Sample records for process-based modeling approach

  1. Bridging process-based and empirical approaches to modeling tree growth

    Treesearch

    Harry T. Valentine; Annikki Makela; Annikki Makela

    2005-01-01

    The gulf between process-based and empirical approaches to modeling tree growth may be bridged, in part, by the use of a common model. To this end, we have formulated a process-based model of tree growth that can be fitted and applied in an empirical mode. The growth model is grounded in pipe model theory and an optimal control model of crown development. Together, the...

  2. Extracting business vocabularies from business process models: SBVR and BPMN standards-based approach

    NASA Astrophysics Data System (ADS)

    Skersys, Tomas; Butleris, Rimantas; Kapocius, Kestutis

    2013-10-01

    Approaches for the analysis and specification of business vocabularies and rules are very relevant topics in both Business Process Management and Information Systems Development disciplines. However, in common practice of Information Systems Development, the Business modeling activities still are of mostly empiric nature. In this paper, basic aspects of the approach for business vocabularies' semi-automated extraction from business process models are presented. The approach is based on novel business modeling-level OMG standards "Business Process Model and Notation" (BPMN) and "Semantics for Business Vocabularies and Business Rules" (SBVR), thus contributing to OMG's vision about Model-Driven Architecture (MDA) and to model-driven development in general.

  3. Hydrological modelling in forested systems | Science ...

    EPA Pesticide Factsheets

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.

  4. Process-based models are required to manage ecological systems in a changing world

    Treesearch

    K. Cuddington; M.-J. Fortin; L.R. Gerber; A. Hastings; A. Liebhold; M. OConnor; C. Ray

    2013-01-01

    Several modeling approaches can be used to guide management decisions. However, some approaches are better fitted than others to address the problem of prediction under global change. Process-based models, which are based on a theoretical understanding of relevant ecological processes, provide a useful framework to incorporate specific responses to altered...

  5. Self-optimisation and model-based design of experiments for developing a C-H activation flow process.

    PubMed

    Echtermeyer, Alexander; Amar, Yehia; Zakrzewski, Jacek; Lapkin, Alexei

    2017-01-01

    A recently described C(sp 3 )-H activation reaction to synthesise aziridines was used as a model reaction to demonstrate the methodology of developing a process model using model-based design of experiments (MBDoE) and self-optimisation approaches in flow. The two approaches are compared in terms of experimental efficiency. The self-optimisation approach required the least number of experiments to reach the specified objectives of cost and product yield, whereas the MBDoE approach enabled a rapid generation of a process model.

  6. Model-Driven Useware Engineering

    NASA Astrophysics Data System (ADS)

    Meixner, Gerrit; Seissler, Marc; Breiner, Kai

    User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.

  7. Towards a model-based cognitive neuroscience of stopping - a neuroimaging perspective.

    PubMed

    Sebastian, Alexandra; Forstmann, Birte U; Matzke, Dora

    2018-07-01

    Our understanding of the neural correlates of response inhibition has greatly advanced over the last decade. Nevertheless the specific function of regions within this stopping network remains controversial. The traditional neuroimaging approach cannot capture many processes affecting stopping performance. Despite the shortcomings of the traditional neuroimaging approach and a great progress in mathematical and computational models of stopping, model-based cognitive neuroscience approaches in human neuroimaging studies are largely lacking. To foster model-based approaches to ultimately gain a deeper understanding of the neural signature of stopping, we outline the most prominent models of response inhibition and recent advances in the field. We highlight how a model-based approach in clinical samples has improved our understanding of altered cognitive functions in these disorders. Moreover, we show how linking evidence-accumulation models and neuroimaging data improves the identification of neural pathways involved in the stopping process and helps to delineate these from neural networks of related but distinct functions. In conclusion, adopting a model-based approach is indispensable to identifying the actual neural processes underlying stopping. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Social Models: Blueprints or Processes?

    ERIC Educational Resources Information Center

    Little, Graham R.

    1981-01-01

    Discusses the nature and implications of two different models for societal planning: (1) the problem-solving process approach based on Karl Popper; and (2) the goal-setting "blueprint" approach based on Karl Marx. (DC)

  9. A Mixed Kijima Model Using the Weibull-Based Generalized Renewal Processes

    PubMed Central

    2015-01-01

    Generalized Renewal Processes are useful for approaching the rejuvenation of dynamical systems resulting from planned or unplanned interventions. We present new perspectives for the Generalized Renewal Processes in general and for the Weibull-based Generalized Renewal Processes in particular. Disregarding from literature, we present a mixed Generalized Renewal Processes approach involving Kijima Type I and II models, allowing one to infer the impact of distinct interventions on the performance of the system under study. The first and second theoretical moments of this model are introduced as well as its maximum likelihood estimation and random sampling approaches. In order to illustrate the usefulness of the proposed Weibull-based Generalized Renewal Processes model, some real data sets involving improving, stable, and deteriorating systems are used. PMID:26197222

  10. Testing Strategies for Model-Based Development

    NASA Technical Reports Server (NTRS)

    Heimdahl, Mats P. E.; Whalen, Mike; Rajan, Ajitha; Miller, Steven P.

    2006-01-01

    This report presents an approach for testing artifacts generated in a model-based development process. This approach divides the traditional testing process into two parts: requirements-based testing (validation testing) which determines whether the model implements the high-level requirements and model-based testing (conformance testing) which determines whether the code generated from a model is behaviorally equivalent to the model. The goals of the two processes differ significantly and this report explores suitable testing metrics and automation strategies for each. To support requirements-based testing, we define novel objective requirements coverage metrics similar to existing specification and code coverage metrics. For model-based testing, we briefly describe automation strategies and examine the fault-finding capability of different structural coverage metrics using tests automatically generated from the model.

  11. [GSH fermentation process modeling using entropy-criterion based RBF neural network model].

    PubMed

    Tan, Zuoping; Wang, Shitong; Deng, Zhaohong; Du, Guocheng

    2008-05-01

    The prediction accuracy and generalization of GSH fermentation process modeling are often deteriorated by noise existing in the corresponding experimental data. In order to avoid this problem, we present a novel RBF neural network modeling approach based on entropy criterion. It considers the whole distribution structure of the training data set in the parameter learning process compared with the traditional MSE-criterion based parameter learning, and thus effectively avoids the weak generalization and over-learning. Then the proposed approach is applied to the GSH fermentation process modeling. Our results demonstrate that this proposed method has better prediction accuracy, generalization and robustness such that it offers a potential application merit for the GSH fermentation process modeling.

  12. Predictive Models for Semiconductor Device Design and Processing

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1998-01-01

    The device feature size continues to be on a downward trend with a simultaneous upward trend in wafer size to 300 mm. Predictive models are needed more than ever before for this reason. At NASA Ames, a Device and Process Modeling effort has been initiated recently with a view to address these issues. Our activities cover sub-micron device physics, process and equipment modeling, computational chemistry and material science. This talk would outline these efforts and emphasize the interaction among various components. The device physics component is largely based on integrating quantum effects into device simulators. We have two parallel efforts, one based on a quantum mechanics approach and the second, a semiclassical hydrodynamics approach with quantum correction terms. Under the first approach, three different quantum simulators are being developed and compared: a nonequlibrium Green's function (NEGF) approach, Wigner function approach, and a density matrix approach. In this talk, results using various codes will be presented. Our process modeling work focuses primarily on epitaxy and etching using first-principles models coupling reactor level and wafer level features. For the latter, we are using a novel approach based on Level Set theory. Sample results from this effort will also be presented.

  13. A systems-based approach for integrated design of materials, products and design process chains

    NASA Astrophysics Data System (ADS)

    Panchal, Jitesh H.; Choi, Hae-Jin; Allen, Janet K.; McDowell, David L.; Mistree, Farrokh

    2007-12-01

    The concurrent design of materials and products provides designers with flexibility to achieve design objectives that were not previously accessible. However, the improved flexibility comes at a cost of increased complexity of the design process chains and the materials simulation models used for executing the design chains. Efforts to reduce the complexity generally result in increased uncertainty. We contend that a systems based approach is essential for managing both the complexity and the uncertainty in design process chains and simulation models in concurrent material and product design. Our approach is based on simplifying the design process chains systematically such that the resulting uncertainty does not significantly affect the overall system performance. Similarly, instead of striving for accurate models for multiscale systems (that are inherently complex), we rely on making design decisions that are robust to uncertainties in the models. Accordingly, we pursue hierarchical modeling in the context of design of multiscale systems. In this paper our focus is on design process chains. We present a systems based approach, premised on the assumption that complex systems can be designed efficiently by managing the complexity of design process chains. The approach relies on (a) the use of reusable interaction patterns to model design process chains, and (b) consideration of design process decisions using value-of-information based metrics. The approach is illustrated using a Multifunctional Energetic Structural Material (MESM) design example. Energetic materials store considerable energy which can be released through shock-induced detonation; conventionally, they are not engineered for strength properties. The design objectives for the MESM in this paper include both sufficient strength and energy release characteristics. The design is carried out by using models at different length and time scales that simulate different aspects of the system. Finally, by applying the method to the MESM design problem, we show that the integrated design of materials and products can be carried out more efficiently by explicitly accounting for design process decisions with the hierarchy of models.

  14. Kinetic Modeling of Microbiological Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Fang, Yilin

    Kinetic description of microbiological processes is vital for the design and control of microbe-based biotechnologies such as waste water treatment, petroleum oil recovery, and contaminant attenuation and remediation. Various models have been proposed to describe microbiological processes. This editorial article discusses the advantages and limiation of these modeling approaches in cluding tranditional, Monod-type models and derivatives, and recently developed constraint-based approaches. The article also offers the future direction of modeling researches that best suit for petroleum and environmental biotechnologies.

  15. SLS Navigation Model-Based Design Approach

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and management of design requirements to the development of usable models, model requirements, and model verification and validation efforts. The models themselves are represented in C/C++ code and accompanying data files. Under the idealized process, potential ambiguity in specification is reduced because the model must be implementable versus a requirement which is not necessarily subject to this constraint. Further, the models are shown to emulate the hardware during validation. For models developed by the Navigation Team, a common interface/standalone environment was developed. The common environment allows for easy implementation in design and analysis tools. Mechanisms such as unit test cases ensure implementation as the developer intended. The model verification and validation process provides a very high level of component design insight. The origin and implementation of the SLS variant of Model-based Design is described from the perspective of the SLS Navigation Team. The format of the models and the requirements are described. The Model-based Design approach has many benefits but is not without potential complications. Key lessons learned associated with the implementation of the Model Based Design approach and process from infancy to verification and certification are discussed

  16. Service-based analysis of biological pathways

    PubMed Central

    Zheng, George; Bouguettaya, Athman

    2009-01-01

    Background Computer-based pathway discovery is concerned with two important objectives: pathway identification and analysis. Conventional mining and modeling approaches aimed at pathway discovery are often effective at achieving either objective, but not both. Such limitations can be effectively tackled leveraging a Web service-based modeling and mining approach. Results Inspired by molecular recognitions and drug discovery processes, we developed a Web service mining tool, named PathExplorer, to discover potentially interesting biological pathways linking service models of biological processes. The tool uses an innovative approach to identify useful pathways based on graph-based hints and service-based simulation verifying user's hypotheses. Conclusion Web service modeling of biological processes allows the easy access and invocation of these processes on the Web. Web service mining techniques described in this paper enable the discovery of biological pathways linking these process service models. Algorithms presented in this paper for automatically highlighting interesting subgraph within an identified pathway network enable the user to formulate hypothesis, which can be tested out using our simulation algorithm that are also described in this paper. PMID:19796403

  17. Design and Implementation of Hydrologic Process Knowledge-base Ontology: A case study for the Infiltration Process

    NASA Astrophysics Data System (ADS)

    Elag, M.; Goodall, J. L.

    2013-12-01

    Hydrologic modeling often requires the re-use and integration of models from different disciplines to simulate complex environmental systems. Component-based modeling introduces a flexible approach for integrating physical-based processes across disciplinary boundaries. Several hydrologic-related modeling communities have adopted the component-based approach for simulating complex physical systems by integrating model components across disciplinary boundaries in a workflow. However, it is not always straightforward to create these interdisciplinary models due to the lack of sufficient knowledge about a hydrologic process. This shortcoming is a result of using informal methods for organizing and sharing information about a hydrologic process. A knowledge-based ontology provides such standards and is considered the ideal approach for overcoming this challenge. The aims of this research are to present the methodology used in analyzing the basic hydrologic domain in order to identify hydrologic processes, the ontology itself, and how the proposed ontology is integrated with the Water Resources Component (WRC) ontology. The proposed ontology standardizes the definitions of a hydrologic process, the relationships between hydrologic processes, and their associated scientific equations. The objective of the proposed Hydrologic Process (HP) Ontology is to advance the idea of creating a unified knowledge framework for components' metadata by introducing a domain-level ontology for hydrologic processes. The HP ontology is a step toward an explicit and robust domain knowledge framework that can be evolved through the contribution of domain users. Analysis of the hydrologic domain is accomplished using the Formal Concept Approach (FCA), in which the infiltration process, an important hydrologic process, is examined. Two infiltration methods, the Green-Ampt and Philip's methods, were used to demonstrate the implementation of information in the HP ontology. Furthermore, a SPARQL service is provided for semantic-based querying of the ontology.

  18. An Extended Petri-Net Based Approach for Supply Chain Process Enactment in Resource-Centric Web Service Environment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Zhang, Xiaoyu; Cai, Hongming; Xu, Boyi

    Enacting a supply-chain process involves variant partners and different IT systems. REST receives increasing attention for distributed systems with loosely coupled resources. Nevertheless, resource model incompatibilities and conflicts prevent effective process modeling and deployment in resource-centric Web service environment. In this paper, a Petri-net based framework for supply-chain process integration is proposed. A resource meta-model is constructed to represent the basic information of resources. Then based on resource meta-model, XML schemas and documents are derived, which represent resources and their states in Petri-net. Thereafter, XML-net, a high level Petri-net, is employed for modeling control and data flow of process. From process model in XML-net, RESTful services and choreography descriptions are deduced. Therefore, unified resource representation and RESTful services description are proposed for cross-system integration in a more effective way. A case study is given to illustrate the approach and the desirable features of the approach are discussed.

  19. Implicit Schemata and Categories in Memory-Based Language Processing

    ERIC Educational Resources Information Center

    van den Bosch, Antal; Daelemans, Walter

    2013-01-01

    Memory-based language processing (MBLP) is an approach to language processing based on exemplar storage during learning and analogical reasoning during processing. From a cognitive perspective, the approach is attractive as a model for human language processing because it does not make any assumptions about the way abstractions are shaped, nor any…

  20. Fault detection and diagnosis using neural network approaches

    NASA Technical Reports Server (NTRS)

    Kramer, Mark A.

    1992-01-01

    Neural networks can be used to detect and identify abnormalities in real-time process data. Two basic approaches can be used, the first based on training networks using data representing both normal and abnormal modes of process behavior, and the second based on statistical characterization of the normal mode only. Given data representative of process faults, radial basis function networks can effectively identify failures. This approach is often limited by the lack of fault data, but can be facilitated by process simulation. The second approach employs elliptical and radial basis function neural networks and other models to learn the statistical distributions of process observables under normal conditions. Analytical models of failure modes can then be applied in combination with the neural network models to identify faults. Special methods can be applied to compensate for sensor failures, to produce real-time estimation of missing or failed sensors based on the correlations codified in the neural network.

  1. A new approach towards image based virtual 3D city modeling by using close range photogrammetry

    NASA Astrophysics Data System (ADS)

    Singh, S. P.; Jain, K.; Mandla, V. R.

    2014-05-01

    3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country and high resolution satellite images are costly. In this study, proposed method is based on only simple video recording of area. Thus this proposed method is suitable for 3D city modeling. Photo-realistic, scalable, geo-referenced virtual 3D city model is useful for various kinds of applications such as for planning in navigation, tourism, disasters management, transportations, municipality, urban and environmental managements, real-estate industry. Thus this study will provide a good roadmap for geomatics community to create photo-realistic virtual 3D city model by using close range photogrammetry.

  2. Aligning observed and modelled behaviour based on workflow decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Du, YuYue; Liu, Wei

    2017-09-01

    When business processes are mostly supported by information systems, the availability of event logs generated from these systems, as well as the requirement of appropriate process models are increasing. Business processes can be discovered, monitored and enhanced by extracting process-related information. However, some events cannot be correctly identified because of the explosion of the amount of event logs. Therefore, a new process mining technique is proposed based on a workflow decomposition method in this paper. Petri nets (PNs) are used to describe business processes, and then conformance checking of event logs and process models is investigated. A decomposition approach is proposed to divide large process models and event logs into several separate parts that can be analysed independently; while an alignment approach based on a state equation method in PN theory enhances the performance of conformance checking. Both approaches are implemented in programmable read-only memory (ProM). The correctness and effectiveness of the proposed methods are illustrated through experiments.

  3. Business process architectures: overview, comparison and framework

    NASA Astrophysics Data System (ADS)

    Dijkman, Remco; Vanderfeesten, Irene; Reijers, Hajo A.

    2016-02-01

    With the uptake of business process modelling in practice, the demand grows for guidelines that lead to consistent and integrated collections of process models. The notion of a business process architecture has been explicitly proposed to address this. This paper provides an overview of the prevailing approaches to design a business process architecture. Furthermore, it includes evaluations of the usability and use of the identified approaches. Finally, it presents a framework for business process architecture design that can be used to develop a concrete architecture. The use and usability were evaluated in two ways. First, a survey was conducted among 39 practitioners, in which the opinion of the practitioners on the use and usefulness of the approaches was evaluated. Second, four case studies were conducted, in which process architectures from practice were analysed to determine the approaches or elements of approaches that were used in their design. Both evaluations showed that practitioners have a preference for using approaches that are based on reference models and approaches that are based on the identification of business functions or business objects. At the same time, the evaluations showed that practitioners use these approaches in combination, rather than selecting a single approach.

  4. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    USGS Publications Warehouse

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  5. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    NASA Astrophysics Data System (ADS)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-06-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  6. ATMOSPHERIC AMMONIA EMISSIONS FROM THE LIVESTOCK SECTOR: DEVELOPMENT AND EVALUATION OF A PROCESS-BASED MODELING APPROACH

    EPA Science Inventory

    We propose multi-faceted research to enhance our understanding of NH3 emissions from livestock feeding operations. A process-based emissions modeling approach will be used, and we will investigate ammonia emissions from the scale of the individual farm out to impacts on region...

  7. Technical note: Comparison of methane ebullition modelling approaches used in terrestrial wetland models

    NASA Astrophysics Data System (ADS)

    Peltola, Olli; Raivonen, Maarit; Li, Xuefei; Vesala, Timo

    2018-02-01

    Emission via bubbling, i.e. ebullition, is one of the main methane (CH4) emission pathways from wetlands to the atmosphere. Direct measurement of gas bubble formation, growth and release in the peat-water matrix is challenging and in consequence these processes are relatively unknown and are coarsely represented in current wetland CH4 emission models. In this study we aimed to evaluate three ebullition modelling approaches and their effect on model performance. This was achieved by implementing the three approaches in one process-based CH4 emission model. All the approaches were based on some kind of threshold: either on CH4 pore water concentration (ECT), pressure (EPT) or free-phase gas volume (EBG) threshold. The model was run using 4 years of data from a boreal sedge fen and the results were compared with eddy covariance measurements of CH4 fluxes.

    Modelled annual CH4 emissions were largely unaffected by the different ebullition modelling approaches; however, temporal variability in CH4 emissions varied an order of magnitude between the approaches. Hence the ebullition modelling approach drives the temporal variability in modelled CH4 emissions and therefore significantly impacts, for instance, high-frequency (daily scale) model comparison and calibration against measurements. The modelling approach based on the most recent knowledge of the ebullition process (volume threshold, EBG) agreed the best with the measured fluxes (R2 = 0.63) and hence produced the most reasonable results, although there was a scale mismatch between the measurements (ecosystem scale with heterogeneous ebullition locations) and model results (single horizontally homogeneous peat column). The approach should be favoured over the two other more widely used ebullition modelling approaches and researchers are encouraged to implement it into their CH4 emission models.

  8. A hybrid agent-based approach for modeling microbiological systems.

    PubMed

    Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing

    2008-11-21

    Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.

  9. Is Dysfunctional Use of the Mobile Phone a Behavioural Addiction? Confronting Symptom-Based Versus Process-Based Approaches.

    PubMed

    Billieux, Joël; Philippot, Pierre; Schmid, Cécile; Maurage, Pierre; De Mol, Jan; Van der Linden, Martial

    2015-01-01

    Dysfunctional use of the mobile phone has often been conceptualized as a 'behavioural addiction' that shares most features with drug addictions. In the current article, we challenge the clinical utility of the addiction model as applied to mobile phone overuse. We describe the case of a woman who overuses her mobile phone from two distinct approaches: (1) a symptom-based categorical approach inspired from the addiction model of dysfunctional mobile phone use and (2) a process-based approach resulting from an idiosyncratic clinical case conceptualization. In the case depicted here, the addiction model was shown to lead to standardized and non-relevant treatment, whereas the clinical case conceptualization allowed identification of specific psychological processes that can be targeted with specific, empirically based psychological interventions. This finding highlights that conceptualizing excessive behaviours (e.g., gambling and sex) within the addiction model can be a simplification of an individual's psychological functioning, offering only limited clinical relevance. The addiction model, applied to excessive behaviours (e.g., gambling, sex and Internet-related activities) may lead to non-relevant standardized treatments. Clinical case conceptualization allowed identification of specific psychological processes that can be targeted with specific empirically based psychological interventions. The biomedical model might lead to the simplification of an individual's psychological functioning with limited clinical relevance. Copyright © 2014 John Wiley & Sons, Ltd.

  10. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining

    PubMed Central

    Truccolo, Wilson

    2017-01-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics (“order parameters”) inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. PMID:28336305

  11. From point process observations to collective neural dynamics: Nonlinear Hawkes process GLMs, low-dimensional dynamics and coarse graining.

    PubMed

    Truccolo, Wilson

    2016-11-01

    This review presents a perspective on capturing collective dynamics in recorded neuronal ensembles based on multivariate point process models, inference of low-dimensional dynamics and coarse graining of spatiotemporal measurements. A general probabilistic framework for continuous time point processes reviewed, with an emphasis on multivariate nonlinear Hawkes processes with exogenous inputs. A point process generalized linear model (PP-GLM) framework for the estimation of discrete time multivariate nonlinear Hawkes processes is described. The approach is illustrated with the modeling of collective dynamics in neocortical neuronal ensembles recorded in human and non-human primates, and prediction of single-neuron spiking. A complementary approach to capture collective dynamics based on low-dimensional dynamics ("order parameters") inferred via latent state-space models with point process observations is presented. The approach is illustrated by inferring and decoding low-dimensional dynamics in primate motor cortex during naturalistic reach and grasp movements. Finally, we briefly review hypothesis tests based on conditional inference and spatiotemporal coarse graining for assessing collective dynamics in recorded neuronal ensembles. Published by Elsevier Ltd.

  12. Agent-based modeling: a new approach for theory building in social psychology.

    PubMed

    Smith, Eliot R; Conrey, Frederica R

    2007-02-01

    Most social and psychological phenomena occur not as the result of isolated decisions by individuals but rather as the result of repeated interactions between multiple individuals over time. Yet the theory-building and modeling techniques most commonly used in social psychology are less than ideal for understanding such dynamic and interactive processes. This article describes an alternative approach to theory building, agent-based modeling (ABM), which involves simulation of large numbers of autonomous agents that interact with each other and with a simulated environment and the observation of emergent patterns from their interactions. The authors believe that the ABM approach is better able than prevailing approaches in the field, variable-based modeling (VBM) techniques such as causal modeling, to capture types of complex, dynamic, interactive processes so important in the social world. The article elaborates several important contrasts between ABM and VBM and offers specific recommendations for learning more and applying the ABM approach.

  13. Sliding mode control: an approach to regulate nonlinear chemical processes

    PubMed

    Camacho; Smith

    2000-01-01

    A new approach for the design of sliding mode controllers based on a first-order-plus-deadtime model of the process, is developed. This approach results in a fixed structure controller with a set of tuning equations as a function of the characteristic parameters of the model. The controller performance is judged by simulations on two nonlinear chemical processes.

  14. Agent-Based Modeling of Growth Processes

    ERIC Educational Resources Information Center

    Abraham, Ralph

    2014-01-01

    Growth processes abound in nature, and are frequently the target of modeling exercises in the sciences. In this article we illustrate an agent-based approach to modeling, in the case of a single example from the social sciences: bullying.

  15. Using fuzzy rule-based knowledge model for optimum plating conditions search

    NASA Astrophysics Data System (ADS)

    Solovjev, D. S.; Solovjeva, I. A.; Litovka, Yu V.; Arzamastsev, A. A.; Glazkov, V. P.; L’vov, A. A.

    2018-03-01

    The paper discusses existing approaches to plating process modeling in order to decrease the distribution thickness of plating surface cover. However, these approaches do not take into account the experience, knowledge, and intuition of the decision-makers when searching the optimal conditions of electroplating technological process. The original approach to optimal conditions search for applying the electroplating coatings, which uses the rule-based model of knowledge and allows one to reduce the uneven product thickness distribution, is proposed. The block diagrams of a conventional control system of a galvanic process as well as the system based on the production model of knowledge are considered. It is shown that the fuzzy production model of knowledge in the control system makes it possible to obtain galvanic coatings of a given thickness unevenness with a high degree of adequacy to the experimental data. The described experimental results confirm the theoretical conclusions.

  16. Model-Based GN and C Simulation and Flight Software Development for Orion Missions beyond LEO

    NASA Technical Reports Server (NTRS)

    Odegard, Ryan; Milenkovic, Zoran; Henry, Joel; Buttacoli, Michael

    2014-01-01

    For Orion missions beyond low Earth orbit (LEO), the Guidance, Navigation, and Control (GN&C) system is being developed using a model-based approach for simulation and flight software. Lessons learned from the development of GN&C algorithms and flight software for the Orion Exploration Flight Test One (EFT-1) vehicle have been applied to the development of further capabilities for Orion GN&C beyond EFT-1. Continuing the use of a Model-Based Development (MBD) approach with the Matlab®/Simulink® tool suite, the process for GN&C development and analysis has been largely improved. Furthermore, a model-based simulation environment in Simulink, rather than an external C-based simulation, greatly eases the process for development of flight algorithms. The benefits seen by employing lessons learned from EFT-1 are described, as well as the approach for implementing additional MBD techniques. Also detailed are the key enablers for improvements to the MBD process, including enhanced configuration management techniques for model-based software systems, automated code and artifact generation, and automated testing and integration.

  17. Continuity-based model interfacing for plant-wide simulation: a general approach.

    PubMed

    Volcke, Eveline I P; van Loosdrecht, Mark C M; Vanrolleghem, Peter A

    2006-08-01

    In plant-wide simulation studies of wastewater treatment facilities, often existing models from different origin need to be coupled. However, as these submodels are likely to contain different state variables, their coupling is not straightforward. The continuity-based interfacing method (CBIM) provides a general framework to construct model interfaces for models of wastewater systems, taking into account conservation principles. In this contribution, the CBIM approach is applied to study the effect of sludge digestion reject water treatment with a SHARON-Anammox process on a plant-wide scale. Separate models were available for the SHARON process and for the Anammox process. The Benchmark simulation model no. 2 (BSM2) is used to simulate the behaviour of the complete WWTP including sludge digestion. The CBIM approach is followed to develop three different model interfaces. At the same time, the generally applicable CBIM approach was further refined and particular issues when coupling models in which pH is considered as a state variable, are pointed out.

  18. Modeling marine oily wastewater treatment by a probabilistic agent-based approach.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Ye, Xudong

    2018-02-01

    This study developed a novel probabilistic agent-based approach for modeling of marine oily wastewater treatment processes. It begins first by constructing a probability-based agent simulation model, followed by a global sensitivity analysis and a genetic algorithm-based calibration. The proposed modeling approach was tested through a case study of the removal of naphthalene from marine oily wastewater using UV irradiation. The removal of naphthalene was described by an agent-based simulation model using 8 types of agents and 11 reactions. Each reaction was governed by a probability parameter to determine its occurrence. The modeling results showed that the root mean square errors between modeled and observed removal rates were 8.73 and 11.03% for calibration and validation runs, respectively. Reaction competition was analyzed by comparing agent-based reaction probabilities, while agents' heterogeneity was visualized by plotting their real-time spatial distribution, showing a strong potential for reactor design and process optimization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Thorough specification of the neurophysiologic processes underlying behavior and of their manifestation in EEG - demonstration with the go/no-go task.

    PubMed

    Shahaf, Goded; Pratt, Hillel

    2013-01-01

    In this work we demonstrate the principles of a systematic modeling approach of the neurophysiologic processes underlying a behavioral function. The modeling is based upon a flexible simulation tool, which enables parametric specification of the underlying neurophysiologic characteristics. While the impact of selecting specific parameters is of interest, in this work we focus on the insights, which emerge from rather accepted assumptions regarding neuronal representation. We show that harnessing of even such simple assumptions enables the derivation of significant insights regarding the nature of the neurophysiologic processes underlying behavior. We demonstrate our approach in some detail by modeling the behavioral go/no-go task. We further demonstrate the practical significance of this simplified modeling approach in interpreting experimental data - the manifestation of these processes in the EEG and ERP literature of normal and abnormal (ADHD) function, as well as with comprehensive relevant ERP data analysis. In-fact we show that from the model-based spatiotemporal segregation of the processes, it is possible to derive simple and yet effective and theory-based EEG markers differentiating normal and ADHD subjects. We summarize by claiming that the neurophysiologic processes modeled for the go/no-go task are part of a limited set of neurophysiologic processes which underlie, in a variety of combinations, any behavioral function with measurable operational definition. Such neurophysiologic processes could be sampled directly from EEG on the basis of model-based spatiotemporal segregation.

  20. PREDICTIVE MODELING OF LIGHT-INDUCED MORTALITY OF ENTEROCOCCI FAECALIS IN RECREATIONAL WATERS

    EPA Science Inventory

    One approach to predictive modeling of biological contamination of recreational waters involves the application of process-based approaches that consider microbial sources, hydrodynamic transport, and microbial fate. This presentation focuses on one important fate process, light-...

  1. Modelling of the mercury loss in fluorescent lamps under the influence of metal oxide coatings

    NASA Astrophysics Data System (ADS)

    Santos Abreu, A.; Mayer, J.; Lenk, D.; Horn, S.; Konrad, A.; Tidecks, R.

    2016-11-01

    The mercury transport and loss mechanisms in the metal oxide coatings of mercury low pressure discharge fluorescent lamps have been investigated. An existing model based on a ballistic process is discussed in the context of experimental mercury loss data. Two different approaches to the modeling of the mercury loss have been developed. The first one is based on mercury transition rates between the plasma, the coating, and the glass without specifying the underlying physical processes. The second one is based on a transport process driven by diffusion and a binding process of mercury reacting to mercury oxide inside the layers. Moreover, we extended the diffusion based model to handle multi-component coatings. All approaches are applied to describe mercury loss experiments under the influence of an Al 2 O 3 coating.

  2. Modeling winter hydrological processes under differing climatic conditions: Modifying WEPP

    NASA Astrophysics Data System (ADS)

    Dun, Shuhui

    Water erosion is a serious and continuous environmental problem worldwide. In cold regions, soil freeze and thaw has great impacts on infiltration and erosion. Rain or snowmelt on a thawing soil can cause severe water erosion. Of equal importance is snow accumulation and snowmelt, which can be the predominant hydrological process in areas of mid- to high latitudes and forested watersheds. Modelers must properly simulate winter processes to adequately represent the overall hydrological outcome and sediment and chemical transport in these areas. Modeling winter hydrology is presently lacking in water erosion models. Most of these models are based on the functional Universal Soil Loss Equation (USLE) or its revised forms, e.g., Revised USLE (RUSLE). In RUSLE a seasonally variable soil erodibility factor (K) was used to account for the effects of frozen and thawing soil. Yet the use of this factor requires observation data for calibration, and such a simplified approach cannot represent the complicated transient freeze-thaw processes and their impacts on surface runoff and erosion. The Water Erosion Prediction Project (WEPP) watershed model, a physically-based erosion prediction software developed by the USDA-ARS, has seen numerous applications within and outside the US. WEPP simulates winter processes, including snow accumulation, snowmelt, and soil freeze-thaw, using an approach based on mass and energy conservation. However, previous studies showed the inadequacy of the winter routines in the WEPP model. Therefore, the objectives of this study were: (1) To adapt a modeling approach for winter hydrology based on mass and energy conservation, and to implement this approach into a physically-oriented hydrological model, such as WEPP; and (2) To assess this modeling approach through case applications to different geographic conditions. A new winter routine was developed and its performance was evaluated by incorporating it into WEPP (v2008.9) and then applying WEPP to four study sites at different spatial scales under different climatic conditions, including experimental plots in Pullman, WA and Morris, MN, two agricultural drainages in Pendleton, OR, and a forest watershed in Mica Creek, ID. The model applications showed promising results, indicating adequacy of the mass- and energy-balance-based approach for winter hydrology simulation.

  3. Query Language for Location-Based Services: A Model Checking Approach

    NASA Astrophysics Data System (ADS)

    Hoareau, Christian; Satoh, Ichiro

    We present a model checking approach to the rationale, implementation, and applications of a query language for location-based services. Such query mechanisms are necessary so that users, objects, and/or services can effectively benefit from the location-awareness of their surrounding environment. The underlying data model is founded on a symbolic model of space organized in a tree structure. Once extended to a semantic model for modal logic, we regard location query processing as a model checking problem, and thus define location queries as hybrid logicbased formulas. Our approach is unique to existing research because it explores the connection between location models and query processing in ubiquitous computing systems, relies on a sound theoretical basis, and provides modal logic-based query mechanisms for expressive searches over a decentralized data structure. A prototype implementation is also presented and will be discussed.

  4. Accelerated rescaling of single Monte Carlo simulation runs with the Graphics Processing Unit (GPU).

    PubMed

    Yang, Owen; Choi, Bernard

    2013-01-01

    To interpret fiber-based and camera-based measurements of remitted light from biological tissues, researchers typically use analytical models, such as the diffusion approximation to light transport theory, or stochastic models, such as Monte Carlo modeling. To achieve rapid (ideally real-time) measurement of tissue optical properties, especially in clinical situations, there is a critical need to accelerate Monte Carlo simulation runs. In this manuscript, we report on our approach using the Graphics Processing Unit (GPU) to accelerate rescaling of single Monte Carlo runs to calculate rapidly diffuse reflectance values for different sets of tissue optical properties. We selected MATLAB to enable non-specialists in C and CUDA-based programming to use the generated open-source code. We developed a software package with four abstraction layers. To calculate a set of diffuse reflectance values from a simulated tissue with homogeneous optical properties, our rescaling GPU-based approach achieves a reduction in computation time of several orders of magnitude as compared to other GPU-based approaches. Specifically, our GPU-based approach generated a diffuse reflectance value in 0.08ms. The transfer time from CPU to GPU memory currently is a limiting factor with GPU-based calculations. However, for calculation of multiple diffuse reflectance values, our GPU-based approach still can lead to processing that is ~3400 times faster than other GPU-based approaches.

  5. Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos

    PubMed Central

    Santonja, F.; Chen-Charpentier, B.

    2012-01-01

    Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity epidemic model. PMID:22927889

  6. A review of single-sample-based models and other approaches for radiocarbon dating of dissolved inorganic carbon in groundwater

    USGS Publications Warehouse

    Han, L. F; Plummer, Niel

    2016-01-01

    Numerous methods have been proposed to estimate the pre-nuclear-detonation 14C content of dissolved inorganic carbon (DIC) recharged to groundwater that has been corrected/adjusted for geochemical processes in the absence of radioactive decay (14C0) - a quantity that is essential for estimation of radiocarbon age of DIC in groundwater. The models/approaches most commonly used are grouped as follows: (1) single-sample-based models, (2) a statistical approach based on the observed (curved) relationship between 14C and δ13C data for the aquifer, and (3) the geochemical mass-balance approach that constructs adjustment models accounting for all the geochemical reactions known to occur along a groundwater flow path. This review discusses first the geochemical processes behind each of the single-sample-based models, followed by discussions of the statistical approach and the geochemical mass-balance approach. Finally, the applications, advantages and limitations of the three groups of models/approaches are discussed.The single-sample-based models constitute the prevailing use of 14C data in hydrogeology and hydrological studies. This is in part because the models are applied to an individual water sample to estimate the 14C age, therefore the measurement data are easily available. These models have been shown to provide realistic radiocarbon ages in many studies. However, they usually are limited to simple carbonate aquifers and selection of model may have significant effects on 14C0 often resulting in a wide range of estimates of 14C ages.Of the single-sample-based models, four are recommended for the estimation of 14C0 of DIC in groundwater: Pearson's model, (Ingerson and Pearson, 1964; Pearson and White, 1967), Han & Plummer's model (Han and Plummer, 2013), the IAEA model (Gonfiantini, 1972; Salem et al., 1980), and Oeschger's model (Geyh, 2000). These four models include all processes considered in single-sample-based models, and can be used in different ranges of 13C values.In contrast to the single-sample-based models, the extended Gonfiantini & Zuppi model (Gonfiantini and Zuppi, 2003; Han et al., 2014) is a statistical approach. This approach can be used to estimate 14C ages when a curved relationship between the 14C and 13C values of the DIC data is observed. In addition to estimation of groundwater ages, the relationship between 14C and δ13C data can be used to interpret hydrogeological characteristics of the aquifer, e.g. estimating apparent rates of geochemical reactions and revealing the complexity of the geochemical environment, and identify samples that are not affected by the same set of reactions/processes as the rest of the dataset. The investigated water samples may have a wide range of ages, and for waters with very low values of 14C, the model based on statistics may give more reliable age estimates than those obtained from single-sample-based models. In the extended Gonfiantini & Zuppi model, a representative system-wide value of the initial 14C content is derived from the 14C and δ13C data of DIC and can differ from that used in single-sample-based models. Therefore, the extended Gonfiantini & Zuppi model usually avoids the effect of modern water components which might retain ‘bomb’ pulse signatures.The geochemical mass-balance approach constructs an adjustment model that accounts for all the geochemical reactions known to occur along an aquifer flow path (Plummer et al., 1983; Wigley et al., 1978; Plummer et al., 1994; Plummer and Glynn, 2013), and includes, in addition to DIC, dissolved organic carbon (DOC) and methane (CH4). If sufficient chemical, mineralogical and isotopic data are available, the geochemical mass-balance method can yield the most accurate estimates of the adjusted radiocarbon age. The main limitation of this approach is that complete information is necessary on chemical, mineralogical and isotopic data and these data are often limited.Failure to recognize the limitations and underlying assumptions on which the various models and approaches are based can result in a wide range of estimates of 14C0 and limit the usefulness of radiocarbon as a dating tool for groundwater. In each of the three generalized approaches (single-sample-based models, statistical approach, and geochemical mass-balance approach), successful application depends on scrutiny of the isotopic (14C and 13C) and chemical data to conceptualize the reactions and processes that affect the 14C content of DIC in aquifers. The recently developed graphical analysis method is shown to aid in determining which approach is most appropriate for the isotopic and chemical data from a groundwater system.

  7. An adaptive signal-processing approach to online adaptive tutoring.

    PubMed

    Bergeron, Bryan; Cline, Andrew

    2011-01-01

    Conventional intelligent or adaptive tutoring online systems rely on domain-specific models of learner behavior based on rules, deep domain knowledge, and other resource-intensive methods. We have developed and studied a domain-independent methodology of adaptive tutoring based on domain-independent signal-processing approaches that obviate the need for the construction of explicit expert and student models. A key advantage of our method over conventional approaches is a lower barrier to entry for educators who want to develop adaptive online learning materials.

  8. Conceptual information processing: A robust approach to KBS-DBMS integration

    NASA Technical Reports Server (NTRS)

    Lazzara, Allen V.; Tepfenhart, William; White, Richard C.; Liuzzi, Raymond

    1987-01-01

    Integrating the respective functionality and architectural features of knowledge base and data base management systems is a topic of considerable interest. Several aspects of this topic and associated issues are addressed. The significance of integration and the problems associated with accomplishing that integration are discussed. The shortcomings of current approaches to integration and the need to fuse the capabilities of both knowledge base and data base management systems motivates the investigation of information processing paradigms. One such paradigm is concept based processing, i.e., processing based on concepts and conceptual relations. An approach to robust knowledge and data base system integration is discussed by addressing progress made in the development of an experimental model for conceptual information processing.

  9. Modelling the Cast Component Weight in Hot Chamber Die Casting using Combined Taguchi and Buckingham's π Approach

    NASA Astrophysics Data System (ADS)

    Singh, Rupinder

    2018-02-01

    Hot chamber (HC) die casting process is one of the most widely used commercial processes for the casting of low temperature metals and alloys. This process gives near-net shape product with high dimensional accuracy. However in actual field environment the best settings of input parameters is often conflicting as the shape and size of the casting changes and one have to trade off among various output parameters like hardness, dimensional accuracy, casting defects, microstructure etc. So for online inspection of the cast components properties (without affecting the production line) the weight measurement has been established as one of the cost effective method (as the difference in weight of sound and unsound casting reflects the possible casting defects) in field environment. In the present work at first stage the effect of three input process parameters (namely: pressure at 2nd phase in HC die casting; metal pouring temperature and die opening time) has been studied for optimizing the cast component weight `W' as output parameter in form of macro model based upon Taguchi L9 OA. After this Buckingham's π approach has been applied on Taguchi based macro model for the development of micro model. This study highlights the Taguchi-Buckingham based combined approach as a case study (for conversion of macro model into micro model) by identification of optimum levels of input parameters (based on Taguchi approach) and development of mathematical model (based on Buckingham's π approach). Finally developed mathematical model can be used for predicting W in HC die casting process with more flexibility. The results of study highlights second degree polynomial equation for predicting cast component weight in HC die casting and suggest that pressure at 2nd stage is one of the most contributing factors for controlling the casting defect/weight of casting.

  10. Modern meta-heuristics based on nonlinear physics processes: A review of models and design procedures

    NASA Astrophysics Data System (ADS)

    Salcedo-Sanz, S.

    2016-10-01

    Meta-heuristic algorithms are problem-solving methods which try to find good-enough solutions to very hard optimization problems, at a reasonable computation time, where classical approaches fail, or cannot even been applied. Many existing meta-heuristics approaches are nature-inspired techniques, which work by simulating or modeling different natural processes in a computer. Historically, many of the most successful meta-heuristic approaches have had a biological inspiration, such as evolutionary computation or swarm intelligence paradigms, but in the last few years new approaches based on nonlinear physics processes modeling have been proposed and applied with success. Non-linear physics processes, modeled as optimization algorithms, are able to produce completely new search procedures, with extremely effective exploration capabilities in many cases, which are able to outperform existing optimization approaches. In this paper we review the most important optimization algorithms based on nonlinear physics, how they have been constructed from specific modeling of a real phenomena, and also their novelty in terms of comparison with alternative existing algorithms for optimization. We first review important concepts on optimization problems, search spaces and problems' difficulty. Then, the usefulness of heuristics and meta-heuristics approaches to face hard optimization problems is introduced, and some of the main existing classical versions of these algorithms are reviewed. The mathematical framework of different nonlinear physics processes is then introduced as a preparatory step to review in detail the most important meta-heuristics based on them. A discussion on the novelty of these approaches, their main computational implementation and design issues, and the evaluation of a novel meta-heuristic based on Strange Attractors mutation will be carried out to complete the review of these techniques. We also describe some of the most important application areas, in broad sense, of meta-heuristics, and describe free-accessible software frameworks which can be used to make easier the implementation of these algorithms.

  11. Time series modeling by a regression approach based on a latent process.

    PubMed

    Chamroukhi, Faicel; Samé, Allou; Govaert, Gérard; Aknin, Patrice

    2009-01-01

    Time series are used in many domains including finance, engineering, economics and bioinformatics generally to represent the change of a measurement over time. Modeling techniques may then be used to give a synthetic representation of such data. A new approach for time series modeling is proposed in this paper. It consists of a regression model incorporating a discrete hidden logistic process allowing for activating smoothly or abruptly different polynomial regression models. The model parameters are estimated by the maximum likelihood method performed by a dedicated Expectation Maximization (EM) algorithm. The M step of the EM algorithm uses a multi-class Iterative Reweighted Least-Squares (IRLS) algorithm to estimate the hidden process parameters. To evaluate the proposed approach, an experimental study on simulated data and real world data was performed using two alternative approaches: a heteroskedastic piecewise regression model using a global optimization algorithm based on dynamic programming, and a Hidden Markov Regression Model whose parameters are estimated by the Baum-Welch algorithm. Finally, in the context of the remote monitoring of components of the French railway infrastructure, and more particularly the switch mechanism, the proposed approach has been applied to modeling and classifying time series representing the condition measurements acquired during switch operations.

  12. Developing Emotion-Based Case Formulations: A Research-Informed Method.

    PubMed

    Pascual-Leone, Antonio; Kramer, Ueli

    2017-01-01

    New research-informed methods for case conceptualization that cut across traditional therapy approaches are increasingly popular. This paper presents a trans-theoretical approach to case formulation based on the research observations of emotion. The sequential model of emotional processing (Pascual-Leone & Greenberg, 2007) is a process research model that provides concrete markers for therapists to observe the emerging emotional development of their clients. We illustrate how this model can be used by clinicians to track change and provides a 'clinical map,' by which therapist may orient themselves in-session and plan treatment interventions. Emotional processing offers as a trans-theoretical framework for therapists who wish to conduct emotion-based case formulations. First, we present criteria for why this research model translates well into practice. Second, two contrasting case studies are presented to demonstrate the method. The model bridges research with practice by using client emotion as an axis of integration. Key Practitioner Message Process research on emotion can offer a template for therapists to make case formulations while using a range of treatment approaches. The sequential model of emotional processing provides a 'process map' of concrete markers for therapists to (1) observe the emerging emotional development of their clients, and (2) help therapists develop a treatment plan. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Comparing statistical and process-based flow duration curve models in ungauged basins and changing rain regimes

    NASA Astrophysics Data System (ADS)

    Müller, M. F.; Thompson, S. E.

    2016-02-01

    The prediction of flow duration curves (FDCs) in ungauged basins remains an important task for hydrologists given the practical relevance of FDCs for water management and infrastructure design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or model parameters. This task is complicated if climate becomes non-stationary, as the prediction challenge now also requires extrapolation through time. In this context, process-based models for FDCs that mechanistically link the streamflow distribution to climate and landscape factors may have an advantage over purely statistical methods to predict FDCs. This study compares a stochastic (process-based) and statistical method for FDC prediction in both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary conditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80 in 75 % of the tested catchments. The main drivers of uncertainty differ between the models: parameter interpolation was the main source of error for the statistical model, while violations of the assumptions of the process-based model represented the main source of its error. The process-based approach performed better than the statistical approach in numerical simulations with non-stationary climate drivers. The predictions of the statistical method under non-stationary rainfall conditions were poor if (i) local runoff coefficients were not accurately determined from the gauge network, or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analysis shows that the streamflow regimes in catchments characterized by frequent wet-season runoff and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall statistics. In these cases, process-based prediction approaches are favored over statistical models.

