40 CFR 63.122 - Storage vessel provisions-reporting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Storage vessel provisions-reporting. 63... for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.122 Storage vessel provisions—reporting. (a) For each Group 1 storage vessel, the owner or operator shall comply with the...
40 CFR 63.123 - Storage vessel provisions-recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Storage vessel provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.123 Storage vessel provisions—recordkeeping. (a) Each owner or operator of a Group 1 or Group 2 storage vessel shall...
40 CFR 63.122 - Storage vessel provisions-reporting.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Storage vessel provisions-reporting... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.122 Storage vessel provisions—reporting. (a) For each Group 1 storage vessel, the owner or operator shall comply with...
40 CFR 63.123 - Storage vessel provisions-recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Storage vessel provisions-recordkeeping... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.123 Storage vessel provisions—recordkeeping. (a) Each owner or operator of a Group 1 or Group 2 storage vessel shall...
40 CFR 63.122 - Storage vessel provisions-reporting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Storage vessel provisions-reporting. 63... for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.122 Storage vessel provisions—reporting. (a) For each Group 1 storage vessel, the owner or operator shall comply with the...
40 CFR 63.123 - Storage vessel provisions-recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Storage vessel provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.123 Storage vessel provisions—recordkeeping. (a) Each owner or operator of a Group 1 or Group 2 storage vessel shall...
40 CFR 63.123 - Storage vessel provisions-recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Storage vessel provisions-recordkeeping... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.123 Storage vessel provisions—recordkeeping. (a) Each owner or operator of a Group 1 or Group 2 storage vessel shall...
40 CFR 63.122 - Storage vessel provisions-reporting.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Storage vessel provisions-reporting... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.122 Storage vessel provisions—reporting. (a) For each Group 1 storage vessel, the owner or operator shall comply with...
40 CFR 63.1360 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... process unit. If the greatest input to and/or output from a shared storage vessel is the same for two or... not have an intervening storage vessel. If two or more PAI process units have the same input to or... process unit that sends the most material to or receives the most material from the storage vessel. If two...
40 CFR 63.120 - Storage vessel provisions-procedures to determine compliance.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and...) each time the storage vessel is emptied and degassed, and at least once every 10 years after the... (if any) each time the storage vessel is emptied and degassed and at least once every 5 years after...
40 CFR 63.120 - Storage vessel provisions-procedures to determine compliance.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and...) each time the storage vessel is emptied and degassed, and at least once every 10 years after the... (if any) each time the storage vessel is emptied and degassed and at least once every 5 years after...
40 CFR 63.120 - Storage vessel provisions-procedures to determine compliance.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and...) each time the storage vessel is emptied and degassed, and at least once every 10 years after the... (if any) each time the storage vessel is emptied and degassed and at least once every 5 years after...
40 CFR 63.120 - Storage vessel provisions-procedures to determine compliance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater... time the storage vessel is emptied and degassed, and at least once every 10 years after the compliance... (if any) each time the storage vessel is emptied and degassed and at least once every 5 years after...
40 CFR 63.1360 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vessel and does not have an intervening storage vessel. If two or more PAI process units have the same.... If two or more PAI process units have the same input to or output from the storage vessel in the tank... hours during the calendar year. (e) Applicability of this subpart except during periods of startup...
40 CFR 63.1360 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vessel and does not have an intervening storage vessel. If two or more PAI process units have the same.... If two or more PAI process units have the same input to or output from the storage vessel in the tank... hours during the calendar year. (e) Applicability of this subpart except during periods of startup...
40 CFR 63.1360 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vessel and does not have an intervening storage vessel. If two or more PAI process units have the same.... If two or more PAI process units have the same input to or output from the storage vessel in the tank... hours during the calendar year. (e) Applicability of this subpart except during periods of startup...
40 CFR 63.1360 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vessel and does not have an intervening storage vessel. If two or more PAI process units have the same.... If two or more PAI process units have the same input to or output from the storage vessel in the tank... hours during the calendar year. (e) Applicability of this subpart except during periods of startup...
40 CFR 63.110 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.110 Applicability. (a) This subpart applies to all process vents, storage vessels, transfer racks, wastewater streams, and in-process..., subpart III, NNN, or RRR, as applicable. (e) Overlap with other regulations for wastewater. (1) After the...
40 CFR 63.110 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.110 Applicability. (a) This subpart applies to all process vents, storage vessels, transfer racks, wastewater streams, and in-process..., subpart III, NNN, or RRR, as applicable. (e) Overlap with other regulations for wastewater. (1) After the...
40 CFR 63.121 - Storage vessel provisions-alternative means of emission limitation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and... account for other emission variables such as temperature and barometric pressure, or (2) An engineering...
40 CFR 63.121 - Storage vessel provisions-alternative means of emission limitation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and... account for other emission variables such as temperature and barometric pressure, or (2) An engineering...
40 CFR 63.121 - Storage vessel provisions-alternative means of emission limitation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and... account for other emission variables such as temperature and barometric pressure, or (2) An engineering...
40 CFR 63.121 - Storage vessel provisions-alternative means of emission limitation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and... account for other emission variables such as temperature and barometric pressure, or (2) An engineering...
40 CFR 63.121 - Storage vessel provisions-alternative means of emission limitation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and... account for other emission variables such as temperature and barometric pressure, or (2) An engineering...
Code of Federal Regulations, 2010 CFR
2010-07-01
...; (ii) Transformed by chemical reaction into materials that are not regulated materials; (iii... section for a storage vessel, the owner or operator shall prepare a design evaluation (or engineering...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Categories Priority Number 1 Source Category 1. Synthetic Organic Chemical Manufacturing Industry (SOCMI) and Volatile Organic Liquid Storage Vessels and Handling Equipment (a) SOCMI unit processes (b) Volatile organic liquid (VOL) storage vessels and handling equipment (c) SOCMI fugitive sources (d) SOCMI secondary...
Procedure for preparation for shipment of natural gas storage vessel
NASA Technical Reports Server (NTRS)
Amawd, A. M.
1974-01-01
A method for preparing a natural gas storage vessel for shipment is presented. The gas is stored at 3,000 pounds per square inch. The safety precautions to be observed are emphasized. The equipment and process for purging the tank and sampling the exit gas flow are described. A diagram of the pressure vessel and the equipment is provided.
Control method for high-pressure hydrogen vehicle fueling station dispensers
Kountz, Kenneth John; Kriha, Kenneth Robert; Liss, William E.
2006-06-13
A method for quick filling a vehicle hydrogen storage vessel with hydrogen, the key component of which is an algorithm used to control the fill process, which interacts with the hydrogen dispensing apparatus to determine the vehicle hydrogen storage vessel capacity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Recovery Plants § 61.139 Provisions for alternative means for process vessels, storage tanks, and tar... scheduled replacement time means the day that is estimated to be 90 percent of the demonstrated bed life, as... days before the point in the cycle where the exceedance was detected); this is a second example of the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Recovery Plants § 61.139 Provisions for alternative means for process vessels, storage tanks, and tar... scheduled replacement time means the day that is estimated to be 90 percent of the demonstrated bed life, as... days before the point in the cycle where the exceedance was detected); this is a second example of the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Recovery Plants § 61.139 Provisions for alternative means for process vessels, storage tanks, and tar... scheduled replacement time means the day that is estimated to be 90 percent of the demonstrated bed life, as... days before the point in the cycle where the exceedance was detected); this is a second example of the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Recovery Plants § 61.139 Provisions for alternative means for process vessels, storage tanks, and tar... scheduled replacement time means the day that is estimated to be 90 percent of the demonstrated bed life, as... days before the point in the cycle where the exceedance was detected); this is a second example of the...
40 CFR 65.143 - Closed vent systems.
Code of Federal Regulations, 2010 CFR
2010-07-01
... storage vessel, process vent, transfer rack, or equipment leaks. (1) Collection of emissions. Each closed... material from a storage vessel, transfer rack or equipment leaks. Inspection records shall be generated as... (B) Conduct annual visual inspections for visible, audible, or olfactory indications of leaks. (ii...
40 CFR 65.165 - Initial Compliance Status Reports.
Code of Federal Regulations, 2010 CFR
2010-07-01
... comply with § 65.144 by routing emissions from a storage vessel or transfer rack to a process or to a... stream is connected to a fuel gas system. (3) As specified in § 65.144(c), report that the transfer rack... storage vessel or low-throughput transfer rack to a nonflare control device or halogen reduction device...
Development of advanced manufacturing technologies for low cost hydrogen storage vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leavitt, Mark; Lam, Patrick
2014-12-29
The U.S. Department of Energy (DOE) defined a need for low-cost gaseous hydrogen storage vessels at 700 bar to support cost goals aimed at 500,000 units per year. Existing filament winding processes produce a pressure vessel that is structurally inefficient, requiring more carbon fiber for manufacturing reasons, than would otherwise be necessary. Carbon fiber is the greatest cost driver in building a hydrogen pressure vessel. The objective of this project is to develop new methods for manufacturing Type IV pressure vessels for hydrogen storage with the purpose of lowering the overall product cost through an innovative hybrid process of optimizingmore » composite usage by combining traditional filament winding (FW) and advanced fiber placement (AFP) techniques. A numbers of vessels were manufactured in this project. The latest vessel design passed all the critical tests on the hybrid design per European Commission (EC) 79-2009 standard except the extreme temperature cycle test. The tests passed include burst test, cycle test, accelerated stress rupture test and drop test. It was discovered the location where AFP and FW overlap for load transfer could be weakened during hydraulic cycling at 85°C. To design a vessel that passed these tests, the in-house modeling software was updated to add capability to start and stop fiber layers to simulate the AFP process. The original in-house software was developed for filament winding only. Alternative fiber was also investigated in this project, but the added mass impacted the vessel cost negatively due to the lower performance from the alternative fiber. Overall the project was a success to show the hybrid design is a viable solution to reduce fiber usage, thus driving down the cost of fuel storage vessels. Based on DOE’s baseline vessel size of 147.3L and 91kg, the 129L vessel (scaled to DOE baseline) in this project shows a 32% composite savings and 20% cost savings when comparing Vessel 15 hybrid design and the Quantum baseline all filament wound vessel. Due to project timing, there was no additional time available to fine tune the design to improve the load transfer between AFP and FW. Further design modifications will likely help pass the extreme temperature cycle test, the remaining test that is critical to the hybrid design.« less
Bagless transfer process and apparatus for radioactive waste confinement
Maxwell, D.N.; Hones, R.H.; Rogers, M.L.
1998-04-14
A process and apparatus are provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox. 7 figs.
Bagless transfer process and apparatus for radioactive waste confinement
Maxwell, David N.; Hones, Robert H.; Rogers, M. Lane
1998-01-01
A process and apparatus is provided for removing radioactive material from a glovebox, placing the material in a stainless steel storage vessel in communication with the glovebox, and sealing the vessel with a welded plug. The vessel is then severed along the weld, a lower half of the plug forming a closure for the vessel. The remaining welded plug half provides a seal for the remnant portion of the vessel and thereby maintains the sealed integrity of the glovebox.
40 CFR 63.1062 - Storage vessel control requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Storage vessel control requirements... (CONTINUED) National Emission Standards for Storage Vessels (Tanks)-Control Level 2 § 63.1062 Storage vessel control requirements. (a) For each storage vessel to which this subpart applies, the owner or operator...
40 CFR 63.1404 - Storage vessel provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Storage vessel provisions. 63.1404... § 63.1404 Storage vessel provisions. (a) Emission standards. For each storage vessel located at a new... standards for storage vessels (control level 2)). When complying with the requirements of 40 CFR part 63...
40 CFR 63.1062 - Storage vessel control requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Storage vessel control requirements... (CONTINUED) National Emission Standards for Storage Vessels (Tanks)-Control Level 2 § 63.1062 Storage vessel control requirements. (a) For each storage vessel to which this subpart applies, the owner or operator...
40 CFR 63.1062 - Storage vessel control requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Storage vessel control requirements... (CONTINUED) National Emission Standards for Storage Vessels (Tanks)-Control Level 2 § 63.1062 Storage vessel control requirements. (a) For each storage vessel to which this subpart applies, the owner or operator...
40 CFR 63.11140 - Am I subject to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... copolymers production affected source is the facility-wide collection of PVCPU, storage vessels, heat exchange systems, surge control vessels, and wastewater and process wastewater treatment systems that are...
40 CFR 63.11140 - Am I subject to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... copolymers production affected source is the facility-wide collection of PVCPU, storage vessels, heat exchange systems, surge control vessels, and wastewater and process wastewater treatment systems that are...
40 CFR 63.11140 - Am I subject to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... copolymers production affected source is the facility-wide collection of PVCPU, storage vessels, heat exchange systems, surge control vessels, and wastewater and process wastewater treatment systems that are...
40 CFR 63.766 - Storage vessel standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Storage vessel standards. 63.766... § 63.766 Storage vessel standards. (a) This section applies to each storage vessel with the potential... storage vessel with the potential for flash emissions (as defined in § 63.761) shall comply with one of...
40 CFR 63.766 - Storage vessel standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Storage vessel standards. 63.766... § 63.766 Storage vessel standards. (a) This section applies to each storage vessel with the potential... storage vessel with the potential for flash emissions (as defined in § 63.761) shall comply with one of...
40 CFR 63.766 - Storage vessel standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Storage vessel standards. 63.766... § 63.766 Storage vessel standards. (a) This section applies to each storage vessel with the potential... storage vessel with the potential for flash emissions (as defined in § 63.761) shall comply with one of...
40 CFR 63.1432 - Storage vessel provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Storage vessel provisions. 63.1432....1432 Storage vessel provisions. (a) For each storage vessel located at an affected source, the owner or operator shall comply with the HON storage vessel requirements of §§ 63.119 through 63.123 and the HON leak...
40 CFR 63.119 - Storage vessel provisions-reference control technology.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Storage vessel provisions-reference control technology. 63.119 Section 63.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.119 Storage vessel provisions—reference control technology. (a) For each storage vessel to which...
40 CFR 63.119 - Storage vessel provisions-reference control technology.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Storage vessel provisions-reference control technology. 63.119 Section 63.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.119 Storage vessel provisions—reference control technology. (a) For each storage vessel to which...
40 CFR 63.119 - Storage vessel provisions-reference control technology.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Storage vessel provisions-reference control technology. 63.119 Section 63.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.119 Storage vessel provisions—reference control technology. (a) For each storage vessel to which...
40 CFR 63.119 - Storage vessel provisions-reference control technology.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Storage vessel provisions-reference control technology. 63.119 Section 63.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.119 Storage vessel provisions—reference control technology. (a) For each storage vessel to which...
40 CFR 63.1404 - Storage vessel provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Storage vessel provisions. 63.1404... Standards for Hazardous Air Pollutant Emissions: Manufacture of Amino/Phenolic Resins § 63.1404 Storage vessel provisions. (a) Emission standards. For each storage vessel located at a new affected source that...
40 CFR 63.1404 - Storage vessel provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Storage vessel provisions. 63.1404... Standards for Hazardous Air Pollutant Emissions: Manufacture of Amino/Phenolic Resins § 63.1404 Storage vessel provisions. (a) Emission standards. For each storage vessel located at a new affected source that...
40 CFR 65.47 - Recordkeeping provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.47 Recordkeeping provisions. (a) Retention time. Each owner or operator of a storage vessel subject to this subpart shall meet the requirements of... storage vessel is in operation. (b) Vessel dimensions and capacity. Each owner or operator of a storage...
40 CFR 63.119 - Storage vessel provisions-reference control technology.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Storage vessel provisions-reference control technology. 63.119 Section 63.119 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 63.119 Storage vessel provisions—reference control technology. (a) For each storage vessel to which...
Fireproof impact limiter aggregate packaging inside shipping containers
Byington, Gerald A.; Oakes, Jr., Raymon Edgar; Feldman, Matthew Rookes
2001-01-01
The invention is a product and a process for making a fireproof, impact limiter, homogeneous aggregate material for casting inside a hazardous material shipping container, or a double-contained Type-B nuclear shipping container. The homogeneous aggregate material is prepared by mixing inorganic compounds with water, pouring the mixture into the void spaces between an inner storage containment vessel and an outer shipping container, vibrating the mixture inside the shipping container, with subsequent curing, baking, and cooling of the mixture to form a solidified material which encapsulates an inner storage containment vessel inside an outer shipping container. The solidified material forms a protective enclosure around an inner storage containment vessel which may store hazardous, toxic, or radioactive material. The solidified material forms a homogeneous fire-resistant material that does not readily transfer heat, and provides general shock and specific point-impact protection, providing protection to the interior storage containment vessel. The material is low cost, may contain neutron absorbing compounds, and is easily formed into a variety of shapes to fill the interior void spaces of shipping containers.
40 CFR 63.646 - Storage vessel provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Storage vessel provisions. 63.646...) National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.646 Storage vessel provisions. (a) Each owner or operator of a Group 1 storage vessel subject to this subpart shall comply with...
40 CFR 63.646 - Storage vessel provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Storage vessel provisions. 63.646...) National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.646 Storage vessel provisions. (a) Each owner or operator of a Group 1 storage vessel subject to this subpart shall comply with...
40 CFR 63.1314 - Storage vessel provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Storage vessel provisions. 63.1314... Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1314 Storage vessel provisions. (a) This section applies to each storage vessel that is assigned to an affected source, as...
40 CFR 63.423 - Standards: Storage vessels.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Standards: Storage vessels. 63.423....423 Standards: Storage vessels. (a) Each owner or operator of a bulk gasoline terminal or pipeline breakout station subject to the provisions of this subpart shall equip each gasoline storage vessel with a...
40 CFR 63.484 - Storage vessel provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Storage vessel provisions. 63.484... Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.484 Storage vessel provisions. (a) This section applies to each storage vessel that is assigned to an affected source, as...
40 CFR 63.1432 - Storage vessel provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Storage vessel provisions. 63.1432... Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1432 Storage vessel provisions. (a) For each storage vessel located at an affected source, the owner or operator shall comply...
40 CFR 63.484 - Storage vessel provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Storage vessel provisions. 63.484... Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.484 Storage vessel provisions. (a) This section applies to each storage vessel that is assigned to an affected source, as...
40 CFR 63.484 - Storage vessel provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Storage vessel provisions. 63.484... Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.484 Storage vessel provisions. (a) This section applies to each storage vessel that is assigned to an affected source, as...
40 CFR 63.484 - Storage vessel provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Storage vessel provisions. 63.484... Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins § 63.484 Storage vessel provisions. (a) This section applies to each storage vessel that is assigned to an affected source, as...
40 CFR 63.423 - Standards: Storage vessels.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Standards: Storage vessels. 63.423....423 Standards: Storage vessels. (a) Each owner or operator of a bulk gasoline terminal or pipeline breakout station subject to the provisions of this subpart shall equip each gasoline storage vessel with a...
40 CFR 63.1314 - Storage vessel provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Storage vessel provisions. 63.1314... Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1314 Storage vessel provisions. (a) This section applies to each storage vessel that is assigned to an affected source, as...
40 CFR 63.423 - Standards: Storage vessels.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Storage vessels. 63.423....423 Standards: Storage vessels. (a) Each owner or operator of a bulk gasoline terminal or pipeline breakout station subject to the provisions of this subpart shall equip each gasoline storage vessel with a...
40 CFR 63.1432 - Storage vessel provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Storage vessel provisions. 63.1432... Standards for Hazardous Air Pollutant Emissions for Polyether Polyols Production § 63.1432 Storage vessel provisions. (a) For each storage vessel located at an affected source, the owner or operator shall comply...
40 CFR 63.423 - Standards: Storage vessels.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Standards: Storage vessels. 63.423....423 Standards: Storage vessels. (a) Each owner or operator of a bulk gasoline terminal or pipeline breakout station subject to the provisions of this subpart shall equip each gasoline storage vessel with a...
40 CFR 63.646 - Storage vessel provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Storage vessel provisions. 63.646...) National Emission Standards for Hazardous Air Pollutants From Petroleum Refineries § 63.646 Storage vessel... Group 1 storage vessel subject to this subpart shall comply with the requirements of §§ 63.119 through...
Code of Federal Regulations, 2013 CFR
2013-07-01
... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) You must install and...
Code of Federal Regulations, 2014 CFR
2014-07-01
... monitoring requirements for my storage vessel or centrifugal compressor affected facility? 60.5417 Section 60... requirements for my storage vessel or centrifugal compressor affected facility? You must meet the applicable... standards for your storage vessel or centrifugal compressor affected facility. (a) For each control device...
Code of Federal Regulations, 2013 CFR
2013-07-01
... filling of gasoline storage vessels in the Houston and San Antonio areas. 52.2285 Section 52.2285... of gasoline storage vessels in the Houston and San Antonio areas. (a) Definitions: (1) Gasoline means... as a motor fuel and is commonly called gasoline. (2) Storage container means any stationary vessel of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-07-01
The report is divided into the following sections: (1) Introduction; (2) Conclusions and Recommendations; (3) Existing Conditions and Facilities for a Fuel Distribution Center; (4) Pacific Ocean Regional Tuna Fisheries and Resources; (5) Fishing Effort in the FSMEEZ 1992-1994; (6) Current Transshipping Operations in the Western Pacific Ocean; (7) Current and Probale Bunkering Practices of United States, Japanese, Koren, and Taiwanese Offshore-Based Vessels Operating in FSM and Adjacent Waters; (8) Shore-Based Fish-Handling/Processing; (9) Fuels Forecast; (10) Fuel Supply, Storage and Distribution; (11) Cost Estimates; (12) Economic Evaluation of Fuel Supply, Storage and Distribution.
High Performance COPVs for In-Space Storage of High Pressure Cryogenic Fuels
NASA Technical Reports Server (NTRS)
Schneider, Judy; Dyess, Mark; Hastings, Chad; Wang, Jun
2008-01-01
Polymeric composite overwrapped pressure vessels (COPVs) provide an attractive material system to support developing commercial launch business and alternate fuel ventures. However to be able to design with these materials, the mechanical behavior of the materials must be understood with regards to processing, performance, damage tolerance, and environment. For the storage of cryogenic propellants, it is important to evaluate the materials performance and impact damage resistance at cryogenic temperatures in order to minimize weight and to ensure safety and reliability. As part of this study, material tests of candidate fiber and resin systems were used as the basis for the selection of the material combinations for evaluation in a COPV at cryogenic conditions. This comprehensive approach has also been expanded to address issues with impact damage tolerance and material degradation due to environmental factors. KEY WORDS: Cryogenic testing, evaluation and applications for pressure vessels, COPVs, tanks, or storage vessels.
Aluminum and Other Coatings for the Passivation of Tritium Storage Vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, W.; Korinko, P.
