacuum drying using a domestic microwave oven equipped with a vacuum desiccator inside. Two lab-scale hyperspectral imaging (HSI) systems were employed for moisture prediction. The Page and the Two-term thin-layer drying models were suitable to describe the current drying process with a fitting goodness of R(2)=0.978. Partial least square (PLS) was applied to correlate the mean spectrum of each slice and reference moisture content. With three waveband selection strategies, optimal wavebands corresponding to moisture prediction were identified. The best model RC-PLS-2 (Rp(2)=0.972 and RMSEP=4.611%) was implemented into the moisture visualization procedure. Moisture distribution map clearly showed that the moisture content in the central part of the mango slices was lower than that of other parts. The present study demonstrated that hyperspectral imaging was a useful tool for non-destructively and rapidly measuring and visualizing the moisture content during drying process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Radiative process of two entanglement atoms in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Liu, Xiaobao; Tian, Zehua; Wang, Jieci; Jing, Jiliang

    2018-05-01

    We investigate the radiative processes of a quantum system composed by two identical two-level atoms in the de Sitter spacetime, interacting with a conformally coupled massless scalar field prepared in the de Sitter-invariant vacuum. We discuss the structure of the rate of variations of the atomic energy for two static atoms. Following a procedure developed by Dalibard, Dupont-Roc, and Cohen-Tannoudji, our intention is to identify in a quantitative way the contributions of vacuum fluctuations and the radiation reaction to the generation of quantum entanglement and to the degradation of entangled states. We find that when the distance between two atoms larger than the characteristic length scale, the rate of variation of atomic energy in the de Sitter-invariant vacuum behaves differently compared with that in the thermal Minkowski spacetime. In particular, the generation and degradation of quantum entanglement can be enhanced or inhibited, which are dependent not only on the specific entangled state but also on the distance between the atoms.

  16. Novel Ultrahigh Vacuum System for Chip-Scale Trapped Ion Quantum Computing

    NASA Astrophysics Data System (ADS)

    Chen, Shaw-Pin; Trapped Team

    2011-05-01

    This presentation reports the experimental results of an ultrahigh vacuum (UHV) system as a scheme to implement scalable trapped-ion quantum computers that use micro-fabricated ion traps as fundamental building blocks. The novelty of this system resides in our design, material selection, mechanical liability, low complexity of assembly, and reduced signal interference between DC and RF electrodes. Our system utilizes RF isolation and onsite-filtering topologies to attenuate AC signals generated from the resonator. We use a UHV compatible printed circuit board (PCB) material to perform DC routing, while the RF high and RF ground received separated routing via wire-wrapping. The standard PCB fabrication process enabled us to implement ceramic-based filter components adjacent to the chip trap. The DC electrodes are connected to air-side electrical feed through using four 25D adaptors made with polyether ether ketone (PEEK). The assembly process of this system is straight forward and in-chamber structure is self-supporting. We report on initial testing of this concept with a linear chip trap fabricated by the Sandia National Labs.

  17. Study on the Removal of Gases in RH Refining Progress through Experiments Using Vacuum Induction Furnace

    NASA Astrophysics Data System (ADS)

    Niu, Deliang; Liu, Qingcai; Wang, Zhu; Ren, Shan; Lan, Yuanpei; Xu, Minren

    Removal of gas is the major function of RH degasser. To optimize the RH refining craft in Chongqing Iron and Steel Co. Ltd, the degassing effect of RH degasser at different degrees of vacuum was investigated using a vacuum induction furnace. In addition, the effect of processing time on the gas content dissolved in molten steel was also studied. The results showed that degree of vacuum was one of the important factors that determined the degassing efficiency in RH refining process. High vacuum degree is helpful in the removal of gas, especially in the removal of [H] dissolved in molten steel. The processing time could be reduced from 25-30 min to 15 minutes and gas content could also meet the demand of RH refining.

  18. Failure of non-vacuum steam sterilization processes for dental handpieces.

    PubMed

    Winter, S; Smith, A; Lappin, D; McDonagh, G; Kirk, B

    2017-12-01

    Dental handpieces are used in critical and semi-critical operative interventions. Although some dental professional bodies recommend that dental handpieces are sterilized between patient use there is a lack of clarity and understanding of the effectiveness of different steam sterilization processes. The internal mechanisms of dental handpieces contain narrow lumens (0.8-2.3 mm) which can impede the removal of air and ingress of saturated steam required to achieve sterilization conditions. To identify the extent of sterilization failure in dental handpieces using a non-vacuum process. In-vitro and in-vivo investigations were conducted on widely used UK bench-top steam sterilizers and three different types of dental handpieces. The sterilization process was monitored inside the lumens of dental handpieces using thermometric (TM; dataloggers), chemical indicator (CI), and biological indicator (BI) methods. All three methods of assessing achievement of sterility within dental handpieces that had been exposed to non-vacuum sterilization conditions demonstrated a significant number of failures [CI: 8/3024 (fails/no. of tests); BI: 15/3024; TM: 56/56] compared to vacuum sterilization conditions (CI: 2/1944; BI: 0/1944; TM: 0/36). The dental handpiece most likely to fail sterilization in the non-vacuum process was the surgical handpiece. Non-vacuum sterilizers located in general dental practice had a higher rate of sterilization failure (CI: 25/1620; BI: 32/1620; TM: 56/56) with no failures in vacuum process. Non-vacuum downward/gravity displacement, type N steam sterilizers are an unreliable method for sterilization of dental handpieces in general dental practice. The handpiece most likely to fail sterilization is the type most frequently used for surgical interventions. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. Vacuum system design and tritium inventory for the TFTR charge exchange diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.

    The charge exchange diagnostic for the TFTR is comprised of two analyzer systems which contain a total of twenty independent mass/energy analyzers and one diagnostic neutral beam tentatively rated at 80 keV, 15 A. The associated vacuum systems were analyzed using the Vacuum System Transient Simulator (VSTS) computer program which models the transient transport of multi-gas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced cost, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and ofmore » the diagnostic working gases to the torus.« less

  20. Milking performance evaluation and factors affecting milking claw vacuum levels with flow simulator.

    PubMed

    Enokidani, Masafumi; Kawai, Kazuhiro; Shinozuka, Yasunori; Watanabe, Aiko

    2017-08-01

    Milking performance of milking machines that matches the production capability of dairy cows is important in reducing the risk of mastitis, particularly in high-producing cows. This study used a simulated milking device to examine the milking performance of the milking system of 73 dairy farms and to analyze the factors affecting claw vacuum. Mean claw vacuum and range of fluctuation of claw vacuum (claw vacuum range) were measured at three different flow rates: 5.7, 7.6 and 8.7 kg/min. At the highest flow rate, only 16 farms (21.9%) met both standards of mean claw vacuum ≥35 kPa and claw vacuum range ≤ 7 kPa, showing that milking systems currently have poor milking performance. The factors affecting mean claw vacuum were claw type, milk-meter and vacuum shut-off device; the factor affecting claw vacuum range was claw type. Examination of the milking performance of the milking system using a simulated milking device allows an examination of the performance that can cope with high producing cows, indicating the possibility of reducing the risk of mastitis caused by inappropriate claw vacuum. © 2016 Japanese Society of Animal Science.

  1. Evaluation of a Prototype Hybrid Vacuum Pump to Provide Vacuum-Assisted Suspension for Above-Knee Prostheses

    PubMed Central

    Major, Matthew J.; Caldwell, Ryan; Fatone, Stefania

    2015-01-01

    Vacuum-assisted suspension (VAS) of prosthetic sockets utilizes a pump to evacuate air from between the prosthetic liner and socket, and are available as mechanical or electric systems. This technical note describes a hybrid pump that benefits from the advantages of mechanical and electric systems, and evaluates a prototype as proof-of-concept. Cyclical bench testing of the hybrid pump mechanical system was performed using a materials testing system to assess the relationship between compression cycles and vacuum pressure. Phase 1 in vivo testing of the hybrid pump was performed by an able-bodied individual using prosthesis simulator boots walking on a treadmill, and phase 2 involved an above-knee prosthesis user walking with the hybrid pump and a commercial electric pump for comparison. Bench testing of 300 compression cycles produced a maximum vacuum of 24 in-Hg. In vivo testing demonstrated that the hybrid pump continued to pull vacuum during walking, and as opposed to the commercial electric pump, did not require reactivation of the electric system during phase 2 testing. The novelty of the hybrid pump is that while the electric system provides rapid, initial vacuum suspension, the mechanical system provides continuous air evacuation while walking to maintain suspension without reactivation of the electric system, thereby allowing battery power to be reserved for monitoring vacuum levels. PMID:27462383

  2. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems.

    PubMed

    Sharif-Kashani, Pooria; Fanney, Douglas; Injev, Val

    2014-07-30

    Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery.

  3. Comparison of occlusion break responses and vacuum rise times of phacoemulsification systems

    PubMed Central

    2014-01-01

    Background Occlusion break surge during phacoemulsification cataract surgery can lead to potential surgical complications. The purpose of this study was to quantify occlusion break surge and vacuum rise time of current phacoemulsification systems used in cataract surgery. Methods Occlusion break surge at vacuum pressures between 200 and 600 mmHg was assessed with the Infiniti® Vision System, the WhiteStar Signature® Phacoemulsification System, and the Centurion® Vision System using gravity-fed fluidics. Centurion Active FluidicsTM were also tested at multiple intraoperative pressure target settings. Vacuum rise time was evaluated for Infiniti, WhiteStar Signature, Centurion, and Stellaris® Vision Enhancement systems. Rise time to vacuum limits of 400 and 600 mmHg was assessed at flow rates of 30 and 60 cc/minute. Occlusion break surge was analyzed by 2-way analysis of variance. Results The Centurion system exhibited substantially less occlusion break surge than the other systems tested. Surge area with Centurion Active Fluidics was similar to gravity fluidics at an equivalent bottle height. At all Centurion Active Fluidics intraoperative pressure target settings tested, surge was smaller than with Infiniti and WhiteStar Signature. Infiniti had the fastest vacuum rise time and Stellaris had the slowest. No system tested reached the 600-mmHg vacuum limit. Conclusions In this laboratory study, Centurion had the least occlusion break surge and similar vacuum rise times compared with the other systems tested. Reducing occlusion break surge may increase safety of phacoemulsification cataract surgery. PMID:25074069

  4. Vacuum-induced coherence in quantum dot systems

    NASA Astrophysics Data System (ADS)

    Sitek, Anna; Machnikowski, Paweł

    2012-11-01

    We present a theoretical study of vacuum-induced coherence in a pair of vertically stacked semiconductor quantum dots. The process consists in a coherent excitation transfer from a single-exciton state localized in one dot to a delocalized state in which the exciton occupation gets trapped. We study the influence of the factors characteristic of quantum dot systems (as opposed to natural atoms): energy mismatch, coupling between the single-exciton states localized in different dots, and different and nonparallel dipoles due to sub-band mixing, as well as coupling to phonons. We show that the destructive effect of the energy mismatch can be overcome by an appropriate interplay of the dipole moments and coupling between the dots which allows one to observe the trapping effect even in a structure with technologically realistic energy splitting of the order of milli-electron volts. We also analyze the impact of phonon dynamics on the occupation trapping and show that phonon effects are suppressed in a certain range of system parameters. This analysis shows that the vacuum-induced coherence effect and the associated long-living trapped excitonic population can be achieved in quantum dots.

  5. OTEC gas desorption studies

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Golshani, A.

    1982-02-01

    Experiments on deaeration in packed columns and barometric intake systems, and with hydraulic air compression for open-cycle OTEC systems are reported. A gas desorption test loop consisting of water storage tanks, a vacuum system, a liquid recirculating system, an air supply, a column test section, and two barometric leg test sections was used to perform the tests. The aerated water was directed through columns filled with either ceramic Raschig rings or plastic pall rings, and the system vacuum pressure, which drives the deaeration process, was found to be dependent on water velocity and intake pipe height. The addition of a barometric intake pipe increased the deaeration effect 10%, and further tests were run with lengths of PVC pipe as potential means for noncondensibles disposal through hydraulic air compression. Using the kinetic energy from the effluent flow to condense steam in the noncondensible stream improved the system efficiency.

  6. Metalliding as an Electrochemical Process.

    DTIC Science & Technology

    1987-01-01

    heated to 550*C under vacuum to remove residual water and then was allowed to cool. Ce chips were added and the system was elevated to 610-6200 C for...the metalliding. The vacuum 8 C8256D/sn -lI O Rockwell International Science Center 5C5398.4FR treatment was necessary to remove residual water from...evacuated at 60°C and 200 mTorr. The tem- perature of the evacuated cell was gradually increased to 100°C to drive water from the salts. After being evacuated

  7. Optical diagnostics of the arc plasma using fast intensified CCD-spectrograph system

    NASA Astrophysics Data System (ADS)

    Pavelescu, Gabriela; Guillot, Stephane; Braic, Mariana T.; Hong, Dunpin; Pavelescu, D.; Fleurier, Claude; Braic, Viorel; Gherendi, F.; Dumitrescu, G.; Anghelita, P.; Bauchire, J. M.

    2004-10-01

    Spectroscopic diagnostics, using intensified high speed CCD camera, was applied to study the arc dynamics in low voltage circuit breakers, in vacuum and in air. Time-resolved emission spectroscopy of the vacuum arc plasma, generated during electrode separation, provided information about the interruption process. The investigations were focused on the partial unsuccessful interruption around current zero. Absorption spectroscopy, in a peculiar setup, was used in order to determine the metallic atoms densities in the interelectrode space of a low voltage circuit breaker, working in ambient air.

  8. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Vacuum systems. 25.1433 Section 25.1433 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There...

  9. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.

    PubMed

    Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan

    2009-02-25

    The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.

  10. 14 CFR 25.1433 - Vacuum systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1433 Vacuum systems. There... discharge lines from the vacuum air pump when the delivery temperature of the air becomes unsafe. [Doc. No...

  11. Upgrade of The Thermal Vacuum Data System at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Palmer, John; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The Goddard Space Flight Center's new thermal vacuum data acquisition system is a networked client-sever application that enables lab operations crews to monitor all tests from a central location. The GSFC thermal vacuum lab consists of eleven chambers in Building 7 and one chamber in Building 10. The new data system was implemented for several reasons. These included the need for centralized data collection, more flexible and easier to use operator interface, greater data accessibility, a reduction in testing time and cost, and increased payload and personnel safety. Additionally, a new data system was needed for year-2000 compliance. This paper discusses the incorporation of the Thermal Vacuum Data System (TVDS) within the thermal vacuum lab at GSFC, its features and capabilities and lessons learned in its implementation. Additional topics include off-center (Internet) capability for remote monitoring and the role of TVDS in the efforts to automate thermal vacuum chamber operations.

  12. Upgrade of the Thermal Vacuum Data System at NASA/GSFC

    NASA Technical Reports Server (NTRS)

    Palmer, John

    2000-01-01

    The Goddard Space Flight Center's new thermal vacuum data acquisition system is a networked client-sever application that enables lab operations crews to monitor all tests from a central location. The GSFC thermal vacuum lab consists of eleven chambers in Building 7 and one chamber in Building 10. The new data system was implemented for several reasons. These included the need for centralized data collection, more flexible and easier to use operator interface, greater data accessibility, a reduction in testing time and cost, and increased payload and personnel safety. Additionally, a new data system was needed for year-2000 compliance. This paper discusses the incorporation of the Thermal Vacuum Data System (TVDS) within the thermal vacuum lab at GSFC, its features and capabilities and lessons learned in its implementation. Additional topics include off-center (Internet) capability for remote monitoring and the role of TVDS in the efforts to automate thermal vacuum chamber operations.

  13. Implementation of EPICS based vacuum control system for variable energy cyclotron centre, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Anindya, E-mail: r-ani@vecc.gov.in; Bhole, R. B.; Nandy, Partha P.

    2015-03-15

    The vacuum system of the Room Temperature (K = 130) Cyclotron of Variable Energy Cyclotron Centre is comprised of vacuum systems of main machine and Beam Transport System. The vacuum control system is upgraded to a PLC based Automated system from the initial relay based Manual system. The supervisory control of the vacuum system is implemented in Experimental Physics and Industrial Control System (EPICS). An EPICS embedded ARM based vacuum gauge controller is developed to mitigate the requirement of vendor specific gauge controller for gauges and also for seamless integration of the gauge controllers with the control system. A setmore » of MS-Windows ActiveX components with embedded EPICS Channel Access interface are developed to build operator interfaces with less complex programming and to incorporate typical Windows feature, e.g., user authentication, file handling, better fonts, colors, mouse actions etc. into the operator interfaces. The control parameters, monitoring parameters, and system interlocks of the system are archived in MySQL based EPICS MySQL Archiver developed indigenously. In this paper, we describe the architecture, the implementation details, and the performance of the system.« less

  14. Lightweight Vacuum Jacket for Cryogenic Insulation. Volume 1

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility of producing a lightweight vacuum jacket using state-of-the-art technology and materials was examined. Design and analytical studies were made on a full-scale, orbital maneuvering system fuel tank. Preliminary design details were made for the tank assembly, including an optimized vacuum jacket and multilayer insulation system. A half-scale LH2 test model was designed and fabricated, and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of .000001 atmosphere ml of helium per second was measured, approximately 1500 hours of vacuum pressure were sustained, and 29 vacuum-pressure cycles were experienced prior to failure.

  15. Lightweight Vacuum Jacket for Cryogenic Insulation - Appendices to Final Report. Volume 2

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Brogren, E. W.; Straayer, J. W.

    1975-01-01

    The feasibility is demonstrated of producing a lightweight vacuum jacket using state-of-the-art technology and materials. Design and analytical studies were made on an orbital maneuvering system fuel tank. Preliminary design details were completed for the tank assembly which included an optimized vacuum jacket and multilayered insulation system. A half-scale LH2 test model was designed and fabricated and a force/stiffness proof test was conducted on the vacuum jacket. A vacuum leak rate of 0.00001 was measured, approximately 1500 hours of vacuum pressure was sustained, and 29 vacuum pressure cycles were experienced prior to failure. For vol. 1, see N75-26192.

  16. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Pak, D.

    2011-08-10

    Vacuum distillation of chloride salts from plutonium oxide (PuO{sub 2}) and simulant PuO{sub 2} has been previously demonstrated at Department of Energy (DOE) sites using kilogram quantities of chloride salt. The apparatus for vacuum distillation contains a zone heated using a furnace and a zone actively cooled using either recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attained, heating begins. Volatile salts distill frommore » the heated zone to the cooled zone where they condense, leaving behind the non-volatile materials in the feed boat. The application of vacuum salt distillation (VSD) is of interest to the HB-Line Facility and the MOX Fuel Fabrication Facility (MFFF) at the Savannah River Site (SRS). Both facilities are involved in efforts to disposition excess fissile materials. Many of these materials contain chloride and fluoride salt concentrations which make them unsuitable for dissolution without prior removal of the chloride and fluoride salts. Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. Subsequent efforts are attempting to adapt the technology for the removal of fluoride. Fluoride salts of interest are less-volatile than the corresponding chloride salts. Consequently, an alternate approach is required for the removal of fluoride without significantly increasing the operating temperature. HB-Line Engineering requested SRNL to evaluate and demonstrate the feasibility of an alternate approach using both non-radioactive simulants and plutonium-bearing materials. Whereas the earlier developments targeted the removal of sodium chloride (NaCl) and potassium chloride (KCl), the current activities are concerned with the removal of the halide ions associated with plutonium trifluoride (PuF{sub 3}), plutonium tetrafluoride (PuF{sub 4}), calcium fluoride (CaF{sub 2}), and calcium chloride (CaCl{sub 2}). This report discusses non-radioactive testing of small-scale and pilot-scale systems and radioactive testing of a small-scale system. Experiments focused on demonstrating the chemistry for halide removal and addressing the primary engineering questions associated with a change in the process chemistry.« less

  17. Resolving the vacuum fluctuations of an optomechanical system using an artificial atom

    NASA Astrophysics Data System (ADS)

    Lecocq, F.; Teufel, J. D.; Aumentado, J.; Simmonds, R. W.

    2015-08-01

    Heisenberg’s uncertainty principle results in one of the strangest quantum behaviours: a mechanical oscillator can never truly be at rest. Even at a temperature of absolute zero, its position and momentum are still subject to quantum fluctuations. However, direct energy detection of the oscillator in its ground state makes it seem motionless, and in linear position measurements detector noise can masquerade as mechanical fluctuations. Thus, how can we resolve quantum fluctuations? Here, we parametrically couple a micromechanical oscillator to a microwave cavity to prepare the system in its quantum ground state and then amplify the remaining vacuum fluctuations into real energy quanta. We monitor the photon/phonon-number distributions using a superconducting qubit, allowing us to resolve the quantum vacuum fluctuations of the macroscopic oscillator’s motion. Our results further demonstrate the ability to control a long-lived mechanical oscillator using a non-Gaussian resource, directly enabling applications in quantum information processing and enhanced detection of displacement and forces.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Junichiro, E-mail: kamiya.junichiro@jaea.go.jp; Hikichi, Yusuke; Kinsho, Michikazu

    For the vacuum systems of high-intensity beam accelerators, low radioactivation materials with good vacuum characteristics and high mechanical strength are required. The titanium alloy Ti-6Al-4V was investigated as a potential low activation vacuum material with high mechanical strength for the fabrication of vacuum components, particularly the flanges of beam pipes, in the J-PARC 3 GeV synchrotron. The dose rate of Ti-6Al-4V when irradiated by a 400 MeV proton was observed to decrease more rapidly than that of stainless steel. Furthermore, the generated radioactive isotopes were nuclides with relatively short half-lives. The outgassing rate per unit area of Ti-6Al-4V was approximately 10{sup −8 }Pamore » m{sup 3}/s m{sup 2} after pumping for 100 h, which is the same as the typical value for stainless steel. Additionally, the hydrogen concentration in bulk Ti-6Al-4V was reduced to approximately 1 ppm by vacuum firing at 700 °C for 9 h; the mechanical strength was not reduced by this process. These results indicate that Ti-6Al-4V is a good candidate for use as a low activation vacuum material with high mechanical strength.« less

  19. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, G.W.; Bushman, J.F.; Alger, T.W.

    1996-07-23

    A vacuum housing and pumping system is described for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof. 7 figs.

  20. Mass spectrometer vacuum housing and pumping system

    DOEpatents

    Coutts, Gerald W.; Bushman, John F.; Alger, Terry W.

    1996-01-01

    A vacuum housing and pumping system for a portable gas chromatograph/mass spectrometer (GC/MS). The vacuum housing section of the system has minimum weight for portability while designed and constructed to utilize metal gasket sealed stainless steel to be compatible with high vacuum operation. The vacuum pumping section of the system consists of a sorption (getter) pump to remove atmospheric leakage and outgassing contaminants as well as the gas chromatograph carrier gas (hydrogen) and an ion pump to remove the argon from atmospheric leaks. The overall GC/MS system has broad application to contaminants, hazardous materials, illegal drugs, pollution monitoring, etc., as well as for use by chemical weapon treaty verification teams, due to the light weight and portability thereof.

  1. Vacuum pull down method for an enhanced bonding process

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    1999-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  2. Effect of vacuum and of strong adsorbed water films on micropore formation in aluminum hydroxide xerogel powders.

    PubMed

    Beruto, Dario T; Botter, Rodolfo; Converti, Attilio

    2009-02-01

    Aluminum hydroxide gels were washed with water, ethanol, methanol and isopropanol to obtain new gels with different liquid phases that were dried either in air at 120 degrees C or under vacuum at 80 degrees C. Drying in air leads to alcoholic xerogels with BET surface areas larger than the aqueous ones. The effect of the alcoholic groups as substitutes of the hydroxyl ones has been discussed to account for the final size of xerogel crystallites. Drying under vacuum decreases the BET surface of the methanol xerogels, but no micropores are formed in all the alcoholic xerogel matrixes. On the contrary, the vacuum drying process changes significantly the microstructure of the aqueous xerogels. Their BET surface increases by 34 m(2)/g, and micropores are formed within their crystallite aggregates. It has been experimentally shown that these changes are due to a shear transformation that occurs in the boehmite xerogels obtained under vacuum. To discuss these data, the existence of chemical compounds such as AlOOHnH(2)O was postulated. On this ground, a neat analogy between vacuum drying process and vacuum interfacial decomposition reactions of inorganic salts can be drawn. This analogy explains how a state of stresses forms in aqueous xerogel matrix during vacuum drying process.

  3. DEMONSTRATION BULLETIN: AQUADETOX®/ SVE SYSTEM and AWD Technologies, Inc.

    EPA Science Inventory

    The AWD technology simultaneously treats groundwater and soil-gas contaminated with volatile or ganic compounds (VOC), such as trichloroethylene (TCE) and tetrachloroethylene (PCE). This technology integrates two processes: (1) AquaDetox®, a moderate vacuum (pressure about 50 ...

  4. Design, fabrication, and performance testing of a vacuum chamber for pulse compressor of a 150 TW Ti:sapphire laser

    NASA Astrophysics Data System (ADS)

    Tripathi, P. K.; Singh, Rajvir; Bhatnagar, V. K.; Sharma, S. D.; Sharma, Sanjay; Sisodia, B.; Yedle, K.; Kushwaha, R. P.; Sebastin, S.; Mundra, G.

    2012-11-01

    A vacuum chamber, to house the optical pulse compressor of a 150 TW Ti:sapphire laser system, has been designed, fabricated, and tested. As the intensity of the laser pulse becomes very high after pulse compression, there is phase distortion of the laser beam in air. Hence, the beam (after pulse compression) has to be transported in vacuum to avoid this distortion, which affects the laser beam focusability. A breadboard with optical gratings and reflective optics for compression of the optical pulse has to be kept inside the chamber. The chamber is made of SS 316L material in cuboidal shape with inside dimensions 1370×1030×650 mm3, with rectangular and circular demountable ports for entry and exit of the laser beam, evacuation, system cables, and ports to access optics mounted inside the chamber. The front and back sides of the chamber are kept demountable in order to insert the breadboard with optical components mounted on it. Leak tightness of 9×10-9 mbar-lit/sec in all the joints and ultimate vacuum of 6.5×10-6 mbar was achieved in the chamber using a turbo molecular pumping system. The paper describe details of the design/ features of the chamber, important procedure involved in machining, fabrication, processing and final testing.

  5. Vacuum Pump System Optimization Saves Energy at a Dairy Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 1998, S&S Dairy optimized the vacuum pumping system at their dairy farm in Modesto, California. In an effort to reduce energy costs, S&S Dairy evaluated their vacuum pumping system to determine if efficiency gains and energy savings were possible.

  6. Technical specification for vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaw, J.

    The vacuum systems at the Stanford Linear Accelerator Center (SLAC) are primarily of all-metal construction and operate at pressures from 10/sup -5/ to 10/sup -11/ Torr. The primary gas loads during operation result from thermal desorption and beam-induced desorption from the vacuum chamber walls. These desorption rates can be extremely high in the case of hydrocarbons and other contaminants. These specifications place a major emphasis on eliminating contamination sources. The specifications and procedures have been written to insure the cleanliness and vacuum integrity of all SLAC vacuum systems, and to assist personnel involved with SLAC vacuum systems in choosing andmore » designing components that are compatible with existing systems and meet the quality and reliability of SLAC vacuum standards. The specification includes requirements on design, procurement, fabrication, chemical cleaning, clean room practices, welding and brazing, helium leak testing, residual gas analyzer testing, bakeout, venting, and pumpdown. Also appended are specifications regarding acceptable vendors, isopropyl alcohol, bakeable valve cleaning procedure, mechanical engineering safety inspection, notes on synchrotron radiation, and specifications of numerous individual components. (LEW)« less

  7. Vacuum casting of thick polymeric films

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.; Moacanin, J.

    1979-01-01

    Bubble formation and layering, which often plague vacuum-evaporated films, are prevented by properly regulating process parameters. Vacuum casting may be applicable to forming thick films of other polymer/solvent solutions.

  8. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  9. Proceedings of the twenty sixth international symposium on discharges and electrical insulation in vacuum. V. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2014-07-01

    Vacuum science and technology has made vital contributions in high technology areas like space, high energy particle accelerators, plasma devices, pulse power, electronics, vacuum interrupters, thin films, melting and refining of metals/alloys, extraction and processing of advanced materials. Vacuum discharges, vacuum arc physics and technology and various applications towards vacuum interrupters, pulse power and particle accelerator are the main themes for this symposium. Papers relevant to INIS are indexed separately.

  10. Enhanced Photocatalytic Activity of Vacuum-activated TiO2 Induced by Oxygen Vacancies.

    PubMed

    Dong, Guoyan; Wang, Xin; Chen, Zhiwu; Lu, Zhenya

    2018-05-01

    TiO 2 (Degussa P25) photocatalysts harboring abundant oxygen vacancies (Vacuum P25) were manufactured using a simple and economic Vacuum deoxidation process. Control experiments showed that temperature and time of vacuum deoxidation had a significant effect on Vacuum P25 photocatalytic activity. After 240 min of visible light illumination, the optimal Vacuum P25 photocatalysts (vacuum deoxidation treated at 330 °C for 3 h) reach as high as 94% and 88% of photodegradation efficiency for rhodamine B (RhB) and tetracycline, respectively, which are around 4.5 and 4.9 times as that of pristine P25. The XPS, PL and EPR analyses indicated that the oxygen vacancies were produced in the Vacuum P25 during the vacuum deoxidation process. The oxygen vacancy states can produce vacancy energy level located below the conduction band minimum, which resulting in the bandgap narrowing, thus extending the photoresponse wavelength range of Vacuum P25. The positron annihilation analysis indicated that the concentrations ratio of bulk and surface oxygen vacancies could be adjusted by changing the vacuum deoxidation temperature and time. Decreasing the ratio of bulk and surface oxygen vacancies was shown to improve photogenerated electron-hole pair separation efficiency, which leads to an obvious enhancement of the visible photocatalytic activities of Vacuum P25. © 2017 The American Society of Photobiology.

  11. Synaptic organic transistors with a vacuum-deposited charge-trapping nanosheet

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hyun; Sung, Sujin; Yoon, Myung-Han

    2016-09-01

    Organic neuromorphic devices hold great promise for unconventional signal processing and efficient human-machine interfaces. Herein, we propose novel synaptic organic transistors devised to overcome the traditional trade-off between channel conductance and memory performance. A vacuum-processed, nanoscale metallic interlayer provides an ultra-flat surface for a high-mobility molecular film as well as a desirable degree of charge trapping, allowing for low-temperature fabrication of uniform device arrays on plastic. The device architecture is implemented by widely available electronic materials in combination with conventional deposition methods. Therefore, our results are expected to generate broader interests in incorporation of organic electronics into large-area neuromorphic systems, with potential in gate-addressable complex logic circuits and transparent multifunctional interfaces receiving direct optical and cellular stimulation.

  12. Power processor for a 30cm ion thruster

    NASA Technical Reports Server (NTRS)

    Biess, J. J.; Inouye, L. Y.

    1974-01-01

    A thermal vacuum power processor for the NASA Lewis 30cm Mercury Ion Engine was designed, fabricated and tested to determine compliance with electrical specifications. The power processor breadboard used the silicon controlled rectifier (SCR) series resonant inverter as the basic power stage to process all the power to an ion engine. The power processor includes a digital interface unit to process all input commands and internal telemetry signals so that operation is compatible with a central computer system. The breadboard was tested in a thermal vacuum environment. Integration tests were performed with the ion engine and demonstrate operational compatibility and reliable operation without any component failures. Electromagnetic interference data were also recorded on the design to provide information on the interaction with total spacecraft.

  13. Effects of vacuum exposure on stress and spectral shift of high reflective coatings

    NASA Astrophysics Data System (ADS)

    Stolz, C. J.; Taylor, J. R.; Eickelberg, W. K.; Lindh, J. D.

    1992-06-01

    The Atomic Vapor Laser Isotope Laser Separation (AVLIS) program operates the world's largest average power dye laser; the dye laser beams are combined, formatted, and transported in vacuum. The optical system is aligned at atmosphere, while the system must meet requirements in vacuum. Therefore, coating performance must be characterized in both atmosphere and vacuum. Changes in stress and spectral shift in ambient and vacuum environments are reported for conventional and dense multilayer dielectric coatings.

  14. Method and apparatus for in-cell vacuuming of radiologically contaminated materials

    DOEpatents

    Spadaro, Peter R.; Smith, Jay E.; Speer, Elmer L.; Cecconi, Arnold L.

    1987-01-01

    A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.

  15. Optimizing Polymer Infusion Process for Thin Ply Textile Composites with Novel Matrix System

    PubMed Central

    Bhudolia, Somen K.; Perrotey, Pavel; Joshi, Sunil C.