  14. Towards a voxel-based geographic automata for the simulation of geospatial processes

    NASA Astrophysics Data System (ADS)

    Jjumba, Anthony; Dragićević, Suzana

    2016-07-01

    Many geographic processes evolve in a three dimensional space and time continuum. However, when they are represented with the aid of geographic information systems (GIS) or geosimulation models they are modelled in a framework of two-dimensional space with an added temporal component. The objective of this study is to propose the design and implementation of voxel-based automata as a methodological approach for representing spatial processes evolving in the four-dimensional (4D) space-time domain. Similar to geographic automata models which are developed to capture and forecast geospatial processes that change in a two-dimensional spatial framework using cells (raster geospatial data), voxel automata rely on the automata theory and use three-dimensional volumetric units (voxels). Transition rules have been developed to represent various spatial processes which range from the movement of an object in 3D to the diffusion of airborne particles and landslide simulation. In addition, the proposed 4D models demonstrate that complex processes can be readily reproduced from simple transition functions without complex methodological approaches. The voxel-based automata approach provides a unique basis to model geospatial processes in 4D for the purpose of improving representation, analysis and understanding their spatiotemporal dynamics. This study contributes to the advancement of the concepts and framework of 4D GIS.

  15. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks

    PubMed Central

    Walpole, J.; Chappell, J.C.; Cluceru, J.G.; Mac Gabhann, F.; Bautch, V.L.; Peirce, S. M.

    2015-01-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods. PMID:26158406

  16. Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks.

    PubMed

    Walpole, J; Chappell, J C; Cluceru, J G; Mac Gabhann, F; Bautch, V L; Peirce, S M

    2015-09-01

    Many biological processes are controlled by both deterministic and stochastic influences. However, efforts to model these systems often rely on either purely stochastic or purely rule-based methods. To better understand the balance between stochasticity and determinism in biological processes a computational approach that incorporates both influences may afford additional insight into underlying biological mechanisms that give rise to emergent system properties. We apply a combined approach to the simulation and study of angiogenesis, the growth of new blood vessels from existing networks. This complex multicellular process begins with selection of an initiating endothelial cell, or tip cell, which sprouts from the parent vessels in response to stimulation by exogenous cues. We have constructed an agent-based model of sprouting angiogenesis to evaluate endothelial cell sprout initiation frequency and location, and we have experimentally validated it using high-resolution time-lapse confocal microscopy. ABM simulations were then compared to a Monte Carlo model, revealing that purely stochastic simulations could not generate sprout locations as accurately as the rule-informed agent-based model. These findings support the use of rule-based approaches for modeling the complex mechanisms underlying sprouting angiogenesis over purely stochastic methods.

  17. Collective learning modeling based on the kinetic theory of active particles

    NASA Astrophysics Data System (ADS)

    Burini, D.; De Lillo, S.; Gibelli, L.

    2016-03-01

    This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom.

  18. The Gravitational Process Path (GPP) model (v1.0) - a GIS-based simulation framework for gravitational processes

    NASA Astrophysics Data System (ADS)

    Wichmann, Volker

    2017-09-01

    The Gravitational Process Path (GPP) model can be used to simulate the process path and run-out area of gravitational processes based on a digital terrain model (DTM). The conceptual model combines several components (process path, run-out length, sink filling and material deposition) to simulate the movement of a mass point from an initiation site to the deposition area. For each component several modeling approaches are provided, which makes the tool configurable for different processes such as rockfall, debris flows or snow avalanches. The tool can be applied to regional-scale studies such as natural hazard susceptibility mapping but also contains components for scenario-based modeling of single events. Both the modeling approaches and precursor implementations of the tool have proven their applicability in numerous studies, also including geomorphological research questions such as the delineation of sediment cascades or the study of process connectivity. This is the first open-source implementation, completely re-written, extended and improved in many ways. The tool has been committed to the main repository of the System for Automated Geoscientific Analyses (SAGA) and thus will be available with every SAGA release.

  19. Offline modeling for product quality prediction of mineral processing using modeling error PDF shaping and entropy minimization.

    PubMed

    Ding, Jinliang; Chai, Tianyou; Wang, Hong

    2011-03-01

    This paper presents a novel offline modeling for product quality prediction of mineral processing which consists of a number of unit processes in series. The prediction of the product quality of the whole mineral process (i.e., the mixed concentrate grade) plays an important role and the establishment of its predictive model is a key issue for the plantwide optimization. For this purpose, a hybrid modeling approach of the mixed concentrate grade prediction is proposed, which consists of a linear model and a nonlinear model. The least-squares support vector machine is adopted to establish the nonlinear model. The inputs of the predictive model are the performance indices of each unit process, while the output is the mixed concentrate grade. In this paper, the model parameter selection is transformed into the shape control of the probability density function (PDF) of the modeling error. In this context, both the PDF-control-based and minimum-entropy-based model parameter selection approaches are proposed. Indeed, this is the first time that the PDF shape control idea is used to deal with system modeling, where the key idea is to turn model parameters so that either the modeling error PDF is controlled to follow a target PDF or the modeling error entropy is minimized. The experimental results using the real plant data and the comparison of the two approaches are discussed. The results show the effectiveness of the proposed approaches.

  20. A Model-Based Approach to Developing Your Mission Operations System

    NASA Technical Reports Server (NTRS)

    Smith, Robert R.; Schimmels, Kathryn A.; Lock, Patricia D; Valerio, Charlene P.

    2014-01-01

    Model-Based System Engineering (MBSE) is an increasingly popular methodology for designing complex engineering systems. As the use of MBSE has grown, it has begun to be applied to systems that are less hardware-based and more people- and process-based. We describe our approach to incorporating MBSE as a way to streamline development, and how to build a model consisting of core resources, such as requirements and interfaces, that can be adapted and used by new and upcoming projects. By comparing traditional Mission Operations System (MOS) system engineering with an MOS designed via a model, we will demonstrate the benefits to be obtained by incorporating MBSE in system engineering design processes.

  1. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; Woods, Ross A.; Uijlenhoet, Remko; Bennett, Katrina E.; Pauwels, Valentijn R. N.; Cai, Xitian; Wood, Andrew W.; Peters-Lidard, Christa D.

    2017-07-01

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  2. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    NASA Astrophysics Data System (ADS)

    Clark, M. P.; Nijssen, B.; Wood, A.; Mizukami, N.; Newman, A. J.

    2017-12-01

    The diversity in hydrologic models has historically led to great controversy on the "correct" approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. In this paper, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We illustrate how modeling advances have been made by groups using models of different type and complexity, and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.

  3. Holistic versus monomeric strategies for hydrological modelling of human-modified hydrosystems

    NASA Astrophysics Data System (ADS)

    Nalbantis, I.; Efstratiadis, A.; Rozos, E.; Kopsiafti, M.; Koutsoyiannis, D.

    2011-03-01

    The modelling of human-modified basins that are inadequately measured constitutes a challenge for hydrological science. Often, models for such systems are detailed and hydraulics-based for only one part of the system while for other parts oversimplified models or rough assumptions are used. This is typically a bottom-up approach, which seeks to exploit knowledge of hydrological processes at the micro-scale at some components of the system. Also, it is a monomeric approach in two ways: first, essential interactions among system components may be poorly represented or even omitted; second, differences in the level of detail of process representation can lead to uncontrolled errors. Additionally, the calibration procedure merely accounts for the reproduction of the observed responses using typical fitting criteria. The paper aims to raise some critical issues, regarding the entire modelling approach for such hydrosystems. For this, two alternative modelling strategies are examined that reflect two modelling approaches or philosophies: a dominant bottom-up approach, which is also monomeric and, very often, based on output information, and a top-down and holistic approach based on generalized information. Critical options are examined, which codify the differences between the two strategies: the representation of surface, groundwater and water management processes, the schematization and parameterization concepts and the parameter estimation methodology. The first strategy is based on stand-alone models for surface and groundwater processes and for water management, which are employed sequentially. For each model, a different (detailed or coarse) parameterization is used, which is dictated by the hydrosystem schematization. The second strategy involves model integration for all processes, parsimonious parameterization and hybrid manual-automatic parameter optimization based on multiple objectives. A test case is examined in a hydrosystem in Greece with high complexities, such as extended surface-groundwater interactions, ill-defined boundaries, sinks to the sea and anthropogenic intervention with unmeasured abstractions both from surface water and aquifers. Criteria for comparison are the physical consistency of parameters, the reproduction of runoff hydrographs at multiple sites within the studied basin, the likelihood of uncontrolled model outputs, the required amount of computational effort and the performance within a stochastic simulation setting. Our work allows for investigating the deterioration of model performance in cases where no balanced attention is paid to all components of human-modified hydrosystems and the related information. Also, sources of errors are identified and their combined effect are evaluated.

  4. Semantic Service Design for Collaborative Business Processes in Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    Bianchini, Devis; Cappiello, Cinzia; de Antonellis, Valeria; Pernici, Barbara

    Modern collaborating enterprises can be seen as borderless organizations whose processes are dynamically transformed and integrated with the ones of their partners (Internetworked Enterprises, IE), thus enabling the design of collaborative business processes. The adoption of Semantic Web and service-oriented technologies for implementing collaboration in such distributed and heterogeneous environments promises significant benefits. IE can model their own processes independently by using the Software as a Service paradigm (SaaS). Each enterprise maintains a catalog of available services and these can be shared across IE and reused to build up complex collaborative processes. Moreover, each enterprise can adopt its own terminology and concepts to describe business processes and component services. This brings requirements to manage semantic heterogeneity in process descriptions which are distributed across different enterprise systems. To enable effective service-based collaboration, IEs have to standardize their process descriptions and model them through component services using the same approach and principles. For enabling collaborative business processes across IE, services should be designed following an homogeneous approach, possibly maintaining a uniform level of granularity. In the paper we propose an ontology-based semantic modeling approach apt to enrich and reconcile semantics of process descriptions to facilitate process knowledge management and to enable semantic service design (by discovery, reuse and integration of process elements/constructs). The approach brings together Semantic Web technologies, techniques in process modeling, ontology building and semantic matching in order to provide a comprehensive semantic modeling framework.

  5. Process-Based Governance in Public Administrations Using Activity-Based Costing

    NASA Astrophysics Data System (ADS)

    Becker, Jörg; Bergener, Philipp; Räckers, Michael

    Decision- and policy-makers in public administrations currently lack on missing relevant information for sufficient governance. In Germany the introduction of New Public Management and double-entry accounting enable public administrations to get the opportunity to use cost-centered accounting mechanisms to establish new governance mechanisms. Process modelling in this case can be a useful instrument to help the public administrations decision- and policy-makers to structure their activities and capture relevant information. In combination with approaches like Activity-Based Costing, higher management level can be supported with a reasonable data base for fruitful and reasonable governance approaches. Therefore, the aim of this article is combining the public sector domain specific process modelling method PICTURE and concept of activity-based costing for supporting Public Administrations in process-based Governance.

  6. CATS - A process-based model for turbulent turbidite systems at the reservoir scale

    NASA Astrophysics Data System (ADS)

    Teles, Vanessa; Chauveau, Benoît; Joseph, Philippe; Weill, Pierre; Maktouf, Fakher

    2016-09-01

    The Cellular Automata for Turbidite systems (CATS) model is intended to simulate the fine architecture and facies distribution of turbidite reservoirs with a multi-event and process-based approach. The main processes of low-density turbulent turbidity flow are modeled: downslope sediment-laden flow, entrainment of ambient water, erosion and deposition of several distinct lithologies. This numerical model, derived from (Salles, 2006; Salles et al., 2007), proposes a new approach based on the Rouse concentration profile to consider the flow capacity to carry the sediment load in suspension. In CATS, the flow distribution on a given topography is modeled with local rules between neighboring cells (cellular automata) based on potential and kinetic energy balance and diffusion concepts. Input parameters are the initial flow parameters and a 3D topography at depositional time. An overview of CATS capabilities in different contexts is presented and discussed.

  7. Linking Goal-Oriented Requirements and Model-Driven Development

    NASA Astrophysics Data System (ADS)

    Pastor, Oscar; Giachetti, Giovanni

    In the context of Goal-Oriented Requirement Engineering (GORE) there are interesting modeling approaches for the analysis of complex scenarios that are oriented to obtain and represent the relevant requirements for the development of software products. However, the way to use these GORE models in an automated Model-Driven Development (MDD) process is not clear, and, in general terms, the translation of these models into the final software products is still manually performed. Therefore, in this chapter, we show an approach to automatically link GORE models and MDD processes, which has been elaborated by considering the experience obtained from linking the i * framework with an industrially applied MDD approach. The linking approach proposed is formulated by means of a generic process that is based on current modeling standards and technologies in order to facilitate its application for different MDD and GORE approaches. Special attention is paid to how this process generates appropriate model transformation mechanisms to automatically obtain MDD conceptual models from GORE models, and how it can be used to specify validation mechanisms to assure the correct model transformations.

  8. Supervised Learning Based Hypothesis Generation from Biomedical Literature.

    PubMed

    Sang, Shengtian; Yang, Zhihao; Li, Zongyao; Lin, Hongfei

    2015-01-01

    Nowadays, the amount of biomedical literatures is growing at an explosive speed, and there is much useful knowledge undiscovered in this literature. Researchers can form biomedical hypotheses through mining these works. In this paper, we propose a supervised learning based approach to generate hypotheses from biomedical literature. This approach splits the traditional processing of hypothesis generation with classic ABC model into AB model and BC model which are constructed with supervised learning method. Compared with the concept cooccurrence and grammar engineering-based approaches like SemRep, machine learning based models usually can achieve better performance in information extraction (IE) from texts. Then through combining the two models, the approach reconstructs the ABC model and generates biomedical hypotheses from literature. The experimental results on the three classic Swanson hypotheses show that our approach outperforms SemRep system.

  9. DAMS: A Model to Assess Domino Effects by Using Agent-Based Modeling and Simulation.

    PubMed

    Zhang, Laobing; Landucci, Gabriele; Reniers, Genserik; Khakzad, Nima; Zhou, Jianfeng

    2017-12-19

    Historical data analysis shows that escalation accidents, so-called domino effects, have an important role in disastrous accidents in the chemical and process industries. In this study, an agent-based modeling and simulation approach is proposed to study the propagation of domino effects in the chemical and process industries. Different from the analytical or Monte Carlo simulation approaches, which normally study the domino effect at probabilistic network levels, the agent-based modeling technique explains the domino effects from a bottom-up perspective. In this approach, the installations involved in a domino effect are modeled as agents whereas the interactions among the installations (e.g., by means of heat radiation) are modeled via the basic rules of the agents. Application of the developed model to several case studies demonstrates the ability of the model not only in modeling higher-level domino effects and synergistic effects but also in accounting for temporal dependencies. The model can readily be applied to large-scale complicated cases. © 2017 Society for Risk Analysis.

  10. Translating building information modeling to building energy modeling using model view definition.

    PubMed

    Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J; Haberl, Jeff S; Yan, Wei

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process.

  11. Translating Building Information Modeling to Building Energy Modeling Using Model View Definition

    PubMed Central

    Kim, Jong Bum; Clayton, Mark J.; Haberl, Jeff S.

    2014-01-01

    This paper presents a new approach to translate between Building Information Modeling (BIM) and Building Energy Modeling (BEM) that uses Modelica, an object-oriented declarative, equation-based simulation environment. The approach (BIM2BEM) has been developed using a data modeling method to enable seamless model translations of building geometry, materials, and topology. Using data modeling, we created a Model View Definition (MVD) consisting of a process model and a class diagram. The process model demonstrates object-mapping between BIM and Modelica-based BEM (ModelicaBEM) and facilitates the definition of required information during model translations. The class diagram represents the information and object relationships to produce a class package intermediate between the BIM and BEM. The implementation of the intermediate class package enables system interface (Revit2Modelica) development for automatic BIM data translation into ModelicaBEM. In order to demonstrate and validate our approach, simulation result comparisons have been conducted via three test cases using (1) the BIM-based Modelica models generated from Revit2Modelica and (2) BEM models manually created using LBNL Modelica Buildings library. Our implementation shows that BIM2BEM (1) enables BIM models to be translated into ModelicaBEM models, (2) enables system interface development based on the MVD for thermal simulation, and (3) facilitates the reuse of original BIM data into building energy simulation without an import/export process. PMID:25309954

  12. Simplified analytical model and balanced design approach for light-weight wood-based structural panel in bending

    Treesearch

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2016-01-01

    This paper presents a simplified analytical model and balanced design approach for modeling lightweight wood-based structural panels in bending. Because many design parameters are required to input for the model of finite element analysis (FEA) during the preliminary design process and optimization, the equivalent method was developed to analyze the mechanical...

  13. Enhancing Users' Participation in Business Process Modeling through Ontology-Based Training

    NASA Astrophysics Data System (ADS)

    Macris, A.; Malamateniou, F.; Vassilacopoulos, G.

    Successful business process design requires active participation of users who are familiar with organizational activities and business process modelling concepts. Hence, there is a need to provide users with reusable, flexible, agile and adaptable training material in order to enable them instil their knowledge and expertise in business process design and automation activities. Knowledge reusability is of paramount importance in designing training material on process modelling since it enables users participate actively in process design/redesign activities stimulated by the changing business environment. This paper presents a prototype approach for the design and use of training material that provides significant advantages to both the designer (knowledge - content reusability and semantic web enabling) and the user (semantic search, knowledge navigation and knowledge dissemination). The approach is based on externalizing domain knowledge in the form of ontology-based knowledge networks (i.e. training scenarios serving specific training needs) so that it is made reusable.

  14. A combined approach of generalized additive model and bootstrap with small sample sets for fault diagnosis in fermentation process of glutamate.

    PubMed

    Liu, Chunbo; Pan, Feng; Li, Yun

    2016-07-29

    Glutamate is of great importance in food and pharmaceutical industries. There is still lack of effective statistical approaches for fault diagnosis in the fermentation process of glutamate. To date, the statistical approach based on generalized additive model (GAM) and bootstrap has not been used for fault diagnosis in fermentation processes, much less the fermentation process of glutamate with small samples sets. A combined approach of GAM and bootstrap was developed for the online fault diagnosis in the fermentation process of glutamate with small sample sets. GAM was first used to model the relationship between glutamate production and different fermentation parameters using online data from four normal fermentation experiments of glutamate. The fitted GAM with fermentation time, dissolved oxygen, oxygen uptake rate and carbon dioxide evolution rate captured 99.6 % variance of glutamate production during fermentation process. Bootstrap was then used to quantify the uncertainty of the estimated production of glutamate from the fitted GAM using 95 % confidence interval. The proposed approach was then used for the online fault diagnosis in the abnormal fermentation processes of glutamate, and a fault was defined as the estimated production of glutamate fell outside the 95 % confidence interval. The online fault diagnosis based on the proposed approach identified not only the start of the fault in the fermentation process, but also the end of the fault when the fermentation conditions were back to normal. The proposed approach only used a small sample sets from normal fermentations excitements to establish the approach, and then only required online recorded data on fermentation parameters for fault diagnosis in the fermentation process of glutamate. The proposed approach based on GAM and bootstrap provides a new and effective way for the fault diagnosis in the fermentation process of glutamate with small sample sets.

  15. Fecal indicator organism modeling and microbial source tracking in environmental waters: Chapter 3.4.6

    USGS Publications Warehouse

    Nevers, Meredith; Byappanahalli, Muruleedhara; Phanikumar, Mantha S.; Whitman, Richard L.

    2016-01-01

    Mathematical models have been widely applied to surface waters to estimate rates of settling, resuspension, flow, dispersion, and advection in order to calculate movement of particles that influence water quality. Of particular interest are the movement, survival, and persistence of microbial pathogens or their surrogates, which may contaminate recreational water, drinking water, or shellfish. Most models devoted to microbial water quality have been focused on fecal indicator organisms (FIO), which act as a surrogate for pathogens and viruses. Process-based modeling and statistical modeling have been used to track contamination events to source and to predict future events. The use of these two types of models require different levels of expertise and input; process-based models rely on theoretical physical constructs to explain present conditions and biological distribution while data-based, statistical models use extant paired data to do the same. The selection of the appropriate model and interpretation of results is critical to proper use of these tools in microbial source tracking. Integration of the modeling approaches could provide insight for tracking and predicting contamination events in real time. A review of modeling efforts reveals that process-based modeling has great promise for microbial source tracking efforts; further, combining the understanding of physical processes influencing FIO contamination developed with process-based models and molecular characterization of the population by gene-based (i.e., biological) or chemical markers may be an effective approach for locating sources and remediating contamination in order to protect human health better.

  16. From particle systems to learning processes. Comment on "Collective learning modeling based on the kinetic theory of active particles" by Diletta Burini, Silvana De Lillo, and Livio Gibelli

    NASA Astrophysics Data System (ADS)

    Lachowicz, Mirosław

    2016-03-01

    The very stimulating paper [6] discusses an approach to perception and learning in a large population of living agents. The approach is based on a generalization of kinetic theory methods in which the interactions between agents are described in terms of game theory. Such an approach was already discussed in Ref. [2-4] (see also references therein) in various contexts. The processes of perception and learning are based on the interactions between agents and therefore the general kinetic theory is a suitable tool for modeling them. However the main question that rises is how the perception and learning processes may be treated in the mathematical modeling. How may we precisely deliver suitable mathematical structures that are able to capture various aspects of perception and learning?

  17. Symbolic Processing Combined with Model-Based Reasoning

    NASA Technical Reports Server (NTRS)

    James, Mark

    2009-01-01

    A computer program for the detection of present and prediction of future discrete states of a complex, real-time engineering system utilizes a combination of symbolic processing and numerical model-based reasoning. One of the biggest weaknesses of a purely symbolic approach is that it enables prediction of only future discrete states while missing all unmodeled states or leading to incorrect identification of an unmodeled state as a modeled one. A purely numerical approach is based on a combination of statistical methods and mathematical models of the applicable physics and necessitates development of a complete model to the level of fidelity required for prediction. In addition, a purely numerical approach does not afford the ability to qualify its results without some form of symbolic processing. The present software implements numerical algorithms to detect unmodeled events and symbolic algorithms to predict expected behavior, correlate the expected behavior with the unmodeled events, and interpret the results in order to predict future discrete states. The approach embodied in this software differs from that of the BEAM methodology (aspects of which have been discussed in several prior NASA Tech Briefs articles), which provides for prediction of future measurements in the continuous-data domain.

  18. A template-based approach for responsibility management in executable business processes

    NASA Astrophysics Data System (ADS)

    Cabanillas, Cristina; Resinas, Manuel; Ruiz-Cortés, Antonio

    2018-05-01

    Process-oriented organisations need to manage the different types of responsibilities their employees may have w.r.t. the activities involved in their business processes. Despite several approaches provide support for responsibility modelling, in current Business Process Management Systems (BPMS) the only responsibility considered at runtime is the one related to performing the work required for activity completion. Others like accountability or consultation must be implemented by manually adding activities in the executable process model, which is time-consuming and error-prone. In this paper, we address this limitation by enabling current BPMS to execute processes in which people with different responsibilities interact to complete the activities. We introduce a metamodel based on Responsibility Assignment Matrices (RAM) to model the responsibility assignment for each activity, and a flexible template-based mechanism that automatically transforms such information into BPMN elements, which can be interpreted and executed by a BPMS. Thus, our approach does not enforce any specific behaviour for the different responsibilities but new templates can be modelled to specify the interaction that best suits the activity requirements. Furthermore, libraries of templates can be created and reused in different processes. We provide a reference implementation and build a library of templates for a well-known set of responsibilities.

  19. Finite Element Method (FEM) Modeling of Freeze-drying: Monitoring Pharmaceutical Product Robustness During Lyophilization.

    PubMed

    Chen, Xiaodong; Sadineni, Vikram; Maity, Mita; Quan, Yong; Enterline, Matthew; Mantri, Rao V

    2015-12-01

    Lyophilization is an approach commonly undertaken to formulate drugs that are unstable to be commercialized as ready to use (RTU) solutions. One of the important aspects of commercializing a lyophilized product is to transfer the process parameters that are developed in lab scale lyophilizer to commercial scale without a loss in product quality. This process is often accomplished by costly engineering runs or through an iterative process at the commercial scale. Here, we are highlighting a combination of computational and experimental approach to predict commercial process parameters for the primary drying phase of lyophilization. Heat and mass transfer coefficients are determined experimentally either by manometric temperature measurement (MTM) or sublimation tests and used as inputs for the finite element model (FEM)-based software called PASSAGE, which computes various primary drying parameters such as primary drying time and product temperature. The heat and mass transfer coefficients will vary at different lyophilization scales; hence, we present an approach to use appropriate factors while scaling-up from lab scale to commercial scale. As a result, one can predict commercial scale primary drying time based on these parameters. Additionally, the model-based approach presented in this study provides a process to monitor pharmaceutical product robustness and accidental process deviations during Lyophilization to support commercial supply chain continuity. The approach presented here provides a robust lyophilization scale-up strategy; and because of the simple and minimalistic approach, it will also be less capital intensive path with minimal use of expensive drug substance/active material.

  20. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    NASA Technical Reports Server (NTRS)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  1. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  2. The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism

    DOE PAGES

    Clark, Martyn P.; Bierkens, Marc F. P.; Samaniego, Luis; ...

    2017-07-11

    The diversity in hydrologic models has historically led to great controversy on the correct approach to process-based hydrologic modeling, with debates centered on the adequacy of process parameterizations, data limitations and uncertainty, and computational constraints on model analysis. Here, we revisit key modeling challenges on requirements to (1) define suitable model equations, (2) define adequate model parameters, and (3) cope with limitations in computing power. We outline the historical modeling challenges, provide examples of modeling advances that address these challenges, and define outstanding research needs. We also illustrate how modeling advances have been made by groups using models of different type and complexity,more » and we argue for the need to more effectively use our diversity of modeling approaches in order to advance our collective quest for physically realistic hydrologic models.« less

  3. Lyapunov-Based Sensor Failure Detection And Recovery For The Reverse Water Gas Shift Process

    NASA Technical Reports Server (NTRS)

    Haralambous, Michael G.

    2001-01-01

    Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in terms of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.

  4. LYAPUNOV-Based Sensor Failure Detection and Recovery for the Reverse Water Gas Shift Process

    NASA Technical Reports Server (NTRS)

    Haralambous, Michael G.

    2002-01-01

    Livingstone, a model-based AI software system, is planned for use in the autonomous fault diagnosis, reconfiguration, and control of the oxygen-producing reverse water gas shift (RWGS) process test-bed located in the Applied Chemistry Laboratory at KSC. In this report the RWGS process is first briefly described and an overview of Livingstone is given. Next, a Lyapunov-based approach for detecting and recovering from sensor failures, differing significantly from that used by Livingstone, is presented. In this new method, models used are in t e m of the defining differential equations of system components, thus differing from the qualitative, static models used by Livingstone. An easily computed scalar inequality constraint, expressed in terms of sensed system variables, is used to determine the existence of sensor failures. In the event of sensor failure, an observer/estimator is used for determining which sensors have failed. The theory underlying the new approach is developed. Finally, a recommendation is made to use the Lyapunov-based approach to complement the capability of Livingstone and to use this combination in the RWGS process.

  5. Automated and model-based assembly of an anamorphic telescope

    NASA Astrophysics Data System (ADS)

    Holters, Martin; Dirks, Sebastian; Stollenwerk, Jochen; Loosen, Peter

    2018-02-01

    Since the first usage of optical glasses there has been an increasing demand for optical systems which are highly customized for a wide field of applications. To meet the challenge of the production of so many unique systems, the development of new techniques and approaches has risen in importance. However, the assembly of precision optical systems with lot sizes of one up to a few tens of systems is still dominated by manual labor. In contrast, highly adaptive and model-based approaches may offer a solution for manufacturing with a high degree of automation and high throughput while maintaining high precision. In this work a model-based automated assembly approach based on ray-tracing is presented. This process runs autonomously, and accounts for a wide range of functionality. It firstly identifies the sequence for an optimized assembly and secondly, generates and matches intermediate figures of merit to predict the overall optical functionality of the optical system. This process also takes into account the generation of a digital twin of the optical system, by mapping key-performance-indicators like the first and the second momentum of intensity into the optical model. This approach is verified by the automatic assembly of an anamorphic telescope within an assembly cell. By continuous measuring and mapping the key-performance-indicators into the optical model, the quality of the digital twin is determined. Moreover, by measuring the optical quality and geometrical parameters of the telescope, the precision of this approach is determined. Finally, the productivity of the process is evaluated by monitoring the speed of the different steps of the process.

  6. Development of a hybrid modeling approach for predicting intensively managed Douglas-fir growth at multiple scales.

    Treesearch

    A. Weiskittel; D. Maguire; R. Monserud

    2007-01-01

    Hybrid models offer the opportunity to improve future growth projections by combining advantages of both empirical and process-based modeling approaches. Hybrid models have been constructed in several regions and their performance relative to a purely empirical approach has varied. A hybrid model was constructed for intensively managed Douglas-fir plantations in the...

  7. A Sensitivity Analysis Method to Study the Behavior of Complex Process-based Models

    NASA Astrophysics Data System (ADS)

    Brugnach, M.; Neilson, R.; Bolte, J.

    2001-12-01

    The use of process-based models as a tool for scientific inquiry is becoming increasingly relevant in ecosystem studies. Process-based models are artificial constructs that simulate the system by mechanistically mimicking the functioning of its component processes. Structurally, a process-based model can be characterized, in terms of its processes and the relationships established among them. Each process comprises a set of functional relationships among several model components (e.g., state variables, parameters and input data). While not encoded explicitly, the dynamics of the model emerge from this set of components and interactions organized in terms of processes. It is the task of the modeler to guarantee that the dynamics generated are appropriate and semantically equivalent to the phenomena being modeled. Despite the availability of techniques to characterize and understand model behavior, they do not suffice to completely and easily understand how a complex process-based model operates. For example, sensitivity analysis studies model behavior by determining the rate of change in model output as parameters or input data are varied. One of the problems with this approach is that it considers the model as a "black box", and it focuses on explaining model behavior by analyzing the relationship input-output. Since, these models have a high degree of non-linearity, understanding how the input affects an output can be an extremely difficult task. Operationally, the application of this technique may constitute a challenging task because complex process-based models are generally characterized by a large parameter space. In order to overcome some of these difficulties, we propose a method of sensitivity analysis to be applicable to complex process-based models. This method focuses sensitivity analysis at the process level, and it aims to determine how sensitive the model output is to variations in the processes. Once the processes that exert the major influence in the output are identified, the causes of its variability can be found. Some of the advantages of this approach are that it reduces the dimensionality of the search space, it facilitates the interpretation of the results and it provides information that allows exploration of uncertainty at the process level, and how it might affect model output. We present an example using the vegetation model BIOME-BGC.

  8. A Social Neuroscientific Model of Vocational Behavior

    ERIC Educational Resources Information Center

    Hansen, Jo-Ida C.; Sullivan, Brandon A.; Luciana, Monica

    2011-01-01

    In this article, the separate literatures of a neurobiologically based approach system and vocational interests are reviewed and integrated into a social neuroscientific model of the processes underlying interests, based upon the idea of selective approach motivation. The authors propose that vocational interests describe the types of stimuli that…

  9. Weight and the Future of Space Flight Hardware Cost Modeling

    NASA Technical Reports Server (NTRS)

    Prince, Frank A.

    2003-01-01

    Weight has been used as the primary input variable for cost estimating almost as long as there have been parametric cost models. While there are good reasons for using weight, serious limitations exist. These limitations have been addressed by multi-variable equations and trend analysis in models such as NAFCOM, PRICE, and SEER; however, these models have not be able to address the significant time lags that can occur between the development of similar space flight hardware systems. These time lags make the cost analyst's job difficult because insufficient data exists to perform trend analysis, and the current set of parametric models are not well suited to accommodating process improvements in space flight hardware design, development, build and test. As a result, people of good faith can have serious disagreement over the cost for new systems. To address these shortcomings, new cost modeling approaches are needed. The most promising approach is process based (sometimes called activity) costing. Developing process based models will require a detailed understanding of the functions required to produce space flight hardware combined with innovative approaches to estimating the necessary resources. Particularly challenging will be the lack of data at the process level. One method for developing a model is to combine notional algorithms with a discrete event simulation and model changes to the total cost as perturbations to the program are introduced. Despite these challenges, the potential benefits are such that efforts should be focused on developing process based cost models.

  10. Collective learning modeling based on the kinetic theory of active particles.

    PubMed

    Burini, D; De Lillo, S; Gibelli, L

    2016-03-01

    This paper proposes a systems approach to the theory of perception and learning in populations composed of many living entities. Starting from a phenomenological description of these processes, a mathematical structure is derived which is deemed to incorporate their complexity features. The modeling is based on a generalization of kinetic theory methods where interactions are described by theoretical tools of game theory. As an application, the proposed approach is used to model the learning processes that take place in a classroom. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Qiao, Junfei; Wu, ZhiWei; Chai, Tianyou; Zhang, Jian; Yu, Wen

    2018-01-01

    Frequency spectral data of mechanical vibration and acoustic signals relate to difficult-to-measure production quality and quantity parameters of complex industrial processes. A selective ensemble (SEN) algorithm can be used to build a soft sensor model of these process parameters by fusing valued information selectively from different perspectives. However, a combination of several optimized ensemble sub-models with SEN cannot guarantee the best prediction model. In this study, we use several techniques to construct mechanical vibration and acoustic frequency spectra of a data-driven industrial process parameter model based on selective fusion multi-condition samples and multi-source features. Multi-layer SEN (MLSEN) strategy is used to simulate the domain expert cognitive process. Genetic algorithm and kernel partial least squares are used to construct the inside-layer SEN sub-model based on each mechanical vibration and acoustic frequency spectral feature subset. Branch-and-bound and adaptive weighted fusion algorithms are integrated to select and combine outputs of the inside-layer SEN sub-models. Then, the outside-layer SEN is constructed. Thus, "sub-sampling training examples"-based and "manipulating input features"-based ensemble construction methods are integrated, thereby realizing the selective information fusion process based on multi-condition history samples and multi-source input features. This novel approach is applied to a laboratory-scale ball mill grinding process. A comparison with other methods indicates that the proposed MLSEN approach effectively models mechanical vibration and acoustic signals.

  12. Monitoring autocorrelated process: A geometric Brownian motion process approach

    NASA Astrophysics Data System (ADS)

    Li, Lee Siaw; Djauhari, Maman A.

    2013-09-01

    Autocorrelated process control is common in today's modern industrial process control practice. The current practice of autocorrelated process control is to eliminate the autocorrelation by using an appropriate model such as Box-Jenkins models or other models and then to conduct process control operation based on the residuals. In this paper we show that many time series are governed by a geometric Brownian motion (GBM) process. Therefore, in this case, by using the properties of a GBM process, we only need an appropriate transformation and model the transformed data to come up with the condition needs in traditional process control. An industrial example of cocoa powder production process in a Malaysian company will be presented and discussed to illustrate the advantages of the GBM approach.

  13. Unified modeling language and design of a case-based retrieval system in medical imaging.

    PubMed Central

    LeBozec, C.; Jaulent, M. C.; Zapletal, E.; Degoulet, P.

    1998-01-01

    One goal of artificial intelligence research into case-based reasoning (CBR) systems is to develop approaches for designing useful and practical interactive case-based environments. Explaining each step of the design of the case-base and of the retrieval process is critical for the application of case-based systems to the real world. We describe herein our approach to the design of IDEM--Images and Diagnosis from Examples in Medicine--a medical image case-based retrieval system for pathologists. Our approach is based on the expressiveness of an object-oriented modeling language standard: the Unified Modeling Language (UML). We created a set of diagrams in UML notation illustrating the steps of the CBR methodology we used. The key aspect of this approach was selecting the relevant objects of the system according to user requirements and making visualization of cases and of the components of the case retrieval process. Further evaluation of the expressiveness of the design document is required but UML seems to be a promising formalism, improving the communication between the developers and users. Images Figure 6 Figure 7 PMID:9929346

  14. Unified modeling language and design of a case-based retrieval system in medical imaging.

    PubMed

    LeBozec, C; Jaulent, M C; Zapletal, E; Degoulet, P

    1998-01-01

    One goal of artificial intelligence research into case-based reasoning (CBR) systems is to develop approaches for designing useful and practical interactive case-based environments. Explaining each step of the design of the case-base and of the retrieval process is critical for the application of case-based systems to the real world. We describe herein our approach to the design of IDEM--Images and Diagnosis from Examples in Medicine--a medical image case-based retrieval system for pathologists. Our approach is based on the expressiveness of an object-oriented modeling language standard: the Unified Modeling Language (UML). We created a set of diagrams in UML notation illustrating the steps of the CBR methodology we used. The key aspect of this approach was selecting the relevant objects of the system according to user requirements and making visualization of cases and of the components of the case retrieval process. Further evaluation of the expressiveness of the design document is required but UML seems to be a promising formalism, improving the communication between the developers and users.

  15. Model-based adaptive 3D sonar reconstruction in reverberating environments.

    PubMed

    Saucan, Augustin-Alexandru; Sintes, Christophe; Chonavel, Thierry; Caillec, Jean-Marc Le

    2015-10-01

    In this paper, we propose a novel model-based approach for 3D underwater scene reconstruction, i.e., bathymetry, for side scan sonar arrays in complex and highly reverberating environments like shallow water areas. The presence of multipath echoes and volume reverberation generates false depth estimates. To improve the resulting bathymetry, this paper proposes and develops an adaptive filter, based on several original geometrical models. This multimodel approach makes it possible to track and separate the direction of arrival trajectories of multiple echoes impinging the array. Echo tracking is perceived as a model-based processing stage, incorporating prior information on the temporal evolution of echoes in order to reject cluttered observations generated by interfering echoes. The results of the proposed filter on simulated and real sonar data showcase the clutter-free and regularized bathymetric reconstruction. Model validation is carried out with goodness of fit tests, and demonstrates the importance of model-based processing for bathymetry reconstruction.

  16. An object-based approach to weather analysis and its applications

    NASA Astrophysics Data System (ADS)

    Troemel, Silke; Diederich, Malte; Horvath, Akos; Simmer, Clemens; Kumjian, Matthew

    2013-04-01

    The research group 'Object-based Analysis and SEamless prediction' (OASE) within the Hans Ertel Centre for Weather Research programme (HErZ) pursues an object-based approach to weather analysis. The object-based tracking approach adopts the Lagrange perspective by identifying and following the development of convective events over the course of their lifetime. Prerequisites of the object-based analysis are a high-resolved observational data base and a tracking algorithm. A near real-time radar and satellite remote sensing-driven 3D observation-microphysics composite covering Germany, currently under development, contains gridded observations and estimated microphysical quantities. A 3D scale-space tracking identifies convective rain events in the dual-composite and monitors the development over the course of their lifetime. The OASE-group exploits the object-based approach in several fields of application: (1) For a better understanding and analysis of precipitation processes responsible for extreme weather events, (2) in nowcasting, (3) as a novel approach for validation of meso-γ atmospheric models, and (4) in data assimilation. Results from the different fields of application will be presented. The basic idea of the object-based approach is to identify a small set of radar- and satellite derived descriptors which characterize the temporal development of precipitation systems which constitute the objects. So-called proxies of the precipitation process are e.g. the temporal change of the brightband, vertically extensive columns of enhanced differential reflectivity ZDR or the cloud top temperature and heights identified in the 4D field of ground-based radar reflectivities and satellite retrievals generated by a cell during its life time. They quantify (micro-) physical differences among rain events and relate to the precipitation yield. Analyses on the informative content of ZDR columns as precursor for storm evolution for example will be presented to demonstrate the use of such system-oriented predictors for nowcasting. Columns of differential reflectivity ZDR measured by polarimetric weather radars are prominent signatures associated with thunderstorm updrafts. Since greater vertical velocities can loft larger drops and water-coated ice particles to higher altitudes above the environmental freezing level, the integrated ZDR column above the freezing level increases with increasing updraft intensity. Validation of atmospheric models concerning precipitation representation or prediction is usually confined to comparisons of precipitation fields or their temporal and spatial statistics. A comparison of the rain rates alone, however, does not immediately explain discrepancies between models and observations, because similar rain rates might be produced by different processes. Within the event-based approach for validation of models both observed and modeled rain events are analyzed by means of proxies of the precipitation process. Both sets of descriptors represent the basis for model validation since different leading descriptors - in a statistical sense- hint at process formulations potentially responsible for model failures.

  17. Monte Carlo based toy model for fission process

    NASA Astrophysics Data System (ADS)

    Kurniadi, R.; Waris, A.; Viridi, S.

    2014-09-01

    There are many models and calculation techniques to obtain visible image of fission yield process. In particular, fission yield can be calculated by using two calculations approach, namely macroscopic approach and microscopic approach. This work proposes another calculation approach in which the nucleus is treated as a toy model. Hence, the fission process does not represent real fission process in nature completely. The toy model is formed by Gaussian distribution of random number that randomizes distance likesthe distance between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean (μCN, μL, μR), and standard deviation (σCN, σL, σR). By overlaying of three distributions, the number of particles (NL, NR) that are trapped by central points can be obtained. This process is iterated until (NL, NR) become constant numbers. Smashing process is repeated by changing σL and σR, randomly.

  18. Modeling Healthcare Processes Using Commitments: An Empirical Evaluation.

    PubMed

    Telang, Pankaj R; Kalia, Anup K; Singh, Munindar P

    2015-01-01

    The two primary objectives of this paper are: (a) to demonstrate how Comma, a business modeling methodology based on commitments, can be applied in healthcare process modeling, and (b) to evaluate the effectiveness of such an approach in producing healthcare process models. We apply the Comma approach on a breast cancer diagnosis process adapted from an HHS committee report, and presents the results of an empirical study that compares Comma with a traditional approach based on the HL7 Messaging Standard (Traditional-HL7). Our empirical study involved 47 subjects, and two phases. In the first phase, we partitioned the subjects into two approximately equal groups. We gave each group the same requirements based on a process scenario for breast cancer diagnosis. Members of one group first applied Traditional-HL7 and then Comma whereas members of the second group first applied Comma and then Traditional-HL7-each on the above-mentioned requirements. Thus, each subject produced two models, each model being a set of UML Sequence Diagrams. In the second phase, we repartitioned the subjects into two groups with approximately equal distributions from both original groups. We developed exemplar Traditional-HL7 and Comma models; we gave one repartitioned group our Traditional-HL7 model and the other repartitioned group our Comma model. We provided the same changed set of requirements to all subjects and asked them to modify the provided exemplar model to satisfy the new requirements. We assessed solutions produced by subjects in both phases with respect to measures of flexibility, time, difficulty, objective quality, and subjective quality. Our study found that Comma is superior to Traditional-HL7 in flexibility and objective quality as validated via Student's t-test to the 10% level of significance. Comma is a promising new approach for modeling healthcare processes. Further gains could be made through improved tooling and enhanced training of modeling personnel.

  19. Modeling Healthcare Processes Using Commitments: An Empirical Evaluation

    PubMed Central

    2015-01-01

    The two primary objectives of this paper are: (a) to demonstrate how Comma, a business modeling methodology based on commitments, can be applied in healthcare process modeling, and (b) to evaluate the effectiveness of such an approach in producing healthcare process models. We apply the Comma approach on a breast cancer diagnosis process adapted from an HHS committee report, and presents the results of an empirical study that compares Comma with a traditional approach based on the HL7 Messaging Standard (Traditional-HL7). Our empirical study involved 47 subjects, and two phases. In the first phase, we partitioned the subjects into two approximately equal groups. We gave each group the same requirements based on a process scenario for breast cancer diagnosis. Members of one group first applied Traditional-HL7 and then Comma whereas members of the second group first applied Comma and then Traditional-HL7—each on the above-mentioned requirements. Thus, each subject produced two models, each model being a set of UML Sequence Diagrams. In the second phase, we repartitioned the subjects into two groups with approximately equal distributions from both original groups. We developed exemplar Traditional-HL7 and Comma models; we gave one repartitioned group our Traditional-HL7 model and the other repartitioned group our Comma model. We provided the same changed set of requirements to all subjects and asked them to modify the provided exemplar model to satisfy the new requirements. We assessed solutions produced by subjects in both phases with respect to measures of flexibility, time, difficulty, objective quality, and subjective quality. Our study found that Comma is superior to Traditional-HL7 in flexibility and objective quality as validated via Student’s t-test to the 10% level of significance. Comma is a promising new approach for modeling healthcare processes. Further gains could be made through improved tooling and enhanced training of modeling personnel. PMID:26539985

  20. Using a contextualized sensemaking model for interaction design: A case study of tumor contouring.

    PubMed

    Aselmaa, Anet; van Herk, Marcel; Laprie, Anne; Nestle, Ursula; Götz, Irina; Wiedenmann, Nicole; Schimek-Jasch, Tanja; Picaud, Francois; Syrykh, Charlotte; Cagetti, Leonel V; Jolnerovski, Maria; Song, Yu; Goossens, Richard H M

    2017-01-01

    Sensemaking theories help designers understand the cognitive processes of a user when he/she performs a complicated task. This paper introduces a two-step approach of incorporating sensemaking support within the design of health information systems by: (1) modeling the sensemaking process of physicians while performing a task, and (2) identifying software interaction design requirements that support sensemaking based on this model. The two-step approach is presented based on a case study of the tumor contouring clinical task for radiotherapy planning. In the first step of the approach, a contextualized sensemaking model was developed to describe the sensemaking process based on the goal, the workflow and the context of the task. In the second step, based on a research software prototype, an experiment was conducted where three contouring tasks were performed by eight physicians respectively. Four types of navigation interactions and five types of interaction sequence patterns were identified by analyzing the gathered interaction log data from those twenty-four cases. Further in-depth study on each of the navigation interactions and interaction sequence patterns in relation to the contextualized sensemaking model revealed five main areas for design improvements to increase sensemaking support. Outcomes of the case study indicate that the proposed two-step approach was beneficial for gaining a deeper understanding of the sensemaking process during the task, as well as for identifying design requirements for better sensemaking support. Copyright © 2016. Published by Elsevier Inc.