Using a highly sensitive residual gas analyzer, the off-gassing of hydrogen, water, and hydrocarbons from surface-treated storage vessels containing deuterium was measured. The experimental storage vessels were compared to a low-off-gassing, electro-polished 304L canister. Alternative vessels were made out of aluminum, or were coatings on 304L steel. Coatings included powder pack aluminide, electro-plated aluminum, powder pack chromide, dense electro-plated chromium, copper plated, and copper plated with 25 and 50 percent nano-diamond. Vessels were loaded with low pressure deuterium to observe exchange with protium or hydrogen as observed with formation of HD and HDO. Off gas of D 2O or possiblemore » CD 4 was observed at mass 20. The main off-gas in all of the studies was H 2. The studies indicated that coatings required significant post-coating treatment to reduce off-gas and enhance the permeation barrier from gases likely added during the coating process. Dense packed aluminum coatings needed heating to drive off water. Electro-plated aluminum, chromium and copper coatings appeared to trap hydrogen from the plating process. Nano-diamond appeared to enhance the exchange rate with hydrogen off gas, and its coating process trapped significant amounts of hydrogen. Aluminum caused more protium exchange than chromium-treated surfaces. Aluminum coatings released more water, but pure aluminum vessels released small amounts of hydrogen, little water, and generally performed well. Chromium coating had residual hydrogen that was difficult to totally outgas but otherwise gave low residuals for water and hydrocarbons. Our studies indicated that simple coating of as received 304L metal will not adequately block hydrogen. The base vessel needs to be carefully out-gassed before applying a coating, and the coating process will likely add additional hydrogen that must be removed. Initial simple bake-out and leak checks up to 350° C for a few hours was found to be inadequate. All of the studies indicated that vessels needed several days of vacuum baking at 350-450° C to fully outgas the residual gases, which were mostly hydrogen. The current standard practice of out-gassing from ultra-clean, electro-polished 304L vessels with both vacuum bake-out and followed by an oxidative bake out to enhance the chromium surface performed the best in these studies.« less
Analysis and Design of Cryogenic Pressure Vessels for Automotive Hydrogen Storage
NASA Astrophysics Data System (ADS)
Espinosa-Loza, Francisco Javier
Cryogenic pressure vessels maximize hydrogen storage density by combining the high pressure (350-700 bar) typical of today's composite pressure vessels with the cryogenic temperature (as low as 25 K) typical of low pressure liquid hydrogen vessels. Cryogenic pressure vessels comprise a high-pressure inner vessel made of carbon fiber-coated metal (similar to those used for storage of compressed gas), a vacuum space filled with numerous sheets of highly reflective metalized plastic (for high performance thermal insulation), and a metallic outer jacket. High density of hydrogen storage is key to practical hydrogen-fueled transportation by enabling (1) long-range (500+ km) transportation with high capacity vessels that fit within available spaces in the vehicle, and (2) reduced cost per kilogram of hydrogen stored through reduced need for expensive structural material (carbon fiber composite) necessary to make the vessel. Low temperature of storage also leads to reduced expansion energy (by an order of magnitude or more vs. ambient temperature compressed gas storage), potentially providing important safety advantages. All this is accomplished while simultaneously avoiding fuel venting typical of cryogenic vessels for all practical use scenarios. This dissertation describes the work necessary for developing and demonstrating successive generations of cryogenic pressure vessels demonstrated at Lawrence Livermore National Laboratory. The work included (1) conceptual design, (2) detailed system design (3) structural analysis of cryogenic pressure vessels, (4) thermal analysis of heat transfer through cryogenic supports and vacuum multilayer insulation, and (5) experimental demonstration. Aside from succeeding in demonstrating a hydrogen storage approach that has established all the world records for hydrogen storage on vehicles (longest driving range, maximum hydrogen storage density, and maximum containment of cryogenic hydrogen without venting), the work also demonstrated a methodology for computationally efficient detailed modeling of cryogenic pressure vessels. The work continues with support of the US Department of Energy to demonstrate a new generation of cryogenic vessels anticipated to improve on the hydrogen storage performance figures previously imposed in this project. The author looks forward to further contributing to a future of long-range, inexpensive, and safe zero emissions transportation.
40 CFR Table 3 to Subpart Ppp of... - Group 1 Storage Vessels at Existing and New Affected Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Group 1 Storage Vessels at Existing...—Group 1 Storage Vessels at Existing and New Affected Sources Vessel capacity(cubic meters) Vapor Pressure a (kilopascals) 75 ≤capacity pressure of total...
40 CFR Table 3 to Subpart Ppp of... - Group 1 Storage Vessels at Existing and New Affected Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Group 1 Storage Vessels at Existing...—Group 1 Storage Vessels at Existing and New Affected Sources Vessel capacity(cubic meters) Vapor Pressure a (kilopascals) 75 ≤ capacity pressure of...
40 CFR Table 4 to Subpart U of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Group 1 Storage Vessels at New Sources... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 4 Table 4 to Subpart U of Part 63—Group 1 Storage Vessels at New Sources Vessel...
40 CFR Table 4 to Subpart U of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Group 1 Storage Vessels at New Sources... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 4 Table 4 to Subpart U of Part 63—Group 1 Storage Vessels at New Sources Vessel...
40 CFR Table 4 to Subpart U of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Group 1 Storage Vessels at New Sources... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 4 Table 4 to Subpart U of Part 63—Group 1 Storage Vessels at New Sources Vessel...
40 CFR Table 4 to Subpart U of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Group 1 Storage Vessels at New Sources... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 4 Table 4 to Subpart U of Part 63—Group 1 Storage Vessels at New Sources Vessel...
40 CFR Table 4 to Subpart U of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Group 1 Storage Vessels at New Sources... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 4 Table 4 to Subpart U of Part 63—Group 1 Storage Vessels at New Sources Vessel...
Conformable pressure vessel for high pressure gas storage
Simmons, Kevin L.; Johnson, Kenneth I.; Lavender, Curt A.; Newhouse, Norman L.; Yeggy, Brian C.
2016-01-12
A non-cylindrical pressure vessel storage tank is disclosed. The storage tank includes an internal structure. The internal structure is coupled to at least one wall of the storage tank. The internal structure shapes and internally supports the storage tank. The pressure vessel storage tank has a conformability of about 0.8 to about 1.0. The internal structure can be, but is not limited to, a Schwarz-P structure, an egg-crate shaped structure, or carbon fiber ligament structure.
40 CFR Table 3 to Subpart Ppp of... - Group 1 Storage Vessels at Existing and New Affected Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Group 1 Storage Vessels at Existing and... Polyether Polyols Production Pt. 63, Subpt. PPP, Table 3 Table 3 to Subpart PPP of Part 63—Group 1 Storage Vessels at Existing and New Affected Sources Vessel capacity(cubic meters) Vapor Pressure a (kilopascals...
40 CFR Table 3 to Subpart Ppp of... - Group 1 Storage Vessels at Existing and New Affected Sources
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Group 1 Storage Vessels at Existing and... Polyether Polyols Production Pt. 63, Subpt. PPP, Table 3 Table 3 to Subpart PPP of Part 63—Group 1 Storage Vessels at Existing and New Affected Sources Vessel capacity(cubic meters) Vapor Pressure a (kilopascals...
40 CFR 61.275 - Periodic report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...
40 CFR 61.275 - Periodic report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...
40 CFR 61.275 - Periodic report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...
40 CFR 61.275 - Periodic report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.275 Periodic report. (a) The owner or operator of each storage vessel to... storage vessel in which: (i) The internal floating roof is not resting on the surface of the benzene...
40 CFR 63.132 - Process wastewater provisions-general.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...
40 CFR 63.147 - Process wastewater provisions-recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...
40 CFR 63.132 - Process wastewater provisions-general.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...
40 CFR 63.132 - Process wastewater provisions-general.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...
40 CFR 63.132 - Process wastewater provisions-general.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...
40 CFR 63.147 - Process wastewater provisions-recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...
40 CFR 63.134 - Process wastewater provisions-surface impoundments.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-surface... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.134 Process wastewater provisions—surface impoundments. (a) For each surface impoundment that receives, manages, or...
40 CFR 63.147 - Process wastewater provisions-recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...
40 CFR 63.147 - Process wastewater provisions-recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...
40 CFR 63.132 - Process wastewater provisions-general.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...
NASA Technical Reports Server (NTRS)
Swanger, Adam M.; Notardonato, William U.; Jumper, Kevin M.
2015-01-01
The Ground Operations Demonstration Unit for Liquid Hydrogen (GODU-LH2) has been developed at NASA Kennedy Space Center in Florida. GODU-LH2 has three main objectives: zero-loss storage and transfer, liquefaction, and densification of liquid hydrogen. A cryogenic refrigerator has been integrated into an existing, previously certified, 33,000 gallon vacuum-jacketed storage vessel built by Minnesota Valley Engineering in 1991 for the Titan program. The dewar has an inner diameter of 9.5 and a length of 71.5; original design temperature and pressure ranges are -423 F to 100 F and 0 to 95 psig respectively. During densification operations the liquid temperature will be decreased below the normal boiling point by the refrigerator, and consequently the pressure inside the inner vessel will be sub-atmospheric. These new operational conditions rendered the original certification invalid, so an effort was undertaken to recertify the tank to the new pressure and temperature requirements (-12.7 to 95 psig and -433 F to 100 F respectively) per ASME Boiler and Pressure Vessel Code, Section VIII, Division 1. This paper will discuss the unique design, analysis and implementation issues encountered during the vessel recertification process.
40 CFR Table 4 to Subpart Uuuu of... - Requirements for Performance Tests
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the initial compliance demonstration; or (2) carbon disulfide and/or hydrogen sulfide CEMS, as... toluene storage vessel a. each existing or new cellophane operation i. measure toluene emissions (1) EPA... continuous storage vessel vents and combinations of batch and continuous storage vessel vents at normal...
Slow neutron mapping technique for level interface measurement
NASA Astrophysics Data System (ADS)
Zain, R. M.; Ithnin, H.; Razali, A. M.; Yusof, N. H. M.; Mustapha, I.; Yahya, R.; Othman, N.; Rahman, M. F. A.
2017-01-01
Modern industrial plant operations often require accurate level measurement of process liquids in production and storage vessels. A variety of advanced level indicators are commercially available to meet the demand, but these may not suit specific need of situations. The neutron backscatter technique is exceptionally useful for occasional and routine determination, particularly in situations such as pressure vessel with wall thickness up to 10 cm, toxic and corrosive chemical in sealed containers, liquid petroleum gas storage vessels. In level measurement, high energy neutrons from 241Am-Be radioactive source are beamed onto a vessel. Fast neutrons are slowed down mostly by collision with hydrogen atoms of material inside the vessel. Parts of thermal neutron are bounced back towards the source. By placing a thermal detector next to the source, these backscatter neutrons can be measured. The number of backscattered neutrons is directly proportional to the concentration of the hydrogen atoms in front of the neutron detector. As the source and detector moved by the matrix around the side of the vessel, interfaces can be determined as long as it involves a change in hydrogen atom concentration. This paper presents the slow neutron mapping technique to indicate level interface of a test vessel.
40 CFR Table 6 to Subpart G of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Group 1 Storage Vessels at New Sources.... 63, Subpt. G, Table 6 Table 6 to Subpart G of Part 63—Group 1 Storage Vessels at New Sources Vessel capacity(cubic meters) Vapor pressure a (kilopascals) 38 ≤ capacity<151 ≥13.1 151 ≤ capacity ≥0.7 a Maximum...
40 CFR Table 6 to Subpart G of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Group 1 Storage Vessels at New Sources.... 63, Subpt. G, Table 6 Table 6 to Subpart G of Part 63—Group 1 Storage Vessels at New Sources Vessel capacity(cubic meters) Vapor pressure a (kilopascals) 38 ≤ capacity<151 ≥13.1 151 ≤ capacity ≥0.7 a Maximum...
40 CFR Table 6 to Subpart G of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Group 1 Storage Vessels at New Sources.... 63, Subpt. G, Table 6 Table 6 to Subpart G of Part 63—Group 1 Storage Vessels at New Sources Vessel capacity(cubic meters) Vapor pressure a (kilopascals) 38 ≤ capacity<151 ≥13.1 151 ≤ capacity ≥0.7 a Maximum...
40 CFR Table 6 to Subpart G of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Group 1 Storage Vessels at New Sources.... 63, Subpt. G, Table 6 Table 6 to Subpart G of Part 63—Group 1 Storage Vessels at New Sources Vessel capacity(cubic meters) Vapor pressure a (kilopascals) 38 ≤ capacity<151 ≥13.1 151 ≤ capacity ≥0.7 a Maximum...
40 CFR Table 6 to Subpart G of... - Group 1 Storage Vessels at New Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Group 1 Storage Vessels at New Sources.... 63, Subpt. G, Table 6 Table 6 to Subpart G of Part 63—Group 1 Storage Vessels at New Sources Vessel capacity(cubic meters) Vapor pressure a (kilopascals) 38 ≤capacity<151 ≥13.1 151 ≤capacity ≥0.7 a Maximum...
40 CFR 63.133 - Process wastewater provisions-wastewater tanks.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...
40 CFR 63.133 - Process wastewater provisions-wastewater tanks.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...
40 CFR 63.133 - Process wastewater provisions-wastewater tanks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...
40 CFR 63.133 - Process wastewater provisions-wastewater tanks.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...
40 CFR 60.5395 - What standards apply to storage vessel affected facilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... undergoes fracturing or refracturing, you must comply with paragraph (d)(1) of this section as soon as liquids from the well following fracturing or refracturing are routed to the storage vessel affected... associated with fracturing or refracturing of a well feeding the storage vessel affected facility, you must...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control emissions from storage vessels and low throughput transfer racks. 63.985 Section 63.985 Protection... transfer racks. (a) Nonflare control device equipment and operating requirements. The owner or operator... subpart for storage vessels and transfer racks, documentation that those conditions exist is sufficient to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected...
Code of Federal Regulations, 2013 CFR
2013-07-01
... polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Pollutants for Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam production—HAP ABA storage vessels. Each owner or operator of a new or existing slabstock affected...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-09
... Benzene Storage Vessels and Coke By-Product Recovery Plants (Renewal) AGENCY: Environmental Protection... Storage Vessels and Coke By-Product Recovery Plants (Renewal) ICR Numbers: EPA ICR Number 1080.13, OMB... operators of benzene storage vessels and coke by product recovery plants. Estimated Number of Respondents...
40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.
Code of Federal Regulations, 2011 CFR
2011-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...
40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.
Code of Federal Regulations, 2013 CFR
2013-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...
40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.
Code of Federal Regulations, 2014 CFR
2014-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...
40 CFR 63.115 - Process vent provisions-methods and procedures for process vent group determination.
Code of Federal Regulations, 2012 CFR
2012-07-01
... accepted chemical engineering principles, measurable process parameters, or physical or chemical laws or... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer... (d)(3) of this section. (1) Engineering assessment may be used to determine vent stream flow rate...
40 CFR 63.140 - Process wastewater provisions-delay of repair.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...
40 CFR 63.140 - Process wastewater provisions-delay of repair.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...
40 CFR 63.140 - Process wastewater provisions-delay of repair.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...
40 CFR 63.140 - Process wastewater provisions-delay of repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...
40 CFR 63.505 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... section, is less than 4 hours in an operating day and more than two of the hours during the period of..., averaged over the duration of the filling period for the storage vessel, is above the maximum level or... storage vessel's monitoring plan, during the filling period for the storage vessel. (ii) If the monitoring...
40 CFR 63.505 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... section, is less than 4 hours in an operating day and more than two of the hours during the period of..., averaged over the duration of the filling period for the storage vessel, is above the maximum level or... storage vessel's monitoring plan, during the filling period for the storage vessel. (ii) If the monitoring...
40 CFR 63.505 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... section, is less than 4 hours in an operating day and more than two of the hours during the period of..., averaged over the duration of the filling period for the storage vessel, is above the maximum level or... storage vessel's monitoring plan, during the filling period for the storage vessel. (ii) If the monitoring...
40 CFR 63.505 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... section, is less than 4 hours in an operating day and more than two of the hours during the period of..., averaged over the duration of the filling period for the storage vessel, is above the maximum level or... storage vessel's monitoring plan, during the filling period for the storage vessel. (ii) If the monitoring...
Code of Federal Regulations, 2011 CFR
2011-07-01
... filling of gasoline storage vessels in the Dallas-Fort Worth area. 52.2286 Section 52.2286 Protection of... storage vessels in the Dallas-Fort Worth area. (a) Definitions: (1) Gasoline means any petroleum.... (b) This section is applicable to the following counties in Texas: Dallas, Tarrant, Denton, Wise...
Code of Federal Regulations, 2010 CFR
2010-07-01
... filling of gasoline storage vessels in the Dallas-Fort Worth area. 52.2286 Section 52.2286 Protection of... storage vessels in the Dallas-Fort Worth area. (a) Definitions: (1) Gasoline means any petroleum.... (b) This section is applicable to the following counties in Texas: Dallas, Tarrant, Denton, Wise...
40 CFR 63.120 - Storage vessel provisions-procedures to determine compliance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... with § 63.119(b) of this subpart (storage vessel equipped with a fixed roof and internal floating roof) or with § 63.119(d) of this subpart (storage vessel equipped with an external floating roof converted to an internal floating roof), the owner or operator shall comply with the requirements in paragraphs...
Code of Federal Regulations, 2010 CFR
2010-07-01
... function in that process; (ii) Transformed by chemical reaction into materials that are not regulated... evaluation (or engineering assessment) that demonstrates the extent to which one or more of the conditions...
Code of Federal Regulations, 2011 CFR
2011-07-01
... function in that process; (ii) Transformed by chemical reaction into materials that are not regulated... evaluation (or engineering assessment) that demonstrates the extent to which one or more of the conditions...
NASA Astrophysics Data System (ADS)
Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi
2016-11-01
In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Requirements. 63.982 Section 63.982... Process § 63.982 Requirements. (a) General compliance requirements for storage vessels, process vents... routing to a fuel gas system or process shall comply with the applicable requirements of paragraphs (a)(1...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Requirements. 63.982 Section 63.982... Process § 63.982 Requirements. (a) General compliance requirements for storage vessels, process vents... routing to a fuel gas system or process shall comply with the applicable requirements of paragraphs (a)(1...
Heating and cooling system for an on-board gas adsorbent storage vessel
Tamburello, David A.; Anton, Donald L.; Hardy, Bruce J.; Corgnale, Claudio
2017-06-20
In one aspect, a system for controlling the temperature within a gas adsorbent storage vessel of a vehicle may include an air conditioning system forming a continuous flow loop of heat exchange fluid that is cycled between a heated flow and a cooled flow. The system may also include at least one fluid by-pass line extending at least partially within the gas adsorbent storage vessel. The fluid by-pass line(s) may be configured to receive a by-pass flow including at least a portion of the heated flow or the cooled flow of the heat exchange fluid at one or more input locations and expel the by-pass flow back into the continuous flow loop at one or more output locations, wherein the by-pass flow is directed through the gas adsorbent storage vessel via the by-pass line(s) so as to adjust an internal temperature within the gas adsorbent storage vessel.
40 CFR 60.116b - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... range. (e) Available data on the storage temperature may be used to determine the maximum true vapor...: (i) Available data on the Reid vapor pressure and the maximum expected storage temperature based on... Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction...
40 CFR Table 4 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Group 1 Storage Vessels at New Affected... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 63—Group 1 Storage Vessels at New Affected...
Code of Federal Regulations, 2013 CFR
2013-07-01
... filling of gasoline storage vessels in the Dallas-Fort Worth area. 52.2286 Section 52.2286 Protection of... IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2286 Control of evaporative losses from the filling of gasoline storage vessels in the Dallas-Fort Worth area. (a) Definitions: (1) Gasoline means any petroleum...
Code of Federal Regulations, 2014 CFR
2014-07-01
... filling of gasoline storage vessels in the Dallas-Fort Worth area. 52.2286 Section 52.2286 Protection of... IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2286 Control of evaporative losses from the filling of gasoline storage vessels in the Dallas-Fort Worth area. (a) Definitions: (1) Gasoline means any petroleum...
Code of Federal Regulations, 2010 CFR
2010-07-01
... filling of gasoline storage vessels in the Houston and San Antonio areas. 52.2285 Section 52.2285... PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2285 Control of evaporative losses from the filling of gasoline storage vessels in the Houston and San Antonio areas. (a) Definitions: (1) Gasoline means...
Code of Federal Regulations, 2011 CFR
2011-07-01
... filling of gasoline storage vessels in the Houston and San Antonio areas. 52.2285 Section 52.2285... PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2285 Control of evaporative losses from the filling of gasoline storage vessels in the Houston and San Antonio areas. (a) Definitions: (1) Gasoline means...
Code of Federal Regulations, 2012 CFR
2012-07-01
... filling of gasoline storage vessels in the Houston and San Antonio areas. 52.2285 Section 52.2285... PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2285 Control of evaporative losses from the filling of gasoline storage vessels in the Houston and San Antonio areas. (a) Definitions: (1) Gasoline means...
Code of Federal Regulations, 2014 CFR
2014-07-01
... filling of gasoline storage vessels in the Houston and San Antonio areas. 52.2285 Section 52.2285... PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2285 Control of evaporative losses from the filling of gasoline storage vessels in the Houston and San Antonio areas. (a) Definitions: (1) Gasoline means...
Code of Federal Regulations, 2012 CFR
2012-07-01
... filling of gasoline storage vessels in the Dallas-Fort Worth area. 52.2286 Section 52.2286 Protection of... IMPLEMENTATION PLANS (CONTINUED) Texas § 52.2286 Control of evaporative losses from the filling of gasoline storage vessels in the Dallas-Fort Worth area. (a) Definitions: (1) Gasoline means any petroleum...
40 CFR Table 3 to Subpart U of... - Group 1 Storage Vessels at Existing Affected Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Group 1 Storage Vessels at Existing... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 3 Table 3 to Subpart U of Part 63—Group 1 Storage Vessels at Existing...
40 CFR Table 3 to Subpart U of... - Group 1 Storage Vessels at Existing Affected Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Group 1 Storage Vessels at Existing... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 3 Table 3 to Subpart U of Part 63—Group 1 Storage Vessels at Existing...
40 CFR Table 2 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Group 1 Storage Vessels at Existing... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 63—Group 1 Storage Vessels...
40 CFR Table 2 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Group 1 Storage Vessels at Existing... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 63—Group 1 Storage Vessels...
40 CFR Table 2 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Group 1 Storage Vessels at Existing... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 63—Group 1 Storage Vessels at...
40 CFR Table 4 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Group 1 Storage Vessels at New... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 63—Group 1 Storage Vessels...
40 CFR Table 4 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Group 1 Storage Vessels at New Affected... CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 63—Group 1 Storage Vessels at New Affected...
40 CFR Table 3 to Subpart U of... - Group 1 Storage Vessels at Existing Affected Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Group 1 Storage Vessels at Existing... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 3 Table 3 to Subpart U of Part 63—Group 1 Storage Vessels at Existing...
40 CFR Table 3 to Subpart U of... - Group 1 Storage Vessels at Existing Affected Sources
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Group 1 Storage Vessels at Existing... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 3 Table 3 to Subpart U of Part 63—Group 1 Storage Vessels at Existing...
40 CFR Table 4 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Group 1 Storage Vessels at New... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 63—Group 1 Storage Vessels at...
40 CFR Table 2 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Group 1 Storage Vessels at Existing... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 63—Group 1 Storage Vessels at...
40 CFR Table 4 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Group 1 Storage Vessels at New... SOURCE CATEGORIES (CONTINUED) National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 63—Group 1 Storage Vessels...
40 CFR Table 3 to Subpart U of... - Group 1 Storage Vessels at Existing Affected Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Group 1 Storage Vessels at Existing... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins Pt. 63, Subpt. U, Table 3 Table 3 to Subpart U of Part 63—Group 1 Storage Vessels at Existing...
40 CFR Table 2 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Group 1 Storage Vessels at Existing... SOURCE CATEGORIES National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 63—Group 1 Storage Vessels at...