    2017-01-01

    For mass production of structural composites, use of different textile patterns, custom preforming, room temperature cure high performance polymers and simplistic manufacturing approaches are desired. Woven fabrics are widely used for infusion processes owing to their high permeability but their localised mechanical performance is affected due to inherent associated crimps. The current investigation deals with manufacturing low-weight textile carbon non-crimp fabrics (NCFs) composites with a room temperature cure epoxy and a novel liquid Methyl methacrylate (MMA) thermoplastic matrix, Elium®. Vacuum assisted resin infusion (VARI) process is chosen as a cost effective manufacturing technique. Process parameters optimisation is required for thin NCFs due to intrinsic resistance it offers to the polymer flow. Cycles of repetitive manufacturing studies were carried out to optimise the NCF-thermoset (TS) and NCF with novel reactive thermoplastic (TP) resin. It was noticed that the controlled and optimised usage of flow mesh, vacuum level and flow speed during the resin infusion plays a significant part in deciding the final quality of the fabricated composites. The material selections, the challenges met during the manufacturing and the methods to overcome these are deliberated in this paper. An optimal three stage vacuum technique developed to manufacture the TP and TS composites with high fibre volume and lower void content is established and presented. PMID:28772654

  16. Optimizing Polymer Infusion Process for Thin Ply Textile Composites with Novel Matrix System.

    PubMed

    Bhudolia, Somen K; Perrotey, Pavel; Joshi, Sunil C

    2017-03-15

    For mass production of structural composites, use of different textile patterns, custom preforming, room temperature cure high performance polymers and simplistic manufacturing approaches are desired. Woven fabrics are widely used for infusion processes owing to their high permeability but their localised mechanical performance is affected due to inherent associated crimps. The current investigation deals with manufacturing low-weight textile carbon non-crimp fabrics (NCFs) composites with a room temperature cure epoxy and a novel liquid Methyl methacrylate (MMA) thermoplastic matrix, Elium ® . Vacuum assisted resin infusion (VARI) process is chosen as a cost effective manufacturing technique. Process parameters optimisation is required for thin NCFs due to intrinsic resistance it offers to the polymer flow. Cycles of repetitive manufacturing studies were carried out to optimise the NCF-thermoset (TS) and NCF with novel reactive thermoplastic (TP) resin. It was noticed that the controlled and optimised usage of flow mesh, vacuum level and flow speed during the resin infusion plays a significant part in deciding the final quality of the fabricated composites. The material selections, the challenges met during the manufacturing and the methods to overcome these are deliberated in this paper. An optimal three stage vacuum technique developed to manufacture the TP and TS composites with high fibre volume and lower void content is established and presented.

  17. Low Cost Processing of Commingled Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Chiasson, Matthew Lee

    A low cost vacuum consolidation process has been investigated for use with commingled thermoplastic matrix composites. In particular, the vacuum consolidation behaviour of commingled polypropylene/glass fibre and commingled nylon/carbon fibre precursors were studied. Laminates were consolidated in a convection oven under vacuum pressure. During processing, the consolidation of the laminate packs was measured by use of non-contact eddy current sensors. The consolidation curves are then used to tune an empirical consolidation model. The overall quality of the resulting laminates is also discussed. Dynamic mechanical analysis, differential scanning calorimetry and mechanical tensile testing were also performed in order to determine the effects of varying processing parameters on the physical and mechanical properties of the laminates. Through this analysis, it was determined that the nylon/carbon fibre blend was not suitable for vacuum consolidation, while the polypropylene/glass fibre blend is a viable option for vacuum consolidation. The ultimate goal of this work is to provide a foundation from which low cost unmanned aerial vehicle (UAV) components can be designed and manufactured from thermoplastic matrix composites using a low cost processing technique as an alternative to traditional thermoset composite materials.

  18. Breakdown Conditioning Chacteristics of Precision-Surface-Treatment-Electrode in Vacuum

    NASA Astrophysics Data System (ADS)

    Kato, Kastumi; Fukuoka, Yuji; Inagawa, Yukihiko; Saitoh, Hitoshi; Sakaki, Masayuki; Okubo, Hitoshi

    Breakdown (BD) characteristics in vacuum are strongly dependent on the electrode surface condition, like the surface roughness etc. Therefore, in order to develop a high voltage vacuum circuit breaker, it is important to optimize the surface treatment process. This paper discusses about the effect of precision-surface-treatment of the electrode on breakdown conditioning characteristics under non-uniform electric field in vacuum. Experimental results reveal that the electrode surface treatment affects the conditioning process, especially the BD voltage and the BD field strength at the initial stage of the conditioning.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clausing, R.E.

    Equations based on kinetic theory relate the contamination of refractory metals in vacuum to the appropriate variables. Several examples are given for which the allowable system pressures are calculated. The examples illustrate the effect of varying several parameters. The importance of the sticking factor for active gases on hot refractory metals and its effect on the system design are discussed. The data for estimating the sticking factor for O/sub 2/ on Nb are given, along with some estimated values. Experimental data on the composition and rates of outgassing of ultrahigh-vacuum systems and their importance in system design are discussed. Severalmore » methods of reducing contamination rates and the relative ease and effectiveness of these methods are presented. It was concluded that tests of 1000 hr or longer will probably require system pressures of between 10/sup -9/ and 10/sup -6/ torr, the particular pressure depending upon the residual gas composition, test duration, allowable contamination level, and the other variables discussed. Since the most important source of contamination in a properly designed ultrahigh-vacuum system is the outgassing process, bakeable systems should be designed to operate with walls as cool as practical, and to have a minimum of surface area and outgassing materials inside. Considerable added protection may be obtained by incorporating sacrificial getter surfaces in the system, or, alternatively, higher pressures may be tolerated if proper getter design is used. (auth)« less

  20. Boiling process modelling peculiarities analysis of the vacuum boiler

    NASA Astrophysics Data System (ADS)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-06-01

    The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.

  1. Conditioning of the vacuum system of the TPS storage ring without baking in situ

    NASA Astrophysics Data System (ADS)

    Chan, C. K.; Chang, C. C.; Shueh, C.; Yang, I. C.; Wu, L. H.; Chen, B. Y.; Cheng, C. M.; Huang, Y. T.; Chuang, J. Y.; Cheng, Y. T.; Hsiao, Y. M.; Sheng, Albert

    2017-04-01

    To shorten the machine downtime, a maintenance procedure without baking in situ has been developed and applied to maintain and to upgrade the vacuum system of the TPS storage ring. The data of photon-stimulated desorption (PSD) reveal no obvious discrepancy between baking and not baking the vacuum system in situ. A beam-conditioning dose of extent only 11.8 A h is required to recover quickly the dynamic pressure of an unbaked vacuum system to its pre-intervention value according to the TPS maintenance experience.

  2. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  3. Plates for vacuum thermal fusion

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2002-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  4. Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications

    NASA Technical Reports Server (NTRS)

    Denis, Kevin L.; Brown, Ari D.; Chang, Meng-Ping; Hu, Ron; U-Yen, Kongpop; Wollack, Edward J.

    2016-01-01

    The design and fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications are described. In order to reduce ohmic and parasitic losses at millimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micro-machining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum gap structures along with the wax bonded wafer after DRIE is implemented in the same process step used to complete the detector fabrication. ?

  5. Process for preparing high-transition-temperature superconductors in the Nb-Al-Ge system

    DOEpatents

    Giorgi, A.L.; Szklarz, E.G.

    1973-01-30

    The patent describes a process for preparing superconducting materials in the Nb-Al-Ge system having transition temperatures in excess of 19K. The process comprises premixing powdered constituents, pressing them into a plug, heating the plug to 1,450-1,800C for 30 minutes to an hour under vacuum or an inert atmosphere, and annealing at moderate temperatures for reasonably long times (approximately 50 hours). High transition-temperature superconductors, including those in the Nb3(Al,Ge) system, prepared in accordance with this process exhibit little degradation in the superconducting transition temperature on being ground to -200 mesh powder. (GRA)

  6. NSLS II Vacuum System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreira, M.; Doom, L.; Hseuh, H.

    2009-09-13

    National Synchrotron Light Source II, being constructed at Brookhaven, is a 3-GeV, 500 mA, 3rd generation synchrotron radiation facility with ultra low emittance electron beams. The storage ring vacuum system has a circumference of 792 m and consists of over 250 vacuum chambers with a simulated average operating pressure of less than 1 x 10{sup -9} mbar. A summary of the update design of the vacuum system including girder supports of the chambers, gauges, vacuum pumps, bellows, beam position monitors and simulation of the average pressure will be shown. A brief description of the techniques and procedures for cleaning andmore » mounting the chambers are given.« less

  7. Vacuum distillation: vapor filtered-catalytic oxidation water reclamation system utilizing radioisotopes

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Remus, G. A.; Kurg, E. K.

    1971-01-01

    The development of a functional model water reclamation system is discussed. The system produces potable water by distillation from the urine and respiration-perspiration condensate at the normal rate generated by four men. Basic processes employed are vacuum distillation, vapor filtration, vapor phase catalytic oxidation, and condensation. The system is designed to use four 75-watt isotope heaters for distillation thermal input, and one 45-watt isotope for the catalytic oxidation unit. The system is capable of collecting and storing urine, and provides for stabilizing the urine by chemical pretreatment. The functional model system is designed for operation in a weightless condition with liquid-vapor phase separators for the evaporator still, and centrifugal separators for urine collection and vapor condensation. The system provides for storing and dispensing reclaimed potable water. The system operates in a batch mode for 40 days, with urine residues accumulating in the evaporator. The evaporator still and residue are removed to storage and replaced with a fresh still for the next 40-day period.

  8. Modern Microwave and Millimeter-Wave Power Electronics

    NASA Astrophysics Data System (ADS)

    Barker, Robert J.; Luhmann, Neville C.; Booske, John H.; Nusinovich, Gregory S.

    2005-04-01

    A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: * Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems * Microfabricated MVEDs and advanced electron beam sources * Klystrons, gyro-amplifiers, and crossed-field devices * "Virtual prototyping" of MVEDs via advanced 3-D computational models * High-Power Microwave (HPM) sources * Next-generation microwave structures and circuits * How to achieve linear amplification * Advanced materials technologies for MVEDs * A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from the sale of this book will fund the future research and publication activities of graduate students in the vacuum electronics field.

  9. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray; Coan, Mary; Cryderman, Kate; Captain, Janine

    2013-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph - mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize component and integrated system performance. Testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments was done. Test procedures were developed to guide experimental tests and test reports to analyze and draw conclusions from the data. In addition, knowledge and experience was gained with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis conducted include: pneumatic analysis to calculate the WDD's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. Since LAVA is a scientific subsystem, the near-infrared spectrometer and GC-MS instruments will be tested during the ETU testing phase.

  10. Development of a modified dry curing process for beef.

    PubMed

    Hayes, J E; Kenny, T A; Ward, P; Kerry, J P

    2007-11-01

    The development of a dry curing process using physical treatments to promote the diffusion of the cure ingredients was studied. Vacuum pulsing with and without tumbling, continuous vacuum, and tumbling only treatments were compared with a conventional static dry cure control method on beef M. supraspinatus. Vacuum tumble and tumble only treatments gave highest core salt content after 7 days conditioning (3.3% and 3.1%, respectively). All test treatments resulted in higher colour uniformity and lower % cook loss in comparison to control (P<0.001). The control and vacuum pulsed samples were tougher (P<0.001). Vacuum tumble and tumble only treatments gave higher acceptability (P<0.001). Based on these findings for M. supraspinatus, indicating that the vacuum tumble treatments gave the best results, further testing of this method was conducted using the M. biceps femoris in addition to the M. supraspinatus. Cured beef slices were stored in modified atmosphere packs (MAP) (80%N(2):20%CO(2)) for up to 28 day at 4°C. Redness (a(∗), P<0.001) decreased over storage time in M. biceps femoris. Vacuum tumble treatment increased (P<0.05) redness in M. supraspinatus. Results obtained demonstrate the benefits of vacuum tumbling over the other physical treatments as a method for accelerating the dry curing process, producing dry cured beef products with enhanced organoleptic quality and increased yields.

  11. Vacuum Brazing of Accelerator Components

    NASA Astrophysics Data System (ADS)

    Singh, Rajvir; Pant, K. K.; Lal, Shankar; Yadav, D. P.; Garg, S. R.; Raghuvanshi, V. K.; Mundra, G.

    2012-11-01

    Commonly used materials for accelerator components are those which are vacuum compatible and thermally conductive. Stainless steel, aluminum and copper are common among them. Stainless steel is a poor heat conductor and not very common in use where good thermal conductivity is required. Aluminum and copper and their alloys meet the above requirements and are frequently used for the above purpose. The accelerator components made of aluminum and its alloys using welding process have become a common practice now a days. It is mandatory to use copper and its other grades in RF devices required for accelerators. Beam line and Front End components of the accelerators are fabricated from stainless steel and OFHC copper. Fabrication of components made of copper using welding process is very difficult and in most of the cases it is impossible. Fabrication and joining in such cases is possible using brazing process especially under vacuum and inert gas atmosphere. Several accelerator components have been vacuum brazed for Indus projects at Raja Ramanna Centre for Advanced Technology (RRCAT), Indore using vacuum brazing facility available at RRCAT, Indore. This paper presents details regarding development of the above mentioned high value and strategic components/assemblies. It will include basics required for vacuum brazing, details of vacuum brazing facility, joint design, fixturing of the jobs, selection of filler alloys, optimization of brazing parameters so as to obtain high quality brazed joints, brief description of vacuum brazed accelerator components etc.

  12. Double Vacuum Bag Process for Resin Matrix Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung (Inventor); Jensen, Brian J. (Inventor)

    2007-01-01

    A double vacuum bag molding assembly with improved void management and laminate net shape control which provides a double vacuum enviromnent for use in fabricating composites from prepregs containing air and/or volatiles such as reactive resin matrix composites or composites from solvent containing prepregs with non-reactive resins matrices. By using two vacuum environments during the curing process, a vacuum can be drawn during a B-stage of a two-step cycle without placing the composite under significant relative pressure. During the final cure stage, a significant pressure can be applied by releasing the vacuum in one of the two environments. Inner and outer bags are useful for creating the two vacuum environments with a perforated tool intermediate the two. The composite is placed intermediate a tool plate and a caul plate in the first environment with the inner bag and tool plate defining the first environment. The second environment is characterized by the outer bag which is placed over the inner bag and the tool plate.

  13. Optimization and testing of solid thin film lubrication deposition processes

    NASA Astrophysics Data System (ADS)

    Danyluk, Michael J.

    A novel method for testing solid thin films in rolling contact fatigue (RCF) under ultra-high vacuum (UHV) and high rotational speeds (130 Hz) is presented in this thesis. The UHV-RCF platform is used to quantify the adhesion and lubrication aspects of two thin film coatings deposited on ball-bearings using a physical vapor deposition ion plating process. Plasma properties during ion plating were measured using a Langmuir probe and there is a connection between ion flux, film stress, film adhesion, process voltage, pressure, and RCF life. The UHV-RCF platform and vacuum chamber were constructed using off-the-shelf components and 88 RCF tests in high vacuum have been completed. Maximum RCF life was achieved by maintaining an ion flux between 10 13 to 1015 (cm-2 s-1) with a process voltage and pressure near 1.5 kV and 15 mTorr. Two controller schemes were investigated to maintain optimal plasma conditions for maximum RCF life: PID and LQR. Pressure disturbances to the plasma have a detrimental effect on RCF life. Control algorithms that mitigate pressure and voltage disturbances already exist. However, feedback from the plasma to detect disturbances has not been explored related to deposition processes in the thin-film science literature. Manometer based pressure monitoring systems have a 1 to 2 second delay time and are too slow to detect common pressure bursts during the deposition process. Plasma diagnostic feedback is much faster, of the order of 0.1 second. Plasma total-current feedback was used successfully to detect a typical pressure disturbance associated with the ion plating process. Plasma current is related to ion density and process pressure. A real-time control application was used to detect the pressure disturbance by monitoring plasma-total current and converting it to feedback-input to a pressure control system. Pressure overshoot was eliminated using a nominal PID controller with feedback from a plasma-current diagnostic measurement tool.

  14. The proposal of recommendations for the operation of vacuum sewerage

    NASA Astrophysics Data System (ADS)

    Mazák, J.; Dvorský, T.; Václavík, V.; Zajac, R.; Hluštík, P.

    2017-10-01

    This article deals with a comparison of vacuum sewerage system and gravity based sewerage system. It also includes the results of the comparison of both of these systems from various cities, and there are measures suggested on the basis of the findings focused on increasing the efficiency and reducing the operational costs of the selected vacuum sewerage system.

  15. Industry-relevant magnetron sputtering and cathodic arc ultra-high vacuum deposition system for in situ x-ray diffraction studies of thin film growth using high energy synchrotron radiation.

    PubMed

    Schroeder, J L; Thomson, W; Howard, B; Schell, N; Näslund, L-Å; Rogström, L; Johansson-Jõesaar, M P; Ghafoor, N; Odén, M; Nothnagel, E; Shepard, A; Greer, J; Birch, J

    2015-09-01

    We present an industry-relevant, large-scale, ultra-high vacuum (UHV) magnetron sputtering and cathodic arc deposition system purposefully designed for time-resolved in situ thin film deposition/annealing studies using high-energy (>50 keV), high photon flux (>10(12) ph/s) synchrotron radiation. The high photon flux, combined with a fast-acquisition-time (<1 s) two-dimensional (2D) detector, permits time-resolved in situ structural analysis of thin film formation processes. The high-energy synchrotron-radiation based x-rays result in small scattering angles (<11°), allowing large areas of reciprocal space to be imaged with a 2D detector. The system has been designed for use on the 1-tonne, ultra-high load, high-resolution hexapod at the P07 High Energy Materials Science beamline at PETRA III at the Deutsches Elektronen-Synchrotron in Hamburg, Germany. The deposition system includes standard features of a typical UHV deposition system plus a range of special features suited for synchrotron radiation studies and industry-relevant processes. We openly encourage the materials research community to contact us for collaborative opportunities using this unique and versatile scientific instrument.

  16. System for high throughput water extraction from soil material for stable isotope analysis of water

    USDA-ARS?s Scientific Manuscript database

    A major limitation in the use of stable isotope of water in ecological studies is the time that is required to extract water from soil and plant samples. Using vacuum distillation the extraction time can be less than one hour per sample. Therefore, assembling a distillation system that can process m...

  17. APPLICATION OF VACUUM SALT DISTILLATION TECHNOLOGY FOR THE REMOVAL OF FLUORIDE AND CHLORIDE FROM LEGACY FISSILE MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.; Peters, T.

    2011-11-01

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and the Savannah River Site (SRS) HB-Line Facility designed, developed, tested, and successfully deployed a production-scale system for the distillation of sodium chloride (NaCl) and potassium chloride (KCl) from plutonium oxide (PuO{sub 2}). Subsequent efforts adapted the vacuum salt distillation (VSD) technology for the removal of chloride and fluoride from less-volatile halide salts at the same process temperature and vacuum. Calcium chloride (CaCl{sub 2}), calcium fluoride (CaF{sub 2}), and plutonium fluoride (PuF{sub 3}) were of particular concern. To enable the use of the same operating conditions for themore » distillation process, SRNL employed in situ exchange reactions to convert the less-volatile halide salts to compounds that facilitated the distillation of halide without removal of plutonium. SRNL demonstrated the removal of halide from CaCl{sub 2}, CaF{sub 2} and PuF{sub 3} below 1000 C using VSD technology.« less

  18. Cryogenic Insulation System for Soft Vacuum

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, J. E.

    1999-01-01

    The development of a cryogenic insulation system for operation under soft vacuum is presented in this paper. Conventional insulation materials for cryogenic applications can be divided into three levels of thermal performance, in terms of apparent thermal conductivity [k-value in milliwatt per meter-kelvin (mW/m-K)]. System k-values below 0.1 can be achieved for multilayer insulation operating at a vacuum level below 1 x 10(exp -4) torr. For fiberglass or powder operating below 1 x 10(exp -3) torr, k-values of about 2 are obtained. For foam and other materials at ambient pressure, k-values around 30 are typical. New industry and aerospace applications require a versatile, robust, low-cost thermal insulation with performance in the intermediate range. The target for the new composite insulation system is a k-value below 4.8 mW/m-K (R-30) at a soft vacuum level (from 1 to 10 torr) and boundary temperatures of approximately 77 and 293 kelvin (K). Many combinations of radiation shields, spacers, and composite materials were tested from high vacuum to ambient pressure using cryostat boiloff methods. Significant improvement over conventional systems in the soft vacuum range was demonstrated. The new layered composite insulation system was also shown to provide key benefits for high vacuum applications as well.

  19. Production of Magnesium by Vacuum Aluminothermic Reduction with Magnesium Aluminate Spinel as a By-Product

    NASA Astrophysics Data System (ADS)

    Wang, Yaowu; You, Jing; Peng, Jianping; Di, Yuezhong

    2016-06-01

    The Pidgeon process currently accounts for 85% of the world's magnesium production. Although the Pidgeon process has been greatly improved over the past 10 years, such production still consumes much energy and material and creates much pollution. The present study investigates the process of producing magnesium by employing vacuum aluminothermic reduction and by using magnesite as material and obtaining magnesium aluminate spinel as a by-product. The results show that compared with the Pidgeon process, producing magnesium by vacuum aluminothermic reduction can save materials by as much as 50%, increase productivity up to 100%, and save energy by more than 50%. It can also reduce CO2 emission by up to 60% and realize zero discharge of waste residue. Vacuum aluminothermic reduction is a highly efficient, low-energy-consumption, and environmentally friendly method of producing magnesium.

  20. RHETT/EPDM Performance Characterization

    NASA Technical Reports Server (NTRS)

    Haag, T.; Osborn, M.

    1998-01-01

    The 0.6 kW Electric Propulsion Demonstration Module (EPDM) flight thruster system was tested in a large vacuum facility for performance measurements and functional checkout. The thruster was operated at a xenon flow rate of 3.01 mg/s, which was supplied through a self-contained propellant system. All power was provided through a flight-packaged power processing unit, which was mounted in vacuum on a cold plate. The thruster was cycled through 34 individual startup and shutdown sequences. Operating periods ranged from 3 to 3600 seconds. The system responded promptly to each command sequence and there were no involuntary shutdowns. Direct thrust measurements indicated that steady state thrust was temperature sensitive, and varied from a high of 41.7 mN at 16 C, to a low of 34.8 mN at 110 C. Short duration thruster firings showed rapid response and good repeatability.

  1. Highly Controlled Codeposition Rate of Organolead Halide Perovskite by Laser Evaporation Method.

    PubMed

    Miyadera, Tetsuhiko; Sugita, Takeshi; Tampo, Hitoshi; Matsubara, Koji; Chikamatsu, Masayuki

    2016-10-05

    Organolead-halide perovskites can be promising materials for next-generation solar cells because of its high power conversion efficiency. The method of precise fabrication is required because both solution-process and vacuum-process fabrication of the perovskite have problems of controllability and reproducibility. Vacuum deposition process was expected to achieve precise control; however, vaporization of amine compound significantly degrades the controllability of deposition rate. Here we achieved the reduction of the vaporization by implementing the laser evaporation system for the codeposition of perovskite. Locally irradiated continuous-wave lasers on the source materials realized the reduced vaporization of CH 3 NH 3 I. The deposition rate was stabilized for several hours by adjusting the duty ratio of modulated laser based on proportional-integral control. Organic-photovoltaic-type perovskite solar cells were fabricated by codeposition of PbI 2 and CH 3 NH 3 I. A power-conversion efficiency of 16.0% with reduced hysteresis was achieved.

  2. Process material management in the Space Station environment

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Humphries, W. R.

    1988-01-01

    The Space Station will provide a unique facility for conducting material-processing and life-science experiments under microgravity conditions. These conditions place special requirements on the U.S. Laboratory for storing and transporting chemicals and process fluids, reclaiming water from selected experiments, treating and storing experiment wastes, and providing vacuum utilities. To meet these needs and provide a safe laboratory environment, the Process Material Management System (PMMS) is being developed. Preliminary design requirements and concepts related to the PMMS are addressed, and the MSFC PMMS breadboard test facility and a preliminary plan for validating the overall system design are discussed.

  3. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2001-01-01

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  4. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2003-04-08

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  5. Extreme-UV lithography vacuum chamber zone seal

    DOEpatents

    Haney, Steven J.; Herron, Donald Joe; Klebanoff, Leonard E.; Replogle, William C.

    2003-04-15

    Control of particle contamination on the reticle and carbon contamination of optical surfaces in photolithography systems can be achieved by the establishment of multiple pressure zones in the photolithography systems. The different zones will enclose the reticle, projection optics, wafer, and other components of system. The system includes a vacuum apparatus that includes: a housing defining a vacuum chamber; one or more metrology trays situated within the vacuum chamber each of which is supported by at least one support member, wherein the tray separates the vacuum chamber into a various compartments that are maintained at different pressures; and conductance seal devices for adjoining the perimeter of each tray to an inner surface of the housing wherein the tray is decoupled from vibrations emanating from the inner surface of the housing.

  6. Synaptic organic transistors with a vacuum-deposited charge-trapping nanosheet

    PubMed Central

    Kim, Chang-Hyun; Sung, Sujin; Yoon, Myung-Han

    2016-01-01

    Organic neuromorphic devices hold great promise for unconventional signal processing and efficient human-machine interfaces. Herein, we propose novel synaptic organic transistors devised to overcome the traditional trade-off between channel conductance and memory performance. A vacuum-processed, nanoscale metallic interlayer provides an ultra-flat surface for a high-mobility molecular film as well as a desirable degree of charge trapping, allowing for low-temperature fabrication of uniform device arrays on plastic. The device architecture is implemented by widely available electronic materials in combination with conventional deposition methods. Therefore, our results are expected to generate broader interests in incorporation of organic electronics into large-area neuromorphic systems, with potential in gate-addressable complex logic circuits and transparent multifunctional interfaces receiving direct optical and cellular stimulation. PMID:27645425

  7. Low-cost far infrared bolometer camera for automotive use

    NASA Astrophysics Data System (ADS)

    Vieider, Christian; Wissmar, Stanley; Ericsson, Per; Halldin, Urban; Niklaus, Frank; Stemme, Göran; Källhammer, Jan-Erik; Pettersson, Håkan; Eriksson, Dick; Jakobsen, Henrik; Kvisterøy, Terje; Franks, John; VanNylen, Jan; Vercammen, Hans; VanHulsel, Annick

    2007-04-01

    A new low-cost long-wavelength infrared bolometer camera system is under development. It is designed for use with an automatic vision algorithm system as a sensor to detect vulnerable road users in traffic. Looking 15 m in front of the vehicle it can in case of an unavoidable impact activate a brake assist system or other deployable protection system. To achieve our cost target below €100 for the sensor system we evaluate the required performance and can reduce the sensitivity to 150 mK and pixel resolution to 80 x 30. We address all the main cost drivers as sensor size and production yield along with vacuum packaging, optical components and large volume manufacturing technologies. The detector array is based on a new type of high performance thermistor material. Very thin Si/SiGe single crystal multi-layers are grown epitaxially. Due to the resulting valence barriers a high temperature coefficient of resistance is achieved (3.3%/K). Simultaneously, the high quality crystalline material provides very low 1/f-noise characteristics and uniform material properties. The thermistor material is transferred from the original substrate wafer to the read-out circuit using adhesive wafer bonding and subsequent thinning. Bolometer arrays can then be fabricated using industry standard MEMS process and materials. The inherently good detector performance allows us to reduce the vacuum requirement and we can implement wafer level vacuum packaging technology used in established automotive sensor fabrication. The optical design is reduced to a single lens camera. We develop a low cost molding process using a novel chalcogenide glass (GASIR®3) and integrate anti-reflective and anti-erosion properties using diamond like carbon coating.

  8. Natural vacuum electronics

    NASA Technical Reports Server (NTRS)

    Leggett, Nickolaus

    1990-01-01

    The ambient natural vacuum of space is proposed as a basis for electron valves. Each valve is an electron controlling structure similiar to a vacuum tube that is operated without a vacuum sustaining envelope. The natural vacuum electron valves discussed offer a viable substitute for solid state devices. The natural vacuum valve is highly resistant to ionizing radiation, system generated electromagnetic pulse, current transients, and direct exposure to space conditions.

  9. The realuminizing of the 7-meter-diameter solar simulator collimating mirror

    NASA Technical Reports Server (NTRS)

    Noller, E. W.

    1994-01-01

    This paper describes the modification of a three-electron-beam (EB) gun system for vacuum depositing a highly reflective aluminum coating on a 7.01-m (23-ft) -diam nickel-plated aluminum collimating mirror. The mirror is part of the JPL 7.62-m space simulator that was recently modernized with a new high vacuum pumping system, solar lamp power supplies, solar optic lens system, and refurbished collimating mirror. The 7.01-m 12,700-kg (14-ton) spherical collimating mirror was removed from this facility for replating with 381 micron (0.015 in.) of electroless nickel and polished to a specular finish for realuminizing. The space chamber served as the vacuum coating vessel for the realuminizing coating process. The mirror is the primary reflector for the solar simulation system and the aluminized reflective surface is its most critical performance element. The uniformity of thickness and high reflectivity of the coating in visible and near-ultraviolet (UV) light governs the accuracy of the beam for solar testing. The uniformity of the thin-film thickness also controls the durability of the mirror over time. The mirror was polished to a 64-percent reflectivity with a uniformity of 1.5 percent. The performance goal for the aluminizing was 89 percent with +/- 0.5-percent variation over the mirror.

  10. Assembly of a Vacuum Chamber: A Hands-On Approach to Introduce Mass Spectrometry

    ERIC Educational Resources Information Center

    Bussie`re, Guillaume; Stoodley, Robin; Yajima, Kano; Bagai, Abhimanyu; Popowich, Aleksandra K.; Matthews, Nicholas E.

    2014-01-01

    Although vacuum technology is essential to many aspects of modern physical and analytical chemistry, vacuum experiments are rarely the focus of undergraduate laboratories. We describe an experiment that introduces students to vacuum science and mass spectrometry. The students first assemble a vacuum system, including a mass spectrometer. While…

  11. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system.

    PubMed

    Li, Xue-Mei; Zhao, Baolong; Wang, Zhouwei; Xie, Ming; Song, Jianfeng; Nghiem, Long D; He, Tao; Yang, Chi; Li, Chunxia; Chen, Gang

    2014-01-01

    This study examined the performance of a novel hybrid system of forward osmosis (FO) combined with vacuum membrane distillation (VMD) for reclaiming water from shale gas drilling flow-back fluid (SGDF). In the hybrid FO-VMD system, water permeated through the FO membrane into a draw solution reservoir, and the VMD process was used for draw solute recovery and clean water production. Using a SGDF sample obtained from a drilling site in China, the hybrid system could achieve almost 90% water recovery. Quality of the reclaimed water was comparable to that of bottled water. In the hybrid FO-VMD system, FO functions as a pre-treatment step to remove most contaminants and constituents that may foul or scale the membrane distillation (MD) membrane, whereas MD produces high quality water. It is envisioned that the FO-VMD system can recover high quality water not only from SGDF but also other wastewaters with high salinity and complex compositions.

  12. Micalastic high-voltage insulation: Design features and experience

    NASA Astrophysics Data System (ADS)

    Wichmann, A.

    1981-12-01

    High-quality mica, carefully selected epoxy resins and a well-matched vacuum/pressure impregnation process determine the characteristics of the MICALASTIC insulation for large turbine-generators. Logical development and process manufacturing quality control have led to an insulation system of high quality and operating reliability. The first winding of a turbine-generator being impregnated and cured under vacuum with solvent-free synthetic resin in 1958 was designed for 10.5 kV rated voltage. Ever since, Siemens AG and Kraftwerk Union AG have used this type of insulation for all direct-cooled windings and also for an increasing number of indirect-cooled windings. At present, 240 turbine-generators with a total of more than 115,000 MVA output have been built. Since 1960, this insulation system has been registered for Siemens AG under the trade name MICALASTIC. The stator windings of the largest, single-shaft generators to date, rated 1560 MVA, 27 kV, has been built with MICALASTIC insulation.

  13. Estimating Water Ice Abundance from Short-Wave Infrared Spectra of Drill Cuttings at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Kleinhenz, Julie; Cook, Amanda

    2017-01-01

    NASA's Resource Prospector (RP) mission intends to visit a lunar polar region to characterize the volatile distribution. Part of the RP payload, the Near-infrared Volatile Spectrometer System (NIRVSS) is a spectrometer operating from 1600-3400 nm that provides sensitivity to water ice, and other volatiles. For multiple years, the NIRVSS system has been incorporated into on-going RP payload testing in a cryogenic vacuum facility at Glenn Research Center. Soil tubes of lunar simulants, prepared with known amounts of water, are placed in the vacuum chamber and cooled to cryogenic temperatures (soil temperatures of 110-170 K) and placed under low vacuum (a few x 10(exp -6) Torr). During these tests NIRVSS continuously measures spectra of soil cuttings emplaced onto the surface by a drill. Real time processing of NIRVSS spectra produces two spectral parameters associated with water ice absorption features near 2000 and 3000 nm that can be used to inform decision making activities such as delivery of the soil to a sealable container. Post-test collection and analyses of the soils permit characterization the water content as a function of depth. These water content profiles exhibit the characteristics of a vacuum desiccation zone to depths of about 40 cm. Subsequent to completion of the tests, NIRVSS spectra are processed to produce two spectral parameters associated with water ice absorption features near 2000 and 3000 nm. These features can be evaluated as a function of time, and correlated with drill depth, and other measurements, throughout the drilling activities. Until now no effort was attempted to quantitatively relate these parameters to water abundance. This is the focus of our efforts to be presented.

  14. Steam jet ejectors for the process industries. [Glossary included

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Power, R.B.