  1. Learning of Chemical Equilibrium through Modelling-Based Teaching

    ERIC Educational Resources Information Center

    Maia, Poliana Flavia; Justi, Rosaria

    2009-01-01

    This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students…

  2. Knowledge-driven computational modeling in Alzheimer's disease research: Current state and future trends.

    PubMed

    Geerts, Hugo; Hofmann-Apitius, Martin; Anastasio, Thomas J

    2017-11-01

    Neurodegenerative diseases such as Alzheimer's disease (AD) follow a slowly progressing dysfunctional trajectory, with a large presymptomatic component and many comorbidities. Using preclinical models and large-scale omics studies ranging from genetics to imaging, a large number of processes that might be involved in AD pathology at different stages and levels have been identified. The sheer number of putative hypotheses makes it almost impossible to estimate their contribution to the clinical outcome and to develop a comprehensive view on the pathological processes driving the clinical phenotype. Traditionally, bioinformatics approaches have provided correlations and associations between processes and phenotypes. Focusing on causality, a new breed of advanced and more quantitative modeling approaches that use formalized domain expertise offer new opportunities to integrate these different modalities and outline possible paths toward new therapeutic interventions. This article reviews three different computational approaches and their possible complementarities. Process algebras, implemented using declarative programming languages such as Maude, facilitate simulation and analysis of complicated biological processes on a comprehensive but coarse-grained level. A model-driven Integration of Data and Knowledge, based on the OpenBEL platform and using reverse causative reasoning and network jump analysis, can generate mechanistic knowledge and a new, mechanism-based taxonomy of disease. Finally, Quantitative Systems Pharmacology is based on formalized implementation of domain expertise in a more fine-grained, mechanism-driven, quantitative, and predictive humanized computer model. We propose a strategy to combine the strengths of these individual approaches for developing powerful modeling methodologies that can provide actionable knowledge for rational development of preventive and therapeutic interventions. Development of these computational approaches is likely to be required for further progress in understanding and treating AD. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  3. Learning Based Bidding Strategy for HVAC Systems in Double Auction Retail Energy Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yannan; Somani, Abhishek; Carroll, Thomas E.

    In this paper, a bidding strategy is proposed using reinforcement learning for HVAC systems in a double auction market. The bidding strategy does not require a specific model-based representation of behavior, i.e., a functional form to translate indoor house temperatures into bid prices. The results from reinforcement learning based approach are compared with the HVAC bidding approach used in the AEP gridSMART® smart grid demonstration project and it is shown that the model-free (learning based) approach tracks well the results from the model-based behavior. Successful use of model-free approaches to represent device-level economic behavior may help develop similar approaches tomore » represent behavior of more complex devices or groups of diverse devices, such as in a building. Distributed control requires an understanding of decision making processes of intelligent agents so that appropriate mechanisms may be developed to control and coordinate their responses, and model-free approaches to represent behavior will be extremely useful in that quest.« less

  4. Stochastic or statistic? Comparing flow duration curve models in ungauged basins and changing climates

    NASA Astrophysics Data System (ADS)

    Müller, M. F.; Thompson, S. E.

    2015-09-01

    The prediction of flow duration curves (FDCs) in ungauged basins remains an important task for hydrologists given the practical relevance of FDCs for water management and infrastructure design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or model parameters. This task is complicated if climate becomes non-stationary, as the prediction challenge now also requires extrapolation through time. In this context, process-based models for FDCs that mechanistically link the streamflow distribution to climate and landscape factors may have an advantage over purely statistical methods to predict FDCs. This study compares a stochastic (process-based) and statistical method for FDC prediction in both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary conditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80 in 75 % of the tested catchments. The main drives of uncertainty differ between the models: parameter interpolation was the main source of error for the statistical model, while violations of the assumptions of the process-based model represented the main source of its error. The process-based approach performed better than the statistical approach in numerical simulations with non-stationary climate drivers. The predictions of the statistical method under non-stationary rainfall conditions were poor if (i) local runoff coefficients were not accurately determined from the gauge network, or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analysis shows that the streamflow regimes in catchments characterized by a strong wet-season runoff and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall statistics. In these cases, process-based prediction approaches are strongly favored over statistical models.

  5. A Model to Translate Evidence-Based Interventions Into Community Practice

    PubMed Central

    Christiansen, Ann L.; Peterson, Donna J.; Guse, Clare E.; Maurana, Cheryl A.; Brandenburg, Terry

    2012-01-01

    There is a tension between 2 alternative approaches to implementing community-based interventions. The evidence-based public health movement emphasizes the scientific basis of prevention by disseminating rigorously evaluated interventions from academic and governmental agencies to local communities. Models used by local health departments to incorporate community input into their planning, such as the community health improvement process (CHIP), emphasize community leadership in identifying health problems and developing and implementing health improvement strategies. Each approach has limitations. Modifying CHIP to formally include consideration of evidence-based interventions in both the planning and evaluation phases leads to an evidence-driven community health improvement process that can serve as a useful framework for uniting the different approaches while emphasizing community ownership, priorities, and wisdom. PMID:22397341

  6. Evaluating crown fire rate of spread predictions from physics-based models

    Treesearch

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  7. Use of high resolution remotely sensed evapotranspiration retrievals for calibration of a process-based hydrologic model in data-poor basins

    USDA-ARS?s Scientific Manuscript database

    Calibration of process-based hydrologic models is a challenging task in data-poor basins, where monitored hydrologic data are scarce. In this study, we present a novel approach that benefits from remotely sensed evapotranspiration (ET) data to calibrate a complex watershed model, namely the Soil and...

  8. Dynamic Emulation Modelling (DEMo) of large physically-based environmental models

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Castelletti, A.

    2012-12-01

    In environmental modelling large, spatially-distributed, physically-based models are widely adopted to describe the dynamics of physical, social and economic processes. Such an accurate process characterization comes, however, to a price: the computational requirements of these models are considerably high and prevent their use in any problem requiring hundreds or thousands of model runs to be satisfactory solved. Typical examples include optimal planning and management, data assimilation, inverse modelling and sensitivity analysis. An effective approach to overcome this limitation is to perform a top-down reduction of the physically-based model by identifying a simplified, computationally efficient emulator, constructed from and then used in place of the original model in highly resource-demanding tasks. The underlying idea is that not all the process details in the original model are equally important and relevant to the dynamics of the outputs of interest for the type of problem considered. Emulation modelling has been successfully applied in many environmental applications, however most of the literature considers non-dynamic emulators (e.g. metamodels, response surfaces and surrogate models), where the original dynamical model is reduced to a static map between input and the output of interest. In this study we focus on Dynamic Emulation Modelling (DEMo), a methodological approach that preserves the dynamic nature of the original physically-based model, with consequent advantages in a wide variety of problem areas. In particular, we propose a new data-driven DEMo approach that combines the many advantages of data-driven modelling in representing complex, non-linear relationships, but preserves the state-space representation typical of process-based models, which is both particularly effective in some applications (e.g. optimal management and data assimilation) and facilitates the ex-post physical interpretation of the emulator structure, thus enhancing the credibility of the model to stakeholders and decision-makers. Numerical results from the application of the approach to the reduction of 3D coupled hydrodynamic-ecological models in several real world case studies, including Marina Reservoir (Singapore) and Googong Reservoir (Australia), are illustrated.

  9. Model-based software process improvement

    NASA Technical Reports Server (NTRS)

    Zettervall, Brenda T.

    1994-01-01

    The activities of a field test site for the Software Engineering Institute's software process definition project are discussed. Products tested included the improvement model itself, descriptive modeling techniques, the CMM level 2 framework document, and the use of process definition guidelines and templates. The software process improvement model represents a five stage cyclic approach for organizational process improvement. The cycles consist of the initiating, diagnosing, establishing, acting, and leveraging phases.

  10. The Construction of Teaching Model on College English Writing from the Perspective of Cognitive Genre

    ERIC Educational Resources Information Center

    Wenjuan, Hao; Rui, Liang

    2016-01-01

    Teaching is a spiral rising process. A complete teaching should be composed of five parts: theoretical basis, goal orientation, operating procedures, implementation conditions and assessment. On the basis of the genre knowledge, content-based approach and process approach, this text constructs the Teaching Model of College Writing Instruction, in…

  11. Cost Models for MMC Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.

  12. Technical Note: Approximate Bayesian parameterization of a complex tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2013-08-01

    Inverse parameter estimation of process-based models is a long-standing problem in ecology and evolution. A key problem of inverse parameter estimation is to define a metric that quantifies how well model predictions fit to the data. Such a metric can be expressed by general cost or objective functions, but statistical inversion approaches are based on a particular metric, the probability of observing the data given the model, known as the likelihood. Deriving likelihoods for dynamic models requires making assumptions about the probability for observations to deviate from mean model predictions. For technical reasons, these assumptions are usually derived without explicit consideration of the processes in the simulation. Only in recent years have new methods become available that allow generating likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional MCMC, performs well in retrieving known parameter values from virtual field data generated by the forest model. We analyze the results of the parameter estimation, examine the sensitivity towards the choice and aggregation of model outputs and observed data (summary statistics), and show results from using this method to fit the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss differences of this approach to Approximate Bayesian Computing (ABC), another commonly used method to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can successfully be applied to process-based models of high complexity. The methodology is particularly suited to heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models in ecology and evolution.

  13. A Competence-Based Service for Supporting Self-Regulated Learning in Virtual Environments

    ERIC Educational Resources Information Center

    Nussbaumer, Alexander; Hillemann, Eva-Catherine; Gütl, Christian; Albert, Dietrich

    2015-01-01

    This paper presents a conceptual approach and a Web-based service that aim at supporting self-regulated learning in virtual environments. The conceptual approach consists of four components: 1) a self-regulated learning model for supporting a learner-centred learning process, 2) a psychological model for facilitating competence-based…

  14. Hybrid forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-based model

    NASA Astrophysics Data System (ADS)

    Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward

    2018-04-01

    A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.

  15. An adaptive Gaussian process-based method for efficient Bayesian experimental design in groundwater contaminant source identification problems: ADAPTIVE GAUSSIAN PROCESS-BASED INVERSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiangjiang; Li, Weixuan; Zeng, Lingzao

    Surrogate models are commonly used in Bayesian approaches such as Markov Chain Monte Carlo (MCMC) to avoid repetitive CPU-demanding model evaluations. However, the approximation error of a surrogate may lead to biased estimations of the posterior distribution. This bias can be corrected by constructing a very accurate surrogate or implementing MCMC in a two-stage manner. Since the two-stage MCMC requires extra original model evaluations, the computational cost is still high. If the information of measurement is incorporated, a locally accurate approximation of the original model can be adaptively constructed with low computational cost. Based on this idea, we propose amore » Gaussian process (GP) surrogate-based Bayesian experimental design and parameter estimation approach for groundwater contaminant source identification problems. A major advantage of the GP surrogate is that it provides a convenient estimation of the approximation error, which can be incorporated in the Bayesian formula to avoid over-confident estimation of the posterior distribution. The proposed approach is tested with a numerical case study. Without sacrificing the estimation accuracy, the new approach achieves about 200 times of speed-up compared to our previous work using two-stage MCMC.« less

  16. Improved Traceability of a Small Satellite Mission Concept to Requirements Using Model Based System Engineering

    NASA Technical Reports Server (NTRS)

    Reil, Robin L.

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the "traditional" document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This paper presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magic's MagicDraw modeling tool. The model incorporates mission concept and requirement information from the mission's original DBSE design efforts. Active dependency relationships are modeled to demonstrate the completeness and consistency of the requirements to the mission concept. Anecdotal information and process-duration metrics are presented for both the MBSE and original DBSE design efforts of SporeSat.

  17. Computational modeling of residual stress formation during the electron beam melting process for Inconel 718

    DOE PAGES

    Prabhakar, P.; Sames, William J.; Dehoff, Ryan R.; ...

    2015-03-28

    Here, a computational modeling approach to simulate residual stress formation during the electron beam melting (EBM) process within the additive manufacturing (AM) technologies for Inconel 718 is presented in this paper. The EBM process has demonstrated a high potential to fabricate components with complex geometries, but the resulting components are influenced by the thermal cycles observed during the manufacturing process. When processing nickel based superalloys, very high temperatures (approx. 1000 °C) are observed in the powder bed, base plate, and build. These high temperatures, when combined with substrate adherence, can result in warping of the base plate and affect themore » final component by causing defects. It is important to have an understanding of the thermo-mechanical response of the entire system, that is, its mechanical behavior towards thermal loading occurring during the EBM process prior to manufacturing a component. Therefore, computational models to predict the response of the system during the EBM process will aid in eliminating the undesired process conditions, a priori, in order to fabricate the optimum component. Such a comprehensive computational modeling approach is demonstrated to analyze warping of the base plate, stress and plastic strain accumulation within the material, and thermal cycles in the system during different stages of the EBM process.« less

  18. Groundwater Model Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed E. Hassan

    2006-01-24

    Models have an inherent uncertainty. The difficulty in fully characterizing the subsurface environment makes uncertainty an integral component of groundwater flow and transport models, which dictates the need for continuous monitoring and improvement. Building and sustaining confidence in closure decisions and monitoring networks based on models of subsurface conditions require developing confidence in the models through an iterative process. The definition of model validation is postulated as a confidence building and long-term iterative process (Hassan, 2004a). Model validation should be viewed as a process not an end result. Following Hassan (2004b), an approach is proposed for the validation process ofmore » stochastic groundwater models. The approach is briefly summarized herein and detailed analyses of acceptance criteria for stochastic realizations and of using validation data to reduce input parameter uncertainty are presented and applied to two case studies. During the validation process for stochastic models, a question arises as to the sufficiency of the number of acceptable model realizations (in terms of conformity with validation data). Using a hierarchical approach to make this determination is proposed. This approach is based on computing five measures or metrics and following a decision tree to determine if a sufficient number of realizations attain satisfactory scores regarding how they represent the field data used for calibration (old) and used for validation (new). The first two of these measures are applied to hypothetical scenarios using the first case study and assuming field data consistent with the model or significantly different from the model results. In both cases it is shown how the two measures would lead to the appropriate decision about the model performance. Standard statistical tests are used to evaluate these measures with the results indicating they are appropriate measures for evaluating model realizations. The use of validation data to constrain model input parameters is shown for the second case study using a Bayesian approach known as Markov Chain Monte Carlo. The approach shows a great potential to be helpful in the validation process and in incorporating prior knowledge with new field data to derive posterior distributions for both model input and output.« less

  19. Predicting fundamental and realized distributions based on thermal niche: A case study of a freshwater turtle

    NASA Astrophysics Data System (ADS)

    Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco; Ribeiro, Bruno R.

    2018-04-01

    Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.

  20. Enforcement of entailment constraints in distributed service-based business processes.

    PubMed

    Hummer, Waldemar; Gaubatz, Patrick; Strembeck, Mark; Zdun, Uwe; Dustdar, Schahram

    2013-11-01

    A distributed business process is executed in a distributed computing environment. The service-oriented architecture (SOA) paradigm is a popular option for the integration of software services and execution of distributed business processes. Entailment constraints, such as mutual exclusion and binding constraints, are important means to control process execution. Mutually exclusive tasks result from the division of powerful rights and responsibilities to prevent fraud and abuse. In contrast, binding constraints define that a subject who performed one task must also perform the corresponding bound task(s). We aim to provide a model-driven approach for the specification and enforcement of task-based entailment constraints in distributed service-based business processes. Based on a generic metamodel, we define a domain-specific language (DSL) that maps the different modeling-level artifacts to the implementation-level. The DSL integrates elements from role-based access control (RBAC) with the tasks that are performed in a business process. Process definitions are annotated using the DSL, and our software platform uses automated model transformations to produce executable WS-BPEL specifications which enforce the entailment constraints. We evaluate the impact of constraint enforcement on runtime performance for five selected service-based processes from existing literature. Our evaluation demonstrates that the approach correctly enforces task-based entailment constraints at runtime. The performance experiments illustrate that the runtime enforcement operates with an overhead that scales well up to the order of several ten thousand logged invocations. Using our DSL annotations, the user-defined process definition remains declarative and clean of security enforcement code. Our approach decouples the concerns of (non-technical) domain experts from technical details of entailment constraint enforcement. The developed framework integrates seamlessly with WS-BPEL and the Web services technology stack. Our prototype implementation shows the feasibility of the approach, and the evaluation points to future work and further performance optimizations.

  1. A process-based emission model for volatile organic compounds from silage sources on farms

    USDA-ARS?s Scientific Manuscript database

    Silage on dairy farms can emit large amounts of volatile organic compounds (VOCs), a precursor in the formation of tropospheric ozone. Because of the challenges associated with direct measurements, process-based modeling is another approach for estimating emissions of air pollutants from sources suc...

  2. Commodity-based Approach for Evaluating the Value of Freight Moving on Texas’ Roadway Network

    DOT National Transportation Integrated Search

    2017-12-10

    The researchers took a commodity-based approach to evaluate the value of a list of selected commodities moved on the Texas freight network. This approach takes advantage of commodity-specific data sources and modeling processes. It provides a unique ...

  3. Authoring and verification of clinical guidelines: a model driven approach.

    PubMed

    Pérez, Beatriz; Porres, Ivan

    2010-08-01

    The goal of this research is to provide a framework to enable authoring and verification of clinical guidelines. The framework is part of a larger research project aimed at improving the representation, quality and application of clinical guidelines in daily clinical practice. The verification process of a guideline is based on (1) model checking techniques to verify guidelines against semantic errors and inconsistencies in their definition, (2) combined with Model Driven Development (MDD) techniques, which enable us to automatically process manually created guideline specifications and temporal-logic statements to be checked and verified regarding these specifications, making the verification process faster and cost-effective. Particularly, we use UML statecharts to represent the dynamics of guidelines and, based on this manually defined guideline specifications, we use a MDD-based tool chain to automatically process them to generate the input model of a model checker. The model checker takes the resulted model together with the specific guideline requirements, and verifies whether the guideline fulfils such properties. The overall framework has been implemented as an Eclipse plug-in named GBDSSGenerator which, particularly, starting from the UML statechart representing a guideline, allows the verification of the guideline against specific requirements. Additionally, we have established a pattern-based approach for defining commonly occurring types of requirements in guidelines. We have successfully validated our overall approach by verifying properties in different clinical guidelines resulting in the detection of some inconsistencies in their definition. The proposed framework allows (1) the authoring and (2) the verification of clinical guidelines against specific requirements defined based on a set of property specification patterns, enabling non-experts to easily write formal specifications and thus easing the verification process. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Statistical and engineering methods for model enhancement

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Jung

    Models which describe the performance of physical process are essential for quality prediction, experimental planning, process control and optimization. Engineering models developed based on the underlying physics/mechanics of the process such as analytic models or finite element models are widely used to capture the deterministic trend of the process. However, there usually exists stochastic randomness in the system which may introduce the discrepancy between physics-based model predictions and observations in reality. Alternatively, statistical models can be used to develop models to obtain predictions purely based on the data generated from the process. However, such models tend to perform poorly when predictions are made away from the observed data points. This dissertation contributes to model enhancement research by integrating physics-based model and statistical model to mitigate the individual drawbacks and provide models with better accuracy by combining the strengths of both models. The proposed model enhancement methodologies including the following two streams: (1) data-driven enhancement approach and (2) engineering-driven enhancement approach. Through these efforts, more adequate models are obtained, which leads to better performance in system forecasting, process monitoring and decision optimization. Among different data-driven enhancement approaches, Gaussian Process (GP) model provides a powerful methodology for calibrating a physical model in the presence of model uncertainties. However, if the data contain systematic experimental errors, the GP model can lead to an unnecessarily complex adjustment of the physical model. In Chapter 2, we proposed a novel enhancement procedure, named as “Minimal Adjustment”, which brings the physical model closer to the data by making minimal changes to it. This is achieved by approximating the GP model by a linear regression model and then applying a simultaneous variable selection of the model and experimental bias terms. Two real examples and simulations are presented to demonstrate the advantages of the proposed approach. Different from enhancing the model based on data-driven perspective, an alternative approach is to focus on adjusting the model by incorporating the additional domain or engineering knowledge when available. This often leads to models that are very simple and easy to interpret. The concepts of engineering-driven enhancement are carried out through two applications to demonstrate the proposed methodologies. In the first application where polymer composite quality is focused, nanoparticle dispersion has been identified as a crucial factor affecting the mechanical properties. Transmission Electron Microscopy (TEM) images are commonly used to represent nanoparticle dispersion without further quantifications on its characteristics. In Chapter 3, we developed the engineering-driven nonhomogeneous Poisson random field modeling strategy to characterize nanoparticle dispersion status of nanocomposite polymer, which quantitatively represents the nanomaterial quality presented through image data. The model parameters are estimated through the Bayesian MCMC technique to overcome the challenge of limited amount of accessible data due to the time consuming sampling schemes. The second application is to calibrate the engineering-driven force models of laser-assisted micro milling (LAMM) process statistically, which facilitates a systematic understanding and optimization of targeted processes. In Chapter 4, the force prediction interval has been derived by incorporating the variability in the runout parameters as well as the variability in the measured cutting forces. The experimental results indicate that the model predicts the cutting force profile with good accuracy using a 95% confidence interval. To conclude, this dissertation is the research drawing attention to model enhancement, which has considerable impacts on modeling, design, and optimization of various processes and systems. The fundamental methodologies of model enhancement are developed and further applied to various applications. These research activities developed engineering compliant models for adequate system predictions based on observational data with complex variable relationships and uncertainty, which facilitate process planning, monitoring, and real-time control.

  5. An approach for modelling snowcover ablation and snowmelt runoff in cold region environments

    NASA Astrophysics Data System (ADS)

    Dornes, Pablo Fernando

    Reliable hydrological model simulations are the result of numerous complex interactions among hydrological inputs, landscape properties, and initial conditions. Determination of the effects of these factors is one of the main challenges in hydrological modelling. This situation becomes even more difficult in cold regions due to the ungauged nature of subarctic and arctic environments. This research work is an attempt to apply a new approach for modelling snowcover ablation and snowmelt runoff in complex subarctic environments with limited data while retaining integrity in the process representations. The modelling strategy is based on the incorporation of both detailed process understanding and inputs along with information gained from observations of basin-wide streamflow phenomenon; essentially a combination of deductive and inductive approaches. The study was conducted in the Wolf Creek Research Basin, Yukon Territory, using three models, a small-scale physically based hydrological model, a land surface scheme, and a land surface hydrological model. The spatial representation was based on previous research studies and observations, and was accomplished by incorporating landscape units, defined according to topography and vegetation, as the spatial model elements. Comparisons between distributed and aggregated modelling approaches showed that simulations incorporating distributed initial snowcover and corrected solar radiation were able to properly simulate snowcover ablation and snowmelt runoff whereas the aggregated modelling approaches were unable to represent the differential snowmelt rates and complex snowmelt runoff dynamics. Similarly, the inclusion of spatially distributed information in a land surface scheme clearly improved simulations of snowcover ablation. Application of the same modelling approach at a larger scale using the same landscape based parameterisation showed satisfactory results in simulating snowcover ablation and snowmelt runoff with minimal calibration. Verification of this approach in an arctic basin illustrated that landscape based parameters are a feasible regionalisation framework for distributed and physically based models. In summary, the proposed modelling philosophy, based on the combination of an inductive and deductive reasoning, is a suitable strategy for reliable predictions of snowcover ablation and snowmelt runoff in cold regions and complex environments.

  6. Vibronic coupling simulations for linear and nonlinear optical processes: Theory

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A comprehensive vibronic coupling model based on the time-dependent wavepacket approach is derived to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering. This approach is particularly well suited for combination with first-principles calculations. Expressions for the Franck-Condon terms, and non-Condon effects via the Herzberg-Teller coupling approach in the independent-mode displaced harmonic oscillator model are presented. The significance of each contribution to the different spectral types is discussed briefly.

  7. Benchmarking novel approaches for modelling species range dynamics

    PubMed Central

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.

    2016-01-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. PMID:26872305

  8. Benchmarking novel approaches for modelling species range dynamics.

    PubMed

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. © 2016 John Wiley & Sons Ltd.

  9. Toward a model-based cognitive neuroscience of mind wandering.

    PubMed

    Hawkins, G E; Mittner, M; Boekel, W; Heathcote, A; Forstmann, B U

    2015-12-03

    People often "mind wander" during everyday tasks, temporarily losing track of time, place, or current task goals. In laboratory-based tasks, mind wandering is often associated with performance decrements in behavioral variables and changes in neural recordings. Such empirical associations provide descriptive accounts of mind wandering - how it affects ongoing task performance - but fail to provide true explanatory accounts - why it affects task performance. In this perspectives paper, we consider mind wandering as a neural state or process that affects the parameters of quantitative cognitive process models, which in turn affect observed behavioral performance. Our approach thus uses cognitive process models to bridge the explanatory divide between neural and behavioral data. We provide an overview of two general frameworks for developing a model-based cognitive neuroscience of mind wandering. The first approach uses neural data to segment observed performance into a discrete mixture of latent task-related and task-unrelated states, and the second regresses single-trial measures of neural activity onto structured trial-by-trial variation in the parameters of cognitive process models. We discuss the relative merits of the two approaches, and the research questions they can answer, and highlight that both approaches allow neural data to provide additional constraint on the parameters of cognitive models, which will lead to a more precise account of the effect of mind wandering on brain and behavior. We conclude by summarizing prospects for mind wandering as conceived within a model-based cognitive neuroscience framework, highlighting the opportunities for its continued study and the benefits that arise from using well-developed quantitative techniques to study abstract theoretical constructs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. An automated process for building reliable and optimal in vitro/in vivo correlation models based on Monte Carlo simulations.

    PubMed

    Sutton, Steven C; Hu, Mingxiu

    2006-05-05

    Many mathematical models have been proposed for establishing an in vitro/in vivo correlation (IVIVC). The traditional IVIVC model building process consists of 5 steps: deconvolution, model fitting, convolution, prediction error evaluation, and cross-validation. This is a time-consuming process and typically a few models at most are tested for any given data set. The objectives of this work were to (1) propose a statistical tool to screen models for further development of an IVIVC, (2) evaluate the performance of each model under different circumstances, and (3) investigate the effectiveness of common statistical model selection criteria for choosing IVIVC models. A computer program was developed to explore which model(s) would be most likely to work well with a random variation from the original formulation. The process used Monte Carlo simulation techniques to build IVIVC models. Data-based model selection criteria (Akaike Information Criteria [AIC], R2) and the probability of passing the Food and Drug Administration "prediction error" requirement was calculated. To illustrate this approach, several real data sets representing a broad range of release profiles are used to illustrate the process and to demonstrate the advantages of this automated process over the traditional approach. The Hixson-Crowell and Weibull models were often preferred over the linear. When evaluating whether a Level A IVIVC model was possible, the model selection criteria AIC generally selected the best model. We believe that the approach we proposed may be a rapid tool to determine which IVIVC model (if any) is the most applicable.

  11. Open Pit Mine 3d Mapping by Tls and Digital Photogrammetry: 3d Model Update Thanks to a Slam Based Approach

    NASA Astrophysics Data System (ADS)

    Vassena, G.; Clerici, A.

    2018-05-01

    The state of the art of 3D surveying technologies, if correctly applied, allows to obtain 3D coloured models of large open pit mines using different technologies as terrestrial laser scanner (TLS), with images, combined with UAV based digital photogrammetry. GNSS and/or total station are also currently used to geo reference the model. The University of Brescia has been realised a project to map in 3D an open pit mine located in Botticino, a famous location of marble extraction close to Brescia in North Italy. Terrestrial Laser Scanner 3D point clouds combined with RGB images and digital photogrammetry from UAV have been used to map a large part of the cave. By rigorous and well know procedures a 3D point cloud and mesh model have been obtained using an easy and rigorous approach. After the description of the combined mapping process, the paper describes the innovative process proposed for the daily/weekly update of the model itself. To realize this task a SLAM technology approach is described, using an innovative approach based on an innovative instrument capable to run an automatic localization process and real time on the field change detection analysis.

  12. Process-based, morphodynamic hindcast of decadal deposition patterns in San Pablo Bay, California, 1856-1887

    USGS Publications Warehouse

    van der Wegen, M.; Jaffe, B.E.; Roelvink, J.A.

    2011-01-01

    This study investigates the possibility of hindcasting-observed decadal-scale morphologic change in San Pablo Bay, a subembayment of the San Francisco Estuary, California, USA, by means of a 3-D numerical model (Delft3D). The hindcast period, 1856-1887, is characterized by upstream hydraulic mining that resulted in a high sediment input to the estuary. The model includes wind waves, salt water and fresh water interactions, and graded sediment transport, among others. Simplified initial conditions and hydrodynamic forcing were necessary because detailed historic descriptions were lacking. Model results show significant skill. The river discharge and sediment concentration have a strong positive influence on deposition volumes. Waves decrease deposition rates and have, together with tidal movement, the greatest effect on sediment distribution within San Pablo Bay. The applied process-based (or reductionist) modeling approach is valuable once reasonable values for model parameters and hydrodynamic forcing are obtained. Sensitivity analysis reveals the dominant forcing of the system and suggests that the model planform plays a dominant role in the morphodynamic development. A detailed physical explanation of the model outcomes is difficult because of the high nonlinearity of the processes. Process formulation refinement, a more detailed description of the forcing, or further model parameter variations may lead to an enhanced model performance, albeit to a limited extent. The approach potentially provides a sound basis for prediction of future developments. Parallel use of highly schematized box models and a process-based approach as described in the present work is probably the most valuable method to assess decadal morphodynamic development. Copyright ?? 2011 by the American Geophysical Union.

  13. Comparing estimates of climate change impacts from process-based and statistical crop models

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Asseng, Senthold

    2017-01-01

    The potential impacts of climate change on crop productivity are of widespread interest to those concerned with addressing climate change and improving global food security. Two common approaches to assess these impacts are process-based simulation models, which attempt to represent key dynamic processes affecting crop yields, and statistical models, which estimate functional relationships between historical observations of weather and yields. Examples of both approaches are increasingly found in the scientific literature, although often published in different disciplinary journals. Here we compare published sensitivities to changes in temperature, precipitation, carbon dioxide (CO2), and ozone from each approach for the subset of crops, locations, and climate scenarios for which both have been applied. Despite a common perception that statistical models are more pessimistic, we find no systematic differences between the predicted sensitivities to warming from process-based and statistical models up to +2 °C, with limited evidence at higher levels of warming. For precipitation, there are many reasons why estimates could be expected to differ, but few estimates exist to develop robust comparisons, and precipitation changes are rarely the dominant factor for predicting impacts given the prominent role of temperature, CO2, and ozone changes. A common difference between process-based and statistical studies is that the former tend to include the effects of CO2 increases that accompany warming, whereas statistical models typically do not. Major needs moving forward include incorporating CO2 effects into statistical studies, improving both approaches’ treatment of ozone, and increasing the use of both methods within the same study. At the same time, those who fund or use crop model projections should understand that in the short-term, both approaches when done well are likely to provide similar estimates of warming impacts, with statistical models generally requiring fewer resources to produce robust estimates, especially when applied to crops beyond the major grains.

  14. Signal Detection Theory-Based Information Processing for the Detection of Breast Cancer at Microwave Frequencies

    DTIC Science & Technology

    2002-08-01

    the measurement noise, as well as the physical model of the forward scattered electric field. The Bayesian algorithms for the Uncertain Permittivity...received at multiple sensors. In this research project a tissue- model -based signal-detection theory approach for the detection of mammary tumors in the...oriented information processors. In this research project a tissue- model - based signal detection theory approach for the detection of mammary tumors in the

  15. ML-Space: Hybrid Spatial Gillespie and Particle Simulation of Multi-Level Rule-Based Models in Cell Biology.

    PubMed

    Bittig, Arne T; Uhrmacher, Adelinde M

    2017-01-01

    Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.

  16. Scalable and responsive event processing in the cloud

    PubMed Central

    Suresh, Visalakshmi; Ezhilchelvan, Paul; Watson, Paul

    2013-01-01

    Event processing involves continuous evaluation of queries over streams of events. Response-time optimization is traditionally done over a fixed set of nodes and/or by using metrics measured at query-operator levels. Cloud computing makes it easy to acquire and release computing nodes as required. Leveraging this flexibility, we propose a novel, queueing-theory-based approach for meeting specified response-time targets against fluctuating event arrival rates by drawing only the necessary amount of computing resources from a cloud platform. In the proposed approach, the entire processing engine of a distinct query is modelled as an atomic unit for predicting response times. Several such units hosted on a single node are modelled as a multiple class M/G/1 system. These aspects eliminate intrusive, low-level performance measurements at run-time, and also offer portability and scalability. Using model-based predictions, cloud resources are efficiently used to meet response-time targets. The efficacy of the approach is demonstrated through cloud-based experiments. PMID:23230164

  17. Modified multiblock partial least squares path modeling algorithm with backpropagation neural networks approach

    NASA Astrophysics Data System (ADS)

    Yuniarto, Budi; Kurniawan, Robert

    2017-03-01

    PLS Path Modeling (PLS-PM) is different from covariance based SEM, where PLS-PM use an approach based on variance or component, therefore, PLS-PM is also known as a component based SEM. Multiblock Partial Least Squares (MBPLS) is a method in PLS regression which can be used in PLS Path Modeling which known as Multiblock PLS Path Modeling (MBPLS-PM). This method uses an iterative procedure in its algorithm. This research aims to modify MBPLS-PM with Back Propagation Neural Network approach. The result is MBPLS-PM algorithm can be modified using the Back Propagation Neural Network approach to replace the iterative process in backward and forward step to get the matrix t and the matrix u in the algorithm. By modifying the MBPLS-PM algorithm using Back Propagation Neural Network approach, the model parameters obtained are relatively not significantly different compared to model parameters obtained by original MBPLS-PM algorithm.

  18. Discrete post-processing of total cloud cover ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Haiden, Thomas; Pappenberger, Florian

    2017-04-01

    This contribution presents an approach to post-process ensemble forecasts for the discrete and bounded weather variable of total cloud cover. Two methods for discrete statistical post-processing of ensemble predictions are tested. The first approach is based on multinomial logistic regression, the second involves a proportional odds logistic regression model. Applying them to total cloud cover raw ensemble forecasts from the European Centre for Medium-Range Weather Forecasts improves forecast skill significantly. Based on station-wise post-processing of raw ensemble total cloud cover forecasts for a global set of 3330 stations over the period from 2007 to early 2014, the more parsimonious proportional odds logistic regression model proved to slightly outperform the multinomial logistic regression model. Reference Hemri, S., Haiden, T., & Pappenberger, F. (2016). Discrete post-processing of total cloud cover ensemble forecasts. Monthly Weather Review 144, 2565-2577.

  19. Application of agent-based system for bioprocess description and process improvement.

    PubMed

    Gao, Ying; Kipling, Katie; Glassey, Jarka; Willis, Mark; Montague, Gary; Zhou, Yuhong; Titchener-Hooker, Nigel J

    2010-01-01

    Modeling plays an important role in bioprocess development for design and scale-up. Predictive models can also be used in biopharmaceutical manufacturing to assist decision-making either to maintain process consistency or to identify optimal operating conditions. To predict the whole bioprocess performance, the strong interactions present in a processing sequence must be adequately modeled. Traditionally, bioprocess modeling considers process units separately, which makes it difficult to capture the interactions between units. In this work, a systematic framework is developed to analyze the bioprocesses based on a whole process understanding and considering the interactions between process operations. An agent-based approach is adopted to provide a flexible infrastructure for the necessary integration of process models. This enables the prediction of overall process behavior, which can then be applied during process development or once manufacturing has commenced, in both cases leading to the capacity for fast evaluation of process improvement options. The multi-agent system comprises a process knowledge base, process models, and a group of functional agents. In this system, agent components co-operate with each other in performing their tasks. These include the description of the whole process behavior, evaluating process operating conditions, monitoring of the operating processes, predicting critical process performance, and providing guidance to decision-making when coping with process deviations. During process development, the system can be used to evaluate the design space for process operation. During manufacture, the system can be applied to identify abnormal process operation events and then to provide suggestions as to how best to cope with the deviations. In all cases, the function of the system is to ensure an efficient manufacturing process. The implementation of the agent-based approach is illustrated via selected application scenarios, which demonstrate how such a framework may enable the better integration of process operations by providing a plant-wide process description to facilitate process improvement. Copyright 2009 American Institute of Chemical Engineers

  20. A modelling approach to assessing the timescale uncertainties in proxy series with chronological errors

    NASA Astrophysics Data System (ADS)

    Divine, D. V.; Godtliebsen, F.; Rue, H.

    2012-01-01

    The paper proposes an approach to assessment of timescale errors in proxy-based series with chronological uncertainties. The method relies on approximation of the physical process(es) forming a proxy archive by a random Gamma process. Parameters of the process are partly data-driven and partly determined from prior assumptions. For a particular case of a linear accumulation model and absolutely dated tie points an analytical solution is found suggesting the Beta-distributed probability density on age estimates along the length of a proxy archive. In a general situation of uncertainties in the ages of the tie points the proposed method employs MCMC simulations of age-depth profiles yielding empirical confidence intervals on the constructed piecewise linear best guess timescale. It is suggested that the approach can be further extended to a more general case of a time-varying expected accumulation between the tie points. The approach is illustrated by using two ice and two lake/marine sediment cores representing the typical examples of paleoproxy archives with age models based on tie points of mixed origin.

  1. Simulating Runoff from a Grid Based Mercury Model: Flow Comparisons

    EPA Science Inventory

    Several mercury cycling models, including general mass balance approaches, mixed-batch reactors in streams or lakes, or regional process-based models, exist to assess the ecological exposure risks associated with anthropogenically increased atmospheric mercury (Hg) deposition, so...

  2. Agent Based Modeling Applications for Geosciences

    NASA Astrophysics Data System (ADS)

    Stein, J. S.

    2004-12-01

    Agent-based modeling techniques have successfully been applied to systems in which complex behaviors or outcomes arise from varied interactions between individuals in the system. Each individual interacts with its environment, as well as with other individuals, by following a set of relatively simple rules. Traditionally this "bottom-up" modeling approach has been applied to problems in the fields of economics and sociology, but more recently has been introduced to various disciplines in the geosciences. This technique can help explain the origin of complex processes from a relatively simple set of rules, incorporate large and detailed datasets when they exist, and simulate the effects of extreme events on system-wide behavior. Some of the challenges associated with this modeling method include: significant computational requirements in order to keep track of thousands to millions of agents, methods and strategies of model validation are lacking, as is a formal methodology for evaluating model uncertainty. Challenges specific to the geosciences, include how to define agents that control water, contaminant fluxes, climate forcing and other physical processes and how to link these "geo-agents" into larger agent-based simulations that include social systems such as demographics economics and regulations. Effective management of limited natural resources (such as water, hydrocarbons, or land) requires an understanding of what factors influence the demand for these resources on a regional and temporal scale. Agent-based models can be used to simulate this demand across a variety of sectors under a range of conditions and determine effective and robust management policies and monitoring strategies. The recent focus on the role of biological processes in the geosciences is another example of an area that could benefit from agent-based applications. A typical approach to modeling the effect of biological processes in geologic media has been to represent these processes in a thermodynamic framework as a set of reactions that roll-up the integrated effect that diverse biological communities exert on a geological system. This approach may work well to predict the effect of certain biological communities in specific environments in which experimental data is available. However, it does not further our knowledge of how the geobiological system actually functions on a micro scale. Agent-based techniques may provide a framework to explore the fundamental interactions required to explain the system-wide behavior. This presentation will present a survey of several promising applications of agent-based modeling approaches to problems in the geosciences and describe specific contributions to some of the inherent challenges facing this approach.

  3. A rule-based approach to model checking of UML state machines

    NASA Astrophysics Data System (ADS)

    Grobelna, Iwona; Grobelny, Michał; Stefanowicz, Łukasz

    2016-12-01

    In the paper a new approach to formal verification of control process specification expressed by means of UML state machines in version 2.x is proposed. In contrast to other approaches from the literature, we use the abstract and universal rule-based logical model suitable both for model checking (using the nuXmv model checker), but also for logical synthesis in form of rapid prototyping. Hence, a prototype implementation in hardware description language VHDL can be obtained that fully reflects the primary, already formally verified specification in form of UML state machines. Presented approach allows to increase the assurance that implemented system meets the user-defined requirements.

  4. Workplace-Based Assessment: Effects of Rater Expertise

    ERIC Educational Resources Information Center

    Govaerts, M. J. B.; Schuwirth, L. W. T.; Van der Vleuten, C. P. M.; Muijtjens, A. M. M.

    2011-01-01

    Traditional psychometric approaches towards assessment tend to focus exclusively on quantitative properties of assessment outcomes. This may limit more meaningful educational approaches towards workplace-based assessment (WBA). Cognition-based models of WBA argue that assessment outcomes are determined by cognitive processes by raters which are…

  5. Modeling of 2D diffusion processes based on microscopy data: parameter estimation and practical identifiability analysis.

    PubMed

    Hock, Sabrina; Hasenauer, Jan; Theis, Fabian J

    2013-01-01

    Diffusion is a key component of many biological processes such as chemotaxis, developmental differentiation and tissue morphogenesis. Since recently, the spatial gradients caused by diffusion can be assessed in-vitro and in-vivo using microscopy based imaging techniques. The resulting time-series of two dimensional, high-resolutions images in combination with mechanistic models enable the quantitative analysis of the underlying mechanisms. However, such a model-based analysis is still challenging due to measurement noise and sparse observations, which result in uncertainties of the model parameters. We introduce a likelihood function for image-based measurements with log-normal distributed noise. Based upon this likelihood function we formulate the maximum likelihood estimation problem, which is solved using PDE-constrained optimization methods. To assess the uncertainty and practical identifiability of the parameters we introduce profile likelihoods for diffusion processes. As proof of concept, we model certain aspects of the guidance of dendritic cells towards lymphatic vessels, an example for haptotaxis. Using a realistic set of artificial measurement data, we estimate the five kinetic parameters of this model and compute profile likelihoods. Our novel approach for the estimation of model parameters from image data as well as the proposed identifiability analysis approach is widely applicable to diffusion processes. The profile likelihood based method provides more rigorous uncertainty bounds in contrast to local approximation methods.

  6. Design of high productivity antibody capture by protein A chromatography using an integrated experimental and modeling approach.

    PubMed

    Ng, Candy K S; Osuna-Sanchez, Hector; Valéry, Eric; Sørensen, Eva; Bracewell, Daniel G

    2012-06-15

    An integrated experimental and modeling approach for the design of high productivity protein A chromatography is presented to maximize productivity in bioproduct manufacture. The approach consists of four steps: (1) small-scale experimentation, (2) model parameter estimation, (3) productivity optimization and (4) model validation with process verification. The integrated use of process experimentation and modeling enables fewer experiments to be performed, and thus minimizes the time and materials required in order to gain process understanding, which is of key importance during process development. The application of the approach is demonstrated for the capture of antibody by a novel silica-based high performance protein A adsorbent named AbSolute. In the example, a series of pulse injections and breakthrough experiments were performed to develop a lumped parameter model, which was then used to find the best design that optimizes the productivity of a batch protein A chromatographic process for human IgG capture. An optimum productivity of 2.9 kg L⁻¹ day⁻¹ for a column of 5mm diameter and 8.5 cm length was predicted, and subsequently verified experimentally, completing the whole process design approach in only 75 person-hours (or approximately 2 weeks). Copyright © 2012 Elsevier B.V. All rights reserved.

  7. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems.

    PubMed

    Silva, Lenardo C; Almeida, Hyggo O; Perkusich, Angelo; Perkusich, Mirko

    2015-10-30

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage.

  8. A Model-Based Approach to Support Validation of Medical Cyber-Physical Systems

    PubMed Central

    Silva, Lenardo C.; Almeida, Hyggo O.; Perkusich, Angelo; Perkusich, Mirko

    2015-01-01

    Medical Cyber-Physical Systems (MCPS) are context-aware, life-critical systems with patient safety as the main concern, demanding rigorous processes for validation to guarantee user requirement compliance and specification-oriented correctness. In this article, we propose a model-based approach for early validation of MCPS, focusing on promoting reusability and productivity. It enables system developers to build MCPS formal models based on a library of patient and medical device models, and simulate the MCPS to identify undesirable behaviors at design time. Our approach has been applied to three different clinical scenarios to evaluate its reusability potential for different contexts. We have also validated our approach through an empirical evaluation with developers to assess productivity and reusability. Finally, our models have been formally verified considering functional and safety requirements and model coverage. PMID:26528982

  9. Integrating physically based simulators with Event Detection Systems: Multi-site detection approach.

    PubMed

    Housh, Mashor; Ohar, Ziv

    2017-03-01

    The Fault Detection (FD) Problem in control theory concerns of monitoring a system to identify when a fault has occurred. Two approaches can be distinguished for the FD: Signal processing based FD and Model-based FD. The former concerns of developing algorithms to directly infer faults from sensors' readings, while the latter uses a simulation model of the real-system to analyze the discrepancy between sensors' readings and expected values from the simulation model. Most contamination Event Detection Systems (EDSs) for water distribution systems have followed the signal processing based FD, which relies on analyzing the signals from monitoring stations independently of each other, rather than evaluating all stations simultaneously within an integrated network. In this study, we show that a model-based EDS which utilizes a physically based water quality and hydraulics simulation models, can outperform the signal processing based EDS. We also show that the model-based EDS can facilitate the development of a Multi-Site EDS (MSEDS), which analyzes the data from all the monitoring stations simultaneously within an integrated network. The advantage of the joint analysis in the MSEDS is expressed by increased detection accuracy (higher true positive alarms and fewer false alarms) and shorter detection time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Increasing the efficiency of designing hemming processes by using an element-based metamodel approach

    NASA Astrophysics Data System (ADS)

    Kaiser, C.; Roll, K.; Volk, W.

    2017-09-01

    In the automotive industry, the manufacturing of automotive outer panels requires hemming processes in which two sheet metal parts are joined together by bending the flange of the outer part over the inner part. Because of decreasing development times and the steadily growing number of vehicle derivatives, an efficient digital product and process validation is necessary. Commonly used simulations, which are based on the finite element method, demand significant modelling effort, which results in disadvantages especially in the early product development phase. To increase the efficiency of designing hemming processes this paper presents a hemming-specific metamodel approach. The approach includes a part analysis in which the outline of the automotive outer panels is initially split into individual segments. By doing a para-metrization of each of the segments and assigning basic geometric shapes, the outline of the part is approximated. Based on this, the hemming parameters such as flange length, roll-in, wrinkling and plastic strains are calculated for each of the geometric basic shapes by performing a meta-model-based segmental product validation. The metamodel is based on an element similar formulation that includes a reference dataset of various geometric basic shapes. A random automotive outer panel can now be analysed and optimized based on the hemming-specific database. By implementing this approach into a planning system, an efficient optimization of designing hemming processes will be enabled. Furthermore, valuable time and cost benefits can be realized in a vehicle’s development process.