Code of Federal Regulations, 2014 CFR
2014-07-01
... times when regulated material emissions are routed to it. (2) The owner or operator of a transfer rack... function in that process; (ii) Transformed by chemical reaction into materials that are not regulated...
Code of Federal Regulations, 2012 CFR
2012-07-01
... times when regulated material emissions are routed to it. (2) The owner or operator of a transfer rack... function in that process; (ii) Transformed by chemical reaction into materials that are not regulated...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Group 1 Storage Vessels at Existing... Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 3 Table 3 to Subpart JJJ of Part 63—Group 1 Storage Vessels at Existing Affected Sources Producing the Listed Thermoplastics...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Group 1 Storage Vessels at Existing... Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 3 Table 3 to Subpart JJJ of Part 63—Group 1 Storage Vessels at Existing Affected Sources Producing the Listed Thermoplastics...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Group 1 Storage Vessels at Existing... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 3 Table 3 to Subpart JJJ of Part 63—Group 1 Storage Vessels at Existing Affected Sources Producing the Listed...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Group 1 Storage Vessels at Existing... Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 3 Table 3 to Subpart JJJ of Part 63—Group 1 Storage Vessels at Existing Affected Sources Producing the Listed Thermoplastics...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Group 1 Storage Vessels at Existing... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 3 Table 3 to Subpart JJJ of Part 63—Group 1 Storage Vessels at Existing Affected Sources Producing the Listed...
Container and method for absorbing and reducing hydrogen concentration
Wicks, George G.; Lee, Myung W.; Heung, Leung K.
2001-01-01
A method for absorbing hydrogen from an enclosed environment comprising providing a vessel; providing a hydrogen storage composition in communication with a vessel, the hydrogen storage composition further comprising a matrix defining a pore size which permits the passage of hydrogen gas while blocking the passage of gaseous poisons; placing a material within the vessel, the material evolving hydrogen gas; sealing the vessel; and absorbing the hydrogen gas released into the vessel by the hydrogen storage composition. A container for absorbing evolved hydrogen gas comprising: a vessel having an interior and adapted for receiving materials which release hydrogen gas; a hydrogen absorbing composition in communication with the interior, the composition defining a matrix surrounding a hydrogen absorber, the matrix permitting the passage of hydrogen gas while excluding gaseous poisons; wherein, when the vessel is sealed, hydrogen gas, which is released into the vessel interior, is absorbed by the hydrogen absorbing composition.
Microgravity Storage Vessels and Conveying-Line Feeders for Cohesive Regolith
NASA Technical Reports Server (NTRS)
Walton, Otis R.; Vollmer, Hubert J.
2013-01-01
Under microgravity, the usual methods of placing granular solids into, or extracting them from, containers or storage vessels will not function. Alternative methods are required to provide a motive force to move the material. New configurations for microgravity regolith storage vessels that do not resemble terrestrial silos, hoppers, or tanks are proposed. The microgravity-compatible bulk-material storage vessels and exit feed configurations are designed to reliably empty and feed cohesive material to transfer vessels or conveying ducts or lines without gravity. A controllable motive force drives the cohesive material to the exit opening(s), and provides a reliable means to empty storage vessels and/or to feed microgravity conveying lines. The proposed designs will function equally well in vacuum, or inside of pressurized enclosures. Typical terrestrial granular solids handling and storage equipment will not function under microgravity, since almost all such equipment relies on gravity to at least move material to an exit location or to place it in the bottom of a container. Under microgravity, there effectively are no directions of up or down, and in order to effect movement of material, some other motive force must be applied to the material. The proposed storage vessels utilize dynamic centrifugal force to effect movement of regolith whenever material needs to be removed from the storage vessel. During simple storage, no dynamic motion or forces are required. The rotation rate during emptying can be controlled to ensure that material will move to the desired exit opening, even if the material is highly cohesive, or has acquired an electrostatic charge. The general concept of this Swirl Action Utilized for Centrifugal Ejection of Regolith (SAUCER) microgravity storage unit/dynamic feeder is to have an effective slot-hopper (based on the converging angles of the top and bottom conical section of the vessel) with an exit slot around the entire periphery of the SAUCER. The basic shape of such a unit is like two Chinese straw hats (douli) - one upside down, on the bottom, and another on top; or two wokpans, one upright on the bottom and another inverted on top, with a small gap between the upright and inverted pans or hats (around the periphery). A stationary outer ring, much like an unmounted bicycle tire, surrounds the gap between the two coaxial, nearly conical pieces, forming the top and bottom of the unit.
21 CFR 1250.83 - Storage of water prior to treatment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Storage of water prior to treatment. 1250.83... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to treatment...
21 CFR 1250.83 - Storage of water prior to treatment.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Storage of water prior to treatment. 1250.83... CONVEYANCE SANITATION Sanitation Facilities and Conditions on Vessels § 1250.83 Storage of water prior to treatment. The following requirements with respect to the storage of water on vessels prior to treatment...
40 CFR Table 9 to Subpart U of... - Routine Reports Required by This Subpart
Code of Federal Regulations, 2010 CFR
2010-07-01
... Semiannually, no later than 60 days after the end of each 6-month period. See § 63.506(e)(6)(i) for the due... end of each quarter. § 63.506(e)(7)(i) Storage Vessels Notification of Inspection At least 30 days prior to the refilling of each storage vessel or the inspection of each storage vessel. § 63.506(e)(7...
40 CFR Table 9 to Subpart U of... - Routine Reports Required by This Subpart
Code of Federal Regulations, 2014 CFR
2014-07-01
... Semiannually, no later than 60 days after the end of each 6-month period. See § 63.506(e)(6)(i) for the due... end of each quarter. § 63.506(e)(7)(i) Storage Vessels Notification of Inspection At least 30 days prior to the refilling of each storage vessel or the inspection of each storage vessel. § 63.506(e)(7...
40 CFR Table 9 to Subpart U of... - Routine Reports Required by This Subpart
Code of Federal Regulations, 2013 CFR
2013-07-01
... Semiannually, no later than 60 days after the end of each 6-month period. See § 63.506(e)(6)(i) for the due... end of each quarter. § 63.506(e)(7)(i) Storage Vessels Notification of Inspection At least 30 days prior to the refilling of each storage vessel or the inspection of each storage vessel. § 63.506(e)(7...
40 CFR Table 9 to Subpart U of... - Routine Reports Required by This Subpart
Code of Federal Regulations, 2011 CFR
2011-07-01
... Semiannually, no later than 60 days after the end of each 6-month period. See § 63.506(e)(6)(i) for the due... end of each quarter. § 63.506(e)(7)(i) Storage Vessels Notification of Inspection At least 30 days prior to the refilling of each storage vessel or the inspection of each storage vessel. § 63.506(e)(7...
40 CFR Table 9 to Subpart U of... - Routine Reports Required by This Subpart
Code of Federal Regulations, 2012 CFR
2012-07-01
... Semiannually, no later than 60 days after the end of each 6-month period. See § 63.506(e)(6)(i) for the due... end of each quarter. § 63.506(e)(7)(i) Storage Vessels Notification of Inspection At least 30 days prior to the refilling of each storage vessel or the inspection of each storage vessel. § 63.506(e)(7...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.117 Process vent provisions—reporting... incinerators, boilers or process heaters specified in table 3 of this subpart, and averaged over the same time... content determinations, flow rate measurements, and exit velocity determinations made during the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.117 Process vent provisions—reporting... incinerators, boilers or process heaters specified in table 3 of this subpart, and averaged over the same time... content determinations, flow rate measurements, and exit velocity determinations made during the...
40 CFR 63.1306 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Standards for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1306 Reporting... the information listed in paragraph (d)(4) of this section for molded foam processes and in paragraph (d)(5) for rebond foam processes. (1) A list of diisocyanate storage vessels, along with a record of...
40 CFR 63.1306 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1306 Reporting... the information listed in paragraph (d)(4) of this section for molded foam processes and in paragraph (d)(5) for rebond foam processes. (1) A list of diisocyanate storage vessels, along with a record of...
40 CFR 63.1306 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Hazardous Air Pollutants for Flexible Polyurethane Foam Production § 63.1306 Reporting... the information listed in paragraph (d)(4) of this section for molded foam processes and in paragraph (d)(5) for rebond foam processes. (1) A list of diisocyanate storage vessels, along with a record of...
40 CFR Table 29 to Subpart G of... - Seal Related Factors for External Floating Roof Vessels
Code of Federal Regulations, 2012 CFR
2012-07-01
...: Primary seal only 1.2 1.5 1.3 1.5 With shoe-mounted secondary seal 0.8 1.2 1.4 1.2 With rim-mounted... shield 0.8 0.9 NA NA With rim-mounted secondary seal 0.7 0.4 NA NA Vapor mounted resilient seal: Primary... Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations...
40 CFR Table 29 to Subpart G of... - Seal Related Factors for External Floating Roof Vessels
Code of Federal Regulations, 2014 CFR
2014-07-01
...: Primary seal only 1.2 1.5 1.3 1.5 With shoe-mounted secondary seal 0.8 1.2 1.4 1.2 With rim-mounted... shield 0.8 0.9 NA NA With rim-mounted secondary seal 0.7 0.4 NA NA Vapor mounted resilient seal: Primary... Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations...
40 CFR Table 29 to Subpart G of... - Seal Related Factors for External Floating Roof Vessels
Code of Federal Regulations, 2013 CFR
2013-07-01
...: Primary seal only 1.2 1.5 1.3 1.5 With shoe-mounted secondary seal 0.8 1.2 1.4 1.2 With rim-mounted... shield 0.8 0.9 NA NA With rim-mounted secondary seal 0.7 0.4 NA NA Vapor mounted resilient seal: Primary... Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations...
Charles, Isabel; Sinclair, Ian; Addison, Daniel H
2014-04-01
A new approach to the storage, processing, and interrogation of the quality data for screening samples has improved analytical throughput and confidence and enhanced the opportunities for learning from the accumulating records. The approach has entailed the design, development, and implementation of a database-oriented system, capturing information from the liquid chromatography-mass spectrometry capabilities used for assessing the integrity of samples in AstraZeneca's screening collection. A Web application has been developed to enable the visualization and interactive annotation of the analytical data, monitor the current sample queue, and report the throughput rate. Sample purity and identity are certified automatically on the chromatographic peaks of interest if predetermined thresholds are reached on key parameters. Using information extracted in parallel from the compound registration and container inventory databases, the chromatographic and spectroscopic profiles for each vessel are linked to the sample structures and storage histories. A search engine facilitates the direct comparison of results for multiple vessels of the same or similar compounds, for single vessels analyzed at different time points, or for vessels related by their origin or process flow. Access to this network of information has provided a deeper understanding of the multiple factors contributing to sample quality assurance.
40 CFR 60.482-1a - Standards: General.
Code of Federal Regulations, 2014 CFR
2014-07-01
... time during the specified monitoring period (e.g., month, quarter, year), provided the monitoring is... Monthly Quarterly Semiannually. (2) Pumps and valves that are shared among two or more batch process units... be separated by at least 120 calendar days. (g) If the storage vessel is shared with multiple process...
40 CFR 60.482-1a - Standards: General.
Code of Federal Regulations, 2012 CFR
2012-07-01
... time during the specified monitoring period (e.g., month, quarter, year), provided the monitoring is... Monthly Quarterly Semiannually. (2) Pumps and valves that are shared among two or more batch process units... be separated by at least 120 calendar days. (g) If the storage vessel is shared with multiple process...
40 CFR 60.482-1a - Standards: General.
Code of Federal Regulations, 2010 CFR
2010-07-01
... time during the specified monitoring period (e.g., month, quarter, year), provided the monitoring is... Monthly Quarterly Semiannually. (2) Pumps and valves that are shared among two or more batch process units... be separated by at least 120 calendar days. (g) If the storage vessel is shared with multiple process...
40 CFR 60.482-1a - Standards: General.
Code of Federal Regulations, 2013 CFR
2013-07-01
... time during the specified monitoring period (e.g., month, quarter, year), provided the monitoring is... Monthly Quarterly Semiannually. (2) Pumps and valves that are shared among two or more batch process units... be separated by at least 120 calendar days. (g) If the storage vessel is shared with multiple process...
40 CFR 60.482-1a - Standards: General.
Code of Federal Regulations, 2011 CFR
2011-07-01
... time during the specified monitoring period (e.g., month, quarter, year), provided the monitoring is... Monthly Quarterly Semiannually. (2) Pumps and valves that are shared among two or more batch process units... be separated by at least 120 calendar days. (g) If the storage vessel is shared with multiple process...
40 CFR 63.1368 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operating permit. (B) Duration of excursions, as defined in § 63.1366(b)(7). (C) Operating logs and... storage vessel subject to control requirements: (A) Actual periods of planned routine maintenance during... process, as defined in § 63.1361. (i) A brief description of the process change; (ii) A description of any...
Method of making improved gas storage carbon with enhanced thermal conductivity
Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN
2002-11-05
A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).
Chemical Safety Alert: Lightning Hazard to Facilities Handling Flammable Substances
Raises awareness about lightning strikes, which cause more death/injury and damage than all other environmental elements combined, so industry can take proper precautions to protect equipment and storage or process vessels containing flammable materials.
40 CFR 61.276 - Recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.276 Recordkeeping. (a) Each owner or operator with a storage vessel subject...
40 CFR 61.276 - Recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.276 Recordkeeping. (a) Each owner or operator with a storage vessel subject...
40 CFR 61.276 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.276 Recordkeeping. (a) Each owner or operator with a storage vessel subject...
40 CFR 61.276 - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.276 Recordkeeping. (a) Each owner or operator with a storage vessel subject...
40 CFR 61.276 - Recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.276 Recordkeeping. (a) Each owner or operator with a storage vessel subject...
Algae viability over time in a ballast water sample
NASA Astrophysics Data System (ADS)
Gollasch, Stephan; David, Matej
2018-03-01
The biology of vessels' ballast water needs to be analysed for several reasons, one of these being performance tests of ballast water management systems. This analysis includes a viability assessment of phytoplankton. To overcome logistical problems to get algae sample processing gear on board of a vessel to document algae viability, samples may be transported to land-based laboratories. Concerns were raised how the storage conditions of the sample may impact algae viability over time and what the most appropriate storage conditions were. Here we answer these questions with a long-term algae viability study with daily sample analysis using Pulse-Amplitude Modulated (PAM) fluorometry. The sample was analysed over 79 days. We tested different storage conditions: fridge and room temperature with and without light. It seems that during the first two weeks of the experiment the viability remains almost unchanged with a slight downwards trend. In the continuing period, before the sample was split, a slightly stronger downwards viability trend was observed, which occurred at a similar rate towards the end of the experiment. After the sample was split, the strongest viability reduction was measured for the sample stored without light at room temperature. We concluded that the storage conditions, especially regarding temperature and light exposure, have a stronger impact on algae viability compared to the storage duration and that inappropriate storage conditions reduce algal viability. A sample storage time of up to two weeks in a dark and cool environment has little influence on the organism viability. This indicates that a two week time duration between sample taking on board a vessel and the viability measurement in a land-based laboratory may not be very critical.
Gas Hydrate Storage of Natural Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudy Rogers; John Etheridge
2006-03-31
Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5)more » rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.« less
Code of Federal Regulations, 2012 CFR
2012-07-01
... greater than 1.0. Group 1 storage vessel means a storage vessel that meets the criteria for design storage... purposes of emissions averaging, these four technologies are considered equivalent. Reference control... equivalents. Car-seal means a seal that is placed on a device that is used to change the position of a valve...
Code of Federal Regulations, 2014 CFR
2014-07-01
... greater than 1.0. Group 1 storage vessel means a storage vessel that meets the criteria for design storage... purposes of emissions averaging, these four technologies are considered equivalent. Reference control... equivalents. Car-seal means a seal that is placed on a device that is used to change the position of a valve...
Code of Federal Regulations, 2011 CFR
2011-07-01
... greater than 1.0. Group 1 storage vessel means a storage vessel that meets the criteria for design storage... purposes of emissions averaging, these four technologies are considered equivalent. Reference control... equivalents. Car-seal means a seal that is placed on a device that is used to change the position of a valve...
Code of Federal Regulations, 2010 CFR
2010-07-01
... greater than 1.0. Group 1 storage vessel means a storage vessel that meets the criteria for design storage... purposes of emissions averaging, these four technologies are considered equivalent. Reference control... equivalents. Car-seal means a seal that is placed on a device that is used to change the position of a valve...
Code of Federal Regulations, 2013 CFR
2013-07-01
... greater than 1.0. Group 1 storage vessel means a storage vessel that meets the criteria for design storage... purposes of emissions averaging, these four technologies are considered equivalent. Reference control... equivalents. Car-seal means a seal that is placed on a device that is used to change the position of a valve...
40 CFR 60.113b - Testing and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., the owner or operator shall repair the items before filling the storage vessel. (2) For Vessels... repair the items or empty and remove the storage vessel from service within 45 days. If a failure that is... percent open area, the owner or operator shall repair the items as necessary so that none of the...
40 CFR 60.113b - Testing and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., the owner or operator shall repair the items before filling the storage vessel. (2) For Vessels... repair the items or empty and remove the storage vessel from service within 45 days. If a failure that is... percent open area, the owner or operator shall repair the items as necessary so that none of the...
40 CFR 60.113b - Testing and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., the owner or operator shall repair the items before filling the storage vessel. (2) For Vessels... repair the items or empty and remove the storage vessel from service within 45 days. If a failure that is... percent open area, the owner or operator shall repair the items as necessary so that none of the...
40 CFR 60.113b - Testing and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., the owner or operator shall repair the items before filling the storage vessel. (2) For Vessels... repair the items or empty and remove the storage vessel from service within 45 days. If a failure that is... percent open area, the owner or operator shall repair the items as necessary so that none of the...
40 CFR 63.1310 - Applicability and designation of affected sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., the storage vessel shall be assigned to that process unit. (iv) If there are two or more process units... same maximum annual design capacity on a mass basis for two or more products, and if one of those... for the specified period, applicability shall be determined (in accordance with paragraph (f)(2) of...
40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.
Code of Federal Regulations, 2013 CFR
2013-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...
40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.
Code of Federal Regulations, 2012 CFR
2012-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...
40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.
Code of Federal Regulations, 2014 CFR
2014-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...
40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.
Code of Federal Regulations, 2011 CFR
2011-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... furnace or a foundry coke byproduct recovery plant shall enclose and seal all openings on each process... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...
40 CFR 63.5490 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2011 CFR
2011-07-01
... to each new, reconstructed, or existing affected source for the Miscellaneous Viscose Processes and Cellulose Ethers Production source categories. (b) The affected source for the Miscellaneous Viscose... paragraph (c)(3) or (4) of this section. (1) The input to the storage vessel from your viscose process or...
40 CFR 63.5490 - What parts of my plant does this subpart cover?
Code of Federal Regulations, 2010 CFR
2010-07-01
... to each new, reconstructed, or existing affected source for the Miscellaneous Viscose Processes and Cellulose Ethers Production source categories. (b) The affected source for the Miscellaneous Viscose... paragraph (c)(3) or (4) of this section. (1) The input to the storage vessel from your viscose process or...
Foam vessel for cryogenic fluid storage
Spear, Jonathan D [San Francisco, CA
2011-07-05
Cryogenic storage and separator vessels made of polyolefin foams are disclosed, as are methods of storing and separating cryogenic fluids and fluid mixtures using these vessels. In one embodiment, the polyolefin foams may be cross-linked, closed-cell polyethylene foams with a density of from about 2 pounds per cubic foot to a density of about 4 pounds per cubic foot.
Heater-mixer for stored fluids
NASA Technical Reports Server (NTRS)
Canning, T. N. (Inventor)
1974-01-01
A fluid storage vessel for containing cryogenic fluids is described. The storage vessel contains an auxiliary chamber which is connected to the main container by a jet nozzle. The wall of the auxiliary vessel is heat cycled to produce a corresponding expansion and contraction of the fluid within the auxiliary chamber. This action causes heating and mixing of the stored fluid by means of jetting the expanded fluid to and from relative to the stored fluid contents of the vessel.
Wilhelm, M; Ohnesorge, F K
1990-01-01
The influence of storage temperature, vessel type, and treatment on alterations of aluminum (Al) concentrations in serum, urine, and dialysis fluid samples was studied at three different concentrations for each sample over an 18-month period. Furthermore, the influence of acidification on Al levels in tap water, urine, and dialysis fluid samples was studied over a four-month period. Al was measured by atomic absorption spectrometry. Sample storage in glass vessels was unsuitable, whereas only minor alterations of Al levels were observed with storage in polypropylene tubes, polystyrene tubes, and Monovettes. By using appropriate plastic containers, acid washing of the vessels showed no improvement. Frozen storage was superior compared with 4 degrees C, whereas storage at -80 degrees C offered no advantage compared with storage at -20 degrees C. Acidification of tap water samples was necessary to stabilize Al levels during storage. No striking effect of acidification on Al levels in urine and dialysis fluid samples was found. It is concluded that longterm storage of serum, urine, tap water, and dialysis fluid samples is possible if appropriate conditions are used.
40 CFR 61.132 - Standard: Process vessels, storage tanks, and tar-intercepting sumps.
Code of Federal Regulations, 2010 CFR
2010-07-01
... POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product Recovery Plants § 61.132... system, or other enclosed point in the by-product recovery process where the benzene in the gas will be... or operator of a furnace coke by-product recovery plant also shall comply with the requirements of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gauglitz, Phillip A.; Wells, Beric E.; Fort, James A.
2009-05-22
The Hanford Waste Treatment and Immobilization Plant (WTP) is being designed and built to pretreat and vitrify a large portion of the waste in Hanford’s 177 underground waste storage tanks. Numerous process vessels will hold waste at various stages in the WTP. Some of these vessels have mixing-system requirements to maintain conditions where the accumulation of hydrogen gas stays below acceptable limits, and the mixing within the vessels is sufficient to release hydrogen gas under normal conditions and during off-normal events. Some of the WTP process streams are slurries of solid particles suspended in Newtonian fluids that behave as non-Newtonianmore » slurries, such as Bingham yield-stress fluids. When these slurries are contained in the process vessels, the particles can settle and become progressively more concentrated toward the bottom of the vessels, depending on the effectiveness of the mixing system. One limiting behavior is a settled layer beneath a particle-free liquid layer. The settled layer, or any region with sufficiently high solids concentration, will exhibit non-Newtonian rheology where it is possible for the settled slurry to behave as a soft solid with a yield stress. In this report, these slurries are described as settling cohesive slurries.« less
Flexible ultrasonic pipe inspection apparatus
Jenkins, C.F.; Howard, B.D.
1994-01-01
Pipe crawlers, pipe inspection {open_quotes}rabbits{close_quotes} and similar vehicles are widely used for inspecting the interior surfaces of piping systems, storage tanks and process vessels for damaged or flawed structural features. This paper describes the design of a flexible, modular ultrasonic pipe inspection apparatus.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., transfer racks, and equipment leaks. An owner or operator who is referred to this subpart for controlling regulated material emissions from storage vessels, process vents, low and high throughput transfer racks, or... racks. (i) For low throughput transfer racks, the owner or operator shall comply with the applicable...
Hydrogen Fire in a Storage Vessel
NASA Technical Reports Server (NTRS)
Hester, Zena M.