    1994-01-01

    Steam jet ejectors were for many years the workhorse of the chemical process industries for producing vacuum. With increasing emphasis on stricter pollution control, their use was curtailed. There are still many applications, however, such as those with large capacity requirements, where ejectors are the only equipment that can produce sufficient vacuum. Chapter 1 is a short overview on how to use the text. Chapter 2 discusses what an ejector is and how it works. How ejector stages work is reviewed in Chapter 3. Engineering calculations for ejector stages is thoroughly discussed in Chapter 4. In Chapter 5, contact andmore » surface condensers are reviewed, and calculation procedures are presented. The various types of pressure control are discussed in Chapter 6. Chapter 7 is an excellent review of installation of ejector vacuum systems. The final chapter of Part 2 (Chapters 3--8) thoroughly covers all aspects of operation, testing, troubleshooting and maintenance. Part 3, consisting of two chapters, is devoted to specifying and purchasing steam jet ejectors. Part 4 on other ejector applications and upgrading ejector usage also consists of two chapters. Chapter 11 reviews steam-jet refrigeration, steam-jet and gas-jet compressors, liquid jet eductors, desuperheaters, special design situations, and designing one's own systems. Upgrading of existing ejector procedures and hardware is reviewed in Chapter 12. The 12 appendixes cover: physical properties of common fluids; handy vacuum engineering data and rules of thumb; SI unit conversions; sizing air and steam metering orifices for testing; drill sizes; ejector operating costs and design optimization; forms for ejector calculations, tests, and inspections; instructions for preparing ejector specifications; test kit contents list; ejector manufacturers and suppliers of referenced hardware and information; and failure modes and symptoms.« less

  15. Estimating Water Ice Abundance from Short-wave Infrared Spectra of Drill Cuttings at Cryogenic Temperatures

    NASA Astrophysics Data System (ADS)

    Roush, T. L.; Colaprete, A.; Kleinhenz, J.; Cook, A.

    2017-12-01

    NASA's Resource Prospector (RP) mission intends to visit a lunar polar region to characterize the volatile distribution. Part of the RP payload, the Near-infrared Volatile Spectrometer System (NIRVSS) is a spectrometer operating from 1600-3400 nm that provides sensitivity to water ice, and other volatiles. For multiple years, the NIRVSS system has been incorporated into on-going RP payload testing in a cryogenic vacuum facility at Glenn Research Center. Soil tubes of lunar simulants, prepared with known amounts of water, are placed in the vacuum chamber and cooled to cryogenic temperatures (soil temperatures of 110-170° K) and placed under low vacuum (a few x 10-6 Torr). During these tests NIRVSS continuously measures spectra of soil cuttings emplaced onto the surface by a drill. Real time processing of NIRVSS spectra produces two spectral parameters associated with water ice absorption features near 2000 and 3000 nm that can be used to inform decision-making activities such as delivery of the soil to a sealable container. Post-test collection and analyses of the soils permit characterization the water content as a function of depth. These water content profiles exhibit the characteristics of a vacuum desiccation zone to depths of about 40 cm. Subsequent to completion of the tests, NIRVSS spectra are processed to produce two spectral parameters associated with water ice absorption features near 2000 and 3000 nm. These features can be evaluated as a function of time, and correlated with drill depth, and other measurements, throughout the drilling activities. Until now no effort was attempted to quantitatively relate these parameters to water abundance. This is the focus of our efforts to be presented.

  16. A review of the use of Al-alloy vacuum components for operation at 10-13 Torr

    NASA Astrophysics Data System (ADS)

    Ishimaru, Hajime

    1990-02-01

    An extremely high vacuum (XHV) chamber was fabricated and tested. The vacuum chamber was made of special surface finished (EX-process) aluminum alloy in oxygen and argon atmosphere. The chamber was assembled using TIG welding in an argon atmosphere and by electron beam welding. The system was evacuated with a turbo-backed 300 l/s turbomolecular pump separated from the main chamber using a right angle valve. The liquid nitrogen shroud is installed inside the main vacuum chamber. The XHV is maintained by two 300 l/s sputter ion pumps and a titanium sublimation pump with a liquid nitrogen shroud. These pumps are also made of aluminum alloys. An ultimate pressure of 3×10-13 Torr was measured with a point collector gauge with a spherical anode mounted on an Al-flange. Residual gas analysis in the order 10-13 Torr was performed by a newly developed Q-mass filter. To suppress outgassing from the quadrupole electrode, the ion source is mounted on an Al-flange separated from the quadrupole electrode.

  17. Theoretical and experimental researches of the liquid evaporation during thermal vacuum influences

    NASA Astrophysics Data System (ADS)

    Trushlyakov, V.; Panichkin, A.; Prusova, O.; Zharikov, K.; Dron, M.

    2018-01-01

    The mathematical model of the evaporation process of model liquid with the free surface boundary conditions of the "mirror" type under thermal vacuum influence and the numerical estimates of the evaporation process parameters are developed. An experimental stand, comprising a vacuum chamber, an experimental model tank with a heating element is designed; the experimental data are obtained. A comparative analysis of numerical and experimental results showed their close match.

  18. Surface Composition Influence on Internal Gas Flow at Large Knudsen Numbers

    DTIC Science & Technology

    2000-07-09

    situated in an ultra high vacuum system . The system is supplied with means of gas phase, surface CP585, Rarefied Gas Dynamics: 22nd International...control and gas flow measuring system . The experimental procedure consists in a few stages. The first stage includes surface preparation process at...solid body system , Proceedings 20-th Int. Symp. Rarefied Gas Dynamics, Peking University Press, Beijing, China, 1997, pp. 387-391. 3. Lord, R.G

  19. The development of 8 inch roll-to-plate nanoimprint lithography (8-R2P-NIL) system

    NASA Astrophysics Data System (ADS)

    Lee, Lai Seng; Mohamed, Khairudin; Ooi, Su Guan

    2017-07-01

    Growth in semiconductor and integrated circuit industry was observed in the past decennium of years for industrial technology which followed Moore's law. The line width of nanostructure to be exposed was influenced by the essential technology of photolithography. Thus, it is crucial to have a low cost and high throughput manufacturing process for nanostructures. Nanoimprint Lithography technique invented by Stephen Y. Chou was considered as major nanolithography process to be used in future integrated circuit and integrated optics. The drawbacks of high imprint pressure, high imprint temperature, air bubbles formation, resist sticking to mold and low throughput of thermal nanoimprint lithography on silicon wafer have yet to be solved. Thus, the objectives of this work is to develop a high throughput, low imprint force, room temperature UV assisted 8 inch roll to plate nanoimprint lithography system capable of imprinting nanostructures on 200 mm silicon wafer using roller imprint with flexible mold. A piece of resist spin coated silicon wafer was placed onto vacuum chuck drives forward by a stepper motor. A quartz roller wrapped with a piece of transparent flexible mold was used as imprint roller. The imprinted nanostructures were cured by 10 W, 365 nm UV LED which situated inside the quartz roller. Heat generated by UV LED was dissipated by micro heat pipe. The flexible mold detaches from imprinted nanostructures in a 'line peeling' pattern and imprint pressure was measured by ultra-thin force sensors. This system has imprinting speed capability ranging from 0.19 mm/s to 5.65 mm/s, equivalent to imprinting capability of 3 to 20 pieces of 8 inch wafers per hour. Speed synchronization between imprint roller and vacuum chuck was achieved by controlling pulse rate supplied to stepper motor which drive the vacuum chuck. The speed different ranging from 2 nm/s to 98 nm/s is achievable. Vacuum chuck height was controlled by stepper motor with displacement of 5 nm/step.

  20. Solution-processed field-effect transistors based on dihexylquaterthiophene films with performances exceeding those of vacuum-sublimed films.

    PubMed

    Leydecker, Tim; Trong Duong, Duc; Salleo, Alberto; Orgiu, Emanuele; Samorì, Paolo

    2014-12-10

    Solution-processable oligothiophenes are model systems for charge transport and fabrication of organic field-effect transistors (OFET) . Herein we report a structure vs function relationship study focused on the electrical characteristics of solution-processed dihexylquaterthiophene (DH4T)-based OFET. We show that by combining the tailoring of all interfaces in the bottom-contact bottom-gate transistor, via chemisorption of ad hoc molecules on electrodes and dielectric, with suitable choice of the film preparation conditions (including solvent type, concentration, volume, and deposition method), it is possible to fabricate devices exhibiting field-effect mobilities exceeding those of vacuum-processed DH4T transistors. In particular, the evaporation rate of the solvent, the processing temperature, as well as the concentration of the semiconducting material were found to hold a paramount importance in driving the self-assembly toward the formation of highly ordered and low-dimensional supramolecular architectures, confirming the kinetically governed nature of the self-assembly process. Among the various architectures, hundreds-of-micrometers long and thin DH4T crystallites exhibited enhanced charge transport.

  1. Investigation of low cost material processes for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Nguyentat, Thinh; Kawashige, Chester M.; Scala, James G.; Horn, Ronald M.

    1993-01-01

    The development of low cost material processes is essential to the achievement of economical liquid rocket propulsion systems in the next century. This paper will present the results of the evaluation of some promising material processes including powder metallurgy, vacuum plasma spray, metal spray forming, and bulge forming. The physical and mechanical test results from the samples and subscale hardware fabricated from high strength copper alloys and superalloys will be discussed.

  2. Drying performance of fermented cassava (fercaf) using a convective multiple flash dryer

    NASA Astrophysics Data System (ADS)

    Handojo, Lienda A.; Zefanya, Samuel; Christanto, Yohanes

    2017-05-01

    Fermented cassava (fercaf) is a tropical versatile carbohydrate source flour which is produced by modifying the characteristics of cassava. Drying process is one of the processes that could influence the quality of fercaf. In general, for food application, convective and vacuum drying were used, however recently another advanced method using combination of both convective and vacuum, i.e. convective multiple flash drying (CMFD), was proposed. This method is conducted by repeating cycles of convective and vacuum drying in intermittent manner. Cassava chips with thickness of 0.1-0.2 cm were fermented for 24 hours at room condition. Then, the drying process was conducted by using 3 techniques, i.e. convective, vacuum, and combined method (CMFD), with operation temperatures between 50 and 70°C for 10 hours or until fermented cassava reached a moisture content of less than 20%. The study shows that CMFD was the fastest drying method with only 5-6 hours period compared to 8-10 hours using vacuum and more than 10 hours using convective method. CMFD also produces harder fercaf chips than those of vacuum and convective methods. Moreover, this research also proves that the operating pressure and temperature influence the moisture content.

  3. Vacuum Technology Considerations For Mass Metrology

    PubMed Central

    Abbott, Patrick J.; Jabour, Zeina J.

    2011-01-01

    Vacuum weighing of mass artifacts eliminates the necessity of air buoyancy correction and its contribution to the measurement uncertainty. Vacuum weighing is also an important process in the experiments currently underway for the redefinition of the SI mass unit, the kilogram. Creating the optimum vacuum environment for mass metrology requires careful design and selection of construction materials, plumbing components, pumping, and pressure gauging technologies. We review the vacuum technology1 required for mass metrology and suggest procedures and hardware for successful and reproducible operation. PMID:26989593

  4. Apparatus and processes for the mass production of photovoltaic modules

    DOEpatents

    Barth, Kurt L [Ft. Collins, CO; Enzenroth, Robert A [Fort Collins, CO; Sampath, Walajabad S [Fort Collins, CO

    2007-05-22

    An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.

  5. Apparatus and processes for the mass production of photovotaic modules

    DOEpatents

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2002-07-23

    An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.

  6. Ultrahigh vacuum and low-temperature cleaning of oxide surfaces using a low-concentration ozone beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, A.; Department of Physics, University of York, Heslington, York YO10 5DD; Graziosi, P.

    We present a novel method of delivering a low-concentration (<15%) ozone beam to an ultra-high vacuum environment for the purpose of cleaning and dosing experimental samples through oxidation processing. The system described is safe, low-cost, and practical and overcomes the limitations of ozone transport in the molecular flow environment of high or ultrahigh vacuum whilst circumventing the use of pure ozone gas which is potentially highly explosive. The effectiveness of this method in removing surface contamination is demonstrated through comparison of high-temperature annealing of a simple oxide (MgO) in ozone and oxygen environments as monitored using quadrupole mass spectroscopy andmore » Auger electron spectroscopy. Additionally, we demonstrate the potential of ozone for obtaining clean complex oxide surfaces without the need for high-temperature annealing which may significantly alter surface structure.« less

  7. Ultra-high vacuum compatible induction-heated rod casting furnace

    NASA Astrophysics Data System (ADS)

    Bauer, A.; Neubauer, A.; Münzer, W.; Regnat, A.; Benka, G.; Meven, M.; Pedersen, B.; Pfleiderer, C.

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  8. Ultra-high vacuum compatible induction-heated rod casting furnace.

    PubMed

    Bauer, A; Neubauer, A; Münzer, W; Regnat, A; Benka, G; Meven, M; Pedersen, B; Pfleiderer, C

    2016-06-01

    We report the design of a radio-frequency induction-heated rod casting furnace that permits the preparation of polycrystalline ingots of intermetallic compounds under ultra-high vacuum compatible conditions. The central part of the system is a bespoke water-cooled Hukin crucible supporting a casting mold. Depending on the choice of the mold, typical rods have a diameter between 6 mm and 10 mm and a length up to 90 mm, suitable for single-crystal growth by means of float-zoning. The setup is all-metal sealed and may be baked out. We find that the resulting ultra-high vacuum represents an important precondition for processing compounds with high vapor pressures under a high-purity argon atmosphere up to 3 bars. Using the rod casting furnace, we succeeded to prepare large high-quality single crystals of two half-Heusler compounds, namely, the itinerant antiferromagnet CuMnSb and the half-metallic ferromagnet NiMnSb.

  9. 14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF VACUUM COATING CHAMBER. THE SYSTEM USED TITANIUM VAPORS TO DEPOSIT TITANIUM COATING ONTO URANIUM PARTS UNDER A VACUUM. (1/11/83) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  10. [The evolution of vacuum extraction in obstetrics].

    PubMed

    Nikolov, A

    2010-01-01

    Vacuum extraction is one of the methods for assisted vaginal delivery. In this article the evolution of vacuum extraction in obstetrics is been discussed. Historical facts and data from the invention up to state-of-the-art vacuum systems in modern obstetrics are presented.

  11. Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays.

    PubMed

    Weng, Kuo-Yao; Chou, Nien-Jen; Cheng, Jya-Wei

    2008-07-01

    An innovative vacuum capillary pneumatic actuation concept that can be used for point-of-care testing has been investigated. The vacuum glass capillaries are encapsulated within a laminated pouch and incorporated into the fluidic card. Vacuum glass capillaries broken by external force such as finger pressure, generate the pneumatic forces to induce liquid flow in the fluidic system. The sizes of vacuum capillary play a vital role in the pumping and metering functions of the system. The luteinizing hormone (LH) chromatographic immunoassay performances in the fluidic cards show consistency comparable to that obtained by manual micropipetting. The vacuum capillary pneumatic actuation will be applied in other complex handling step bioassays and lab-on-a-chip devices.

  12. Performance Evaluation of Existing Wedgewater and Vacuum-Assisted Bed Dewatering Systems

    DTIC Science & Technology

    1992-01-01

    prior to dewatering by the wedgewater method. Of the 20 satisfied users, 11 preferred aerobic digestion , two employed anaerobic digestion, and seven...did not further process their sludge. Of the seven dissatisfied users, four used aerobic digestion and three employed anaerobic digestion. A meelic...queried, 11 employed aerobic digestion , two employed anaerobic digestion, and three did not process their sludge. Eight dissatisfied users employed

  13. Apollo telescope mount thermal systems unit thermal vacuum test

    NASA Technical Reports Server (NTRS)

    Trucks, H. F.; Hueter, U.; Wise, J. H.; Bachtel, F. D.

    1971-01-01

    The Apollo Telescope Mount's thermal systems unit was utilized to conduct a full-scale thermal vacuum test to verify the thermal design and the analytical techniques used to develop the thermal mathematical models. Thermal vacuum test philosophy, test objectives configuration, test monitoring, environment simulation, vehicle test performance, and data correlation are discussed. Emphasis is placed on planning and execution of the thermal vacuum test with particular attention on problems encountered in conducting a test of this maguitude.

  14. On-line comprehensive two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography for preparative isolation of toad venom.

    PubMed

    Li, Jia-Fu; Fang, Hua; Yan, Xia; Chang, Fang-Rong; Wu, Zhen; Wu, Yun-Long; Qiu, Ying-Kun

    2016-07-22

    An on-line comprehensive preparative two-dimensional normal-phase liquid chromatography×reversed-phase liquid chromatography (2D NPLC×RPLC) system was constructed with a newly developed vacuum evaporation assisted adsorption (VEAA) interface, allowing fast removal of NPLC solvent in the vacuum condition and successfully solving the solvent incompatibility problem between NPLC and RPLC. The system achieved on-line solvent exchange within the two dimensions and its performance was illustrated by gram-scale isolation of crude extract from the venom of Bufo bufo gargarizans. Within separation time of ∼20h, 19 compounds were obtained with high purity in a single run. With the VEAA interface, the 2D system exhibited apparent advantages in separation efficiency and automation compared with conventional methods, indicating its promising application in the routine separation process for complicated natural products. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Axial bone-socket displacement for persons with a traumatic transtibial amputation: The effect of elevated vacuum suspension at progressive body-weight loads.

    PubMed

    Darter, Benjamin J; Sinitski, Kirill; Wilken, Jason M

    2016-10-01

    Elevated vacuum suspension systems use a pump to draw air from the socket with the intent of reducing bone-socket motion as compared to passive suction systems. However, it remains unknown if elevated vacuum suspension systems decrease limb displacement uniformly during transitions from unloaded to full-body-weight support. To compare limb-socket motion between elevated vacuum and passive suction suspension sockets using a controlled loading paradigm. Comparative analysis. Persons with transtibial amputation were assessed while wearing either an elevated vacuum or passive suction suspension socket. Digital video fluoroscopy was used to measure axial bone-socket motion while the limb was loaded in 20% body-weight increments. An analysis of variance model was used to compare between suspension types. Total axial displacement (0%-100% body weight) was significantly lower using the elevated vacuum (vacuum: 1.3 cm, passive suction: 1.8 cm; p < 0.0001). Total displacement decreased primarily due to decreased motion during initial loading (0%-20%; p < 0.0001). Other body-weight intervals were not significantly different between systems. Elevated vacuum suspension reduced axial limb-socket motion by maintaining position of the limb within the socket during unloaded conditions. Elevated vacuum provided no meaningful improvement in limb-socket motion past initial loading. Excessive bone-socket motion contributes to poor residual limb health. Our results suggest elevated vacuum suspensions can reduce this axial displacement. Visual assessment of the images suggests that this occurs through the reduction or elimination of the air pocket between the liner and socket wall while the limb is unloaded. © The International Society for Prosthetics and Orthotics 2015.

  16. Measurement of partial pressures in vacuum technology and vacuum physics

    NASA Technical Reports Server (NTRS)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  17. The effect of vacuum devices on penile hemodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, P.G.; Haden, H.T.; Mulligan, T.

    1990-01-01

    External vacuum devices are being used increasingly for the management of erectile dysfunction. There is limited information regarding the effect of vacuum devices on penile blood flow and potential for ischemic penile injury. The penile xenon washout rate was measured before and after application of 2 vacuum systems in 15 subjects. Compared to flaccid state measurements the xenon washout rate did not change significantly with the Synergist Erection System but it was significantly reduced with the Osbon ErecAid System. However, the degree and duration of decrease in penile blood flow that may result in ischemic changes are unknown.

  18. Wafer-to-wafer bonding of nonplanarized MEMS surfaces using solder

    NASA Astrophysics Data System (ADS)

    Sparks, D.; Queen, G.; Weston, R.; Woodward, G.; Putty, M.; Jordan, L.; Zarabadi, S.; Jayakar, K.

    2001-11-01

    The fabrication and reliability of a solder wafer-to-wafer bonding process is discussed. Using a solder reflow process allows vacuum packaging to be accomplished with unplanarized complementary metal-oxide semiconductor (CMOS) surface topography. This capability enables standard CMOS processes, and integrated microelectromechanical systems devices to be packaged at the chip-level. Alloy variations give this process the ability to bond at lower temperatures than most alternatives. Factors affecting hermeticity, shorts, Q values, shifting cavity pressure, wafer saw cleanliness and corrosion resistance will be covered.

  19. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y.S.

    1991-08-20

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used. 5 figures.

  20. Managing the Mars Science Laboratory Thermal Vacuum Test for Safety and Success

    NASA Technical Reports Server (NTRS)

    Evans, Jordan P.

    2010-01-01

    The Mars Science Laboratory is a NASA/JPL mission to send the next generation of rover to Mars. Originally slated for launch in 2009, development problems led to a delay in the project until the next launch opportunity in 2011. Amidst the delay process, the Launch/Cruise Solar Thermal Vacuum Test was undertaken as risk reduction for the project. With varying maturity and capabilities of the flight and ground systems, undertaking the test in a safe manner presented many challenges. This paper describes the technical and management challenges and the actions undertaken that led to the ultimate safe and successful execution of the test.

  1. Oxygen ion-beam microlithography

    DOEpatents

    Tsuo, Y. Simon

    1991-01-01

    A method of providing and developing a resist on a substrate for constructing integrated circuit (IC) chips includes the following steps: of depositing a thin film of amorphous silicon or hydrogenated amorphous silicon on the substrate and exposing portions of the amorphous silicon to low-energy oxygen ion beams to oxidize the amorphous silicon at those selected portions. The nonoxidized portions are then removed by etching with RF-excited hydrogen plasma. Components of the IC chip can then be constructed through the removed portions of the resist. The entire process can be performed in an in-line vacuum production system having several vacuum chambers. Nitrogen or carbon ion beams can also be used.

  2. Enhancement of quantum-enhanced LADAR receiver in nonideal phase-sensitive amplification

    NASA Astrophysics Data System (ADS)

    Zhang, Shuan; Liu, Hongjun; Huang, Nan; Wang, Zhaolu; Han, Jing

    2017-07-01

    The phase-sensitive amplification (PSA) with an injected squeezed vacuum field is theoretically investigated in quantum-enhanced laser detection and ranging (LADAR) receiver. The theoretical model of the amplified process is derived to investigate the quantum fluctuations in detail. A new method of mitigating the unflat gain of nonideal PSA is proposed by adjusting the squeezed angle of the squeezed vacuum field. The simulation results indicate that signal-noise ratio (SNR) of system can be efficiently improved and close to the ideal case by this method. This research will provide an important potential in the applications of quantum-enhanced LADAR receiver.

  3. Effects of vigorous mixing of blood vacuum tubes on laboratory test results.

    PubMed

    Lima-Oliveira, Gabriel; Lippi, Giuseppe; Salvagno, Gian Luca; Montagnana, Martina; Gelati, Matteo; Volanski, Waldemar; Boritiza, Katia Cristina; Picheth, Geraldo; Guidi, Gian Cesare

    2013-02-01

    To evaluate the effect of tubes mixing (gentle vs. vigorous) on diagnostic blood specimens collected in vacuum tube systems by venipuncture. Blood was collected for routine coagulation, immunochemistry and hematological testing from one hundred volunteers into six vacuum tubes: two 3.6 mL vacuum tubes containing 0.4 mL of buffered sodium citrate (9NC) 0.109 mol/L: 3.2 W/V%; two 3.5 mL vacuum tubes with clot activator and gel separator; and two 3.0 mL vacuum tubes containing 5.9 mg K(2)EDTA (Terumo Europe, Belgium). Immediately after the venipuncture all vacuum tubes (each of one additive type) were processed through two different procedures: i) Standard: blood specimens in K(2)EDTA- or sodium citrate-vacuum tubes were gently inverted five times whereas the specimens in tubes with clot activator and gel separator were gently inverted ten times, as recommended by the manufacturer; ii) Vigorous mix: all blood specimens were shaken up vigorously during 3-5s independently of the additive type inside the tubes. The significance of the differences between samples was assessed by Student's t-test or Wilcoxon ranked-pairs test after checking for normality. The level of statistical significance was set at P<0.05. No significant difference (P<0.05) was detected between the procedures for all tested parameters. Surprisingly only a visual alteration (presence of foam on the top) was shown by all the tubes mixed vigorously before centrifugation (Fig. 1 A, B and C). Moreover the serum tubes from vigorous mixing procedure shows a "blood ring" on the tube top after stopper removal (Fig. 1 D). Our results drop out a paradigm suggesting that the incorrect primary blood tubes mixing promotes laboratory variability. We suggest that similar evaluation should be done using other brands of vacuum tubes by each laboratory manager. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  4. Rubber-coated bellows improves vibration damping in vacuum lines

    NASA Technical Reports Server (NTRS)

    Hegland, D. E.; Smith, R. J.

    1966-01-01

    Compact-vibration damping systems, consisting of rubber-coated metal bellows with a sliding O-ring connector, are used in vacuum lines. The device presents a metallic surface to the vacuum system and combines flexibility with the necessary stiffness. It protects against physical damage, reduces fatigue failure, and provides easy mating of nonparallel lines.

  5. The influence of a central vacuum system on quality life in patients with house dust-associated allergic rhinitis.

    PubMed

    Naguwa, S M; Gershwin, M E

    2001-01-01

    Indoor pollution is one of the most common problems addressed by allergists and troublesome for their patients. Although a large variety of products are available for removing such pollutants, including house dust, there is a relative paucity of data on the effectiveness of such devices. In many cases, central vacuum systems are recommended, particularly in new homes. To specifically address the question of whether a central vacuum system produces an improvement in the well characterized domains of Juniper Rhinoconjunctivitis Quality of Life Questionnaire, we selected 25 individuals with a history of documented type I hypersensitivity to house dust. Each of these individuals used either a Beam Central Vacuum System or their own conventional vacuum for a period of 3 months. At the end of this period, the individual switched over to the opposite limb of the study for 3 additional months. Interestingly, in all seven domains of the evaluation, including activity, sleep, nonnasal symptoms, practical problems, nasal symptoms, eye symptoms and emotions, use of the central vacuum proved to be superior.

  6. Collisionless plasma expansion into vacuum: Two new twists on an old problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arefiev, Alexey V.; Breizman, Boris N.

    The paper deals with a generic problem of collisionless plasma expansion into vacuum in the regimes where the expanding plasma consists of hot electrons and cold ions. The expansion is caused by electron pressure and serves as an energy transfer mechanism from electrons to ions. This process is often described under the assumption of Maxwellian electrons, which easily fails in the absence of collisions. The paper discusses two systems with a naturally occurring non-Maxwellian distribution: an expanding laser-irradiated nanoplasma and a supersonic jet coming out of a magnetic nozzle. The presented rigorous kinetic description demonstrates how the deviation from themore » Maxwellian distribution fundamentally alters the process of ion acceleration during plasma expansion. This result points to the critical importance of a fully kinetic treatment in problems with collisionless plasma expansion.« less

  7. Analysis of the aging/stability process of organic solar cells based on PTB7:[70]PCBM and an alternative free-vacuum deposited cathode: the effect of active layer scaling

    NASA Astrophysics Data System (ADS)

    Barreiro-Argüelles, Denisse; Ramos-Ortiz, Gabriel; Maldonado, José-Luis L.; Romero-Borja, Daniel; Meneses-Nava, Marco-Antonio; Pérez-Gutiérrez, Enrique

    2017-08-01

    The PV performance and aging/stability of organic photovoltaic (OPV) devices based on the well-known system PTB7:[70]PCBM and an alternative air-stable electrode deposited at room conditions are fully studied when the active area is scaled by a factor of 25. On the other hand, the aging/stability processes were also studied through single diode model, impedance spectroscopy and light-beam induced current (LBIC) measurements in accordance with the established ISOS-D1 (dark storage) and ISOS-L1 (illumination conditions) protocols. Results are a good indication that the alternative cathode Field's metal (FM) cathode works as an encapsulating material and provides excellent PV performance comparable with the common and costly high-vacuum evaporated Al cathode.

  8. Collisionless plasma expansion into vacuum: Two new twists on an old problema)

    NASA Astrophysics Data System (ADS)

    Arefiev, Alexey V.; Breizman, Boris N.

    2009-05-01

    The paper deals with a generic problem of collisionless plasma expansion into vacuum in the regimes where the expanding plasma consists of hot electrons and cold ions. The expansion is caused by electron pressure and serves as an energy transfer mechanism from electrons to ions. This process is often described under the assumption of Maxwellian electrons, which easily fails in the absence of collisions. The paper discusses two systems with a naturally occurring non-Maxwellian distribution: an expanding laser-irradiated nanoplasma and a supersonic jet coming out of a magnetic nozzle. The presented rigorous kinetic description demonstrates how the deviation from the Maxwellian distribution fundamentally alters the process of ion acceleration during plasma expansion. This result points to the critical importance of a fully kinetic treatment in problems with collisionless plasma expansion.

  9. Effect of fabrication parameters on coating properties of tubular solid oxide fuel cell electrolyte prepared by vacuum slurry coating

    NASA Astrophysics Data System (ADS)

    Son, Hui-Jeong; Song, Rak-Hyun; Lim, Tak-Hyoung; Lee, Seung-Bok; Kim, Sung-Hyun; Shin, Dong-Ryul

    The process of vacuum slurry coating for the fabrication of a dense and thin electrolyte film on a porous anode tube is investigated for application in solid oxide fuel cells. 8 mol% yttria stabilized zirconia is coated on an anode tube by vacuum slurry-coating process as a function of pre-sintering temperature of the anode tube, vacuum pressure, slurry concentration, number of coats, and immersion time. A dense electrolyte layer is formed on the anode tube after final sintering at 1400 °C. With decrease in the pre-sintering temperature of the anode tube, the grain size of the coated electrolyte layer increases and the number of surface pores in the coating layer decreases. This is attributed to a reduced difference in the respective shrinkage of the anode tube and the electrolyte layer. The thickness of the coated electrolyte layer increases with the content of solid powder in the slurry, the number of dip-coats, and the immersion time. Although vacuum pressure has no great influence on the electrolyte thickness, higher vacuum produces a denser coating layer, as confirmed by low gas permeability and a reduced number of defects in the coating layer. A single cell with the vacuum slurry coated electrolyte shows a good performance of 620 mW cm -2 (0.7 V) at 750 °C. These experimental results indicate that the vacuum slurry-coating process is an effective method to fabricate a dense thin film on a porous anode support.

  10. Focus adjustment method for CBERS 3 and 4 satellites Mux camera to be performed in air condition and its experimental verification for best performance in orbital vacuum condition

    NASA Astrophysics Data System (ADS)

    Scaduto, Lucimara C. N.; Malavolta, Alexandre T.; Modugno, Rodrigo G.; Vales, Luiz F.; Carvalho, Erica G.; Evangelista, Sérgio; Stefani, Mario A.; de Castro Neto, Jarbas C.

    2017-11-01

    The first Brazilian remote sensing multispectral camera (MUX) is currently under development at Opto Eletronica S.A. It consists of a four-spectral-band sensor covering a 450nm to 890nm wavelength range. This camera will provide images within a 20m ground resolution at nadir. The MUX camera is part of the payload of the upcoming Sino-Brazilian satellites CBERS 3&4 (China-Brazil Earth Resource Satellite). The preliminary alignment between the optical system and the CCD sensor, which is located at the focal plane assembly, was obtained in air condition, clean room environment. A collimator was used for the performance evaluation of the camera. The preliminary performance evaluation of the optical channel was registered by compensating the collimator focus position due to changes in the test environment, as an air-to-vacuum environment transition leads to a defocus process in this camera. Therefore, it is necessary to confirm that the alignment of the camera must always be attained ensuring that its best performance is reached for an orbital vacuum condition. For this reason and as a further step on the development process, the MUX camera Qualification Model was tested and evaluated inside a thermo-vacuum chamber and submitted to an as-orbit vacuum environment. In this study, the influence of temperature fields was neglected. This paper reports on the performance evaluation and discusses the results for this camera when operating within those mentioned test conditions. The overall optical tests and results show that the "in air" adjustment method was suitable to be performed, as a critical activity, to guarantee the equipment according to its design requirements.

  11. Improved Thermal-Insulation Systems for Low Temperatures

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the synergistic effect of improvements in materials, design, and manufacture.

  12. Vacuum system design and tritium inventory for the charge exchange diagnostic on the Tokamak Fusion Test Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medley, S.S.

    The application of charge exchange analyzers for the measurement of ion temperature in fusion plasma experiments requires a direct connection between the diagnostic and plasma-discharge vacuum chambers. Differential pumping of the gas load from the diagnostic stripping cell operated at > or approx. = 10/sup -3/ Torr is required to maintain the analyzer chamber at a pressure of < or approx. = 10/sup -6/ Torr. The migration of gases between the diagnostic and plasma vacuum chambers must be minimized. In particular, introduction of the analyzer stripping cell gas into the plasma chamber having a base pressure of < or approx.more » = 10/sup -8/ Torr must be suppressed. The charge exchange diagnostic for the Tokamak Fusion Test Reactor (TFTR) is comprised of two analyzer systems designed to contain a total of 18 independent mass/energy analyzers and one diagnostic neutral beam rated at 80 keV, 15 A. The associated arrays of multiple, interconnected vacuum systems were analyzed using the Vacuum System Transient Simulator (Vsts) computer program which models the transient transport of multigas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced costs, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and of the diagnostic working gases to the torus.« less

  13. Analysis of RFQ vacuum system for HINS tests at MDB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piekarz, Henryk; /Fermilab

    The arrangement of RFQ vacuum system is briefly described. The projections of the vacuum level using standard out-gassing rates for the RFQ major components are compared with measurements. The permeation of water through the Viton O-rings of the LCW manifold inside the RFQ vacuum vessel is analyzed and compared with RGA data. A model where the out-gassing water from the vanes inner surfaces affects seriously RFQ operation is devised and compared with RFQ performance. The rate of a hydrogen gas spill from the LEBT into the RFQ vacuum space is also projected. Suggestions to correct and improve RFQ operation aremore » presented.« less

  14. The vacuum system reform and test of the super-critical 600mw unit

    NASA Astrophysics Data System (ADS)

    Yan, Tao; Wan, Zhonghai; Lu, Jin; Chen, Wen; Cai, Wen

    2017-11-01

    The deficiencies of the designed vacuum system of the super-critical unit is pointed out in this paper, and then it is reformed by the steam ejector. The experimental results show that the vacuum of the condenser can be improved, the coal consumption can be reduced and the plant electricity consumption can be lowered dramatically at a small cost of the steam energy consumption. Meanwhile, the water-ring vacuum pumps cavitation problems can be solved.