  11. Genealogical and evolutionary inference with the human Y chromosome.

    PubMed

    Stumpf, M P; Goldstein, D B

    2001-03-02

    Population genetics has emerged as a powerful tool for unraveling human history. In addition to the study of mitochondrial and autosomal DNA, attention has recently focused on Y-chromosome variation. Ambiguities and inaccuracies in data analysis, however, pose an important obstacle to further development of the field. Here we review the methods available for genealogical inference using Y-chromosome data. Approaches can be divided into those that do and those that do not use an explicit population model in genealogical inference. We describe the strengths and weaknesses of these model-based and model-free approaches, as well as difficulties associated with the mutation process that affect both methods. In the case of genealogical inference using microsatellite loci, we use coalescent simulations to show that relatively simple generalizations of the mutation process can greatly increase the accuracy of genealogical inference. Because model-free and model-based approaches have different biases and limitations, we conclude that there is considerable benefit in the continued use of both types of approaches.

  12. Conceptual Model-Based Systems Biology: Mapping Knowledge and Discovering Gaps in the mRNA Transcription Cycle

    PubMed Central

    Somekh, Judith; Choder, Mordechai; Dori, Dov

    2012-01-01

    We propose a Conceptual Model-based Systems Biology framework for qualitative modeling, executing, and eliciting knowledge gaps in molecular biology systems. The framework is an adaptation of Object-Process Methodology (OPM), a graphical and textual executable modeling language. OPM enables concurrent representation of the system's structure—the objects that comprise the system, and behavior—how processes transform objects over time. Applying a top-down approach of recursively zooming into processes, we model a case in point—the mRNA transcription cycle. Starting with this high level cell function, we model increasingly detailed processes along with participating objects. Our modeling approach is capable of modeling molecular processes such as complex formation, localization and trafficking, molecular binding, enzymatic stimulation, and environmental intervention. At the lowest level, similar to the Gene Ontology, all biological processes boil down to three basic molecular functions: catalysis, binding/dissociation, and transporting. During modeling and execution of the mRNA transcription model, we discovered knowledge gaps, which we present and classify into various types. We also show how model execution enhances a coherent model construction. Identification and pinpointing knowledge gaps is an important feature of the framework, as it suggests where research should focus and whether conjectures about uncertain mechanisms fit into the already verified model. PMID:23308089

  13. Urban Expansion Modeling Approach Based on Multi-Agent System and Cellular Automata

    NASA Astrophysics Data System (ADS)

    Zeng, Y. N.; Yu, M. M.; Li, S. N.

    2018-04-01

    Urban expansion is a land-use change process that transforms non-urban land into urban land. This process results in the loss of natural vegetation and increase in impervious surfaces. Urban expansion also alters the hydrologic cycling, atmospheric circulation, and nutrient cycling processes and generates enormous environmental and social impacts. Urban expansion monitoring and modeling are crucial to understanding urban expansion process, mechanism, and its environmental impacts, and predicting urban expansion in future scenarios. Therefore, it is important to study urban expansion monitoring and modeling approaches. We proposed to simulate urban expansion by combining CA and MAS model. The proposed urban expansion model based on MSA and CA was applied to a case study area of Changsha-Zhuzhou-Xiangtan urban agglomeration, China. The results show that this model can capture urban expansion with good adaptability. The Kappa coefficient of the simulation results is 0.75, which indicated that the combination of MAS and CA offered the better simulation result.

  14. 0-6759 : developing a business process and logical model to support a tour-based travel demand model design for TxDOT.

    DOT National Transportation Integrated Search

    2013-08-01

    The Texas Department of Transportation : (TxDOT) created a standardized trip-based : modeling approach for travel demand modeling : called the Texas Package Suite of Travel Demand : Models (referred to as the Texas Package) to : oversee the travel de...

  15. A Spatiotemporal Indexing Approach for Efficient Processing of Big Array-Based Climate Data with MapReduce

    NASA Technical Reports Server (NTRS)

    Li, Zhenlong; Hu, Fei; Schnase, John L.; Duffy, Daniel Q.; Lee, Tsengdar; Bowen, Michael K.; Yang, Chaowei

    2016-01-01

    Climate observations and model simulations are producing vast amounts of array-based spatiotemporal data. Efficient processing of these data is essential for assessing global challenges such as climate change, natural disasters, and diseases. This is challenging not only because of the large data volume, but also because of the intrinsic high-dimensional nature of geoscience data. To tackle this challenge, we propose a spatiotemporal indexing approach to efficiently manage and process big climate data with MapReduce in a highly scalable environment. Using this approach, big climate data are directly stored in a Hadoop Distributed File System in its original, native file format. A spatiotemporal index is built to bridge the logical array-based data model and the physical data layout, which enables fast data retrieval when performing spatiotemporal queries. Based on the index, a data-partitioning algorithm is applied to enable MapReduce to achieve high data locality, as well as balancing the workload. The proposed indexing approach is evaluated using the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. The experimental results show that the index can significantly accelerate querying and processing (10 speedup compared to the baseline test using the same computing cluster), while keeping the index-to-data ratio small (0.0328). The applicability of the indexing approach is demonstrated by a climate anomaly detection deployed on a NASA Hadoop cluster. This approach is also able to support efficient processing of general array-based spatiotemporal data in various geoscience domains without special configuration on a Hadoop cluster.

  16. Argumentation in Science Education: A Model-based Framework

    NASA Astrophysics Data System (ADS)

    Böttcher, Florian; Meisert, Anke

    2011-02-01

    The goal of this article is threefold: First, the theoretical background for a model-based framework of argumentation to describe and evaluate argumentative processes in science education is presented. Based on the general model-based perspective in cognitive science and the philosophy of science, it is proposed to understand arguments as reasons for the appropriateness of a theoretical model which explains a certain phenomenon. Argumentation is considered to be the process of the critical evaluation of such a model if necessary in relation to alternative models. Secondly, some methodological details are exemplified for the use of a model-based analysis in the concrete classroom context. Third, the application of the approach in comparison with other analytical models will be presented to demonstrate the explicatory power and depth of the model-based perspective. Primarily, the framework of Toulmin to structurally analyse arguments is contrasted with the approach presented here. It will be demonstrated how common methodological and theoretical problems in the context of Toulmin's framework can be overcome through a model-based perspective. Additionally, a second more complex argumentative sequence will also be analysed according to the invented analytical scheme to give a broader impression of its potential in practical use.

  17. Worklist handling in workflow-enabled radiological application systems

    NASA Astrophysics Data System (ADS)

    Wendler, Thomas; Meetz, Kirsten; Schmidt, Joachim; von Berg, Jens

    2000-05-01

    For the next generation integrated information systems for health care applications, more emphasis has to be put on systems which, by design, support the reduction of cost, the increase inefficiency and the improvement of the quality of services. A substantial contribution to this will be the modeling. optimization, automation and enactment of processes in health care institutions. One of the perceived key success factors for the system integration of processes will be the application of workflow management, with workflow management systems as key technology components. In this paper we address workflow management in radiology. We focus on an important aspect of workflow management, the generation and handling of worklists, which provide workflow participants automatically with work items that reflect tasks to be performed. The display of worklists and the functions associated with work items are the visible part for the end-users of an information system using a workflow management approach. Appropriate worklist design and implementation will influence user friendliness of a system and will largely influence work efficiency. Technically, in current imaging department information system environments (modality-PACS-RIS installations), a data-driven approach has been taken: Worklist -- if present at all -- are generated from filtered views on application data bases. In a future workflow-based approach, worklists will be generated by autonomous workflow services based on explicit process models and organizational models. This process-oriented approach will provide us with an integral view of entire health care processes or sub- processes. The paper describes the basic mechanisms of this approach and summarizes its benefits.

  18. Development of Scientific Approach Based on Discovery Learning Module

    NASA Astrophysics Data System (ADS)

    Ellizar, E.; Hardeli, H.; Beltris, S.; Suharni, R.

    2018-04-01

    Scientific Approach is a learning process, designed to make the students actively construct their own knowledge through stages of scientific method. The scientific approach in learning process can be done by using learning modules. One of the learning model is discovery based learning. Discovery learning is a learning model for the valuable things in learning through various activities, such as observation, experience, and reasoning. In fact, the students’ activity to construct their own knowledge were not optimal. It’s because the available learning modules were not in line with the scientific approach. The purpose of this study was to develop a scientific approach discovery based learning module on Acid Based, also on electrolyte and non-electrolyte solution. The developing process of this chemistry modules use the Plomp Model with three main stages. The stages are preliminary research, prototyping stage, and the assessment stage. The subject of this research was the 10th and 11th Grade of Senior High School students (SMAN 2 Padang). Validation were tested by the experts of Chemistry lecturers and teachers. Practicality of these modules had been tested through questionnaire. The effectiveness had been tested through experimental procedure by comparing student achievement between experiment and control groups. Based on the findings, it can be concluded that the developed scientific approach discovery based learning module significantly improve the students’ learning in Acid-based and Electrolyte solution. The result of the data analysis indicated that the chemistry module was valid in content, construct, and presentation. Chemistry module also has a good practicality level and also accordance with the available time. This chemistry module was also effective, because it can help the students to understand the content of the learning material. That’s proved by the result of learning student. Based on the result can conclude that chemistry module based on discovery learning and scientific approach in electrolyte and non-electrolyte solution and Acid Based for the 10th and 11th grade of senior high school students were valid, practice, and effective.

  19. Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology.

    PubMed

    Koutinas, Michalis; Kiparissides, Alexandros; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2012-01-01

    The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals.

  20. Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology

    PubMed Central

    Koutinas, Michalis; Kiparissides, Alexandros; Pistikopoulos, Efstratios N.; Mantalaris, Athanasios

    2013-01-01

    The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals. PMID:24688682

  1. Bridging paradigms: hybrid mechanistic-discriminative predictive models.

    PubMed

    Doyle, Orla M; Tsaneva-Atansaova, Krasimira; Harte, James; Tiffin, Paul A; Tino, Peter; Díaz-Zuccarini, Vanessa

    2013-03-01

    Many disease processes are extremely complex and characterized by multiple stochastic processes interacting simultaneously. Current analytical approaches have included mechanistic models and machine learning (ML), which are often treated as orthogonal viewpoints. However, to facilitate truly personalized medicine, new perspectives may be required. This paper reviews the use of both mechanistic models and ML in healthcare as well as emerging hybrid methods, which are an exciting and promising approach for biologically based, yet data-driven advanced intelligent systems.

  2. Model-assisted template extraction SRAF application to contact holes patterns in high-end flash memory device fabrication

    NASA Astrophysics Data System (ADS)

    Seoud, Ahmed; Kim, Juhwan; Ma, Yuansheng; Jayaram, Srividya; Hong, Le; Chae, Gyu-Yeol; Lee, Jeong-Woo; Park, Dae-Jin; Yune, Hyoung-Soon; Oh, Se-Young; Park, Chan-Ha

    2018-03-01

    Sub-resolution assist feature (SRAF) insertion techniques have been effectively used for a long time now to increase process latitude in the lithography patterning process. Rule-based SRAF and model-based SRAF are complementary solutions, and each has its own benefits, depending on the objectives of applications and the criticality of the impact on manufacturing yield, efficiency, and productivity. Rule-based SRAF provides superior geometric output consistency and faster runtime performance, but the associated recipe development time can be of concern. Model-based SRAF provides better coverage for more complicated pattern structures in terms of shapes and sizes, with considerably less time required for recipe development, although consistency and performance may be impacted. In this paper, we introduce a new model-assisted template extraction (MATE) SRAF solution, which employs decision tree learning in a model-based solution to provide the benefits of both rule-based and model-based SRAF insertion approaches. The MATE solution is designed to automate the creation of rules/templates for SRAF insertion, and is based on the SRAF placement predicted by model-based solutions. The MATE SRAF recipe provides optimum lithographic quality in relation to various manufacturing aspects in a very short time, compared to traditional methods of rule optimization. Experiments were done using memory device pattern layouts to compare the MATE solution to existing model-based SRAF and pixelated SRAF approaches, based on lithographic process window quality, runtime performance, and geometric output consistency.

  3. Advanced process control framework initiative

    NASA Astrophysics Data System (ADS)

    Hill, Tom; Nettles, Steve

    1997-01-01

    The semiconductor industry, one the world's most fiercely competitive industries, is driven by increasingly complex process technologies and global competition to improve cycle time, quality, and process flexibility. Due to the complexity of these problems, current process control techniques are generally nonautomated, time-consuming, reactive, nonadaptive, and focused on individual fabrication tools and processes. As the semiconductor industry moves into higher density processes, radical new approaches are required. To address the need for advanced factory-level process control in this environment, Honeywell, Advanced Micro Devices (AMD), and SEMATECH formed the Advanced Process Control Framework Initiative (APCFI) joint research project. The project defines and demonstrates an Advanced Process Control (APC) approach based on SEMATECH's Computer Integrated Manufacturing (CIM) Framework. Its scope includes the coordination of Manufacturing Execution Systems, process control tools, and wafer fabrication equipment to provide necessary process control capabilities. Moreover, it takes advantage of the CIM Framework to integrate and coordinate applications from other suppliers that provide services necessary for the overall system to function. This presentation discusses the key concept of model-based process control that differentiates the APC Framework. This major improvement over current methods enables new systematic process control by linking the knowledge of key process settings to desired product characteristics that reside in models created with commercial model development tools The unique framework-based approach facilitates integration of commercial tools and reuse of their data by tying them together in an object-based structure. The presentation also explores the perspective of each organization's involvement in the APCFI project. Each has complementary goals and expertise to contribute; Honeywell represents the supplier viewpoint, AMD represents the user with 'real customer requirements', and SEMATECH provides a consensus-building organization that widely disseminates technology to suppliers and users in the semiconductor industry that face similar equipment and factory control systems challenges.

  4. Multiagent intelligent systems

    NASA Astrophysics Data System (ADS)

    Krause, Lee S.; Dean, Christopher; Lehman, Lynn A.

    2003-09-01

    This paper will discuss a simulation approach based upon a family of agent-based models. As the demands placed upon simulation technology by such applications as Effects Based Operations (EBO), evaluations of indicators and warnings surrounding homeland defense and commercial demands such financial risk management current single thread based simulations will continue to show serious deficiencies. The types of "what if" analysis required to support these types of applications, demand rapidly re-configurable approaches capable of aggregating large models incorporating multiple viewpoints. The use of agent technology promises to provide a broad spectrum of models incorporating differing viewpoints through a synthesis of a collection of models. Each model would provide estimates to the overall scenario based upon their particular measure or aspect. An agent framework, denoted as the "family" would provide a common ontology in support of differing aspects of the scenario. This approach permits the future of modeling to change from viewing the problem as a single thread simulation, to take into account multiple viewpoints from different models. Even as models are updated or replaced the agent approach permits rapid inclusion in new or modified simulations. In this approach a variety of low and high-resolution information and its synthesis requires a family of models. Each agent "publishes" its support for a given measure and each model provides their own estimates on the scenario based upon their particular measure or aspect. If more than one agent provides the same measure (e.g. cognitive) then the results from these agents are combined to form an aggregate measure response. The objective would be to inform and help calibrate a qualitative model, rather than merely to present highly aggregated statistical information. As each result is processed, the next action can then be determined. This is done by a top-level decision system that communicates to the family at the ontology level without any specific understanding of the processes (or model) behind each agent. The increasingly complex demands upon simulation for the necessity to incorporate the breadth and depth of influencing factors makes a family of agent based models a promising solution. This paper will discuss that solution with syntax and semantics necessary to support the approach.

  5. Assessment of Programming Language Learning Based on Peer Code Review Model: Implementation and Experience Report

    ERIC Educational Resources Information Center

    Wang, Yanqing; Li, Hang; Feng, Yuqiang; Jiang, Yu; Liu, Ying

    2012-01-01

    The traditional assessment approach, in which one single written examination counts toward a student's total score, no longer meets new demands of programming language education. Based on a peer code review process model, we developed an online assessment system called "EduPCR" and used a novel approach to assess the learning of computer…

  6. Prediction of the properties anhydrite construction mixtures based on neural network approach

    NASA Astrophysics Data System (ADS)

    Fedorchuk, Y. M.; Zamyatin, N. V.; Smirnov, G. V.; Rusina, O. N.; Sadenova, M. A.

    2017-08-01

    The article considered the question of applying the backstop modeling mechanism from the components of anhydride mixtures in the process of managing the technological processes of receiving construction products which based on fluoranhydrite.

  7. Real-time interactive virtual tour on the World Wide Web (WWW)

    NASA Astrophysics Data System (ADS)

    Yoon, Sanghyuk; Chen, Hai-jung; Hsu, Tom; Yoon, Ilmi

    2003-12-01

    Web-based Virtual Tour has become a desirable and demanded application, yet challenging due to the nature of web application's running environment such as limited bandwidth and no guarantee of high computation power on the client side. Image-based rendering approach has attractive advantages over traditional 3D rendering approach in such Web Applications. Traditional approach, such as VRML, requires labor-intensive 3D modeling process, high bandwidth and computation power especially for photo-realistic virtual scenes. QuickTime VR and IPIX as examples of image-based approach, use panoramic photos and the virtual scenes that can be generated from photos directly skipping the modeling process. But, these image-based approaches may require special cameras or effort to take panoramic views and provide only one fixed-point look-around and zooming in-out rather than 'walk around', that is a very important feature to provide immersive experience to virtual tourists. The Web-based Virtual Tour using Tour into the Picture employs pseudo 3D geometry with image-based rendering approach to provide viewers with immersive experience of walking around the virtual space with several snap shots of conventional photos.

  8. Using Quality Management Methods in Knowledge-Based Organizations. An Approach to the Application of the Taguchi Method to the Process of Pressing Tappets into Anchors

    NASA Astrophysics Data System (ADS)

    Ţîţu, M. A.; Pop, A. B.; Ţîţu, Ș

    2017-06-01

    This paper presents a study on the modelling and optimization of certain variables by using the Taguchi Method with a view to modelling and optimizing the process of pressing tappets into anchors, process conducted in an organization that promotes knowledge-based management. The paper promotes practical concepts of the Taguchi Method and describes the way in which the objective functions are obtained and used during the modelling and optimization of the process of pressing tappets into the anchors.

  9. Modeling and prediction of peptide drift times in ion mobility spectrometry using sequence-based and structure-based approaches.

    PubMed

    Zhang, Yiming; Jin, Quan; Wang, Shuting; Ren, Ren

    2011-05-01

    The mobile behavior of 1481 peptides in ion mobility spectrometry (IMS), which are generated by protease digestion of the Drosophila melanogaster proteome, is modeled and predicted based on two different types of characterization methods, i.e. sequence-based approach and structure-based approach. In this procedure, the sequence-based approach considers both the amino acid composition of a peptide and the local environment profile of each amino acid in the peptide; the structure-based approach is performed with the CODESSA protocol, which regards a peptide as a common organic compound and generates more than 200 statistically significant variables to characterize the whole structure profile of a peptide molecule. Subsequently, the nonlinear support vector machine (SVM) and Gaussian process (GP) as well as linear partial least squares (PLS) regression is employed to correlate the structural parameters of the characterizations with the IMS drift times of these peptides. The obtained quantitative structure-spectrum relationship (QSSR) models are evaluated rigorously and investigated systematically via both one-deep and two-deep cross-validations as well as the rigorous Monte Carlo cross-validation (MCCV). We also give a comprehensive comparison on the resulting statistics arising from the different combinations of variable types with modeling methods and find that the sequence-based approach can give the QSSR models with better fitting ability and predictive power but worse interpretability than the structure-based approach. In addition, though the QSSR modeling using sequence-based approach is not needed for the preparation of the minimization structures of peptides before the modeling, it would be considerably efficient as compared to that using structure-based approach. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Strategic ambiguities in the process of consent: role of the family in decisions to forgo life-sustaining treatment for incompetent elderly patients.

    PubMed

    Tse, Chun-yan; Tao, Julia; Chun-yan, Tse

    2004-04-01

    This paper evaluates the Hong Kong approach to consent regarding the forgoing of life-sustaining treatment for incompetent elderly patients. It analyzes the contextualized approach in the Hong Kong process-based, consensus-building model, in contrast to other role-based models which emphasize the establishment of a system of formal laws and a clear locus of decisional authority. Without embracing relativism, the paper argues that the Hong Kong model offers an instructive example of how strategic ambiguities can both make good sense within particular cultural context and serve important moral goals.

  11. Purpose, Processes, Partnerships, and Products: 4Ps to advance Participatory Socio-Environmental Modeling

    NASA Astrophysics Data System (ADS)

    Gray, S. G.; Voinov, A. A.; Jordan, R.; Paolisso, M.

    2016-12-01

    Model-based reasoning is a basic part of human understanding, decision-making, and communication. Including stakeholders in environmental model building and analysis is an increasingly popular approach to understanding environmental change since stakeholders often hold valuable knowledge about socio-environmental dynamics and since collaborative forms of modeling produce important boundary objects used to collectively reason about environmental problems. Although the number of participatory modeling (PM) case studies and the number of researchers adopting these approaches has grown in recent years, the lack of standardized reporting and limited reproducibility have prevented PM's establishment and advancement as a cohesive field of study. We suggest a four dimensional framework that includes reporting on dimensions of: (1) the Purpose for selecting a PM approach (the why); (2) the Process by which the public was involved in model building or evaluation (the how); (3) the Partnerships formed (the who); and (4) the Products that resulted from these efforts (the what). We highlight four case studies that use common PM software-based approaches (fuzzy cognitive mapping, agent-based modeling, system dynamics, and participatory geospatial modeling) to understand human-environment interactions and the consequences of environmental changes, including bushmeat hunting in Tanzania and Cameroon, agricultural production and deforestation in Zambia, and groundwater management in India. We demonstrate how standardizing communication about PM case studies can lead to innovation and new insights about model-based reasoning in support of environmental policy development. We suggest that our 4P framework and reporting approach provides a way for new hypotheses to be identified and tested in the growing field of PM.

  12. Validation of Western North America Models based on finite-frequency and ray theory imaging methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larmat, Carene; Maceira, Monica; Porritt, Robert W.

    2015-02-02

    We validate seismic models developed for western North America with a focus on effect of imaging methods on data fit. We use the DNA09 models for which our collaborators provide models built with both the body-­wave FF approach and the RT approach, when the data selection, processing and reference models are the same.

  13. Technical Note: Approximate Bayesian parameterization of a process-based tropical forest model

    NASA Astrophysics Data System (ADS)

    Hartig, F.; Dislich, C.; Wiegand, T.; Huth, A.

    2014-02-01

    Inverse parameter estimation of process-based models is a long-standing problem in many scientific disciplines. A key question for inverse parameter estimation is how to define the metric that quantifies how well model predictions fit to the data. This metric can be expressed by general cost or objective functions, but statistical inversion methods require a particular metric, the probability of observing the data given the model parameters, known as the likelihood. For technical and computational reasons, likelihoods for process-based stochastic models are usually based on general assumptions about variability in the observed data, and not on the stochasticity generated by the model. Only in recent years have new methods become available that allow the generation of likelihoods directly from stochastic simulations. Previous applications of these approximate Bayesian methods have concentrated on relatively simple models. Here, we report on the application of a simulation-based likelihood approximation for FORMIND, a parameter-rich individual-based model of tropical forest dynamics. We show that approximate Bayesian inference, based on a parametric likelihood approximation placed in a conventional Markov chain Monte Carlo (MCMC) sampler, performs well in retrieving known parameter values from virtual inventory data generated by the forest model. We analyze the results of the parameter estimation, examine its sensitivity to the choice and aggregation of model outputs and observed data (summary statistics), and demonstrate the application of this method by fitting the FORMIND model to field data from an Ecuadorian tropical forest. Finally, we discuss how this approach differs from approximate Bayesian computation (ABC), another method commonly used to generate simulation-based likelihood approximations. Our results demonstrate that simulation-based inference, which offers considerable conceptual advantages over more traditional methods for inverse parameter estimation, can be successfully applied to process-based models of high complexity. The methodology is particularly suitable for heterogeneous and complex data structures and can easily be adjusted to other model types, including most stochastic population and individual-based models. Our study therefore provides a blueprint for a fairly general approach to parameter estimation of stochastic process-based models.

  14. Comparison of ensemble post-processing approaches, based on empirical and dynamical error modelisation of rainfall-runoff model forecasts

    NASA Astrophysics Data System (ADS)

    Chardon, J.; Mathevet, T.; Le Lay, M.; Gailhard, J.

    2012-04-01

    In the context of a national energy company (EDF : Electricité de France), hydro-meteorological forecasts are necessary to ensure safety and security of installations, meet environmental standards and improve water ressources management and decision making. Hydrological ensemble forecasts allow a better representation of meteorological and hydrological forecasts uncertainties and improve human expertise of hydrological forecasts, which is essential to synthesize available informations, coming from different meteorological and hydrological models and human experience. An operational hydrological ensemble forecasting chain has been developed at EDF since 2008 and is being used since 2010 on more than 30 watersheds in France. This ensemble forecasting chain is characterized ensemble pre-processing (rainfall and temperature) and post-processing (streamflow), where a large human expertise is solicited. The aim of this paper is to compare 2 hydrological ensemble post-processing methods developed at EDF in order improve ensemble forecasts reliability (similar to Monatanari &Brath, 2004; Schaefli et al., 2007). The aim of the post-processing methods is to dress hydrological ensemble forecasts with hydrological model uncertainties, based on perfect forecasts. The first method (called empirical approach) is based on a statistical modelisation of empirical error of perfect forecasts, by streamflow sub-samples of quantile class and lead-time. The second method (called dynamical approach) is based on streamflow sub-samples of quantile class and streamflow variation, and lead-time. On a set of 20 watersheds used for operational forecasts, results show that both approaches are necessary to ensure a good post-processing of hydrological ensemble, allowing a good improvement of reliability, skill and sharpness of ensemble forecasts. The comparison of the empirical and dynamical approaches shows the limits of the empirical approach which is not able to take into account hydrological dynamic and processes, i. e. sample heterogeneity. For a same streamflow range corresponds different processes such as rising limbs or recession, where uncertainties are different. The dynamical approach improves reliability, skills and sharpness of forecasts and globally reduces confidence intervals width. When compared in details, the dynamical approach allows a noticeable reduction of confidence intervals during recessions where uncertainty is relatively lower and a slight increase of confidence intervals during rising limbs or snowmelt where uncertainty is greater. The dynamic approach, validated by forecaster's experience that considered the empirical approach not discriminative enough, improved forecaster's confidence and communication of uncertainties. Montanari, A. and Brath, A., (2004). A stochastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 40, W01106, doi:10.1029/2003WR002540. Schaefli, B., Balin Talamba, D. and Musy, A., (2007). Quantifying hydrological modeling errors through a mixture of normal distributions. Journal of Hydrology, 332, 303-315.

  15. Using a logical information model-driven design process in healthcare.

    PubMed

    Cheong, Yu Chye; Bird, Linda; Tun, Nwe Ni; Brooks, Colleen

    2011-01-01

    A hybrid standards-based approach has been adopted in Singapore to develop a Logical Information Model (LIM) for healthcare information exchange. The Singapore LIM uses a combination of international standards, including ISO13606-1 (a reference model for electronic health record communication), ISO21090 (healthcare datatypes), SNOMED CT (healthcare terminology) and HL7 v2 (healthcare messaging). This logic-based design approach also incorporates mechanisms for achieving bi-directional semantic interoperability.

  16. Process-based upscaling of surface-atmosphere exchange

    NASA Astrophysics Data System (ADS)

    Keenan, T. F.; Prentice, I. C.; Canadell, J.; Williams, C. A.; Wang, H.; Raupach, M. R.; Collatz, G. J.; Davis, T.; Stocker, B.; Evans, B. J.

    2015-12-01

    Empirical upscaling techniques such as machine learning and data-mining have proven invaluable tools for the global scaling of disparate observations of surface-atmosphere exchange, but are not based on a theoretical understanding of the key processes involved. This makes spatial and temporal extrapolation outside of the training domain difficult at best. There is therefore a clear need for the incorporation of knowledge of ecosystem function, in combination with the strength of data mining. Here, we present such an approach. We describe a novel diagnostic process-based model of global photosynthesis and ecosystem respiration, which is directly informed by a variety of global datasets relevant to ecosystem state and function. We use the model framework to estimate global carbon cycling both spatially and temporally, with a specific focus on the mechanisms responsible for long-term change. Our results show the importance of incorporating process knowledge into upscaling approaches, and highlight the effect of key processes on the terrestrial carbon cycle.

  17. Innovative model of business process reengineering at machine building enterprises

    NASA Astrophysics Data System (ADS)

    Nekrasov, R. Yu; Tempel, Yu A.; Tempel, O. A.

    2017-10-01

    The paper provides consideration of business process reengineering viewed as amanagerial innovation accepted by present day machine building enterprises, as well as waysto improve its procedure. A developed innovative model of reengineering measures isdescribed and is based on the process approach and other principles of company management.

  18. A practical approach to object based requirements analysis

    NASA Technical Reports Server (NTRS)

    Drew, Daniel W.; Bishop, Michael

    1988-01-01

    Presented here is an approach developed at the Unisys Houston Operation Division, which supports the early identification of objects. This domain oriented analysis and development concept is based on entity relationship modeling and object data flow diagrams. These modeling techniques, based on the GOOD methodology developed at the Goddard Space Flight Center, support the translation of requirements into objects which represent the real-world problem domain. The goal is to establish a solid foundation of understanding before design begins, thereby giving greater assurance that the system will do what is desired by the customer. The transition from requirements to object oriented design is also promoted by having requirements described in terms of objects. Presented is a five step process by which objects are identified from the requirements to create a problem definition model. This process involves establishing a base line requirements list from which an object data flow diagram can be created. Entity-relationship modeling is used to facilitate the identification of objects from the requirements. An example is given of how semantic modeling may be used to improve the entity-relationship model and a brief discussion on how this approach might be used in a large scale development effort.

  19. Modeling Electronic-Nuclear Interactions for Excitation Energy Transfer Processes in Light-Harvesting Complexes.

    PubMed

    Lee, Mi Kyung; Coker, David F

    2016-08-18

    An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.

  20. On-Ground Processing of Yaogan-24 Remote Sensing Satellite Attitude Data and Verification Using Geometric Field Calibration

    PubMed Central

    Wang, Mi; Fan, Chengcheng; Yang, Bo; Jin, Shuying; Pan, Jun

    2016-01-01

    Satellite attitude accuracy is an important factor affecting the geometric processing accuracy of high-resolution optical satellite imagery. To address the problem whereby the accuracy of the Yaogan-24 remote sensing satellite’s on-board attitude data processing is not high enough and thus cannot meet its image geometry processing requirements, we developed an approach involving on-ground attitude data processing and digital orthophoto (DOM) and the digital elevation model (DEM) verification of a geometric calibration field. The approach focuses on three modules: on-ground processing based on bidirectional filter, overall weighted smoothing and fitting, and evaluation in the geometric calibration field. Our experimental results demonstrate that the proposed on-ground processing method is both robust and feasible, which ensures the reliability of the observation data quality, convergence and stability of the parameter estimation model. In addition, both the Euler angle and quaternion could be used to build a mathematical fitting model, while the orthogonal polynomial fitting model is more suitable for modeling the attitude parameter. Furthermore, compared to the image geometric processing results based on on-board attitude data, the image uncontrolled and relative geometric positioning result accuracy can be increased by about 50%. PMID:27483287

  1. NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction.

    PubMed

    Pardoe, Heath R; Kuzniecky, Ruben

    2018-01-01

    The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.

  2. Formal Specification and Automatic Analysis of Business Processes under Authorization Constraints: An Action-Based Approach

    NASA Astrophysics Data System (ADS)

    Armando, Alessandro; Giunchiglia, Enrico; Ponta, Serena Elisa

    We present an approach to the formal specification and automatic analysis of business processes under authorization constraints based on the action language \\cal{C}. The use of \\cal{C} allows for a natural and concise modeling of the business process and the associated security policy and for the automatic analysis of the resulting specification by using the Causal Calculator (CCALC). Our approach improves upon previous work by greatly simplifying the specification step while retaining the ability to perform a fully automatic analysis. To illustrate the effectiveness of the approach we describe its application to a version of a business process taken from the banking domain and use CCALC to determine resource allocation plans complying with the security policy.

  3. The Iterative Research Cycle: Process-Based Model Evaluation

    NASA Astrophysics Data System (ADS)

    Vrugt, J. A.

    2014-12-01

    The ever increasing pace of computational power, along with continued advances in measurement technologies and improvements in process understanding has stimulated the development of increasingly complex physics based models that simulate a myriad of processes at different spatial and temporal scales. Reconciling these high-order system models with perpetually larger volumes of field data is becoming more and more difficult, particularly because classical likelihood-based fitting methods lack the power to detect and pinpoint deficiencies in the model structure. In this talk I will give an overview of our latest research on process-based model calibration and evaluation. This approach, rooted in Bayesian theory, uses summary metrics of the calibration data rather than the data itself to help detect which component(s) of the model is (are) malfunctioning and in need of improvement. A few case studies involving hydrologic and geophysical models will be used to demonstrate the proposed methodology.

  4. Combining Model-Based and Feature-Driven Diagnosis Approaches - A Case Study on Electromechanical Actuators

    NASA Technical Reports Server (NTRS)

    Narasimhan, Sriram; Roychoudhury, Indranil; Balaban, Edward; Saxena, Abhinav

    2010-01-01

    Model-based diagnosis typically uses analytical redundancy to compare predictions from a model against observations from the system being diagnosed. However this approach does not work very well when it is not feasible to create analytic relations describing all the observed data, e.g., for vibration data which is usually sampled at very high rates and requires very detailed finite element models to describe its behavior. In such cases, features (in time and frequency domains) that contain diagnostic information are extracted from the data. Since this is a computationally intensive process, it is not efficient to extract all the features all the time. In this paper we present an approach that combines the analytic model-based and feature-driven diagnosis approaches. The analytic approach is used to reduce the set of possible faults and then features are chosen to best distinguish among the remaining faults. We describe an implementation of this approach on the Flyable Electro-mechanical Actuator (FLEA) test bed.

  5. Simplified process model discovery based on role-oriented genetic mining.

    PubMed

    Zhao, Weidong; Liu, Xi; Dai, Weihui

    2014-01-01

    Process mining is automated acquisition of process models from event logs. Although many process mining techniques have been developed, most of them are based on control flow. Meanwhile, the existing role-oriented process mining methods focus on correctness and integrity of roles while ignoring role complexity of the process model, which directly impacts understandability and quality of the model. To address these problems, we propose a genetic programming approach to mine the simplified process model. Using a new metric of process complexity in terms of roles as the fitness function, we can find simpler process models. The new role complexity metric of process models is designed from role cohesion and coupling, and applied to discover roles in process models. Moreover, the higher fitness derived from role complexity metric also provides a guideline for redesigning process models. Finally, we conduct case study and experiments to show that the proposed method is more effective for streamlining the process by comparing with related studies.

  6. Process Writing and the Internet: Blogs and Ning Networks in the Classroom

    ERIC Educational Resources Information Center

    Boas, Isabela Villas

    2011-01-01

    In contrast to the product approach to writing, which is based on studying and replicating textual models, the process approach involves multiple and repeated steps that compel the writer to closely consider the topic, language, purpose for writing, and social reality of an audience. In addition to discussing the benefits of the process approach…

  7. Yielding physically-interpretable emulators - A Sparse PCA approach

    NASA Astrophysics Data System (ADS)

    Galelli, S.; Alsahaf, A.; Giuliani, M.; Castelletti, A.

    2015-12-01

    Projection-based techniques, such as Principal Orthogonal Decomposition (POD), are a common approach to surrogate high-fidelity process-based models by lower order dynamic emulators. With POD, the dimensionality reduction is achieved by using observations, or 'snapshots' - generated with the high-fidelity model -, to project the entire set of input and state variables of this model onto a smaller set of basis functions that account for most of the variability in the data. While reduction efficiency and variance control of POD techniques are usually very high, the resulting emulators are structurally highly complex and can hardly be given a physically meaningful interpretation as each basis is a projection of the entire set of inputs and states. In this work, we propose a novel approach based on Sparse Principal Component Analysis (SPCA) that combines the several assets of POD methods with the potential for ex-post interpretation of the emulator structure. SPCA reduces the number of non-zero coefficients in the basis functions by identifying a sparse matrix of coefficients. While the resulting set of basis functions may retain less variance of the snapshots, the presence of a few non-zero coefficients assists in the interpretation of the underlying physical processes. The SPCA approach is tested on the reduction of a 1D hydro-ecological model (DYRESM-CAEDYM) used to describe the main ecological and hydrodynamic processes in Tono Dam, Japan. An experimental comparison against a standard POD approach shows that SPCA achieves the same accuracy in emulating a given output variable - for the same level of dimensionality reduction - while yielding better insights of the main process dynamics.

  8. Improvement of radiology services based on the process management approach.

    PubMed

    Amaral, Creusa Sayuri Tahara; Rozenfeld, Henrique; Costa, Janaina Mascarenhas Hornos; Magon, Maria de Fátima de Andrade; Mascarenhas, Yvone Maria

    2011-06-01

    The health sector requires continuous investments to ensure the improvement of products and services from a technological standpoint, the use of new materials, equipment and tools, and the application of process management methods. Methods associated with the process management approach, such as the development of reference models of business processes, can provide significant innovations in the health sector and respond to the current market trend for modern management in this sector (Gunderman et al. (2008) [4]). This article proposes a process model for diagnostic medical X-ray imaging, from which it derives a primary reference model and describes how this information leads to gains in quality and improvements. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  9. A primer on thermodynamic-based models for deciphering transcriptional regulatory logic.

    PubMed

    Dresch, Jacqueline M; Richards, Megan; Ay, Ahmet

    2013-09-01

    A rigorous analysis of transcriptional regulation at the DNA level is crucial to the understanding of many biological systems. Mathematical modeling has offered researchers a new approach to understanding this central process. In particular, thermodynamic-based modeling represents the most biophysically informed approach aimed at connecting DNA level regulatory sequences to the expression of specific genes. The goal of this review is to give biologists a thorough description of the steps involved in building, analyzing, and implementing a thermodynamic-based model of transcriptional regulation. The data requirements for this modeling approach are described, the derivation for a specific regulatory region is shown, and the challenges and future directions for the quantitative modeling of gene regulation are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. P-8A Poseidon strategy for modeling & simulation verification validation & accreditation (VV&A)

    NASA Astrophysics Data System (ADS)

    Kropp, Derek L.

    2009-05-01

    One of the first challenges in addressing the need for Modeling & Simulation (M&S) Verification, Validation, & Accreditation (VV&A) is to develop an approach for applying structured and formalized VV&A processes. The P-8A Poseidon Multi-Mission Maritime Aircraft (MMA) Program Modeling and Simulation Accreditation Strategy documents the P-8A program's approach to VV&A. The P-8A strategy tailors a risk-based approach and leverages existing bodies of knowledge, such as the Defense Modeling and Simulation Office Recommended Practice Guide (DMSO RPG), to make the process practical and efficient. As the program progresses, the M&S team must continue to look for ways to streamline the process, add supplemental steps to enhance the process, and identify and overcome procedural, organizational, and cultural challenges. This paper includes some of the basics of the overall strategy, examples of specific approaches that have worked well, and examples of challenges that the M&S team has faced.

  11. A model-driven approach to information security compliance

    NASA Astrophysics Data System (ADS)

    Correia, Anacleto; Gonçalves, António; Teodoro, M. Filomena

    2017-06-01

    The availability, integrity and confidentiality of information are fundamental to the long-term survival of any organization. Information security is a complex issue that must be holistically approached, combining assets that support corporate systems, in an extended network of business partners, vendors, customers and other stakeholders. This paper addresses the conception and implementation of information security systems, conform the ISO/IEC 27000 set of standards, using the model-driven approach. The process begins with the conception of a domain level model (computation independent model) based on information security vocabulary present in the ISO/IEC 27001 standard. Based on this model, after embedding in the model mandatory rules for attaining ISO/IEC 27001 conformance, a platform independent model is derived. Finally, a platform specific model serves the base for testing the compliance of information security systems with the ISO/IEC 27000 set of standards.

  12. Heat capacities and volumetric changes in the glass transition range: a constitutive approach based on the standard linear solid

    NASA Astrophysics Data System (ADS)

    Lion, Alexander; Mittermeier, Christoph; Johlitz, Michael

    2017-09-01

    A novel approach to represent the glass transition is proposed. It is based on a physically motivated extension of the linear viscoelastic Poynting-Thomson model. In addition to a temperature-dependent damping element and two linear springs, two thermal strain elements are introduced. In order to take the process dependence of the specific heat into account and to model its characteristic behaviour below and above the glass transition, the Helmholtz free energy contains an additional contribution which depends on the temperature history and on the current temperature. The model describes the process-dependent volumetric and caloric behaviour of glass-forming materials, and defines a functional relationship between pressure, volumetric strain, and temperature. If a model for the isochoric part of the material behaviour is already available, for example a model of finite viscoelasticity, the caloric and volumetric behaviour can be represented with the current approach. The proposed model allows computing the isobaric and isochoric heat capacities in closed form. The difference c_p -c_v is process-dependent and tends towards the classical expression in the glassy and equilibrium ranges. Simulations and theoretical studies demonstrate the physical significance of the model.

  13. A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A; Walton-Day, Katherine; Verplanck, Philip L.

    2007-01-01

    Regulatory agencies are often charged with the task of setting site-specific numeric water quality standards for impaired streams. This task is particularly difficult for streams draining highly mineralized watersheds with past mining activity. Baseline water quality data obtained prior to mining are often non-existent and application of generic water quality standards developed for unmineralized watersheds is suspect given the geology of most watersheds affected by mining. Various approaches have been used to estimate premining conditions, but none of the existing approaches rigorously consider the physical and geochemical processes that ultimately determine instream water quality. An approach based on simulation modeling is therefore proposed herein. The approach utilizes synoptic data that provide spatially-detailed profiles of concentration, streamflow, and constituent load along the study reach. This field data set is used to calibrate a reactive stream transport model that considers the suite of physical and geochemical processes that affect constituent concentrations during instream transport. A key input to the model is the quality and quantity of waters entering the study reach. This input is based on chemical analyses available from synoptic sampling and observed increases in streamflow along the study reach. Given the calibrated model, additional simulations are conducted to estimate premining conditions. In these simulations, the chemistry of mining-affected sources is replaced with the chemistry of waters that are thought to be unaffected by mining (proximal, premining analogues). The resultant simulations provide estimates of premining water quality that reflect both the reduced loads that were present prior to mining and the processes that affect these loads as they are transported downstream. This simulation-based approach is demonstrated using data from Red Mountain Creek, Colorado, a small stream draining a heavily-mined watershed. Model application to the premining problem for Red Mountain Creek is based on limited field reconnaissance and chemical analyses; additional field work and analyses may be needed to develop definitive, quantitative estimates of premining water quality.

  14. Cascade process modeling with mechanism-based hierarchical neural networks.

    PubMed

    Cong, Qiumei; Yu, Wen; Chai, Tianyou

    2010-02-01

    Cascade process, such as wastewater treatment plant, includes many nonlinear sub-systems and many variables. When the number of sub-systems is big, the input-output relation in the first block and the last block cannot represent the whole process. In this paper we use two techniques to overcome the above problem. Firstly we propose a new neural model: hierarchical neural networks to identify the cascade process; then we use serial structural mechanism model based on the physical equations to connect with neural model. A stable learning algorithm and theoretical analysis are given. Finally, this method is used to model a wastewater treatment plant. Real operational data of wastewater treatment plant is applied to illustrate the modeling approach.

  15. A pivotal-based approach for enterprise business process and IS integration

    NASA Astrophysics Data System (ADS)

    Ulmer, Jean-Stéphane; Belaud, Jean-Pierre; Le Lann, Jean-Marc

    2013-02-01

    A company must be able to describe and react against any endogenous or exogenous event. Such flexibility can be achieved through business process management (BPM). Nevertheless a BPM approach highlights complex relations between business and IT domains. A non-alignment is exposed between heterogeneous models: this is the 'business-IT gap' as described in the literature. Through concepts from business engineering and information systems driven by models and IT, we define a generic approach ensuring multi-view consistency. Its role is to maintain and provide all information related to the structure and semantic of models. Allowing the full return of a transformed model in the sense of reverse engineering, our platform enables synchronisation between analysis model and implementation model.

  16. The FoReVer Methodology: A MBSE Framework for Formal Verification

    NASA Astrophysics Data System (ADS)

    Baracchi, Laura; Mazzini, Silvia; Cimatti, Alessandro; Tonetta, Stefano; Garcia, Gerald

    2013-08-01

    The need for high level of confidence and operational integrity in critical space (software) systems is well recognized in the Space industry and has been addressed so far through rigorous System and Software Development Processes and stringent Verification and Validation regimes. The Model Based Space System Engineering process (MBSSE) derived in the System and Software Functional Requirement Techniques study (SSFRT) focused on the application of model based engineering technologies to support the space system and software development processes, from mission level requirements to software implementation through model refinements and translations. In this paper we report on our work in the ESA-funded FoReVer project where we aim at developing methodological, theoretical and technological support for a systematic approach to the space avionics system development, in phases 0/A/B/C. FoReVer enriches the MBSSE process with contract-based formal verification of properties, at different stages from system to software, through a step-wise refinement approach, with the support for a Software Reference Architecture.

  17. Integrating WEPP into the WEPS infrastructure

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) and the Water Erosion Prediction Project (WEPP) share a common modeling philosophy, that of moving away from primarily empirically based models based on indices or "average conditions", and toward a more process based approach which can be evaluated using ac...

  18. Wave processes in the human cardiovascular system: The measuring complex, computing models, and diagnostic analysis

    NASA Astrophysics Data System (ADS)

    Ganiev, R. F.; Reviznikov, D. L.; Rogoza, A. N.; Slastushenskiy, Yu. V.; Ukrainskiy, L. E.

    2017-03-01

    A description of a complex approach to investigation of nonlinear wave processes in the human cardiovascular system based on a combination of high-precision methods of measuring a pulse wave, mathematical methods of processing the empirical data, and methods of direct numerical modeling of hemodynamic processes in an arterial tree is given.

  19. Intervention planning for a digital intervention for self-management of hypertension: a theory-, evidence- and person-based approach.