2010-01-01
On October 23, 2007, the operations team began a procedure to sample the Liquid Hydrogen (LH2) storage vessels ("tanks"), and associated transfer system. This procedure was being performed to determine the conditions within the system, and if necessary, to purge the system of any excess Gaseous Hydrogen (GH2) in preparation for reactivation of the system. The system had not been used since 2003. The LH2 storage system contains two (2) spherical pressure vessels of 225,000 gallons in volume, with a maximum working pressure (MAWP) of 50 psig. Eight inch transfer piping connects them to the usage point. Operations began with activation of the burnstack for the LH2 storage area. Pneumatic (GN2) systems in the storage area were then activated and checked. Pressurization of storage tank number 1 with gaseous nitrogen (GN2) was initiated, with a target pressure of 10 psig, at which point samples were planned to be taken. At 5 psig, a loud noise was heard in the upper area of tank number 2. Smoke was seen exiting the burnstack and from the insulation on vent lines for both tanks. At this time tank number 1 was vented and the pressurization system was secured. The mishap resulted in physical damage to both storage tanks, as well as to some of the piping for both tanks. Corrective action included repair of the damaged hardware by a qualified contractor. Preventive action included documented organizational policy and procedures for establishing standby and mothball conditions for facilities and equipment, including provisions as detailed in the investigation report recommendations: Recommendation 1: The using organization should define necessary activities in order to place hydrogen systems in long term periods of inactivity. The defined activities should address requirements for rendering inert, isolation (i.e., physical disconnect, double block and bleed, etc.) and periodic monitoring. Recommendation 2: The using organization should develop a process to periodically monitor hazardous systems for proper configuration (i.e., a daily/weekly/monthly check sheet to verify critical purges are active).
Superconducting magnetic energy storage apparatus structural support system
Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.
1992-01-01
A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.
40 CFR 60.112 - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2010 CFR
2010-07-01
... greater than 78 mm Hg (1.5 psia) but not greater than 570 mm Hg (11.1 psia), the storage vessel shall be... pressure of the petroleum liquid as stored is greater than 570 mm Hg (11.1 psia), the storage vessel shall...
40 CFR Table 3 to Subpart Ppp of... - Group 1 Storage Vessels at Existing and New Affected Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Group 1 Storage Vessels at Existing... Polyether Polyols Production Pt. 63, Subpt. PPP, Table 3 Table 3 to Subpart PPP of Part 63—Group 1 Storage...) 75 ≤ capacity 1 capacity ≥ 151 ≥ 5.2 a Maximum true vapor pressure of total organic HAP at...
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum liquid being contained, and is equipped with a closure seal or seals to close the space between... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels for Petroleum Liquids for... container used for the storage of petroleum liquids, but does not include: (1) Pressure vessels which are...
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum liquid being contained, and is equipped with a closure seal or seals to close the space between... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels for Petroleum Liquids for... container used for the storage of petroleum liquids, but does not include: (1) Pressure vessels which are...
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum liquid being contained, and is equipped with a closure seal or seals to close the space between... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels for Petroleum Liquids for... container used for the storage of petroleum liquids, but does not include: (1) Pressure vessels which are...
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum liquid being contained, and is equipped with a closure seal or seals to close the space between... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels for Petroleum Liquids for... container used for the storage of petroleum liquids, but does not include: (1) Pressure vessels which are...
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum liquid being contained, and is equipped with a closure seal or seals to close the space between... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels for Petroleum Liquids for... container used for the storage of petroleum liquids, but does not include: (1) Pressure vessels which are...
76 FR 38024 - Standards of Performance for New Stationary Sources
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-29
..., and Prior to July 23, 1984. Kb Volatile Organic Liquid Storage X Vessels (Including Petroleum Liquid... R Primary Lead Smelters X X S Primary Aluminum Reduction Plants X X T Phosphate Fertilizer Industry: X X Wet Process Phosphoric Acid Plants. U Phosphate Fertilizer Industry: X X Superphosphoric Acid...
40 CFR 63.1332 - Emissions averaging provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... other controls for a Group 1 storage vessel, batch process vent, aggregate batch vent stream, continuous... in control after November 15, 1990. (2) Group 1 emission points, identified in paragraph (c)(3) of... applicable reference control technology or standard and the emissions allowed for the Group 1 emission point...
40 CFR 63.503 - Emissions averaging provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... used in conjunction with other controls for a Group 1 storage vessel, batch front-end process vent... will be allowed only for the increase in control after November 15, 1990. (2) Group 1 emission points... Group 1 emission points that are controlled to a level less stringent than the reference control...
40 CFR 63.503 - Emissions averaging provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... used in conjunction with other controls for a Group 1 storage vessel, batch front-end process vent... will be allowed only for the increase in control after November 15, 1990. (2) Group 1 emission points... Group 1 emission points that are controlled to a level less stringent than the reference control...
40 CFR 63.1332 - Emissions averaging provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... other controls for a Group 1 storage vessel, batch process vent, aggregate batch vent stream, continuous... in control after November 15, 1990. (2) Group 1 emission points, identified in paragraph (c)(3) of... reference control technology or standard and the emissions allowed for the Group 1 emission point. Said...
40 CFR 63.503 - Emissions averaging provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... used in conjunction with other controls for a Group 1 storage vessel, batch front-end process vent... will be allowed only for the increase in control after November 15, 1990. (2) Group 1 emission points... Group 1 emission points that are controlled to a level less stringent than the reference control...
40 CFR 63.503 - Emissions averaging provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... used in conjunction with other controls for a Group 1 storage vessel, batch front-end process vent... will be allowed only for the increase in control after November 15, 1990. (2) Group 1 emission points... Group 1 emission points that are controlled to a level less stringent than the reference control...
40 CFR 63.503 - Emissions averaging provisions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... used in conjunction with other controls for a Group 1 storage vessel, batch front-end process vent... will be allowed only for the increase in control after November 15, 1990. (2) Group 1 emission points... Group 1 emission points that are controlled to a level less stringent than the reference control...
Guidelines for pressure vessel safety assessment
NASA Astrophysics Data System (ADS)
Yukawa, S.
1990-04-01
A technical overview and information on metallic pressure containment vessels and tanks is given. The intent is to provide Occupational Safety and Health Administration (OSHA) personnel and other persons with information to assist in the evaluation of the safety of operating pressure vessels and low pressure storage tanks. The scope is limited to general industrial application vessels and tanks constructed of carbon or low alloy steels and used at temperatures between -75 and 315 C (-100 and 600 F). Information on design codes, materials, fabrication processes, inspection and testing applicable to the vessels and tanks are presented. The majority of the vessels and tanks are made to the rules and requirements of ASME Code Section VIII or API Standard 620. The causes of deterioration and damage in operation are described and methods and capabilities of detecting serious damage and cracking are discussed. Guidelines and recommendations formulated by various groups to inspect for the damages being found and to mitigate the causes and effects of the problems are presented.
Storage of H.sub.2 by absorption and/or mixture within a fluid medium
Berry, Gene David; Aceves, Salvador Martin
2007-03-20
For the first time, a hydrogen storage method, apparatus and system having a fluid mixture is provided. At predetermined pressures and/or temperatures within a contained substantially fixed volume, the fluid mixture can store a high density of hydrogen molecules, wherein a predetermined phase of the fluid mixture is capable of being withdrawn from the substantially fixed volume for use as a vehicle fuel or energy storage having reduced and/or eliminated evaporative losses, especially where storage weight, vessel cost, vessel shape, safety, and energy efficiency are beneficial.
Radon free storage container and method
Langner, Jr., G. Harold; Rangel, Mark J.
1991-01-01
A radon free containment environment for either short or long term storage of radon gas detectors can be provided as active, passive, or combined active and passive embodiments. A passive embodiment includes a resealable vessel containing a basket capable of holding and storing detectors and an activated charcoal adsorbing liner between the basket and the containment vessel wall. An active embodiment includes the resealable vessel of the passive embodiment, and also includes an external activated charcoal filter that circulates the gas inside the vessel through the activated charcoal filter. An embodiment combining the active and passive embodiments is also provided.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
...). C. Group 1 Storage Vessel Affected Facility Control Requirements The final amendments retain the... Control Requirements and Applicability We received comments requesting clarification regarding Group 1... there was confusion regarding the applicability of Group 1 storage vessel affected facility control...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
Code of Federal Regulations, 2011 CFR
2011-07-01
... shall have the meaning given them in the Act and in this section. Capacity means the volume of liquid... or emptying means the partial or complete removal of stored liquid from a storage vessel. Storage vessels that contain liquid only as wall or bottom clingage, or in pools due to bottom irregularities, are...
Code of Federal Regulations, 2013 CFR
2013-07-01
... shall have the meaning given them in the Act and in this section. Capacity means the volume of liquid... or emptying means the partial or complete removal of stored liquid from a storage vessel. Storage vessels that contain liquid only as wall or bottom clingage, or in pools due to bottom irregularities, are...
Code of Federal Regulations, 2014 CFR
2014-07-01
... shall have the meaning given them in the Act and in this section. Capacity means the volume of liquid... or emptying means the partial or complete removal of stored liquid from a storage vessel. Storage vessels that contain liquid only as wall or bottom clingage, or in pools due to bottom irregularities, are...
Code of Federal Regulations, 2010 CFR
2010-07-01
... shall have the meaning given them in the Act and in this section. Capacity means the volume of liquid... or emptying means the partial or complete removal of stored liquid from a storage vessel. Storage vessels that contain liquid only as wall or bottom clingage, or in pools due to bottom irregularities, are...
40 CFR 60.112b - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which... specifications: (i) The internal floating roof shall rest or float on the liquid surface (but not necessarily in... be floating on the liquid surface at all times, except during initial fill and during those intervals...
Code of Federal Regulations, 2012 CFR
2012-07-01
... shall have the meaning given them in the Act and in this section. Capacity means the volume of liquid... or emptying means the partial or complete removal of stored liquid from a storage vessel. Storage vessels that contain liquid only as wall or bottom clingage, or in pools due to bottom irregularities, are...
40 CFR 65.42 - Control requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Control requirements. 65.42 Section 65...) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.42 Control requirements. (a) For each storage vessel to... periods of planned routine maintenance or during a control system malfunction. The owner or operator shall...
40 CFR 65.42 - Control requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Control requirements. 65.42 Section 65...) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.42 Control requirements. (a) For each storage vessel to... periods of planned routine maintenance or during a control system malfunction. The owner or operator shall...
40 CFR 65.42 - Control requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 16 2013-07-01 2013-07-01 false Control requirements. 65.42 Section 65...) CONSOLIDATED FEDERAL AIR RULE Storage Vessels § 65.42 Control requirements. (a) For each storage vessel to... periods of planned routine maintenance or during a control system malfunction. The owner or operator shall...
40 CFR 61.273 - Alternative means of emission limitation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Benzene Emissions From Benzene Storage Vessels § 61.273 Alternative means of emission limitation... benzene emissions at least equivalent to the reduction in emissions achieved by any requirement in § 61... full-size or scale-model storage vessels that accurately collect and measure all benzene emissions from...
40 CFR 61.273 - Alternative means of emission limitation.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Benzene Emissions From Benzene Storage Vessels § 61.273 Alternative means of emission limitation... benzene emissions at least equivalent to the reduction in emissions achieved by any requirement in § 61... full-size or scale-model storage vessels that accurately collect and measure all benzene emissions from...
40 CFR 61.274 - Initial report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.274 Initial report. (a) The owner or operator of each storage vessel to which... filled) with benzene. [54 FR 38077, Sept. 14, 1989, as amended at 65 FR 78284, Dec. 14, 2000] ...
40 CFR 61.273 - Alternative means of emission limitation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Benzene Emissions From Benzene Storage Vessels § 61.273 Alternative means of emission limitation... benzene emissions at least equivalent to the reduction in emissions achieved by any requirement in § 61... full-size or scale-model storage vessels that accurately collect and measure all benzene emissions from...
40 CFR 61.274 - Initial report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.274 Initial report. (a) The owner or operator of each storage vessel to which... filled) with benzene. [54 FR 38077, Sept. 14, 1989, as amended at 65 FR 78284, Dec. 14, 2000] ...
40 CFR 61.274 - Initial report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.274 Initial report. (a) The owner or operator of each storage vessel to which... filled) with benzene. [54 FR 38077, Sept. 14, 1989, as amended at 65 FR 78284, Dec. 14, 2000] ...
40 CFR 61.273 - Alternative means of emission limitation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Benzene Emissions From Benzene Storage Vessels § 61.273 Alternative means of emission limitation... benzene emissions at least equivalent to the reduction in emissions achieved by any requirement in § 61... full-size or scale-model storage vessels that accurately collect and measure all benzene emissions from...
40 CFR 61.274 - Initial report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.274 Initial report. (a) The owner or operator of each storage vessel to which... filled) with benzene. [54 FR 38077, Sept. 14, 1989, as amended at 65 FR 78284, Dec. 14, 2000] ...
40 CFR 61.274 - Initial report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.274 Initial report. (a) The owner or operator of each storage vessel to which... filled) with benzene. [54 FR 38077, Sept. 14, 1989, as amended at 65 FR 78284, Dec. 14, 2000] ...
40 CFR 61.273 - Alternative means of emission limitation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Benzene Emissions From Benzene Storage Vessels § 61.273 Alternative means of emission limitation... benzene emissions at least equivalent to the reduction in emissions achieved by any requirement in § 61... full-size or scale-model storage vessels that accurately collect and measure all benzene emissions from...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Standards for slabstock flexible polyurethane foam production-HAP ABA storage vessels. 63.1295 Section 63.1295 Protection of Environment... Flexible Polyurethane Foam Production § 63.1295 Standards for slabstock flexible polyurethane foam...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of Part... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of Part... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Hazardous Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Hazardous Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Hazardous Air Pollutants Emissions or a Limit of 20 Parts Per Million by Volume 3 Table 3 to Subpart G of... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 3 Table 3 to.... Recapture devices The appropriate monitoring device identified in table 4 when, in the table, the term...
Koolivand, Ali; Naddafi, Kazem; Nabizadeh, Ramin; Saeedi, Reza
2017-07-31
In this research, removal of petroleum hydrocarbons from oily sludge of crude oil storage tanks was investigated under the optimized conditions of in-vessel composting process and chemical oxidation with H 2 O 2 and Fenton. After determining the optimum conditions, the sludge was pre-treated with the optimum state of the oxidation process. Then, the determined optimum ratios of the sludge to immature compost were composted at a C:N:P ratio of 100:5:1 and moisture content of 55% for a period of 10 weeks. Finally, both pre-treated and composted mixtures were again oxidized with the optimum conditions of the oxidants. Results showed that total petroleum hydrocarbons (TPH) removal of the 1:8 and 1:10 composting reactors which were pre-treated with H 2 O 2 were 88.34% and 90.4%, respectively. In addition, reduction of TPH in 1:8 and 1:10 composting reactors which were pre-treated with Fenton were 83.90% and 84.40%, respectively. Without applying the pre-treatment step, the composting reactors had a removal rate of about 80%. Therefore, pre-treatment of the reactors increased the TPH removal. However, post-oxidation of both pre-treated and composted mixtures reduced only 13-16% of TPH. Based on the results, remarkable overall removal of TPH (about 99%) was achieved by using chemical oxidation and subsequent composting process. The study showed that chemical oxidation with H 2 O 2 followed by in-vessel composting is a viable choice for the remediation of the sludge.
Cryogenic reactant storage for lunar base regenerative fuel cells
NASA Technical Reports Server (NTRS)
Kohout, Lisa L.
1989-01-01
There are major advantages to be gained by integrating a cryogenic reactant storage system with a hydrogen-oxygen regenerative fuel cell (RFC) to provide on-site electrical power during the lunar night. Although applicable to any power system using hydrogen-oxygen RFC's for energy storage, cryogenic reactant storage offers a significant benefit whenever the sun/shade cycle and energy storage period approach hundreds of hours. For solar power installations on the moon, cryogenic reactant storage reduces overall specific mass and meteoroid vulnerability of the system. In addition, it offers synergistic benefits to on-site users, such as availability of primary fuel cell reactants for surface rover vehicles and cryogenic propellants for OTV's. The integration involves processing and storing the RFC reactant streams as cryogenic liquids rather than pressurized gases, so that reactant containment (tankage per unit mass of reactants) can be greatly reduced. Hydrogen-oxygen alkaline RFC's, GaAs photovoltaic (PV) arrays, and space cryogenic processing/refrigeration technologies are assumed to be available for the conceptual system design. Advantages are demonstrated by comparing the characteristics of two power system concepts: a conventional lunar surface PV/RFC power system using pressurized gas storage in SOA filament wound pressure vessels and, that same system with gas liquefaction and storage replacing the pressurized storage. Comparisons are made at 20 and 250 kWe. Although cryogenic storage adds a processing plant (drying and liquefaction) to the system plus 30 percent more solar array to provide processing power, the approximate order of magnitude reduction in tankage mass, confirmed by this analysis, results in a reduction in overall total system mass of approximately 50 percent.
Fuel tank for liquefied natural gas
NASA Technical Reports Server (NTRS)
DeLay, Thomas K. (Inventor)
2012-01-01
A storage tank is provided for storing liquefied natural gas on, for example, a motor vehicle such as a bus or truck. The storage tank includes a metal liner vessel encapsulated by a resin-fiber composite layer. A foam insulating layer, including an outer protective layer of epoxy or of a truck liner material, covers the composite layer. A non-conducting protective coating may be painted on the vessel between the composite layer and the vessel so as to inhibit galvanic corrosion.
40 CFR 63.1334 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hours in an operating day and more than two of the hours during the period of operation do not... of one or more parameters, averaged over the duration of the filling period for the storage vessel... monitored and recorded, according to the storage vessel's monitoring plan, during the filling period for the...
40 CFR 63.1334 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... hours in an operating day and more than two of the hours during the period of operation do not... of one or more parameters, averaged over the duration of the filling period for the storage vessel... monitored and recorded, according to the storage vessel's monitoring plan, during the filling period for the...
40 CFR 63.1334 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hours in an operating day and more than two of the hours during the period of operation do not... of one or more parameters, averaged over the duration of the filling period for the storage vessel... monitored and recorded, according to the storage vessel's monitoring plan, during the filling period for the...
Final Rule on National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke By-Product Recovery Plants.
40 CFR 60.112 - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2011 CFR
2011-07-01
... liquids as follows: (1) If the true vapor pressure of the petroleum liquid, as stored, is equal to or... pressure of the petroleum liquid as stored is greater than 570 mm Hg (11.1 psia), the storage vessel shall... Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced...
40 CFR 60.112 - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2012 CFR
2012-07-01
... liquids as follows: (1) If the true vapor pressure of the petroleum liquid, as stored, is equal to or... pressure of the petroleum liquid as stored is greater than 570 mm Hg (11.1 psia), the storage vessel shall... Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced...
40 CFR 60.112 - Standard for volatile organic compounds (VOC).
Code of Federal Regulations, 2014 CFR
2014-07-01
... liquids as follows: (1) If the true vapor pressure of the petroleum liquid, as stored, is equal to or... pressure of the petroleum liquid as stored is greater than 570 mm Hg (11.1 psia), the storage vessel shall... Storage Vessels for Petroleum Liquids for Which Construction, Reconstruction, or Modification Commenced...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control emissions from storage vessels or low-throughput transfer racks. 65.145 Section 65.145 Protection... racks. (a) Nonflare control device equipment and operating requirements. The owner or operator shall...-throughput transfer rack, so that the monitored parameters defined as required in paragraph (c) of this...
Two-tank working gas storage system for heat engine
Hindes, Clyde J.
1987-01-01
A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.
40 CFR 65.151 - Condensers used as control devices.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the design evaluation for storage vessels and low-throughput transfer rack controls. As provided in... control device on a Group 1 process vent or a high-throughput transfer rack with a condenser used as a... 40 Protection of Environment 16 2014-07-01 2014-07-01 false Condensers used as control devices. 65...
40 CFR 65.151 - Condensers used as control devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the design evaluation for storage vessels and low-throughput transfer rack controls. As provided in... control device on a Group 1 process vent or a high-throughput transfer rack with a condenser used as a... 40 Protection of Environment 15 2010-07-01 2010-07-01 false Condensers used as control devices. 65...
40 CFR 65.151 - Condensers used as control devices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the design evaluation for storage vessels and low-throughput transfer rack controls. As provided in... control device on a Group 1 process vent or a high-throughput transfer rack with a condenser used as a... 40 Protection of Environment 15 2011-07-01 2011-07-01 false Condensers used as control devices. 65...
Code of Federal Regulations, 2014 CFR
2014-07-01
... spent pulping liquor, soap, and turpentine management, spill prevention, and control. 430.03 Section 430... management practices (BMPs) for spent pulping liquor, soap, and turpentine management, spill prevention, and... Liquor, Soap, and Turpentine Service: Any process vessel, storage tank, pumping system, evaporator, heat...
Code of Federal Regulations, 2013 CFR
2013-07-01
... spent pulping liquor, soap, and turpentine management, spill prevention, and control. 430.03 Section 430... management practices (BMPs) for spent pulping liquor, soap, and turpentine management, spill prevention, and... Liquor, Soap, and Turpentine Service: Any process vessel, storage tank, pumping system, evaporator, heat...
40 CFR 63.112 - Emission standard.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.112 Emission standard. (a) The... emissions from all Group 1 wastewater streams, as defined in § 63.111 of this subpart. This term is.... Σ EWW2 = Sum of emissions from all Group 2 wastewater streams, as defined in § 63.111 of this...
40 CFR 63.112 - Emission standard.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.112 Emission standard. (a) The... emissions from all Group 1 wastewater streams, as defined in § 63.111 of this subpart. This term is.... Σ EWW2 = Sum of emissions from all Group 2 wastewater streams, as defined in § 63.111 of this...
40 CFR 63.112 - Emission standard.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.112 Emission standard. (a) The... emissions from all Group 1 wastewater streams, as defined in § 63.111 of this subpart. This term is.... Σ EWW2 = Sum of emissions from all Group 2 wastewater streams, as defined in § 63.111 of this...
40 CFR 63.420 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-CE)+0.17 (TE)+0.08(TES)+0.038(TI)+8.5×10-6(C)+KQ]+0.04(OE) where: ET = emissions screening factor for... efficiency limitation on potential to emit for the vapor processing system used to control emissions from... of external floating roof gasoline storage vessels with only primary seals; TES = total number of...
40 CFR 63.420 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-CE)+0.17 (TE)+0.08(TES)+0.038(TI)+8.5×10-6(C)+KQ]+0.04(OE) where: ET = emissions screening factor for... efficiency limitation on potential to emit for the vapor processing system used to control emissions from... of external floating roof gasoline storage vessels with only primary seals; TES = total number of...
40 CFR 63.420 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-CE)+0.17 (TE)+0.08(TES)+0.038(TI)+8.5×10-6(C)+KQ]+0.04(OE) where: ET = emissions screening factor for... efficiency limitation on potential to emit for the vapor processing system used to control emissions from... of external floating roof gasoline storage vessels with only primary seals; TES = total number of...
40 CFR 63.420 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-CE)+0.17 (TE)+0.08(TES)+0.038(TI)+8.5×10-6(C)+KQ]+0.04(OE) where: ET = emissions screening factor for... efficiency limitation on potential to emit for the vapor processing system used to control emissions from... of external floating roof gasoline storage vessels with only primary seals; TES = total number of...
40 CFR 63.420 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
...)(1-CE)+0.17 (TE)+0.08(TES)+0.038(TI)+8.5×10-6(C)+KQ]+0.04(OE) where: ET = emissions screening factor... efficiency limitation on potential to emit for the vapor processing system used to control emissions from... of external floating roof gasoline storage vessels with only primary seals; TES = total number of...