  15. 40 CFR 63.742 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... commercial or military service in the capacity for which it was designed. Carbon adsorber means one vessel in a series of vessels in a carbon adsorption system that contains carbon and is used to remove gaseous... process that removes permanent coating in small sections at a time and maintains a continuous vacuum...

  16. 40 CFR 63.742 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... commercial or military service in the capacity for which it was designed. Carbon adsorber means one vessel in a series of vessels in a carbon adsorption system that contains carbon and is used to remove gaseous... process that removes permanent coating in small sections at a time and maintains a continuous vacuum...

  17. 40 CFR 63.742 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... commercial or military service in the capacity for which it was designed. Carbon adsorber means one vessel in a series of vessels in a carbon adsorption system that contains carbon and is used to remove gaseous... process that removes permanent coating in small sections at a time and maintains a continuous vacuum...

  18. 40 CFR 63.742 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... commercial or military service in the capacity for which it was designed. Carbon adsorber means one vessel in a series of vessels in a carbon adsorption system that contains carbon and is used to remove gaseous... process that removes permanent coating in small sections at a time and maintains a continuous vacuum...

  19. 40 CFR 63.742 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... commercial or military service in the capacity for which it was designed. Carbon adsorber means one vessel in a series of vessels in a carbon adsorption system that contains carbon and is used to remove gaseous... process that removes permanent coating in small sections at a time and maintains a continuous vacuum...

  20. Analysis of high vacuum systems using SINDA'85

    NASA Technical Reports Server (NTRS)

    Spivey, R. A.; Clanton, S. E.; Moore, J. D.

    1993-01-01

    The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.

  1. CryoCart Restoration and Vacuum Pipe Construction

    NASA Technical Reports Server (NTRS)

    Chaidez, Mariana

    2016-01-01

    Propulsion systems that utilize hypergolic propellants have been used to power space vehicles since the beginning of the space program. Liquid methane and oxygen propulsion systems have emerged as an alternative and have proven to be more environmentally friendly. The incorporation of liquid methane/liquid oxygen (LOX) into the propulsion system has demonstrated an increase in engine performance, as well as a reduction in the volume, size and complexity of the system. Consequently, reducing the total mass of the vehicle which is a crucial aspect that is considered when planning space missions to both the Moon and Mars [1]. Project Morpheus has made significant advancements in liquid oxygen/liquid methane propulsion system technologies by incorporating a LOX/methane propulsion system to a vertical test bed. The vehicle consisted of a 5,000 lb main engine and four 20 lb remote control system (RCS) engines that utilize liquid methane/LOX as its propellant [1]. The vehicle completed successful flight testing at Kennedy Space Center in 2014 which marked the completion of the Morpheus project. Subsequent projects utilizing Morpheus' vertical test bed have been developed to make further advancements. One of the subsequent projects consisted of the addition of a smaller 2,000 lb main engine and a cold helium heat exchanger which would make it possible for a pressurant tank systems to be send to Mars or the Moon by significantly decreasing the overall mass and volume of the pressurant tank. The hot fire tests of the integrated system with the smaller main engine and cold helium heat exchanger were successful at sea level, but further studies are being conducted to better understand how the vertical test bed will behave under thermal-vacuum conditions. For this reason, the integrated vehicle will be taken to Plum Brook to be tested in a chamber capable of simulating these conditions. To ensure that the vehicle will function properly under vacuum conditions, testing will be first completed at the component level. During this process, the igniter of the main engine and the RCS thrusters will be tested under a vacuum. To complete the testing of the components, the test setup first needed to be finalized. The CryoCart is being used to feed the propellants to the test article. The CryoCart is a movable test set-up that was developed in 2009 to provide a mobile platform for testing oxygen/methane systems with hot-fire capability up to 100 lbf. The CryoCart consists of three different systems: Oxygen, Methane, and liquid Nitrogen. The Oxygen and Methane systems are placed into two different carts while the liquid nitrogen system is mainly located in the methane cart. Over the years, the CryoCart has been utilized for different projects and has undergone deterioration. For this reason, a new phase has been developed to rebuild it to working conditions once again. During my internship, I was aiding in the construction and restoration of the CryoCart. In the initial stages of the process, I updated the fluid and electrical schematics for the oxygen, methane, and test article systems. The original CryoCart consisted of an electrical panel that utilized electromechanical relays and a terminal to drive the igniter power and signal, as well as the main fuel and oxygen valves. This electrical panel connected to the CryoCart through various wire harnesses that could be found exiting from the CryoCart. First, it was determined how these harnesses connected to the electromechanical relays so that they worked correctly. Once the electrical system was understood, an alternative for the electromechanical relays and the Molex connectors used throughout the system was sought since these components can often prove to be unreliable. Solid State relays and MIL connectors were purchased to serve as replacements. Upon arrival of the parts, crimping and wiring was completed to install the new solid state relays and MIL connectors. During the replacement of the relays and connectors, system checks of the electrical system were ran to ensure that the system was working correctly. While completing system checks, the pressure transducers that were not functioning properly were also replaced and any issue with the wiring or signal was addressed. Once the electrical components were replaced, the restoration of the fluid system began. Parts of the tubing in the CryoCart had to be rebuild and often consisted of sizing, cutting, bending, filing, and sanding the tubing to prepare it to be flared. Many components had to be proof-tested to bring their certifications up to date, and several components had to be replaced. Various flex hoses, valves, and fittings were send to the Clean Lab because they were new, dirty, or had gone through proof-testing. Once they arrived from the cleaning lab they had to be put back to the system and leak checks and functional tests were conducted. In the Nitrogen system, the copper tubing located in the Oxygen cart was rebuild and Aerogel insulation was added to this section. A new gaseous nitrogen system was added to the CryoCart to purge the vacuum tube which will serve as the test chamber. Once the CryoCart was completed, construction of parts of the vacuum tube began. A flange was manufactured with welded fittings to hold the line of the vacuum pump as well as some extra fittings which will serve as extra inlets used to introduce fluid lines to the vacuum tube. Stress analysis was ran in this flange to ensure that it would not fail under vacuum conditions. The fluid lines leading from the air side of the vacuum to the test article were also constructed and added to the mount that had already been manufactured. Three different sets of tubing were constructed to accommodate the seven different RCS thruster and the main engine igniter that are going to be tested. Full electrical system checks were completed to ensure that all the wire harnesses and valves were functioning. Upon the completion of the CryoCart and the vacuum tube, hot fire testing for the RCS thrusters and the main engine igniter are going to begin. During this time any issues encountered with the engines or igniter will be addressed to ensure that the components function under vacuum conditions. After successful completion of testing, the vertical test bed, Morpheus, will be rebuilt and prepared to be sent to Plum Brook. In Plum Brook, the vehicle will be tested in the thermal-vacuum chamber to demonstrate that integrated lox-methane propulsion system operation in space-like conditions. This internship has allowed me the opportunity to gain valuable hands on experience and to develop skills that will aid in my education as well as in the workforce, while at the same time helping me determine that I would like to further pursue a career in propulsion engineering.

  2. Vacuum chamber-free centrifuge with magnetic bearings.

    PubMed

    Park, Cheol Hoon; Kim, Soohyun; Kim, Kyung-Soo

    2013-09-01

    Centrifuges are devices that separate particles of different densities and sizes through the application of a centrifugal force. If a centrifuge could be operated under atmospheric conditions, all vacuum-related components such as the vacuum chamber, vacuum pump, diffusion pump, and sealing could be removed from a conventional centrifuge system. The design and manufacturing procedure for centrifuges could then be greatly simplified to facilitate the production of lightweight centrifuge systems of smaller volume. Furthermore, the maintenance costs incurred owing to wear and tear due to conventional ball bearings would be eliminated. In this study, we describe a novel vacuum chamber-free centrifuge supported by magnetic bearings. We demonstrate the feasibility of the vacuum chamber-free centrifuge by presenting experimental results that verify its high-speed support capability and motoring power capacity.

  3. 1000 X Difference Between Current Displays and Capability of Human Visual System: Payoff Potential for Affordable Defense Systems

    DTIC Science & Technology

    2000-01-01

    second tier technologies: digital micromirror devices (DMD); alternating current gas plasma (ACGP); inorganic electroluminescent (EL, TFEL, AMEL... Micromirror Device (DMD) - Alternating Current Gas Plasma (ACGP) - Electroluminescent (EL, TFEL, AMEL) - Vacuum Fluorescent Display (VFD) - Inorganic Light...Instruments Digital Micromirror Device (DMD) Digital Light Processing technology and another, the Qualcomm/Hughes-JVC CRT/Liquid Crystal Light Valve

  4. Inertial electrostatic confinement and nuclear fusion in the interelectrode plasma of a nanosecond vacuum discharge. I: Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurilenkov, Yu. K.; Skowronek, M.

    2010-12-15

    Properties of an aerosol substance with a high power density in the interelectrode space of a nano- second vacuum discharge are studied. The possibilities of emission and/or trapping of fast ions and hard X-rays by ensembles of clusters and microparticles are analyzed. The possibility of simultaneous partial trapping (diffusion) of X-rays and complete trapping of fast ions by a cluster ensemble is demonstrated experimentally. Due to such trapping, the aerosol ensemble transforms into a 'dusty' microreactor that can be used to investigate a certain class of nuclear processes, including collisional DD microfusion. Operating regimes of such a microreactor and theirmore » reproducibility were studied. On the whole, the generation efficiency of hard X-rays and neutrons in the proposed vacuum discharge with a hollow cathode can be higher by two orders of magnitude than that in a system 'high-power laser pulse-cluster cloud.' Multiply repeated nuclear fusion accompanied by pulsating DD neutron emission was reproducibly detected in experiment. Ion acceleration mechanisms in the interelectrode space and the fundamental role of the virtual cathode in observed nuclear fusion processes are discussed.« less

  5. Thermal stability of Pt-Ti bilayer films annealing in vacuum and ambient atmosphere

    NASA Astrophysics Data System (ADS)

    Weng, Sizhe; Qiao, Li; Wang, Peng

    2018-06-01

    The thermal stability of platinum/titanium bilayer film dominates the performance when the film electrodes operate under extreme conditions, such as high temperature. In this study, a platinum/titanium bilayer film deposited by magnetron sputtering was used as a model system to study the influence of annealing in vacuum and ambient atmosphere on structural and electrical resistivity changes. The results show that in both cases blow 773 K annealing the metal platinum is the dominant phase, the alloying and the diffusion happen only at the interface of Pt and Ti. Two different structural evolutions set in when the temperature above 873 K, in vacuum an alloying process promotes with increasing of annealing temperature and metal Pt phase transforms to TiPt8 and finally to TiPt3 compounds, which leads to the increase of electrical resistivity. In ambient atmosphere annealing, when titanium diffused out to the surface of film, the oxidation reaction between titanium and oxygen suppresses the alloying process between platinum and titanium, in this case the metal Pt phase remains in the film and starts to agglomerate, defects such as grain boundary and voids in film reduced due to the recrystallization, results in the reduction of electrical resistivity.

  6. Velocity Plume Profiles for Hall Thrusters Using Laser Diagnostic

    DTIC Science & Technology

    2010-06-01

    53 Collecting LIF Using Fiber Optics .............................................................................58 Vacuum ...54 Figure 40. Etalon Issue Through Vacuum Chamber Window [25]. ................................. 55 Figure 41. Collimator with Adapter in a...Methodology Facility Set-up Vacuum Chamber Testing took place within a vacuum chamber located at the AFIT Space Propulsion Analysis and System Simulation

  7. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  8. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  9. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  10. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  11. 46 CFR 153.368 - Pressure-vacuum valves.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pressure-vacuum valves. 153.368 Section 153.368 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Venting Systems § 153.368 Pressure-vacuum valves. (a) The pressure side of a required pressure-vacuum relief valve...

  12. Vacuum Radiance-Temperature Standard Facility for Infrared Remote Sensing at NIM

    NASA Astrophysics Data System (ADS)

    Hao, X. P.; Song, J.; Xu, M.; Sun, J. P.; Gong, L. Y.; Yuan, Z. D.; Lu, X. F.

    2018-06-01

    As infrared remote sensors are very important parts of Earth observation satellites, they must be calibrated based on the radiance temperature of a blackbody in a vacuum chamber prior to launch. The uncertainty of such temperature is thus an essential component of the sensors' uncertainty. This paper describes the vacuum radiance-temperature standard facility (VRTSF) at the National Institute of Metrology of China, which will serve to calibrate infrared remote sensors on Chinese meteorological satellites. The VRTSF can be used to calibrate vacuum blackbody radiance temperature, including those used to calibrate infrared remote sensors. The components of the VRTSF are described in this paper, including the VMTBB, the LNBB, the FTIR spectrometer, the reduced-background optical system, the vacuum chamber used to calibrate customers' blackbody, the vacuum-pumping system and the liquid-nitrogen-support system. The experimental methods and results are expounded. The uncertainty of the radiance temperature of VMTBB is 0.026 °C at 30 °C over 10 μm.

  13. Purifying Aluminum by Vacuum Distillation

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1985-01-01

    Proposed method for purifying aluminum employs one-step vacuum distillation. Raw material for process impure aluminum produced in electrolysis of aluminum ore. Impure metal melted in vacuum. Since aluminum has much higher vapor pressure than other constituents, boils off and condenses on nearby cold surfaces in proportions much greater than those of other constituents.

  14. Progress on the Design of the Storage Ring Vacuum System for the Advanced Photon Source Upgrade Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stillwell, B.; Billett, B.; Brajuskovic, B.

    2017-06-20

    Recent work on the design of the storage ring vacuum system for the Advanced Photon Source Upgrade project (APS-U) includes: revising the vacuum system design to accommodate a new lattice with reverse bend magnets, modifying the designs of vacuum chambers in the FODO sections for more intense incident synchrotron radiation power, modifying the design of rf-shielding bellows liners for better performance and reliability, modifying photon absorber designs to make better use of available space, and integrated planning of components needed in the injection, extraction and rf cavity straight sections. An overview of progress in these areas is presented.

  15. Vacuum system for the SAMURAI spectrometer

    NASA Astrophysics Data System (ADS)

    Shimizu, Y.; Otsu, H.; Kobayashi, T.; Kubo, T.; Motobayashi, T.; Sato, H.; Yoneda, K.

    2013-12-01

    The first commissioning experiment of the SAMURAI spectrometer and its beam line was performed in March, 2012. The vacuum system for the SAMURAI spectrometer includes its beam line and the SAMURAI vacuum chamber with the windows for detecting neutrons and charged particles. The window for neutrons was made of stainless steel with a thickness of 3 mm and was designed with a shape of partial cylinder to support itself against the atmospheric pressure. The window for charged particles was of the combination of Kevlar and Mylar with the thickness of 280 and 75 μm, respectively. The pressure in the vacuum system was at a few Pa throughout the commissioning experiment.

  16. Optical and Mechanical Properties of Glass Blown In Vacuo

    NASA Technical Reports Server (NTRS)

    Manning, andrew; Tucker, Dennis; Mooney, Theodore; Herren, Kenneth; Gregory, Don A.

    2006-01-01

    Theoretically, the strength of glass processed in vacuum should be higher due to outgassing of contaminants normally present in the glass, such as bulk water in the form of OH bonds that tends to weaken the glass structure. In this research, small discs of a few types of glass have been subjected to various temperatures for extended periods of time in vacuum. Their strength was then tested using a standard flexure technique, facilitated by a custom-designed test fixture, and the results were compared to glass tested in air using the same fixture. The purpose of the glass blowing investigation was to prove the basic feasibility of a high-level concept for in-space manufacture of optical elements. The central requirement was that the glass bubble had to be blown into a support structure such that the bubble could be handled by manipulation of the structure. The blown bubble attached itself to a mullite ring geometrically and mechanically, as a demonstration in the initial experiments described here, by expanding through and around it. The vacuum system used was custom made, as were most of the components of the system, such as the heating element, the glass and ring support structure, and the gas inlet system that provided the pressure needed to blow the glass.

  17. Vacuum distillation/vapor filtration water recovery

    NASA Technical Reports Server (NTRS)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  18. Evolution of gettering technologies for vacuum tubes to getters for MEMS

    NASA Astrophysics Data System (ADS)

    Amiotti, M.

    2008-05-01

    Getter materials are technically proven and industrially accepted practical ways to maintain vacuum inside hermetically sealed tubes or devices to assure high reliability and long lifetime of the operating devices. The most industrially proven vacuum tube is the cathode rays tubes (CRTs), where large surfaces are available for the deposition of an evaporated barium film by a radio frequency inductive heating of a stainless steel container filled with a BaAl4 powder mixed to Ni powder. The evolution of the CRTs manufacturing technologies required also new types of barium getters able to withstand some thermal process in air without any deterioration of the evaporation characteristics. In other vacuum tubes such as traveling waves tubes, the space available for the evaporation of a barium film and the sorption capacity required to assure the vacuum for the lifetime of the devices did not allow the use of the barium film, prompting the development of sintered non evaporable getter pills that can be activated during the manufacturing process or by flowing current through an embedded resistance. The same sintered non evaporable getter pills could find usage also in evacuated parts to thermally isolate the infrared sensors for different final applications. In high energy physics particle accelerators, the getter technology moved from localized vacuum getter pumps or getter strips to a getter coating over the surface of vacuum chambers in order to guarantee a more uniform pumping speed. With the advent of solid state electronics, new challenges faced the getter technology to assure long life to vacuum or inert gas filled hermetical packages containing microelectronic devices, especially in the telecommunication and military applications. A well known problem of GaAs devices with Pd or Pt metalization is the H2 poisoning of the metal gate: to prevent this degradation a two layer getter film has been develop to absorb a large quantity of H2 per unit of getter surface. The development of Micro Electro Mechanical Systems (MEMS) with moving parts in a vacuum environment required the development of a new generation of getter film, few microns thick, that can be selectively patterned onto a silicon or glass wafer (usually 4'' or 8''). This wafer with patterned getter film can be used directly as the cap wafer of a wafer to wafer bonded MEMS structure, assuring long life and reliability to the moving MEMS structure especially in automotive applications where thermal cycles are required for qualification.

  19. Thermal Performance of Biological Substance Systems in Vitro Under Static and Dynamic Conditions at the Cryogenic Test Laboratory, NASA Kennedy Space Center, USA

    NASA Technical Reports Server (NTRS)

    Augustynowicz, S. D.; Fesmire, James E.; Steinrock, T. (Technical Monitor)

    2001-01-01

    A unique research program, including a comprehensive study of thermal performance at cryogenic vacuum insulation systems, was performed at the NASA Kennedy Space Center. The main goal was to develop a new soft vacuum system (from 1 torr to 10 torr) that provides an intermediate level of performance (k-value below 4.8 mW/m-K). Liquid nitrogen boil-off methods were used to test conventional materials, novel materials, and certain combinations. The test articles included combinations of aluminum foil, fiberglass paper, polyester fabric, silica aerogel composite blanket, fumed silica, silica aerogel powder, and syntactic foam. A new LCI system was developed at the Cryogenics Test Laboratory. This system performs exceptionally well at soft vacuum levels and nearly as good as an MLI at high vacuum levels. Apparent thermal conductivities for the LCI range from 2 mW/m-K at soft vacuum to 0.1 mW/m-K at high vacuum. Several cryostats were designed, constructed, and calibrated by the Cryogenics Test Laboratory at KSC NASA as part of this research program. The cryostat test apparatus is a liquid nitrogen boil-off calorimeter system for direct measurement of the apparent thermal conductivity at a fixed vacuum level between 5 x 10(exp -5) and 760 torr. The apparatus is also used for transient measurements of temperature profiles. The development of efficient, robust cryogenic insulation systems has been a targeted area of research for a number of years. Improved methods of characterization, testing, and evaluation of complex biological substance systems for cryosurgery and cryobiology are the focus of this paper.

  20. Complex technology of vacuum-arc processing of structural material surface

    NASA Astrophysics Data System (ADS)

    Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.

    2015-08-01

    The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.

  1. High-productivity DRIE solutions for 3D-SiP and MEMS volume manufacturing

    NASA Astrophysics Data System (ADS)

    Puech, M.; Thevenoud, J. M.; Launay, N.; Arnal, N.; Godinat, P.; Andrieu, B.; Gruffat, J. M.

    2006-12-01

    Emerging 3D-SiP technologies and high volume MEMS applications require high productivity mass production DRIE systems. The Alcatel DRIE product range has recently been optimized to reach the highest process and hardware production performances. A study based on sub-micron high aspect ratio structures encountered in the most stringent 3D-SiP has been carried out. The optimization of the Bosch process parameters have shown ultra high silicon etch rate, with unrivaled uniformity and repeatability leading to excellent process yields. In parallel, most recent hardware and proprietary design optimization including vacuum pumping lines, process chamber, wafer chucks, pressure control system, gas delivery are discussed. A key factor for achieving the highest performances was the recognized expertise of Alcatel vacuum and plasma science technologies. These improvements have been monitored in a mass production environment for a mobile phone application. Field data analysis shows a significant reduction of cost of ownership thanks to increased throughput and much lower running costs. These benefits are now available for all 3D-SiP and high volume MEMS applications. The typical etched patterns include tapered trenches for CMOS imagers, through silicon via holes for die stacking, well controlled profile angle for 3D high precision inertial sensors, and large exposed area features for inkjet printer head and Silicon microphones.

  2. Kinetics of scrap tyre pyrolysis under vacuum conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martin

    2009-10-15

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies themore » kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12 K in the reaction starting temperature. The kinetic constant at 503 K for devolatilization of volatile additives at 0.25 atm is 1.7 times higher than that at 1 atm, and that corresponding to styrene-butadiene rubber at 723 K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.« less

  3. Kinetics of scrap tyre pyrolysis under vacuum conditions.

    PubMed

    Lopez, Gartzen; Aguado, Roberto; Olazar, Martín; Arabiourrutia, Miriam; Bilbao, Javier

    2009-10-01

    Scrap tyre pyrolysis under vacuum is attractive because it allows easier product condensation and control of composition (gas, liquid and solid). With the aim of determining the effect of vacuum on the pyrolysis kinetics, a study has been carried out in thermobalance. Two data analysis methods have been used in the kinetic study: (i) the treatment of experimental data of weight loss and (ii) the deconvolution of DTG (differential thermogravimetry) curve. The former allows for distinguishing the pyrolysis of the three main components (volatile components, natural rubber and styrene-butadiene rubber) according to three successive steps. The latter method identifies the kinetics for the pyrolysis of individual components by means of DTG curve deconvolution. The effect of vacuum in the process is significant. The values of activation energy for the pyrolysis of individual components of easier devolatilization (volatiles and NR) are lower for pyrolysis under vacuum with a reduction of 12K in the reaction starting temperature. The kinetic constant at 503K for devolatilization of volatile additives at 0.25atm is 1.7 times higher than that at 1atm, and that corresponding to styrene-butadiene rubber at 723K is 2.8 times higher. Vacuum enhances the volatilization and internal diffusion of products in the pyrolysis process, which contributes to attenuating the secondary reactions of the repolymerization and carbonization of these products on the surface of the char (carbon black). The higher quality of carbon black is interesting for process viability. The large-scale implementation of this process in continuous mode requires a comparison to be made between the economic advantages of using a vacuum and the energy costs, which will be lower when the technologies used for pyrolysis require a lower ratio between reactor volume and scrap tyre flow rate.

  4. National Synchrotron Light Source II storage ring vacuum systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hseuh, Hsiao-Chaun, E-mail: hseuh@bnl.gov; Hetzel, Charles; Leng, Shuwei

    2016-05-15

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. The majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. This paper presents themore » design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  5. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives.

    PubMed

    Purtov, Julia; Frensemeier, Mareike; Kroner, Elmar

    2015-11-04

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm(2) provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects.

  6. Switchable Adhesion in Vacuum Using Bio-Inspired Dry Adhesives

    PubMed Central

    2015-01-01

    Suction based attachment systems for pick and place handling of fragile objects like glass plates or optical lenses are energy-consuming and noisy and fail at reduced air pressure, which is essential, e.g., in chemical and physical vapor deposition processes. Recently, an alternative approach toward reversible adhesion of sensitive objects based on bioinspired dry adhesive structures has emerged. There, the switching in adhesion is achieved by a reversible buckling of adhesive pillar structures. In this study, we demonstrate that these adhesives are capable of switching adhesion not only in ambient air conditions but also in vacuum. Our bioinspired patterned adhesive with an area of 1 cm2 provided an adhesion force of 2.6 N ± 0.2 N in air, which was reduced to 1.9 N ± 0.2 N if measured in vacuum. Detachment was induced by buckling of the structures due to a high compressive preload and occurred, independent of air pressure, at approximately 0.9 N ± 0.1 N. The switch in adhesion was observed at a compressive preload between 5.6 and 6.0 N and was independent of air pressure. The difference between maximum adhesion force and adhesion force after buckling gives a reasonable window of operation for pick and place processes. High reversibility of the switching behavior is shown over 50 cycles in air and in vacuum, making the bioinspired switchable adhesive applicable for handling operations of fragile objects. PMID:26457864

  7. A thermal vacuum-UV solar simulator test system for assessing microbiological viability

    NASA Technical Reports Server (NTRS)

    Ross, D. S.; Wardle, M. D.; Taylor, D. M.

    1975-01-01

    Microorganisms were exposed to a simulated space environment in order to assess the photobiological effect of broad spectrum, nonionizing solar electromagnetic radiation in terms of viability. A thermal vacuum chamber capable of maintaining a vacuum of 0.000133n/sq m and an ultraviolet rich solar simulator were the main ingredients of the test system. Results to date indicate the system to be capable of providing reliable microbiological data.

  8. Investigation of the radiation background in the interaction region of the medium-energy electron relativisitic heavy ion collider (MeRHIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beebe-Wang,J.

    There are three main sources of the radiation background in MeRHIC: forward synchrotron radiation generated upstream of the detector, the direct backward radiation caused by the photons hitting beampipe downstream of the detector, and the indirect secondary radiation caused by hard photons hitting vacuum systems, masks, collimators, absorbers or any other elements in the interaction region. In this paper, we first calculate the primary radiation distribution by employing electromagnetic theory. Then we obtain the direct backward scattering rate by applying the kinematic Born approximation deduced from scattering dynamics. The diffuse scattering cross section is calculated as a function of themore » surface properties of the MeRHIC vacuum system. Finally, the dominating physical processes and minimization of indirect secondary radiation is presented and discussed.« less

  9. Diffraction-limited storage-ring vacuum technology

    PubMed Central

    Al-Dmour, Eshraq; Ahlback, Jonny; Einfeld, Dieter; Tavares, Pedro Fernandes; Grabski, Marek

    2014-01-01

    Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3 GeV storage ring of MAX IV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. PMID:25177979

  10. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, Bruce C.; Stutz, Roger A.

    1998-01-01

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are isclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters.

  11. Microencapsulation and characterization of liposomal vesicles using a supercritical fluid process coupled with vacuum-driven cargo loading.

    PubMed

    Tsai, Wen-Chyan; Rizvi, Syed S H

    2017-06-01

    A new technique of liposomal microencapsulation, consisting of supercritical fluid extraction followed by rapid expansion of the supercritical solution and vacuum-driven cargo loading, was successfully developed. It is a continuous flow-through process without usage of any toxic organic solvent. For use as a coating material, the solubility of soy phospholipids in supercritical carbon dioxide was first determined using a dynamic equilibrium system and the data was correlated with the Chrastil model with good agreement. Liposomes were made with D-(+)-glucose as a cargo and their properties were characterized as functions of expansion pressure, temperature, and cargo loading rates. The highest encapsulation efficiency attained was 31.7% at the middle expansion pressure of 12.41MPa, highest expansion temperature of 90°C, and lowest cargo loading rate of 0.25mL/s. The large unilamellar vesicles and multivesicular vesicles were observed to be a majority of the liposomes produced using this eco-friendly process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Safety shield for vacuum/pressure-chamber windows

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Spencer, R.

    1980-01-01

    Optically-clear shatter-resistant safety shield protects workers from implosion and explosion of vacuum and pressure windows. Plastic shield is inexpensive and may be added to vacuum chambers, pressure chambers, and gas-filling systems.

  13. Thermal conductivity of aerogel blanket insulation under cryogenic-vacuum conditions in different gas environments

    NASA Astrophysics Data System (ADS)

    E Fesmire, J.; Ancipink, J. B.; Swanger, A. M.; White, S.; Yarbrough, D.

    2017-12-01

    Thermal conductivity of low-density materials in thermal insulation systems varies dramatically with the environment: cold vacuum pressure, residual gas composition, and boundary temperatures. Using a reference material of aerogel composite blanket (reinforcement fibers surrounded by silica aerogel), an experimental basis for the physical heat transmission model of aerogel composites and other low-density, porous materials is suggested. Cryogenic-vacuum testing between the boundary temperatures of 78 K and 293 K is performed using a one meter cylindrical, absolute heat flow calorimeter with an aerogel blanket specimen exposed to different gas environments of nitrogen, helium, argon, or CO2. Cold vacuum pressures include the full range from 1×10-5 torr to 760 torr. The soft vacuum region, from about 0.1 torr to 10 torr, is complex and difficult to model because all modes of heat transfer - solid conduction, radiation, gas conduction, and convection - are significant contributors to the total heat flow. Therefore, the soft vacuum tests are emphasized for both heat transfer analysis and practical thermal data. Results for the aerogel composite blanket are analyzed and compared to data for its component materials. With the new thermal conductivity data, future applications of aerogel-based insulation systems are also surveyed. These include Mars exploration and surface systems in the 5 torr CO2 environment, field joints for vacuum-jacketed cryogenic piping systems, common bulkhead panels for cryogenic tanks on space launch vehicles, and liquid hydrogen cryofuel systems with helium purged conduits or enclosures.

  14. Study of the time and effort signal in cutting operations

    NASA Astrophysics Data System (ADS)

    Grosset, E.; Maillard, A.; Bouhelier, C.; Gasnier, J.

    1990-02-01

    Perception and treatment of an effort signal by computer methods is discussed. An automatic control system used to measure the wear of machine tools and carry out quality control throughout the cutting process is described. The testing system is used to evaluate the performance of tools which have been vacuum plated. The system is used as part of the BRITE study, the goal of which is to develop an expert system for measuring the wear of tools used during drilling and perforation operations.

  15. Microfabricated triggered vacuum switch

    DOEpatents

    Roesler, Alexander W [Tijeras, NM; Schare, Joshua M [Albuquerque, NM; Bunch, Kyle [Albuquerque, NM

    2010-05-11

    A microfabricated vacuum switch is disclosed which includes a substrate upon which an anode, cathode and trigger electrode are located. A cover is sealed over the substrate under vacuum to complete the vacuum switch. In some embodiments of the present invention, a metal cover can be used in place of the trigger electrode on the substrate. Materials used for the vacuum switch are compatible with high vacuum, relatively high temperature processing. These materials include molybdenum, niobium, copper, tungsten, aluminum and alloys thereof for the anode and cathode. Carbon in the form of graphitic carbon, a diamond-like material, or carbon nanotubes can be used in the trigger electrode. Channels can be optionally formed in the substrate to mitigate against surface breakdown.

  16. Commercial aspects of epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultra vacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds and large ultra vacuum volume (about 100 cu m) without walls. These space ultra vacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials especially in the area of semiconductors for microelectronics use. For such thin film materials there is expected a very large value added from space ultra vacuum processing, and as a result the application of the epitaxial thin film growth technology to space could lead to major commercial efforts in space.

  17. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  18. Lightweight evacuated multilayer insulation systems for the space shuttle vehicle

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.; Bell, J. E.; Zimmerman, D. K.

    1973-01-01

    The elements in the evacuated multilayer insulation system were investigated, and the major weight contributors for optimization selected. Outgassing tests were conducted on candidate vacuum jacket materials and experiments were conducted to determine the vacuum and structural integrity of selected vacuum jacket configurations. A nondestructive proof test method, applicable to externally pressurized shells, was validated on this program.

  19. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.