    PubMed

    Band, Rebecca; Bradbury, Katherine; Morton, Katherine; May, Carl; Michie, Susan; Mair, Frances S; Murray, Elizabeth; McManus, Richard J; Little, Paul; Yardley, Lucy

    2017-02-23

    This paper describes the intervention planning process for the Home and Online Management and Evaluation of Blood Pressure (HOME BP), a digital intervention to promote hypertension self-management. It illustrates how a Person-Based Approach can be integrated with theory- and evidence-based approaches. The Person-Based Approach to intervention development emphasises the use of qualitative research to ensure that the intervention is acceptable, persuasive, engaging and easy to implement. Our intervention planning process comprised two parallel, integrated work streams, which combined theory-, evidence- and person-based elements. The first work stream involved collating evidence from a mixed methods feasibility study, a systematic review and a synthesis of qualitative research. This evidence was analysed to identify likely barriers and facilitators to uptake and implementation as well as design features that should be incorporated in the HOME BP intervention. The second work stream used three complementary approaches to theoretical modelling: developing brief guiding principles for intervention design, causal modelling to map behaviour change techniques in the intervention onto the Behaviour Change Wheel and Normalisation Process Theory frameworks, and developing a logic model. The different elements of our integrated approach to intervention planning yielded important, complementary insights into how to design the intervention to maximise acceptability and ease of implementation by both patients and health professionals. From the primary and secondary evidence, we identified key barriers to overcome (such as patient and health professional concerns about side effects of escalating medication) and effective intervention ingredients (such as providing in-person support for making healthy behaviour changes). Our guiding principles highlighted unique design features that could address these issues (such as online reassurance and procedures for managing concerns). Causal modelling ensured that all relevant behavioural determinants had been addressed, and provided a complete description of the intervention. Our logic model linked the hypothesised mechanisms of action of our intervention to existing psychological theory. Our integrated approach to intervention development, combining theory-, evidence- and person-based approaches, increased the clarity, comprehensiveness and confidence of our theoretical modelling and enabled us to ground our intervention in an in-depth understanding of the barriers and facilitators most relevant to this specific intervention and user population.

  20. A model-based approach for the scattering-bar printing avoidance

    NASA Astrophysics Data System (ADS)

    Du, Yaojun; Li, Liang; Zhang, Jingjing; Shao, Feng; Zuniga, Christian; Deng, Yunfei

    2018-03-01

    As the technology node for the semiconductor manufacturing approaches advanced nodes, the scattering-bars (SBs) are more crucial than ever to ensure a good on-wafer printability of the line space pattern and hole pattern. The main pattern with small pitches requires a very narrow PV (process variation) band. A delicate SB addition scheme is thus needed to maintain a sufficient PW (process window) for the semi-iso- and iso-patterns. In general, the wider, longer, and closer to main feature SBs will be more effective in enhancing the printability; on the other hand, they are also more likely to be printed on the wafer; resulting in undesired defects transferable to subsequent processes. In this work, we have developed a model based approach for the scattering-bar printing avoidance (SPA). A specially designed optical model was tuned based on a broad range of test patterns which contain a variation of CDs and SB placements showing printing and non-printing scattering bars. A printing threshold is then obtained to check the extra-printings of SBs. The accuracy of this threshold is verified by pre-designed test patterns. The printing threshold associated with our novel SPA model allows us to set up a proper SB rule.

  1. GIS Based Distributed Runoff Predictions in Variable Source Area Watersheds Employing the SCS-Curve Number

    NASA Astrophysics Data System (ADS)

    Steenhuis, T. S.; Mendoza, G.; Lyon, S. W.; Gerard Marchant, P.; Walter, M. T.; Schneiderman, E.

    2003-04-01

    Because the traditional Soil Conservation Service Curve Number (SCS-CN) approach continues to be ubiquitously used in GIS-BASED water quality models, new application methods are needed that are consistent with variable source area (VSA) hydrological processes in the landscape. We developed within an integrated GIS modeling environment a distributed approach for applying the traditional SCS-CN equation to watersheds where VSA hydrology is a dominant process. Spatial representation of hydrologic processes is important for watershed planning because restricting potentially polluting activities from runoff source areas is fundamental to controlling non-point source pollution. The methodology presented here uses the traditional SCS-CN method to predict runoff volume and spatial extent of saturated areas and uses a topographic index to distribute runoff source areas through watersheds. The resulting distributed CN-VSA method was incorporated in an existing GWLF water quality model and applied to sub-watersheds of the Delaware basin in the Catskill Mountains region of New York State. We found that the distributed CN-VSA approach provided a physically-based method that gives realistic results for watersheds with VSA hydrology.

  2. Community-Based Participatory Evaluation: The Healthy Start Approach

    PubMed Central

    Braithwaite, Ronald L.; McKenzie, Robetta D.; Pruitt, Vikki; Holden, Kisha B.; Aaron, Katrina; Hollimon, Chavone

    2013-01-01

    The use of community-based participatory research has gained momentum as a viable approach to academic and community engagement for research over the past 20 years. This article discusses an approach for extending the process with an emphasis on evaluation of a community partnership–driven initiative and thus advances the concept of conducting community-based participatory evaluation (CBPE) through a model used by the Healthy Start project of the Augusta Partnership for Children, Inc., in Augusta, Georgia. Application of the CBPE approach advances the importance of bilateral engagements with consumers and academic evaluators. The CBPE model shows promise as a reliable and credible evaluation approach for community-level assessment of health promotion programs. PMID:22461687

  3. Community-based participatory evaluation: the healthy start approach.

    PubMed

    Braithwaite, Ronald L; McKenzie, Robetta D; Pruitt, Vikki; Holden, Kisha B; Aaron, Katrina; Hollimon, Chavone

    2013-03-01

    The use of community-based participatory research has gained momentum as a viable approach to academic and community engagement for research over the past 20 years. This article discusses an approach for extending the process with an emphasis on evaluation of a community partnership-driven initiative and thus advances the concept of conducting community-based participatory evaluation (CBPE) through a model used by the Healthy Start project of the Augusta Partnership for Children, Inc., in Augusta, Georgia. Application of the CBPE approach advances the importance of bilateral engagements with consumers and academic evaluators. The CBPE model shows promise as a reliable and credible evaluation approach for community-level assessment of health promotion programs.

  4. Incremental checking of Master Data Management model based on contextual graphs

    NASA Astrophysics Data System (ADS)

    Lamolle, Myriam; Menet, Ludovic; Le Duc, Chan

    2015-10-01

    The validation of models is a crucial step in distributed heterogeneous systems. In this paper, an incremental validation method is proposed in the scope of a Model Driven Engineering (MDE) approach, which is used to develop a Master Data Management (MDM) field represented by XML Schema models. The MDE approach presented in this paper is based on the definition of an abstraction layer using UML class diagrams. The validation method aims to minimise the model errors and to optimisethe process of model checking. Therefore, the notion of validation contexts is introduced allowing the verification of data model views. Description logics specify constraints that the models have to check. An experimentation of the approach is presented through an application developed in ArgoUML IDE.

  5. An interdisciplinary approach for earthquake modelling and forecasting

    NASA Astrophysics Data System (ADS)

    Han, P.; Zhuang, J.; Hattori, K.; Ogata, Y.

    2016-12-01

    Earthquake is one of the most serious disasters, which may cause heavy casualties and economic losses. Especially in the past two decades, huge/mega earthquakes have hit many countries. Effective earthquake forecasting (including time, location, and magnitude) becomes extremely important and urgent. To date, various heuristically derived algorithms have been developed for forecasting earthquakes. Generally, they can be classified into two types: catalog-based approaches and non-catalog-based approaches. Thanks to the rapid development of statistical seismology in the past 30 years, now we are able to evaluate the performances of these earthquake forecast approaches quantitatively. Although a certain amount of precursory information is available in both earthquake catalogs and non-catalog observations, the earthquake forecast is still far from satisfactory. In most case, the precursory phenomena were studied individually. An earthquake model that combines self-exciting and mutually exciting elements was developed by Ogata and Utsu from the Hawkes process. The core idea of this combined model is that the status of the event at present is controlled by the event itself (self-exciting) and all the external factors (mutually exciting) in the past. In essence, the conditional intensity function is a time-varying Poisson process with rate λ(t), which is composed of the background rate, the self-exciting term (the information from past seismic events), and the external excitation term (the information from past non-seismic observations). This model shows us a way to integrate the catalog-based forecast and non-catalog-based forecast. Against this background, we are trying to develop a new earthquake forecast model which combines catalog-based and non-catalog-based approaches.

  6. Numerical Modelling of Foundation Slabs with use of Schur Complement Method

    NASA Astrophysics Data System (ADS)

    Koktan, Jiří; Brožovský, Jiří

    2017-10-01

    The paper discusses numerical modelling of foundation slabs with use of advanced numerical approaches, which are suitable for parallel processing. The solution is based on the Finite Element Method with the slab-type elements. The subsoil is modelled with use of Winklertype contact model (as an alternative a multi-parameter model can be used). The proposed modelling approach uses the Schur Complement method to speed-up the computations of the problem. The method is based on a special division of the analyzed model to several substructures. It adds some complexity to the numerical procedures, especially when subsoil models are used inside the finite element method solution. In other hand, this method makes possible a fast solution of large models but it introduces further problems to the process. Thus, the main aim of this paper is to verify that such method can be successfully used for this type of problem. The most suitable finite elements will be discussed, there will be also discussion related to finite element mesh and limitations of its construction for such problem. The core approaches of the implementation of the Schur Complement Method for this type of the problem will be also presented. The proposed approach was implemented in the form of a computer program, which will be also briefly introduced. There will be also presented results of example computations, which prove the speed-up of the solution - there will be shown important speed-up of solution even in the case of on-parallel processing and the ability of bypass size limitations of numerical models with use of the discussed approach.

  7. Modeling formalisms in Systems Biology

    PubMed Central

    2011-01-01

    Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future. PMID:22141422

  8. Bridging analytical approaches for low-carbon transitions

    NASA Astrophysics Data System (ADS)

    Geels, Frank W.; Berkhout, Frans; van Vuuren, Detlef P.

    2016-06-01

    Low-carbon transitions are long-term multi-faceted processes. Although integrated assessment models have many strengths for analysing such transitions, their mathematical representation requires a simplification of the causes, dynamics and scope of such societal transformations. We suggest that integrated assessment model-based analysis should be complemented with insights from socio-technical transition analysis and practice-based action research. We discuss the underlying assumptions, strengths and weaknesses of these three analytical approaches. We argue that full integration of these approaches is not feasible, because of foundational differences in philosophies of science and ontological assumptions. Instead, we suggest that bridging, based on sequential and interactive articulation of different approaches, may generate a more comprehensive and useful chain of assessments to support policy formation and action. We also show how these approaches address knowledge needs of different policymakers (international, national and local), relate to different dimensions of policy processes and speak to different policy-relevant criteria such as cost-effectiveness, socio-political feasibility, social acceptance and legitimacy, and flexibility. A more differentiated set of analytical approaches thus enables a more differentiated approach to climate policy making.

  9. Functional Enzyme-Based Approach for Linking Microbial Community Functions with Biogeochemical Process Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Minjing; Qian, Wei-jun; Gao, Yuqian

    The kinetics of biogeochemical processes in natural and engineered environmental systems are typically described using Monod-type or modified Monod-type models. These models rely on biomass as surrogates for functional enzymes in microbial community that catalyze biogeochemical reactions. A major challenge to apply such models is the difficulty to quantitatively measure functional biomass for constraining and validating the models. On the other hand, omics-based approaches have been increasingly used to characterize microbial community structure, functions, and metabolites. Here we proposed an enzyme-based model that can incorporate omics-data to link microbial community functions with biogeochemical process kinetics. The model treats enzymes asmore » time-variable catalysts for biogeochemical reactions and applies biogeochemical reaction network to incorporate intermediate metabolites. The sequences of genes and proteins from metagenomes, as well as those from the UniProt database, were used for targeted enzyme quantification and to provide insights into the dynamic linkage among functional genes, enzymes, and metabolites that are necessary to be incorporated in the model. The application of the model was demonstrated using denitrification as an example by comparing model-simulated with measured functional enzymes, genes, denitrification substrates and intermediates« less

  10. Estimating Function Approaches for Spatial Point Processes

    NASA Astrophysics Data System (ADS)

    Deng, Chong

    Spatial point pattern data consist of locations of events that are often of interest in biological and ecological studies. Such data are commonly viewed as a realization from a stochastic process called spatial point process. To fit a parametric spatial point process model to such data, likelihood-based methods have been widely studied. However, while maximum likelihood estimation is often too computationally intensive for Cox and cluster processes, pairwise likelihood methods such as composite likelihood, Palm likelihood usually suffer from the loss of information due to the ignorance of correlation among pairs. For many types of correlated data other than spatial point processes, when likelihood-based approaches are not desirable, estimating functions have been widely used for model fitting. In this dissertation, we explore the estimating function approaches for fitting spatial point process models. These approaches, which are based on the asymptotic optimal estimating function theories, can be used to incorporate the correlation among data and yield more efficient estimators. We conducted a series of studies to demonstrate that these estmating function approaches are good alternatives to balance the trade-off between computation complexity and estimating efficiency. First, we propose a new estimating procedure that improves the efficiency of pairwise composite likelihood method in estimating clustering parameters. Our approach combines estimating functions derived from pairwise composite likeli-hood estimation and estimating functions that account for correlations among the pairwise contributions. Our method can be used to fit a variety of parametric spatial point process models and can yield more efficient estimators for the clustering parameters than pairwise composite likelihood estimation. We demonstrate its efficacy through a simulation study and an application to the longleaf pine data. Second, we further explore the quasi-likelihood approach on fitting second-order intensity function of spatial point processes. However, the original second-order quasi-likelihood is barely feasible due to the intense computation and high memory requirement needed to solve a large linear system. Motivated by the existence of geometric regular patterns in the stationary point processes, we find a lower dimension representation of the optimal weight function and propose a reduced second-order quasi-likelihood approach. Through a simulation study, we show that the proposed method not only demonstrates superior performance in fitting the clustering parameter but also merits in the relaxation of the constraint of the tuning parameter, H. Third, we studied the quasi-likelihood type estimating funciton that is optimal in a certain class of first-order estimating functions for estimating the regression parameter in spatial point process models. Then, by using a novel spectral representation, we construct an implementation that is computationally much more efficient and can be applied to more general setup than the original quasi-likelihood method.

  11. Multibody dynamical modeling for spacecraft docking process with spring-damper buffering device: A new validation approach

    NASA Astrophysics Data System (ADS)

    Daneshjou, Kamran; Alibakhshi, Reza

    2018-01-01

    In the current manuscript, the process of spacecraft docking, as one of the main risky operations in an on-orbit servicing mission, is modeled based on unconstrained multibody dynamics. The spring-damper buffering device is utilized here in the docking probe-cone system for micro-satellites. Owing to the impact occurs inevitably during docking process and the motion characteristics of multibody systems are remarkably affected by this phenomenon, a continuous contact force model needs to be considered. Spring-damper buffering device, keeping the spacecraft stable in an orbit when impact occurs, connects a base (cylinder) inserted in the chaser satellite and the end of docking probe. Furthermore, by considering a revolute joint equipped with torsional shock absorber, between base and chaser satellite, the docking probe can experience both translational and rotational motions simultaneously. Although spacecraft docking process accompanied by the buffering mechanisms may be modeled by constrained multibody dynamics, this paper deals with a simple and efficient formulation to eliminate the surplus generalized coordinates and solve the impact docking problem based on unconstrained Lagrangian mechanics. By an example problem, first, model verification is accomplished by comparing the computed results with those recently reported in the literature. Second, according to a new alternative validation approach, which is based on constrained multibody problem, the accuracy of presented model can be also evaluated. This proposed verification approach can be applied to indirectly solve the constrained multibody problems by minimum required effort. The time history of impact force, the influence of system flexibility and physical interaction between shock absorber and penetration depth caused by impact are the issues followed in this paper. Third, the MATLAB/SIMULINK multibody dynamic analysis software will be applied to build impact docking model to validate computed results and then, investigate the trajectories of both satellites to take place the successful capture process.

  12. Understanding scale dependency of climatic processes with diarrheal disease

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, F.; Jutla, A.; Akanda, A. S. S.; Colwell, R. R.

    2015-12-01

    The issue of scales in linking climatic processes with diarrheal diseases is perhaps one of the most challenging aspect to develop any predictive algorithm for outbreaks and to understand impacts of changing climate. Majority of diarrheal diseases have shown to be strongly associated with climate modulated environmental processes where pathogens survive. Using cholera as an example of characteristic diarrheal diseases, this study will provide methodological insights on dominant scale variability in climatic processes that are linked with trigger and transmission of disease. Cholera based epidemiological models use human to human interaction as a main transmission mechanism, however, environmental conditions for creating seasonality in outbreaks is not explicitly modeled. For example, existing models cannot create seasonality, unless some of the model parameters are a-priori chosen to vary seasonally. A systems based feedback approach will be presented to understand role of climatic processes on trigger and transmission disease. In order to investigate effect of changing climate on cholera, a downscaling approach using support vector machine will be used. Our preliminary results using three climate models, ECHAM5, GFDL, and HADCM show that varying modalities in future cholera outbreaks.

  13. Advance Preparation in Task-Switching: Converging Evidence from Behavioral, Brain Activation, and Model-Based Approaches

    PubMed Central

    Karayanidis, Frini; Jamadar, Sharna; Ruge, Hannes; Phillips, Natalie; Heathcote, Andrew; Forstmann, Birte U.

    2010-01-01

    Recent research has taken advantage of the temporal and spatial resolution of event-related brain potentials (ERPs) and functional magnetic resonance imaging (fMRI) to identify the time course and neural circuitry of preparatory processes required to switch between different tasks. Here we overview some key findings contributing to understanding strategic processes in advance preparation. Findings from these methodologies are compatible with advance preparation conceptualized as a set of processes activated for both switch and repeat trials, but with substantial variability as a function of individual differences and task requirements. We then highlight new approaches that attempt to capitalize on this variability to link behavior and brain activation patterns. One approach examines correlations among behavioral, ERP and fMRI measures. A second “model-based” approach accounts for differences in preparatory processes by estimating quantitative model parameters that reflect latent psychological processes. We argue that integration of behavioral and neuroscientific methodologies is key to understanding the complex nature of advance preparation in task-switching. PMID:21833196

  14. Model-Based Prognostics of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal

    2015-01-01

    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.

  15. Simulating bimodal tall fescue growth with a degree-day-based process-oriented plant model

    USDA-ARS?s Scientific Manuscript database

    Plant growth simulation models have a temperature response function driving development, with a base temperature and an optimum temperature defined. Such growth simulation models often function well when plant development rate shows a continuous change throughout the growing season. This approach ...

  16. Comparison of Traditional and ADRI Based Teaching Approaches in an Introductory Programming Course

    ERIC Educational Resources Information Center

    Malik, Sohail Iqbal; Coldwell-Neilson, Jo

    2017-01-01

    Aim/Purpose: This study introduced a new teaching and learning approach based on an ADRI (Approach, Deployment, Result, Improvement) model in an introductory programming (IP) course. The effectiveness of the new teaching and learning process was determined by collecting feedback from the IP instructors and by analyzing the final exam grades of the…

  17. A Classification Model and an Open E-Learning System Based on Intuitionistic Fuzzy Sets for Instructional Design Concepts

    ERIC Educational Resources Information Center

    Güyer, Tolga; Aydogdu, Seyhmus

    2016-01-01

    This study suggests a classification model and an e-learning system based on this model for all instructional theories, approaches, models, strategies, methods, and technics being used in the process of instructional design that constitutes a direct or indirect resource for educational technology based on the theory of intuitionistic fuzzy sets…

  18. A review of physically based models for soil erosion by water

    NASA Astrophysics Data System (ADS)

    Le, Minh-Hoang; Cerdan, Olivier; Sochala, Pierre; Cheviron, Bruno; Brivois, Olivier; Cordier, Stéphane

    2010-05-01

    Physically-based models rely on fundamental physical equations describing stream flow and sediment and associated nutrient generation in a catchment. This paper reviews several existing erosion and sediment transport approaches. The process of erosion include soil detachment, transport and deposition, we present various forms of equations and empirical formulas used when modelling and quantifying each of these processes. In particular, we detail models describing rainfall and infiltration effects and the system of equations to describe the overland flow and the evolution of the topography. We also present the formulas for the flow transport capacity and the erodibility functions. Finally, we present some recent numerical schemes to approach the shallow water equations and it's coupling with infiltration and erosion source terms.

  19. Knowledge-Based Object Detection in Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Boochs, F.; Karmacharya, A.; Marbs, A.

    2012-07-01

    Object identification and object processing in 3D point clouds have always posed challenges in terms of effectiveness and efficiency. In practice, this process is highly dependent on human interpretation of the scene represented by the point cloud data, as well as the set of modeling tools available for use. Such modeling algorithms are data-driven and concentrate on specific features of the objects, being accessible to numerical models. We present an approach that brings the human expert knowledge about the scene, the objects inside, and their representation by the data and the behavior of algorithms to the machine. This "understanding" enables the machine to assist human interpretation of the scene inside the point cloud. Furthermore, it allows the machine to understand possibilities and limitations of algorithms and to take this into account within the processing chain. This not only assists the researchers in defining optimal processing steps, but also provides suggestions when certain changes or new details emerge from the point cloud. Our approach benefits from the advancement in knowledge technologies within the Semantic Web framework. This advancement has provided a strong base for applications based on knowledge management. In the article we will present and describe the knowledge technologies used for our approach such as Web Ontology Language (OWL), used for formulating the knowledge base and the Semantic Web Rule Language (SWRL) with 3D processing and topologic built-ins, aiming to combine geometrical analysis of 3D point clouds, and specialists' knowledge of the scene and algorithmic processing.

  20. The Use of Descriptors with Exemplar and Model Answers to Improve Quality of Students' Narrative Writing in English French and Arabic

    ERIC Educational Resources Information Center

    Somba, Anne W.; Obura, Ger; Njuguna, Margaret; Itevete, Boniface; Mulwa, Jones; Wandera, Nooh

    2015-01-01

    The importance of writing skills in enhancing student performance in language exams and even other subject areas is widely acknowledged. At Jaffery secondary, the approach to the teaching of writing has generally been to use three approaches: product-based approach with focus on what the students composed; process-based approach that is focused on…

  1. Transfer of the nationwide Czech soil survey data to a foreign soil classification - generating input parameters for a process-based soil erosion modelling approach

    NASA Astrophysics Data System (ADS)

    Beitlerová, Hana; Hieke, Falk; Žížala, Daniel; Kapička, Jiří; Keiser, Andreas; Schmidt, Jürgen; Schindewolf, Marcus

    2017-04-01

    Process-based erosion modelling is a developing and adequate tool to assess, simulate and understand the complex mechanisms of soil loss due to surface runoff. While the current state of available models includes powerful approaches, a major drawback is given by complex parametrization. A major input parameter for the physically based soil loss and deposition model EROSION 3D is represented by soil texture. However, as the model has been developed in Germany it is dependent on the German soil classification. To exploit data generated during a massive nationwide soil survey campaign taking place in the 1960s across the entire Czech Republic, a transfer from the Czech to the German or at least international (e.g. WRB) system is mandatory. During the survey the internal differentiation of grain sizes was realized in a two fractions approach, separating texture into solely above and below 0.01 mm rather than into clayey, silty and sandy textures. Consequently, the Czech system applies a classification of seven different textures based on the respective percentage of large and small particles, while in Germany 31 groups are essential. The followed approach of matching Czech soil survey data to the German system focusses on semi-logarithmic interpolation of the cumulative soil texture curve additionally on a regression equation based on a recent database of 128 soil pits. Furthermore, for each of the seven Czech texture classes a group of typically suitable classes of the German system was derived. A GIS-based spatial analysis to test approaches of interpolation the soil texture was carried out. First results show promising matches and pave the way to a Czech model application of EROSION 3D.

  2. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu

    2015-09-15

    UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Matrix approaches to assess terrestrial nitrogen scheme in CLM4.5

    NASA Astrophysics Data System (ADS)

    Du, Z.

    2017-12-01

    Terrestrial carbon (C) and nitrogen (N) cycles have been commonly represented by a series of balance equations to track their influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C and N cycle processes well but makes it difficult to track model behaviors. To overcome these challenges, we developed a matrix approach, which reorganizes the series of terrestrial C and N balance equations in the CLM4.5 into two matrix equations based on original representation of C and N cycle processes and mechanisms. The matrix approach would consequently help improve the comparability of models and data, evaluate impacts of additional model components, facilitate benchmark analyses, model intercomparisons, and data-model fusion, and improve model predictive power.

  4. A proven knowledge-based approach to prioritizing process information

    NASA Technical Reports Server (NTRS)

    Corsberg, Daniel R.

    1991-01-01

    Many space-related processes are highly complex systems subject to sudden, major transients. In any complex process control system, a critical aspect is rapid analysis of the changing process information. During a disturbance, this task can overwhelm humans as well as computers. Humans deal with this by applying heuristics in determining significant information. A simple, knowledge-based approach to prioritizing information is described. The approach models those heuristics that humans would use in similar circumstances. The approach described has received two patents and was implemented in the Alarm Filtering System (AFS) at the Idaho National Engineering Laboratory (INEL). AFS was first developed for application in a nuclear reactor control room. It has since been used in chemical processing applications, where it has had a significant impact on control room environments. The approach uses knowledge-based heuristics to analyze data from process instrumentation and respond to that data according to knowledge encapsulated in objects and rules. While AFS cannot perform the complete diagnosis and control task, it has proven to be extremely effective at filtering and prioritizing information. AFS was used for over two years as a first level of analysis for human diagnosticians. Given the approach's proven track record in a wide variety of practical applications, it should be useful in both ground- and space-based systems.

  5. A Multi-Scale Integrated Approach to Representing Watershed Systems: Significance and Challenges

    NASA Astrophysics Data System (ADS)

    Kim, J.; Ivanov, V. Y.; Katopodes, N.

    2013-12-01

    A range of processes associated with supplying services and goods to human society originate at the watershed level. Predicting watershed response to forcing conditions has been of high interest to many practical societal problems, however, remains challenging due to two significant properties of the watershed systems, i.e., connectivity and non-linearity. Connectivity implies that disturbances arising at any larger scale will necessarily propagate and affect local-scale processes; their local effects consequently influence other processes, and often convey nonlinear relationships. Physically-based, process-scale modeling is needed to approach the understanding and proper assessment of non-linear effects between the watershed processes. We have developed an integrated model simulating hydrological processes, flow dynamics, erosion and sediment transport, tRIBS-OFM-HRM (Triangulated irregular network - based Real time Integrated Basin Simulator-Overland Flow Model-Hairsine and Rose Model). This coupled model offers the advantage of exploring the hydrological effects of watershed physical factors such as topography, vegetation, and soil, as well as their feedback mechanisms. Several examples investigating the effects of vegetation on flow movement, the role of soil's substrate on sediment dynamics, and the driving role of topography on morphological processes are illustrated. We show how this comprehensive modeling tool can help understand interconnections and nonlinearities of the physical system, e.g., how vegetation affects hydraulic resistance depending on slope, vegetation cover fraction, discharge, and bed roughness condition; how the soil's substrate condition impacts erosion processes with an non-unique characteristic at the scale of a zero-order catchment; and how topographic changes affect spatial variations of morphologic variables. Due to feedback and compensatory nature of mechanisms operating in different watershed compartments, our conclusion is that a key to representing watershed systems lies in an integrated, interdisciplinary approach, whereby a physically-based model is used for assessments/evaluations associated with future changes in landuse, climate, and ecosystems.

  6. One Giant Leap for Categorizers: One Small Step for Categorization Theory

    PubMed Central

    Smith, J. David; Ell, Shawn W.

    2015-01-01

    We explore humans’ rule-based category learning using analytic approaches that highlight their psychological transitions during learning. These approaches confirm that humans show qualitatively sudden psychological transitions during rule learning. These transitions contribute to the theoretical literature contrasting single vs. multiple category-learning systems, because they seem to reveal a distinctive learning process of explicit rule discovery. A complete psychology of categorization must describe this learning process, too. Yet extensive formal-modeling analyses confirm that a wide range of current (gradient-descent) models cannot reproduce these transitions, including influential rule-based models (e.g., COVIS) and exemplar models (e.g., ALCOVE). It is an important theoretical conclusion that existing models cannot explain humans’ rule-based category learning. The problem these models have is the incremental algorithm by which learning is simulated. Humans descend no gradient in rule-based tasks. Very different formal-modeling systems will be required to explain humans’ psychology in these tasks. An important next step will be to build a new generation of models that can do so. PMID:26332587

  7. A genetic algorithm based global search strategy for population pharmacokinetic/pharmacodynamic model selection

    PubMed Central

    Sale, Mark; Sherer, Eric A

    2015-01-01

    The current algorithm for selecting a population pharmacokinetic/pharmacodynamic model is based on the well-established forward addition/backward elimination method. A central strength of this approach is the opportunity for a modeller to continuously examine the data and postulate new hypotheses to explain observed biases. This algorithm has served the modelling community well, but the model selection process has essentially remained unchanged for the last 30 years. During this time, more robust approaches to model selection have been made feasible by new technology and dramatic increases in computation speed. We review these methods, with emphasis on genetic algorithm approaches and discuss the role these methods may play in population pharmacokinetic/pharmacodynamic model selection. PMID:23772792

  8. Bayesian Computation for Log-Gaussian Cox Processes: A Comparative Analysis of Methods

    PubMed Central

    Teng, Ming; Nathoo, Farouk S.; Johnson, Timothy D.

    2017-01-01

    The Log-Gaussian Cox Process is a commonly used model for the analysis of spatial point pattern data. Fitting this model is difficult because of its doubly-stochastic property, i.e., it is an hierarchical combination of a Poisson process at the first level and a Gaussian Process at the second level. Various methods have been proposed to estimate such a process, including traditional likelihood-based approaches as well as Bayesian methods. We focus here on Bayesian methods and several approaches that have been considered for model fitting within this framework, including Hamiltonian Monte Carlo, the Integrated nested Laplace approximation, and Variational Bayes. We consider these approaches and make comparisons with respect to statistical and computational efficiency. These comparisons are made through several simulation studies as well as through two applications, the first examining ecological data and the second involving neuroimaging data. PMID:29200537

  9. Gaussian Processes for Data-Efficient Learning in Robotics and Control.

    PubMed

    Deisenroth, Marc Peter; Fox, Dieter; Rasmussen, Carl Edward

    2015-02-01

    Autonomous learning has been a promising direction in control and robotics for more than a decade since data-driven learning allows to reduce the amount of engineering knowledge, which is otherwise required. However, autonomous reinforcement learning (RL) approaches typically require many interactions with the system to learn controllers, which is a practical limitation in real systems, such as robots, where many interactions can be impractical and time consuming. To address this problem, current learning approaches typically require task-specific knowledge in form of expert demonstrations, realistic simulators, pre-shaped policies, or specific knowledge about the underlying dynamics. In this paper, we follow a different approach and speed up learning by extracting more information from data. In particular, we learn a probabilistic, non-parametric Gaussian process transition model of the system. By explicitly incorporating model uncertainty into long-term planning and controller learning our approach reduces the effects of model errors, a key problem in model-based learning. Compared to state-of-the art RL our model-based policy search method achieves an unprecedented speed of learning. We demonstrate its applicability to autonomous learning in real robot and control tasks.

  10. Computational Systems Biology in Cancer: Modeling Methods and Applications

    PubMed Central

    Materi, Wayne; Wishart, David S.

    2007-01-01

    In recent years it has become clear that carcinogenesis is a complex process, both at the molecular and cellular levels. Understanding the origins, growth and spread of cancer, therefore requires an integrated or system-wide approach. Computational systems biology is an emerging sub-discipline in systems biology that utilizes the wealth of data from genomic, proteomic and metabolomic studies to build computer simulations of intra and intercellular processes. Several useful descriptive and predictive models of the origin, growth and spread of cancers have been developed in an effort to better understand the disease and potential therapeutic approaches. In this review we describe and assess the practical and theoretical underpinnings of commonly-used modeling approaches, including ordinary and partial differential equations, petri nets, cellular automata, agent based models and hybrid systems. A number of computer-based formalisms have been implemented to improve the accessibility of the various approaches to researchers whose primary interest lies outside of model development. We discuss several of these and describe how they have led to novel insights into tumor genesis, growth, apoptosis, vascularization and therapy. PMID:19936081

  11. Flexible End2End Workflow Automation of Hit-Discovery Research.

    PubMed

    Holzmüller-Laue, Silke; Göde, Bernd; Thurow, Kerstin

    2014-08-01

    The article considers a new approach of more complex laboratory automation at the workflow layer. The authors purpose the automation of end2end workflows. The combination of all relevant subprocesses-whether automated or manually performed, independently, and in which organizational unit-results in end2end processes that include all result dependencies. The end2end approach focuses on not only the classical experiments in synthesis or screening, but also on auxiliary processes such as the production and storage of chemicals, cell culturing, and maintenance as well as preparatory activities and analyses of experiments. Furthermore, the connection of control flow and data flow in the same process model leads to reducing of effort of the data transfer between the involved systems, including the necessary data transformations. This end2end laboratory automation can be realized effectively with the modern methods of business process management (BPM). This approach is based on a new standardization of the process-modeling notation Business Process Model and Notation 2.0. In drug discovery, several scientific disciplines act together with manifold modern methods, technologies, and a wide range of automated instruments for the discovery and design of target-based drugs. The article discusses the novel BPM-based automation concept with an implemented example of a high-throughput screening of previously synthesized compound libraries. © 2014 Society for Laboratory Automation and Screening.

  12. Smith predictor based-sliding mode controller for integrating processes with elevated deadtime.

    PubMed

    Camacho, Oscar; De la Cruz, Francisco

    2004-04-01

    An approach to control integrating processes with elevated deadtime using a Smith predictor sliding mode controller is presented. A PID sliding surface and an integrating first-order plus deadtime model have been used to synthesize the controller. Since the performance of existing controllers with a Smith predictor decrease in the presence of modeling errors, this paper presents a simple approach to combining the Smith predictor with the sliding mode concept, which is a proven, simple, and robust procedure. The proposed scheme has a set of tuning equations as a function of the characteristic parameters of the model. For implementation of our proposed approach, computer based industrial controllers that execute PID algorithms can be used. The performance and robustness of the proposed controller are compared with the Matausek-Micić scheme for linear systems using simulations.

  13. Development of dynamic Bayesian models for web application test management

    NASA Astrophysics Data System (ADS)

    Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.

    2018-03-01

    The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.

  14. Flexibility on storage-release based distributed hydrologic modeling with object-oriented approach

    USDA-ARS?s Scientific Manuscript database

    With the availability of advanced hydrologic data in the public domain such as remotely sensed and climate change scenario data, there is a need for a modeling framework that is capable of using these data to simulate and extend hydrologic processes with multidisciplinary approaches for sustainable ...

  15. Stochastic, compartmental, and dynamic modeling of cross-contamination during mechanical smearing of cheeses.

    PubMed

    Aziza, Fanny; Mettler, Eric; Daudin, Jean-Jacques; Sanaa, Moez

    2006-06-01

    Cheese smearing is a complex process and the potential for cross-contamination with pathogenic or undesirable microorganisms is critical. During ripening, cheeses are salted and washed with brine to develop flavor and remove molds that could develop on the surfaces. Considering the potential for cross-contamination of this process in quantitative risk assessments could contribute to a better understanding of this phenomenon and, eventually, improve its control. The purpose of this article is to model the cross-contamination of smear-ripened cheeses due to the smearing operation under industrial conditions. A compartmental, dynamic, and stochastic model is proposed for mechanical brush smearing. This model has been developed to describe the exchange of microorganisms between compartments. Based on the analytical solution of the model equations and on experimental data collected with an industrial smearing machine, we assessed the values of the transfer parameters of the model. Monte Carlo simulations, using the distributions of transfer parameters, provide the final number of contaminated products in a batch and their final level of contamination for a given scenario taking into account the initial number of contaminated cheeses of the batch and their contaminant load. Based on analytical results, the model provides indicators for smearing efficiency and propensity of the process for cross-contamination. Unlike traditional approaches in mechanistic models, our approach captures the variability and uncertainty inherent in the process and the experimental data. More generally, this model could represent a generic base to use in modeling similar processes prone to cross-contamination.

  16. Adaptive convex combination approach for the identification of improper quaternion processes.

    PubMed

    Ujang, Bukhari Che; Jahanchahi, Cyrus; Took, Clive Cheong; Mandic, Danilo P

    2014-01-01

    Data-adaptive optimal modeling and identification of real-world vector sensor data is provided by combining the fractional tap-length (FT) approach with model order selection in the quaternion domain. To account rigorously for the generality of such processes, both second-order circular (proper) and noncircular (improper), the proposed approach in this paper combines the FT length optimization with both the strictly linear quaternion least mean square (QLMS) and widely linear QLMS (WL-QLMS). A collaborative approach based on QLMS and WL-QLMS is shown to both identify the type of processes (proper or improper) and to track their optimal parameters in real time. Analysis shows that monitoring the evolution of the convex mixing parameter within the collaborative approach allows us to track the improperness in real time. Further insight into the properties of those algorithms is provided by establishing a relationship between the steady-state error and optimal model order. The approach is supported by simulations on model order selection and identification of both strictly linear and widely linear quaternion-valued systems, such as those routinely used in renewable energy (wind) and human-centered computing (biomechanics).

  17. Neural Network Based Modeling and Analysis of LP Control Surface Allocation

    NASA Technical Reports Server (NTRS)

    Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen

    2003-01-01

    This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.

  18. Modeling a terminology-based electronic nursing record system: an object-oriented approach.

    PubMed

    Park, Hyeoun-Ae; Cho, InSook; Byeun, NamSoo

    2007-10-01

    The aim of this study was to present our perspectives on healthcare information analysis at a conceptual level and the lessons learned from our experience with the development of a terminology-based enterprise electronic nursing record system - which was one of components in an EMR system at a tertiary teaching hospital in Korea - using an object-oriented system analysis and design concept. To ensure a systematic approach and effective collaboration, the department of nursing constituted a system modeling team comprising a project manager, systems analysts, user representatives, an object-oriented methodology expert, and healthcare informaticists (including the authors). A rational unified process (RUP) and the Unified Modeling Language were used as a development process and for modeling notation, respectively. From the scenario and RUP approach, user requirements were formulated into use case sets and the sequence of activities in the scenario was depicted in an activity diagram. The structure of the system was presented in a class diagram. This approach allowed us to identify clearly the structural and behavioral states and important factors of a terminology-based ENR system (e.g., business concerns and system design concerns) according to the viewpoints of both domain and technical experts.

  19. Clinical errors that can occur in the treatment decision-making process in psychotherapy.

    PubMed

    Park, Jake; Goode, Jonathan; Tompkins, Kelley A; Swift, Joshua K

    2016-09-01

    Clinical errors occur in the psychotherapy decision-making process whenever a less-than-optimal treatment or approach is chosen when working with clients. A less-than-optimal approach may be one that a client is unwilling to try or fully invest in based on his/her expectations and preferences, or one that may have little chance of success based on contraindications and/or limited research support. The doctor knows best and the independent choice models are two decision-making models that are frequently used within psychology, but both are associated with an increased likelihood of errors in the treatment decision-making process. In particular, these models fail to integrate all three components of the definition of evidence-based practice in psychology (American Psychological Association, 2006). In this article we describe both models and provide examples of clinical errors that can occur in each. We then introduce the shared decision-making model as an alternative that is less prone to clinical errors. PsycINFO Database Record (c) 2016 APA, all rights reserved

  20. Robust model predictive control for satellite formation keeping with eccentricity/inclination vector separation

    NASA Astrophysics Data System (ADS)

    Lim, Yeerang; Jung, Youeyun; Bang, Hyochoong

    2018-05-01

    This study presents model predictive formation control based on an eccentricity/inclination vector separation strategy. Alternative collision avoidance can be accomplished by using eccentricity/inclination vectors and adding a simple goal function term for optimization process. Real-time control is also achievable with model predictive controller based on convex formulation. Constraint-tightening approach is address as well improve robustness of the controller, and simulation results are presented to verify performance enhancement for the proposed approach.

  1. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir operating strategies.

  2. Automated Analysis of Stateflow Models

    NASA Technical Reports Server (NTRS)

    Bourbouh, Hamza; Garoche, Pierre-Loic; Garion, Christophe; Gurfinkel, Arie; Kahsaia, Temesghen; Thirioux, Xavier

    2017-01-01

    Stateflow is a widely used modeling framework for embedded and cyber physical systems where control software interacts with physical processes. In this work, we present a framework a fully automated safety verification technique for Stateflow models. Our approach is two-folded: (i) we faithfully compile Stateflow models into hierarchical state machines, and (ii) we use automated logic-based verification engine to decide the validity of safety properties. The starting point of our approach is a denotational semantics of State flow. We propose a compilation process using continuation-passing style (CPS) denotational semantics. Our compilation technique preserves the structural and modal behavior of the system. The overall approach is implemented as an open source toolbox that can be integrated into the existing Mathworks Simulink Stateflow modeling framework. We present preliminary experimental evaluations that illustrate the effectiveness of our approach in code generation and safety verification of industrial scale Stateflow models.

  3. PROCRU: A model for analyzing crew procedures in approach to landing

    NASA Technical Reports Server (NTRS)

    Baron, S.; Muralidharan, R.; Lancraft, R.; Zacharias, G.

    1980-01-01

    A model for analyzing crew procedures in approach to landing is developed. The model employs the information processing structure used in the optimal control model and in recent models for monitoring and failure detection. Mechanisms are added to this basic structure to model crew decision making in this multi task environment. Decisions are based on probability assessments and potential mission impact (or gain). Sub models for procedural activities are included. The model distinguishes among external visual, instrument visual, and auditory sources of information. The external visual scene perception models incorporate limitations in obtaining information. The auditory information channel contains a buffer to allow for storage in memory until that information can be processed.

  4. The jABC Approach to Rigorous Collaborative Development of SCM Applications

    NASA Astrophysics Data System (ADS)

    Hörmann, Martina; Margaria, Tiziana; Mender, Thomas; Nagel, Ralf; Steffen, Bernhard; Trinh, Hong

    Our approach to the model-driven collaborative design of IKEA's P3 Delivery Management Process uses the jABC [9] for model driven mediation and choreography to complement a RUP-based (Rational Unified Process) development process. jABC is a framework for service development based on Lightweight Process Coordination. Users (product developers and system/software designers) easily develop services and applications by composing reusable building-blocks into (flow-) graph structures that can be animated, analyzed, simulated, verified, executed, and compiled. This way of handling the collaborative design of complex embedded systems has proven to be effective and adequate for the cooperation of non-programmers and non-technical people, which is the focus of this contribution, and it is now being rolled out in the operative practice.

  5. A PetriNet-Based Approach for Supporting Traceability in Cyber-Physical Manufacturing Systems

    PubMed Central

    Huang, Jiwei; Zhu, Yeping; Cheng, Bo; Lin, Chuang; Chen, Junliang

    2016-01-01

    With the growing popularity of complex dynamic activities in manufacturing processes, traceability of the entire life of every product has drawn significant attention especially for food, clinical materials, and similar items. This paper studies the traceability issue in cyber-physical manufacturing systems from a theoretical viewpoint. Petri net models are generalized for formulating dynamic manufacturing processes, based on which a detailed approach for enabling traceability analysis is presented. Models as well as algorithms are carefully designed, which can trace back the lifecycle of a possibly contaminated item. A practical prototype system for supporting traceability is designed, and a real-life case study of a quality control system for bee products is presented to validate the effectiveness of the approach. PMID:26999141

  6. A PetriNet-Based Approach for Supporting Traceability in Cyber-Physical Manufacturing Systems.

    PubMed

    Huang, Jiwei; Zhu, Yeping; Cheng, Bo; Lin, Chuang; Chen, Junliang

    2016-03-17

    With the growing popularity of complex dynamic activities in manufacturing processes, traceability of the entire life of every product has drawn significant attention especially for food, clinical materials, and similar items. This paper studies the traceability issue in cyber-physical manufacturing systems from a theoretical viewpoint. Petri net models are generalized for formulating dynamic manufacturing processes, based on which a detailed approach for enabling traceability analysis is presented. Models as well as algorithms are carefully designed, which can trace back the lifecycle of a possibly contaminated item. A practical prototype system for supporting traceability is designed, and a real-life case study of a quality control system for bee products is presented to validate the effectiveness of the approach.

  7. Functional enzyme-based modeling approach for dynamic simulation of denitrification process in hyporheic zone sediments: Genetically structured microbial community model

    NASA Astrophysics Data System (ADS)

    Song, H. S.; Li, M.; Qian, W.; Song, X.; Chen, X.; Scheibe, T. D.; Fredrickson, J.; Zachara, J. M.; Liu, C.

    2016-12-01

    Modeling environmental microbial communities at individual organism level is currently intractable due to overwhelming structural complexity. Functional guild-based approaches alleviate this problem by lumping microorganisms into fewer groups based on their functional similarities. This reduction may become ineffective, however, when individual species perform multiple functions as environmental conditions vary. In contrast, the functional enzyme-based modeling approach we present here describes microbial community dynamics based on identified functional enzymes (rather than individual species or their groups). Previous studies in the literature along this line used biomass or functional genes as surrogate measures of enzymes due to the lack of analytical methods for quantifying enzymes in environmental samples. Leveraging our recent development of a signature peptide-based technique enabling sensitive quantification of functional enzymes in environmental samples, we developed a genetically structured microbial community model (GSMCM) to incorporate enzyme concentrations and various other omics measurements (if available) as key modeling input. We formulated the GSMCM based on the cybernetic metabolic modeling framework to rationally account for cellular regulation without relying on empirical inhibition kinetics. In the case study of modeling denitrification process in Columbia River hyporheic zone sediments collected from the Hanford Reach, our GSMCM provided a quantitative fit to complex experimental data in denitrification, including the delayed response of enzyme activation to the change in substrate concentration. Our future goal is to extend the modeling scope to the prediction of carbon and nitrogen cycles and contaminant fate. Integration of a simpler version of the GSMCM with PFLOTRAN for multi-scale field simulations is in progress.

  8. Comparison of simulation modeling and satellite techniques for monitoring ecological processes

    NASA Technical Reports Server (NTRS)

    Box, Elgene O.

    1988-01-01

    In 1985 improvements were made in the world climatic data base for modeling and predictive mapping; in individual process models and the overall carbon-balance models; and in the interface software for mapping the simulation results. Statistical analysis of the data base was begun. In 1986 mapping was shifted to NASA-Goddard. The initial approach involving pattern comparisons was modified to a more statistical approach. A major accomplishment was the expansion and improvement of a global data base of measurements of biomass and primary production, to complement the simulation data. The main accomplishments during 1987 included: production of a master tape with all environmental and satellite data and model results for the 1600 sites; development of a complete mapping system used for the initial color maps comparing annual and monthly patterns of Normalized Difference Vegetation Index (NDVI), actual evapotranspiration, net primary productivity, gross primary productivity, and net ecosystem production; collection of more biosphere measurements for eventual improvement of the biological models; and development of some initial monthly models for primary productivity, based on satellite data.

  9. Integrating Geomorphic and Social Dynamics in the Analysis of Anthropogenic Landforms: Examining Landscape Evolution of Terrain Modified by Agricultural Terracing

    NASA Astrophysics Data System (ADS)

    Glaubius, J.; Maerker, M.