NASA Technical Reports Server (NTRS)
Hudson, C. M.; Girouard, R. L.; Young, C. P., Jr.; Petley, D. H.; Hudson, J. L., Jr.; Hudgins, J. L.
1977-01-01
This center operates a number of sophisticated wind tunnels in order to fulfill the needs of its researchers. Compressed air, which is kept in steel storage vessels, is used to power many of these tunnels. Some of these vessels have been in use for many years, and Langley is currently recertifying these vessels to insure their continued structural integrity. One of the first facilities to be recertified under this program was the Langley 8-foot high-temperature structures tunnel. This recertification involved (1) modification, hydrotesting, and inspection of the vessels; (2) repair of all relevant defects; (3) comparison of the original design of the vessel with the current design criteria of Section 8, Division 2, of the 1974 ASME Boiler and Pressure Vessel Code; (4) fracture-mechanics, thermal, and wind-induced vibration analyses of the vessels; and (5) development of operating envelopes and a future inspection plan for the vessels. Following these modifications, analyses, and tests, the vessels were recertified for operation at full design pressure (41.4 MPa (6000 psi)) within the operating envelope developed.
Study on Calculation of Liquid Level And Storage of Tanks for LNG-fueled Vessels
NASA Astrophysics Data System (ADS)
Li, Kun; Wang, Guoqing; Liu, Chang
2018-01-01
As the ongoing development of the application of LNG as a clean energy in waterborne transport industry, the fleet scale of LNG-fueled vessels enlarged and the safety operation has attracted more attention in the industry. Especially the accurate detection of liquid level of LNG tanks is regarded as an important issue to ensure a safe and stable operation of LNG-fueled ships and a key parameter to keep the proper functioning of marine fuel storage system, supply system and safety control system. At present, detection of LNG tank liquid level mainly adopts differential pressure detection method. Liquid level condition could be found from the liquid level reference tables. However in practice, since LNG-fueled vessels are generally not in a stationary state, liquid state within the LNG tanks will constantly change, the detection of storage of tanks only by reference to the tables will cause deviation to some extent. By analyzing the temperature under different pressure, the effects of temperature change on density and volume integration calculation, a method of calculating the liquid level and storage of LNG tanks is put forward making the calculation of liquid level and actual storage of LNG tanks more accurately and providing a more reliable basis for the calculation of energy consumption level and operation economy for LNG-fueled vessels.
Insulation Progress since the Mid-1950s
NASA Astrophysics Data System (ADS)
Timmerhaus, K. D.
Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.
NASA Astrophysics Data System (ADS)
Zhao, Hemin; Dong, Fujun; Liu, Xiaolin; Xiong, Xiong
This essay introduces the developed high-heat input welding quenched and tempered pressure vessel steel 12MnNiVR for oil storage tank by Xinyu Steel, which passed the review by the Boiler and Pressure Vessel Standards Technical Committee in 2009. The review comments that compared to the domestic and foreign similar steel standard, the key technical index of enterprise standard were in advanced level. After the heat input of 100kJ/cm electro-gas welding, welded points were still with excellent low temperature toughness at -20°C. The steel plate may be constructed for oil storage tank, which has been permitted by thickness range from 10 to 40mm, and design temperature among -20°C-100°C. It studied microstructure genetic effects mechanical properties of the steel. Many production practices indicated that the mechanical properties of products and the steel by stress relief heat treatment of steel were excellent, with pretreatment of hot metal, converter refining, external refining, protective casting, TMCP and heat treatment process measurements. The stability of performance and matured technology of Xinyu Steel support the products could completely service the demand of steel constructed for 10-15 million cubic meters large oil storage tank.
40 CFR 63.505 - Parameter monitoring levels and excursions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... less than 4 hours in an operating day and more than two of the hours during the period of operation do... filling period for the storage vessel, is above the maximum level or below the minimum level established... plan, during the filling period for the storage vessel. (ii) If the monitoring plan does not specify...
40 CFR Table 5 to Subpart G of... - Group 1 Storage Vessels at Existing Sources
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Group 1 Storage Vessels at Existing Sources 5 Table 5 to Subpart G of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for...
40 CFR Table 5 to Subpart G of... - Group 1 Storage Vessels at Existing Sources
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Group 1 Storage Vessels at Existing Sources 5 Table 5 to Subpart G of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for...
40 CFR Table 5 to Subpart G of... - Group 1 Storage Vessels at Existing Sources
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Group 1 Storage Vessels at Existing Sources 5 Table 5 to Subpart G of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for...
40 CFR Table 5 to Subpart G of... - Group 1 Storage Vessels at Existing Sources
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Group 1 Storage Vessels at Existing Sources 5 Table 5 to Subpart G of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for...
40 CFR Table 5 to Subpart G of... - Group 1 Storage Vessels at Existing Sources
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Group 1 Storage Vessels at Existing Sources 5 Table 5 to Subpart G of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards for...
40 CFR 61.270 - Applicability and designation of sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Benzene Emissions From Benzene Storage Vessels § 61.270 Applicability and designation of sources. (a) The source to which this subpart applies is each storage vessel that is storing benzene having a... Benzene, ASTM D835-85 for Refined Benzene-485, ASTM D2359-85a or 93 for Refined Benzene-535, and ASTM...
40 CFR 61.270 - Applicability and designation of sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Benzene Emissions From Benzene Storage Vessels § 61.270 Applicability and designation of sources. (a) The source to which this subpart applies is each storage vessel that is storing benzene having a... Benzene, ASTM D835-85 for Refined Benzene-485, ASTM D2359-85a or 93 for Refined Benzene-535, and ASTM...
40 CFR 61.270 - Applicability and designation of sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Benzene Emissions From Benzene Storage Vessels § 61.270 Applicability and designation of sources. (a) The source to which this subpart applies is each storage vessel that is storing benzene having a... Benzene, ASTM D835-85 for Refined Benzene-485, ASTM D2359-85a or 93 for Refined Benzene-535, and ASTM...
40 CFR 61.270 - Applicability and designation of sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Benzene Emissions From Benzene Storage Vessels § 61.270 Applicability and designation of sources. (a) The source to which this subpart applies is each storage vessel that is storing benzene having a... Benzene, ASTM D835-85 for Refined Benzene-485, ASTM D2359-85a or 93 for Refined Benzene-535, and ASTM...
40 CFR 61.270 - Applicability and designation of sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Benzene Emissions From Benzene Storage Vessels § 61.270 Applicability and designation of sources. (a) The source to which this subpart applies is each storage vessel that is storing benzene having a... Benzene, ASTM D835-85 for Refined Benzene-485, ASTM D2359-85a or 93 for Refined Benzene-535, and ASTM...
40 CFR Figure 1 to Subpart G of... - Definitions of Terms Used in Wastewater Equations
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Definitions of Terms Used in Wastewater... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Fig. 1 Figure 1 to Subpart G of Part 63—Definitions of Terms Used in Wastewater...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-27
... Tanks. O Ethylene Oxide X X X Sterilization Facilities. Q Industrial Process Cooling X X Towers. R... Organic-Water Separators. WW Storage Vessels (Tanks)-- X X Control Level 2. XX Ethylene Manufacturing X X... Refractory Products X X Manufacturing. TTTTT Primary Magnesium Refining. X WWWWW Hospital Ethylene Oxide X X...
Code of Federal Regulations, 2010 CFR
2010-07-01
... FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions from Coke By-Product... no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background and visual inspections, as determined by the methods specified in § 61.245(c). (3) The provisions of...
40 CFR Table 8 to Subpart Ppp of... - Routine Reports Required by This Subpart
Code of Federal Regulations, 2011 CFR
2011-07-01
....1439(e)(6) Periodic Reports Semiannually, no later than 60 days after the end of each 6-month period... refilling of each storage vessel or the inspection of each storage vessel. a There may be two versions of... after June 1, 1999. § 63.1439(e)(4) Precompliance Report a Existing affected sources: 12 months prior to...
40 CFR Table 8 to Subpart Ppp of... - Routine Reports Required by This Subpart
Code of Federal Regulations, 2010 CFR
2010-07-01
....1439(e)(6) Periodic Reports Semiannually, no later than 60 days after the end of each 6-month period... refilling of each storage vessel or the inspection of each storage vessel. a There may be two versions of... after June 1, 1999. § 63.1439(e)(4) Precompliance Report a Existing affected sources: 12 months prior to...
40 CFR Table 8 to Subpart Ppp of... - Routine Reports Required by This Subpart
Code of Federal Regulations, 2012 CFR
2012-07-01
....1439(e)(6) Periodic Reports Semiannually, no later than 60 days after the end of each 6-month period... refilling of each storage vessel or the inspection of each storage vessel. a There may be two versions of... after June 1, 1999. § 63.1439(e)(4) Precompliance Report a Existing affected sources: 12 months prior to...
Gras Dowr joins world`s FPSO fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-05-05
The Gras Dowr, a floating production, storage, and offloading vessel (FPSD) for Amerada Hess Ltd.`s North Sea Durward and Dauntless fields, is one of the latest additions to the world`s growing FPSO fleet. The Gras Dowr, anchored in about 90 m of water, lies between the Durward (U.K. Block 21/16) and Dauntless (U.K. Block 21/11) fields, about 3.5 km from the subsea wellhead locations. The Gras Dowr`s main functions, according to Bluewater Offshore Production Systems Ltd., are to: receive fluids from well risers; process incoming fluids to separate the fluid into crude, water, and gas; store dry crude oil andmore » maintain the required temperature; treat effluent to allow for water discharge to the sea; compress gas for gas lift as a future option; provide chemical injection skid for process chemical injection; use a part of the produced gas for fuel gas, and flare excess gas; inject treated seawater into the injection wells; house power generation for process and offloading operation and utilities; offload to a tandem moored shuttle tanker including receiving liquid fuel from the same tanker; provide accommodations for operating and maintenance crews; allow helicopters landings and takeoffs; allow handling and storage of goods transported by supply vessels; moor a shuttle tanker; and control the subsea wells.« less
Lucejko, Jeannette J; La Nasa, Jacopo; Porta, Francesca; Vanzetti, Alessandro; Tanda, Giuseppa; Mangiaracina, Claudio Filippo; Corretti, Alessandro; Colombini, Maria Perla; Ribechini, Erika
2018-03-02
Cereals were very important in ancient diets, however evidence from archaeological sites of the vessels used for processing or storing cereals is comparatively rare. Micro-organisms, as well as chemical-physical effects can easily degrade cereals during the burial period. This can lead to a complete cereal decay and to serious difficulties in estimating the intensity of use of the cereals by ancient populations. Here, we present a novel biomarker approach entailing the detection of secondary lipid metabolites produced by ergot fungi (genus Claviceps), which are common cereal pests. The aim was to identify the original presence of Gramineae and to indirectly establish if vessels were used for cereal storage/processing. The fatty acid and TAG-estolide profiles of the remains from more than 30 archaeological vessels were investigated by gas chromatography/mass spectrometry (GC/MS) and high performance liquid chromatography/high resolution mass spectrometry (HPLC/ESI-Q-ToF). The detection of lipids derived from ergot in archaeological and historic contexts rests on its complex chemistry, providing a unique and relatively recalcitrant chemical signature for cereals. This research demonstrated that the combination of our innovative biomarker approach along with environmental and archaeological evidence can provide unprecedented insights into the incidence of cereals and related processing activities in ancient societies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Group 1 Storage Vessels at New Affected Sources Producing the Listed Thermoplastics 5 Table 5 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Group 1 Storage Vessels at New Affected Sources Producing the Listed Thermoplastics 5 Table 5 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Group 1 Storage Vessels at New Affected Sources Producing the Listed Thermoplastics 5 Table 5 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Group 1 Storage Vessels at New Affected Sources Producing the Listed Thermoplastics 5 Table 5 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Group 1 Storage Vessels at New Affected Sources Producing the Listed Thermoplastics 5 Table 5 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE...
Space environmental considerations for a long-term cryogenic storage vessel
NASA Technical Reports Server (NTRS)
Nakanishi, Shigeo
1987-01-01
Information is given on the kind of protection that is needed against impact and perforation of a long-term cryogenic storage vessel in space by meteoroids and space debris. The long-term effects of the space environment on thermal control surfaces and coatings, and the question of whether the insulation and thermal control surfaces should be encased in a vacuum jacket shell are discussed.
29 CFR 1910.402 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Code or equivalent: ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code... pressure: The pressure at which a pressure containment device would fail structurally. Cylinder: A pressure vessel for the storage of gases. Decompression chamber: A pressure vessel for human occupancy such as a...
29 CFR 1910.402 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Code or equivalent: ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code... pressure: The pressure at which a pressure containment device would fail structurally. Cylinder: A pressure vessel for the storage of gases. Decompression chamber: A pressure vessel for human occupancy such as a...
29 CFR 1910.402 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Code or equivalent: ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code... pressure: The pressure at which a pressure containment device would fail structurally. Cylinder: A pressure vessel for the storage of gases. Decompression chamber: A pressure vessel for human occupancy such as a...
Underground storage systems for high-pressure air and gases
NASA Technical Reports Server (NTRS)
Beam, B. H.; Giovannetti, A.
1975-01-01
This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.
Satellite Testbed for Evaluating Cryogenic-Liquid Behavior in Microgravity
NASA Technical Reports Server (NTRS)
Putman, Philip Travis (Inventor)
2017-01-01
Provided is a testbed for conducting an experiment on a substance in a cryogenic liquid state in a microgravity environment. The testbed includes a frame with rectangular nominal dimensions, and a source section including a supply of the substance to be evaluated in the cryogenic liquid state. An experiment section includes an experiment vessel in fluid communication with the storage section to receive the substance from the storage section and condense the substance into the cryogenic liquid state. A sensor is adapted to sense a property of the substance in the cryogenic liquid state in the experiment vessel as part of the experiment. A bus section includes a controller configured to control delivery of the substance from the storage section to the experiment vessel, and receive property data indicative of the property sensed by the sensor for subsequent evaluation on Earth.
SLAYING THE DRAGON-THE STORY OF ONE FPSO, 20 VIETNAMESE OPERATORS AND 3 CONCRETE MIXERS.
O'Brien, Anthony; van Rooyen, Annelize
2017-04-01
End of life of a floating production, storage and offloading (FPSO) facility requires a lot of planning and management. One of the major challenges is the issue of decontamination and waste management. Waste disposal is a very sensitive subject and with agreements like the London Protocol and differences in legislation between countries, it has the potential to become a major stumbling block. Radiation safety is something not often on the mind of an FPSO operator. The planning and layout of such a vessel and its processing plant have usually not gone through any as low as reasonably achievable process during design. Planning the decontamination of such a vessel should start long before the actual decommissioning date. Performing regular vessel cleanouts and radiological profiling of the plant can be beneficial in the end. Finding a workable solution in getting naturally occurring radioactive material contaminated waste out of the vessels and tanks and effectively reducing the waste volumes for end of life clean-up is very important. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Support of the eight-foot high-temperature tunnel modifications project
NASA Technical Reports Server (NTRS)
Hodges, Donald Y.; Shebalin, John V.
1987-01-01
An ultrasonic level sensor was developed to measure the liquid level in a storage vessel under high pressures, namely up to 6000 psi. The sensor is described. A prototype sensor was installed in the cooling-water storage vessel of the Eight-Foot High-Temperature Tunnel. Plans are being made to install the readout instrument in the control room, so that tunnel operators can monitor the water level during the course of a tunnel run. It was discovered that the sensor will operate at cryogenic temperatures. Consequently, a sensor will be installed in the modified Eight-Foot High-Temperature Tunnel to measure the sound speed of liquid oxygen (LOX) as it is transferred from a storage vessel to the tunnel combustor at pressure of about 3000 psi. The sound speed is known to be a reliable indicator of contamination of LOX by pressurized gaseous nitrogen, which will be used to effect the transfer. Subjecting the sensor to a temperature cycle from room temperature to liquid nitrogen temperature and back again several times revealed no deterioration in sensor performance. The method using this sensor is superior to the original method, which was to bleed samples of LOX from the storage vessel to an independent chamber for measurement of the sound speed.
B Plant Complex preclosure work plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
ADLER, J.G.
1999-02-02
This preclosure work plan describes the condition of the dangerous waste treatment storage, and/or disposal (TSD) unit after completion of the B Plant Complex decommissioning Transition Phase preclosure activities. This description includes waste characteristics, waste types, locations, and associated hazards. The goal to be met by the Transition Phase preclosure activities is to place the TSD unit into a safe and environmentally secure condition for the long-term Surveillance and Maintenance (S&M) Phase of the facility decommissioning process. This preclosure work plan has been prepared in accordance with Section 8.0 of the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement)more » (Ecology et al. 1996). The preclosure work plan is one of three critical Transition Phase documents, the other two being: B Plant End Points Document (WHC-SD-WM-TPP-054) and B Plant S&M plan. These documents are prepared by the U.S. Department of Energy, Richland Operations Office (DOE-RL) and its contractors with the involvement of Washington State Department of Ecology (Ecology). The tanks and vessels addressed by this preclosure work plan are limited to those tanks end vessels included on the B Plant Complex Part A, Form 3, Permit Application (DOE/RL-88-21). The criteria for determining which tanks or vessels are in the Part A, Form 3, are discussed in the following. The closure plan for the TSD unit will not be prepared until the Disposition Phase of the facility decommissioning process is initiated, which follows the long-term S&M Phase. Final closure will occur during the Disposition Phase of the facility decommissioning process. The Waste Encapsulation Storage Facility (WESF) is excluded from the scope of this preclosure work plan.« less
NASA Astrophysics Data System (ADS)
Li, Shuang-Fei; Wang, Ping-Yang; Liu, Zhen-hua
2018-05-01
This study proposed a novel thermosyphon-type thermal storage unit using water-based CuO nanofluid as the phase-change heat transfer medium. Seven tubular canisters containing solid-liquid phase-change material (PCM) with peak melting temperature of 100 °C were placed vertically into the center of the TSU which is a vertical cylindrical vessel made of stainless steel. Coat formed by depositing nanoparticles during the phase-change process was adopted to increase the wettability of the heat transfer surfaces of the canisters. We investigated the phase-change heat transfer, as well as the heat-storage and heat-release properties, of the TSU through experimental and computational analysis. Our results demonstrate that this thermal storage unit construction can propose good heat transfer and heat-storage/heat-release performance. The coating of nanoparticles onto the heat transfer surfaces increases the surface wettability and improves both the evaporation and condensation heat transfer. The main thermal resistance in the TSU results from the conductive heat transfer inside of the PCM. All phase-change thermal resistance of liquid film in charging and discharging processes can be ignored in this TSU.
Computing Q-D Relationships for Storage of Rocket Fuels
NASA Technical Reports Server (NTRS)
Jester, Keith
2005-01-01
The Quantity Distance Measurement Tool is a GIS BASEP computer program that aids safety engineers by calculating quantity-distance (Q-D) relationships for vessels that contain explosive chemicals used in testing rocket engines. (Q-D relationships are standard relationships between specified quantities of specified explosive materials and minimum distances by which they must be separated from persons, objects, and other explosives to obtain specified types and degrees of protection.) The program uses customized geographic-information-system (GIS) software and calculates Q-D relationships in accordance with NASA's Safety Standard For Explosives, Propellants, and Pyrotechnics. Displays generated by the program enable the identification of hazards, showing the relationships of propellant-storage-vessel safety buffers to inhabited facilities and public roads. Current Q-D information is calculated and maintained in graphical form for all vessels that contain propellants or other chemicals, the explosiveness of which is expressed in TNT equivalents [amounts of trinitrotoluene (TNT) having equivalent explosive effects]. The program is useful in the acquisition, siting, construction, and/or modification of storage vessels and other facilities in the development of an improved test-facility safety program.
Sodium storage and injection system
NASA Technical Reports Server (NTRS)
Keeton, A. R. (Inventor)
1979-01-01
A sodium storage and injection system for delivering atomized liquid sodium to a chemical reactor employed in the production of solar grade silicon is disclosed. The system is adapted to accommodate start-up, shut-down, normal and emergency operations, and is characterized by (1) a jacketed injection nozzle adapted to atomize liquefied sodium and (2) a supply circuit connected to the nozzle for delivering the liquefied sodium. The supply circuit is comprised of a plurality of replaceable sodium containment vessels, a pump interposed between the vessels and the nozzle, and a pressurizing circuit including a source of inert gas connected with the vessels for maintaining the sodium under pressure.
Lightweight cryogenic-compatible pressure vessels for vehicular fuel storage
Aceves, Salvador; Berry, Gene; Weisberg, Andrew H.
2004-03-23
A lightweight, cryogenic-compatible pressure vessel for flexibly storing cryogenic liquid fuels or compressed gas fuels at cryogenic or ambient temperatures. The pressure vessel has an inner pressure container enclosing a fuel storage volume, an outer container surrounding the inner pressure container to form an evacuated space therebetween, and a thermal insulator surrounding the inner pressure container in the evacuated space to inhibit heat transfer. Additionally, vacuum loss from fuel permeation is substantially inhibited in the evacuated space by, for example, lining the container liner with a layer of fuel-impermeable material, capturing the permeated fuel in the evacuated space, or purging the permeated fuel from the evacuated space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lambert, D. P.; Zamecnik, J. R.; Newell, D. D.
2015-08-20
This report describes the results of testing to quantify the degradation products resulting from the dilution and storage of Antifoam 747. Antifoam degradation is of concern to the Defense Waste Processing Facility (DWPF) due to flammable decomposition products in the vapor phase of the Chemical Process Cell vessels, as well as the collection of flammable and organic species in the offgas condensate. The discovery that hexamethyldisiloxane is formed from the antifoam decomposition was the basis for a Potential Inadequacy in the Safety Analysis declaration by the DWPF.
A low-cost intervention for cleaner drinking water in Karachi, Pakistan.
Luby, S; Agboatwalla, M; Raza, A; Sobel, J; Mintz, E; Baier, K; Rahbar, M; Qureshi, S; Hassan, R; Ghouri, F; Hoekstra, R M; Gangarosa, E
2001-01-01
To pilot test an inexpensive, home-based water decontamination and storage system in a low-income neighborhood of Karachi. Fifty households received a 20-L plastic water storage vessel with a high-quality spout and a regular supply of diluted hypochlorite solution. Twenty-five control households were recruited. Water samples were collected at baseline and during unannounced follow-up visits 1, 3, 6, and 10 weeks later. Baseline drinking water samples among intervention households were contaminated with a mean 9397 colony-forming units (cfu)/100 mL of thermotolerant coliforms compared with a mean 10,990 cfu/100 mL from controls. After intervention the mean concentration of thermotolerant coliforms decreased by 99.8% among the intervention households compared with an 8% reduction among controls. Two years after vessel distribution, 34 (68%) of the families were still using the vessel. Thirteen of the households had stopped using their vessel because it had broken after more than 6 months of use, a pattern most consistent with ultraviolet radiation-induced degradation of the plastic. In a highly contaminated environment, a specifically designed water storage container and in-home water chlorination was acceptable and markedly improved water quality. Where plastic water vessels will be exposed to substantial sunlight, ultraviolet light stabilizers should be incorporated into the plastic.
Applying Hanford Tank Mixing Data to Define Pulse Jet Mixer Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Beric E.; Bamberger, Judith A.; Recknagle, Kurtis P.