  20. Removing antimony from waste lead storage batteries alloy by vacuum displacement reaction technology.

    PubMed

    Liu, Tiantian; Qiu, Keqiang

    2018-04-05

    With the wide application of lead acid battery, spent lead acid battery has become a serious problem to environmental protection and human health. Though spent battery can be a contaminant if not handled properly, it is also an important resource to obtain refined lead. Nowadays, the Sb-content in lead storage batteries is about 0.5-3 wt%, which is higher than the Sb-content in the crude lead. However, there are few reports about the process of removing antimony from high-antimony lead bullion. In this study, vacuum displacement reaction technology, a new process for removing antimony from high-antimony lead melts, was investigated. During this process, lead oxide was added to the system and antimony from lead melts was converted into antimony trioxide, which easily was evaporated under vacuum so that antimony was removed from lead melts. The experimental results demonstrated that Sb-content in lead melts decreased from 2.5% to 23 ppm under following conditions: mass ratio of PbO/lead bullion of 0.33, residual gas pressure of 30 Pa, melt temperature of 840 °C, reaction time of 60 min. The distillate gotten can be used as by-product to produce antimony white. Moreover, this study is of importance to recycling of waste lead storage batteries alloy. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Wafer-level vacuum/hermetic packaging technologies for MEMS

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hyun; Mitchell, Jay; Welch, Warren; Lee, Sangwoo; Najafi, Khalil

    2010-02-01

    An overview of wafer-level packaging technologies developed at the University of Michigan is presented. Two sets of packaging technologies are discussed: (i) a low temperature wafer-level packaging processes for vacuum/hermeticity sealing, and (ii) an environmentally resistant packaging (ERP) technology for thermal and mechanical control as well as vacuum packaging. The low temperature wafer-level encapsulation processes are implemented using solder bond rings which are first patterned on a cap wafer and then mated with a device wafer in order to encircle and encapsulate the device at temperatures ranging from 200 to 390 °C. Vacuum levels below 10 mTorr were achieved with yields in an optimized process of better than 90%. Pressures were monitored for more than 4 years yielding important information on reliability and process control. The ERP adopts an environment isolation platform in the packaging substrate. The isolation platform is designed to provide low power oven-control, vibration isolation and shock protection. It involves batch flip-chip assembly of a MEMS device onto the isolation platform wafer. The MEMS device and isolation structure are encapsulated at the wafer-level by another substrate with vertical feedthroughs for vacuum/hermetic sealing and electrical signal connections. This technology was developed for high performance gyroscopes, but can be applied to any type of MEMS device.

  2. Study of Performance of Coaxial Vacuum Tube Solar Collector on Ethanol Distillation Process

    NASA Astrophysics Data System (ADS)

    Sutomo; Ramelan, A. H.; Mustafa; Tristono, T.

    2017-07-01

    Coaxial vacuum tube solar collectors can generate heat up to 80°C is possibly used for ethanol distillation process that required temperature 79°C only. This study reviews the performance of coaxial collector vacuum tube used for ethanol distillation process. This experimental research was conducted in a closed space using a halogen lamp as a solar radiation simulator. We had done on three different of the radiation values, i.e. 998 W/m2, 878 W/m2 and 782 W/m2. The pressure levels of vacuum tube collector cavity in the research were 1; 0.5; 0.31; 0.179; and 0.043 atmospheres. The Research upgraded the 30% of ethanol to produce the concentration of 77% after distillation. The result shows that the performance of coaxial collector vacuum tube used for ethanol distillation process has the negative correlation to the level of the collector tube cavity pressure. The productivity will increase while the collector tube cavity pressure decreased. Therefore, the collector efficiency has the negative correlation also to the level of collector tube cavity pressure. The best performance achieved when it operated at a pressure of 0.043 atmosphere with radiation intensity 878 W / m2, and the value of efficiency is 57.8%.

  3. Thermal Vacuum Integrated System Test at B-2

    NASA Technical Reports Server (NTRS)

    Kudlac, Maureen T.; Weaver, Harold F.; Cmar, Mark D.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) Plum Brook Station (PBS) Space Propulsion Research Facility, commonly referred to as B-2, is NASA s third largest thermal vacuum facility. It is the largest designed to store and transfer large quantities of liquid hydrogen and liquid oxygen, and is perfectly suited to support developmental testing of chemical propulsion systems as well as fully integrated stages. The facility is also capable of providing thermal-vacuum simulation services to support testing of large lightweight structures, Cryogenic Fluid Management (CFM) systems, electric propulsion test programs, and other In-Space propulsion programs. A recently completed integrated system test demonstrated the refurbished thermal vacuum capabilities of the facility. The test used the modernized data acquisition and control system to monitor the facility during pump down of the vacuum chamber, operation of the liquid nitrogen heat sink (or cold wall) and the infrared lamp array. A vacuum level of 1.3x10(exp -4)Pa (1x10(exp -6)torr) was achieved. The heat sink provided a uniform temperature environment of approximately 77 K (140deg R) along the entire inner surface of the vacuum chamber. The recently rebuilt and modernized infrared lamp array produced a nominal heat flux of 1.4 kW/sq m at a chamber diameter of 6.7 m (22 ft) and along 11 m (36 ft) of the chamber s cylindrical vertical interior. With the lamp array and heat sink operating simultaneously, the thermal systems produced a heat flux pattern simulating radiation to space on one surface and solar exposure on the other surface. The data acquired matched pretest predictions and demonstrated system functionality.

  4. In-situ investigation of thermal instabilities and solid state dewetting in polycrystalline platinum thin films via confocal laser microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahangir, S.; Cheng, Xuan; Huang, H. H.

    2014-10-28

    Solid state dewetting and the subsequent morphological changes for platinum thin films grown on zinc oxide (ZnO) buffered (001) silicon substrates (Pt/ZnO/SiO{sub 2}/(001)Si system) is investigated under vacuum conditions via a custom-designed confocal laser microscope coupled with a laser heating system. Live imaging of thin film dewetting under a range of heating and quenching vacuum ambients reveals events including hillock formation, hole formation, and hole growth that lead to formation of a network of Pt ligaments, break up of Pt ligaments to individual islands and subsequent Pt islands shape reformation, in chronological fashion. These findings are corroborated by ex-situ materialsmore » characterization and quantitative electron microscopy analysis. A secondary hole formation via blistering before film rupture is revealed to be the critical stage, after which a rapid dewetting catastrophe occurs. This process is instantaneous and cannot be captured by ex-situ methods. Finally, an intermetallic phase forms at 900 °C and alters the morphology of Pt islands, suggesting a practical limit to the thermal environments that may be used for these platinized silicon wafers in vacuum conditions.« less

  5. TFTR diagnostic vacuum controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, D.; Persons, R.

    1981-01-01

    The TFTR diagnostic vacuum controller (DVC) provides in conjunction with the Central Instrumentation Control and Data Acquisition System (CICADA), control and monitoring for the pumps, valves and gauges associated with each individual diagnostic vacuum system. There will be approximately 50 systems on TFTR. Two standard versions of the controller (A and B) wil be provided in order to meet the requirements of two diagnostic manifold arrangements. All pump and valve sequencing, as well as protection features, will be implemented by the controller.

  6. Cold cathode vacuum gauging system

    DOEpatents

    Denny, Edward C.

    2004-03-09

    A vacuum gauging system of the cold cathode type is provided for measuring the pressure of a plurality of separate vacuum systems, such as in a gas centrifuge cascade. Each casing is fitted with a gauge tube assembly which communicates with the vacuum system in the centrifuge casing. Each gauge tube contains an anode which may be in the form of a slender rod or wire hoop and a cathode which may be formed by the wall of the gauge tube. The tube is provided with an insulated high voltage connector to the anode which has a terminal for external connection outside the vacuum casing. The tube extends from the casing so that a portable magnet assembly may be inserted about the tube to provide a magnetic field in the area between the anode and cathode necessary for pressure measurements in a cold cathode-type vacuum gauge arrangement. The portable magnetic assembly is provided with a connector which engages the external high voltage terminal for providing power to the anode within in the gauge tube. Measurement is made in the same manner as the prior cold cathode gauges in that the current through the anode to the cathode is measured as an indication of the pressure. By providing the portable magnetic assembly, a considerable savings in cost, installation, and maintenance of vacuum gauges for pressure measurement in a gas centrifuge cascade is realizable.

  7. Open loop, auto reversing liquid nitrogen circulation thermal system for thermo vacuum chamber

    NASA Astrophysics Data System (ADS)

    Naidu, M. C. A.; Nolakha, Dinesh; Saharkar, B. S.; Kavani, K. M.; Patel, D. R.

    2012-11-01

    In a thermo vacuum chamber, attaining and controlling low and high temperatures (-100 Deg. C to +120 Deg. C) is a very important task. This paper describes the development of "Open loop, auto reversing liquid nitrogen based thermal system". System specifications, features, open loop auto reversing system, liquid nitrogen flow paths etc. are discussed in this paper. This thermal system consists of solenoid operated cryogenic valves, double embossed thermal plate (shroud), heating elements, temperature sensors and PLC. Bulky items like blowers, heating chambers, liquid nitrogen injection chambers, huge pipe lines and valves were not used. This entire thermal system is very simple to operate and PLC based, fully auto system with auto tuned to given set temperatures. This system requires a very nominal amount of liquid nitrogen (approx. 80 liters / hour) while conducting thermo vacuum tests. This system was integrated to 1.2m dia thermo vacuum chamber, as a part of its augmentation, to conduct extreme temperature cycling tests on passive antenna reflectors of satellites.

  8. Ultrahigh vacuum focused ion beam micromill and articles therefrom

    DOEpatents

    Lamartine, B.C.; Stutz, R.A.

    1998-02-24

    An ultrahigh vacuum focused ion beam micromilling apparatus and process are disclosed. Additionally, a durable data storage medium using the micromilling process is disclosed, the durable data storage medium capable of storing, e.g., digital or alphanumeric characters as well as graphical shapes or characters. 6 figs.

  9. Calculation of the process of vacuum drying of a metal-concrete container with spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Karyakin, Yu. E.; Lavrent'ev, S. A.; Pavlyukevich, N. V.; Pletnev, A. A.; Fedorovich, E. D.

    2012-01-01

    An algorithm and results of calculation of the process of vacuum drying of a metal-concrete container intended for long-term "dry" storage of spent nuclear fuel are presented. A calculated substantiation of the initial amount of moisture in the container is given.

  10. EPA SITE DEMONSTRATION OF THE TERRA VAC IN SITU VACUUM EXTRACTION PROCESS IN GROVELAND, MASSACHUSETTS

    EPA Science Inventory

    This paper presents an EPA evaluation of the patented Terra Vac, Inc.'s in situ vacuum extraction process that was field-demonstrated on a trichloroethylene (TCE) contaminated soil in Groveland, MA, under the EPA Superfund Innovative Technology Evaluation (SITE) program. he Terra...

  11. 49 CFR 570.54 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... from the driver control to a hydraulic brake system to actuate the service brakes. Electric brake system means a system that uses electric current to actuate the service brake. Vacuum brake system means a system that uses a vacuum and atmospheric pressure for transmitting a force from the driver...

  12. 49 CFR 570.54 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... from the driver control to a hydraulic brake system to actuate the service brakes. Electric brake system means a system that uses electric current to actuate the service brake. Vacuum brake system means a system that uses a vacuum and atmospheric pressure for transmitting a force from the driver...

  13. Silicon crystal growth in vacuum

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.

    1982-01-01

    The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.

  14. Space simulation facilities providing a stable thermal vacuum facility

    NASA Technical Reports Server (NTRS)

    Tellalian, Martin L.

    1990-01-01

    CBI has recently constructed the Intermediate Thermal Vacuum Facility. Built as a corporate facility, the installation will first be used on the Boost Surveillance and Tracking System (BSTS) program. It will also be used to develop and test other sensor systems. The horizontal chamber has a horseshoe shaped cross section and is supported on pneumatic isolators for vibration isolation. The chamber structure was designed to meet stability and stiffness requirements. The design process included measurement of the ambient ground vibrations, analysis of various foundation test article support configurations, design and analysis of the chamber shell and modal testing of the chamber shell. A detailed 3-D finite element analysis was made in the design stage to predict the lowest three natural frequencies and mode shapes and to identify local vibrating components. The design process is described and the results are compared of the finite element analysis to the results of the field modal testing and analysis for the 3 lowest natural frequencies and mode shapes. Concepts are also presented for stiffening large steel structures along with methods to improve test article stability in large space simulation facilities.

  15. Measurement of vacuum pressure with a magneto-optical trap: A pressure-rise method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Rowan W. G.; Lee, Lucie A.; Findlay, Elizabeth A.

    2015-09-15

    The lifetime of an atom trap is often limited by the presence of residual background gases in the vacuum chamber. This leads to the lifetime being inversely proportional to the pressure. Here, we use this dependence to estimate the pressure and to obtain pressure rate-of-rise curves, which are commonly used in vacuum science to evaluate the performance of a system. We observe different rates of pressure increase in response to different levels of outgassing in our system. Therefore, we suggest that this is a sensitive method which will find useful applications in cold atom systems, in particular, where the inclusionmore » of a standard vacuum gauge is impractical.« less

  16. Development of a high temperature ceramic-to-metal seal for Air Force Weapons Laboratory Laser

    NASA Astrophysics Data System (ADS)

    Honnell, R. E.; Stoddard, S. D.

    1987-03-01

    Procedures were developed for fabricating vacuum tight metal-to-ceramic ring seals between Inconel 625 and MgO-3 wt % Y2O3 tubes metallized with a calcia-alumina-silica glass (CaO-29 wt % Al2O3-35 wt % SiO2) containing 50 vol % molybdenum filler. Palniro No. 1 (Au-25 wt % Pd-25 wt % Ni) was found to be the most reliable braze for joining Inconel to metallized MgO-3 wt % Y2O3 bodies. The reliabilities of the processing procedures and the material systems were demonstrated. A prototype electrical feedthrough was fabricated for 1173 K operation in air or vacuum.

  17. Luminescence from Vacuum-Ultraviolet-Irradiated Cosmic Ice Analogs and Residue

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Dworkin, Jason P.; Chillier, Xavier D. F.; Allamandola, Louis J.

    2003-01-01

    Here we report a study of the optical luminescent properties for a variety of vacuum-ultraviolet (VUV)-irradiated cosmic ice analogs and the complex organic residues produced. Detailed results are presented for the irradiated, mixed molecular ice: H2O: CH3OH:NH3:CO(100:50:1:1), a realistic representation for an interstellar/precometary ice that reproduces all the salient infrared spectral features associated with interstellar ices. The irradiated ices and the room-temperature residues resulting from this energetic processing have remarkable photoluminescent properties in the visible (520-570 nm). The luminescence dependence on temperature, thermal cycling, and VUV exposure is described. It is suggested that this type of luminescent behavior might be applicable to solar system and interstellar observations and processes for various astronomical objects with an ice heritage. Some examples include grain temperature determination and vaporization rates, nebula radiation balance, albedo values, color analysis, and biomarker identification.

  18. Luminescence from Vacuum-Ultraviolet-Irradiated Cosmic Ice Analogs and Residues

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Dworkin, Jason P.; Chillier, Xavier D. F.; Allamandola, Louis J.

    2003-01-01

    Here we report a study of the optical luminescent properties for a variety of vacuum-ultraviolet (VUV)- irradiated cosmic ice analogs and the complex organic residues produced. Detailed results are presented for the irradiated, mixed molecular ice: H2O:CH3OH:NH3:CO (100:50:1:1), a realistic representation for an interstellar/precometary ice that reproduces all the salient infrared spectral features associated with interstellar ices. The irradiated ices and the room-temperature residues resulting from this energetic processing have remarkable photoluminescent properties in the visible (520-570 nm). The luminescence dependence on temperature, thermal cycling, and VUV exposure is described. It is suggested that this type of luminescent behavior might be applicable to solar system and interstellar observations and processes for various astronomical objects with an ice heritage. Some examples include grain temperature determination and vaporization rates, nebula radiation balance, albedo values, color analysis, and biomarker identification.

  19. Development Study of Cartridge/Crucible Tube Materials

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N.; ODell, Scott J.

    1998-01-01

    The limitations of traditional alloys and the desire for improved performance for components is driving the increased utilization of refractory metals in tile space industry. From advanced propulsion systems to high temperature furnace components for microgravity processing, refractory metals are being used for their high melting temperatures and inherent chemical stability. Techniques have been developed to produce near net shape refractory metal components utilizing vacuum plasma spraying. Material utilization is very high, and laborious machining can be avoided. As-spray formed components have been tested and found to perform adequately. However, increased mechanical and thermal properties are needed. To improve these properties, post processing thermal treatments such as hydrogen sintering and vacuum annealing have been performed. Components formed from alloys of tungsten, rhenium, tantalum, niobium, and molybdenum are discussed and a metallurgical analyses detailing the results are presented. A qualitative comparison of mechanical properties is also included.

  20. Bosch CO2 Reduction System Development

    NASA Technical Reports Server (NTRS)

    Holmes, R. F.; King, C. D.; Keller, E. E.

    1975-01-01

    Refinements in the design of a Bosch CO2 reduction unit for spacecraft O2 production are described. Sealing of the vacuum insulation jacket was simplified so that high vacuum and high insulation performance are easily maintained. The device includes a relatively simple concentric shell recuperative heat exchanger which operates at approximately 95% temperature effectiveness and helps lower power consumption. The influence of reactor temperature, pressure, and recycle gas composition on power consumption was investigated. In general, precise control is not required since power consumption is not very sensitive to moderate variations of these parameters near their optimum values. There are two process rate control modes which match flow rate to process demand. Catalyst conditioning, support, and packing pattern developments assure consistent starts, reduced energy consumption, and extended cartridge life. Operation levels for four or five men were maintained with overall power input values of 50 to 60 watts per man.

  1. CHEMICAL RIGIDIZATION OF EXPANDABLE STRUCTURES.

    DTIC Science & Technology

    The objective of this program was to develop a chemical rigidization process that could be activated by an on-command mechanism and be capable of...and rigidized in the high vacuum facilities atWright-Patterson AFB, Ohio and were delivered to the Air Force. A fail-safe chemical rigidization system...have been varied from fifteen minutes to two hours. The chemical system, a vinyl-type monomer, has exhibited a sustained shelf-life, under ambient

  2. Space Chambers for Crop Treatment

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Vacuum chambers, operated by McDonnell Douglas Corporation to test spacecraft, can also be used to dry water-soaked records. The drying temperature is low enough to allow paper to dry without curling or charging. Agricultural crops may also be dried using a spinoff system called MIVAC, which has proven effective in drying rice, wheat, soybeans, corn, etc. The system is energy efficient and can incorporate a sanitation process for destroying insects without contamination.

  3. Electric Propulsion Laboratory Vacuum Chamber

    NASA Image and Video Library

    1964-06-21

    Engineer Paul Reader and his colleagues take environmental measurements during testing of a 20-inch diameter ion engine in a vacuum tank at the Electric Propulsion Laboratory (EPL). Researchers at the Lewis Research Center were investigating the use of a permanent-magnet circuit to create the magnetic field required power electron bombardment ion engines. Typical ion engines use a solenoid coil to create this magnetic field. It was thought that the substitution of a permanent magnet would create a comparable magnetic field with a lower weight. Testing of the magnet system in the EPL vacuum tanks revealed no significant operational problems. Reader found the weight of the two systems was similar, but that the thruster’s efficiency increased with the magnet. The EPL contained a series of large vacuum tanks that could be used to simulate conditions in space. Large vacuum pumps reduced the internal air pressure, and a refrigeration system created the cryogenic temperatures found in space.

  4. National Synchrotron Light Source II storage ring vacuum systems

    DOE PAGES

    Hseuh, Hsiao-Chaun; Hetzel, Charles; Leng, Shuwei; ...

    2016-04-05

    The National Synchrotron Light Source II, completed in 2014, is a 3-GeV synchrotron radiation (SR) facility at Brookhaven National Laboratory and has been in steady operation since. With a design electron current of 500 mA and subnanometer radians horizontal emittance, this 792-m circumference storage ring is providing the highest flux and brightness x-ray beam for SR users. Also, the majority of the storage ring vacuum chambers are made of extruded aluminium. Chamber sections are interconnected using low-impedance radiofrequency shielded bellows. SR from the bending magnets is intercepted by water-cooled compact photon absorbers resided in the storage ring chambers. Finally, thismore » paper presents the design of the storage ring vacuum system, the fabrication of vacuum chambers and other hardware, the installation, the commissioning, and the continuing beam conditioning of the vacuum systems.« less

  5. Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.

    This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera armmore » will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the retrieval nozzle to aid in calcine fluidization, remote viewing, clumped calcine breaking and recovery from off-normal conditions. As the design of the retrieval system progresses from conceptual to preliminary, increasing attention will be directed toward detailed design and proof-of- concept testing. (authors)« less

  6. New methodology to baseline and match AME polysilicon etcher using advanced diagnostic tools

    NASA Astrophysics Data System (ADS)

    Poppe, James; Shipman, John; Reinhardt, Barbara E.; Roussel, Myriam; Hedgecock, Raymond; Fonda, Arturo

    1999-09-01

    As process controls tighten in the semiconductor industry, the need to understand the variables that determine system performance become more important. For plasma etch systems, process success depends on the control of key parameters such as: vacuum integrity, pressure, gas flows, and RF power. It is imperative to baseline, monitor, and control these variables. This paper presents an overview of the methods and tools used by Motorola BMC fabrication facility to characterize an Applied Materials polysilicon etcher. Tool performance data obtained from our traditional measurement techniques are limited in their scope and do not provide a complete picture of the ultimate tool performance. Presently the BMC traditional characterization tools provide a snapshot of the static operation of the equipment under test (EUT); however, complete evaluation of the dynamic performance cannot be monitored without the aid of specialized diagnostic equipment. To provide us with a complete system baseline evaluation of the polysilicon etcher, three diagnostic tools were utilized: Lucas Labs Vacuum Diagnostic System, Residual Gas Analyzer, and the ENI Voltage/Impedance Probe. The diagnostic methodology used to baseline and match key parameters of qualified production equipment has had an immense impact on other equipment characterization in the facility. It has resulted in reduced cycle time for new equipment introduction as well.

  7. Electrical insulation system for the shell-vacuum vessel and poloidal field gap in the ZTH machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reass, W.A.; Ballard, E.O.

    1989-01-01

    The electrical insulation systems for the ZTH machine have many unusual design problems. The poloidal field gap insulation must be capable of conforming to poloidal and toroidal contours, provide a 25 kV hold off, and sufficiently adhere to the epoxy back fill between the overlapping conductors. The shell-vacuum vessel system will use stretchable and flexible insulation along with protective hats, boots and sleeves. The shell-vacuum vessel system must be able to withstand a 12.5 kV pulse with provision for thermal insulation to limit the effects of the 300{degrees}C vacuum vessel during operation and bakeout. Methodology required to provide the electricalmore » protection along with testing data and material characteristics will be presented. 7 figs.« less

  8. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...

  9. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...

  10. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...

  11. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...

  12. 40 CFR Appendix I to Subpart V of... - Recommended Test Procedures and Test Criteria and Recommended Durability Procedures To...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...

  13. REQUIREMENTS AND GUIDELINES FOR NSLS EXPERIMENTAL BEAM LINE VACUUM SYSTEMS-REVISION B.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FOERSTER,C.

    Typical beam lines are comprised of an assembly of vacuum valves and shutters referred to as a ''front end'', optical elements to monochromatize, focus and split the photon beam, and an experimental area where a target sample is placed into the photon beam and data from the interaction is detected and recorded. Windows are used to separate sections of beam lines that are not compatible with storage ring ultra high vacuum. Some experimental beam lines share a common vacuum with storage rings. Sections of beam lines are only allowed to vent up to atmospheric pressure using pure nitrogen gas aftermore » a vacuum barrier is established to protect ring vacuum. The front end may only be bled up when there is no current in the machine. This is especially true on the VUV storage ring where for most experiments, windows are not used. For the shorter wavelength, more energetic photons of the x-ray ring, beryllium windows are used at various beam line locations so that the monochromator, mirror box or sample chamber may be used in a helium atmosphere or rough vacuum. The window separates ring vacuum from the environment of the downstream beam line components. The stored beam lifetime in the storage rings and the maintenance of desirable reflection properties of optical surfaces depend upon hydrocarbon-free, ultra-high vacuum systems. Storage ring vacuum systems will operate at pressures of {approximately} 1 x 10{sup {minus}10} Torr without beam and {approximately} 1 x 10{sup {minus}9} Torr with beam. Systems are free of hydrocarbons in the sense that no pumps, valves, etc. containing organics are used. Components are all-metal, chemically cleaned and bakeable. To the extent that beam lines share a common vacuum with the storage ring, the same criteria will hold for beam line components. The design philosophy for NSLS beam lines is to use all-metal, hydrocarbon-free front end components and recommend that experimenters use this approach for common vacuum hardware downstream of front ends. O-ring-sealed valves, if used, are not permitted upstream of the monochromator exit aperture. It will be the responsibility of users to demonstrate that their experiment will not degrade the pressure or quality of the storage ring vacuum. As a matter of operating policy, all beam lines will be monitored for prescribed pressure and the contribution of high mass gases to this pressure each time a beam line has been opened to ring vacuum.« less

  14. Very-Low-Cost, Rugged Vacuum System

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert; Sorensen, Paul; Passow, Christian; Bilski, Steve

    2013-01-01

    NASA, DoD, DHS, and commercial industry have a need for miniaturized, rugged, low-cost vacuum systems. Recent advances in sensor technology have led to the development of very small mass spectrometer detectors as well as other miniature analytical instruments. However, the vacuum systems to support these sensors remain large, heavy, and power-hungry. To meet this need, a miniaturized vacuum system was created based on a very small, rugged, and inexpensive- to-manufacture molecular drag pump (MDP). The MDP is enabled by the development of a miniature, veryhigh- speed, rugged, low-power, brushless DC motor optimized for wide temperature operation and long life. Such a pump represents an order-of-magnitude reduction in mass, volume, and cost over current, commercially available, state-ofthe- art vacuum pumps. The vacuum system consists of the MDP coupled to a ruggedized rough pump (for terrestrial applications or for planets with substantial atmospheres). The rotor in the MDP consists of a simple smooth cylinder of aluminum spinning at approximately 200,000 RPM inside an outer stator housing. The pump stator comprises a cylindrical aluminum housing with one or more specially designed grooves that serve as flow channels. To minimize the length of the pump, the gas is forced down the flow channels of the outer stator to the base of the pump. The gas is then turned and pulled toward the top through a second set of channels cut into an inner stator housing that surrounds the motor. The compressed gas then flows down channels in the motor housing to the exhaust port of the pump. The exhaust port of the pump is connected to a diaphragm or scroll pump. This pump delivers very high performance in a very small envelope. The design was simplified so that a smaller compression ratio, easier manufacturing process, and enhanced ruggedness can be achieved at the lowest possible cost. The machining of the rotor and stators is very simple compared to that necessary to fabricate TMP (turbo molecular pump) rotor and stator blades. Also, the symmetry of the rotor is such that dynamic balancing of the rotor is greatly simplified. Finally, because of the simplified design, the number of parts in the unit is cut by nearly a factor of three. In fact, there are only five parts, not counting the motor and off-the-shelf screws and O-rings. This reduces the amount of machining and also makes fit-up much simpler while allowing the maintenance of close tolerances.

  15. Simulation of Unique Pressure Changing Steps and Situations in Psa Processes

    NASA Technical Reports Server (NTRS)

    Ebner, Armin D.; Mehrotra, Amal; Knox, James C.; LeVan, Douglas; Ritter, James A.

    2007-01-01

    A more rigorous cyclic adsorption process simulator is being developed for use in the development and understanding of new and existing PSA processes. Unique features of this new version of the simulator that Ritter and co-workers have been developing for the past decade or so include: multiple absorbent layers in each bed, pressure drop in the column, valves for entering and exiting flows and predicting real-time pressurization and depressurization rates, ability to account for choked flow conditions, ability to pressurize and depressurize simultaneously from both ends of the columns, ability to equalize between multiple pairs of columns, ability to equalize simultaneously from both ends of pairs of columns, and ability to handle very large pressure ratios and hence velocities associated with deep vacuum systems. These changes to the simulator now provide for unique opportunities to study the effects of novel pressure changing steps and extreme process conditions on the performance of virtually any commercial or developmental PSA process. This presentation will provide an overview of the cyclic adsorption process simulator equations and algorithms used in the new adaptation. It will focus primarily on the novel pressure changing steps and their effects on the performance of a PSA system that epitomizes the extremes of PSA process design and operation. This PSA process is a sorbent-based atmosphere revitalization (SBAR) system that NASA is developing for new manned exploration vehicles. This SBAR system consists of a 2-bed 3-step 3-layer system that operates between atmospheric pressure and the vacuum of space, evacuates from both ends of the column simultaneously, experiences choked flow conditions during pressure changing steps, and experiences a continuously changing feed composition, as it removes metabolic CO2 and H20 from a closed and fixed volume, i.e., the spacecraft cabin. Important process performance indicators of this SBAR system are size, and the corresponding CO2 and H20 removal efficiencies, and N2 and O2 loss rates. Results of the fundamental behavior of this PSA process during extreme operating conditions will be presented and discussed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuya, K.; Yago, T.

    A system is disclosed for rapidly warming up a catalytic converter provided to an automotive internal combustion engine to purify the exhaust gas. The system includes a vacuum-operated device to increase the opening degree of the throttle valve by a predetermined degree to thereby increase the quantity of the exhaust gas and another vacuum-operated device to retard the ignition timing of the engine to a predetermined extent to thereby raise the temperature of the exhaust gas. The two devices are connected by a vacuum passage to the intake passage of the engine at a section downstream of the throttle valvemore » in series, and an electromagnetic valve renders the vacuum passage effective to thereby actuate the vacuum-operated devices only when the engine is idling under cold condition. Because of the series connection of the two devices, an intake vacuum is applied to the two devices in desirable sequence.« less

  17. Magnet Assisted Composite Manufacturing: A Flexible New Technique for Achieving High Consolidation Pressure in Vacuum Bag/Lay-Up Processes.

    PubMed

    Pishvar, Maya; Amirkhosravi, Mehrad; Altan, M Cengiz

    2018-05-17

    This work demonstrates a protocol to improve the quality of composite laminates fabricated by wet lay-up vacuum bag processes using the recently developed magnet assisted composite manufacturing (MACM) technique. In this technique, permanent magnets are utilized to apply a sufficiently high consolidation pressure during the curing stage. To enhance the intensity of the magnetic field, and thus, to increase the magnetic compaction pressure, the magnets are placed on a magnetic top plate. First, the entire procedure of preparing the composite lay-up on a magnetic bottom steel plate using the conventional wet lay-up vacuum bag process is described. Second, placement of a set of Neodymium-Iron-Boron permanent magnets, arranged in alternating polarity, on the vacuum bag is illustrated. Next, the experimental procedures to measure the magnetic compaction pressure and volume fractions of the composite constituents are presented. Finally, methods used to characterize microstructure and mechanical properties of composite laminates are discussed in detail. The results prove the effectiveness of the MACM method in improving the quality of wet lay-up vacuum bag laminates. This method does not require large capital investment for tooling or equipment and can also be used to consolidate geometrically complex composite parts by placing the magnets on a matching top mold positioned on the vacuum bag.

  18. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  19. 21 CFR 155.120 - Canned green beans and canned wax beans.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... net weight, and the container is closed under conditions creating a high vacuum in the container. (d... processed by heat, in an appropriate manner before or after being sealed in a container, as to prevent...”. (c) The words “vacuum pack” or “vacuum packed” when the weight of the liquid in the container, as...

  20. Recycling of waste lead storage battery by vacuum methods.

    PubMed

    Lin, Deqiang; Qiu, Keqiang

    2011-07-01

    Waste lead storage battery is the most important recyclable lead material not only in various European and other OECD countries but also in China. Pollution control of lead has become the focus of people's attention in the world. A vacuum process for recycling waste lead storage battery was developed in this work. The experimental results showed that all the valuable materials in waste lead storage battery could be satisfactorily recycled by vacuum technologies. The vacuum melting of lead grids and the vacuum reduction of lead pastes produce the lead bullion with the direct recovery ratio of 96.29% and 98.98%, respectively. The vacuum pyrolysis of plastics can produce pyrolysis oil with yield of more than 93 wt.%. These vacuum recycling technologies offer improvements in metallurgical and environmental performance. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Window-assisted nanosphere lithography for vacuum micro-nano-electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nannan; Institute of Electronic Engineering, Chinese Academy of Engineering Physics, Mianyang, 621900; Pang, Shucai

    2015-04-15

    Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided amore » new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.« less

  2. Deformation mechanism of the Cryostat in the CADS Injector II

    NASA Astrophysics Data System (ADS)

    Yuan, Jiandong; Zhang, Bin; Wan, Yuqin; Sun, Guozhen; Bai, Feng; Zhang, Juihui; He, Yuan

    2018-01-01

    Thermal contraction and expansion of the Cryostat will affect its reliability and stability. To optimize and upgrade the Cryostat, we analyzed the heat transfer in a cryo-vacuum environment from the theoretical point first. The simulation of cryo-vacuum deformation based on a finite element method was implemented respectively. The completed measurement based on a Laser Tracker and a Micro Alignment Telescope was conducted to verify its correctness. The monitored deformations were consistent with the simulated ones. After the predictable deformations in vertical direction have been compensated, the superconducting solenoids and Half Wave Resonator cavities approached the ideal "zero" position under liquid helium conditions. These guaranteed the success of 25 MeV@170 uA continuous wave protons of Chinese accelerator driven subcritical system Injector II. By correlating the vacuum and cryo-deformation, we have demonstrated that the complete deformation was the superposition effect of the atmospheric pressure, gravity and thermal stress during both the process of cooling down and warming up. The results will benefit to an optimization for future Cryostat's design.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, C.A.; Breitigam, W.; Bauer, R.S.

    The laminates that are used to prepare advanced composite parts generally require curing at high temperature and pressure, and their raw material shelf lives are limited. The epoxy resin systems that the authors describe here offer the potential of extended shelf life while curing at relatively low temperatures with a method the authors call rapid thermoset processing (RTP). A laminate is formed by stacking the prepreg in a pre-determined manner as required by the end product configuration. The prepreg is then bagged by placing it in a sealed envelope of a heat-resistant film, which is subsequently bonded to a metalmore » surface (the tool) with a heat-resistant vacuum bag putty. The bag has an access hole through which vacuum can be applied to the prepreg stack, facilitating removal of air and other volatiles. This assembly is then heated under vacuum and pressure in an autoclave, the resin melts, and any excess air or volatile matter bleeds from the configuration, resulting in the required dense, void-free laminate.« less

  4. High vacuum measurements and calibrations, molecular flow fluid transient effects

    DOE PAGES

    Leishear, Robert A.; Gavalas, Nickolas A.