    2016-12-01

    Anthropogenic landforms, such as mines and agricultural terraces, are impacted by both geomorphic and social processes at varying intensities through time. In the case of agricultural terraces, decisions regarding terrace maintenance are intertwined with land use, such as when terraced fields are abandoned. Furthermore, terrace maintenance and land use decisions, either jointly or separately, may be in response to geomorphic processes, as well as geomorphic feedbacks. Previous studies of these complex geomorphic systems considered agricultural terraces as static features or analyzed only the geomorphic response to landowner decisions. Such research is appropriate for short-term or binary landscape scenarios (e.g. the impact of maintained vs. abandoned terraces), but the complexities inherent in these socio-natural systems requires an approach that includes both social and geomorphic processes. This project analyzes feedbacks and emergent properties in terraced systems by implementing a coupled landscape evolution model (LEM) and agent-based model (ABM) using the Landlab and Mesa modeling libraries. In the ABM portion of the model, agricultural terraces are conceptualized using a life-cycle stages schema and implemented using Markov Decision Processes to simulate the changing geomorphic impact of terracing based on human decisions. This paper examines the applicability of this approach by comparing results from a LEM-only model against the coupled LEM-ABM model for a terraced region. Model results are compared by quantify and spatial patterning of sediment transport. This approach fully captures long-term landscape evolution of terraced terrain that is otherwise lost when the life-cycle of terraces is not considered. The coupled LEM-ABM approach balances both environmental and social processes so that the socio-natural feedbacks in such anthropogenic systems can be disentangled.

  10. How much expert knowledge is it worth to put in conceptual hydrological models?

    NASA Astrophysics Data System (ADS)

    Antonetti, Manuel; Zappa, Massimiliano

    2017-04-01

    Both modellers and experimentalists agree on using expert knowledge to improve our conceptual hydrological simulations on ungauged basins. However, they use expert knowledge differently for both hydrologically mapping the landscape and parameterising a given hydrological model. Modellers use generally very simplified (e.g. topography-based) mapping approaches and put most of the knowledge for constraining the model by defining parameter and process relational rules. In contrast, experimentalists tend to invest all their detailed and qualitative knowledge about processes to obtain a spatial distribution of areas with different dominant runoff generation processes (DRPs) as realistic as possible, and for defining plausible narrow value ranges for each model parameter. Since, most of the times, the modelling goal is exclusively to simulate runoff at a specific site, even strongly simplified hydrological classifications can lead to satisfying results due to equifinality of hydrological models, overfitting problems and the numerous uncertainty sources affecting runoff simulations. Therefore, to test to which extent expert knowledge can improve simulation results under uncertainty, we applied a typical modellers' modelling framework relying on parameter and process constraints defined based on expert knowledge to several catchments on the Swiss Plateau. To map the spatial distribution of the DRPs, mapping approaches with increasing involvement of expert knowledge were used. Simulation results highlighted the potential added value of using all the expert knowledge available on a catchment. Also, combinations of event types and landscapes, where even a simplified mapping approach can lead to satisfying results, were identified. Finally, the uncertainty originated by the different mapping approaches was compared with the one linked to meteorological input data and catchment initial conditions.

  11. A Simplified Micromechanical Modeling Approach to Predict the Tensile Flow Curve Behavior of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Nanda, Tarun; Kumar, B. Ravi; Singh, Vishal

    2017-11-01

    Micromechanical modeling is used to predict material's tensile flow curve behavior based on microstructural characteristics. This research develops a simplified micromechanical modeling approach for predicting flow curve behavior of dual-phase steels. The existing literature reports on two broad approaches for determining tensile flow curve of these steels. The modeling approach developed in this work attempts to overcome specific limitations of the existing two approaches. This approach combines dislocation-based strain-hardening method with rule of mixtures. In the first step of modeling, `dislocation-based strain-hardening method' was employed to predict tensile behavior of individual phases of ferrite and martensite. In the second step, the individual flow curves were combined using `rule of mixtures,' to obtain the composite dual-phase flow behavior. To check accuracy of proposed model, four distinct dual-phase microstructures comprising of different ferrite grain size, martensite fraction, and carbon content in martensite were processed by annealing experiments. The true stress-strain curves for various microstructures were predicted with the newly developed micromechanical model. The results of micromechanical model matched closely with those of actual tensile tests. Thus, this micromechanical modeling approach can be used to predict and optimize the tensile flow behavior of dual-phase steels.

  12. A Sequential Monte Carlo Approach for Streamflow Forecasting

    NASA Astrophysics Data System (ADS)

    Hsu, K.; Sorooshian, S.

    2008-12-01

    As alternatives to traditional physically-based models, Artificial Neural Network (ANN) models offer some advantages with respect to the flexibility of not requiring the precise quantitative mechanism of the process and the ability to train themselves from the data directly. In this study, an ANN model was used to generate one-day-ahead streamflow forecasts from the precipitation input over a catchment. Meanwhile, the ANN model parameters were trained using a Sequential Monte Carlo (SMC) approach, namely Regularized Particle Filter (RPF). The SMC approaches are known for their capabilities in tracking the states and parameters of a nonlinear dynamic process based on the Baye's rule and the proposed effective sampling and resampling strategies. In this study, five years of daily rainfall and streamflow measurement were used for model training. Variable sample sizes of RPF, from 200 to 2000, were tested. The results show that, after 1000 RPF samples, the simulation statistics, in terms of correlation coefficient, root mean square error, and bias, were stabilized. It is also shown that the forecasted daily flows fit the observations very well, with the correlation coefficient of higher than 0.95. The results of RPF simulations were also compared with those from the popular back-propagation ANN training approach. The pros and cons of using SMC approach and the traditional back-propagation approach will be discussed.

  13. Extending rule-based methods to model molecular geometry and 3D model resolution.

    PubMed

    Hoard, Brittany; Jacobson, Bruna; Manavi, Kasra; Tapia, Lydia

    2016-08-01

    Computational modeling is an important tool for the study of complex biochemical processes associated with cell signaling networks. However, it is challenging to simulate processes that involve hundreds of large molecules due to the high computational cost of such simulations. Rule-based modeling is a method that can be used to simulate these processes with reasonably low computational cost, but traditional rule-based modeling approaches do not include details of molecular geometry. The incorporation of geometry into biochemical models can more accurately capture details of these processes, and may lead to insights into how geometry affects the products that form. Furthermore, geometric rule-based modeling can be used to complement other computational methods that explicitly represent molecular geometry in order to quantify binding site accessibility and steric effects. We propose a novel implementation of rule-based modeling that encodes details of molecular geometry into the rules and binding rates. We demonstrate how rules are constructed according to the molecular curvature. We then perform a study of antigen-antibody aggregation using our proposed method. We simulate the binding of antibody complexes to binding regions of the shrimp allergen Pen a 1 using a previously developed 3D rigid-body Monte Carlo simulation, and we analyze the aggregate sizes. Then, using our novel approach, we optimize a rule-based model according to the geometry of the Pen a 1 molecule and the data from the Monte Carlo simulation. We use the distances between the binding regions of Pen a 1 to optimize the rules and binding rates. We perform this procedure for multiple conformations of Pen a 1 and analyze the impact of conformation and resolution on the optimal rule-based model. We find that the optimized rule-based models provide information about the average steric hindrance between binding regions and the probability that antibodies will bind to these regions. These optimized models quantify the variation in aggregate size that results from differences in molecular geometry and from model resolution.

  14. Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change.

    PubMed

    Morin, Xavier; Thuiller, Wilfried

    2009-05-01

    Obtaining reliable predictions of species range shifts under climate change is a crucial challenge for ecologists and stakeholders. At the continental scale, niche-based models have been widely used in the last 10 years to predict the potential impacts of climate change on species distributions all over the world, although these models do not include any mechanistic relationships. In contrast, species-specific, process-based predictions remain scarce at the continental scale. This is regrettable because to secure relevant and accurate predictions it is always desirable to compare predictions derived from different kinds of models applied independently to the same set of species and using the same raw data. Here we compare predictions of range shifts under climate change scenarios for 2100 derived from niche-based models with those of a process-based model for 15 North American boreal and temperate tree species. A general pattern emerged from our comparisons: niche-based models tend to predict a stronger level of extinction and a greater proportion of colonization than the process-based model. This result likely arises because niche-based models do not take phenotypic plasticity and local adaptation into account. Nevertheless, as the two kinds of models rely on different assumptions, their complementarity is revealed by common findings. Both modeling approaches highlight a major potential limitation on species tracking their climatic niche because of migration constraints and identify similar zones where species extirpation is likely. Such convergent predictions from models built on very different principles provide a useful way to offset uncertainties at the continental scale. This study shows that the use in concert of both approaches with their own caveats and advantages is crucial to obtain more robust results and that comparisons among models are needed in the near future to gain accuracy regarding predictions of range shifts under climate change.

  15. Modeling the internal dynamics of energy and mass transfer in an imperfectly mixed ventilated airspace.

    PubMed

    Janssens, K; Van Brecht, A; Zerihun Desta, T; Boonen, C; Berckmans, D

    2004-06-01

    The present paper outlines a modeling approach, which has been developed to model the internal dynamics of heat and moisture transfer in an imperfectly mixed ventilated airspace. The modeling approach, which combines the classical heat and moisture balance differential equations with the use of experimental time-series data, provides a physically meaningful description of the process and is very useful for model-based control purposes. The paper illustrates how the modeling approach has been applied to a ventilated laboratory test room with internal heat and moisture production. The results are evaluated and some valuable suggestions for future research are forwarded. The modeling approach outlined in this study provides an ideal form for advanced model-based control system design. The relatively low number of parameters makes it well suited for model-based control purposes, as a limited number of identification experiments is sufficient to determine these parameters. The model concept provides information about the air quality and airflow pattern in an arbitrary building. By using this model as a simulation tool, the indoor air quality and airflow pattern can be optimized.

  16. The drift diffusion model as the choice rule in reinforcement learning.

    PubMed

    Pedersen, Mads Lund; Frank, Michael J; Biele, Guido

    2017-08-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.

  17. The drift diffusion model as the choice rule in reinforcement learning

    PubMed Central

    Frank, Michael J.

    2017-01-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyper-activity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups. PMID:27966103

  18. Transient high frequency signal estimation: A model-based processing approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnes, F.L.

    1985-03-22

    By utilizing the superposition property of linear systems a method of estimating the incident signal from reflective nondispersive data is developed. One of the basic merits of this approach is that, the reflections were removed by direct application of a Weiner type estimation algorithm, after the appropriate input was synthesized. The structure of the nondispersive signal model is well documented, and thus its' credence is established. The model is stated and more effort is devoted to practical methods of estimating the model parameters. Though a general approach was developed for obtaining the reflection weights, a simpler approach was employed here,more » since a fairly good reflection model is available. The technique essentially consists of calculating ratios of the autocorrelation function at lag zero and that lag where the incident and first reflection coincide. We initially performed our processing procedure on a measurement of a single signal. Multiple application of the processing procedure was required when we applied the reflection removal technique on a measurement containing information from the interaction of two physical phenomena. All processing was performed using SIG, an interactive signal processing package. One of the many consequences of using SIG was that repetitive operations were, for the most part, automated. A custom menu was designed to perform the deconvolution process.« less

  19. A Process-Based Transport-Distance Model of Aeolian Transport

    NASA Astrophysics Data System (ADS)

    Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.

    2017-12-01

    We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.

  20. Efficient Embedded Decoding of Neural Network Language Models in a Machine Translation System.

    PubMed

    Zamora-Martinez, Francisco; Castro-Bleda, Maria Jose

    2018-02-22

    Neural Network Language Models (NNLMs) are a successful approach to Natural Language Processing tasks, such as Machine Translation. We introduce in this work a Statistical Machine Translation (SMT) system which fully integrates NNLMs in the decoding stage, breaking the traditional approach based on [Formula: see text]-best list rescoring. The neural net models (both language models (LMs) and translation models) are fully coupled in the decoding stage, allowing to more strongly influence the translation quality. Computational issues were solved by using a novel idea based on memorization and smoothing of the softmax constants to avoid their computation, which introduces a trade-off between LM quality and computational cost. These ideas were studied in a machine translation task with different combinations of neural networks used both as translation models and as target LMs, comparing phrase-based and [Formula: see text]-gram-based systems, showing that the integrated approach seems more promising for [Formula: see text]-gram-based systems, even with nonfull-quality NNLMs.

  1. An Improved Incremental Learning Approach for KPI Prognosis of Dynamic Fuel Cell System.

    PubMed

    Yin, Shen; Xie, Xiaochen; Lam, James; Cheung, Kie Chung; Gao, Huijun

    2016-12-01

    The key performance indicator (KPI) has an important practical value with respect to the product quality and economic benefits for modern industry. To cope with the KPI prognosis issue under nonlinear conditions, this paper presents an improved incremental learning approach based on available process measurements. The proposed approach takes advantage of the algorithm overlapping of locally weighted projection regression (LWPR) and partial least squares (PLS), implementing the PLS-based prognosis in each locally linear model produced by the incremental learning process of LWPR. The global prognosis results including KPI prediction and process monitoring are obtained from the corresponding normalized weighted means of all the local models. The statistical indicators for prognosis are enhanced as well by the design of novel KPI-related and KPI-unrelated statistics with suitable control limits for non-Gaussian data. For application-oriented purpose, the process measurements from real datasets of a proton exchange membrane fuel cell system are employed to demonstrate the effectiveness of KPI prognosis. The proposed approach is finally extended to a long-term voltage prediction for potential reference of further fuel cell applications.

  2. Rule-based modeling: a computational approach for studying biomolecular site dynamics in cell signaling systems

    PubMed Central

    Chylek, Lily A.; Harris, Leonard A.; Tung, Chang-Shung; Faeder, James R.; Lopez, Carlos F.

    2013-01-01

    Rule-based modeling was developed to address the limitations of traditional approaches for modeling chemical kinetics in cell signaling systems. These systems consist of multiple interacting biomolecules (e.g., proteins), which themselves consist of multiple parts (e.g., domains, linear motifs, and sites of phosphorylation). Consequently, biomolecules that mediate information processing generally have the potential to interact in multiple ways, with the number of possible complexes and post-translational modification states tending to grow exponentially with the number of binary interactions considered. As a result, only large reaction networks capture all possible consequences of the molecular interactions that occur in a cell signaling system, which is problematic because traditional modeling approaches for chemical kinetics (e.g., ordinary differential equations) require explicit network specification. This problem is circumvented through representation of interactions in terms of local rules. With this approach, network specification is implicit and model specification is concise. Concise representation results in a coarse graining of chemical kinetics, which is introduced because all reactions implied by a rule inherit the rate law associated with that rule. Coarse graining can be appropriate if interactions are modular, and the coarseness of a model can be adjusted as needed. Rules can be specified using specialized model-specification languages, and recently developed tools designed for specification of rule-based models allow one to leverage powerful software engineering capabilities. A rule-based model comprises a set of rules, which can be processed by general-purpose simulation and analysis tools to achieve different objectives (e.g., to perform either a deterministic or stochastic simulation). PMID:24123887

  3. A computational approach to climate science education with CLIMLAB

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2017-12-01

    CLIMLAB is a Python-based software toolkit for interactive, process-oriented climate modeling for use in education and research. It is motivated by the need for simpler tools and more reproducible workflows with which to "fill in the gaps" between blackboard-level theory and the results of comprehensive climate models. With CLIMLAB you can interactively mix and match physical model components, or combine simpler process models together into a more comprehensive model. I use CLIMLAB in the classroom to put models in the hands of students (undergraduate and graduate), and emphasize a hierarchical, process-oriented approach to understanding the key emergent properties of the climate system. CLIMLAB is equally a tool for climate research, where the same needs exist for more robust, process-based understanding and reproducible computational results. I will give an overview of CLIMLAB and an update on recent developments, including: a full-featured, well-documented, interactive implementation of a widely-used radiation model (RRTM) packaging with conda-forge for compiler-free (and hassle-free!) installation on Mac, Windows and Linux interfacing with xarray for i/o and graphics with gridded model data a rich and growing collection of examples and self-computing lecture notes in Jupyter notebook format

  4. Model analysis of riparian buffer effectiveness for reducing nutrient inputs to streams in agricultural landscapes

    NASA Astrophysics Data System (ADS)

    McKane, R. B.; M, S.; F, P.; Kwiatkowski, B. L.; Rastetter, E. B.

    2006-12-01

    Federal and state agencies responsible for protecting water quality rely mainly on statistically-based methods to assess and manage risks to the nation's streams, lakes and estuaries. Although statistical approaches provide valuable information on current trends in water quality, process-based simulation models are essential for understanding and forecasting how changes in human activities across complex landscapes impact the transport of nutrients and contaminants to surface waters. To address this need, we developed a broadly applicable, process-based watershed simulator that links a spatially-explicit hydrologic model and a terrestrial biogeochemistry model (MEL). See Stieglitz et al. and Pan et al., this meeting, for details on the design and verification of this simulator. Here we apply the watershed simulator to a generalized agricultural setting to demonstrate its potential for informing policy and management decisions concerning water quality. This demonstration specifically explores the effectiveness of riparian buffers for reducing the transport of nitrogenous fertilizers from agricultural fields to streams. The interaction of hydrologic and biogeochemical processes represented in our simulator allows several important questions to be addressed. (1) For a range of upland fertilization rates, to what extent do riparian buffers reduce nitrogen inputs to streams? (2) How does buffer effectiveness change over time as the plant-soil system approaches N-saturation? (3) How can buffers be managed to increase their effectiveness, e.g., through periodic harvest and replanting? The model results illustrate that, while the answers to these questions depend to some extent on site factors (climatic regime, soil properties and vegetation type), in all cases riparian buffers have a limited capacity to reduce nitrogen inputs to streams where fertilization rates approach those typically used for intensive agriculture (e.g., 200 kg N per ha per year for corn in the U.S.A. Midwestern states). We also discuss how the insights gained from our approach cannot be achieved with modeling tools that are not both spatially explicit and process-based.

  5. Frequency Response Function Expansion for Unmeasured Translation and Rotation Dofs for Impedance Modelling Applications

    NASA Astrophysics Data System (ADS)

    Avitabile, P.; O'Callahan, J.

    2003-07-01

    Inclusion of rotational effects is critical for the accuracy of the predicted system characteristics, in almost all system modelling studies. However, experimentally derived information for the description of one or more of the components for the system will generally not have any rotational effects included in the description of the component. The lack of rotational effects has long affected the results from any system model development whether using a modal-based approach or an impedance-based approach. Several new expansion processes are described herein for the development of FRFs needed for impedance-based system models. These techniques expand experimentally derived mode shapes, residual modes from the modal parameter estimation process and FRFs directly to allow for the inclusion of the necessary rotational dof. The FRFs involving translational to rotational dofs are developed as well as the rotational to rotational dof. Examples are provided to show the use of these techniques.

  6. Development and testing of a fast conceptual river water quality model.

    PubMed

    Keupers, Ingrid; Willems, Patrick

    2017-04-15

    Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An Approach to the Evaluation of Hypermedia.

    ERIC Educational Resources Information Center

    Knussen, Christina; And Others

    1991-01-01

    Discusses methods that may be applied to the evaluation of hypermedia, based on six models described by Lawton. Techniques described include observation, self-report measures, interviews, automated measures, psychometric tests, checklists and criterion-based techniques, process models, Experimentally Measuring Usability (EMU), and a naturalistic…

  8. Modeling forest carbon cycle using long-term carbon stock field measurement in the Delaware River Basin

    Treesearch

    Bing Xu; Yude Pan; Alain F. Plante; Kevin McCullough; Richard Birdsey

    2017-01-01

    Process-based models are a powerful approach to test our understanding of biogeochemical processes, to extrapolate ground survey data from limited plots to the landscape scale, and to simulate the effects of climate change, nitrogen deposition, elevated atmospheric CO2, increasing natural disturbances, and land-use change on ecological processes...

  9. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  10. Putting the psychology back into psychological models: mechanistic versus rational approaches.

    PubMed

    Sakamoto, Yasuaki; Jones, Mattr; Love, Bradley C

    2008-09-01

    Two basic approaches to explaining the nature of the mind are the rational and the mechanistic approaches. Rational analyses attempt to characterize the environment and the behavioral outcomes that humans seek to optimize, whereas mechanistic models attempt to simulate human behavior using processes and representations analogous to those used by humans. We compared these approaches with regard to their accounts of how humans learn the variability of categories. The mechanistic model departs in subtle ways from rational principles. In particular, the mechanistic model incrementally updates its estimates of category means and variances through error-driven learning, based on discrepancies between new category members and the current representation of each category. The model yields a prediction, which we verify, regarding the effects of order manipulations that the rational approach does not anticipate. Although both rational and mechanistic models can successfully postdict known findings, we suggest that psychological advances are driven primarily by consideration of process and representation and that rational accounts trail these breakthroughs.

  11. Ensuring congruency in multiscale modeling: towards linking agent based and continuum biomechanical models of arterial adaptation.

    PubMed

    Hayenga, Heather N; Thorne, Bryan C; Peirce, Shayn M; Humphrey, Jay D

    2011-11-01

    There is a need to develop multiscale models of vascular adaptations to understand tissue-level manifestations of cellular level mechanisms. Continuum-based biomechanical models are well suited for relating blood pressures and flows to stress-mediated changes in geometry and properties, but less so for describing underlying mechanobiological processes. Discrete stochastic agent-based models are well suited for representing biological processes at a cellular level, but not for describing tissue-level mechanical changes. We present here a conceptually new approach to facilitate the coupling of continuum and agent-based models. Because of ubiquitous limitations in both the tissue- and cell-level data from which one derives constitutive relations for continuum models and rule-sets for agent-based models, we suggest that model verification should enforce congruency across scales. That is, multiscale model parameters initially determined from data sets representing different scales should be refined, when possible, to ensure that common outputs are consistent. Potential advantages of this approach are illustrated by comparing simulated aortic responses to a sustained increase in blood pressure predicted by continuum and agent-based models both before and after instituting a genetic algorithm to refine 16 objectively bounded model parameters. We show that congruency-based parameter refinement not only yielded increased consistency across scales, it also yielded predictions that are closer to in vivo observations.

  12. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    PubMed

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  13. C code generation from Petri-net-based logic controller specification

    NASA Astrophysics Data System (ADS)

    Grobelny, Michał; Grobelna, Iwona; Karatkevich, Andrei

    2017-08-01

    The article focuses on programming of logic controllers. It is important that a programming code of a logic controller is executed flawlessly according to the primary specification. In the presented approach we generate C code for an AVR microcontroller from a rule-based logical model of a control process derived from a control interpreted Petri net. The same logical model is also used for formal verification of the specification by means of the model checking technique. The proposed rule-based logical model and formal rules of transformation ensure that the obtained implementation is consistent with the already verified specification. The approach is validated by practical experiments.

  14. An Artificial Intelligence System to Predict Quality of Service in Banking Organizations

    PubMed Central

    Popovič, Aleš

    2016-01-01

    Quality of service, that is, the waiting time that customers must endure in order to receive a service, is a critical performance aspect in private and public service organizations. Providing good service quality is particularly important in highly competitive sectors where similar services exist. In this paper, focusing on banking sector, we propose an artificial intelligence system for building a model for the prediction of service quality. While the traditional approach used for building analytical models relies on theories and assumptions about the problem at hand, we propose a novel approach for learning models from actual data. Thus, the proposed approach is not biased by the knowledge that experts may have about the problem, but it is completely based on the available data. The system is based on a recently defined variant of genetic programming that allows practitioners to include the concept of semantics in the search process. This will have beneficial effects on the search process and will produce analytical models that are based only on the data and not on domain-dependent knowledge. PMID:27313604

  15. An Artificial Intelligence System to Predict Quality of Service in Banking Organizations.

    PubMed

    Castelli, Mauro; Manzoni, Luca; Popovič, Aleš

    2016-01-01

    Quality of service, that is, the waiting time that customers must endure in order to receive a service, is a critical performance aspect in private and public service organizations. Providing good service quality is particularly important in highly competitive sectors where similar services exist. In this paper, focusing on banking sector, we propose an artificial intelligence system for building a model for the prediction of service quality. While the traditional approach used for building analytical models relies on theories and assumptions about the problem at hand, we propose a novel approach for learning models from actual data. Thus, the proposed approach is not biased by the knowledge that experts may have about the problem, but it is completely based on the available data. The system is based on a recently defined variant of genetic programming that allows practitioners to include the concept of semantics in the search process. This will have beneficial effects on the search process and will produce analytical models that are based only on the data and not on domain-dependent knowledge.

  16. An information-based approach to change-point analysis with applications to biophysics and cell biology.

    PubMed

    Wiggins, Paul A

    2015-07-21

    This article describes the application of a change-point algorithm to the analysis of stochastic signals in biological systems whose underlying state dynamics consist of transitions between discrete states. Applications of this analysis include molecular-motor stepping, fluorophore bleaching, electrophysiology, particle and cell tracking, detection of copy number variation by sequencing, tethered-particle motion, etc. We present a unified approach to the analysis of processes whose noise can be modeled by Gaussian, Wiener, or Ornstein-Uhlenbeck processes. To fit the model, we exploit explicit, closed-form algebraic expressions for maximum-likelihood estimators of model parameters and estimated information loss of the generalized noise model, which can be computed extremely efficiently. We implement change-point detection using the frequentist information criterion (which, to our knowledge, is a new information criterion). The frequentist information criterion specifies a single, information-based statistical test that is free from ad hoc parameters and requires no prior probability distribution. We demonstrate this information-based approach in the analysis of simulated and experimental tethered-particle-motion data. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  17. Pairing top-down and bottom-up approaches to analyze catchment scale management of water quality and quantity

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Duncan, J. M.; Band, L. E.

    2016-12-01

    Watershed management requires information on the hydrologic impacts of local to regional land use, land cover and infrastructure conditions. Management of runoff volumes, storm flows, and water quality can benefit from large scale, "top-down" screening tools, using readily available information, as well as more detailed, "bottom-up" process-based models that explicitly track local runoff production and routing from sources to receiving water bodies. Regional scale data, available nationwide through the NHD+, and top-down models based on aggregated catchment information provide useful tools for estimating regional patterns of peak flows, volumes and nutrient loads at the catchment level. Management impacts can be estimated with these models, but have limited ability to resolve impacts beyond simple changes to land cover proportions. Alternatively, distributed process-based models provide more flexibility in modeling management impacts by resolving spatial patterns of nutrient source, runoff generation, and uptake. This bottom-up approach can incorporate explicit patterns of land cover, drainage connectivity, and vegetation extent, but are typically applied over smaller areas. Here, we first model peak flood flows and nitrogen loads across North Carolina's 70,000 NHD+ catchments using USGS regional streamflow regression equations and the SPARROW model. We also estimate management impact by altering aggregated sources in each of these models. To address the missing spatial implications of the top-down approach, we further explore the demand for riparian buffers as a management strategy, simulating the accumulation of nutrient sources along flow paths and the potential mitigation of these sources through forested buffers. We use the Regional Hydro-Ecological Simulation System (RHESSys) to model changes across several basins in North Carolina's Piedmont and Blue Ridge regions, ranging in size from 15 - 1,130 km2. The two approaches provide a complementary set of tools for large area screening, followed by smaller, more process based assessment and design tools.

  18. Creating ISO/EN 13606 archetypes based on clinical information needs.

    PubMed

    Rinner, Christoph; Kohler, Michael; Hübner-Bloder, Gudrun; Saboor, Samrend; Ammenwerth, Elske; Duftschmid, Georg

    2011-01-01

    Archetypes model individual EHR contents and build the basis of the dual-model approach used in the ISO/EN 13606 EHR architecture. We present an approach to create archetypes using an iterative development process. It includes automated generation of electronic case report forms from archetypes. We evaluated our approach by developing 128 archetypes which represent 446 clinical information items from the diabetes domain.

  19. Analysis of the Temperature and Strain-Rate Dependences of Strain Hardening

    NASA Astrophysics Data System (ADS)

    Kreyca, Johannes; Kozeschnik, Ernst

    2018-01-01

    A classical constitutive modeling-based Ansatz for the impact of thermal activation on the stress-strain response of metallic materials is compared with the state parameter-based Kocks-Mecking model. The predicted functional dependencies suggest that, in the first approach, only the dislocation storage mechanism is a thermally activated process, whereas, in the second approach, only the mechanism of dynamic recovery is. In contradiction to each of these individual approaches, our analysis and comparison with experimental evidence shows that thermal activation contributes both to dislocation generation and annihilation.

  20. Continuous data assimilation for downscaling large-footprint soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.

    2016-10-01

    Soil moisture is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for soil moisture is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution soil moisture data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale soil moisture fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.

  1. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    NASA Astrophysics Data System (ADS)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  2. Landscape-based population viability models demonstrate importance of strategic conservation planning for birds

    Treesearch

    Thomas W. Bonnot; Frank R. Thompson; Joshua J. Millspaugh; D. Todd Jones-Farland

    2013-01-01

    Efforts to conserve regional biodiversity in the face of global climate change, habitat loss and fragmentation will depend on approaches that consider population processes at multiple scales. By combining habitat and demographic modeling, landscape-based population viability models effectively relate small-scale habitat and landscape patterns to regional population...

  3. A highly efficient approach to protein interactome mapping based on collaborative filtering framework.

    PubMed

    Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng

    2015-01-09

    The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly.

  4. A Highly Efficient Approach to Protein Interactome Mapping Based on Collaborative Filtering Framework

    PubMed Central

    Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng

    2015-01-01

    The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly. PMID:25572661

  5. A Highly Efficient Approach to Protein Interactome Mapping Based on Collaborative Filtering Framework

    NASA Astrophysics Data System (ADS)

    Luo, Xin; You, Zhuhong; Zhou, Mengchu; Li, Shuai; Leung, Hareton; Xia, Yunni; Zhu, Qingsheng

    2015-01-01

    The comprehensive mapping of protein-protein interactions (PPIs) is highly desired for one to gain deep insights into both fundamental cell biology processes and the pathology of diseases. Finely-set small-scale experiments are not only very expensive but also inefficient to identify numerous interactomes despite their high accuracy. High-throughput screening techniques enable efficient identification of PPIs; yet the desire to further extract useful knowledge from these data leads to the problem of binary interactome mapping. Network topology-based approaches prove to be highly efficient in addressing this problem; however, their performance deteriorates significantly on sparse putative PPI networks. Motivated by the success of collaborative filtering (CF)-based approaches to the problem of personalized-recommendation on large, sparse rating matrices, this work aims at implementing a highly efficient CF-based approach to binary interactome mapping. To achieve this, we first propose a CF framework for it. Under this framework, we model the given data into an interactome weight matrix, where the feature-vectors of involved proteins are extracted. With them, we design the rescaled cosine coefficient to model the inter-neighborhood similarity among involved proteins, for taking the mapping process. Experimental results on three large, sparse datasets demonstrate that the proposed approach outperforms several sophisticated topology-based approaches significantly.

  6. A Split-Path Schema-Based RFID Data Storage Model in Supply Chain Management

    PubMed Central

    Fan, Hua; Wu, Quanyuan; Lin, Yisong; Zhang, Jianfeng

    2013-01-01

    In modern supply chain management systems, Radio Frequency IDentification (RFID) technology has become an indispensable sensor technology and massive RFID data sets are expected to become commonplace. More and more space and time are needed to store and process such huge amounts of RFID data, and there is an increasing realization that the existing approaches cannot satisfy the requirements of RFID data management. In this paper, we present a split-path schema-based RFID data storage model. With a data separation mechanism, the massive RFID data produced in supply chain management systems can be stored and processed more efficiently. Then a tree structure-based path splitting approach is proposed to intelligently and automatically split the movement paths of products. Furthermore, based on the proposed new storage model, we design the relational schema to store the path information and time information of tags, and some typical query templates and SQL statements are defined. Finally, we conduct various experiments to measure the effect and performance of our model and demonstrate that it performs significantly better than the baseline approach in both the data expression and path-oriented RFID data query performance. PMID:23645112

  7. Data near processing support for climate data analysis

    NASA Astrophysics Data System (ADS)

    Kindermann, Stephan; Ehbrecht, Carsten; Hempelmann, Nils

    2016-04-01

    Climate data repositories grow in size exponentially. Scalable data near processing capabilities are required to meet future data analysis requirements and to replace current "data download and process at home" workflows and approaches. On one hand side, these processing capabilities should be accessible via standardized interfaces (e.g. OGC WPS), on the other side a large variety of processing tools, toolboxes and deployment alternatives have to be supported and maintained at the data/processing center. We present a community approach of a modular and flexible system supporting the development, deployment and maintenace of OGC-WPS based web processing services. This approach is organized in an open source github project (called "bird-house") supporting individual processing services ("birds", e.g. climate index calculations, model data ensemble calculations), which rely on basic common infrastructural components (e.g. installation and deployment recipes, analysis code dependencies management). To support easy deployment at data centers as well as home institutes (e.g. for testing and development) the system supports the management of the often very complex package dependency chain of climate data analysis packages as well as docker based packaging and installation. We present a concrete deployment scenario at the German Climate Computing Center (DKRZ). The DKRZ one hand side hosts a multi-petabyte climate archive which is integrated e.g. into the european ENES and worldwide ESGF data infrastructure, and on the other hand hosts an HPC center supporting (model) data production and data analysis. The deployment scenario also includes openstack based data cloud services to support data import and data distribution for bird-house based WPS web processing services. Current challenges for inter-institutionnal deployments of web processing services supporting the european and international climate modeling community as well as the climate impact community are highlighted. Also aspects supporting future WPS based cross community usage scenarios supporting data reuse and data provenance aspects are reflected.

  8. How physiological and physical processes contribute to the phenology of cyanobacterial blooms in large shallow lakes: A new Euler-Lagrangian coupled model.

    PubMed

    Feng, Tao; Wang, Chao; Wang, Peifang; Qian, Jin; Wang, Xun

    2018-09-01

    Cyanobacterial blooms have emerged as one of the most severe ecological problems affecting large and shallow freshwater lakes. To improve our understanding of the factors that influence, and could be used to predict, surface blooms, this study developed a novel Euler-Lagrangian coupled approach combining the Eulerian model with agent-based modelling (ABM). The approach was subsequently verified based on monitoring datasets and MODIS data in a large shallow lake (Lake Taihu, China). The Eulerian model solves the Eulerian variables and physiological parameters, whereas ABM generates the complete life cycle and transport processes of cyanobacterial colonies. This model ensemble performed well in fitting historical data and predicting the dynamics of cyanobacterial biomass, bloom distribution, and area. Based on the calculated physical and physiological characteristics of surface blooms, principal component analysis (PCA) captured the major processes influencing surface bloom formation at different stages (two bloom clusters). Early bloom outbreaks were influenced by physical processes (horizontal transport and vertical turbulence-induced mixing), whereas buoyancy-controlling strategies were essential for mature bloom outbreaks. Canonical correlation analysis (CCA) revealed the combined actions of multiple environment variables on different bloom clusters. The effects of buoyancy-controlling strategies (ISP), vertical turbulence-induced mixing velocity of colony (VMT) and horizontal drift velocity of colony (HDT) were quantitatively compared using scenario simulations in the coupled model. VMT accounted for 52.9% of bloom formations and maintained blooms over long periods, thus demonstrating the importance of wind-induced turbulence in shallow lakes. In comparison, HDT and buoyancy controlling strategies influenced blooms at different stages. In conclusion, the approach developed here presents a promising tool for understanding the processes of onshore/offshore algal blooms formation and subsequent predicting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.

    2000-01-01

    PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.

  10. Enhanced Self Tuning On-Board Real-Time Model (eSTORM) for Aircraft Engine Performance Health Tracking

    NASA Technical Reports Server (NTRS)

    Volponi, Al; Simon, Donald L. (Technical Monitor)

    2008-01-01

    A key technological concept for producing reliable engine diagnostics and prognostics exploits the benefits of fusing sensor data, information, and/or processing algorithms. This report describes the development of a hybrid engine model for a propulsion gas turbine engine, which is the result of fusing two diverse modeling methodologies: a physics-based model approach and an empirical model approach. The report describes the process and methods involved in deriving and implementing a hybrid model configuration for a commercial turbofan engine. Among the intended uses for such a model is to enable real-time, on-board tracking of engine module performance changes and engine parameter synthesis for fault detection and accommodation.

  11. Purpose, processes, partnerships, and products: four Ps to advance participatory socio-environmental modeling

    USGS Publications Warehouse

    Gray, Steven; Voinov, Alexey; Paolisso, Michael; Jordan, Rebecca; BenDor, Todd; Bommel, Pierre; Glynn, Pierre D.; Hedelin, Beatrice; Hubacek, Klaus; Introne, Josh; Kolagani, Nagesh; Laursen, Bethany; Prell, Christina; Schmitt-Olabisi, Laura; Singer, Alison; Sterling, Eleanor J.; Zellner, Moira

    2018-01-01

    Including stakeholders in environmental model building and analysis is an increasingly popular approach to understanding ecological change. This is because stakeholders often hold valuable knowledge about socio-environmental dynamics and collaborative forms of modeling produce important boundary objects used to collectively reason about environmental problems. Although the number of participatory modeling (PM) case studies and the number of researchers adopting these approaches has grown in recent years, the lack of standardized reporting and limited reproducibility have prevented PM's establishment and advancement as a cohesive field of study. We suggest a four-dimensional framework (4P) that includes reporting on dimensions of (1) the Purpose for selecting a PM approach (the why); (2) the Process by which the public was involved in model building or evaluation (the how); (3) the Partnerships formed (the who); and (4) the Products that resulted from these efforts (the what). We highlight four case studies that use common PM software-based approaches (fuzzy cognitive mapping, agent-based modeling, system dynamics, and participatory geospatial modeling) to understand human–environment interactions and the consequences of ecological changes, including bushmeat hunting in Tanzania and Cameroon, agricultural production and deforestation in Zambia, and groundwater management in India. We demonstrate how standardizing communication about PM case studies can lead to innovation and new insights about model-based reasoning in support of ecological policy development. We suggest that our 4P framework and reporting approach provides a way for new hypotheses to be identified and tested in the growing field of PM.

  12. Purpose, processes, partnerships, and products: four Ps to advance participatory socio-environmental modeling.

    PubMed

    Gray, Steven; Voinov, Alexey; Paolisso, Michael; Jordan, Rebecca; BenDor, Todd; Bommel, Pierre; Glynn, Pierre; Hedelin, Beatrice; Hubacek, Klaus; Introne, Josh; Kolagani, Nagesh; Laursen, Bethany; Prell, Christina; Schmitt Olabisi, Laura; Singer, Alison; Sterling, Eleanor; Zellner, Moira

    2018-01-01

    Including stakeholders in environmental model building and analysis is an increasingly popular approach to understanding ecological change. This is because stakeholders often hold valuable knowledge about socio-environmental dynamics and collaborative forms of modeling produce important boundary objects used to collectively reason about environmental problems. Although the number of participatory modeling (PM) case studies and the number of researchers adopting these approaches has grown in recent years, the lack of standardized reporting and limited reproducibility have prevented PM's establishment and advancement as a cohesive field of study. We suggest a four-dimensional framework (4P) that includes reporting on dimensions of (1) the Purpose for selecting a PM approach (the why); (2) the Process by which the public was involved in model building or evaluation (the how); (3) the Partnerships formed (the who); and (4) the Products that resulted from these efforts (the what). We highlight four case studies that use common PM software-based approaches (fuzzy cognitive mapping, agent-based modeling, system dynamics, and participatory geospatial modeling) to understand human-environment interactions and the consequences of ecological changes, including bushmeat hunting in Tanzania and Cameroon, agricultural production and deforestation in Zambia, and groundwater management in India. We demonstrate how standardizing communication about PM case studies can lead to innovation and new insights about model-based reasoning in support of ecological policy development. We suggest that our 4P framework and reporting approach provides a way for new hypotheses to be identified and tested in the growing field of PM. © 2017 by the Ecological Society of America.

  13. Modeling, simulation, and analysis of optical remote sensing systems

    NASA Technical Reports Server (NTRS)

    Kerekes, John Paul; Landgrebe, David A.

    1989-01-01

    Remote Sensing of the Earth's resources from space-based sensors has evolved in the past 20 years from a scientific experiment to a commonly used technological tool. The scientific applications and engineering aspects of remote sensing systems have been studied extensively. However, most of these studies have been aimed at understanding individual aspects of the remote sensing process while relatively few have studied their interrelations. A motivation for studying these interrelationships has arisen with the advent of highly sophisticated configurable sensors as part of the Earth Observing System (EOS) proposed by NASA for the 1990's. Two approaches to investigating remote sensing systems are developed. In one approach, detailed models of the scene, the sensor, and the processing aspects of the system are implemented in a discrete simulation. This approach is useful in creating simulated images with desired characteristics for use in sensor or processing algorithm development. A less complete, but computationally simpler method based on a parametric model of the system is also developed. In this analytical model the various informational classes are parameterized by their spectral mean vector and covariance matrix. These class statistics are modified by models for the atmosphere, the sensor, and processing algorithms and an estimate made of the resulting classification accuracy among the informational classes. Application of these models is made to the study of the proposed High Resolution Imaging Spectrometer (HRIS). The interrelationships among observational conditions, sensor effects, and processing choices are investigated with several interesting results.

  14. Toward a transport-based analysis of nutrient spiraling and uptake in streams

    USGS Publications Warehouse

    Runkel, Robert L.

    2007-01-01

    Nutrient addition experiments are designed to study the cycling of nutrients in stream ecosystems where hydrologic and nonhydrologic processes determine nutrient fate. Because of the importance of hydrologic processes in stream ecosystems, a conceptual model known as nutrient spiraling is frequently employed. A central part of the nutrient spiraling approach is the determination of uptake length (SW), the average distance traveled by dissolved nutrients in the water column before uptake. Although the nutrient spiraling concept has been an invaluable tool in stream ecology, the current practice of estimating uptake length from steady-state nutrient data using linear regression (called here the "SW approach") presents a number of limitations. These limitations are identified by comparing the exponential SW equation with analytical solutions of a stream solute transport model. This comparison indicates that (1) SW, is an aggregate measure of uptake that does not distinguish between main channel and storage zone processes, (2) SW, is an integrated measure of numerous hydrologie and nonhydrologic processes-this process integration may lead to difficulties in interpretation when comparing estimates of SW, and (3) estimates of uptake velocity and areal uptake rate (Vf and U) based on S W, are not independent of system hydrology. Given these findings, a transport-based approach to nutrient spiraling is presented for steady-state and time-series data sets. The transport-based approach for time-series data sets is suggested for future research on nutrient uptake as it provides a number of benefits, including the ability to (1) separately quantify main channel and storage zone uptake, (2) quantify specific hydrologic and nonhydrologic processes using various model parameters (process separation), (3) estimate uptake velocities and areal uptake rates that are independent of hydrologic effects, and (4) use short-term, non-plateau nutrient additions such that the effects of regeneration and mineralization are minimized. In summary, the transport-based, time-series approach provides a means of estimating traditional measures of nutrient uptake (SW, V?? U) while providing additional information on the location and magnitude of uptake (main channel versus storage zone). Application of the transport-based approach to time-series data from Green Creek, Antarctica, indicates that the bulk of nitrate uptake (???74% to 100%) occurred within the main channel where benthic uptake by algal mats is a likely process. Substantial uptake (???26%) also occurred in the storage zone of one reach, where uptake is attributed to the microbial community.

  15. Process Relationships for Evaluating the Role of Light-induced Inactivation of Enterococci at Selected Beaches and Nearby Tributaries of the Great Lakes

    EPA Science Inventory

    One approach to predictive modeling of biological contamination of recreational waters and drinking water sources involves applying process-based models that consider microbial sources, hydrodynamic transport, and microbial fate. Fecal indicator bacteria such as enterococci have ...

  16. Electrospining of polyaniline/poly(lactic acid) ultrathin fibers: process and statistical modeling using a non-gaussian approach

    USDA-ARS?s Scientific Manuscript database

    Cover: The electrospinning technique was employed to obtain conducting nanofibers based on polyaniline and poly(lactic acid). A statistical model was employed to describe how the process factors (solution concentration, applied voltage, and flow rate) govern the fiber dimensions. Nanofibers down to ...

  17. Context-based virtual metrology

    NASA Astrophysics Data System (ADS)

    Ebersbach, Peter; Urbanowicz, Adam M.; Likhachev, Dmitriy; Hartig, Carsten; Shifrin, Michael

    2018-03-01

    Hybrid and data feed forward methodologies are well established for advanced optical process control solutions in highvolume semiconductor manufacturing. Appropriate information from previous measurements, transferred into advanced optical model(s) at following step(s), provides enhanced accuracy and exactness of the measured topographic (thicknesses, critical dimensions, etc.) and material parameters. In some cases, hybrid or feed-forward data are missed or invalid for dies or for a whole wafer. We focus on approaches of virtual metrology to re-create hybrid or feed-forward data inputs in high-volume manufacturing. We discuss missing data inputs reconstruction which is based on various interpolation and extrapolation schemes and uses information about wafer's process history. Moreover, we demonstrate data reconstruction approach based on machine learning techniques utilizing optical model and measured spectra. And finally, we investigate metrics that allow one to assess error margin of virtual data input.

  18. Cost calculator methods for estimating casework time in child welfare services: A promising approach for use in implementation of evidence-based practices and other service innovations.

    PubMed

    Holmes, Lisa; Landsverk, John; Ward, Harriet; Rolls-Reutz, Jennifer; Saldana, Lisa; Wulczyn, Fred; Chamberlain, Patricia

    2014-04-01

    Estimating costs in child welfare services is critical as new service models are incorporated into routine practice. This paper describes a unit costing estimation system developed in England (cost calculator) together with a pilot test of its utility in the United States where unit costs are routinely available for health services but not for child welfare services. The cost calculator approach uses a unified conceptual model that focuses on eight core child welfare processes. Comparison of these core processes in England and in four counties in the United States suggests that the underlying child welfare processes generated from England were perceived as very similar by child welfare staff in California county systems with some exceptions in the review and legal processes. Overall, the adaptation of the cost calculator for use in the United States child welfare systems appears promising. The paper also compares the cost calculator approach to the workload approach widely used in the United States and concludes that there are distinct differences between the two approaches with some possible advantages to the use of the cost calculator approach, especially in the use of this method for estimating child welfare costs in relation to the incorporation of evidence-based interventions into routine practice.

  19. Model-as-a-service (MaaS) using the cloud service innovation platform (CSIP)

    USDA-ARS?s Scientific Manuscript database

    Cloud infrastructures for modelling activities such as data processing, performing environmental simulations, or conducting model calibrations/optimizations provide a cost effective alternative to traditional high performance computing approaches. Cloud-based modelling examples emerged into the more...