Pulse jet mixed (PJM) process vessels are being developed for storing, blending, and chemical processing of nuclear waste slurries at the Waste Treatment and Immobilization Plant (WTP) to be built at Hanford, Washington. These waste slurries exhibit variable process feed characteristics including Newtonian to non-Newtonian rheologies over a range of solids loadings. Waste feed to the WTP from the Hanford Tank Farms will be accomplished via the Waste Feed Delivery (WFD) system which includes million-gallon underground storage double-shell tanks (DSTs) with dual-opposed jet mixer pumps. Experience using WFD type jet mixer pumps to mobilize actual Hanford waste in DSTs maymore » be used to establish design threshold criteria of interest to pulse jet mixed process vessel operation. This paper describes a method to evaluate the pulse jet mixed vessel capability to process waste based on information obtained during mobilizing and suspending waste by the WFD system jet mixer pumps in a DST. Calculations of jet velocity and wall shear stress in a specific pulse jet mixed process vessel were performed using a commercial computational fluid dynamics (CFD) code. The CFD-modelled process vessel consists of a 4.9-m- (16-ft-) diameter tank with a 2:1 semi-elliptical head, a single, 10-cm (4-in.) downward facing 60-degree conical nozzle, and a 0.61-m (24-in.) inside diameter PJM. The PJM is located at 70% of the vessel radius with the nozzle stand-off-distance 14 cm (6 in.) above the vessel head. The CFD modeled fluid velocity and wall shear stress can be used to estimate vessel waste-processing performance by comparison to available actual WFD system process data. Test data from the operation of jet mixer pumps in the 23-m (75-ft) diameter DSTs have demonstrated mobilization, solid particles in a sediment matrix were moved from their initial location, and suspension, mobilized solid particles were moved to a higher elevation in the vessel than their initial location, of waste solids. Jet mixer pumps were used in Hanford waste tank 241-AZ-101, and at least 95% of the 0.46-m (18-in.) deep sediment, with a shear strength of 1,500 to 4,200 Pa, was mobilized. Solids with a median particle size of 43 μm, 90th percentile of 94μm, were suspended in tank 241-AZ-101 to at least 5.5 m (216 in.) above the vessel bottom. Analytical calculations for this jet mixer pump test were used to estimate the velocities and wall shear stress that mobilized and suspended the waste. These velocities and wall shear stresses provide design threshold criteria which are metrics for system performance that can be evaluated via testing. If the fluid motion in a specific pulse jet mixed process vessel meets or exceeds the fluid motion of the demonstrated performance in the WFD system, confidence is provided that that vessel will similarly mobilize and suspend those solids if they were within the WTP. The single PJM CFD-calculated jet velocity and wall shear stress compare favorably with the design threshold criterion estimated for the tank 241-AZ-101 process data. Therefore, for both mobilization and suspension, the performance data evaluated from the WFD system testing increases confidence that the performance of the pulse jet mixed process vessels will be sufficient to process that waste even if that waste is not fully characterized.« less
19 CFR 151.44 - Storage tanks.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 19 Customs Duties 2 2014-04-01 2014-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...
19 CFR 151.44 - Storage tanks.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 19 Customs Duties 2 2013-04-01 2013-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...
19 CFR 151.44 - Storage tanks.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 2 2010-04-01 2010-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...
19 CFR 151.44 - Storage tanks.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 2 2011-04-01 2011-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...
19 CFR 151.44 - Storage tanks.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 19 Customs Duties 2 2012-04-01 2012-04-01 false Storage tanks. 151.44 Section 151.44 Customs... Storage tanks. (a) Plans and gauge tables. When petroleum or petroleum products subject to duty at a specific rate per barrel are imported in bulk in tank vessels and are to be transferred into shore storage...
BOILING HEAT TRANSFER IN ZERO GRAVITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zara, E.A.
1964-01-01
The preliminary results of a research program to determine the effects of zero and near zero gravity on boiling heat transfer are presented. Zero gravity conditions were obtained on the ASD KC-135 zero gravity test aircraft, capable of providing 30-seconds of zero gravity. Results of the program to date indicate that nucleate (bubble) boiling heat transfer rates are not greatly affected by the absence of gravity forces. However, radical pressure increases were observed that will dictate special design considerations to space vehicle systems utilizing pool boiling processes, such as cryogenic or other fluid storage vessels where thermal input to themore » fluid is used for vessel pressurization. (auth)« less
Damage detection in hazardous waste storage tank bottoms using ultrasonic guided waves
NASA Astrophysics Data System (ADS)
Cobb, Adam C.; Fisher, Jay L.; Bartlett, Jonathan D.; Earnest, Douglas R.
2018-04-01
Detecting damage in storage tanks is performed commercially using a variety of techniques. The most commonly used inspection technologies are magnetic flux leakage (MFL), conventional ultrasonic testing (UT), and leak testing. MFL and UT typically involve manual or robotic scanning of a sensor along the metal surfaces to detect cracks or corrosion wall loss. For inspection of the tank bottom, however, the storage tank is commonly emptied to allow interior access for the inspection system. While there are costs associated with emptying a storage tank for inspection that can be justified in some scenarios, there are situations where emptying the tank is impractical. Robotic, submersible systems have been developed for inspecting these tanks, but there are some storage tanks whose contents are so hazardous that even the use of these systems is untenable. Thus, there is a need to develop an inspection strategy that does not require emptying the tank or insertion of the sensor system into the tank. This paper presents a guided wave system for inspecting the bottom of double-shelled storage tanks (DSTs), with the sensor located on the exterior side-wall of the vessel. The sensor used is an electromagnetic acoustic transducer (EMAT) that generates and receives shear-horizontal guided plate waves using magnetostriction principles. The system operates by scanning the sensor around the circumference of the storage tank and sending guided waves into the tank bottom at regular intervals. The data from multiple locations are combined using the synthetic aperture focusing technique (SAFT) to create a color-mapped image of the vessel thickness changes. The target application of the system described is inspection of DSTs located at the Hanford site, which are million-gallon vessels used to store nuclear waste. Other vessels whose exterior walls are accessible would also be candidates for inspection using the described approach. Experimental results are shown from tests on multiple mockups of the DSTs being used to develop the sensor system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tranter, P.
Tender-assisted drilling (TAD) involves the use of tender support vessel (TSV) during the drilling phase of platform development to provide drilling utilities to the platform-mounted drilling package. The TSV provides facilities such as mud mixing, storage, pumping, bulk storage, hotel accommodations, and power. Thus, the platform topsides and jacket weight and size can be smaller and less expensive. The paper discusses the advantages and disadvantages of TAD, then describes the TAD vessel, semisubmersible, platform cost savings, accommodations, drilling and workovers, and field experience.
50 CFR 300.117 - Prohibitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
.... (9) Fail to use real-time C-VMS port-to-port on board U.S. vessels harvesting AMLR in the Convention... documentation of the use of real-time C-VMS port-to-port by the vessel that harvested such Dissostichus species... fish, from sorting the catch to the storage of the finished product. (bb) Vessel monitoring systems. (1...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Storage. 194.15-9 Section 194.15-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194.15-9 Storage...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Storage. 194.15-9 Section 194.15-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194.15-9 Storage...
46 CFR 193.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Storage. 194.15-9 Section 194.15-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194.15-9 Storage...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Storage. 194.15-9 Section 194.15-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194.15-9 Storage...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Storage. 194.15-9 Section 194.15-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemistry Laboratory and Scientific Laboratory § 194.15-9 Storage...
46 CFR 193.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.115a - Monitoring of operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
40 CFR 60.113 - Monitoring of operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... petroleum liquid stored, the period of storage, and the maximum true vapor pressure of that liquid during the respective storage period. (b) Available data on the typical Reid vapor pressure and the maximum... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels...
8. VIEW OF VESSEL, SHOWING PORT SIDEPADDLE, SIDE LOCKER (USED ...
8. VIEW OF VESSEL, SHOWING PORT SIDE-PADDLE, SIDE LOCKER (USED FOR TOILET AND STORAGE DURING ATLANTIC CROSSING), MAINMAST, WHEELHOUSE AND STACK - Steam Tug EPPLETON HALL, Hyde Street Pier, San Francisco, San Francisco County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fort, III, William C.; Kallman, Richard A.; Maes, Miguel
2010-12-22
Lincoln Composites operates a facility for designing, testing, and manufacturing composite pressure vessels. Lincoln Composites also has a U.S. Department of Energy (DOE)-funded project to develop composite tanks for high-pressure hydrogen storage. The initial stage of this project involves testing the permeation of high-pressure hydrogen through polymer liners. The company recently moved and is constructing a dedicated research/testing laboratory at their new location. In the meantime, permeation tests are being performed in a corner of a large manufacturing facility. The safety review team visited the Lincoln Composites site on May 25, 2010. The project team presented an overview of themore » company and project and took the safety review team on a tour of the facility. The safety review team saw the entire process of winding a carbon fiber/resin tank on a liner, installing the boss and valves, and curing and painting the tank. The review team also saw the new laboratory that is being built for the DOE project and the temporary arrangement for the hydrogen permeation tests.« less
Effects of anaerobic digestion and aerobic treatment on gaseous emissions from dairy manure storages
USDA-ARS?s Scientific Manuscript database
Effects of anaerobic digestion and aerobic treatment on the reduction of gaseous emissions from dairy manure storages were evaluated in this study. Screened dairy manure containing 3.5% volatile solids (VS) was either anaerobically digested or aerobically treated prior to storage in air-tight vessel...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Storage. 194.20-9 Section 194.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-9 Storage. (a) Chemical...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Storage. 194.20-9 Section 194.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-9 Storage. (a) Chemical...
46 CFR 193.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE... storage. (a) Except as provided in paragraph (b) of this section, the cylinders shall be located outside...
46 CFR 76.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...
46 CFR 95.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...
46 CFR 193.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE... storage. (a) Except as provided in paragraph (b) of this section, the cylinders shall be located outside...
46 CFR 76.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...
46 CFR 95.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 7 2011-10-01 2011-10-01 false Storage. 194.20-9 Section 194.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-9 Storage. (a) Chemical...
46 CFR 76.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...
21 CFR 1250.27 - Storage of perishables.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Storage of perishables. 1250.27 Section 1250.27 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.27 Storage of perishables...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 7 2013-10-01 2013-10-01 false Storage. 194.20-9 Section 194.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-9 Storage. (a) Chemical...
21 CFR 1250.27 - Storage of perishables.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Storage of perishables. 1250.27 Section 1250.27 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.27 Storage of perishables...
21 CFR 1250.27 - Storage of perishables.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Storage of perishables. 1250.27 Section 1250.27 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.27 Storage of perishables...
21 CFR 1250.27 - Storage of perishables.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Storage of perishables. 1250.27 Section 1250.27 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.27 Storage of perishables...
46 CFR 95.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a...
46 CFR 76.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) PASSENGER VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 7 2014-10-01 2014-10-01 false Storage. 194.20-9 Section 194.20-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS HANDLING, USE, AND CONTROL OF EXPLOSIVES AND OTHER HAZARDOUS MATERIALS Chemical Stores and/or Storerooms § 194.20-9 Storage. (a) Chemical...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Nonhalogenated Flare 0.5276 0.0998 −2.096×10−3 −2.000×10−4 Thermal Incinerator 0 Percent Heat Recovery 0.4068 0.0171 8.664×10−3 −3.162×10−4 Thermal Incinerator 70 Percent Heat Recovery 0.6868 3.209×10−3 3.546×10−3 1... Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 2 Table 2 to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Coefficients a b c d Nonhalogenated Flare 1.935 3.660×10−1 −7.687×10−3 −7.333×10−4 Thermal Incinerator 0 Percent Heat Recovery 1.492 6.267×10−2 3.177×10−2 −1.159×10−3 Thermal Incinerator 70 Percent Heat Recovery... for Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 1...
19 CFR 151.28 - Gauging of sirup or molasses discharged into storage tanks.
Code of Federal Regulations, 2010 CFR
2010-04-01
... storage tanks. 151.28 Section 151.28 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF... Sugars, Sirups, and Molasses § 151.28 Gauging of sirup or molasses discharged into storage tanks. (a) Plans of storage tank to be filed. When sirup or molasses is imported in bulk in tank vessels and is to...
Assessing materials handling and storage capacities in port terminals
NASA Astrophysics Data System (ADS)
Dinu, O.; Roşca, E.; Popa, M.; Roşca, M. A.; Rusca, A.
2017-08-01
Terminals constitute the factual interface between different modes and, as a result, buffer stocks are unavoidable whenever transport flows with different discontinuities meet. This is the reason why assessing materials handling and storage capacities is an important issue in the course of attempting to increase operative planning of logistic processes in terminals. Proposed paper starts with a brief review of the compatibilities between different sorts of materials and corresponding transport modes and after, a literature overview of the studies related to ports terminals and their specialization is made. As a methodology, discrete event simulation stands as a feasible technique for assessing handling and storage capacities at the terminal, taking into consideration the multi-flows interaction and the non-uniform arrivals of vessels and inland vehicles. In this context, a simulation model, that integrates the activities of an inland water terminal and describes the essential interactions between the subsystems which influence the terminal capacity, is developed. Different scenarios are simulated for diverse sorts of materials, leading to bottlenecks identification, performance indicators such as average storage occupancy rate, average dwell or transit times estimations, and their evolution is analysed in order to improve the transfer operations in the logistic process
Americium behaviour in plastic vessels.
Legarda, F; Herranz, M; Idoeta, R; Abelairas, A
2010-01-01
The adsorption of (241)Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of (241)Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of (241)Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification. Copyright 2009 Elsevier Ltd. All rights reserved.
Klem, Michael T; Mosolf, Jesse; Young, Mark; Douglas, Trevor
2008-04-07
The Fe storage protein ferritin was used as a size-constrained reaction vessel for the photoreduction and reoxidation of complexed Eu, Fe, and Ti precursors for the formation of oxyhydroxide nanoparticles. The resultant materials were characterized by dynamic light scattering, gel electrophoresis, UV-vis spectroscopy, and transmission electron microscopy. The photoreduction and reoxidation process is inspired by biological sequestration mechanisms observed in some marine siderophore systems.
Solids Erosion Patterns Developed by Pulse Jet Mixers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A.; Pease, Leonard F.; Minette, Michael J.
Millions of gallons of radioactive waste are stored in underground storage tanks at the Hanford Site in Washington State. This waste will be vitrified at the Waste Treatment and Immobilization Plant that is under construction. Vessels in the pretreatment portion of the plant are being configured for processing waste slurries with challenging physical and rheological properties that range from Newtonian slurries to non-Newtonian sludge. Pulse jet mixing technology has been selected for mobilizing and mixing this waste. In the pulse jet mixing process, slurry is expelled from pulse tube nozzles directed towards the vessel floor. The expelled fluid forms amore » radial jet that erodes the settled layer of solids. The pulse tubes are configured in a ring or multiple rings and operate concurrently. The expelled fluid and mobilized solids traverse toward the center of the tank. At the tank center the jets from pulse tubes in the ring collide and lift solids upward in a central plume. At the end of the pulse, when the desired fluid volume is expelled from the pulse tube, the applied pressure switches to suction and the pulse tube is refilled. This cycle is used to mobilize and mix the tank contents. An initial step of the process is the erosion of solids from the vessel floor by the radial jets that form on the vessel flow beneath each pulse tube. Experiments have been conducted using simulants to evaluate the ability of the pulse jet mixing system radial jets to combine to develop the central upwell and lift solids into the vessel. These experiments have been conducted at three scales using a range of granular simulants over a range of concentrations. The vessels have elliptical, spherical, or flanged and dished bottoms. Process parameters evaluated include the velocity of fluid expelled from the pulse tube, the duration of the pulse and the duty cycle, the ratio of pulse duration to cycle time. Videos taken from beneath the vessel show the growth of the cleared area from each pulse tube as a function of time. All solids are lifted from the vessel bottom when the system is operating at the critical suspension velocity. The focus of this paper is to compare and contrast erosion patterns developed from different simulants and pulse tube configurations. The cases are evaluated to determine how changes in process parameters affects the PJM ability to mobilize solids from the vessel floor.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-28
... problems. Moreover, the use of SCR entails the supply, storage and use of a chemical reductant, usually..., storage and handling of the chemical reductant would be greater than for engines located elsewhere in the... proper availability of the chemical reductant during the harsh winter months, new heated storage vessels...
46 CFR 193.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a) Except as provided in...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Storage. 25.25-9 Section 25.25-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS Life Preservers and Other Lifesaving Equipment § 25.25-9 Storage. (a) The lifesaving equipment designed to be worn required in § 25.25-5 (b), (c...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Storage. 25.25-9 Section 25.25-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS Life Preservers and Other Lifesaving Equipment § 25.25-9 Storage. (a) The lifesaving equipment designed to be worn required in § 25.25-5 (b), (c...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Storage. 25.25-9 Section 25.25-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS Life Preservers and Other Lifesaving Equipment § 25.25-9 Storage. (a) The lifesaving equipment designed to be worn required in § 25.25-5 (b), (c...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Storage. 25.25-9 Section 25.25-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY UNINSPECTED VESSELS REQUIREMENTS Life Preservers and Other Lifesaving Equipment § 25.25-9 Storage. (a) The lifesaving equipment designed to be worn required in § 25.25-5 (b), (c...
Collapsible Cryogenic Storage Vessel Project
NASA Technical Reports Server (NTRS)
Fleming, David C.
2002-01-01
Collapsible cryogenic storage vessels may be useful for future space exploration missions by providing long-term storage capability using a lightweight system that can be compactly packaged for launch. Previous development efforts have identified an 'inflatable' concept as most promising. In the inflatable tank concept, the cryogen is contained within a flexible pressure wall comprised of a flexible bladder to contain the cryogen and a fabric reinforcement layer for structural strength. A flexible, high-performance insulation jacket surrounds the vessel. The weight of the tank and the cryogen is supported by rigid support structures. This design concept is developed through physical testing of a scaled pressure wall, and through development of tests for a flexible Layered Composite Insulation (LCI) insulation jacket. A demonstration pressure wall is fabricated using Spectra fabric for reinforcement, and burst tested under noncryogenic conditions. An insulation test specimens is prepared to demonstrate the effectiveness of the insulation when subject to folding effects, and to examine the effect of compression of the insulation under compressive loading to simulate the pressure effect in a nonrigid insulation blanket under the action atmospheric pressure, such as would be seen in application on the surface of Mars. Although pressure testing did not meet the design goals, the concept shows promise for the design. The testing program provides direction for future development of the collapsible cryogenic vessel concept.
Hydrogen storage in insulated pressure vessels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aceves, S.M.; Garcia-Villazana, O.
1998-08-01
Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use ofmore » insulated pressure vessels for light-duty vehicles.« less
NASA Technical Reports Server (NTRS)
Baker, W. E.; Kulesz, J. J.; Ricker, R. E.; Bessey, R. L.; Westine, P. S.; Parr, V. B.; Oldham, G. A.
1975-01-01
Technology needed to predict damage and hazards from explosions of propellant tanks and bursts of pressure vessels, both near and far from these explosions is introduced. Data are summarized in graphs, tables, and nomographs.
Empirical Profiling of Cold Hydrogen Plumes Formed from Venting Of LH2 Storage Vessels: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buttner, William J; Rivkin, Carl H; Schmidt, Kara
Liquid hydrogen (LH2) storage is a viable approach to assuring sufficient hydrogen capacity at commercial fuelling stations. Presently, LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e., LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery process. The behaviour of cold hydrogen plumes has not been well-characterized because empirical field data is essentially non-existent. The NFPA 2 Hydrogen Storage Safety Task Group, which consists of hydrogen producers, safety experts, and CFD modellers, has identified the lack of understanding of hydrogen dispersionmore » during LH2 venting of storage vessel as a critical gap for establishing safety distances at LH2 facilities, especially commercial hydrogen fuelling stations. To address this need, the NREL sensor laboratory, in collaboration with the NFPA 2 Safety Task Group developed the Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. A prototype Analyzer was developed and field-deployed at an actual LH2 venting operation with critical findings that included: - H2 being detected as much as 2 m lower than the release point, which is not predicted by existing models - A small and inconsistent correlation between oxygen depletion and the hydrogen concentration - A negligible to non-existent correlation between in-situ temperature and the hydrogen concentration The Analyzer is currently being upgraded for enhanced metrological capabilities including improved real-time spatial and temporal profiling of the plume and tracking of prevailing weather conditions. Additional deployments are planned to monitor plume behaviour under different wind, humidity, and temperatures. This data will be shared with the NFPA 2 Safety Task Group and ultimately will be used support theoretical models and code requirements prescribed in NFPA 2.« less
A compact radiation source for digital subtractive angiography
NASA Astrophysics Data System (ADS)
Wiedemann, H.; Baltay, M.; Carr, R.; Hernandez, M.; Lavender, W.
1994-08-01
Beam requirements for 33 keV radiation used in digital subtraction angiography have been established through extended experimentation first at Stanford and later at the National Synchrotron Light Source in Brookhaven. So far research and development of this medical procedure to image coronary blood vessels have been undertaken on large high energy electron storage rings. With progress in this diagnostic procedure, it is interesting to look for an optimum concept for providing a 33 keV radiation source which would fit into the environment of a hospital. A variety of competing effects and technologies to produce 33 keV radiation are available, but none of these processes provides the combination of sufficient photon flux and monochromaticity except for synchrotron radiation from an electron storage ring. The conceptual design of a compact storage ring optimized to fit into a hospital environment and producing sufficient 33 keV radiation for digital subtraction radiography will be discussed.
Valve for controlling solids flow
Staiger, M. Daniel
1985-01-01
A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and apparatus for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.
Valve for controlling solids flow
Staiger, M.D.
1982-09-29
A valve for controlling the flow of solids comprises a vessel having an overflow point, an inlet line for discharging solids into the vessel positioned within the vessel such that the inlet line's discharge point is lower than the vessel's overflow point, and means for introducing a fluidizing fluid into the vessel. The fluidizing fluid fluidizes the solids within the vessel so that they overflow at the vessel's overflow point. For the removal of nuclear waste product the vessel may be placed within a sealed container having a bottom connected transport line for transporting the solids to storage or other sites. The rate of solids flow is controlled by the flow rate of the fluidizing fluid and by V-notch weirs of different sizes spaced about the top of the vessel.
Arrhenius, Karine; Brown, Andrew S; van der Veen, Adriaan M H
2016-01-01
The traceable and accurate measurement of biogas impurities is essential in order to robustly assess compliance with the specifications for biomethane being developed by CEN/TC408. An essential part of any procedure aiming to determinate the content of impurities is the sampling and the transfer of the sample to the laboratory. Key issues are the suitability of the sample container and minimising the losses of impurities during the sampling and analysis process. In this paper, we review the state-of-the-art in biogas sampling with the focus on trace impurities. Most of the vessel suitability studies reviewed focused on raw biogas. Many parameters need to be studied when assessing the suitability of vessels for sampling and storage, among them, permeation through the walls, leaks through the valves or physical leaks, sorption losses and adsorption effects to the vessel walls, chemical reactions and the expected initial concentration level. The majority of these studies looked at siloxanes, for which sampling bags, canisters, impingers and sorbents have been reported to be fit-for-purpose in most cases, albeit with some limitations. We conclude that the optimum method requires a combination of different vessels to cover the wide range of impurities commonly found in biogas, which have a wide range of boiling points, polarities, water solubilities, and reactivities. The effects from all the parts of the sampling line must be considered and precautions must be undertaken to minimize these effects. More practical suitability tests, preferably using traceable reference gas mixtures, are needed to understand the influence of the containers and the sampling line on sample properties and to reduce the uncertainty of the measurement. Copyright © 2015 Elsevier B.V. All rights reserved.