    2015-04-29

    High vacuum pressure measurements and calibrations below 1 × 10 -8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreasedmore » during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less

  5. Leak checker data logging system

    DOEpatents

    Gannon, J.C.; Payne, J.J.

    1996-09-03

    A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time. 18 figs.

  6. Leak checker data logging system

    DOEpatents

    Gannon, Jeffrey C.; Payne, John J.

    1996-01-01

    A portable, high speed, computer-based data logging system for field testing systems or components located some distance apart employs a plurality of spaced mass spectrometers and is particularly adapted for monitoring the vacuum integrity of a long string of a superconducting magnets such as used in high energy particle accelerators. The system provides precise tracking of a gas such as helium through the magnet string when the helium is released into the vacuum by monitoring the spaced mass spectrometers allowing for control, display and storage of various parameters involved with leak detection and localization. A system user can observe the flow of helium through the magnet string on a real-time basis hour the exact moment of opening of the helium input valve. Graph reading can be normalized to compensate for magnet sections that deplete vacuum faster than other sections between testing to permit repetitive testing of vacuum integrity in reduced time.

  7. Development of distortion measurement system for large deployable antenna via photogrammetry in vacuum and cryogenic environment

    NASA Astrophysics Data System (ADS)

    Zhang, Pengsong; Jiang, Shanping; Yang, Linhua; Zhang, Bolun

    2018-01-01

    In order to meet the requirement of high precision thermal distortion measurement foraΦ4.2m deployable mesh antenna of satellite in vacuum and cryogenic environment, based on Digital Close-range Photogrammetry and Space Environment Test Technology of Spacecraft, a large scale antenna distortion measurement system under vacuum and cryogenic environment is developed in this paper. The antenna Distortion measurement system (ADMS) is the first domestic independently developed thermal distortion measurement system for large antenna, which has successfully solved non-contact high precision distortion measurement problem in large spacecraft structure under vacuum and cryogenic environment. The measurement accuracy of ADMS is better than 50 μm/5m, which has reached international advanced level. The experimental results show that the measurement system has great advantages in large structural measurement of spacecrafts, and also has broad application prospects in space or other related fields.

  8. Conceptual design of ACB-CP for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang

    2012-06-01

    ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.

  9. Vacuum-deposited polymer/silver reflector material

    NASA Astrophysics Data System (ADS)

    Affinito, John D.; Martin, Peter M.; Gross, Mark E.; Bennett, Wendy D.

    1994-09-01

    Weatherable, low cost, front surface, solar reflectors on flexible substrates would be highly desirable for lamination to solar concentrator panels. The method to be described in this paper may permit such reflector material to be fabricated for less the 50$CNT per square foot. Vacuum deposited Polymer/Silver/Polymer reflectors and Fabry-Perot interference filters were fabricated in a vacuum web coating operation on polyester substrates. Reflectivities were measured in the wavelength range from .4 micrometers to .8 micrometers . It is hoped that a low cost substrate can be used with the substrate laminated to the concentrator and the weatherable acrylic polymer coating facing the sun. This technique should be capable of deposition line speeds approaching 1500 linear feet/minute2. Central to this technique is a new vacuum deposition process for the high rate deposition of polymer films. This polymer process involves the flash evaporation of an acrylic monomer onto a moving substrate. The monomer is subsequently cured by an electron beam or ultraviolet light. This high speed polymer film deposition process has been named the PML process- for Polymer Multi- Layer.

  10. Novel Process of Simultaneous Removal of Nitric Oxide and Sulfur Dioxide Using a Vacuum Ultraviolet (VUV)-Activated O2/H2O/H2O2 System in A Wet VUV-Spraying Reactor.

    PubMed

    Liu, Yangxian; Wang, Qian; Pan, Jianfeng

    2016-12-06

    A novel process for NO and SO 2 simultaneous removal using a vacuum ultraviolet (VUV, with 185 nm wavelength)-activated O 2 /H 2 O/H 2 O 2 system in a wet VUV-spraying reactor was developed. The influence of different process variables on NO and SO 2 removal was evaluated. Active species (O 3 and ·OH) and liquid products (SO 3 2- , NO 2 - , SO 4 2- , and NO 3 - ) were analyzed. The chemistry and routes of NO and SO 2 removal were investigated. The oxidation removal system exhibits excellent simultaneous removal capacity for NO and SO 2 , and a maximum removal of 96.8% for NO and complete SO 2 removal were obtained under optimized conditions. SO 2 reaches 100% removal efficiency under most of test conditions. NO removal is obviously affected by several process variables. Increasing VUV power, H 2 O 2 concentration, solution pH, liquid-to-gas ratio, and O 2 concentration greatly enhances NO removal. Increasing NO and SO 2 concentration obviously reduces NO removal. Temperature has a dual impact on NO removal, which has an optimal temperature of 318 K. Sulfuric acid and nitric acid are the main removal products of NO and SO 2 . NO removals by oxidation of O 3 , O·, and ·OH are the primary routes. NO removals by H 2 O 2 oxidation and VUV photolysis are the complementary routes. A potential scaled-up removal process was also proposed initially.

  11. High Temperature VARTM with LaRC Polyimides

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Grimsley, Brian W.; Jensen, Brian J.; Kellen, Charles B.

    2004-01-01

    Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems for advanced aerospace applications that can be processed without the use of an autoclave. Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Vacuum assisted resin transfer molding (VARTM) has shown potential to reduce the manufacturing cost of composite structures. In VARTM, the fibrous preform is infiltrated on a rigid tool surface contained beneath a flexible vacuum bag. Both resin injection and fiber compaction are achieved under pressures of 101.3 KPa or less. Recent studies have demonstrated the feasibility of the VARTM process for fabrication of void free structures utilizing epoxy resin systems with fiber volume fractions approaching 60%. In this work, the VARTM process has been extended to the fabrication of composite panels from polyimide systems developed at the Langley Research Center. This work has focused on processing LARC(trademark) PETI-8 (Langley Research Center Phenylethynyl Terminated Imide- 8), an aromatic polyimide based on 3,3',4,4' -biphenyltetracarboxylic dianhydride, a 50:50 molar ratio of 3,4'-oxydianiline and 1,3-bis(3-aminophenoxy)benzene, with 4-phenylethynylphthalic anhydride as the endcapping agent. Various molecular weight versions were investigated to determine their feasibility of being processed by VARTM at elevated temperatures. An injection temperature of approximately 280 C was required to achieve the necessary viscosity (<5 Poise) for flow at VARTM pressures. Laminate quality and initial mechanical properties are presented for LARC(trademark) PETI-8 and 6k IM7 uniweave fabric.

  12. Cosmological implications of quantum mechanics parametrization of dark energy

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander; Urbanowski, Krzysztof

    2017-08-01

    We consider the cosmology with the running dark energy. The parametrization of dark energy is derived from the quantum process of transition from the false vacuum state to the true vacuum state. This model is the generalized interacting CDM model. We consider the energy density of dark energy parametrization, which is given by the Breit-Wigner energy distribution function. The idea of the process of the quantum mechanical decay of unstable states was formulated by Krauss and Dent. We used this idea in our considerations. In this model is an energy transfer in the dark sector. In this evolutional scenario the universe starts from the false vacuum state and goes to the true vacuum state of the present day universe. The intermediate regime during the passage from false to true vacuum states takes place. In this way the cosmological constant problem can be tried to solve. We estimate the cosmological parameters for this model. This model is in a good agreement with the astronomical data and is practically indistinguishable from CDM model.

  13. Effectiveness of oxygen barrier oven bags in low temperature cooking on reduction of warmed-over flavor in beef roasts.

    PubMed

    Lepper-Blilie, A N; Berg, E P; Buchanan, D S; Keller, W L; Maddock-Carlin, K R; Berg, P T

    2014-03-01

    A 3×3×2 factorial was utilized to determine if roast size (small, medium, large), cooking method (open-pan, oven bag, vacuum bag), and heating process (fresh, reheated) prevented warmed-over flavor (WOF) in beef clod roasts. Fresh vacuum bag and reheated open-pan roasts had higher cardboardy flavor scores compared with fresh open-pan roast scores. Reheated roasts in oven and vacuum bags did not differ from fresh roasts for cardboardy flavor. Brothy and fat intensity were increased in reheated roasts in oven and vacuum bags compared with fresh roasts in oven and vacuum bags. Differences in TBARS were found in the interaction of heating process and roast size with the fresh and reheated large, and reheated medium roasts having the lowest values. Based on TBARS data, to prevent WOF in reheated beef roasts, a larger size roast in a cooking bag is the most effective method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Research regarding the vacuuming of liquid steel on steel degassing

    NASA Astrophysics Data System (ADS)

    Magaon, M.; Radu, M.; Şerban, S.; Zgripcea, L.

    2018-01-01

    When the liquid steel comes in contact with the atmosphere of the elaboration aggregates, a process of gas diffusion into the metal bath takes place on the one hand, and on the other hand a process that allows them to pass from the metal bath into the atmosphere. The meaning of these processes is determined by a number of factors as follows: the quality of raw and auxiliary materials (moisture content, oils, etc.), the boiling intensity, the evacuation duration, the properties of used slags, the values of the casting ladle processing parameters (bubbling, vacuuming, etc.). The research was carried out at an electrical steelwork, equipped with an electric arc furnace type EBT (Electric Bottom Tapping) capacity 100t, LF (Ladle-Furnace) and VD (Vacuum Degassing) facilities, establishing some correlations between the vacuuming parameters from the V.D.facility and the amounts of hydrogen and nitrogen removed from the metal bath, as well as their removal efficiency, were taken into consideration. The obtained data was processed in MATLAB calculation program, the established correlations form was presented both in analytical and graphical form. The validity of these correlations was verified in practice, being particularly useful in research.

  15. PILOT-SCALE REMOVAL OF FLUORIDE FROM LEGACY PLUTONIUM MATERIALS USING VACUUM SALT DISTILLATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R. A.; Pak, D. J.

    2012-09-11

    Between September 2009 and January 2011, the Savannah River National Laboratory (SRNL) and HB-Line designed, developed, tested, and successfully deployed a system for the distillation of chloride salts. In 2011, SRNL adapted the technology for the removal of fluoride from fluoride-bearing salts. The method involved an in situ reaction between potassium hydroxide (KOH) and the fluoride salt to yield potassium fluoride (KF) and the corresponding oxide. The KF and excess KOH can be distilled below 1000{deg}C using vacuum salt distillation (VSD). The apparatus for vacuum distillation contains a zone heated by a furnace and a zone actively cooled using eithermore » recirculated water or compressed air. During a vacuum distillation operation, a sample boat containing the feed material is placed into the apparatus while it is cool, and the system is sealed. The system is evacuated using a vacuum pump. Once a sufficient vacuum is attaned, heating begins. Volatile salts distill from the heated zone to the cooled zone where they condense, leaving behind the non-volatile material in the feed boat. Studies discussed in this report were performed involving the use of non-radioactive simulants in small-scale and pilot-scale systems as well as radioactive testing of a small-scale system with plutonium-bearing materials. Aspects of interest include removable liner design considerations, boat materials, in-line moisture absorption, and salt deposition.« less

  16. Red rubber bulb, cheap and effective vacuum drainage.

    PubMed

    Vatanasapt, V; Areemit, S; Jeeravipoolvarn, P; Kuyyakanond, T; Kuptarnond, C

    1989-04-01

    Red rubber bulbs have been used for vacuum drainage in head, neck, breast and several other operations by the authors since 1975 quite effectively without any major problems. The vacuum pressure of the red rubber bulbs was found to be higher than the expensive commercially available vacuum wound drainage device. The question of remaining old blood and infective microorganisms inside the reservoir for the reused ones were tested by the manual cleaning process and the standard sterile technique using steam under increased pressure (autoclave). The result is quite satisfactory. We encourage the use of this cheap and effective (made in Thailand) vacuum wound drainage in Thai hospitals and Thai medical schools.

  17. Use of space ultra-vacuum for high quality semiconductor thin film growth

    NASA Technical Reports Server (NTRS)

    Ignatiev, A.; Sterling, M.; Sega, R. M.

    1992-01-01

    The utilization of space for materials processing is being expanded through a unique concept of epitaxial thin film growth in the ultra-vacuum of low earth orbit (LEO). This condition can be created in the wake of an orbiting space vehicle; and assuming that the vehicle itself does not pertub the environment, vacuum levels of better than 10 exp -14 torr can be attained. This vacuum environment has the capacity of greatly enhancing epitaxial thin film growth and will be the focus of experiments conducted aboard the Wake Shield Facility (WSF) currently being developed by the Space Vacuum Epitaxy Center (SVEC), Industry, and NASA.

  18. Method for producing titanium aluminide weld rod

    DOEpatents

    Hansen, Jeffrey S.; Turner, Paul C.; Argetsinger, Edward R.

    1995-01-01

    A process for producing titanium aluminide weld rod comprising: attaching one end of a metal tube to a vacuum line; placing a means between said vacuum line and a junction of the metal tube to prevent powder from entering the vacuum line; inducing a vacuum within the tube; placing a mixture of titanium and aluminum powder in the tube and employing means to impact the powder in the tube to a filled tube; heating the tube in the vacuum at a temperature sufficient to initiate a high-temperature synthesis (SHS) reaction between the titanium and aluminum; and lowering the temperature to ambient temperature to obtain a intermetallic titanium aluminide alloy weld rod.

  19. [Evaluation of the quality of poultry meat and its processing for vacuum packaging].

    PubMed

    Swiderski, F; Russel, S; Waszkiewicz-Robak, B; Cholewińska, E

    1997-01-01

    The aim of study was to evaluate the quality of poultry meat, roasted and smoked chicken and poultry pie packing under low and high vacuum. All investigated products were stored at +4 degrees C and evaluated by microbiological analysis. It was showed that packing under low and high vacuum inhibited development of aerobic microorganisms, proteolytic bacteria, yeasts and moulds. Vacuum-packaged storage of poultry meat and its products stimulated activity of anaerobic, nonsporeforming bacteria. The fast spoilage of fresh poultry meat was observed both under vacuum and conventional storage. The microbiology quality of poultry products depended on technology of production and microbiological quality of raw material.

  20. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    PubMed

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Experimental nonlinear dynamical studies in cesium magneto-optical trap using time-series analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anwar, M., E-mail: mamalik2000@gmail.com; Islam, R.; Faisal, M.

    2015-03-30

    A magneto-optical trap of neutral atoms is essentially a dissipative quantum system. The fast thermal atoms continuously dissipate their energy to the environment via spontaneous emissions during the cooling. The atoms are, therefore, strongly coupled with the vacuum reservoir and the laser field. The vacuum fluctuations as well as the field fluctuations are imparted to the atoms as random photon recoils. Consequently, the external and internal dynamics of atoms becomes stochastic. In this paper, we have investigated the stochastic dynamics of the atoms in a magneto-optical trap during the loading process. The time series analysis of the fluorescence signal showsmore » that the dynamics of the atoms evolves, like all dissipative systems, from deterministic to the chaotic regime. The subsequent disappearance and revival of chaos was attributed to chaos synchronization between spatially different atoms in the magneto-optical trap.« less

  2. Special Technology Area Review on Vacuum Electronics Technology for RF Applications

    DTIC Science & Technology

    2000-12-12

    systems. QUESTIONS TO BE ADDRESSED AT THE STAR: 1. What are the RF applications and systems that will benefit from advances in Vacuum Electronic...technologies? What are the status and prospects of early insertion efforts? What is the impact if technology efforts are successful? 2. What are the RF...technical barriers best addressed by Vacuum Electronic technologies? What are the technology advancement needs and opportunities? Can the barriers

  3. Contact dynamics recording and analysis system using an optical fiber sensor approach

    NASA Astrophysics Data System (ADS)

    Anghel, F.; Pavelescu, D.; Grattan, K. T. V.; Palmer, A. W.

    1997-09-01

    A contact dynamics recording and analysis system configured using an optical fiber sensor has been developed having been designed with a particular application to the accurate and time-varying description of moving contact operating during electrical arc breaking, in an experimental platform simulating the operation of a vacuum circuit breaker. The system utilizes dynamic displacement measurement and data recording and a post-process data analysis to reveal the dynamic speed and acceleration data of the equipment.

  4. Vacuum Compatibility of Flux-Core Arc Welding (FCAW)

    NASA Astrophysics Data System (ADS)

    Arose, Dana; Denault, Martin; Jurcznski, Stephan

    2010-11-01

    Typically, vacuum chambers are welded together using gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW). This is demonstrated in the vacuum chamber of Princeton Plasma Physics Lab's (PPPL) National Spherical Torus Experiment (NSTX). These processes are slow and apply excess heat to the base metal, which may cause the vacuum chamber to deform beyond designed tolerance. Flux cored arc welding (FCAW) avoids these problems, but may produce an unacceptable amount of outgasing due to the flux shielding. We believe impurities due to outgasing from FCAW will not greatly exceed those found in GTAW and GMAW welding. To test this theory, samples welded together using all three welding processes will be made and baked in a residual gas analyzer (RGA). The GTAW and GMAW welds will be tested to establish a metric for permissible outgasing. By testing samples from all three processes we hope to demonstrate that FCAW does not significantly outgas, and is therefore a viable alternative to GTAW and GMAW. Results from observations will be presented.

  5. Characterization of the CEBAF 100 kV DC GaAs Photoelectron Gun Vacuum System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stutzman, M L; Adderley, P; Brittian, J

    A vacuum system with pressure in the low ultra-high vacuum (UHV) range is essential for long photocathode lifetimes in DC high voltage GaAs photoguns. A discrepancy between predicted and measured base pressure in the CEBAF photoguns motivated this study of outgassing rates of three 304 stainless steel chambers with different pretreatments and pump speed measurements of non-evaporable getter (NEG) pumps. Outgassing rates were measured using two independent techniques. Lower outgassing rates were achieved by electropolishing and vacuum firing the chamber. The second part of the paper describes NEG pump speed measurements as a function of pressure through the lower partmore » of the UHV range. Measured NEG pump speed is high at pressures above 5×10 -11 Torr, but may decrease at lower pressures depending on the interpretation of the data. The final section investigates the pump speed of a locally produced NEG coating applied to the vacuum chamber walls. These studies represent the first detailed vacuum measurements of CEBAF photogun vacuum chambers.« less

  6. Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system I. Vacuum charge density

    NASA Astrophysics Data System (ADS)

    Davydov, A.; Sveshnikov, K.; Voronina, Yu.

    2018-01-01

    Based on the original combination of analytical methods, computer algebra tools and numerical calculations, proposed recently in Refs. 1-3, the nonperturbative vacuum polarization effects in the 2+1D supercritical Dirac-Coulomb system with Z > Zcr,1 are explored. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. The main result of the work is that in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. Due to a lot of details of calculation the whole work is divided into two parts I and II. In the present part I, we consider the evaluation and behavior of the vacuum density ρV P, which further is used in part II for evaluation of the vacuum energy, with emphasis on the renormalization, convergence of the partial expansion for ρV P and behavior of the integral induced charge QV P in the overcritical region.

  7. Consolidation processing parameters and alternative processing methods for powder metallurgy Al-Cu-Mg-X-X alloys

    NASA Technical Reports Server (NTRS)

    Sankaran, K. K.

    1987-01-01

    The effects of varying the vacuum degassing parameters on the microstructure and properties of Al-4Cu-1Mg-X-X (X-X = 1.5Li-0.2Zr or 1.5Fe-0.75Ce) alloys processed from either prealloyed (PA) or mechanically alloyed (M) powder, and consolidated by either using sealed aluminum containers or containerless vacuum hot pressing were studied. The consolidated billets were hot extruded to evaluate microstructure and properties. The MA Li-containing alloy did not include Zr, and the MA Fe- and Ce-containing alloy was made from both elemental and partially prealloyed powder. The alloys were vacuum degassed both above and below the solution heat treatment temperature. While vacuum degassing lowered the hydrogen content of these alloys, the range over which the vacuum degassing parameters were varied was not large enough to cause significant changes in degassing efficiency, and the observed variations in the mechanical properties of the heat treated alloys were attributed to varying contributions to strengthening by the sub-structure and the dispersoids. Mechanical alloying increased the strength over that of alloys of similar composition made from PA powder. The inferior properties in the transverse orientation, especially in the Li-containing alloys, suggested deficiencies in degassing. Among all of the alloys processed for this study, the Fe- and Ce-containing alloys made from MA powder possessed better combinations of strength and toughness.

  8. High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Steidtner, Jens; Pettinger, Bruno

    2007-10-01

    An optical microscope based on tip-enhanced optical processes that can be used for studies on adsorbates as well as thin layers and nanostructures is presented. The microscope provides chemical and topographic informations with a resolution of a few nanometers and can be employed in ultrahigh vacuum as well as gas phase. The construction involves a number of improvements compared to conventional instruments. The central idea is to mount, within an UHV system, an optical platform with all necessary optical elements to a rigid frame that also carries the scanning tunneling microscope unit and to integrate a high numerical aperture parabolic mirror between the scanning probe microscope head and the sample. The parabolic mirror serves to focus the incident light and to collect a large fraction of the scattered light. The first experimental results of Raman measurements on silicon samples as well as brilliant cresyl blue layers on single crystalline gold and platinum surfaces in ultrahigh vacuum are presented. For dye adsorbates a Raman enhancement of ˜106 and a net signal gain of up to 4000 was observed. The focus diameter (˜λ/2) was measured by Raman imaging the focal region on a Si surface. The requirements of the parabolic mirror in terms of alignment accuracy were experimentally determined as well.

  9. Thermal Performance Testing of Order Dependancy of Aerogels Multilayered Insulation

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, James E.; Demko, J. A.

    2009-01-01

    Robust multilayer insulation systems have long been a goal of many research projects. Such insulation systems must provide some degree of structural support and also mechanical integrity during loss of vacuum scenarios while continuing to provide insulative value to the vessel. Aerogel composite blankets can be the best insulation materials in ambient pressure environments; in high vacuum, the thermal performance of aerogel improves by about one order of magnitude. Standard multilayer insulation (MU) is typically 50% worse at ambient pressure and at soft vacuum, but as much as two or three orders of magnitude better at high vacuum. Different combinations of aerogel and multilayer insulation systems have been tested at Cryogenics Test Laboratory of NASA Kennedy Space Center. Analysis performed at Oak Ridge National Laboratory showed an importance to the relative location of the MU and aerogel blankets. Apparent thermal conductivity testing under cryogenic-vacuum conditions was performed to verify the analytical conclusion. Tests results are shown to be in agreement with the analysis which indicated that the best performance is obtained with aerogel layers located in the middle of the blanket insulation system.

  10. Vacuum Deposition From A Welding Torch

    NASA Technical Reports Server (NTRS)

    Poorman, R. M.

    1993-01-01

    Process derived from arc welding produces films of high quality. Modified gas/tungsten-arc welding process developed for use in outer space. Welding apparatus in process includes hollow tungsten electrode through which inert gas flows so arc struck between electrode and workpiece in vacuum of space. Offers advantages of fast deposition, possibility of applying directional impetus to flow of materials, very low pressure at surface being coated, and inert environment.

  11. High-Temperature Wettability and Interactions between Y-Containing Ni-Based Alloys and Various Oxide Ceramics.

    PubMed

    Li, Jinpeng; Zhang, Huarui; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu

    2018-05-07

    To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y₂O₃, Al₂O₃, and ZrO₂, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y₂O₃), 154° (Al₂O₃), and 157° (ZrO₂), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y₂O₃ reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al₂O₃, and ZrO₂ systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al₂O₃), 0.09% (ZrO₂), and 0.02% (Y₂O₃), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y₂O₃ system. Y₂O₃ ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys.

  12. Cryogenic Testing of Different Seam Concepts for Multilayer Insulation Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Wesley L.; Fesmire, J. E.

    2009-01-01

    Recent testing in a cylindrical, comparative cryostat at the Cryogenics Test Laboratory has focused on various seam concepts for multilayer insulation systems. Three main types of seams were investigated: straight overlap, fold-over, and roll wrapped. Each blanket was comprised of 40 layer pairs of reflector and spacer materials. The total thickness was approximately 12.5-mm, giving an average layer density of 32 layers per centimeter. The blankets were tested at high vacuum, soft vacuum, and no vacuum using liquid nitrogen to maintain the cold boundary temperature at 77 K. Test results show that all three seam concepts are all close in thermal performance; however the fold-over method provides the lowest heat flux. For the first series of tests, seams were located 120 degrees around the circumference of the cryostat from the previous seam. This technique appears to have lessened the degradation of the blanket due to the seams. In a follow-on test, a 20 layer blanket was tested in a roll wrapped configuration and then cut down the side of the cylinder, taped together, and re-tested. This test result shows the thermal performance impact of having the seams all in one location versus having the seams clocked around the vessel. This experimental investigation indicates that the method of joining the seams in multilayer insulation systems is not as critical as the quality of the installation process.

  13. Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.

    2000-01-01

    The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.

  14. Filter Leaf. Operational Control Tests for Wastewater Treatment Facilities. Instructor's Manual [and] Student Workbook.

    ERIC Educational Resources Information Center

    Wooley, John F.

    In the operation of vacuum filters and belt filters, it is desirable to evaluate the performance of different types of filter media and conditioning processes. The filter leaf test, which is used to evaluate these items, is described. Designed for individuals who have completed National Pollutant Discharge Elimination System (NPDES) level 1…

  15. Autoclave Meltout of Cast Explosives

    DTIC Science & Technology

    1996-08-22

    various tanks , kettles , and pelletizing equipment a usable product was recovered. This process creates large amounts of pink water requiring...vacuum treatment melt kettles , flaker belts, and improved material handling equipment in an integrated system. During the 1976/1977 period, AED...McAlester Army Ammo Plant , Oklahoma, to discuss proposed workload and inspect available facilities and equipment . Pilot model production and testing

  16. Silicon Schottky photovoltaic diodes for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  17. Defining and Applying Limits for Test and Flight Through the Project Lifecycle GSFC Standard. [Scope: Non-Cryogenic Systems Tested in Vacuum

    NASA Technical Reports Server (NTRS)

    Mosier, Carol

    2015-01-01

    The presentation will be given at the Annual Thermal Fluids Analysis Workshop (TFAWS 2015, NCTS 21070-15) hosted by the Goddard SpaceFlight Center (GSFC) Thermal Engineering Branch (Code 545). The powerpoint presentation details the process of defining limits throughout the lifecycle of a flight project.

  18. Developing a vacuum cooking equipment prototype to produce strawberry jam and optimization of vacuum cooking conditions.

    PubMed

    Okut, Dilara; Devseren, Esra; Koç, Mehmet; Ocak, Özgül Özdestan; Karataş, Haluk; Kaymak-Ertekin, Figen

    2018-01-01

    Purpose of this study was to develop prototype cooking equipment that can work at reduced pressure and to evaluate its performance for production of strawberry jam. The effect of vacuum cooking conditions on color soluble solid content, reducing sugars total sugars HMF and sensory properties were investigated. Also, the optimum vacuum cooking conditions for strawberry jam were optimized for Composite Rotatable Design. The optimum cooking temperature and time were determined targeting maximum soluble solid content and sensory attributes (consistency) and minimum Hue value and HMF content. The optimum vacuum cooking conditions determined were 74.4 °C temperature and 19.8 time. The soluble solid content strawberry jam made by vacuum process were similar to those prepared by traditional method. HMF contents of jams produced with vacuum cooking method were well within limit of standards.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colldelram, Carles, E-mail: ccolldelram@cells.es; Nicolas, Josep, E-mail: jnicolas@cells.es; Nikitina, Liudmila, E-mail: lnikitina@cells.es

    In this work we report the design and performance of a novel compact in-vacuum actuator, designed to be compatible with all the motions required for the scissor-type ESRF mirror bender. These mirror benders include several linear actuators, which drive the mirror bending torques, as well as the main alignment motions such as pitch and translation along the normal to the mirror surface. The motions are provided by compact linear actuators, which consist of motor, reduction, spindle and nut, encapsulated on a closed air volume to provide vacuum compatibility. The actuator includes a hydroformed bellows to transmit the force to themore » actuator tip, and an electrical feedthrough for the motor cables. The design boundaries for these actuators are quite tight, as they must be integrated in a narrow volume, must be UHV compatible and must provide high resolution, for a relatively high load. As a result, they have limited mechanical performance, and in some cases poor reliability. To overcome these problems, we designed and implemented a different concept. In the proposed concept, the motor rotation is converted onto a linear motion by means of a cam instead of a spindle and a nut. This allows for much shorter and stiffer transmission system, with similar dimensions. The vacuum compatibility is intrinsic for this solution, since the whole mechanism of the actuator is UHV compatible. All motions are preloaded and guided by vacuum compatible (hybrid metal-ceramics) ball bearings. This allows the system reaching a repeatability and backlash well within the micron. The absence of friction allows for a high reliability and releases the maintenance needs of the system. The transmission is intrinsically irreversible, and the system can hold a load of 250 N within a few nanometers without any holding current on the motors. This allows the system to move reliably also in micro-stepping mode, providing a resolution well below the half-step nominal resolution of 100 nm. Performances have been tested on a prototype. We report the results of the tests obtained in air and in vacuum after bake-out. Two units of the new actuator have been installed at the photoemission beamline of ALBA (CIRCE) and are routinely used to align the 3 µm spot on the field of view of the Photoemission Electron Microscope. The absence of any noticeable backlash, or any friction effect and the reliability of the micro-stepping motion has simplified very much the alignment of the photon beam, reducing the alignment process to few minutes. The excellent performances and relatively high load capacity of this new compact actuator make of it a versatile element to be integrated in other systems requiring reliable in-vacuum positioning.« less

  20. Microgravity

    NASA Image and Video Library

    2004-04-15

    The M512 Materials Processing Facility (MPF) with the M518 Multipurpose Electric Facility (MEF) tested and demonstrated a facility approach for materials process experimentation in space. It also provided a basic apparatus and a common interface for a group of metallic and nonmetallic materials experiments. The MPF consisted of a vacuum work chamber and associated mechanical and electrical controls. The M518 Multipurpose Electric Furnace (MEF) was an electric furnace system in which solidification, crystal growth, and other experiments involving phase changes were performed.

  1. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1995-02-28

    A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.

  2. Supplemental multilayer insulation research facility

    NASA Technical Reports Server (NTRS)

    Dempsey, P. J.; Stochl, R. J.

    1995-01-01

    The Supplemental Multilayer Insulation Research Facility (SMIRF) provides a small scale test bed for conducting cryogenic experiments in a vacuum environment. The facility vacuum system is capable of simulating a Space Shuttle launch pressure profile as well as providing a steady space vacuum environment of 1.3 x 10(exp -4) Newton/sq meter (1 x 10(exp -6) torr). Warm side boundary temperatures can be maintained constant between 111 K (200 R) and 361 K (650 R) using a temperature controlled shroud. The shroud can also simulate a typical lunar day-night temperature profile. The test hardware consists of a cryogenic calorimeter supported by the lid of the vacuum chamber. A 0.45 cu meter (120 gallon) vacuum jacketed storage/supply tank is available for conditioning the cryogen prior to use in the calorimeter. The facility was initially designed to evaluate the thermal performance of insulation systems for long-term storage in space. The facility has recently been used to evaluate the performance of various new insulation systems for LH2 and LN2 ground storage dewars.

  3. Seal for permitting transfer of tape from one pressure region to a region of substantially different pressure

    DOEpatents

    Carter, H. Kennon; Mlekodaj, Ronald L.

    1977-01-01

    A seal is provided for allowing a thin flexible tape to be pulled from a high vacuum region (less than 10.sup.-.sup.6 torr) into atmospheric pressure. The tape first passes through a slit in an elastomer and thence through a pool of vacuum pump fluid into a differentially pumped volume. A second slit in an elastomer is the final seal element prior to exit of the tape to atmospheric pressure. The vacuum seal is utilized in a system for the rapid removal of samples, implanted in the surface of the tape, from a vacuum system to atmospheric pressure.

  4. The localized quantum vacuum field

    NASA Astrophysics Data System (ADS)

    Dragoman, D.

    2008-03-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  5. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher [Williamsburg, VA

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  6. Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)

    2015-01-01

    Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.

  7. Indigenous Manufacturing realization of TWIN Source

    NASA Astrophysics Data System (ADS)

    Pandey, R.; Bandyopadhyay, M.; Parmar, D.; Yadav, R.; Tyagi, H.; Soni, J.; Shishangiya, H.; Sudhir Kumar, D.; Shah, S.; Bansal, G.; Pandya, K.; Parmar, K.; Vuppugalla, M.; Gahlaut, A.; Chakraborty, A.