  20. Emergence of tissue mechanics from cellular processes: shaping a fly wing

    NASA Astrophysics Data System (ADS)

    Merkel, Matthias; Etournay, Raphael; Popovic, Marko; Nandi, Amitabha; Brandl, Holger; Salbreux, Guillaume; Eaton, Suzanne; Jülicher, Frank

    Nowadays, biologistsare able to image biological tissueswith up to 10,000 cells in vivowhere the behavior of each individual cell can be followed in detail.However, how precisely large-scale tissue deformation and stresses emerge from cellular behavior remains elusive. Here, we study this question in the developing wing of the fruit fly. To this end, we first establish a geometrical framework that exactly decomposes tissue deformation into contributions by different kinds of cellular processes. These processes comprise cell shape changes, cell neighbor exchanges, cell divisions, and cell extrusions. As the key idea, we introduce a tiling of the cellular network into triangles. This approach also reveals that tissue deformation can also be created by correlated cellular motion. Based on quantifications using these concepts, we developed a novel continuum mechanical model for the fly wing. In particular, our model includes active anisotropic stresses and a delay in the response of cell rearrangements to material stresses. A different approach to study the emergence of tissue mechanics from cellular behavior are cell-based models. We characterize the properties of a cell-based model for 3D tissues that is a hybrid between single particle models and the so-called vertex models.

  1. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.

    PubMed

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-12-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  2. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules.

    PubMed

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-09-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  3. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules

    NASA Astrophysics Data System (ADS)

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-12-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  4. Estimating the domain of applicability for machine learning QSAR models: a study on aqueous solubility of drug discovery molecules

    NASA Astrophysics Data System (ADS)

    Schroeter, Timon Sebastian; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-09-01

    We investigate the use of different Machine Learning methods to construct models for aqueous solubility. Models are based on about 4000 compounds, including an in-house set of 632 drug discovery molecules of Bayer Schering Pharma. For each method, we also consider an appropriate method to obtain error bars, in order to estimate the domain of applicability (DOA) for each model. Here, we investigate error bars from a Bayesian model (Gaussian Process (GP)), an ensemble based approach (Random Forest), and approaches based on the Mahalanobis distance to training data (for Support Vector Machine and Ridge Regression models). We evaluate all approaches in terms of their prediction accuracy (in cross-validation, and on an external validation set of 536 molecules) and in how far the individual error bars can faithfully represent the actual prediction error.

  5. Testing process predictions of models of risky choice: a quantitative model comparison approach

    PubMed Central

    Pachur, Thorsten; Hertwig, Ralph; Gigerenzer, Gerd; Brandstätter, Eduard

    2013-01-01

    This article presents a quantitative model comparison contrasting the process predictions of two prominent views on risky choice. One view assumes a trade-off between probabilities and outcomes (or non-linear functions thereof) and the separate evaluation of risky options (expectation models). Another view assumes that risky choice is based on comparative evaluation, limited search, aspiration levels, and the forgoing of trade-offs (heuristic models). We derived quantitative process predictions for a generic expectation model and for a specific heuristic model, namely the priority heuristic (Brandstätter et al., 2006), and tested them in two experiments. The focus was on two key features of the cognitive process: acquisition frequencies (i.e., how frequently individual reasons are looked up) and direction of search (i.e., gamble-wise vs. reason-wise). In Experiment 1, the priority heuristic predicted direction of search better than the expectation model (although neither model predicted the acquisition process perfectly); acquisition frequencies, however, were inconsistent with both models. Additional analyses revealed that these frequencies were primarily a function of what Rubinstein (1988) called “similarity.” In Experiment 2, the quantitative model comparison approach showed that people seemed to rely more on the priority heuristic in difficult problems, but to make more trade-offs in easy problems. This finding suggests that risky choice may be based on a mental toolbox of strategies. PMID:24151472

  6. Spatio-Temporal Regression Based Clustering of Precipitation Extremes in a Presence of Systematically Missing Covariates

    NASA Astrophysics Data System (ADS)

    Kaiser, Olga; Martius, Olivia; Horenko, Illia

    2017-04-01

    Regression based Generalized Pareto Distribution (GPD) models are often used to describe the dynamics of hydrological threshold excesses relying on the explicit availability of all of the relevant covariates. But, in real application the complete set of relevant covariates might be not available. In this context, it was shown that under weak assumptions the influence coming from systematically missing covariates can be reflected by a nonstationary and nonhomogenous dynamics. We present a data-driven, semiparametric and an adaptive approach for spatio-temporal regression based clustering of threshold excesses in a presence of systematically missing covariates. The nonstationary and nonhomogenous behavior of threshold excesses is describes by a set of local stationary GPD models, where the parameters are expressed as regression models, and a non-parametric spatio-temporal hidden switching process. Exploiting nonparametric Finite Element time-series analysis Methodology (FEM) with Bounded Variation of the model parameters (BV) for resolving the spatio-temporal switching process, the approach goes beyond strong a priori assumptions made is standard latent class models like Mixture Models and Hidden Markov Models. Additionally, the presented FEM-BV-GPD provides a pragmatic description of the corresponding spatial dependence structure by grouping together all locations that exhibit similar behavior of the switching process. The performance of the framework is demonstrated on daily accumulated precipitation series over 17 different locations in Switzerland from 1981 till 2013 - showing that the introduced approach allows for a better description of the historical data.

  7. A Comprehensive Planning Model.

    ERIC Educational Resources Information Center

    Rieley, James B.

    The key to long-term institutional effectiveness is a comprehensive planning process that identifies a few vital goals that can be measured by an institution. Effective strategic planning involves five key elements: process-based planning, a systemic approach, integration with the budget process, an effective deployment process, and appropriate…

  8. Generalised additive modelling approach to the fermentation process of glutamate.

    PubMed

    Liu, Chun-Bo; Li, Yun; Pan, Feng; Shi, Zhong-Ping

    2011-03-01

    In this work, generalised additive models (GAMs) were used for the first time to model the fermentation of glutamate (Glu). It was found that three fermentation parameters fermentation time (T), dissolved oxygen (DO) and oxygen uptake rate (OUR) could capture 97% variance of the production of Glu during the fermentation process through a GAM model calibrated using online data from 15 fermentation experiments. This model was applied to investigate the individual and combined effects of T, DO and OUR on the production of Glu. The conditions to optimize the fermentation process were proposed based on the simulation study from this model. Results suggested that the production of Glu can reach a high level by controlling concentration levels of DO and OUR to the proposed optimization conditions during the fermentation process. The GAM approach therefore provides an alternative way to model and optimize the fermentation process of Glu. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  9. A literature review on business process modelling: new frontiers of reusability

    NASA Astrophysics Data System (ADS)

    Aldin, Laden; de Cesare, Sergio

    2011-08-01

    Business process modelling (BPM) has become fundamental for modern enterprises due to the increasing rate of organisational change. As a consequence, business processes need to be continuously (re-)designed as well as subsequently aligned with the corresponding enterprise information systems. One major problem associated with the design of business processes is reusability. Reuse of business process models has the potential of increasing the efficiency and effectiveness of BPM. This article critically surveys the existing literature on the problem of BPM reusability and more specifically on that State-of-the-Art research that can provide or suggest the 'elements' required for the development of a methodology aimed at discovering reusable conceptual artefacts in the form of patterns. The article initially clarifies the definitions of business process and business process model; then, it sets out to explore the previous research conducted in areas that have an impact on reusability in BPM. The article concludes by distilling directions for future research towards the development of apatterns-based approach to BPM; an approach that brings together the contributions made by the research community in the areas of process mining and discovery, declarative approaches and ontologies.

  10. A process-based standard for the Solar Energetic Particle Event Environment

    NASA Astrophysics Data System (ADS)

    Gabriel, Stephen

    For 10 years or more, there has been a lack of concensus on what the ISO standard model for the Solar Energetic Particle Event (SEPE) environment should be. Despite many technical discussions between the world experts in this field, it has been impossible to agree on which of the several models available should be selected as the standard. Most of these discussions at the ISO WG4 meetings and conferences, etc have centred around the differences in modelling approach between the MSU model and the several remaining models from elsewhere worldwide (mainly the USA and Europe). The topic is considered timely given the inclusion of a session on reference data sets at the Space Weather Workshop in Boulder in April 2014. The original idea of a ‘process-based’ standard was conceived by Dr Kent Tobiska as a way of getting round the problems associated with not only the presence of different models, which in themselves could have quite distinct modelling approaches but could also be based on different data sets. In essence, a process based standard approach overcomes these issues by allowing there to be more than one model and not necessarily a single standard model; however, any such model has to be completely transparent in that the data set and the modelling techniques used have to be not only to be clearly and unambiguously defined but also subject to peer review. If the model meets all of these requirements then it should be acceptable as a standard model. So how does this process-based approach resolve the differences between the existing modelling approaches for the SEPE environment and remove the impasse? In a sense, it does not remove all of the differences but only some of them; however, most importantly it will allow something which so far has been impossible without ambiguities and disagreement and that is a comparison of the results of the various models. To date one of the problems (if not the major one) in comparing the results of the various different SEPE statistical models has been caused by two things: 1) the data set and 2) the definition of an event Because unravelling the dependencies of the outputs of different statistical models on these two parameters is extremely difficult if not impossible, currently comparison of the results from the different models is also extremely difficult and can lead to controversies, especially over which model is the correct one; hence, when it comes to using these models for engineering purposes to calculate, for example, the radiation dose for a particular mission, the user, who is in all likelihood not an expert in this field, could be given two( or even more) very different environments and find it impossible to know how to select one ( or even how to compare them). What is proposed then, is a process-based standard, which in common with nearly all of the current models is composed of 3 elements, a standard data set, a standard event definition and a resulting standard event list. A standard event list is the output of this standard and can then be used with any of the existing (or indeed future) models that are based on events. This standard event list is completely traceable and transparent and represents a reference event list for all the community. When coupled with a statistical model, the results when compared will only be dependent on the statistical model and not on the data set or event definition.

  11. Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics

    NASA Astrophysics Data System (ADS)

    Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran

    2017-08-01

    Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7

  12. A Review of Diagnostic Techniques for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna

    2005-01-01

    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between automated and human-performed tasks is a vital concern.

  13. Applying the tuple space-based approach to the simulation of the caspases, an essential signalling pathway.

    PubMed

    Cárdenas-García, Maura; González-Pérez, Pedro Pablo

    2013-04-11

    Apoptotic cell death plays a crucial role in development and homeostasis. This process is driven by mitochondrial permeabilization and activation of caspases. In this paper we adopt a tuple spaces-based modelling and simulation approach, and show how it can be applied to the simulation of this intracellular signalling pathway. Specifically, we are working to explore and to understand the complex interaction patterns of the caspases apoptotic and the mitochondrial role. As a first approximation, using the tuple spaces-based in silico approach, we model and simulate both the extrinsic and intrinsic apoptotic signalling pathways and the interactions between them. During apoptosis, mitochondrial proteins, released from mitochondria to cytosol are decisively involved in the process. If the decision is to die, from this point there is normally no return, cancer cells offer resistance to the mitochondrial induction.

  14. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy

    PubMed Central

    Kabir, Mohammad Rizviul; Richter, Henning

    2017-01-01

    A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework. PMID:28772504

  15. Modeling of Processing-Induced Pore Morphology in an Additively-Manufactured Ti-6Al-4V Alloy.

    PubMed

    Kabir, Mohammad Rizviul; Richter, Henning

    2017-02-08

    A selective laser melting (SLM)-based, additively-manufactured Ti-6Al-4V alloy is prone to the accumulation of undesirable defects during layer-by-layer material build-up. Defects in the form of complex-shaped pores are one of the critical issues that need to be considered during the processing of this alloy. Depending on the process parameters, pores with concave or convex boundaries may occur. To exploit the full potential of additively-manufactured Ti-6Al-4V, the interdependency between the process parameters, pore morphology, and resultant mechanical properties, needs to be understood. By incorporating morphological details into numerical models for micromechanical analyses, an in-depth understanding of how these pores interact with the Ti-6Al-4V microstructure can be gained. However, available models for pore analysis lack a realistic description of both the Ti-6Al-4V grain microstructure, and the pore geometry. To overcome this, we propose a comprehensive approach for modeling and discretizing pores with complex geometry, situated in a polycrystalline microstructure. In this approach, the polycrystalline microstructure is modeled by means of Voronoi tessellations, and the complex pore geometry is approximated by strategically combining overlapping spheres of varied sizes. The proposed approach provides an elegant way to model the microstructure of SLM-processed Ti-6Al-4V containing pores or crack-like voids, and makes it possible to investigate the relationship between process parameters, pore morphology, and resultant mechanical properties in a finite-element-based simulation framework.

  16. Integrated modeling approach using SELECT and SWAT models to simulate source loading and in-stream conditions of fecal indicator bacteria.

    NASA Astrophysics Data System (ADS)

    Ranatunga, T.

    2016-12-01

    Modeling of fate and transport of fecal bacteria in a watershed is generally a processed based approach that considers releases from manure, point sources, and septic systems. Overland transport with water and sediments, infiltration into soils, transport in the vadose zone and groundwater, die-off and growth processes, and in-stream transport are considered as the other major processes in bacteria simulation. This presentation will discuss a simulation of fecal indicator bacteria (E.coli) source loading and in-stream conditions of a non-tidal watershed (Cedar Bayou Watershed) in South Central Texas using two models; Spatially Explicit Load Enrichment Calculation Tool (SELECT) and Soil and Water Assessment Tool (SWAT). Furthermore, it will discuss a probable approach of bacteria source load reduction in order to meet the water quality standards in the streams. The selected watershed is listed as having levels of fecal indicator bacteria that posed a risk for contact recreation and wading by the Texas Commission of Environmental Quality (TCEQ). The SELECT modeling approach was used in estimating the bacteria source loading from land categories. Major bacteria sources considered were, failing septic systems, discharges from wastewater treatment facilities, excreta from livestock (Cattle, Horses, Sheep and Goat), excreta from Wildlife (Feral Hogs, and Deer), Pet waste (mainly from Dogs), and runoff from urban surfaces. The estimated source loads were input to the SWAT model in order to simulate the transport through the land and in-stream conditions. The calibrated SWAT model was then used to estimate the indicator bacteria in-stream concentrations for future years based on H-GAC's regional land use, population and household projections (up to 2040). Based on the in-stream reductions required to meet the water quality standards, the corresponding required source load reductions were estimated.

  17. Addressing spatial scales and new mechanisms in climate impact ecosystem modeling

    NASA Astrophysics Data System (ADS)

    Poulter, B.; Joetzjer, E.; Renwick, K.; Ogunkoya, G.; Emmett, K.

    2015-12-01

    Climate change impacts on vegetation distributions are typically addressed using either an empirical approach, such as a species distribution model (SDM), or with process-based methods, for example, dynamic global vegetation models (DGVMs). Each approach has its own benefits and disadvantages. For example, an SDM is constrained by data and few parameters, but does not include adaptation or acclimation processes or other ecosystem feedbacks that may act to mitigate or enhance climate effects. Alternatively, a DGVM model includes many mechanisms relating plant growth and disturbance to climate, but simulations are costly to perform at high-spatial resolution and there remains large uncertainty on a variety of fundamental physical processes. To address these issues, here, we present two DGVM-based case studies where i) high-resolution (1 km) simulations are being performed for vegetation in the Greater Yellowstone Ecosystem using a biogeochemical, forest gap model, LPJ-GUESS, and ii) where new mechanisms for simulating tropical tree-mortality are being introduced. High-resolution DGVM model simulations require not only computing and reorganizing code but also a consideration of scaling issues on vegetation dynamics and stochasticity and also on disturbance and migration. New mechanisms for simulating forest mortality must consider hydraulic limitations and carbon reserves and their interactions on source-sink dynamics and in controlling water potentials. Improving DGVM approaches by addressing spatial scale challenges and integrating new approaches for estimating forest mortality will provide new insights more relevant for land management and possibly reduce uncertainty by physical processes more directly comparable to experimental and observational evidence.

  18. Implementation of a Goal-Based Systems Engineering Process Using the Systems Modeling Language (SysML)

    NASA Technical Reports Server (NTRS)

    Patterson, Jonathan D.; Breckenridge, Jonathan T.; Johnson, Stephen B.

    2013-01-01

    Building upon the purpose, theoretical approach, and use of a Goal-Function Tree (GFT) being presented by Dr. Stephen B. Johnson, described in a related Infotech 2013 ISHM abstract titled "Goal-Function Tree Modeling for Systems Engineering and Fault Management", this paper will describe the core framework used to implement the GFTbased systems engineering process using the Systems Modeling Language (SysML). These two papers are ideally accepted and presented together in the same Infotech session. Statement of problem: SysML, as a tool, is currently not capable of implementing the theoretical approach described within the "Goal-Function Tree Modeling for Systems Engineering and Fault Management" paper cited above. More generally, SysML's current capabilities to model functional decompositions in the rigorous manner required in the GFT approach are limited. The GFT is a new Model-Based Systems Engineering (MBSE) approach to the development of goals and requirements, functions, and its linkage to design. As a growing standard for systems engineering, it is important to develop methods to implement GFT in SysML. Proposed Method of Solution: Many of the central concepts of the SysML language are needed to implement a GFT for large complex systems. In the implementation of those central concepts, the following will be described in detail: changes to the nominal SysML process, model view definitions and examples, diagram definitions and examples, and detailed SysML construct and stereotype definitions.

  19. Generic Raman-based calibration models enabling real-time monitoring of cell culture bioreactors.

    PubMed

    Mehdizadeh, Hamidreza; Lauri, David; Karry, Krizia M; Moshgbar, Mojgan; Procopio-Melino, Renee; Drapeau, Denis

    2015-01-01

    Raman-based multivariate calibration models have been developed for real-time in situ monitoring of multiple process parameters within cell culture bioreactors. Developed models are generic, in the sense that they are applicable to various products, media, and cell lines based on Chinese Hamster Ovarian (CHO) host cells, and are scalable to large pilot and manufacturing scales. Several batches using different CHO-based cell lines and corresponding proprietary media and process conditions have been used to generate calibration datasets, and models have been validated using independent datasets from separate batch runs. All models have been validated to be generic and capable of predicting process parameters with acceptable accuracy. The developed models allow monitoring multiple key bioprocess metabolic variables, and hence can be utilized as an important enabling tool for Quality by Design approaches which are strongly supported by the U.S. Food and Drug Administration. © 2015 American Institute of Chemical Engineers.

  20. Image-Based Modeling Techniques for Architectural Heritage 3d Digitalization: Limits and Potentialities

    NASA Astrophysics Data System (ADS)

    Santagati, C.; Inzerillo, L.; Di Paola, F.

    2013-07-01

    3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS), the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases) to large scale buildings for practitioner purpose.

  1. Device and circuit analysis of a sub 20 nm double gate MOSFET with gate stack using a look-up-table-based approach

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Dasgupta, A.; Das, R.; Kar, M.; Kundu, A.; Sarkar, C. K.

    2017-12-01

    In this paper, we explore the possibility of mapping devices designed in TCAD environment to its modeled version developed in cadence virtuoso environment using a look-up table (LUT) approach. Circuit simulation of newly designed devices in TCAD environment is a very slow and tedious process involving complex scripting. Hence, the LUT based modeling approach has been proposed as a faster and easier alternative in cadence environment. The LUTs are prepared by extracting data from the device characteristics obtained from device simulation in TCAD. A comparative study is shown between the TCAD simulation and the LUT-based alternative to showcase the accuracy of modeled devices. Finally the look-up table approach is used to evaluate the performance of circuits implemented using 14 nm nMOSFET.

  2. Ground robotic measurement of aeolian processes

    USDA-ARS?s Scientific Manuscript database

    Models of aeolian processes rely on accurate measurements of the rates of sediment transport by wind, and careful evaluation of the environmental controls of these processes. Existing field approaches typically require intensive, event-based experiments involving dense arrays of instruments. These d...

  3. Student's Uncertainty Modeling through a Multimodal Sensor-Based Approach

    ERIC Educational Resources Information Center

    Jraidi, Imene; Frasson, Claude

    2013-01-01

    Detecting the student internal state during learning is a key construct in educational environment and particularly in Intelligent Tutoring Systems (ITS). Students' uncertainty is of primary interest as it is deeply rooted in the process of knowledge construction. In this paper we propose a new sensor-based multimodal approach to model…

  4. An Approach Based on Social Network Analysis Applied to a Collaborative Learning Experience

    ERIC Educational Resources Information Center

    Claros, Iván; Cobos, Ruth; Collazos, César A.

    2016-01-01

    The Social Network Analysis (SNA) techniques allow modelling and analysing the interaction among individuals based on their attributes and relationships. This approach has been used by several researchers in order to measure the social processes in collaborative learning experiences. But oftentimes such measures were calculated at the final state…

  5. PBL-SEE: An Authentic Assessment Model for PBL-Based Software Engineering Education

    ERIC Educational Resources Information Center

    dos Santos, Simone C.

    2017-01-01

    The problem-based learning (PBL) approach has been successfully applied to teaching software engineering thanks to its principles of group work, learning by solving real problems, and learning environments that match the market realities. However, the lack of well-defined methodologies and processes for implementing the PBL approach represents a…

  6. Using state variables to model the response of tumour cells to radiation and heat: a novel multi-hit-repair approach.

    PubMed

    Scheidegger, Stephan; Fuchs, Hans U; Zaugg, Kathrin; Bodis, Stephan; Füchslin, Rudolf M

    2013-01-01

    In order to overcome the limitations of the linear-quadratic model and include synergistic effects of heat and radiation, a novel radiobiological model is proposed. The model is based on a chain of cell populations which are characterized by the number of radiation induced damages (hits). Cells can shift downward along the chain by collecting hits and upward by a repair process. The repair process is governed by a repair probability which depends upon state variables used for a simplistic description of the impact of heat and radiation upon repair proteins. Based on the parameters used, populations up to 4-5 hits are relevant for the calculation of the survival. The model describes intuitively the mathematical behaviour of apoptotic and nonapoptotic cell death. Linear-quadratic-linear behaviour of the logarithmic cell survival, fractionation, and (with one exception) the dose rate dependencies are described correctly. The model covers the time gap dependence of the synergistic cell killing due to combined application of heat and radiation, but further validation of the proposed approach based on experimental data is needed. However, the model offers a work bench for testing different biological concepts of damage induction, repair, and statistical approaches for calculating the variables of state.

  7. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The non-linear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  8. Model-Based Engine Control Architecture with an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and implementation of an extended Kalman filter (EKF) for model-based engine control (MBEC). Previously proposed MBEC architectures feature an optimal tuner Kalman Filter (OTKF) to produce estimates of both unmeasured engine parameters and estimates for the health of the engine. The success of this approach relies on the accuracy of the linear model and the ability of the optimal tuner to update its tuner estimates based on only a few sensors. Advances in computer processing are making it possible to replace the piece-wise linear model, developed off-line, with an on-board nonlinear model running in real-time. This will reduce the estimation errors associated with the linearization process, and is typically referred to as an extended Kalman filter. The nonlinear extended Kalman filter approach is applied to the Commercial Modular Aero-Propulsion System Simulation 40,000 (C-MAPSS40k) and compared to the previously proposed MBEC architecture. The results show that the EKF reduces the estimation error, especially during transient operation.

  9. Detecting determinism from point processes.

    PubMed

    Andrzejak, Ralph G; Mormann, Florian; Kreuz, Thomas

    2014-12-01

    The detection of a nonrandom structure from experimental data can be crucial for the classification, understanding, and interpretation of the generating process. We here introduce a rank-based nonlinear predictability score to detect determinism from point process data. Thanks to its modular nature, this approach can be adapted to whatever signature in the data one considers indicative of deterministic structure. After validating our approach using point process signals from deterministic and stochastic model dynamics, we show an application to neuronal spike trains recorded in the brain of an epilepsy patient. While we illustrate our approach in the context of temporal point processes, it can be readily applied to spatial point processes as well.

  10. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten

    2017-12-01

    Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data-driven modelling and model-data integration approaches can guide the future development of global process-oriented vegetation-fire models.

  11. MATTS- A Step Towards Model Based Testing

    NASA Astrophysics Data System (ADS)

    Herpel, H.-J.; Willich, G.; Li, J.; Xie, J.; Johansen, B.; Kvinnesland, K.; Krueger, S.; Barrios, P.

    2016-08-01

    In this paper we describe a Model Based approach to testing of on-board software and compare it with traditional validation strategy currently applied to satellite software. The major problems that software engineering will face over at least the next two decades are increasing application complexity driven by the need for autonomy and serious application robustness. In other words, how do we actually get to declare success when trying to build applications one or two orders of magnitude more complex than today's applications. To solve the problems addressed above the software engineering process has to be improved at least for two aspects: 1) Software design and 2) Software testing. The software design process has to evolve towards model-based approaches with extensive use of code generators. Today, testing is an essential, but time and resource consuming activity in the software development process. Generating a short, but effective test suite usually requires a lot of manual work and expert knowledge. In a model-based process, among other subtasks, test construction and test execution can also be partially automated. The basic idea behind the presented study was to start from a formal model (e.g. State Machines), generate abstract test cases which are then converted to concrete executable test cases (input and expected output pairs). The generated concrete test cases were applied to an on-board software. Results were collected and evaluated wrt. applicability, cost-efficiency, effectiveness at fault finding, and scalability.

  12. Social Learning among Organic Farmers and the Application of the Communities of Practice Framework

    ERIC Educational Resources Information Center

    Morgan, Selyf Lloyd

    2011-01-01

    The paper examines social learning processes among organic farmers and explores the application of the Community of Practice (CoP) model in this context. The analysis employed utilises an approach based on the CoP model, and considers how, or whether, this approach may be useful to understand social learning among farmers. The CoP model is applied…

  13. A CSP-Based Agent Modeling Framework for the Cougaar Agent-Based Architecture

    NASA Technical Reports Server (NTRS)

    Gracanin, Denis; Singh, H. Lally; Eltoweissy, Mohamed; Hinchey, Michael G.; Bohner, Shawn A.

    2005-01-01

    Cognitive Agent Architecture (Cougaar) is a Java-based architecture for large-scale distributed agent-based applications. A Cougaar agent is an autonomous software entity with behaviors that represent a real-world entity (e.g., a business process). A Cougaar-based Model Driven Architecture approach, currently under development, uses a description of system's functionality (requirements) to automatically implement the system in Cougaar. The Communicating Sequential Processes (CSP) formalism is used for the formal validation of the generated system. Two main agent components, a blackboard and a plugin, are modeled as CSP processes. A set of channels represents communications between the blackboard and individual plugins. The blackboard is represented as a CSP process that communicates with every agent in the collection. The developed CSP-based Cougaar modeling framework provides a starting point for a more complete formal verification of the automatically generated Cougaar code. Currently it is used to verify the behavior of an individual agent in terms of CSP properties and to analyze the corresponding Cougaar society.

  14. An integrative top-down and bottom-up qualitative model construction framework for exploration of biochemical systems.

    PubMed

    Wu, Zujian; Pang, Wei; Coghill, George M

    Computational modelling of biochemical systems based on top-down and bottom-up approaches has been well studied over the last decade. In this research, after illustrating how to generate atomic components by a set of given reactants and two user pre-defined component patterns, we propose an integrative top-down and bottom-up modelling approach for stepwise qualitative exploration of interactions among reactants in biochemical systems. Evolution strategy is applied to the top-down modelling approach to compose models, and simulated annealing is employed in the bottom-up modelling approach to explore potential interactions based on models constructed from the top-down modelling process. Both the top-down and bottom-up approaches support stepwise modular addition or subtraction for the model evolution. Experimental results indicate that our modelling approach is feasible to learn the relationships among biochemical reactants qualitatively. In addition, hidden reactants of the target biochemical system can be obtained by generating complex reactants in corresponding composed models. Moreover, qualitatively learned models with inferred reactants and alternative topologies can be used for further web-lab experimental investigations by biologists of interest, which may result in a better understanding of the system.

  15. REVIEWS OF TOPICAL PROBLEMS: Nonlinear dynamics of the brain: emotion and cognition

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail I.; Muezzinoglu, M. K.

    2010-07-01

    Experimental investigations of neural system functioning and brain activity are standardly based on the assumption that perceptions, emotions, and cognitive functions can be understood by analyzing steady-state neural processes and static tomographic snapshots. The new approaches discussed in this review are based on the analysis of transient processes and metastable states. Transient dynamics is characterized by two basic properties, structural stability and information sensitivity. The ideas and methods that we discuss provide an explanation for the occurrence of and successive transitions between metastable states observed in experiments, and offer new approaches to behavior analysis. Models of the emotional and cognitive functions of the brain are suggested. The mathematical object that represents the observed transient brain processes in the phase space of the model is a structurally stable heteroclinic channel. The possibility of using the suggested models to construct a quantitative theory of some emotional and cognitive functions is illustrated.

  16. Multicriteria framework for selecting a process modelling language

    NASA Astrophysics Data System (ADS)

    Scanavachi Moreira Campos, Ana Carolina; Teixeira de Almeida, Adiel

    2016-01-01

    The choice of process modelling language can affect business process management (BPM) since each modelling language shows different features of a given process and may limit the ways in which a process can be described and analysed. However, choosing the appropriate modelling language for process modelling has become a difficult task because of the availability of a large number modelling languages and also due to the lack of guidelines on evaluating, and comparing languages so as to assist in selecting the most appropriate one. This paper proposes a framework for selecting a modelling language in accordance with the purposes of modelling. This framework is based on the semiotic quality framework (SEQUAL) for evaluating process modelling languages and a multicriteria decision aid (MCDA) approach in order to select the most appropriate language for BPM. This study does not attempt to set out new forms of assessment and evaluation criteria, but does attempt to demonstrate how two existing approaches can be combined so as to solve the problem of selection of modelling language. The framework is described in this paper and then demonstrated by means of an example. Finally, the advantages and disadvantages of using SEQUAL and MCDA in an integrated manner are discussed.

  17. Transforming Collaborative Process Models into Interface Process Models by Applying an MDA Approach

    NASA Astrophysics Data System (ADS)

    Lazarte, Ivanna M.; Chiotti, Omar; Villarreal, Pablo D.

    Collaborative business models among enterprises require defining collaborative business processes. Enterprises implement B2B collaborations to execute these processes. In B2B collaborations the integration and interoperability of processes and systems of the enterprises are required to support the execution of collaborative processes. From a collaborative process model, which describes the global view of the enterprise interactions, each enterprise must define the interface process that represents the role it performs in the collaborative process in order to implement the process in a Business Process Management System. Hence, in this work we propose a method for the automatic generation of the interface process model of each enterprise from a collaborative process model. This method is based on a Model-Driven Architecture to transform collaborative process models into interface process models. By applying this method, interface processes are guaranteed to be interoperable and defined according to a collaborative process.

  18. Finding shared decisions in stakeholder networks: An agent-based approach

    NASA Astrophysics Data System (ADS)

    Le Pira, Michela; Inturri, Giuseppe; Ignaccolo, Matteo; Pluchino, Alessandro; Rapisarda, Andrea

    2017-01-01

    We address the problem of a participatory decision-making process where a shared priority list of alternatives has to be obtained while avoiding inconsistent decisions. An agent-based model (ABM) is proposed to mimic this process in different social networks of stakeholders who interact according to an opinion dynamics model. Simulations' results show the efficacy of interaction in finding a transitive and, above all, shared decision. These findings are in agreement with real participation experiences regarding transport planning decisions and can give useful suggestions on how to plan an effective participation process for sustainable policy-making based on opinion consensus.

  19. Development of a noise prediction model based on advanced fuzzy approaches in typical industrial workrooms.

    PubMed

    Aliabadi, Mohsen; Golmohammadi, Rostam; Khotanlou, Hassan; Mansoorizadeh, Muharram; Salarpour, Amir

    2014-01-01

    Noise prediction is considered to be the best method for evaluating cost-preventative noise controls in industrial workrooms. One of the most important issues is the development of accurate models for analysis of the complex relationships among acoustic features affecting noise level in workrooms. In this study, advanced fuzzy approaches were employed to develop relatively accurate models for predicting noise in noisy industrial workrooms. The data were collected from 60 industrial embroidery workrooms in the Khorasan Province, East of Iran. The main acoustic and embroidery process features that influence the noise were used to develop prediction models using MATLAB software. Multiple regression technique was also employed and its results were compared with those of fuzzy approaches. Prediction errors of all prediction models based on fuzzy approaches were within the acceptable level (lower than one dB). However, Neuro-fuzzy model (RMSE=0.53dB and R2=0.88) could slightly improve the accuracy of noise prediction compared with generate fuzzy model. Moreover, fuzzy approaches provided more accurate predictions than did regression technique. The developed models based on fuzzy approaches as useful prediction tools give professionals the opportunity to have an optimum decision about the effectiveness of acoustic treatment scenarios in embroidery workrooms.

  20. RY-Coding and Non-Homogeneous Models Can Ameliorate the Maximum-Likelihood Inferences From Nucleotide Sequence Data with Parallel Compositional Heterogeneity.

    PubMed

    Ishikawa, Sohta A; Inagaki, Yuji; Hashimoto, Tetsuo

    2012-01-01

    In phylogenetic analyses of nucleotide sequences, 'homogeneous' substitution models, which assume the stationarity of base composition across a tree, are widely used, albeit individual sequences may bear distinctive base frequencies. In the worst-case scenario, a homogeneous model-based analysis can yield an artifactual union of two distantly related sequences that achieved similar base frequencies in parallel. Such potential difficulty can be countered by two approaches, 'RY-coding' and 'non-homogeneous' models. The former approach converts four bases into purine and pyrimidine to normalize base frequencies across a tree, while the heterogeneity in base frequency is explicitly incorporated in the latter approach. The two approaches have been applied to real-world sequence data; however, their basic properties have not been fully examined by pioneering simulation studies. Here, we assessed the performances of the maximum-likelihood analyses incorporating RY-coding and a non-homogeneous model (RY-coding and non-homogeneous analyses) on simulated data with parallel convergence to similar base composition. Both RY-coding and non-homogeneous analyses showed superior performances compared with homogeneous model-based analyses. Curiously, the performance of RY-coding analysis appeared to be significantly affected by a setting of the substitution process for sequence simulation relative to that of non-homogeneous analysis. The performance of a non-homogeneous analysis was also validated by analyzing a real-world sequence data set with significant base heterogeneity.

  1. Exact Hybrid Particle/Population Simulation of Rule-Based Models of Biochemical Systems

    PubMed Central

    Stover, Lori J.; Nair, Niketh S.; Faeder, James R.

    2014-01-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This “network-free” approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of “partial network expansion” into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility. PMID:24699269

  2. Exact hybrid particle/population simulation of rule-based models of biochemical systems.

    PubMed

    Hogg, Justin S; Harris, Leonard A; Stover, Lori J; Nair, Niketh S; Faeder, James R

    2014-04-01

    Detailed modeling and simulation of biochemical systems is complicated by the problem of combinatorial complexity, an explosion in the number of species and reactions due to myriad protein-protein interactions and post-translational modifications. Rule-based modeling overcomes this problem by representing molecules as structured objects and encoding their interactions as pattern-based rules. This greatly simplifies the process of model specification, avoiding the tedious and error prone task of manually enumerating all species and reactions that can potentially exist in a system. From a simulation perspective, rule-based models can be expanded algorithmically into fully-enumerated reaction networks and simulated using a variety of network-based simulation methods, such as ordinary differential equations or Gillespie's algorithm, provided that the network is not exceedingly large. Alternatively, rule-based models can be simulated directly using particle-based kinetic Monte Carlo methods. This "network-free" approach produces exact stochastic trajectories with a computational cost that is independent of network size. However, memory and run time costs increase with the number of particles, limiting the size of system that can be feasibly simulated. Here, we present a hybrid particle/population simulation method that combines the best attributes of both the network-based and network-free approaches. The method takes as input a rule-based model and a user-specified subset of species to treat as population variables rather than as particles. The model is then transformed by a process of "partial network expansion" into a dynamically equivalent form that can be simulated using a population-adapted network-free simulator. The transformation method has been implemented within the open-source rule-based modeling platform BioNetGen, and resulting hybrid models can be simulated using the particle-based simulator NFsim. Performance tests show that significant memory savings can be achieved using the new approach and a monetary cost analysis provides a practical measure of its utility.

  3. Genetic demographic networks: Mathematical model and applications.

    PubMed

    Kimmel, Marek; Wojdyła, Tomasz

    2016-10-01

    Recent improvement in the quality of genetic data obtained from extinct human populations and their ancestors encourages searching for answers to basic questions regarding human population history. The most common and successful are model-based approaches, in which genetic data are compared to the data obtained from the assumed demography model. Using such approach, it is possible to either validate or adjust assumed demography. Model fit to data can be obtained based on reverse-time coalescent simulations or forward-time simulations. In this paper we introduce a computational method based on mathematical equation that allows obtaining joint distributions of pairs of individuals under a specified demography model, each of them characterized by a genetic variant at a chosen locus. The two individuals are randomly sampled from either the same or two different populations. The model assumes three types of demographic events (split, merge and migration). Populations evolve according to the time-continuous Moran model with drift and Markov-process mutation. This latter process is described by the Lyapunov-type equation introduced by O'Brien and generalized in our previous works. Application of this equation constitutes an original contribution. In the result section of the paper we present sample applications of our model to both simulated and literature-based demographies. Among other we include a study of the Slavs-Balts-Finns genetic relationship, in which we model split and migrations between the Balts and Slavs. We also include another example that involves the migration rates between farmers and hunters-gatherers, based on modern and ancient DNA samples. This latter process was previously studied using coalescent simulations. Our results are in general agreement with the previous method, which provides validation of our approach. Although our model is not an alternative to simulation methods in the practical sense, it provides an algorithm to compute pairwise distributions of alleles, in the case of haploid non-recombining loci such as mitochondrial and Y-chromosome loci in humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Genetic Programming for Automatic Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development, Water Resources Research, 47(11).

  5. A Harris-Todaro Agent-Based Model to Rural-Urban Migration

    NASA Astrophysics Data System (ADS)

    Espíndola, Aquino L.; Silveira, Jaylson J.; Penna, T. J. P.

    2006-09-01

    The Harris-Todaro model of the rural-urban migration process is revisited under an agent-based approach. The migration of the workers is interpreted as a process of social learning by imitation, formalized by a computational model. By simulating this model, we observe a transitional dynamics with continuous growth of the urban fraction of overall population toward an equilibrium. Such an equilibrium is characterized by stabilization of rural-urban expected wages differential (generalized Harris-Todaro equilibrium condition), urban concentration and urban unemployment. These classic results obtained originally by Harris and Todaro are emergent properties of our model.

  6. Word of Mouth : An Agent-based Approach to Predictability of Stock Prices

    NASA Astrophysics Data System (ADS)

    Shimokawa, Tetsuya; Misawa, Tadanobu; Watanabe, Kyoko

    This paper addresses how communication processes among investors affect stock prices formation, especially emerging predictability of stock prices, in financial markets. An agent based model, called the word of mouth model, is introduced for analyzing the problem. This model provides a simple, but sufficiently versatile, description of informational diffusion process and is successful in making lucidly explanation for the predictability of small sized stocks, which is a stylized fact in financial markets but difficult to resolve by traditional models. Our model also provides a rigorous examination of the under reaction hypothesis to informational shocks.

  7. Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model

    NASA Astrophysics Data System (ADS)

    Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran

    2014-09-01

    Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.

  8. A numerical model to simulate foams during devolatilization of polymers

    NASA Astrophysics Data System (ADS)

    Khan, Irfan; Dixit, Ravindra

    2014-11-01

    Customers often demand that the polymers sold in the market have low levels of volatile organic compounds (VOC). Some of the processes for making polymers involve the removal of volatiles to the levels of parts per million (devolatilization). During this step the volatiles are phase separated out of the polymer through a combination of heating and applying lower pressure, creating foam with the pure polymer in liquid phase and the volatiles in the gas phase. The efficiency of the devolatilization process depends on predicting the onset of solvent phase change in the polymer and volatiles mixture accurately based on the processing conditions. However due to the complex relationship between the polymer properties and the processing conditions this is not trivial. In this work, a bubble scale model is coupled with a bulk scale transport model to simulate the processing conditions of polymer devolatilization. The bubble scale model simulates the nucleation and bubble growth based on the classical nucleation theory and the popular ``influence volume approach.'' As such it provides the information of bubble size distribution and number density inside the polymer at any given time and position. This information is used to predict the bulk properties of the polymer and its behavior under the applied processing conditions. Initial results of this modeling approach will be presented.

  9. How models can support ecosystem-based management of coral reefs

    NASA Astrophysics Data System (ADS)

    Weijerman, Mariska; Fulton, Elizabeth A.; Janssen, Annette B. G.; Kuiper, Jan J.; Leemans, Rik; Robson, Barbara J.; van de Leemput, Ingrid A.; Mooij, Wolf M.

    2015-11-01

    Despite the importance of coral reef ecosystems to the social and economic welfare of coastal communities, the condition of these marine ecosystems have generally degraded over the past decades. With an increased knowledge of coral reef ecosystem processes and a rise in computer power, dynamic models are useful tools in assessing the synergistic effects of local and global stressors on ecosystem functions. We review representative approaches for dynamically modeling coral reef ecosystems and categorize them as minimal, intermediate and complex models. The categorization was based on the leading principle for model development and their level of realism and process detail. This review aims to improve the knowledge of concurrent approaches in coral reef ecosystem modeling and highlights the importance of choosing an appropriate approach based on the type of question(s) to be answered. We contend that minimal and intermediate models are generally valuable tools to assess the response of key states to main stressors and, hence, contribute to understanding ecological surprises. As has been shown in freshwater resources management, insight into these conceptual relations profoundly influences how natural resource managers perceive their systems and how they manage ecosystem recovery. We argue that adaptive resource management requires integrated thinking and decision support, which demands a diversity of modeling approaches. Integration can be achieved through complimentary use of models or through integrated models that systemically combine all relevant aspects in one model. Such whole-of-system models can be useful tools for quantitatively evaluating scenarios. These models allow an assessment of the interactive effects of multiple stressors on various, potentially conflicting, management objectives. All models simplify reality and, as such, have their weaknesses. While minimal models lack multidimensionality, system models are likely difficult to interpret as they require many efforts to decipher the numerous interactions and feedback loops. Given the breadth of questions to be tackled when dealing with coral reefs, the best practice approach uses multiple model types and thus benefits from the strength of different models types.

  10. A Modeling Approach for Plastic-Metal Laser Direct Joining

    NASA Astrophysics Data System (ADS)

    Lutey, Adrian H. A.; Fortunato, Alessandro; Ascari, Alessandro; Romoli, Luca

    2017-09-01

    Laser processing has been identified as a feasible approach to direct joining of metal and plastic components without the need for adhesives or mechanical fasteners. The present work sees development of a modeling approach for conduction and transmission laser direct joining of these materials based on multi-layer optical propagation theory and numerical heat flow simulation. The scope of this methodology is to predict process outcomes based on the calculated joint interface and upper surface temperatures. Three representative cases are considered for model verification, including conduction joining of PBT and aluminum alloy, transmission joining of optically transparent PET and stainless steel, and transmission joining of semi-transparent PA 66 and stainless steel. Conduction direct laser joining experiments are performed on black PBT and 6082 anticorodal aluminum alloy, achieving shear loads of over 2000 N with specimens of 2 mm thickness and 25 mm width. Comparison with simulation results shows that consistently high strength is achieved where the peak interface temperature is above the plastic degradation temperature. Comparison of transmission joining simulations and published experimental results confirms these findings and highlights the influence of plastic layer optical absorption on process feasibility.

  11. Re-Engineering Complex Legacy Systems at NASA

    NASA Technical Reports Server (NTRS)

    Ruszkowski, James; Meshkat, Leila

    2010-01-01

    The Flight Production Process (FPP) Re-engineering project has established a Model-Based Systems Engineering (MBSE) methodology and the technological infrastructure for the design and development of a reference, product-line architecture as well as an integrated workflow model for the Mission Operations System (MOS) for human space exploration missions at NASA Johnson Space Center. The design and architectural artifacts have been developed based on the expertise and knowledge of numerous Subject Matter Experts (SMEs). The technological infrastructure developed by the FPP Re-engineering project has enabled the structured collection and integration of this knowledge and further provides simulation and analysis capabilities for optimization purposes. A key strength of this strategy has been the judicious combination of COTS products with custom coding. The lean management approach that has led to the success of this project is based on having a strong vision for the whole lifecycle of the project and its progress over time, a goal-based design and development approach, a small team of highly specialized people in areas that are critical to the project, and an interactive approach for infusing new technologies into existing processes. This project, which has had a relatively small amount of funding, is on the cutting edge with respect to the utilization of model-based design and systems engineering. An overarching challenge that was overcome by this project was to convince upper management of the needs and merits of giving up more conventional design methodologies (such as paper-based documents and unwieldy and unstructured flow diagrams and schedules) in favor of advanced model-based systems engineering approaches.

  12. A BDI Approach to Infer Student's Emotions in an Intelligent Learning Environment

    ERIC Educational Resources Information Center

    Jaques, Patricia Augustin; Vicari, Rosa Maria

    2007-01-01

    In this article we describe the use of mental states approach, more specifically the belief-desire-intention (BDI) model, to implement the process of affective diagnosis in an educational environment. We use the psychological OCC model, which is based on the cognitive theory of emotions and is possible to be implemented computationally, in order…

  13. A UML approach to process modelling of clinical practice guidelines for enactment.

    PubMed

    Knape, T; Hederman, L; Wade, V P; Gargan, M; Harris, C; Rahman, Y

    2003-01-01

    Although clinical practice guidelines (CPGs) have been suggested as a means of encapsulating best practice in evidence-based medical treatment, their usage in clinical environments has been disappointing. Criticisms of guideline representations have been that they are predominantly narrative and are difficult to incorporate into clinical information systems. This paper analyses the use of UML process modelling techniques for guideline representation and proposes the automated generation of executable guidelines using XMI. This hybrid UML-XMI approach provides flexible authoring of guideline decision and control structures whilst integrating appropriate data flow. It also uses an open XMI standard interface to allow the use of authoring tools and process control systems from multiple vendors. The paper first surveys CPG modelling formalisms followed by a brief introduction to process modelling in UMI. Furthermore, the modelling of CPGs in UML is presented leading to a case study of encoding a diabetes mellitus CPG using UML.

  14. A trust region approach with multivariate Padé model for optimal circuit design

    NASA Astrophysics Data System (ADS)

    Abdel-Malek, Hany L.; Ebid, Shaimaa E. K.; Mohamed, Ahmed S. A.

    2017-11-01

    Since the optimization process requires a significant number of consecutive function evaluations, it is recommended to replace the function by an easily evaluated approximation model during the optimization process. The model suggested in this article is based on a multivariate Padé approximation. This model is constructed using data points of ?, where ? is the number of parameters. The model is updated over a sequence of trust regions. This model avoids the slow convergence of linear models of ? and has features of quadratic models that need interpolation data points of ?. The proposed approach is tested by applying it to several benchmark problems. Yield optimization using such a direct method is applied to some practical circuit examples. Minimax solution leads to a suitable initial point to carry out the yield optimization process. The yield is optimized by the proposed derivative-free method for active and passive filter examples.