1989-12-19
the sea and on the seabed in the vessel’s storage compartments or sealed." Article 2 In article 20, after paragraph 4 , a new paragraph 5 is...filing an application for a new registration with the District People’s Council for Prague 4 , which to date remains to be processed. The persecu- tion...streets the copy written by our authors living in Paris, New York, Bonn, Munich or Oxford. We also do not see any need for
46 CFR 95.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a) Except as provided in paragraph (b) of this...
46 CFR 95.15-20 - Carbon dioxide storage.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS FIRE PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a) Except as provided in paragraph (b) of this...
40 CFR 61.272 - Compliance provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.272 Compliance provisions. (a) For each vessel complying with § 61... benzene. If there are holes, tears or other openings in the primary seal, the secondary seal, or the seal...
40 CFR 61.272 - Compliance provisions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.272 Compliance provisions. (a) For each vessel complying with § 61... benzene. If there are holes, tears or other openings in the primary seal, the secondary seal, or the seal...
40 CFR 61.272 - Compliance provisions.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.272 Compliance provisions. (a) For each vessel complying with § 61... benzene. If there are holes, tears or other openings in the primary seal, the secondary seal, or the seal...
40 CFR 61.272 - Compliance provisions.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene Emissions From Benzene Storage Vessels § 61.272 Compliance provisions. (a) For each vessel complying with § 61... benzene. If there are holes, tears or other openings in the primary seal, the secondary seal, or the seal...
Comparing five simple vascular storage protocols.
van Doormaal, Tristan P C; Sluijs, Jurren H; Vink, Aryan; Tulleken, Cornelis A F; van der Zwan, Albert
2014-11-01
We aim to find a storage protocol for vessels that preserves their dimensional, histologic, and mechanical characteristics to facilitate reproducible anastomosis experiments and microsurgical training with constant quality. We compared stored rabbit aortas, harvested in a slaughterhouse, using five different protocols with fresh controls. Aortas were preserved for 125 d in (1) NaCl 0.9% at -18°C, (2) Roswell Park Memorial Institute 1640 90% with 10% dimethyl sulfoxide (RPMI/DMSO) at -18°C, (3) RPMI/DMSO at -70°C, (4) glycerol 85% at 4°C, and (5) glycerol in stepwise increased concentrations until 85% at 4°C. After preservation, we measured vessel diameter, wall thickness, and Young's Modulus indicating stiffness. Neurosurgeons compared stored vessels with fresh vessels, blinded for preservation subgroup. We performed histologic assessment blinded for preservation subgroup. Fresh rabbit aortas showed a mean diameter of 2.65 ± 0.14 mm, a mean wall thickness of 126 ± 22 μm, and a Young's Modulus of 11.4 ± 2.4 N/mm(2). NaCl 0.9%-preserved aortas showed a significantly increased vessel diameter and decreased stiffness. RPMI/DMSO-preserved aortas showed no significant differences from fresh aortas in dimensions and mechanical characteristics. Glycerol-preserved tissue showed a significant increase in wall thickness, a related significant decrease in diameter, and increase in stiffness. Neurosurgeons regarded RPMI/DMSO tissue as most comparable with fresh tissue. Histologic assessment revealed no differences between the different protocols and fresh control group. Storage of rabbit aortas in RPMI/DMSO most adequately preserves their dimensional and mechanical properties. Copyright © 2014 Elsevier Inc. All rights reserved.
19 CFR 151.28 - Gauging of sirup or molasses discharged into storage tanks.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 2 2011-04-01 2011-04-01 false Gauging of sirup or molasses discharged into... Sugars, Sirups, and Molasses § 151.28 Gauging of sirup or molasses discharged into storage tanks. (a) Plans of storage tank to be filed. When sirup or molasses is imported in bulk in tank vessels and is to...
46 CFR 25.45-2 - Cooking systems on vessels carrying passengers for hire.
Code of Federal Regulations, 2011 CFR
2011-10-01
... allowed for CNG: (i) The storage locker or housing access opening need not be in the top. (ii) The locker...) The storage locker or housing for CNG tank installations need not be above the waterline as required...
46 CFR 25.45-2 - Cooking systems on vessels carrying passengers for hire.
Code of Federal Regulations, 2013 CFR
2013-10-01
... allowed for CNG: (i) The storage locker or housing access opening need not be in the top. (ii) The locker...) The storage locker or housing for CNG tank installations need not be above the waterline as required...
46 CFR 25.45-2 - Cooking systems on vessels carrying passengers for hire.
Code of Federal Regulations, 2010 CFR
2010-10-01
... allowed for CNG: (i) The storage locker or housing access opening need not be in the top. (ii) The locker...) The storage locker or housing for CNG tank installations need not be above the waterline as required...
46 CFR 25.45-2 - Cooking systems on vessels carrying passengers for hire.
Code of Federal Regulations, 2012 CFR
2012-10-01
... allowed for CNG: (i) The storage locker or housing access opening need not be in the top. (ii) The locker...) The storage locker or housing for CNG tank installations need not be above the waterline as required...
Method for forming a bladder for fluid storage vessels
Mitlitsky, Fred; Myers, Blake; Magnotta, Frank
2000-01-01
A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.
Cryogenic Fluid Management Experiment (CFME) trunnion verification testing
NASA Technical Reports Server (NTRS)
Bailey, W. J.; Fester, D. A.
1983-01-01
The Cryogenic Fluid Management Experiment (CFME) was designed to characterize subcritical liquid hydrogen storage and expulsion in the low-g space environment. The CFME has now become the storage and supply tank for the Cryogenic Fluid Management Facility, which includes transfer line and receiver tanks, as well. The liquid hydrogen storage and supply vessel is supported within a vacuum jacket to two fiberglass/epoxy composite trunnions which were analyzed and designed. Analysis using the limited available data indicated the trunnion was the most fatigue critical component in the storage vessel. Before committing the complete storage tank assembly to environmental testing, an experimental assessment was performed to verify the capability of the trunnion design to withstand expected vibration and loading conditions. Three tasks were conducted to evaluate trunnion integrity. The first determined the fatigue properties of the trunnion composite laminate materials. Tests at both ambient and liquid hydrogen temperatures showed composite material fatigue properties far in excess of those expected. Next, an assessment of the adequacy of the trunnion designs was performed (based on the tested material properties).
48 CFR 1352.271-84 - Access to the vessel.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Access to the vessel. 1352.271-84 Section 1352.271-84 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE CLAUSES AND... make reasonable arrangements to provide access for these personnel to office space, work areas, storage...
48 CFR 1352.271-84 - Access to the vessel.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Access to the vessel. 1352.271-84 Section 1352.271-84 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE CLAUSES AND... make reasonable arrangements to provide access for these personnel to office space, work areas, storage...
48 CFR 1352.271-84 - Access to the vessel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Access to the vessel. 1352.271-84 Section 1352.271-84 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE CLAUSES AND... make reasonable arrangements to provide access for these personnel to office space, work areas, storage...
48 CFR 1352.271-84 - Access to the vessel.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Access to the vessel. 1352.271-84 Section 1352.271-84 Federal Acquisition Regulations System DEPARTMENT OF COMMERCE CLAUSES AND... make reasonable arrangements to provide access for these personnel to office space, work areas, storage...
50 CFR 679.93 - Amendment 80 Program recordkeeping, permits, monitoring, and catch accounting.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED... storage. There is sufficient space to accommodate a minimum of 10 observer sampling baskets. This space... manager, and any observers assigned to the vessel. (8) Belt and flow operations. The vessel operator stops...
46 CFR 153.935a - Storage of cargo samples.
Code of Federal Regulations, 2011 CFR
2011-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety...: (1) A designated and ventilated space in the cargo area of the vessel; or (2) An area approved by the... to the cargo samples; and (3) Apart from other sample bottles containing incompatible liquids (See...
46 CFR 153.935a - Storage of cargo samples.
Code of Federal Regulations, 2010 CFR
2010-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety...: (1) A designated and ventilated space in the cargo area of the vessel; or (2) An area approved by the... to the cargo samples; and (3) Apart from other sample bottles containing incompatible liquids (See...
46 CFR 153.935a - Storage of cargo samples.
Code of Federal Regulations, 2012 CFR
2012-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety...: (1) A designated and ventilated space in the cargo area of the vessel; or (2) An area approved by the... to the cargo samples; and (3) Apart from other sample bottles containing incompatible liquids (See...
46 CFR 153.935a - Storage of cargo samples.
Code of Federal Regulations, 2013 CFR
2013-10-01
... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations General Vessel Safety...: (1) A designated and ventilated space in the cargo area of the vessel; or (2) An area approved by the... to the cargo samples; and (3) Apart from other sample bottles containing incompatible liquids (See...
Steppe, Kathy; Lemeur, Raoul
2007-01-01
Calibration of a recently developed water flow and storage model based on experimental data for a young diffuse-porous beech tree (Fagus sylvatica L.) and a young ring-porous oak tree (Quercus robur L.) revealed that differences in stem wood anatomy between species strongly affect the calibrated values of the hydraulic model parameters. The hydraulic capacitance (C) of the stem storage tissue was higher in oak than in beech (939.8 versus 212.3 mg MPa(-1)). Model simulation of the elastic modulus (epsilon) revealed that this difference was linked to the higher elasticity of the stem storage tissue of oak compared with beech. Furthermore, the hydraulic resistance (R (x)) of beech was about twice that of oak (0.1829 versus 0.1072 MPa s mg(-1)). To determine the physiological meaning of the R (x) parameter identified by model calibration, we analyzed the stem wood anatomy of the beech and oak trees. Calculation of stem specific hydraulic conductivity (k (s)) of beech and oak with the Hagen-Poiseuille equation confirmed the differences in R (x) predicted by the model. The contributions of different vessel diameter classes to the total hydraulic conductivity of the xylem were calculated. As expected, the few big vessels contributed much more to total conductivity than the many small vessels. Compared with beech, the larger vessels of oak resulted in a higher k (s) (10.66 versus 4.90 kg m(-1) s(-1) MPa(-1)). The calculated ratio of k (s) of oak to beech was 2, confirming the R (x) ratio obtained by model calibration. Thus, validation of the R (x) parameter of the model led to identification of its physiological meaning.
NASA Astrophysics Data System (ADS)
Madhavi, M.; Venkat, R.
2014-01-01
Fiber reinforced polymer composite materials with their higher specific strength, moduli and tailorability characteristics will result in reduction of weight of the structure. The composite pressure vessels with integrated end domes develop hoop stresses that are twice longitudinal stresses and when isotropic materials like metals are used for development of the hardware and the material is not fully utilized in the longitudinal/meridional direction resulting in over weight components. The determination of a proper winding angles and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In the present study a methodology is developed to understand structural characteristics of filament wound pressure vessels with integrated end domes. Progressive ply wise failure analysis of composite pressure vessel with geodesic end domes is carried out to determine matrix crack failure, burst pressure values at various positions of the shell. A three dimensional finite element analysis is computed to predict the deformations and stresses in the composite pressure vessel. The proposed method could save the time to design filament wound structures, to check whether the ply design is safe for the given input conditions and also can be adapted to non-geodesic structures. The results can be utilized to understand structural characteristics of filament wound pressure vessels with integrated end domes. This approach can be adopted for various applications like solid rocket motor casings, automobile fuel storage tanks and chemical storage tanks. Based on the predictions a composite pressure vessel is designed and developed. Hydraulic test is performed on the composite pressure vessel till the burst pressure.
Automatic visual monitoring of welding procedure in stainless steel kegs
NASA Astrophysics Data System (ADS)
Leo, Marco; Del Coco, Marco; Carcagnì, Pierluigi; Spagnolo, Paolo; Mazzeo, Pier Luigi; Distante, Cosimo; Zecca, Raffaele
2018-05-01
In this paper a system for automatic visual monitoring of welding process, in dry stainless steel kegs for food storage, is proposed. In the considered manufacturing process the upper and lower skirts are welded to the vessel by means of Tungsten Inert Gas (TIG) welding. During the process several problems can arise: 1) residuals on the bottom 2) darker weld 3) excessive/poor penetration and 4) outgrowths. The proposed system deals with all the four aforementioned problems and its inspection performances have been evaluated by using a large set of kegs demonstrating both the reliability in terms of defect detection and the suitability to be introduced in the manufacturing system in terms of computational costs.
21 CFR 1250.82 - Potable water systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...
21 CFR 1250.82 - Potable water systems.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...
21 CFR 1250.82 - Potable water systems.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...
21 CFR 1250.82 - Potable water systems.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Potable water systems. 1250.82 Section 1250.82... SANITATION Sanitation Facilities and Conditions on Vessels § 1250.82 Potable water systems. The following conditions must be met by vessel water systems used for the storage and distribution of water which has met...
Monitoring Composite Material Pressure Vessels with a Fiber-Optic/Microelectronic Sensor System
NASA Technical Reports Server (NTRS)
Klimcak, C.; Jaduszliwer, B.
1995-01-01
We discuss the concept of an integrated, fiber-optic/microelectronic distributed sensor system that can monitor composite material pressure vessels for Air Force space systems to provide assessments of the overall health and integrity of the vessel throughout its entire operating history from birth to end of life. The fiber optic component would include either a semiconductor light emitting diode or diode laser and a multiplexed fiber optic sensing network incorporating Bragg grating sensors capable of detecting internal temperature and strain. The microelectronic components include a power source, a pulsed laser driver, time domain data acquisition hardware, a microprocessor, a data storage device, and a communication interface. The sensing system would be incorporated within the composite during its manufacture. The microelectronic data acquisition and logging system would record the environmental conditions to which the vessel has been subjected to during its storage and transit, e.g., the history of thermal excursions, pressure loading data, the occurrence of mechanical impacts, the presence of changing internal strain due to aging, delamination, material decomposition, etc. Data would be maintained din non-volatile memory for subsequent readout through a microcomputer interface.
Mechanical Behavior of A Metal Composite Vessels Under Pressure At Cryogenic Temperatures
NASA Astrophysics Data System (ADS)
Tsaplin, A. I.; Bochkarev, S. V.
2016-01-01
Results of an experimental investigation into the deformation and destruction of a metal composite vessel with a cryogenic gas are presented. Its structure is based on basalt, carbon, and organic fibers. The vessel proved to be serviceable at cryogenic temperatures up to a burst pressure of 45 MPa, and its destruction was without fragmentation. A mathematical model adequately describing the rise of pressure in the cryogenic vessel due to the formation of a gaseous phase upon boiling of the liquefied natural gas during its storage without drainage at the initial stage is proposed.
Gas reservoir and a method to supply gas to plasma tubes
Stautner, Ernst Wolfgang; Michael, Joseph Darryl
2017-01-31
A reservoir for storing and supplying a portion of a reservoir gas into a gas-filled tube is presented. The reservoir includes a first vessel having a thermally conductive surface, a meshed vessel having a lid, and placed inside the first vessel to form a cavity between the meshed vessel and the first vessel, at least one tray placed inside the meshed vessel to divide an inner space of the meshed vessel into a plurality of compartments, a sorbent material placed inside the plurality of compartments in the meshed vessel, a temperature control device positioned such that a first portion of the temperature control device is in physical contact with at least a portion of the thermally conductive surface, and a change in the temperature of the temperature control device changes the temperature of the sorbent material, wherein the reservoir gas is retained by the sorbent material at the storage temperature.
40 CFR 63.5610 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... from a railcar using nitrogen or water displacement and storage of carbon disulfide in a storage vessel using nitrogen or water padding. Cellophane means a thin, transparent cellulose material, which is... chloride, or chloroacetic acid, to produce a particular cellulose ether; (iii) Washing and purification of...
40 CFR 63.5610 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... from a railcar using nitrogen or water displacement and storage of carbon disulfide in a storage vessel using nitrogen or water padding. Cellophane means a thin, transparent cellulose material, which is... chloride, or chloroacetic acid, to produce a particular cellulose ether; (iii) Washing and purification of...
40 CFR 63.5610 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... from a railcar using nitrogen or water displacement and storage of carbon disulfide in a storage vessel using nitrogen or water padding. Cellophane means a thin, transparent cellulose material, which is... chloride, or chloroacetic acid, to produce a particular cellulose ether; (iii) Washing and purification of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels for Petroleum Liquids for..., reservoir, or container used for the storage of petroleum liquids, but does not include: (1) Pressure... tanks if the total volume of petroleum liquids added to and taken from a tank annually does not exceed...
Code of Federal Regulations, 2014 CFR
2014-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels for Petroleum Liquids for..., reservoir, or container used for the storage of petroleum liquids, but does not include: (1) Pressure... tanks if the total volume of petroleum liquids added to and taken from a tank annually does not exceed...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels for Petroleum Liquids for..., reservoir, or container used for the storage of petroleum liquids, but does not include: (1) Pressure... tanks if the total volume of petroleum liquids added to and taken from a tank annually does not exceed...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels for Petroleum Liquids for..., reservoir, or container used for the storage of petroleum liquids, but does not include: (1) Pressure... tanks if the total volume of petroleum liquids added to and taken from a tank annually does not exceed...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Storage Vessels for Petroleum Liquids for..., reservoir, or container used for the storage of petroleum liquids, but does not include: (1) Pressure... tanks if the total volume of petroleum liquids added to and taken from a tank annually does not exceed...
46 CFR 112.05-5 - Emergency power source.
Code of Federal Regulations, 2013 CFR
2013-10-01
... with § 112.05-1(c). Table 112.05-5(a) Size of vessel and service Type of emergency power source or... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...
46 CFR 112.05-5 - Emergency power source.
Code of Federal Regulations, 2012 CFR
2012-10-01
... with § 112.05-1(c). Table 112.05-5(a) Size of vessel and service Type of emergency power source or... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...
46 CFR 112.05-5 - Emergency power source.
Code of Federal Regulations, 2014 CFR
2014-10-01
... with § 112.05-1(c). Table 112.05-5(a) Size of vessel and service Type of emergency power source or... power source (automatically connected storage battery or an automatically started generator) 36 hours.1... power source (automatically connected storage battery or an automatically started generator) 8 hours or...
High temperature solid oxide regenerative fuel cell for solar photovoltaic energy storage
NASA Technical Reports Server (NTRS)
Bents, David J.
1987-01-01
A hydrogen-oxygen regenerative fuel cell (RFC) energy storage system based on high temperature solid oxide fuel cell (SOFC) technology is described. The reactants are stored as gases in lightweight insulated pressure vessels. The product water is stored as a liquid in saturated equilibrium with the fuel gas. The system functions as a secondary battery and is applicable to darkside energy storage for solar photovoltaics.
An update on methods for cryopreservation and thawing of hemopoietic stem cells.
Lecchi, Lucilla; Giovanelli, Silvia; Gagliardi, Barbara; Pezzali, Ilaria; Ratti, Ilaria; Marconi, Maurizio
2016-06-01
The aim of this article is to review a number of variables that may affect the cryopreservation of minimally manipulated products containing allogeneic or autologous hemopoietic progenitor cells (HPC) used for transplantation, with particular reference to processing, type and addition of cryoprotectant, cell concentration, volume, freezing procedure, cooling rate, storage, thawing, and quality management. After defining final product's requirements in compliance with norms, laws and regulations, it is crucial to define the critical control points of the process. New approaches of processing were developed in the last few years such as automatic devices for volume reduction and high cell concentration in the frozen product. DMSO at 10% final concentration is still the most used cryoprotectant for HPC cryopreservation. Although controlled rate freezing is the recommended method for HPC cryopreservation, alternative methods may be used. Last generation vapor storage vessels ensure temperature stability better than older tanks. Their use may reduce risks of cross-contamination. Finally we review advantages and disadvantages of thawing procedures that may be carried out in the laboratory or at the patient's bedside. Copyright © 2016 Elsevier Ltd. All rights reserved.
Motions and crew responses on an offshore oil production and storage vessel.
Haward, Barbara M; Lewis, Christopher H; Griffin, Michael J
2009-09-01
The motions of vessels may interfere with crew activities and well-being, but the relationships between motion and the experiences of crew are not well-established. Crew responses to motions of a floating production and storage offshore vessel at a fixed location in the North Sea were studied over a 5-month period to identify any changes in crew difficulties and symptoms associated with changes in vessel motion. Ship motions in all six axes (fore-aft, lateral, vertical, roll, pitch, and yaw) were recorded continuously over the 5-month period while 47 crew completed a total of 1704 daily diary entries, a participation rate of 66-78% of the crew complement. The dominant oscillations had frequencies of around 0.1 Hz, producing magnitudes of translational oscillation in accommodation areas of up to about 0.7 ms(-2)r.m.s., depending on the weather, and magnitudes up to three times greater in some other areas. The daily diaries gave ratings of difficulties with tasks, effort level, motion sickness, health symptoms, fatigue, and sleep. Problems most strongly associated with vessel motions were difficulties with physical tasks (balancing, moving and carrying), and sleep problems. Physical and mental tiredness, cognitive aspects of task performance, and stomach awareness and dizziness were also strongly associated with motion magnitude. There was a vomiting incidence of 3.1%, compared with a predicted mean vomiting incidence of 9.3% for a mixed population of unadapted adults. It is concluded that crew difficulties increase on days when vessel motions increase, with some activities and responses particularly influenced by vessel motions.
Code of Federal Regulations, 2012 CFR
2012-04-01
... Exportation, Use as Supplies on Vessels and Aircraft, or Transfer to a Foreign-Trade Zone § 28.141 General. (a...) Transfer to and deposit in a foreign-trade zone for exportation or for storage pending exportation. (b... foreign country; or (2) Transfer to and deposit in a foreign-trade zone for exportation or for storage...
Code of Federal Regulations, 2011 CFR
2011-04-01
... Exportation, Use as Supplies on Vessels and Aircraft, or Transfer to a Foreign-Trade Zone § 28.141 General. (a...) Transfer to and deposit in a foreign-trade zone for exportation or for storage pending exportation. (b... foreign country; or (2) Transfer to and deposit in a foreign-trade zone for exportation or for storage...
Lightweight bladder lined pressure vessels
Mitlitsky, Fred; Myers, Blake; Magnotta, Frank
1998-01-01
A lightweight, low permeability liner for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using torispherical or near torispherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film seamed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life.
Optimized efficiency of all-electric ships by dc hybrid power systems
NASA Astrophysics Data System (ADS)
Zahedi, Bijan; Norum, Lars E.; Ludvigsen, Kristine B.
2014-06-01
Hybrid power systems with dc distribution are being considered for commercial marine vessels to comply with new stringent environmental regulations, and to achieve higher fuel economy. In this paper, detailed efficiency analysis of a shipboard dc hybrid power system is carried out. An optimization algorithm is proposed to minimize fuel consumption under various loading conditions. The studied system includes diesel engines, synchronous generator-rectifier units, a full-bridge bidirectional converter, and a Li-Ion battery bank as energy storage. In order to evaluate potential fuel saving provided by such a system, an online optimization strategy for fuel consumption is implemented. An Offshore Support Vessel (OSV) is simulated over different operating modes using the online control strategy. The resulted consumed fuel in the simulation is compared to that of a conventional ac power system, and also a dc power system without energy storage. The results show that while the dc system without energy storage provides noticeable fuel saving compared to the conventional ac system, optimal utilization of the energy storage in the dc system results in twice as much fuel saving.