    2017-04-01

    TWIN source is two RF driver based negative ion source that has been planned to bridge the gap between single driver based ROBIN source (currently operational) and eight river based DNB source (to be operated under IN-TF test facility). TWIN source experiments have been planned at IPR keeping the objective of long term domestic fusion programme to gain operational experiences on vacuum immersed multi driver RF based negative ion source. High vacuum compatible components of twin source are designed at IPR keeping an aim on indigenous built in attempt. These components of TWIN source are mainly stainless steel and OFC-Cu. Being high heat flux receiving components, one of the major functional requirements is continuous heat removal via water as cooling medium. Hence for the purpose stainless steel parts are provided with externally milled cooling lines and that shall be covered with a layer of OFC-cu which would be on the receiving side of high heat flux. Manufacturability of twin source components requires joining of these dissimilar materials via process like electrode position, electron beam welding and vacuum brazing. Any of these manufacturing processes shall give a vacuum tight joint having proper joint strength at operating temperature and pressure. Taking the indigenous development effort vacuum brazing (in non-nuclear environment) has been opted for joining of dissimilar materials of twin source being one of the most reliable joining techniques and commercially feasible across the suppliers of country. Manufacturing design improvisation for the components has been done to suit the vacuum brazing process requirement and to ease some of the machining without comprising over the functional and operational requirements. This paper illustrates the details on the indigenous development effort, design improvisation to suits manufacturability, vacuum brazing basics and its procedures for twin source components.

  8. Development of High Interruption Capability Vacuum Circuit Breaker -Technology of Vacuum Arc Control-

    NASA Astrophysics Data System (ADS)

    Niwa, Yoshimitsu; Kaneko, Eiji

    Vacuum circuit breakers (VCB) have been widely used for power distribution systems. Vacuum Interrupters, which are the current interruption unit, have been increased its interruption capability with the development of vacuum arc control technology by magnetic field. There are three major type electrodes: disk shaped electrodes, radial magnetic field electrodes, axial magnetic field (AMF) electrodes. In the disk shaped electrode, the vacuum arc between the electrodes is not controlled. In the AMF electrode, the vacuum arc is diffused and stabilized by an axial magnetic field, which is parallel to the arc current. In the last type of electrodes, the vacuum arc column is rotated by magnetic force generated by the current flowing in the electrodes. The interruption current and the voltage of one break VCB is increased to 100 kA, 144 kV respectively. This paper describes basic configurations and functions of VCB, vacuum arc control technology in vacuum interrupters, recent researches and applications of VCB.

  9. Vacuum/compression valving (VCV) using parrafin-wax on a centrifugal microfluidic CD platform.

    PubMed

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Moebius, Jacob; Joseph, Karunan; Arof, Hamzah; Madou, Marc

    2013-01-01

    This paper introduces novel vacuum/compression valves (VCVs) utilizing paraffin wax. A VCV is implemented by sealing the venting channel/hole with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open valve), and is activated by localized heating on the CD surface. We demonstrate that the VCV provides the advantages of avoiding unnecessary heating of the sample/reagents in the diagnostic process, allowing for vacuum sealing of the CD, and clear separation of the paraffin wax from the sample/reagents in the microfluidic process. As a proof of concept, the microfluidic processes of liquid flow switching and liquid metering is demonstrated with the VCV. Results show that the VCV lowers the required spinning frequency to perform the microfluidic processes with high accuracy and ease of control.

  10. Vacuum/Compression Valving (VCV) Using Parrafin-Wax on a Centrifugal Microfluidic CD Platform

    PubMed Central

    Al-Faqheri, Wisam; Ibrahim, Fatimah; Thio, Tzer Hwai Gilbert; Moebius, Jacob; Joseph, Karunan; Arof, Hamzah; Madou, Marc

    2013-01-01

    This paper introduces novel vacuum/compression valves (VCVs) utilizing paraffin wax. A VCV is implemented by sealing the venting channel/hole with wax plugs (for normally-closed valve), or to be sealed by wax (for normally-open valve), and is activated by localized heating on the CD surface. We demonstrate that the VCV provides the advantages of avoiding unnecessary heating of the sample/reagents in the diagnostic process, allowing for vacuum sealing of the CD, and clear separation of the paraffin wax from the sample/reagents in the microfluidic process. As a proof of concept, the microfluidic processes of liquid flow switching and liquid metering is demonstrated with the VCV. Results show that the VCV lowers the required spinning frequency to perform the microfluidic processes with high accuracy and ease of control. PMID:23505528

  11. Using laser-induced breakdown spectroscopy on vacuum alloys-production process for elements concentration analysis

    NASA Astrophysics Data System (ADS)

    Zhao, Tianzhuo; Fan, Zhongwei; Lian, Fuqiang; Liu, Yang; Lin, Weiran; Mo, Zeqiang; Nie, Shuzhen; Wang, Pu; Xiao, Hong; Li, Xin; Zhong, Qixiu; Zhang, Hongbo

    2017-11-01

    Laser-induced breakdown spectroscopy (LIBS) utilizing an echelle spectrograph-ICCD system is employed for on-line analysis of elements concentration in a vacuum induction melting workshop. Active temperature stabilization of echelle spectrometer is implemented specially for industrial environment applications. The measurement precision is further improved by monitoring laser parameters, such as pulse energy, spatial and temporal profiles, in real time, and post-selecting laser pulses with specific pulse energies. Experimental results show that major components of nickel-based alloys are stable, and can be well detected. By using internal standard method, calibration curves for chromium and aluminum are obtained for quantitative determination, with determination coefficient (relative standard deviation) to be 0.9559 (< 2.2%) and 0.9723 (< 2.8%), respectively.

  12. Vacuum field-effect transistor with a deep submicron channel fabricated by electro-forming

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Shen, Zhihua; Wu, Shengli; Zhang, Jintao

    2017-06-01

    Vacuum field-effect transistors (VFETs) with channel lengths down to 500 nm (i.e., the deep submicron scale) were fabricated with the mature technology of the surface conduction electron emitter fabrication process in our former experiments. The vacuum channel of this new VFET was generated by using the electro-forming process. During electro-forming, the joule heat cracks the conductive film and then generates the submicron scale gap that serves as the vacuum channel. The gap separates the conductive film into two plane-to-plane electrodes, which serve as a source (cathode) electrode and a drain (anode) electrode of the VFET, respectively. Experimental results reveal that the fabricated device demonstrates a clear triode behavior of the gate modulation. Fowler-Nordheim theory was used to analyze the electron emission mechanism and operating principle of the device.

  13. Molecular solution processing of metal chalcogenide thin film solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Wenbing

    The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (CISS) and kesterite Cu2ZnSn(S,Se) 4 organized in chronological order. Chalcopyrite CISS is a very promising material. It has been demonstrated to achieve the highest efficiency among thin film solar cells. Scaled-up industry production at present has reached the giga-watt per year level. The process however mainly relies on vacuum systems which account for a significant percentage of the manufacturing cost. In the first section of this dissertation, hydrazine based solution processed CISS has been explored. The focus of the research involves the procedures to fabricate devices from solution. The topics covered in Chapter 2 include: precursor solution synthesis with a focus on understanding the solution chemistry, CISS absorber formation from precursor, properties modification toward favorable device performance, and device structure innovation toward tandem device. For photovoltaics to have a significant impact toward meeting energy demands, the annual production capability needs to be on TW-level. On such a level, raw materials supply of rare elements (indium for CIS or tellurium for CdTe) will be the bottleneck limiting the scalability. Replacing indium with zinc and tin, earth abundant kesterite CZTS exhibits great potential to reach the goal of TW-level with no limitations on raw material availability. Chapter 3 shows pioneering work towards solution processing of CZTS film at low temperature. The solution processed devices show performances which rival vacuum-based techniques and is partially attributed to the ease in controlling composition and CZTS phase through this technique. Based on this platform, comprehensive characterization on CZTS devices is carried out including solar cells and transistors. Especially defects properties are exploited in Chapter 4 targeting to identify the limiting factors for further improvement on CZTS solar cells efficiency. Finally, molecular structures and precursor solution stability have been explored, potentially to provide a universal approach to process multinary compounds.

  14. Outgassing of solid material into vacuum thermal insulation spaces

    NASA Technical Reports Server (NTRS)

    Wang, Pao-Lien

    1994-01-01

    Many cryogenic storage tanks use vacuum between inner and outer tank for thermal insulation. These cryogenic tanks also use a radiation shield barrier in the vacuum space to prevent radiation heat transfer. This shield is usually constructed by using multiple wraps of aluminized mylar and glass paper as inserts. For obtaining maximum thermal performance, a good vacuum level must be maintained with the insulation system. It has been found that over a period of time solid insulation materials will vaporize into the vacuum space and the vacuum will degrade. In order to determine the degradation of vacuum, the rate of outgassing of the insulation materials must be determined. Outgassing rate of several insulation materials obtained from literature search were listed in tabular form.

  15. Cyclic membrane separation process

    DOEpatents

    Bowser, John

    2004-04-13

    A cyclic process for controlling environmental emissions of volatile organic compounds (VOC) from vapor recovery in storage and dispensing operations of liquids maintains a vacuum in the storage tank ullage. In one of a two-part cyclic process ullage vapor is discharged through a vapor recovery system in which VOC are stripped from vented gas with a selectively gas permeable membrane. In the other part, the membrane is inoperative while gas pressure rises in the ullage. Ambient air is charged to the membrane separation unit during the latter part of the cycle.

  16. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, Ganapati Rao

    1999-01-01

    A sensitive hydrogen leak detector system using passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor.

  17. Construction of vacuum system for Tristan accumulation ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishimaru, H.; Horikoshi, G.; Kobayashi, M.

    1983-08-01

    An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole andmore » quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described.« less

  18. Four wave mixing as a probe of the vacuum

    NASA Astrophysics Data System (ADS)

    Tennant, Daniel M.

    2016-06-01

    Much attention has been paid to the quantum structure of the vacuum. Higher order processes in quantum electrodynamics are strongly believed to cause polarization and even breakdown of the vacuum in the presence of strong fields soon to be accessible in high intensity laser experiments. Less explored consequences of strong field electrodynamics include effects from Born-Infeld type of electromagnetic theories, a nonlinear electrodynamics that follows from classical considerations as opposed to coupling to virtual fluctuations. In this article, I will demonstrate how vacuum four wave mixing has the possibility to differentiate between these two types of vacuum responses: quantum effects on one hand and nonlinear classical extensions on the other.

  19. Cathode surface effects and H.F.-behaviour of vacuum arcs

    NASA Astrophysics Data System (ADS)

    Fu, Yan Hong

    To gain a better understanding of the essential processes occurring during a vacuum arc interruption for the further development of the vacuum arc circuit breaker, cathode spot behavior, current interruption, dielectrical recovery and overvoltage generation are investigated. An experimental study on cathode spot behavior of the DC vacuum arc in relation to cathode surface roughness and a qualitative physical model to interpret the results are reported. An experimental investigation on the High Frequency (HF) current interruption, multiple recognitions and voltage escalation phenomena is reported. A calculation program to predict the level of overvoltages generated by the operation of a vacuum breaker in a realistic single phase circuit is developed. Detailed results are summarized.

  20. Vacuum decay in an interacting multiverse

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, S.; Alonso-Serrano, A.; Bastos, C.; Bertolami, O.

    2016-08-01

    We examine a new multiverse scenario in which the component universes interact. We focus our attention to the process of "true" vacuum nucleation in the false vacuum within one single element of the multiverse. It is shown that the interactions lead to a collective behavior that might lead, under specific conditions, to a pre-inflationary phase and ensued distinguishable imprints in the comic microwave background radiation.

  1. Use of Vacuum Degreasing for Precision Cleaning

    NASA Technical Reports Server (NTRS)

    Fox, Eric; Edwards, Kevin; Mitchell, Mark; Boothe, Richard

    2017-01-01

    Increasingly strict environmental regulations and the consequent phase out of many effective cleaning solvents has necessitated the development of novel cleaning chemistries and technologies. Among these is vacuum degreasing, a fully enclosed process that eliminates fugitive solvent emissions, thereby reducing cost, environmental, and health related exposure impacts. The effectiveness of vacuum degreasing using modified alcohol for common aerospace contaminants is reported and compared to current and legacy solvents.

  2. Steam-jet Chiller for Army Field Kitchens

    DTIC Science & Technology

    2009-08-01

    Steam-Jet Test-Loop Schematic A vacuum pump removes air from the entire system on startup, and is occasionally used to expel air during...delivered to the tube and shell condenser. The steam is condensed and drains to the vacuum sump tank. 11 Periodically, the condensate pump ... Vacuum Roughing Pump The condenser must be held at vacuum to prevent air from insulating the condenser tubes or create a back-pressure that would

  3. Load responsive multilayer insulation performance testing

    NASA Astrophysics Data System (ADS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  4. Assessment of heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system for recycling heavy metals from crushed e-wastes.

    PubMed

    Zhan, Lu; Xu, Zhenming

    2014-12-01

    Vacuum metallurgy separation (VMS) is a technically feasible method to recover Pb, Cd and other heavy metals from crushed e-wastes. To further determine the environmental impacts and safety of this method, heavy metals exposure, noise and thermal safety in the ambiance of a vacuum metallurgy separation system are evaluated in this article. The mass concentrations of total suspended particulate (TSP) and PM10 are 0.1503 and 0.0973 mg m(-3) near the facilities. The concentrations of Pb, Cd and Sn in TSP samples are 0.0104, 0.1283 and 0.0961 μg m(-3), respectively. Health risk assessments show that the hazard index of Pb is 3.25 × 10(-1) and that of Cd is 1.09 × 10(-1). Carcinogenic risk of Cd through inhalation is 1.08 × 10(-5). The values of the hazard index and risk indicate that Pb and Cd will not cause non-cancerous effects or carcinogenic risk on workers. The noise sources are mainly the mechanical vacuum pump and the water cooling pump. Both of them have the noise levels below 80 dB (A). The thermal safety assessment shows that the temperatures of the vacuum metallurgy separation system surface are all below 303 K after adopting the circulated water cooling and heat insulation measures. This study provides the environmental information of the vacuum metallurgy separation system, which is of assistance to promote the industrialisation of vacuum metallurgy separation for recovering heavy metals from e-wastes. © The Author(s) 2014.

  5. Latest technologies on ultrasonic cleaning

    NASA Astrophysics Data System (ADS)

    Hofstetter, Hans U.

    2007-05-01

    UCM-AG manufactures Ultrasonic Cleaning Machines for highest quality requirements. The company has the know-how for cleaning and supplies cleaning systems together with the cleaning process. With a UCM of Switzerland Cleaning System, the customer gets the system itself, the cleaning process with a guarantee for the specified result but also all auxiliary equipment needed for perfect results. Therefore UCM also supplies fixtures, linkage to existing automated fabrication facilities water treatment plants etc. Thus the UCM customer gets a turnkey installation - ready to operate and including know-how. UCM of Switzerland will describe the latest technology in ultrasonic precision cleaning on the example of a recent and sophisticated installation. The installation consists of three interlinked cleaning systems which operate completely automated. The 1st system is designed for pre-cleaning to remove waxes, pitch and protection lacquers with environmentally friendly solvents which are non hazardous to the health of the operators. The 2nd system cleans the parts prior to inspection and operates with neutral or slightly alkaline detergents. The 3rd system is designed for final cleaning prior to vacuum coating and perfect results are required. It combines cleaning tanks and DI-Water rinse with lift out and vacuum dryer. The installation combines the latest technologies in ultrasonic cleaning for precision optical components. The system employs multi frequency immersed ultrasonic transducers and special rinsing technologies The complete installation will be explained in detail; the concept in its whole, the lay out, the particular setup of each cleaning system etc. will be shown and explained together with construction particulars of the complete installation.

  6. Relation between acid dissolution time in the vacuum test tube and time required for graphitization for AMS target preparation

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yusuke; Miyairi, Yousuke; Matsuzaki, Hiroyuki; Tsunomori, Fumiaki

    2007-06-01

    Availability of an effective graphitization system is essential for the successful operation of an AMS laboratory for radiocarbon measurements. We have set up a graphitization system consisting of metal vacuum lines for cleaning CO2 sample gas which is then converted to graphite. CO2 gas from a carbonate sample is produced in vacuum in a test tube by injecting concentrated phosphoric acid. The tube is placed into a heated metal block to accelerate dissolution. However, we have observed systematic differences in the time required to convert the CO2 gas to graphite under a hydrogen atmosphere, from less than 3 h to over 10 h. We have conducted a series of experiments including background measurements and yield measurements to monitor secondary carbon contamination and changes in isotopic fractionation. All of the tests show that the carbon isotope ratios remain unaffected by the duration of the process. We also used a quadrupole mass spectrometer (QMS) to identify possible contaminant gases. Contaminant peaks were identified at high mass (larger than 60) only for long duration experiments. This suggests a possible reaction between the rubber cap and acid fumes producing a contaminant gas that impeded the reduction of CO2.

  7. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards.

    PubMed

    Long, Laishou; Sun, Shuiyu; Zhong, Sheng; Dai, Wencan; Liu, Jingyong; Song, Weifeng

    2010-05-15

    The constant growth in generation of waste printed circuit boards (WPCB) poses a huge disposal problem because they consist of a heterogeneous mixture of organic and metallic chemicals as well as glass fiber. Also the presence of heavy metals, such as Pb and Cd turns this scrap into hazardous waste. Therefore, recycling of WPCB is an important subject not only from the recovery of valuable materials but also from the treatment of waste. The aim of this study was to present a recycling process without negative impact to the environment as an alternative for recycling WPCB. In this work, a process technology containing vacuum pyrolysis and mechanical processing was employed to recycle WPCB. At the first stage of this work, the WPCB was pyrolyzed under vacuum in a self-made batch pilot-scale fixed bed reactor to recycle organic resins contained in the WPCB. By vacuum pyrolysis the organic matter was decomposed to gases and liquids which could be used as fuels or chemical material resources, however, the inorganic WPCB matter was left unaltered as solid residues. At the second stage, the residues obtained at the first stage were investigated to separate and recover the copper through mechanical processing such as crushing, screening, and gravity separation. The copper grade of 99.50% with recovery of 99.86% based on the whole WPCB was obtained. And the glass fiber could be obtained by calcinations in a muffle furnace at 600 degrees C for 10 min. This study had demonstrated the feasibility of vacuum pyrolysis and mechanical processing for recycling WPCB. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  8. Nonperturbative vacuum polarization effects in two-dimensional supercritical Dirac-Coulomb system II. Vacuum energy

    NASA Astrophysics Data System (ADS)

    Davydov, A.; Sveshnikov, K.; Voronina, Yu.

    2018-01-01

    Nonperturbative vacuum polarization effects are explored for a supercritical Dirac-Coulomb system with Z > Zcr,1 in 2+1D, based on the original combination of analytical methods, computer algebra and numerical calculations, proposed recently in Refs. 1-3. Both the vacuum charge density ρV P(r→) and vacuum energy ℰV P are considered. Due to a lot of details of calculation the whole work is divided into two parts I and II. Taking account of results, obtained in the part I4 for ρV P, in the present part II, the evaluation of the vacuum energy ℰV P is investigated with emphasis on the renormalization and convergence of the partial expansion for ℰV P. It is shown that the renormalization via fermionic loop turns out to be the universal tool, which removes the divergence of the theory both in the purely perturbative and essentially nonperturbative regimes of the vacuum polarization. The main result of calculation is that for a wide range of the system parameters in the overcritical region ℰV P turns out to be a rapidly decreasing function ˜-ηeffZ3/R with ηeff > 0 and R being the size of the external Coulomb source. To the end the similarity in calculations of ℰV P in 2+1 and 3+1D is discussed, and qualitative arguments are presented in favor of the possibility for complete screening of the classical electrostatic energy of the Coulomb source by the vacuum polarization effects for Z ≫ Zcr,1 in 3+1D.

  9. TRIZ theory in NEA photocathode preparation system

    NASA Astrophysics Data System (ADS)

    Qiao, Jianliang; Huang, Dayong; Li, Xiangjiang; Gao, Youtang

    2016-09-01

    The solutions to the engineering problems were provided according to the innovation principle based on the theory of TRIZ. The ultra high vacuum test and evaluation system for the preparation of negative electron affinity (NEA) photocathode has the characteristics of complex structure and powerful functions. Segmentation principle, advance function principle, curved surface principle, dynamic characteristics principle and nested principle adopted by the design of ultra high vacuum test and evaluation system for cathode preparation were analyzed. The applications of the physical contradiction and the substance-field analysis method of the theory of TRIZ in the cathode preparation ultra high vacuum test and evaluation system were discussed.

  10. A high-vacuum wound drainage system reduces pain and length of treatment for pediatric soft tissue abscesses.

    PubMed

    Yang, Chao; Wang, Shan; Li, Chang-Chun; Kong, Xiang-Ru; Zhao, Zhenzhen; Deng, Xiao-Bin; Peng, Liang; Zhang, Jun

    2017-02-01

    Open incision and drainage (I&D) and wound packing is accepted as the standard treatment for soft tissue abscesses. However, conventional I&D has a number of problems in practice which prompt us to improve the I&D methods that would minimize the pain associated with packing during dressing changes. In order to compare the pain associated with dressing changes in the conventional I&D group to the vacuum system group and the treatment time of both groups, we performed a randomized trial in pediatric patients between 0 and 18 years of age who are undergoing abscess drainage in the operating room from April 2011 to April 2015. Patients treated with open I&D (n = 648) were compared to those treated with placement of high-vacuum wound drainage system (n = 776) through the abscess cavities. Both groups received equivalent antibiotic treatment, and all patients were followed up in the outpatient clinics until the infection has been resolved. The mean FACES scale pain scores were significantly higher in the open I&D group than in the vacuum system group. The vacuum system group had a shorter length of stay and less need for community doctor or outpatient dressing changes than the open I&D group (p < 0.001). No recurrent abscesses were observed in the vacuum system group, and 10 patients in the open I&D group required another drainage at the exact same location. High-vacuum wound drainage system was an efficient and safe alternative to the traditional I&D for community-acquired soft tissue abscesses with few complications in short term. What is Known: • Open incision and drainage (I&D) followed by irrigation and wound packing is the standard treatment for soft tissue abscesses. • The painful daily packing may cause emotional trauma to the child and lead to an unwelcoming challenge to the caretakers and health care providers. What is New: • We modified the method of I&D by adding primary suturing of the wound and placement of a high-vacuum wound drainage system. • This technique was proved to be an efficient and safe alternative to the traditional I&D method for soft tissue abscesses with small complications in short term.

  11. Recovery of materials from waste printed circuit boards by vacuum pyrolysis and vacuum centrifugal separation.

    PubMed

    Zhou, Yihui; Wu, Wenbiao; Qiu, Keqiang

    2010-11-01

    In this research, a two-step process consisting of vacuum pyrolysis and vacuum centrifugal separation was employed to treat waste printed circuit boards (WPCBs). Firstly, WPCBs were pyrolysed under vacuum condition at 600 °C for 30 min in a lab-scale reactor. Then, the obtained pyrolysis residue was heated under vacuum until the solder was melted, and then the molten solder was separated from the pyrolysis residue by the centrifugal force. The results of vacuum pyrolysis showed that the type-A of WPCBs (the base plates of which was made from cellulose paper reinforced phenolic resin) pyrolysed to form an average of 67.97 wt.% residue, 27.73 wt.% oil, and 4.30 wt.% gas; and pyrolysis of the type-B of WPCBs (the base plates of which was made from glass fiber reinforced epoxy resin) led to an average mass balance of 72.20 wt.% residue, 21.45 wt.% oil, and 6.35 wt.% gas. The results of vacuum centrifugal separation showed that the separation of solder was complete when the pyrolysis residue was heated at 400 °C, and the rotating drum was rotated at 1200 rpm for 10 min. The pyrolysis oil and gas can be used as fuel or chemical feedstock after treatment. The pyrolysis residue after solder separation contained various metals, glass fibers and other inorganic materials, which could be recycled for further processing. The recovered solder can be reused directly and it can also be a good resource of lead and tin for refining. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. The development and testing of a regenerable CO2 and humidity control system for Shuttle

    NASA Technical Reports Server (NTRS)

    Boehm, A. M.

    1977-01-01

    A regenerable CO2 and humidity control system is presently being developed for potential use on Shuttle as an alternate to the baseline lithium hydroxide (LiOH) system. The system utilizes a sorbent material (designated 'HS-C') to adsorb CO2 and water vapor from the cabin atmosphere and desorb the CO2 and water vapor overboard when exposed to a space vacuum. Continuous operation is achieved by utilizing two beds which are alternately cycled between adsorption and desorption. This paper presents the significant hardware development and test accomplishments of the past year. A half-size breadboard system utilizing a flight configuration canister was successfully performance tested in simulated Shuttle missions. A vacuum desorption test provided considerable insight into the desorption phenomena and allowed a significant reduction of the Shuttle vacuum duct size. The fabrication and testing of a flight prototype canister and flight prototype vacuum valves have proven the feasibility of these full-size, flight-weight components.

  13. Formation of Cadmium-Sulfide Nanowhiskers via Vacuum Evaporation and Condensation in a Quasi-Closed Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, A. P., E-mail: Alexei.Belyaev@pharminnotech.com; Antipov, V. V.; Rubets, V. P.

    Structural and technological studies of processes in which cadmium-sulfide nanowhiskers are synthesized in a quasi-closed volume by the method of vacuum evaporation and condensation are reported. It is demonstrated that the processes are in agreement with the classical vapor–liquid–crystal model. Micrographs of the objects in different formation stages are presented.

  14. Fluid leakage detector for vacuum applications

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich Ngoc (Inventor); Farkas, Tibor (Inventor); Kim, Brian Byungkyu (Inventor)

    2002-01-01

    A leak detection system for use with a fluid conducting system in a vacuum environment, such as space, is described. The system preferably includes a mesh-like member substantially disposed about the fluid conducting system, and at least one sensor disposed within the mesh-like member. The sensor is capable of detecting a decrease in temperature of the mesh-like member when a leak condition causes the fluid of the fluid conducting system to freeze when exposed to the vacuum environment. Additionally, a signal processor in preferably in communication with the sensor. The sensor transmits an electrical signal to the signal processor such that the signal processor is capable of indicating the location of the fluid leak in the fluid conducting system.

  15. Vacuum packing: a model system for laboratory-scale silage fermentations.

    PubMed

    Johnson, H E; Merry, R J; Davies, D R; Kell, D B; Theodorou, M K; Griffith, G W

    2005-01-01

    To determine the utility of vacuum-packed polythene bags as a convenient, flexible and cost-effective alternative to fixed volume glass vessels for lab-scale silage studies. Using perennial ryegrass or red clover forage, similar fermentations (as assessed by pH measurement) occurred in glass tube and vacuum-packed silos over a 35-day period. As vacuum-packing devices allow modification of initial packing density, the effect of four different settings (initial packing densities of 0.397, 0.435, 0.492 and 0.534 g cm(-3)) on the silage fermentation over 16 days was examined. Significant differences in pH decline and lactate accumulation were observed at different vacuum settings. Gas accumulation was apparent within all bags and changes in bag volume with time was observed to vary according to initial packing density. Vacuum-packed silos do provide a realistic model system for lab-scale silage fermentations. Use of vacuum-packed silos holds potential for lab-scale evaluations of silage fermentations, allowing higher throughput of samples, more consistent packing as well as the possibility of investigating the effects of different initial packing densities and use of different wrapping materials.

  16. Symposium on Space Industrialization, Huntsville, Ala., May 26, 27, 1976, Proceedings

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Space habitats are considered, with attention given the evolution of space station systems, space station habitability, space settlement planning methodology, and orbital assembly. Various aspects of the Space Transportation System are discussed, including Shuttle booster/propulsion growth concept, advanced earth orbital transportation systems technology, single-stage-to-orbit vehicles and aeromaneuvering orbit transfer vehicles. Materials processing in space is examined, with emphasis on biological materials, metallurgical materials, the uses of space ultrahigh vacuum, and extraterrestrial mining and industrial processing. Solar space power is investigated, with attention given the potential of satellite solar power stations, thermal engine power satellites and microwave power transmission to earth. Individual items are announced in this issue.

  17. Recovery of lead from lead paste in spent lead acid battery by hydrometallurgical desulfurization and vacuum thermal reduction.

    PubMed

    Ma, Yunjian; Qiu, Keqiang

    2015-06-01

    Lead sulfate, lead oxides and lead metal are the main component of lead paste in spent lead acid battery. When lead sulfate was desulfurized and transformed into lead carbonate by sodium carbonate, lead metal and lead oxides remained unchanged. Lead carbonate is easily decomposed to lead oxide and carbon dioxide under high temperature. Namely, vacuum thermal process is the reduction reaction of lead oxides. A compatible environmental process consisted of hydrometallurgical desulfurization and vacuum thermal reduction to recycle lead was investigated in this research. Lead paste was firstly desulfurized with sodium carbonate, by which, the content of sulfur declined from 7.87% to 0.26%. Then, the desulfurized lead paste was reduced by charcoal under vacuum. Under the optimized reaction conditions, i.e., vacuum thermal reduction at temperature 850°C under 20 Pa for 45 min, a 22.11×10(-2) g cm(-2) min(-1) reduction rate, and a 98.13% direct recovery ratio of fine lead (99.77%) had been achieved, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Influence of the axial magnetic field on sheath development after current zero in a vacuum circuit breaker

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Yang, Fei; Sun, Hao; Wu, Yi; Niu, Chunping; Rong, Mingzhe

    2017-06-01

    After current zero, which is the moment when the vacuum circuit breaker interrupts a vacuum arc, sheath development is the first process in the dielectric recovery process. An axial magnetic field (AMF) is widely used in the vacuum circuit breaker when the high-current vacuum arc is interrupted. Therefore, it is very important to study the influence of different AMF amplitudes on the sheath development. The objective of this paper is to study the influence of different AMF amplitudes on the sheath development from a micro perspective. Thus, the particle in cell-Monte Carlo collisions (PIC-MCC) method was adopted to develop the sheath development model. We compared the simulation results with the experimental results and then validated the simulation. We also obtained the speed of the sheath development and the energy density of the ions under different AMF amplitudes. The results showed that the larger the AMF amplitudes are, the faster the sheath develops and the lower the ion energy density is, meaning the breakdown is correspondingly more difficult.

  19. RESOLVE Project

    NASA Technical Reports Server (NTRS)

    Parker, Ray O.

    2012-01-01

    The RESOLVE project is a lunar prospecting mission whose primary goal is to characterize water and other volatiles in lunar regolith. The Lunar Advanced Volatiles Analysis (LAVA) subsystem is comprised of a fluid subsystem that transports flow to the gas chromatograph- mass spectrometer (GC-MS) instruments that characterize volatiles and the Water Droplet Demonstration (WDD) that will capture and display water condensation in the gas stream. The LAVA Engineering Test Unit (ETU) is undergoing risk reduction testing this summer and fall within a vacuum chamber to understand and characterize C!Jmponent and integrated system performance. Ray will be assisting with component testing of line heaters, printed circuit heaters, pressure transducers, temperature sensors, regulators, and valves in atmospheric and vacuum environments. He will be developing procedures to guide these tests and test reports to analyze and draw conclusions from the data. In addition, he will gain experience with preparing a vacuum chamber with fluid and electrical connections. Further testing will include integrated testing of the fluid subsystem with the gas supply system, near-infrared spectrometer, WDD, Sample Delivery System, and GC-MS in the vacuum chamber. This testing will provide hands-on exposure to a flight forward spaceflight subsystem, the processes associated with testing equipment in a vacuum chamber, and experience working in a laboratory setting. Examples of specific analysis Ray will conduct include: pneumatic analysis to calculate the WOO's efficiency at extracting water vapor from the gas stream to form condensation; thermal analysis of the conduction and radiation along a line connecting two thermal masses; and proportional-integral-derivative (PID) heater control analysis. In this Research and Technology environment, Ray will be asked to problem solve real-time as issues arise. Since LAVA is a scientific subsystem, Ray will be utilizing his chemical engineering background to operate the near-infrared spectrometer and GC-MS instruments during ETU testing. Ray will be working with Modified Commercial off the Shelf (MCOTS) instruments and characterizing their analytical behavior for optimization. Ray will be offered the opportunity to suggest testing modifications or configuration changes at any time to improve the experimental effectiveness. He will gain many skills needed for working in a technical team setting requiring flexibility and critical thinking.

  20. 76 FR 298 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ...-water separators by requiring covers and use of vapor loss control devices. The rule is renumbered and...://www.epa.gov/ttn/oarpg/t1/memoranda/ractqanda.pdf . 6. ``Clean Water Act Analytical Methods'', U.S. EPA.../sw846/online/index.htm . 8. ``Control of Refinery Vacuum Producing Systems, Water Separators and Process...

  1. Testing of machine wound second generation HTS tape Vacuum Pressure Impregnated coils

    NASA Astrophysics Data System (ADS)

    Swaffield, D.; Lewis, C.; Eugene, J.; Ingles, M.; Peach, D.

    2014-05-01

    Delamination of second generation (2G) High Temperature Superconducting (HTS) tapes has previously been reported when using resin based insulation systems for wound coils. One proposed root cause is the differential thermal contraction between the coil former and the resin encapsulated coil turns resulting in the tape c-axis tensile stress being exceeded. Importantly, delamination results in unacceptable degradation of the superconductor critical current level. To mitigate the delamination risk and prove winding, jointing and Vacuum Pressure Impregnation (VPI) processes in the production of coils for superconducting rotating machines at GE Power Conversion two scaled trial coils have been wound and extensively tested. The coils are wound from 12mm wide 2G HTS tape supplied by AMSC onto stainless steel 'racetrack' coil formers. The coils are wound in two layers which include both in-line and layer-layer joints subject to in-process test. The resin insulation system chosen is VPI and oven cured. Tests included; insulation resistance, repeat quench and recovery of the superconductor, heat runs and measurement of n-value, before and after multiple thermal cycling between ambient and 35 Kelvin. No degradation of coil performance is evidenced.

  2. Development and fabrication of a solar cell junction processing system

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A processing system capable of producing solar cell junctions by ion implantation followed by pulsed electron beam annealing was developed and constructed. The machine was to be capable of processing 4-inch diameter single-crystal wafers at a rate of 10(7) wafers per year. A microcomputer-controlled pulsed electron beam annealer with a vacuum interlocked wafer transport system was designed, built and demonstrated to produce solar cell junctions on 4-inch wafers with an AMI efficiency of 12%. Experiments showed that a non-mass-analyzed (NMA) ion beam could implant 10 keV phosphorous dopant to form solar cell junctions which were equivalent to mass-analyzed implants. A NMA ion implanter, compatible with the pulsed electron beam annealer and wafer transport system was designed in detail but was not built because of program termination.

  3. Space ultra-vacuum facility and method of operation

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J. (Inventor)

    1986-01-01

    A wake shield facility providing an ultrahigh vacuum level for space processing is described. The facility is in the shape of a truncated, hollow hemispherical section, one side of the shield convex and the other concave. The shield surface is preferably made of material that has low out-gassing characteristics such as stainless steel. A material sample supporting fixture in the form of a carousel is disposed on the convex side of the shield at its apex. Movable arms, also on the convex side, are connected by the shield in proximity to the carousel, the arms supporting processing fixtures, and providing for movement of the fixtures to predetermined locations required for producing interations with material samples. For MBE processes a vapor jet projects a stream of vaporized material onto a sample surface. The fixtures are oriented to face the surface of the sample being processed when in their extended position, and when not in use they are retractable to a storage position. The concave side of the shield has a support structure including metal struts connected to the shield, extending radially inward. The struts are joined to an end plate disposed parallel to the outer edge of the shield. This system eliminates outgassing contamination.

  4. A fixed collector employing reversible vee-trough concentrator and a vacuum tube receiver for high temperature solar energy systems

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K.

    1976-01-01

    A solar heat collection system employing non-tracking reflectors integrated with a fixed vacuum tube receiver which achieves modest year-round concentration (about 2) of the sunlight at low capital costs is discussed. The axis of the vee-trough reflector lies in a east-west direction and requires reversal of the reflector surfaces only twice a year without disturbing the receiver tubes and associated plumbing. It collects most of the diffuse flux. The vacuum tube receiver with selective absorber has no convection losses while radiation and conduction losses are minimal. Significant cost reductions are offered since the vee-trough can be fabricated from inexpensive polished or plastic reflector laminated sheet metal covering 2/3 of the collection area, and only about 1/3 of the area is covered with the more expensive vacuum tube receivers. Thermal and economic performance of the vee-trough vacuum tube system, year-round variation of the concentration factor, incident flux, useful heat per unit area at various operation temperatures and energy cost estimates are presented. The electrical energy cost is estimated to be 77 mills/kWh, and the system construction cost is estimated to be $1140/kWe.

  5. Paraformaldehyde pellet not necessary in vacuum-pumped maple sap system

    Treesearch

    H. Clay Smith; Carter B. Gibbs

    1970-01-01

    In a study of sugar maple sap collection through a vacuum-pumped plastic tubing system, yields were compared between tapholes in which paraformaldehyde pellets were used and tapholes without pellets, Use of the pellets did not increase yield.

  6. Venturi vacuum systems for hypobaric chamber operations.

    PubMed

    Robinson, R; Swaby, G; Sutton, T; Fife, C; Powell, M; Butler, B D

    1997-11-01

    Physiological studies of the effects of high altitude on man often require the use of a hypobaric chamber to simulate the reduced ambient pressures. Typical "altitude" chambers in use today require complex mechanical vacuum systems to evacuate the chamber air, either directly or via reservoir system. Use of these pumps adds to the cost of both chamber procurement and maintenance, and service of these pumps requires trained support personnel and regular upkeep. In this report we describe use of venturi vacuum pumps to perform the function of mechanical vacuum pumps for human and experimental altitude chamber operations. Advantages of the venturi pumps include their relatively low procurement cost, small size and light weight, ease of installation and plumbing, lack of moving parts, and independence from electrical power sources, fossil fuels and lubricants. Conversion of three hyperbaric chambers to combined hyper/hypobaric use is described.

  7. Researches on Position Detection for Vacuum Switch Electrode

    NASA Astrophysics Data System (ADS)

    Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan

    2018-03-01

    Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.

  8. Carbon nanotube vacuum gauges with wide-dynamic range and processes thereof

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Kaul, Anupama B. (Inventor)

    2013-01-01

    A miniature thermal conductivity gauge employs a carbon single-walled-nanotube. The gauge operates on the principle of thermal exchange between the voltage-biased nanotube and the surrounding gas at low levels of power and low temperatures to measure vacuum across a wide dynamic range. The gauge includes two terminals, a source of constant voltage to the terminals, a single-walled carbon nanotube between the terminals, a calibration of measured conductance of the nanotube to magnitudes of surrounding vacuum and a current meter in electrical communication with the source of constant voltage. Employment of the nanotube for measuring vacuum includes calibrating the electrical conductance of the nanotube to magnitudes of vacuum, exposing the nanotube to a vacuum, applying a constant voltage across the nanotube, measuring the electrical conductance of the nanotube in the vacuum with the constant voltage applied and converting the measured electrical conductance to the corresponding calibrated magnitude of vacuum using the calibration. The nanotube may be suspended to minimize heat dissipation through the substrate, increasing sensitivity at even tower pressures.

  9. New model for colour kinetics of plum under infrared vacuum condition and microwave drying.

    PubMed

    Chayjan, Reza Amiri; Alaei, Behnam

    2016-01-01

    Quality of dried foods is affected by the drying method and physiochemical changes in tissue. The drying method affects properties such as colour. The colour of processed food is one of the most important quality indices and plays a determinant role in consumer acceptability of food materials and the processing method. The colour of food materials can be used as an indirect factor to determine changes in quality, since it is simpler and faster than chemical methods. The study focused on the kinetics of colour changes of plum slices, under infrared vacuum and microwave conditions. Drying the samples was implemented at the absolute pressures of 20 and 60 kPa, drying temperatures of 50 and 60°C and microwave power of 90, 270, 450 and 630 W. Colour changes were quantified by the tri-stimulus L* (whiteness/darkness), a* (redness/greenness) and b* (yellowness/blueness) model, which is an international standard for color measurement developed by the Commission Internationale d'Eclairage (CIE). These values were also used to calculate total colour change (∆E), chroma, hue angle, and browning index (BI). A new model was used for mathematical modelling of colour change kinetics. The drying process changed the colour parameters of L*, a*, and b*, causing a colour shift toward the darker region. The values of L* and hue angle decreased, whereas the values of a*, b*, ∆E, chroma and browning index increased during exposure to infrared vacuum conditions and microwave drying. Comparing the results obtained using the new model with two conventional models of zero-order and first-order kinetics indicated that the new model presented more compatibility with the data of colour kinetics for all colour parameters and drying conditions. All kinetic changes in colour parameters can be explained by the new model presented in this study. The hybrid drying system included infrared vacuum conditions and microwave power for initial slow drying of plum slices and provided the desired results for colour change.

  10. Effect of TE Mode Power on the PEP II LER BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Cho-K

    2011-08-26

    The beam chamber of the PEP-II B-Factory Low Energy Ring (LER) arc sections is connected to an antechamber for the absorption of synchrotron radiation on discrete photon stops. The presence of the antechamber substantially reduces the cutoff frequency of the vacuum chamber and, in particular, allows the propagation of higher-order-mode (HOM) TE power generated by beamline components at the BPM signal processing frequency. Calculations of the transmission properties of the TE mode in different sections of the vacuum chamber show that the power is trapped between widely separated bellows in the arc sections. Because of the narrow signal bandwidth andmore » weak coupling of the TE mode to the BPM buttons, the noise contributed by the HOM TE power will not produce a noticeable effect on the BPM position signal voltage. The LER arc vacuum chamber employs an antechamber with a discrete photon stop for absorption of synchrotron radiation and with pumps for maintaining pressure below 10 nTorr [1]. The horizontal dimensions of the antechambers at the pumping chamber section and the magnet chamber section are larger or comparable to that of the beam chamber. Because of the increase in the horizontal dimension, the cutoff frequency of the TE10-like mode (in rectangular coordinates) of the vacuum chamber is considerably reduced and, in particular, is less than the BPM signal processing frequency at 952 MHz. TE power propagating in the vacuum chamber will penetrate through the BPM buttons and will affect the pickup signal if its magnitude is not properly controlled. It is the purpose of this note to clarify various issues pertaining to this problem. TE power is generated when the beam passes a noncylindrically symmetric beamline component such as the RF cavity, the injection region, the IR crotch and the IP region. The beampipes connected to these components have TE cutoff frequencies greater than 952 MHz (for example, the TE cutoff frequency of the RF cavity beampipe is 1.8 GHz), and hence no TE power at this frequency propagates from the component. TE power can also be generated by the scattering of TM power through these beamline components. Since the cutoff frequency of the TM mode is in general higher than that of the TE mode, this mechanism is not pertinent to the problem related to the BPM signal. Consequently, the TE power that needs to be considered is mainly generated by components of the LER arc vacuum chamber, where the TE cutoff frequency is less than the BPM processing frequency.« less

  11. Planetary Atmosphere and Surfaces Chamber (PASC): A Platform to Address Various Challenges in Astrobiology

    NASA Astrophysics Data System (ADS)

    Mateo-Marti, Eva

    2014-08-01

    The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres' conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces. Furthermore, the stability and presence of certain minerals on planetary surfaces and the potential habitability of microorganisms under various planetary environmental conditions can be studied using our apparatus. Therefore, these simulation chambers can address multiple different challenging and multidisciplinary astrobiological studies.

  12. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy

    PubMed Central

    Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika

    2013-01-01

    Summary The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip–surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d z at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d Δ f at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip–surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d z, we predict d Δ f for specific filter settings, a given level of detection-system noise spectral density d z ds and the cantilever-thermal-noise spectral density d z th. We find an excellent agreement between the calculated and measured values for d Δ f. Furthermore, we demonstrate that thermal noise in d Δ f, defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth. PMID:23400758

  13. Thermal noise limit for ultra-high vacuum noncontact atomic force microscopy.

    PubMed

    Lübbe, Jannis; Temmen, Matthias; Rode, Sebastian; Rahe, Philipp; Kühnle, Angelika; Reichling, Michael

    2013-01-01

    The noise of the frequency-shift signal Δf in noncontact atomic force microscopy (NC-AFM) consists of cantilever thermal noise, tip-surface-interaction noise and instrumental noise from the detection and signal processing systems. We investigate how the displacement-noise spectral density d(z) at the input of the frequency demodulator propagates to the frequency-shift-noise spectral density d(Δ) (f) at the demodulator output in dependence of cantilever properties and settings of the signal processing electronics in the limit of a negligible tip-surface interaction and a measurement under ultrahigh-vacuum conditions. For a quantification of the noise figures, we calibrate the cantilever displacement signal and determine the transfer function of the signal-processing electronics. From the transfer function and the measured d(z), we predict d(Δ) (f) for specific filter settings, a given level of detection-system noise spectral density d(z) (ds) and the cantilever-thermal-noise spectral density d(z) (th). We find an excellent agreement between the calculated and measured values for d(Δ) (f). Furthermore, we demonstrate that thermal noise in d(Δ) (f), defining the ultimate limit in NC-AFM signal detection, can be kept low by a proper choice of the cantilever whereby its Q-factor should be given most attention. A system with a low-noise signal detection and a suitable cantilever, operated with appropriate filter and feedback-loop settings allows room temperature NC-AFM measurements at a low thermal-noise limit with a significant bandwidth.

  14. Thermally Robust Polymer Dielectric Systems for Air Force Wide-Temperature Power Electronics Applications

    DTIC Science & Technology

    2009-07-01

    power supply, a temperature controller and a vacuum controller. A vacuum of < 1 )1 torr is achieved with a combination of a turbo pump and a... scroll pump system. The sanlple probing is accomplished with a 3-axis molybdenum probing rod test fixture .. The dielectric measurements on the...water. The films were dried at ~ 0.1 torr vacuum and 80-85°C in an oven for several days. Circular films varying in diameter from 2" to 4" were

  15. The Influence of AN Interacting Vacuum Energy on the Gravitational Collapse of a Star Fluid

    NASA Astrophysics Data System (ADS)

    Campos, M.

    2014-02-01

    To explain the accelerated expansion of the universe, models with interacting dark components has been considered in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy. However, at the other side of the same coin, the influence of the vacuum energy in the gravitational collapse is a topic of scientific interest. Based in a simple assumption on the collapsed rate of the matter fluid density that is altered by the inclusion of a vacuum energy component that interacts with the matter fluid, we study the final fate of the collapse process.

  16. Vapor-barrier Vacuum Isolation System

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  17. A highly miniaturized vacuum package for a trapped ion atomic clock

    DOE PAGES

    Schwindt, Peter D. D.; Jau, Yuan-Yu; Partner, Heather; ...

    2016-05-12

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm 3 in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, the packagemore » was sealed with a copper pinch-off and was then pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of 171Yb +. The fractional frequency stability of the clock was measured to be 2 × 10 -11 / τ 1/2.« less

  18. Massive isotopic effect in vacuum UV photodissociation of N2 and implications for meteorite data

    PubMed Central

    Chakraborty, Subrata; Muskatel, B. H.; Jackson, Teresa L.; Ahmed, Musahid; Levine, R. D.; Thiemens, Mark H.

    2014-01-01

    Nitrogen isotopic distributions in the solar system extend across an enormous range, from −400‰, in the solar wind and Jovian atmosphere, to about 5,000‰ in organic matter in carbonaceous chondrites. Distributions such as these require complex processing of nitrogen reservoirs and extraordinary isotope effects. While theoretical models invoke ion-neutral exchange reactions outside the protoplanetary disk and photochemical self-shielding on the disk surface to explain the variations, there are no experiments to substantiate these models. Experimental results of N2 photolysis at vacuum UV wavelengths in the presence of hydrogen are presented here, which show a wide range of enriched δ15N values from 648‰ to 13,412‰ in product NH3, depending upon photodissociation wavelength. The measured enrichment range in photodissociation of N2, plausibly explains the range of δ15N in extraterrestrial materials. This study suggests the importance of photochemical processing of the nitrogen reservoirs within the solar nebula. PMID:25267643

  19. PARTICLE ACCELERATOR DIVISION SUMMARY REPORT FOR NOVEMBER 1958 THROUGH MAY 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Work in the division is summarized in the areas of theoretical studies, model magnet studies, ring magnet vacuum chamber, vacuum pumping system, ring magnet power supply, radio-frequency system, injection system, theoretical studies on radial motion through the linac, outgassing, and ferrite bonding. (For preceding period see ANL-5956.) (W.D.M.)

  20. A Plasma Window for Transmission of Radiation and Particle Beams from Vacuum to Atmosphere for Various Applications

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    1997-11-01

    Many industrial and scientific processes like electron beam melting and welding, material modification by ion implantation, dry etching, and micro-fabrication, as well as generation of synchrotron radiation are performed almost exclusively in vacuum nowadays, since the electron and ion guns and their extractors must be kept at a reasonably high vacuum. Consequently, there are numerous drawbacks, among which are low production rates due to required pumping time, limits the vacuum volume sets on the size of target objects. In a small number of applications like non-vacuum electron beam welding, and various processes involving UV and x-ray radiation, thin vacuum walls or long stages of differential pumping are used. But, the resultant degradations of particle and radiation beams severely limit those applications. A novel apparatus, which utilized a short plasma arc, was successfully used to maintain a pressure of 7.6 x exp(-6) Torr in a vacuum chamber with a 2.36mm aperture to atmosphere, i.e., a plasma was successfully used to "plug" a hole to atmosphere while maintaining a reasonably high vacuum in the chamber. Successful transmission of charged particle beams from a vacuum through the plasma to atmosphere was accomplished. More details can be found in A. Hershcovitch, J. Appl. Physics 78, p. 5283 (1995). In addition to sustaining a vacuum atmosphere interface, the plasma has very strong lensing effect on charged particles. The plasma current generates an azimuthal magnetic field which exerts a radial Lorentz on charged particles moving parallel to the current channel. With proper orientation of the current direction, the Lorentz force is radially inward. This feature can be used to focus in beams to a very small spot size, and to overcome beam dispersion due to scattering by atmospheric atoms and molecules. Relatively hot plasma at the atmosphere boundary rarefies the atmospheric gases to further enhance particle beam propagation to the materials to target. Recent experimental results, with a plasma window coupled to a venturi, show a factor of three further enhancement in vacuum-atmosphere separation.

  1. On the origin of the electrostatic potential difference at a liquid-vacuum interface.

    PubMed

    Harder, Edward; Roux, Benoît

    2008-12-21

    The microscopic origin of the interface potential calculated from computer simulations is elucidated by considering a simple model of molecules near an interface. The model posits that molecules are isotropically oriented and their charge density is Gaussian distributed. Molecules that have a charge density that is more negative toward their interior tend to give rise to a negative interface potential relative to the gaseous phase, while charge densities more positive toward their interior give rise to a positive interface potential. The interface potential for the model is compared to the interface potential computed from molecular dynamics simulations of the nonpolar vacuum-methane system and the polar vacuum-water interface system. The computed vacuum-methane interface potential from a molecular dynamics simulation (-220 mV) is captured with quantitative precision by the model. For the vacuum-water interface system, the model predicts a potential of -400 mV compared to -510 mV, calculated from a molecular dynamics simulation. The physical implications of this isotropic contribution to the interface potential is examined using the example of ion solvation in liquid methane.

  2. Leak test fixture and method for using same

    DOEpatents

    Hawk, Lawrence S.

    1976-01-01

    A method and apparatus are provided which are especially useful for leak testing seams such as an end closure or joint in an article. The test does not require an enclosed pressurized volume within the article or joint section to be leak checked. A flexible impervious membrane is disposed over an area of the seamed surfaces to be leak checked and sealed around the outer edges. A preselected vacuum is applied through an opening in the membrane to evacuate the area between the membrane and the surface being leak checked to essentially collapse the membrane to conform to the article surface or joined adjacent surfaces. A pressure differential is concentrated at the seam bounded by the membrane and only the seam experiences a pressure differential as air or helium molecules are drawn into the vacuum system through a leak in the seam. A helium detector may be placed in a vacuum exhaust line from the membrane to detect the helium. Alternatively, the vacuum system may be isolated at a preselected pressure and leaks may be detected by a subsequent pressure increase in the vacuum system.

  3. Sensitive hydrogen leak detector

    DOEpatents

    Myneni, G.R.

    1999-08-03

    A sensitive hydrogen leak detector system is described which uses passivation of a stainless steel vacuum chamber for low hydrogen outgassing, a high compression ratio vacuum system, a getter operating at 77.5 K and a residual gas analyzer as a quantitative hydrogen sensor. 1 fig.

  4. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2009-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf" vacuum cleaner has been used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating percent removal, relative to the retained simulant on the tested surface. In addition, Scanning Electron Microscopy (SEM) imaging was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities varying pressure environments.

  5. Development of a Modified Vacuum Cleaner for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Lee, Steve A.; Edgerly, Rachel D.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) mission to expand space exploration will return humans to the Moon with the goal of maintaining a long-term presence. One challenge that NASA will face returning to the Moon is managing the lunar regolith found on the Moon's surface, which will collect on extravehicular activity (EVA) suits and other equipment. Based on the Apollo experience, the issues astronauts encountered with lunar regolith included eye/lung irritation, and various hardware failures (seals, screw threads, electrical connectors and fabric contamination), which were all related to inadequate lunar regolith mitigation. A vacuum cleaner capable of detaching, transferring, and efficiently capturing lunar regolith has been proposed as a method to mitigate the lunar regolith problem in the habitable environment on lunar surface. In order to develop this vacuum, a modified "off-the-shelf' vacuum cleaner will be used to determine detachment efficiency, vacuum requirements, and optimal cleaning techniques to ensure efficient dust removal in habitable lunar surfaces, EVA spacesuits, and air exchange volume. During the initial development of the Lunar Surface System vacuum cleaner, systematic testing was performed with varying flow rates on multiple surfaces (fabrics and metallics), atmospheric (14.7 psia) and reduced pressures (10.2 and 8.3 psia), different vacuum tool attachments, and several vacuum cleaning techniques in order to determine the performance requirements for the vacuum cleaner. The data recorded during testing was evaluated by calculating particulate removal, relative to the retained simulant on the tested surface. In addition, optical microscopy was used to determine particle size distribution retained on the surface. The scope of this paper is to explain the initial phase of vacuum cleaner development, including historical Apollo mission data, current state-of-the-art vacuum cleaner technology, and vacuum cleaner testing that has focused on detachment capabilities at varying pressure environments.

  6. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    NASA Astrophysics Data System (ADS)

    Wilmsmeyer, Amanda R.; Gordon, Wesley O.; Davis, Erin Durke; Mantooth, Brent A.; Lalain, Teri A.; Morris, John R.

    2014-01-01

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  7. An innovative intermittent-vacuum assisted thermophilic anaerobic digestion process for effective animal manure utilization and treatment.

    PubMed

    Zhang, Renchuan; Anderson, Erik; Addy, Min; Deng, Xiangyuan; Kabir, Fayal; Lu, Qian; Ma, Yiwei; Cheng, Yanling; Liu, Yuhuan; Chen, Paul; Ruan, Roger

    2017-11-01

    Intermittent-vacuum stripping (IVS) was developed as a pretreatment for thermophilic anaerobic digestion (TAD) to improve methanogenesis and hydrolysis activity through preventing free ammonia and hydrogen sulfide (H 2 S) inhibition from liquid swine manure (LSM). Over 98% of ammonia and 38% organic nitrogen were removed in 60min from 55°C to 85°C with vacuum pressure (from 100.63±3.79mmHg to 360.91±7.39mmHg) at initial pH 10.0 by IVS. Thermophilic methanogenesis and hydrolysis activity of pretreated LSM increased 52.25% (from 11.56±1.75% to 17.60±0.49%) in 25days and 40% (from 10days to 6days) in bio-methane potential assay. Over 80% H 2 S and total nitrogen were removed by IVS assistance, while around 70% nitrogen was recycled as ammonium sulfate. Therefore, IVS-TAD combination could be an effective strategy to improve TAD efficiency, whose elution is more easily utilized in algae cultivation and/or hydroponic system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces.

    PubMed

    Wilmsmeyer, Amanda R; Gordon, Wesley O; Davis, Erin Durke; Mantooth, Brent A; Lalain, Teri A; Morris, John R

    2014-01-01

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry to study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.

  9. Experimental validation of a direct simulation by Monte Carlo molecular gas flow model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shufflebotham, P.K.; Bartel, T.J.; Berney, B.

    1995-07-01

    The Sandia direct simulation Monte Carlo (DSMC) molecular/transition gas flow simulation code has significant potential as a computer-aided design tool for the design of vacuum systems in low pressure plasma processing equipment. The purpose of this work was to verify the accuracy of this code through direct comparison to experiment. To test the DSMC model, a fully instrumented, axisymmetric vacuum test cell was constructed, and spatially resolved pressure measurements made in N{sub 2} at flows from 50 to 500 sccm. In a ``blind`` test, the DSMC code was used to model the experimental conditions directly, and the results compared tomore » the measurements. It was found that the model predicted all the experimental findings to a high degree of accuracy. Only one modeling issue was uncovered. The axisymmetric model showed localized low pressure spots along the axis next to surfaces. Although this artifact did not significantly alter the accuracy of the results, it did add noise to the axial data. {copyright} {ital 1995} {ital American} {ital Vacuum} {ital Society}« less

  10. Performance of the Satellite Test Assistant Robot in JPL's Space Simulation Facility

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Long, Mark; Johnson, Ken; Siebes, Georg

    1995-01-01

    An innovative new telerobotic inspection system called STAR (the Satellite Test Assistant Robot) has been developed to assist engineers as they test new spacecraft designs in simulated space environments. STAR operates inside the ultra-cold, high-vacuum, test chambers and provides engineers seated at a remote Operator Control Station (OCS) with high resolution video and infrared (IR) images of the flight articles under test. STAR was successfully proof tested in JPL's 25-ft (7.6-m) Space Simulation Chamber where temperatures ranged from +85 C to -190 C and vacuum levels reached 5.1 x 10(exp -6) torr. STAR's IR Camera was used to thermally map the entire interior of the chamber for the first time. STAR also made several unexpected and important discoveries about the thermal processes occurring within the chamber. Using a calibrated test fixture arrayed with ten sample spacecraft materials, the IR camera was shown to produce highly accurate surface temperature data. This paper outlines STAR's design and reports on significant results from the thermal vacuum chamber test.

  11. Multifunctional ultra-high vacuum apparatus for studies of the interactions of chemical warfare agents on complex surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilmsmeyer, Amanda R.; Morris, John R.; Gordon, Wesley O.

    2014-01-15

    A fundamental understanding of the surface chemistry of chemical warfare agents is needed to fully predict the interaction of these toxic molecules with militarily relevant materials, catalysts, and environmental surfaces. For example, rules for predicting the surface chemistry of agents can be applied to the creation of next generation decontaminants, reactive coatings, and protective materials for the warfighter. Here, we describe a multifunctional ultra-high vacuum instrument for conducting comprehensive studies of the adsorption, desorption, and surface chemistry of chemical warfare agents on model and militarily relevant surfaces. The system applies reflection-absorption infrared spectroscopy, x-ray photoelectron spectroscopy, and mass spectrometry tomore » study adsorption and surface reactions of chemical warfare agents. Several novel components have been developed to address the unique safety and sample exposure challenges that accompany the research of these toxic, often very low vapor pressure, compounds. While results of vacuum-based surface science techniques may not necessarily translate directly to environmental processes, learning about the fundamental chemistry will begin to inform scientists about the critical aspects that impact real-world applications.« less

  12. Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: reactive molecular dynamics.

    PubMed

    Raju, Muralikrishna; van Duin, Adri C T; Fichthorn, Kristen A

    2014-01-01

    Oriented attachment (OA) of nanocrystals is now widely recognized as a key process in the solution-phase growth of hierarchical nanostructures. However, the microscopic origins of OA remain unclear. We perform molecular dynamics simulations using a recently developed ReaxFF reactive force field to study the aggregation of various titanium dioxide (anatase) nanocrystals in vacuum and humid environments. In vacuum, the nanocrystals merge along their direction of approach, resulting in a polycrystalline material. By contrast, in the presence of water vapor the nanocrystals reorient themselves and aggregate via the OA mechanism to form a single or twinned crystal. They accomplish this by creating a dynamic network of hydrogen bonds between surface hydroxyls and surface oxygens of aggregating nanocrystals. We determine that OA is dominant on surfaces that have the greatest propensity to dissociate water. Our results are consistent with experiment, are likely to be general for aqueous oxide systems, and demonstrate the critical role of solvent in nanocrystal aggregation. This work opens up new possibilities for directing nanocrystal growth to fabricate nanomaterials with desired shapes and sizes.

  13. Night vision imaging system design, integration and verification in spacecraft vacuum thermal test

    NASA Astrophysics Data System (ADS)

    Shang, Yonghong; Wang, Jing; Gong, Zhe; Li, Xiyuan; Pei, Yifei; Bai, Tingzhu; Zhen, Haijing

    2015-08-01

    The purposes of spacecraft vacuum thermal test are to characterize the thermal control systems of the spacecraft and its component in its cruise configuration and to allow for early retirement of risks associated with mission-specific and novel thermal designs. The orbit heat flux is simulating by infrared lamp, infrared cage or electric heater. As infrared cage and electric heater do not emit visible light, or infrared lamp just emits limited visible light test, ordinary camera could not operate due to low luminous density in test. Moreover, some special instruments such as satellite-borne infrared sensors are sensitive to visible light and it couldn't compensate light during test. For improving the ability of fine monitoring on spacecraft and exhibition of test progress in condition of ultra-low luminous density, night vision imaging system is designed and integrated by BISEE. System is consist of high-gain image intensifier ICCD camera, assistant luminance system, glare protect system, thermal control system and computer control system. The multi-frame accumulation target detect technology is adopted for high quality image recognition in captive test. Optical system, mechanical system and electrical system are designed and integrated highly adaptable to vacuum environment. Molybdenum/Polyimide thin film electrical heater controls the temperature of ICCD camera. The results of performance validation test shown that system could operate under vacuum thermal environment of 1.33×10-3Pa vacuum degree and 100K shroud temperature in the space environment simulator, and its working temperature is maintains at 5° during two-day test. The night vision imaging system could obtain video quality of 60lp/mm resolving power.

  14. High specific surface area aerogel cryoadsorber for vacuum pumping applications

    DOEpatents

    Hill, Randal M.; Fought, Eric R.; Biltoft, Peter J.

    2000-01-01

    A cryogenic pumping system is provided, comprising a vacuum environment, an aerogel sorbent formed from a carbon aerogel disposed within the vacuum environment, and cooling means for cooling the aerogel sorbent sufficiently to adsorb molecules from the vacuum environment onto the aerogel sorbent. Embodiments of the invention include a liquid refrigerant cryosorption pump, a compressed helium cryogenic pump, a cryopanel and a Meissner coil, each of which uses carbon aerogel as a sorbent material.

  15. Load responsive multilayer insulation performance testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dye, S.; Kopelove, A.; Mills, G. L.

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that providemore » high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.« less

  16. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less

  17. Vacuum System and Modeling for the Materials Plasma Exposure Experiment

    DOE PAGES

    Lumsdaine, Arnold; Meitner, Steve; Graves, Van; ...

    2017-08-07

    Understanding the science of plasma-material interactions (PMI) is essential for the future development of fusion facilities. The design of divertors and first walls for the next generation of long-pulse fusion facilities, such as a Fusion Nuclear Science Facility (FNSF) or a DEMO, requires significant PMI research and development. In order to meet this need, a new linear plasma facility, the Materials Plasma Exposure Experiment (MPEX) is proposed, which will produce divertor relevant plasma conditions for these next generation facilities. The device will be capable of handling low activation irradiated samples and be able to remove and replace samples without breakingmore » vacuum. A Target Exchange Chamber (TEC) which can be disconnected from the high field environment in order to perform in-situ diagnostics is planned for the facility as well. The vacuum system for MPEX must be carefully designed in order to meet the requirements of the different heating systems, and to provide conditions at the target similar to those expected in a divertor. An automated coupling-decoupling (“autocoupler”) system is designed to create a high vacuum seal, and will allow the TEC to be disconnected without breaking vacuum in either the TEC or the primary plasma materials interaction chamber. This autocoupler, which can be actuated remotely in the presence of the high magnetic fields, has been designed and prototyped, and shows robustness in a variety of conditions. The vacuum system has been modeled using a simplified finite element analysis, and indicates that the design goals for the pressures in key regions of the facility are achievable.« less

  18. Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite

    NASA Astrophysics Data System (ADS)

    Hashim, N.; Majid, D. L.; Uda, N.; Zahari, R.; Yidris, N.

    2017-12-01

    The vacuum assisted resin transfer moulding (VaRTM) or Vacuum Infusion (VI) is one of the fabrication methods used for composite materials. Compared to other methods, this process costs lower than using prepregs because it does not need to use the autoclave to cure. Moreover, composites fabricated using this VI method exhibit superior mechanical properties than those made through hand layup process. In this study, the VI method is used in fabricating woven carbon/Kevlar fibre cloth with epoxy matrix. This paper reports the detailed methods on fabricating the hybrid composite using VI process and several precautions that need to be taken to avoid any damage to the properties of the composite material. The result highlights that the successfully fabricated composite has approximately 60% of fibres weight fraction. Since the composites produced by the VI process have a higher fibre percentage, this process should be considered for composites used in applications that are susceptible to the conditions where the fibres need to be the dominant element such as in tension loading.

  19. Development of a real-time monitoring system for intra-fractional motion in intracranial treatment using pressure sensors.

    PubMed

    Inata, Hiroki; Araki, Fujio; Kuribayashi, Yuta; Hamamoto, Yasushi; Nakayama, Shigeki; Sodeoka, Noritaka; Kiriyama, Tetsukazu; Nishizaki, Osamu

    2015-09-21

    This study developed a dedicated real-time monitoring system to detect intra-fractional head motion in intracranial radiotherapy using pressure sensors. The dedicated real-time monitoring system consists of pressure sensors with a thickness of 0.6 mm and a radius of 9.1 mm, a thermoplastic mask, a vacuum pillow, and a baseplate. The four sensors were positioned at superior-inferior and right-left sides under the occipital area. The sampling rate of pressure sensors was set to 5 Hz. First, we confirmed that the relationship between the force and the displacement of the vacuum pillow follows Hook's law. Next, the spring constant for the vacuum pillow was determined from the relationship between the force given to the vacuum pillow and the displacement of the head, detected by Cyberknife target locating system (TLS) acquisitions in clinical application. Finally, the accuracy of our system was evaluated by using the 2  ×  2 confusion matrix. The regression lines between the force, y, and the displacement, x, of the vacuum pillow were given by y = 3.8x, y = 4.4x, and y = 5.0x when the degree of inner pressure was  -12 kPa,-20 kPa, and  -27 kPa, respectively. The spring constant of the vacuum pillow was 1.6 N mm(-1) from the 6D positioning data of a total of 2999 TLS acquisitions in 19 patients. Head motions of 1 mm, 1.5 mm, and 2 mm were detected in real-time with the accuracies of 67%, 84%, and 89%, respectively. Our system can detect displacement of the head continuously during every interval of TLS with a resolution of 1-2 mm without any radiation exposure.

  20. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    NASA Technical Reports Server (NTRS)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

Top