Stress analysis and evaluation of a rectangular pressure vessel
NASA Astrophysics Data System (ADS)
Rezvani, M. A.; Ziada, H. H.; Shurrab, M. S.
1992-10-01
This study addresses structural analysis and evaluation of an abnormal rectangular pressure vessel, designed to house equipment for drilling and collecting samples from Hanford radioactive waste storage tanks. It had to be qualified according to ASME boiler and pressure vessel code, section 8; however, it had the cover plate bolted along the long face, a configuration not addressed by the code. Finite element method was used to calculate stresses resulting from internal pressure; these stresses were then used to evaluate and qualify the vessel. Fatigue is not a concern; thus, it can be built according to section 8, division 1 instead of division 2. Stress analysis was checked against the code. A stayed plate was added to stiffen the long side of the vessel.
Cui, Xiwang; Yan, Yong; Guo, Miao; Han, Xiaojuan; Hu, Yonghui
2016-01-01
Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%. PMID:27869765
Siryk, Yury Paul; Balytski, Ivan Peter; Korolyov, Volodymyr George; Klishyn, Olexiy Nick; Lnianiy, Vitaly Nick; Lyakh, Yury Alex; Rogulin, Victor Valery
2013-04-30
A plant for producing an oxygen-containing additive for liquid motor fuels comprises an anaerobic fermentation vessel, a gasholder, a system for removal of sulphuretted hydrogen, and a hotwell. The plant further comprises an aerobic fermentation vessel, a device for liquid substance pumping, a device for liquid aeration with an oxygen-containing gas, a removal system of solid mass residue after fermentation, a gas distribution device; a device for heavy gases utilization; a device for ammonia adsorption by water; a liquid-gas mixer; a cavity mixer, a system that serves superficial active and dispersant matters and a cooler; all of these being connected to each other by pipelines. The technical result being the implementation of a process for producing an oxygen containing additive, which after being added to liquid motor fuels, provides an ecologically beneficial component for motor fuels by ensuring the stability of composition fuel properties during long-term storage.
Liu, Qiang
2013-08-27
Disclosed herein is a composite pressure vessel with a liner having a polar boss and a blind boss a shell is formed around the liner via one or more filament wrappings continuously disposed around at least a substantial portion of the liner assembly combined the liner and filament wrapping have a support profile. To reduce susceptible to rupture a locally disposed filament fiber is added.
40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).
Code of Federal Regulations, 2011 CFR
2011-07-01
... maintained in a closed position at all times (i.e., no visible gaps) except when the device is in actual use... is emptied, but no less frequently than once every 10 years. (2) Double seal. For vessels equipped... storage vessel is emptied, but no less frequently than once every 5 years; or (ii) Visually inspect the...
40 CFR 65.43 - Fixed roof with an internal floating roof (IFR).
Code of Federal Regulations, 2010 CFR
2010-07-01
... maintained in a closed position at all times (i.e., no visible gaps) except when the device is in actual use... is emptied, but no less frequently than once every 10 years. (2) Double seal. For vessels equipped... storage vessel is emptied, but no less frequently than once every 5 years; or (ii) Visually inspect the...
Development of a Compact and Efficient Ice Thermal Energy Storage Vessel
NASA Astrophysics Data System (ADS)
Sasaguchi, Kengo; Ishikawa, Masatoshi; Muta, Kenji; Yoshino, Kiyotaka; Hayashi, Hiroko; Baba, Yoshiyuki
In the present study, the authors propose the use of a low concentration aqueous solution as phase change material for static-type ice-storage-vessels, instead of pure water commonly used today. If an aqueous solution with low concentration is used, even when a large amount of solution (aqueous ethylene glycol in this study) is solidified and bridging of ice developed around cold tubes occurs, the pressure increase could be prevented by the existence of a continuous liquid phase in the solid-liquid two-phase layer (mushy layer) which opens to an air gap at the top of a vessel. Therefore, one can continue to solidify an aqueous solution after bridging, achieving a high ice packing factor (IPF). First, experiments using small-scale test cells have been conducted to confirm the present idea, and then we have performed experiments using a large vessel with an early practical size. It was seen that a large pressure increase is prevented for the initial concentration of the solution C0 of 1.0%, and IPF obtained using the solution is much greater than 0.65 using pure water for which the solidification must be stopped before the bridging.
System for thermal energy storage, space heating and cooling and power conversion
Gruen, Dieter M.; Fields, Paul R.
1981-04-21
An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.
Testing of Full Scale Flight Qualified Kevlar Composite Overwrapped Pressure Vessels
NASA Technical Reports Server (NTRS)
Greene, Nathanael; Saulsberry, Regor; Yoder, Tommy; Forsyth, Brad; Thesken, John; Phoenix, Leigh
2007-01-01
Many decades ago NASA identified a need for low-mass pressure vessels for carrying various fluids aboard rockets, spacecraft, and satellites. A pressure vessel design known as the composite overwrapped pressure vessel (COPV) was identified to provide a weight savings over traditional single-material pressure vessels typically made of metal and this technology has been in use for space flight applications since the 1970's. A typical vessel design consisted of a thin liner material, typically a metal, overwrapped with a continuous fiber yarn impregnated with epoxy. Most designs were such that the overwrapped fiber would carry a majority of load at normal operating pressures. The weight advantage for a COPV versus a traditional singlematerial pressure vessel contributed to widespread use of COPVs by NASA, the military, and industry. This technology is currently used for personal breathing supply storage, fuel storage for auto and mass transport vehicles and for various space flight and aircraft applications. The NASA Engineering and Safety Center (NESC) was recently asked to review the operation of Kevlar 2 and carbon COPVs to ensure they are safely operated on NASA space flight vehicles. A request was made to evaluate the life remaining on the Kevlar COPVs used on the Space Shuttle for helium and nitrogen storage. This paper provides a review of Kevlar COPV testing relevant to the NESC assessment. Also discussed are some key findings, observations, and recommendations that may be applicable to the COPV user community. Questions raised during the investigations have revealed the need for testing to better understand the stress rupture life and age life of COPVs. The focus of this paper is to describe burst testing of Kevlar COPVs that has been completed as a part of an the effort to evaluate the effects of ageing and shelf life on full scale COPVs. The test articles evaluated in this discussion had a diameter of 22 inches for S/N 014 and 40 inches for S/N 011. The time between manufacture and burst was 28 and 22 years. Visual inspection, shearography, heat soak thermography and borescope inspection were performed on vessel S/N 011 and all but shearography was performed on S/N 014 before they were tested and details of this work can be found in a companion paper titled, "Nondestructive Methods and Special Test Instrumentation Supporting NASA Composite Overwrapped Pressure Vessel Assessments." The vessels were instrumented so that measurements could be made to aid in the understanding of vessel response. Measurements made on the test articles included girth, boss displacement, internal volume, multiple point strain, full field strain, eddy current, acoustic emission (AE) pressure and temperature. The test article before and during burst is shown with the pattern used for digital image correlation full field strain measurement blurring as the vessel fails.
Evaluating the feasibility of biological waste processing for long term space missions.
Garland, J L; Alazraki, M P; Atkinson, C F; Finger, B W
1998-01-01
Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.
Evaluating the feasibility of biological waste processing for long term space missions
NASA Technical Reports Server (NTRS)
Garland, J. L.; Alazraki, M. P.; Atkinson, C. F.; Finger, B. W.; Sager, J. C. (Principal Investigator)
1998-01-01
Recycling waste products during orbital (e.g., International Space Station) and planetary missions (e.g., lunar base, Mars transit mission, Martian base) will reduce storage and resupply costs. Wastes streams on the space station will include human hygiene water, urine, faeces, and trash. Longer term missions will contain human waste and inedible plant material from plant growth systems used for atmospheric regeneration, food production, and water recycling. The feasibility of biological and physical-chemical waste recycling is being investigated as part of National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program. In-vessel composting has lower manpower requirements, lower water and volume requirements, and greater potential for sanitization of human waste compared to alternative bioreactor designs such as continuously stirred tank reactors (CSTR). Residual solids from the process (i.e. compost) could be used a biological air filter, a plant nutrient source, and a carbon sink. Potential in-vessel composting designs for both near- and long-term space missions are presented and discussed with respect to the unique aspects of space-based systems.
Klein, Andrea; Nemestothy, Sebastian; Kadnar, Julia; Grabner, Michael
In the present study, 208 furniture and 168 coopered vessels from three Austrian museums were examined. Dendrochronology was used to date objects and to extract further information such as the necessary time for seasoning, wood loss through wood-working and methods of construction. In most cases sampling was done by sanding the cross section and making digital photographs using a picture frame and measuring digitally. The dendrochronological dates of the sampled furniture range between 1524 and 1937. The group of furniture includes cupboards, chests, tables, benches, commodes and beds. In many cases furniture was artfully painted and sometimes even shows a painted year. With the help of dendrochronology it was proved that some objects had been painted for some time after construction, or had been over-painted. Most furniture, however, was painted immediately after completion. In this case, the seasoning and storage time of the boards and the wood loss due to shaping can be verified. As an average value, 14 years have passed between the dendrochronological date of the outermost ring and the painting. The time span includes time of seasoning and storage and the rings lost by wood-working. This leads, on the one hand to a short storage time of less than 10 years and on the other hand to very little wood loss due to manufacturing. Those boards being less shaped turned out to be back panels of cupboards, therefore they are recommended to be sampled for dating. Coopered vessels were dated between 1612 and 1940. There was evidence that staves were split and not sawn in many cases. The staves were often split out of the outermost part of the tree and hardly any wood was worked away which was proved by the close dendrochronological dates of the single staves of a vessel. Since there is a short time of storage and only little wood loss through wood-working, dating of objects without a waney edge becomes reasonable.
High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.
1999-01-01
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.
46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...
Amending storage vessel and media improves transfer interval of Musa spp. tissue culture plantlets
USDA-ARS?s Scientific Manuscript database
Musa spp. are some of the most important fruit food crops in the world. The USDA-ARS TARS maintains a Musa spp. germplasm collection of ~150 accessions in field plots and in medium-term storage in vitro. Accessions maintained in vitro require routine sub-culturing as nutrient medium is lost due to ...
Apollo experience report: The cryogenic storage system
NASA Technical Reports Server (NTRS)
Chandler, W. A.; Rice, R. R.; Allgeier, R. K., Jr.
1973-01-01
A review of the design, development, and flight history of the Apollo cryogenic storage system and of selected components within the system is presented. Discussions are presented on the development history of the pressure vessels, heaters, insulation, and selected components. Flight experience and operational difficulties are reported in detail to provide definition of the problems and applicable corrective actions.
46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...
46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...
46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b...
40 CFR 63.1314 - Storage vessel provisions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... required to prepare a design evaluation for the control device as described in § 63.120(d)(1)(i), if the...) National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins § 63.1314... subpart. (2) When the term “Group 1 storage vessel” is used in §§ 63.119 through 63.123, the definition of...
A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petitpas, G; Benard, P; Klebanoff, L E
2014-07-01
While conventional low-pressure LH₂ dewars have existed for decades, advanced methods of cryogenic hydrogen storage have recently been developed. These advanced methods are cryo-compression and cryo-adsorption hydrogen storage, which operate best in the temperature range 30–100 K. We present a comparative analysis of both approaches for cryogenic hydrogen storage, examining how pressure and/or sorbent materials are used to effectively increase onboard H₂ density and dormancy. We start by reviewing some basic aspects of LH₂ properties and conventional means of storing it. From there we describe the cryo-compression and cryo-adsorption hydrogen storage methods, and then explore the relationship between them, clarifyingmore » the materials science and physics of the two approaches in trying to solve the same hydrogen storage task (~5–8 kg H₂, typical of light duty vehicles). Assuming that the balance of plant and the available volume for the storage system in the vehicle are identical for both approaches, the comparison focuses on how the respective storage capacities, vessel weight and dormancy vary as a function of temperature, pressure and type of cryo-adsorption material (especially, powder MOF-5 and MIL-101). By performing a comparative analysis, we clarify the science of each approach individually, identify the regimes where the attributes of each can be maximized, elucidate the properties of these systems during refueling, and probe the possible benefits of a combined “hybrid” system with both cryo-adsorption and cryo-compression phenomena operating at the same time. In addition the relationships found between onboard H₂ capacity, pressure vessel and/or sorbent mass and dormancy as a function of rated pressure, type of sorbent material and fueling conditions are useful as general designing guidelines in future engineering efforts using these two hydrogen storage approaches.« less
Containment and storage of uranium hexafluoride at US Department of Energy uranium enrichment plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, C.R.; Alderson, J.H.; Blue, S.C.
Isotopically depleted UF{sub 6} (uranium hexafluoride) accumulates at a rate five to ten times greater than the enriched product and is stored in steel vessels at the enrichment plant sites. There are approximately 55,000 large cylinders now in storage at Paducah, Kentucky; Portsmouth, Ohio; and Oak Ridge, Tennessee. Most of them contain a nominal 14 tons of depleted UF{sub 6}. Some of these cylinders have been in the unprotected outdoor storage environment for periods approaching 40 years. Storage experience, supplemented by limited corrosion data, suggests a service life of about 70 years under optimum conditions for the 48-in. diameter, 5/16-in.-wallmore » pressure vessels (100 psi working pressure), using a conservative industry-established 1/4-in.-wall thickness as the service limit. In the past few years, however, factors other than atmospheric corrosion have become apparent that adversely affect the serviceability of small numbers of the storage containers and that indicate the need for a managed program to ensure maintenance ofcontainment integrity for all the cylinders in storage. The program includes periodic visual inspections of cylinders and storage yards with documentation for comparison with other inspections, a group of corrosion test programs to permit cylinder life forecasts, and identification of (and scheduling for remedial action) situations in which defects, due to handling damage or accelerated corrosion, can seriously shorten the storage life or compromise the containment integrity of individual cylinders. The program also includes rupture testing to assess the effects of certain classes of damage on overall cylinder strength, aswell as ongoing reviews of specifications, procedures, practices, and inspection results to effect improvements in handling safety, containment integrity, and storage life.« less
Effect of Microgravity on Material Undergoing Melting and Freezing: the TES Experiment
NASA Technical Reports Server (NTRS)
Namkoong, David; Jacqmin, David; Szaniszlo, Andrew
1995-01-01
This experiment is the first to melt and freeze a high temperature thermal energy storage (TES) material under an extended duration of microgravity. It is one of a series to validate an analytical computer program that predicts void behavior of substances undergoing phase change under microgravity. Two flight experiments were launched in STS-62. The first, TES-1, containing lithium fluoride in an annular volume, performed flawlessly in the 22 hours of its operation. Results are reported in this paper. A software failure in TES-2 caused its shutdown after 4 seconds. A computer program, TESSIM, for thermal energy storage simulation is being developed to analyze the phenomena occurring within the TES containment vessel. The first order effects, particularly the surface tension forces, have been incorporated into TESSIM. TESSIM validation is based on two types of results. First is the temperature history of various points of the containment structure, and second, upon return from flight, the distribution of the TES material within the containment vessel following the last freeze cycle. The temperature data over the four cycles showed a repetition of results over the third and fourth cycles. This result is a confirmation that any initial conditions prior to the first cycle had been damped out by the third cycle. The TESSIM simulation showed a close comparison with the flight data. The solidified TES material distribution within the containment vessel was obtained by a tomography imaging process. The frozen material was concentrated toward the colder end of the annular volume. The TESSIM prediction showed the same pattern. With the general agreement of TESSIM and the data, a computerized visual representation can be shown which accurately shows the movement and behavior of the void during the entire freezing and melting cycles.
Effect of microgravity on material undergoing melting and freezing: The TES Experiment
NASA Astrophysics Data System (ADS)
Namkoong, David; Jacqmin, David; Szaniszlo, Andrew
1995-01-01
This experiment is the first to melt and freeze a high temperature thermal energy storage (TES) material under an extended duration of microgravity. It is one of a series to validate an analytical computer program that predicts void behavior of substances undergoing phase change under microgravity. Two flight experiments were launched in STS-62. The first, TES-1, containing lithium fluoride in an annular volume, performed flawlessly in the 22 hours of its operation. Results are reported in this paper. A software failure in TES-2 caused its shutdown after 4 seconds. A computer program, TESSIM, for thermal energy storage simulation is being developed to analyze the phenomena occurring within the TES containment vessel. The first order effects, particularly the surface tension forces, have been incorporated into TESSIM. TESSIM validation is based on two types of results. First is the temperature history of various points of the containment structure, and second, upon return from flight, the distribution of the TES material within the containment vessel following the last freeze cycle. The temperature data over the four cycles showed a repetition of results over the third and fourth cycles. This result is a confirmation that any initial conditions prior to the first cycle had been damped out by the third cycle. The TESSIM simulation showed a close comparison with the flight data. The solidified TES material distribution within the containment vessel was obtained by a tomography imaging process. The frozen material was concentrated toward the colder end of the annular volume. The TESSIM prediction showed the same pattern. With the general agreement of TESSIM and the data, a computerized visual representation can be shown which accurately shows the movement and behavior of the void during the entire freezing and melting cycles.
Discontinuity stresses in metallic pressure vessels
NASA Technical Reports Server (NTRS)
1971-01-01
The state of the art, criteria, and recommended practices for the theoretical and experimental analyses of discontinuity stresses and their distribution in metallic pressure vessels for space vehicles are outlined. The applicable types of pressure vessels include propellant tanks ranging from main load-carrying integral tank structure to small auxiliary tanks, storage tanks, solid propellant motor cases, high pressure gas bottles, and pressurized cabins. The major sources of discontinuity stresses are discussed, including deviations in geometry, material properties, loads, and temperature. The advantages, limitations, and disadvantages of various theoretical and experimental discontinuity analysis methods are summarized. Guides are presented for evaluating discontinuity stresses so that pressure vessel performance will not fall below acceptable levels.
Cryogenic glass-filament-wound tank evaluation
NASA Technical Reports Server (NTRS)
Morris, E. E.; Landes, R. E.
1971-01-01
High-pressure glass-filament-wound fluid storage vessels with thin aluminum liners were designed, fabricated, and tested at ambient and cryogenic temperatures which demonstrated the feasibility of producing such vessels as well as high performance and light weight. Significant developments and advancements were made in solving problems associated with the thin metal liners in the tanks, including liner bonding to the overwrap and high strain magnification at the vessel polar bosses. The vessels had very high burst strengths, and failed in cyclic fatigue tests by local liner fracture and leakage without structural failure of the composite tank wall. The weight of the tanks was only 40 to 55% of comparable 2219-T87 aluminum and Inconel 718 tanks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepanov, Alexey; Simirskii, Iurii; Stepanov, Vyacheslav
2015-07-01
The Gas Plant complex is the experimental base of the Institute of Nuclear Reactors, which is part of the Kurchatov Institute. In 1954 the commissioning of the first Soviet water-cooled water-moderated research reactor VVR-2 on enriched uranium, and until 1983 the complex operated two research water-cooled water-moderated reactors 3 MW (VVR-2) and 300 kW (OR) capacity, which were dismantled in connection with the overall upgrades of the complex. The complex has three storage ponds in the reactor building. They are sub-surface vessels filled with water (the volume of water in each is about 6 m{sup 3}). In 2007-2013 the spentmore » nuclear fuel from storages was removed for processing to 'Mayk'. Survey of Storage Ponds by Underwater Collimated Spectrometric System shows a considerable layer of slime on the bottom of ponds and traces of spent nuclear fuel in one of the storage. For determination qualitative and the quantitative composition of radionuclide we made complex α-, β-, γ- spectrometric research of water and bottom slimes from Gas Plant complex storage ponds. We found the spent nuclear fuel in water and bottom slime in all storage ponds. Specific activity of radionuclides in the bottom slime exceeded specific activity of radionuclides in the ponds water and was closed to levels of high radioactive waste. Analysis of the obtained data and data from earlier investigation of reactor MR storage ponds showed distinctions of specific activity of uranium and plutonium radionuclides. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawls, G.; Newhouse, N.; Rana, M.
2010-04-13
The Boiler and Pressure Vessel Project Team on Hydrogen Tanks was formed in 2004 to develop Code rules to address the various needs that had been identified for the design and construction of up to 15000 psi hydrogen storage vessel. One of these needs was the development of Code rules for high pressure composite vessels with non-load sharing liners for stationary applications. In 2009, ASME approved new Appendix 8, for Section X Code which contains the rules for these vessels. These vessels are designated as Class III vessels with design pressure ranging from 20.7 MPa (3,000 ps)i to 103.4 MPamore » (15,000 psi) and maximum allowable outside liner diameter of 2.54 m (100 inches). The maximum design life of these vessels is limited to 20 years. Design, fabrication, and examination requirements have been specified, included Acoustic Emission testing at time of manufacture. The Code rules include the design qualification testing of prototype vessels. Qualification includes proof, expansion, burst, cyclic fatigue, creep, flaw, permeability, torque, penetration, and environmental testing.« less
Use of phase change materials during compressed air expansion for isothermal CAES plants
NASA Astrophysics Data System (ADS)
Castellani, B.; Presciutti, A.; Morini, E.; Filipponi, M.; Nicolini, A.; Rossi, F.
2017-11-01
Compressed air energy storage (CAES) plants are designed to store compressed air into a vessel or in an underground cavern and to expand it in an expansion turbine when energy demand is high. An innovative CAES configuration recently proposed is the isothermal process. Several methods to implement isothermal CAES configuration are under investigation. In this framework, the present paper deals with the experimental testing of phase change materials (PCM) during compressed air expansion phase. The experimental investigation was carried out by means of an apparatus constituted by a compression section, a steel pressure vessel, to which an expansion valve is connected. The initial internal absolute pressure was equal to 5 bar to avoid moisture condensation and the experimental tests were carried out with two paraffin-based PCM amounts (0.05 kg and 0.1 kg). Results show that the temperature change during air expansion decreases with increasing the PCM amount inside the vessel. With the use of PCM during expansions an increase of the expansion work occurs. The increase is included in the range from 9.3% to 18.2%. In every test there is an approach to the isothermal values, which represent the maximum theoretical value of the obtainable expansion work.
46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph (b) of this section, the cylinders...
Lightweight bladder lined pressure vessels
Mitlitsky, F.; Myers, B.; Magnotta, F.
1998-08-25
A lightweight, low permeability liner is described for graphite epoxy composite compressed gas storage vessels. The liner is composed of polymers that may or may not be coated with a thin layer of a low permeability material, such as silver, gold, or aluminum, deposited on a thin polymeric layer or substrate which is formed into a closed bladder using tori spherical or near tori spherical end caps, with or without bosses therein, about which a high strength to weight material, such as graphite epoxy composite shell, is formed to withstand the storage pressure forces. The polymeric substrate may be laminated on one or both sides with additional layers of polymeric film. The liner may be formed to a desired configuration using a dissolvable mandrel or by inflation techniques and the edges of the film sealed by heat sealing. The liner may be utilized in most any type of gas storage system, and is particularly applicable for hydrogen, gas mixtures, and oxygen used for vehicles, fuel cells or regenerative fuel cell applications, high altitude solar powered aircraft, hybrid energy storage/propulsion systems, and lunar/Mars space applications, and other applications requiring high cycle life. 19 figs.
Pyrochemical process for extracting plutonium from an electrolyte salt
Mullins, L.J.; Christensen, D.C.
1982-09-20
A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.