  15. A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models.

    PubMed

    Brouwer, Andrew F; Meza, Rafael; Eisenberg, Marisa C

    2017-07-01

    Multistage clonal expansion (MSCE) models of carcinogenesis are continuous-time Markov process models often used to relate cancer incidence to biological mechanism. Identifiability analysis determines what model parameter combinations can, theoretically, be estimated from given data. We use a systematic approach, based on differential algebra methods traditionally used for deterministic ordinary differential equation (ODE) models, to determine identifiable combinations for a generalized subclass of MSCE models with any number of preinitation stages and one clonal expansion. Additionally, we determine the identifiable combinations of the generalized MSCE model with up to four clonal expansion stages, and conjecture the results for any number of clonal expansion stages. The results improve upon previous work in a number of ways and provide a framework to find the identifiable combinations for further variations on the MSCE models. Finally, our approach, which takes advantage of the Kolmogorov backward equations for the probability generating functions of the Markov process, demonstrates that identifiability methods used in engineering and mathematics for systems of ODEs can be applied to continuous-time Markov processes. © 2016 Society for Risk Analysis.

  16. A Multidirectional Model for Assessing Learning Disabled Students' Intelligence: An Information-Processing Framework.

    ERIC Educational Resources Information Center

    Swanson, H. Lee

    1982-01-01

    An information processing approach to the assessment of learning disabled students' intellectual performance is presented. The model is based on the assumption that intelligent behavior is comprised of a variety of problem- solving strategies. An account of child problem solving is explained and illustrated with a "thinking aloud" protocol.…

  17. An Analytic Hierarchy Process for School Quality and Inspection: Model Development and Application

    ERIC Educational Resources Information Center

    Al Qubaisi, Amal; Badri, Masood; Mohaidat, Jihad; Al Dhaheri, Hamad; Yang, Guang; Al Rashedi, Asma; Greer, Kenneth

    2016-01-01

    Purpose: The purpose of this paper is to develop an analytic hierarchy planning-based framework to establish criteria weights and to develop a school performance system commonly called school inspections. Design/methodology/approach: The analytic hierarchy process (AHP) model uses pairwise comparisons and a measurement scale to generate the…

  18. The Function of Semantics in Automated Language Processing.

    ERIC Educational Resources Information Center

    Pacak, Milos; Pratt, Arnold W.

    This paper is a survey of some of the major semantic models that have been developed for automated semantic analysis of natural language. Current approaches to semantic analysis and logical interference are based mainly on models of human cognitive processes such as Quillian's semantic memory, Simmon's Protosynthex III and others. All existing…

  19. The Verification-based Analysis of Reliable Multicast Protocol

    NASA Technical Reports Server (NTRS)

    Wu, Yunqing

    1996-01-01

    Reliable Multicast Protocol (RMP) is a communication protocol that provides an atomic, totally ordered, reliable multicast service on top of unreliable IP Multicasting. In this paper, we develop formal models for R.W using existing automatic verification systems, and perform verification-based analysis on the formal RMP specifications. We also use the formal models of RW specifications to generate a test suite for conformance testing of the RMP implementation. Throughout the process of RMP development, we follow an iterative, interactive approach that emphasizes concurrent and parallel progress between the implementation and verification processes. Through this approach, we incorporate formal techniques into our development process, promote a common understanding for the protocol, increase the reliability of our software, and maintain high fidelity between the specifications of RMP and its implementation.

  20. Geometric Model of Induction Heating Process of Iron-Based Sintered Materials

    NASA Astrophysics Data System (ADS)

    Semagina, Yu V.; Egorova, M. A.

    2018-03-01

    The article studies the issue of building multivariable dependences based on the experimental data. A constructive method for solving the issue is presented in the form of equations of (n-1) – surface compartments of the extended Euclidean space E+n. The dimension of space is taken to be equal to the sum of the number of parameters and factors of the model of the system being studied. The basis for building multivariable dependencies is the generalized approach to n-space used for the surface compartments of 3D space. The surface is designed on the basis of the kinematic method, moving one geometric object along a certain trajectory. The proposed approach simplifies the process aimed at building the multifactorial empirical dependencies which describe the process being investigated.

  1. Nonparametric estimation of the heterogeneity of a random medium using compound Poisson process modeling of wave multiple scattering.

    PubMed

    Le Bihan, Nicolas; Margerin, Ludovic

    2009-07-01

    In this paper, we present a nonparametric method to estimate the heterogeneity of a random medium from the angular distribution of intensity of waves transmitted through a slab of random material. Our approach is based on the modeling of forward multiple scattering using compound Poisson processes on compact Lie groups. The estimation technique is validated through numerical simulations based on radiative transfer theory.

  2. Carbon-Flow-Based Modeling of Ecophysiological Processes and Biomass Dynamics of Submersed Aquatic Plants

    DTIC Science & Technology

    2007-09-01

    simulation modeling approach to describing carbon- flow-based, ecophysiological processes and biomass dynamics of fresh- water submersed aquatic plant...the distribution and abundance of SAV. In aquatic systems a small part of the irradiance can be reflected by the water surface, and further...to the fact that water temperatures in the lake were relatively low compared to air tem- peratures because of the large inflow of groundwater (Titus

  3. NHPP-Based Software Reliability Models Using Equilibrium Distribution

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Okamura, Hiroyuki; Dohi, Tadashi

    Non-homogeneous Poisson processes (NHPPs) have gained much popularity in actual software testing phases to estimate the software reliability, the number of remaining faults in software and the software release timing. In this paper, we propose a new modeling approach for the NHPP-based software reliability models (SRMs) to describe the stochastic behavior of software fault-detection processes. The fundamental idea is to apply the equilibrium distribution to the fault-detection time distribution in NHPP-based modeling. We also develop efficient parameter estimation procedures for the proposed NHPP-based SRMs. Through numerical experiments, it can be concluded that the proposed NHPP-based SRMs outperform the existing ones in many data sets from the perspective of goodness-of-fit and prediction performance.

  4. High-Dimensional Bayesian Geostatistics

    PubMed Central

    Banerjee, Sudipto

    2017-01-01

    With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as “priors” for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings. PMID:29391920

  5. High-Dimensional Bayesian Geostatistics.

    PubMed

    Banerjee, Sudipto

    2017-06-01

    With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.

  6. An Instructional Systems Technology Model for Institutional Change.

    ERIC Educational Resources Information Center

    Dudgeon, Paul J.

    A program based on instructional systems technology was developed at Canadore College as a means of devising the optimal learning experience for each individual student. The systems approach is used to solve educational problems through a process of analysis, synthesis, modeling, and simulation, based on the LOGOS (Language for Optimizing…

  7. Kernel Regression Estimation of Fiber Orientation Mixtures in Diffusion MRI

    PubMed Central

    Cabeen, Ryan P.; Bastin, Mark E.; Laidlaw, David H.

    2016-01-01

    We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III. PMID:26691524

  8. Enhancing Social Competence for Disadvantaged Youth in Pre-Vocational Education: Model Development through Design-Based Research

    ERIC Educational Resources Information Center

    Kuhn, Ida Kristina

    2017-01-01

    This study investigates the enhancement of social competence for disadvantaged young people based on the example of the "Werkschule Bremen" educational course. Theoretical approaches to social competence as a learning outcome are mainly based on the model of social information processing, although the meaning of both practical and…

  9. The Source of Adult Age Differences in Event-Based Prospective Memory: A Multinomial Modeling Approach

    ERIC Educational Resources Information Center

    Smith, Rebekah E.; Bayen, Ute J.

    2006-01-01

    Event-based prospective memory involves remembering to perform an action in response to a particular future event. Normal younger and older adults performed event-based prospective memory tasks in 2 experiments. The authors applied a formal multinomial processing tree model of prospective memory (Smith & Bayen, 2004) to disentangle age differences…

  10. Meta-control of combustion performance with a data mining approach

    NASA Astrophysics Data System (ADS)

    Song, Zhe

    Large scale combustion process is complex and proposes challenges of optimizing its performance. Traditional approaches based on thermal dynamics have limitations on finding optimal operational regions due to time-shift nature of the process. Recent advances in information technology enable people collect large volumes of process data easily and continuously. The collected process data contains rich information about the process and, to some extent, represents a digital copy of the process over time. Although large volumes of data exist in industrial combustion processes, they are not fully utilized to the level where the process can be optimized. Data mining is an emerging science which finds patterns or models from large data sets. It has found many successful applications in business marketing, medical and manufacturing domains The focus of this dissertation is on applying data mining to industrial combustion processes, and ultimately optimizing the combustion performance. However the philosophy, methods and frameworks discussed in this research can also be applied to other industrial processes. Optimizing an industrial combustion process has two major challenges. One is the underlying process model changes over time and obtaining an accurate process model is nontrivial. The other is that a process model with high fidelity is usually highly nonlinear, solving the optimization problem needs efficient heuristics. This dissertation is set to solve these two major challenges. The major contribution of this 4-year research is the data-driven solution to optimize the combustion process, where process model or knowledge is identified based on the process data, then optimization is executed by evolutionary algorithms to search for optimal operating regions.

  11. An Ontology-Based Conceptual Model For Accumulating And Reusing Knowledge In A DMAIC Process

    NASA Astrophysics Data System (ADS)

    Nguyen, ThanhDat; Kifor, Claudiu Vasile

    2015-09-01

    DMAIC (Define, Measure, Analyze, Improve, and Control) is an important process used to enhance quality of processes basing on knowledge. However, it is difficult to access DMAIC knowledge. Conventional approaches meet a problem arising from structuring and reusing DMAIC knowledge. The main reason is that DMAIC knowledge is not represented and organized systematically. In this article, we overcome the problem basing on a conceptual model that is a combination of DMAIC process, knowledge management, and Ontology engineering. The main idea of our model is to utilizing Ontologies to represent knowledge generated by each of DMAIC phases. We build five different knowledge bases for storing all knowledge of DMAIC phases with the support of necessary tools and appropriate techniques in Information Technology area. Consequently, these knowledge bases provide knowledge available to experts, managers, and web users during or after DMAIC execution in order to share and reuse existing knowledge.

  12. A KPI framework for process-based benchmarking of hospital information systems.

    PubMed

    Jahn, Franziska; Winter, Alfred

    2011-01-01

    Benchmarking is a major topic for monitoring, directing and elucidating the performance of hospital information systems (HIS). Current approaches neglect the outcome of the processes that are supported by the HIS and their contribution to the hospital's strategic goals. We suggest to benchmark HIS based on clinical documentation processes and their outcome. A framework consisting of a general process model and outcome criteria for clinical documentation processes is introduced.

  13. Assessment of credit risk based on fuzzy relations

    NASA Astrophysics Data System (ADS)

    Tsabadze, Teimuraz

    2017-06-01

    The purpose of this paper is to develop a new approach for an assessment of the credit risk to corporate borrowers. There are different models for borrowers' risk assessment. These models are divided into two groups: statistical and theoretical. When assessing the credit risk for corporate borrowers, statistical model is unacceptable due to the lack of sufficiently large history of defaults. At the same time, we cannot use some theoretical models due to the lack of stock exchange. In those cases, when studying a particular borrower given that statistical base does not exist, the decision-making process is always of expert nature. The paper describes a new approach that may be used in group decision-making. An example of the application of the proposed approach is given.

  14. SEIPS-based process modeling in primary care.

    PubMed

    Wooldridge, Abigail R; Carayon, Pascale; Hundt, Ann Schoofs; Hoonakker, Peter L T

    2017-04-01

    Process mapping, often used as part of the human factors and systems engineering approach to improve care delivery and outcomes, should be expanded to represent the complex, interconnected sociotechnical aspects of health care. Here, we propose a new sociotechnical process modeling method to describe and evaluate processes, using the SEIPS model as the conceptual framework. The method produces a process map and supplementary table, which identify work system barriers and facilitators. In this paper, we present a case study applying this method to three primary care processes. We used purposeful sampling to select staff (care managers, providers, nurses, administrators and patient access representatives) from two clinics to observe and interview. We show the proposed method can be used to understand and analyze healthcare processes systematically and identify specific areas of improvement. Future work is needed to assess usability and usefulness of the SEIPS-based process modeling method and further refine it. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. SEIPS-Based Process Modeling in Primary Care

    PubMed Central

    Wooldridge, Abigail R.; Carayon, Pascale; Hundt, Ann Schoofs; Hoonakker, Peter

    2016-01-01

    Process mapping, often used as part of the human factors and systems engineering approach to improve care delivery and outcomes, should be expanded to represent the complex, interconnected sociotechnical aspects of health care. Here, we propose a new sociotechnical process modeling method to describe and evaluate processes, using the SEIPS model as the conceptual framework. The method produces a process map and supplementary table, which identify work system barriers and facilitators. In this paper, we present a case study applying this method to three primary care processes. We used purposeful sampling to select staff (care managers, providers, nurses, administrators and patient access representatives) from two clinics to observe and interview. We show the proposed method can be used to understand and analyze healthcare processes systematically and identify specific areas of improvement. Future work is needed to assess usability and usefulness of the SEIPS-based process modeling method and further refine it. PMID:28166883

  16. Neuroscientific Model of Motivational Process

    PubMed Central

    Kim, Sung-il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment. PMID:23459598

  17. Neuroscientific model of motivational process.

    PubMed

    Kim, Sung-Il

    2013-01-01

    Considering the neuroscientific findings on reward, learning, value, decision-making, and cognitive control, motivation can be parsed into three sub processes, a process of generating motivation, a process of maintaining motivation, and a process of regulating motivation. I propose a tentative neuroscientific model of motivational processes which consists of three distinct but continuous sub processes, namely reward-driven approach, value-based decision-making, and goal-directed control. Reward-driven approach is the process in which motivation is generated by reward anticipation and selective approach behaviors toward reward. This process recruits the ventral striatum (reward area) in which basic stimulus-action association is formed, and is classified as an automatic motivation to which relatively less attention is assigned. By contrast, value-based decision-making is the process of evaluating various outcomes of actions, learning through positive prediction error, and calculating the value continuously. The striatum and the orbitofrontal cortex (valuation area) play crucial roles in sustaining motivation. Lastly, the goal-directed control is the process of regulating motivation through cognitive control to achieve goals. This consciously controlled motivation is associated with higher-level cognitive functions such as planning, retaining the goal, monitoring the performance, and regulating action. The anterior cingulate cortex (attention area) and the dorsolateral prefrontal cortex (cognitive control area) are the main neural circuits related to regulation of motivation. These three sub processes interact with each other by sending reward prediction error signals through dopaminergic pathway from the striatum and to the prefrontal cortex. The neuroscientific model of motivational process suggests several educational implications with regard to the generation, maintenance, and regulation of motivation to learn in the learning environment.

  18. Hierarchical mixture of experts and diagnostic modeling approach to reduce hydrologic model structural uncertainty: STRUCTURAL UNCERTAINTY DIAGNOSTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moges, Edom; Demissie, Yonas; Li, Hong-Yi

    2016-04-01

    In most water resources applications, a single model structure might be inadequate to capture the dynamic multi-scale interactions among different hydrological processes. Calibrating single models for dynamic catchments, where multiple dominant processes exist, can result in displacement of errors from structure to parameters, which in turn leads to over-correction and biased predictions. An alternative to a single model structure is to develop local expert structures that are effective in representing the dominant components of the hydrologic process and adaptively integrate them based on an indicator variable. In this study, the Hierarchical Mixture of Experts (HME) framework is applied to integratemore » expert model structures representing the different components of the hydrologic process. Various signature diagnostic analyses are used to assess the presence of multiple dominant processes and the adequacy of a single model, as well as to identify the structures of the expert models. The approaches are applied for two distinct catchments, the Guadalupe River (Texas) and the French Broad River (North Carolina) from the Model Parameter Estimation Experiment (MOPEX), using different structures of the HBV model. The results show that the HME approach has a better performance over the single model for the Guadalupe catchment, where multiple dominant processes are witnessed through diagnostic measures. Whereas, the diagnostics and aggregated performance measures prove that French Broad has a homogeneous catchment response, making the single model adequate to capture the response.« less

  19. A secured e-tendering modeling using misuse case approach

    NASA Astrophysics Data System (ADS)

    Mohd, Haslina; Robie, Muhammad Afdhal Muhammad; Baharom, Fauziah; Darus, Norida Muhd; Saip, Mohamed Ali; Yasin, Azman

    2016-08-01

    Major risk factors relating to electronic transactions may lead to destructive impacts on trust and transparency in the process of tendering. Currently, electronic tendering (e-tendering) systems still remain uncertain in issues relating to legal and security compliance and most importantly it has an unclear security framework. Particularly, the available systems are lacking in addressing integrity, confidentiality, authentication, and non-repudiation in e-tendering requirements. Thus, one of the challenges in developing an e-tendering system is to ensure the system requirements include the function for secured and trusted environment. Therefore, this paper aims to model a secured e-tendering system using misuse case approach. The modeling process begins with identifying the e-tendering process, which is based on the Australian Standard Code of Tendering (AS 4120-1994). It is followed by identifying security threats and their countermeasure. Then, the e-tendering was modelled using misuse case approach. The model can contribute to e-tendering developers and also to other researchers or experts in the e-tendering domain.

  20. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks.

    PubMed

    Khanali, Majid; Mobli, Hossein; Hosseinzadeh-Bandbafha, Homa

    2017-12-01

    In this study, an artificial neural network (ANN) model was developed for predicting the yield and life cycle environmental impacts based on energy inputs required in processing of black tea, green tea, and oolong tea in Guilan province of Iran. A life cycle assessment (LCA) approach was used to investigate the environmental impact categories of processed tea based on the cradle to gate approach, i.e., from production of input materials using raw materials to the gate of tea processing units, i.e., packaged tea. Thus, all the tea processing operations such as withering, rolling, fermentation, drying, and packaging were considered in the analysis. The initial data were obtained from tea processing units while the required data about the background system was extracted from the EcoInvent 2.2 database. LCA results indicated that diesel fuel and corrugated paper box used in drying and packaging operations, respectively, were the main hotspots. Black tea processing unit caused the highest pollution among the three processing units. Three feed-forward back-propagation ANN models based on Levenberg-Marquardt training algorithm with two hidden layers accompanied by sigmoid activation functions and a linear transfer function in output layer, were applied for three types of processed tea. The neural networks were developed based on energy equivalents of eight different input parameters (energy equivalents of fresh tea leaves, human labor, diesel fuel, electricity, adhesive, carton, corrugated paper box, and transportation) and 11 output parameters (yield, global warming, abiotic depletion, acidification, eutrophication, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, and photochemical oxidation). The results showed that the developed ANN models with R 2 values in the range of 0.878 to 0.990 had excellent performance in predicting all the output variables based on inputs. Energy consumption for processing of green tea, oolong tea, and black tea were calculated as 58,182, 60,947, and 66,301 MJ per ton of dry tea, respectively.

  1. Development of Continuum-Atomistic Approach for Modeling Metal Irradiation by Heavy Ions

    NASA Astrophysics Data System (ADS)

    Batgerel, Balt; Dimova, Stefka; Puzynin, Igor; Puzynina, Taisia; Hristov, Ivan; Hristova, Radoslava; Tukhliev, Zafar; Sharipov, Zarif

    2018-02-01

    Over the last several decades active research in the field of materials irradiation by high-energy heavy ions has been worked out. The experiments in this area are labor-consuming and expensive. Therefore the improvement of the existing mathematical models and the development of new ones based on the experimental data of interaction of high-energy heavy ions with materials are of interest. Presently, two approaches are used for studying these processes: a thermal spike model and molecular dynamics methods. The combination of these two approaches - the continuous-atomistic model - will give the opportunity to investigate more thoroughly the processes of irradiation of materials by high-energy heavy ions. To solve the equations of the continuous-atomistic model, a software package was developed and the block of molecular dynamics software was tested on the heterogeneous cluster HybriLIT.

  2. A Bayesian alternative for multi-objective ecohydrological model specification

    NASA Astrophysics Data System (ADS)

    Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori

    2018-01-01

    Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior distributions in such approaches.

  3. AN APPROACH TO A UNIFIED PROCESS-BASED REGIONAL EMISSION FLUX MODELING PLATFORM

    EPA Science Inventory

    The trend towards episodic modeling of environmentally-dependent emissions is increasing, with models available or under development for dust, ammonia, biogenic volatile organic compounds, soil nitrous oxide, pesticides, sea salt, and chloride, mercury, and wildfire emissions. T...

  4. Laser welding of polymers: phenomenological model for a quick and reliable process quality estimation considering beam shape influences

    NASA Astrophysics Data System (ADS)

    Timpe, Nathalie F.; Stuch, Julia; Scholl, Marcus; Russek, Ulrich A.

    2016-03-01

    This contribution presents a phenomenological, analytical model for laser welding of polymers which is suited for a quick process quality estimation for the practitioner. Besides material properties of the polymer and processing parameters like welding pressure, feed rate and laser power the model is based on a simple few parameter description of the size and shape of the laser power density distribution (PDD) in the processing zone. The model allows an estimation of the weld seam tensile strength. It is based on energy balance considerations within a thin sheet with the thickness of the optical penetration depth on the surface of the absorbing welding partner. The joining process itself is modelled by a phenomenological approach. The model reproduces the experimentally known process windows for the main process parameters correctly. Using the parameters describing the shape of the laser PDD the critical dependence of the process windows on the PDD shape will be predicted and compared with experiments. The adaption of the model to other laser manufacturing processes where the PDD influence can be modelled comparably will be discussed.

  5. A Comparison of Three Approaches to Model Human Behavior

    NASA Astrophysics Data System (ADS)

    Palmius, Joel; Persson-Slumpi, Thomas

    2010-11-01

    One way of studying social processes is through the use of simulations. The use of simulations for this purpose has been established as its own field, social simulations, and has been used for studying a variety of phenomena. A simulation of a social setting can serve as an aid for thinking about that social setting, and for experimenting with different parameters and studying the outcomes caused by them. When using the simulation as an aid for thinking and experimenting, the chosen simulation approach will implicitly steer the simulationist towards thinking in a certain fashion in order to fit the model. To study the implications of model choice on the understanding of a setting where human anticipation comes into play, a simulation scenario of a coffee room was constructed using three different simulation approaches: Cellular Automata, Systems Dynamics and Agent-based modeling. The practical implementations of the models were done in three different simulation packages: Stella for Systems Dynamic, CaFun for Cellular automata and SesAM for Agent-based modeling. The models were evaluated both using Randers' criteria for model evaluation, and through introspection where the authors reflected upon how their understanding of the scenario was steered through the model choice. Further the software used for implementing the simulation models was evaluated, and practical considerations for the choice of software package are listed. It is concluded that the models have very different strengths. The Agent-based modeling approach offers the most intuitive support for thinking about and modeling a social setting where the behavior of the individual is in focus. The Systems Dynamics model would be preferable in situations where populations and large groups would be studied as wholes, but where individual behavior is of less concern. The Cellular Automata models would be preferable where processes need to be studied from the basis of a small set of very simple rules. It is further concluded that in most social simulation settings the Agent-based modeling approach would be the probable choice. This since the other models does not offer much in the way of supporting the modeling of the anticipatory behavior of humans acting in an organization.

  6. A virtual maintenance-based approach for satellite assembling and troubleshooting assessment

    NASA Astrophysics Data System (ADS)

    Geng, Jie; Li, Ying; Wang, Ranran; Wang, Zili; Lv, Chuan; Zhou, Dong

    2017-09-01

    In this study, a Virtual Maintenance (VM)-based approach for satellite troubleshooting assessment is proposed. By focusing on various elements in satellite assemble troubleshooting, such as accessibility, ergonomics, wiring, and extent of damage, a systematic, quantitative, and objective assessment model is established to decrease subjectivity in satellite assembling and troubleshooting assessment. Afterwards, based on the established assessment model and satellite virtual prototype, an application process of this model suitable for a virtual environment is presented. Finally, according to the application process, all the elements in satellite troubleshooting are analyzed and assessed. The corresponding improvements, which realize the transformation from a conventional way to a virtual simulation and assessment, are suggested, and the flaws in assembling and troubleshooting are revealed. Assembling or troubleshooting schemes can be improved in the early stage of satellite design with the help of a virtual prototype. Repetition in the practical operation is beneficial to companies as risk and cost are effectively reduced.

  7. Accelerated pharmacokinetic map determination for dynamic contrast enhanced MRI using frequency-domain based Tofts model.

    PubMed

    Vajuvalli, Nithin N; Nayak, Krupa N; Geethanath, Sairam

    2014-01-01

    Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is widely used in the diagnosis of cancer and is also a promising tool for monitoring tumor response to treatment. The Tofts model has become a standard for the analysis of DCE-MRI. The process of curve fitting employed in the Tofts equation to obtain the pharmacokinetic (PK) parameters is time-consuming for high resolution scans. Current work demonstrates a frequency-domain approach applied to the standard Tofts equation to speed-up the process of curve-fitting in order to obtain the pharmacokinetic parameters. The results obtained show that using the frequency domain approach, the process of curve fitting is computationally more efficient compared to the time-domain approach.

  8. Experiences in teaching of modeling and simulation with emphasize on equation-based and acausal modeling techniques.

    PubMed

    Kulhánek, Tomáš; Ježek, Filip; Mateják, Marek; Šilar, Jan; Kofránek, Jří

    2015-08-01

    This work introduces experiences of teaching modeling and simulation for graduate students in the field of biomedical engineering. We emphasize the acausal and object-oriented modeling technique and we have moved from teaching block-oriented tool MATLAB Simulink to acausal and object oriented Modelica language, which can express the structure of the system rather than a process of computation. However, block-oriented approach is allowed in Modelica language too and students have tendency to express the process of computation. Usage of the exemplar acausal domains and approach allows students to understand the modeled problems much deeper. The causality of the computation is derived automatically by the simulation tool.

  9. Convergent Time-Varying Regression Models for Data Streams: Tracking Concept Drift by the Recursive Parzen-Based Generalized Regression Neural Networks.

    PubMed

    Duda, Piotr; Jaworski, Maciej; Rutkowski, Leszek

    2018-03-01

    One of the greatest challenges in data mining is related to processing and analysis of massive data streams. Contrary to traditional static data mining problems, data streams require that each element is processed only once, the amount of allocated memory is constant and the models incorporate changes of investigated streams. A vast majority of available methods have been developed for data stream classification and only a few of them attempted to solve regression problems, using various heuristic approaches. In this paper, we develop mathematically justified regression models working in a time-varying environment. More specifically, we study incremental versions of generalized regression neural networks, called IGRNNs, and we prove their tracking properties - weak (in probability) and strong (with probability one) convergence assuming various concept drift scenarios. First, we present the IGRNNs, based on the Parzen kernels, for modeling stationary systems under nonstationary noise. Next, we extend our approach to modeling time-varying systems under nonstationary noise. We present several types of concept drifts to be handled by our approach in such a way that weak and strong convergence holds under certain conditions. Finally, in the series of simulations, we compare our method with commonly used heuristic approaches, based on forgetting mechanism or sliding windows, to deal with concept drift. Finally, we apply our concept in a real life scenario solving the problem of currency exchange rates prediction.

  10. Remaining lifetime modeling using State-of-Health estimation

    NASA Astrophysics Data System (ADS)

    Beganovic, Nejra; Söffker, Dirk

    2017-08-01

    Technical systems and system's components undergo gradual degradation over time. Continuous degradation occurred in system is reflected in decreased system's reliability and unavoidably lead to a system failure. Therefore, continuous evaluation of State-of-Health (SoH) is inevitable to provide at least predefined lifetime of the system defined by manufacturer, or even better, to extend the lifetime given by manufacturer. However, precondition for lifetime extension is accurate estimation of SoH as well as the estimation and prediction of Remaining Useful Lifetime (RUL). For this purpose, lifetime models describing the relation between system/component degradation and consumed lifetime have to be established. In this contribution modeling and selection of suitable lifetime models from database based on current SoH conditions are discussed. Main contribution of this paper is the development of new modeling strategies capable to describe complex relations between measurable system variables, related system degradation, and RUL. Two approaches with accompanying advantages and disadvantages are introduced and compared. Both approaches are capable to model stochastic aging processes of a system by simultaneous adaption of RUL models to current SoH. The first approach requires a priori knowledge about aging processes in the system and accurate estimation of SoH. An estimation of SoH here is conditioned by tracking actual accumulated damage into the system, so that particular model parameters are defined according to a priori known assumptions about system's aging. Prediction accuracy in this case is highly dependent on accurate estimation of SoH but includes high number of degrees of freedom. The second approach in this contribution does not require a priori knowledge about system's aging as particular model parameters are defined in accordance to multi-objective optimization procedure. Prediction accuracy of this model does not highly depend on estimated SoH. This model has lower degrees of freedom. Both approaches rely on previously developed lifetime models each of them corresponding to predefined SoH. Concerning first approach, model selection is aided by state-machine-based algorithm. In the second approach, model selection conditioned by tracking an exceedance of predefined thresholds is concerned. The approach is applied to data generated from tribological systems. By calculating Root Squared Error (RSE), Mean Squared Error (MSE), and Absolute Error (ABE) the accuracy of proposed models/approaches is discussed along with related advantages and disadvantages. Verification of the approach is done using cross-fold validation, exchanging training and test data. It can be stated that the newly introduced approach based on data (denoted as data-based or data-driven) parametric models can be easily established providing detailed information about remaining useful/consumed lifetime valid for systems with constant load but stochastically occurred damage.

  11. A study on predicting network corrections in PPP-RTK processing

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Khodabandeh, Amir; Teunissen, Peter

    2017-10-01

    In PPP-RTK processing, the network corrections including the satellite clocks, the satellite phase biases and the ionospheric delays are provided to the users to enable fast single-receiver integer ambiguity resolution. To solve the rank deficiencies in the undifferenced observation equations, the estimable parameters are formed to generate full-rank design matrix. In this contribution, we firstly discuss the interpretation of the estimable parameters without and with a dynamic satellite clock model incorporated in a Kalman filter during the network processing. The functionality of the dynamic satellite clock model is tested in the PPP-RTK processing. Due to the latency generated by the network processing and data transfer, the network corrections are delayed for the real-time user processing. To bridge the latencies, we discuss and compare two prediction approaches making use of the network corrections without and with the dynamic satellite clock model, respectively. The first prediction approach is based on the polynomial fitting of the estimated network parameters, while the second approach directly follows the dynamic model in the Kalman filter of the network processing and utilises the satellite clock drifts estimated in the network processing. Using 1 Hz data from two networks in Australia, the influences of the two prediction approaches on the user positioning results are analysed and compared for latencies ranging from 3 to 10 s. The accuracy of the positioning results decreases with the increasing latency of the network products. For a latency of 3 s, the RMS of the horizontal and the vertical coordinates (with respect to the ground truth) do not show large differences applying both prediction approaches. For a latency of 10 s, the prediction approach making use of the satellite clock model has generated slightly better positioning results with the differences of the RMS at mm-level. Further advantages and disadvantages of both prediction approaches are also discussed in this contribution.

  12. A Corpus-Based Discourse Information Analysis of Chinese EFL Learners' Autonomy in Legal Case Brief Writing

    ERIC Educational Resources Information Center

    Chen, Jinshi

    2017-01-01

    Legal case brief writing is pedagogically important yet insufficiently discussed for Chinese EFL learners majoring in law. Based on process genre approach and discourse information theory (DIT), the present study designs a corpus-based analytical model for Chinese EFL learners' autonomy in legal case brief writing and explores the process of case…

  13. Use of the self-organising map network (SOMNet) as a decision support system for regional mental health planning.

    PubMed

    Chung, Younjin; Salvador-Carulla, Luis; Salinas-Pérez, José A; Uriarte-Uriarte, Jose J; Iruin-Sanz, Alvaro; García-Alonso, Carlos R

    2018-04-25

    Decision-making in mental health systems should be supported by the evidence-informed knowledge transfer of data. Since mental health systems are inherently complex, involving interactions between its structures, processes and outcomes, decision support systems (DSS) need to be developed using advanced computational methods and visual tools to allow full system analysis, whilst incorporating domain experts in the analysis process. In this study, we use a DSS model developed for interactive data mining and domain expert collaboration in the analysis of complex mental health systems to improve system knowledge and evidence-informed policy planning. We combine an interactive visual data mining approach, the self-organising map network (SOMNet), with an operational expert knowledge approach, expert-based collaborative analysis (EbCA), to develop a DSS model. The SOMNet was applied to the analysis of healthcare patterns and indicators of three different regional mental health systems in Spain, comprising 106 small catchment areas and providing healthcare for over 9 million inhabitants. Based on the EbCA, the domain experts in the development team guided and evaluated the analytical processes and results. Another group of 13 domain experts in mental health systems planning and research evaluated the model based on the analytical information of the SOMNet approach for processing information and discovering knowledge in a real-world context. Through the evaluation, the domain experts assessed the feasibility and technology readiness level (TRL) of the DSS model. The SOMNet, combined with the EbCA, effectively processed evidence-based information when analysing system outliers, explaining global and local patterns, and refining key performance indicators with their analytical interpretations. The evaluation results showed that the DSS model was feasible by the domain experts and reached level 7 of the TRL (system prototype demonstration in operational environment). This study supports the benefits of combining health systems engineering (SOMNet) and expert knowledge (EbCA) to analyse the complexity of health systems research. The use of the SOMNet approach contributes to the demonstration of DSS for mental health planning in practice.

  14. Modelling approaches for relating effects of change in river flow to populations of Atlantic salmon and brown trout

    Treesearch

    John D. Armstrong; Keith H. Nislow

    2012-01-01

    Modelling approaches for relating discharge to the biology of Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., growing in rivers are reviewed. Process-based and empirical models are set within a common framework of input of water flow and output of characteristics of fish, such as growth and survival, which relate directly to population dynamics. A...

  15. Developing an Educational Computer Game for Migratory Bird Identification Based on a Two-Tier Test Approach

    ERIC Educational Resources Information Center

    Chu, Hui-Chun; Chang, Shao-Chen

    2014-01-01

    Although educational computer games have been recognized as being a promising approach, previous studies have indicated that, without supportive models, students might only show temporary interest during the game-based learning process, and their learning performance is often not as good as expected. Therefore, in this paper, a two-tier test…

  16. A Model-Based Approach to Predicting Graduate-Level Performance Using Indicators of Undergraduate-Level Performance

    ERIC Educational Resources Information Center

    Zimmermann, Judith; Brodersen, Kay H.; Heinimann, Hans R.; Buhmann, Joachim M.

    2015-01-01

    The graduate admissions process is crucial for controlling the quality of higher education, yet, rules-of-thumb and domain-specific experiences often dominate evidence-based approaches. The goal of the present study is to dissect the predictive power of undergraduate performance indicators and their aggregates. We analyze 81 variables in 171…

  17. Multiple constraint analysis of regional land-surface carbon flux

    Treesearch

    D.P. Turner; M. Göckede; B.E. Law; W.D. Ritts; W.B. Cohen; Z. Yang; T. Hudiburg; R. Kennedy; M. Duane

    2011-01-01

    We applied and compared bottom-up (process model-based) and top-down (atmospheric inversion-based) scaling approaches to evaluate the spatial and temporal patterns of net ecosystem production (NEP) over a 2.5 × 105 km2 area (the state of Oregon) in the western United States. Both approaches indicated a carbon sink over this...

  18. An interaural-correlation-based approach that accounts for a wide variety of binaural detection data.

    PubMed

    Bernstein, Leslie R; Trahiotis, Constantine

    2017-02-01

    Interaural cross-correlation-based models of binaural processing have accounted successfully for a wide variety of binaural phenomena, including binaural detection, binaural discrimination, and measures of extents of laterality based on interaural temporal disparities, interaural intensitive disparities, and their combination. This report focuses on quantitative accounts of data obtained from binaural detection experiments published over five decades. Particular emphasis is placed on stimulus contexts for which commonly used correlation-based approaches fail to provide adequate explanations of the data. One such context concerns binaural detection of signals masked by certain noises that are narrow-band and/or interaurally partially correlated. It is shown that a cross-correlation-based model that includes stages of peripheral auditory processing can, when coupled with an appropriate decision variable, account well for a wide variety of classic and recently published binaural detection data including those that have, heretofore, proven to be problematic.

  19. Integrating machine learning techniques into robust data enrichment approach and its application to gene expression data.

    PubMed

    Erdoğdu, Utku; Tan, Mehmet; Alhajj, Reda; Polat, Faruk; Rokne, Jon; Demetrick, Douglas

    2013-01-01

    The availability of enough samples for effective analysis and knowledge discovery has been a challenge in the research community, especially in the area of gene expression data analysis. Thus, the approaches being developed for data analysis have mostly suffered from the lack of enough data to train and test the constructed models. We argue that the process of sample generation could be successfully automated by employing some sophisticated machine learning techniques. An automated sample generation framework could successfully complement the actual sample generation from real cases. This argument is validated in this paper by describing a framework that integrates multiple models (perspectives) for sample generation. We illustrate its applicability for producing new gene expression data samples, a highly demanding area that has not received attention. The three perspectives employed in the process are based on models that are not closely related. The independence eliminates the bias of having the produced approach covering only certain characteristics of the domain and leading to samples skewed towards one direction. The first model is based on the Probabilistic Boolean Network (PBN) representation of the gene regulatory network underlying the given gene expression data. The second model integrates Hierarchical Markov Model (HIMM) and the third model employs a genetic algorithm in the process. Each model learns as much as possible characteristics of the domain being analysed and tries to incorporate the learned characteristics in generating new samples. In other words, the models base their analysis on domain knowledge implicitly present in the data itself. The developed framework has been extensively tested by checking how the new samples complement the original samples. The produced results are very promising in showing the effectiveness, usefulness and applicability of the proposed multi-model framework.

  20. Implementation of Process Oriented Guided Inquiry Learning (POGIL) in Engineering

    ERIC Educational Resources Information Center

    Douglas, Elliot P.; Chiu, Chu-Chuan

    2013-01-01

    This paper describes implementation and testing of an active learning, team-based pedagogical approach to instruction in engineering. This pedagogy has been termed Process Oriented Guided Inquiry Learning (POGIL), and is based upon the learning cycle model. Rather than sitting in traditional lectures, students work in teams to complete worksheets…

  1. The RiverFish Approach to Business Process Modeling: Linking Business Steps to Control-Flow Patterns

    NASA Astrophysics Data System (ADS)

    Zuliane, Devanir; Oikawa, Marcio K.; Malkowski, Simon; Alcazar, José Perez; Ferreira, João Eduardo

    Despite the recent advances in the area of Business Process Management (BPM), today’s business processes have largely been implemented without clearly defined conceptual modeling. This results in growing difficulties for identification, maintenance, and reuse of rules, processes, and control-flow patterns. To mitigate these problems in future implementations, we propose a new approach to business process modeling using conceptual schemas, which represent hierarchies of concepts for rules and processes shared among collaborating information systems. This methodology bridges the gap between conceptual model description and identification of actual control-flow patterns for workflow implementation. We identify modeling guidelines that are characterized by clear phase separation, step-by-step execution, and process building through diagrams and tables. The separation of business process modeling in seven mutually exclusive phases clearly delimits information technology from business expertise. The sequential execution of these phases leads to the step-by-step creation of complex control-flow graphs. The process model is refined through intuitive table and diagram generation in each phase. Not only does the rigorous application of our modeling framework minimize the impact of rule and process changes, but it also facilitates the identification and maintenance of control-flow patterns in BPM-based information system architectures.

  2. Improving orbit prediction accuracy through supervised machine learning

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Bai, Xiaoli

    2018-05-01

    Due to the lack of information such as the space environment condition and resident space objects' (RSOs') body characteristics, current orbit predictions that are solely grounded on physics-based models may fail to achieve required accuracy for collision avoidance and have led to satellite collisions already. This paper presents a methodology to predict RSOs' trajectories with higher accuracy than that of the current methods. Inspired by the machine learning (ML) theory through which the models are learned based on large amounts of observed data and the prediction is conducted without explicitly modeling space objects and space environment, the proposed ML approach integrates physics-based orbit prediction algorithms with a learning-based process that focuses on reducing the prediction errors. Using a simulation-based space catalog environment as the test bed, the paper demonstrates three types of generalization capability for the proposed ML approach: (1) the ML model can be used to improve the same RSO's orbit information that is not available during the learning process but shares the same time interval as the training data; (2) the ML model can be used to improve predictions of the same RSO at future epochs; and (3) the ML model based on a RSO can be applied to other RSOs that share some common features.

  3. Designing simulator-based training: an approach integrating cognitive task analysis and four-component instructional design.

    PubMed

    Tjiam, Irene M; Schout, Barbara M A; Hendrikx, Ad J M; Scherpbier, Albert J J M; Witjes, J Alfred; van Merriënboer, Jeroen J G

    2012-01-01

    Most studies of simulator-based surgical skills training have focused on the acquisition of psychomotor skills, but surgical procedures are complex tasks requiring both psychomotor and cognitive skills. As skills training is modelled on expert performance consisting partly of unconscious automatic processes that experts are not always able to explicate, simulator developers should collaborate with educational experts and physicians in developing efficient and effective training programmes. This article presents an approach to designing simulator-based skill training comprising cognitive task analysis integrated with instructional design according to the four-component/instructional design model. This theory-driven approach is illustrated by a description of how it was used in the development of simulator-based training for the nephrostomy procedure.

  4. The use of discrete-event simulation modeling to compare handwritten and electronic prescribing systems.

    PubMed

    Ghany, Ahmad; Vassanji, Karim; Kuziemsky, Craig; Keshavjee, Karim

    2013-01-01

    Electronic prescribing (e-prescribing) is expected to bring many benefits to Canadian healthcare, such as a reduction in errors and adverse drug reactions. As there currently is no functioning e-prescribing system in Canada that is completely electronic, we are unable to evaluate the performance of a live system. An alternative approach is to use simulation modeling for evaluation. We developed two discrete-event simulation models, one of the current handwritten prescribing system and one of a proposed e-prescribing system, to compare the performance of these two systems. We were able to compare the number of processes in each model, workflow efficiency, and the distribution of patients or prescriptions. Although we were able to compare these models to each other, using discrete-event simulation software was challenging. We were limited in the number of variables we could measure. We discovered non-linear processes and feedback loops in both models that could not be adequately represented using discrete-event simulation software. Finally, interactions between entities in both models could not be modeled using this type of software. We have come to the conclusion that a more appropriate approach to modeling both the handwritten and electronic prescribing systems would be to use a complex adaptive systems approach using agent-based modeling or systems-based modeling.

  5. An approach to knowledge engineering to support knowledge-based simulation of payload ground processing at the Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Mcmanus, Shawn; Mcdaniel, Michael

    1989-01-01

    Planning for processing payloads was always difficult and time-consuming. With the advent of Space Station Freedom and its capability to support a myriad of complex payloads, the planning to support this ground processing maze involves thousands of man-hours of often tedious data manipulation. To provide the capability to analyze various processing schedules, an object oriented knowledge-based simulation environment called the Advanced Generic Accomodations Planning Environment (AGAPE) is being developed. Having nearly completed the baseline system, the emphasis in this paper is directed toward rule definition and its relation to model development and simulation. The focus is specifically on the methodologies implemented during knowledge acquisition, analysis, and representation within the AGAPE rule structure. A model is provided to illustrate the concepts presented. The approach demonstrates a framework for AGAPE rule development to assist expert system development.

  6. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications.

    PubMed

    Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R

    2018-03-14

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  7. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications

    PubMed Central

    Fuentes, Hector R.

    2018-01-01

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability. PMID:29538335

  8. Fuzzy and process modelling of contour ridge water dynamics

    NASA Astrophysics Data System (ADS)

    Mhizha, Alexander; Ndiritu, John

    2018-05-01

    Contour ridges are an in-situ rainwater harvesting technology developed initially for soil erosion control but are currently also widely promoted for rainwater harvesting. The effectiveness of contour ridges depends on geophysical, hydro-climatic and socio economic factors that are highly varied in time and space. Furthermore, field-scale data on these factors are often unavailable. This together with the complexity of hydrological processes at field scale limits the application of classical distributed process modelling to highly-instrumented experimental fields. This paper presents a framework that combines fuzzy logic and process-based approach for modelling contour ridges for rainwater harvesting where detailed field data are not available. Water balance for a representative contour-ridged field incorporating the water flow processes across the boundaries is integrated with fuzzy logic to incorporate the uncertainties in estimating runoff. The model is tested using data collected during the 2009/2010 and 2010/2011 rainfall seasons from two contour-ridged fields in Zhulube located in the semi-arid parts of Zimbabwe. The model is found to replicate soil moisture in the root zone reasonably well (NSE = 0.55 to 0.66 and PBIAS = -1.3 to 6.1 %). The results show that combining fuzzy logic and process based approaches can adequately model soil moisture in a contour ridged-field and could help to assess the water dynamics in contour ridged fields.

  9. Developing a physiologically based approach for modeling plutonium decorporation therapy with DTPA.

    PubMed

    Kastl, Manuel; Giussani, Augusto; Blanchardon, Eric; Breustedt, Bastian; Fritsch, Paul; Hoeschen, Christoph; Lopez, Maria Antonia

    2014-11-01

    To develop a physiologically based compartmental approach for modeling plutonium decorporation therapy with the chelating agent Diethylenetriaminepentaacetic acid (Ca-DTPA/Zn-DTPA). Model calculations were performed using the software package SAAM II (©The Epsilon Group, Charlottesville, Virginia, USA). The Luciani/Polig compartmental model with age-dependent description of the bone recycling processes was used for the biokinetics of plutonium. The Luciani/Polig model was slightly modified in order to account for the speciation of plutonium in blood and for the different affinities for DTPA of the present chemical species. The introduction of two separate blood compartments, describing low-molecular-weight complexes of plutonium (Pu-LW) and transferrin-bound plutonium (Pu-Tf), respectively, and one additional compartment describing plutonium in the interstitial fluids was performed successfully. The next step of the work is the modeling of the chelation process, coupling the physiologically modified structure with the biokinetic model for DTPA. RESULTS of animal studies performed under controlled conditions will enable to better understand the principles of the involved mechanisms.

  10. Marine mammals' influence on ecosystem processes affecting fisheries in the Barents Sea is trivial.

    PubMed

    Corkeron, Peter J

    2009-04-23

    Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents Sea (SBS) models. These modelled interactions between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents Sea fish-fisheries system focused on interactions within and between the three fish populations, fisheries and climate. These model key processes of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents Sea.

  11. Combining Model-driven and Schema-based Program Synthesis

    NASA Technical Reports Server (NTRS)

    Denney, Ewen; Whittle, John

    2004-01-01

    We describe ongoing work which aims to extend the schema-based program synthesis paradigm with explicit models. In this context, schemas can be considered as model-to-model transformations. The combination of schemas with explicit models offers a number of advantages, namely, that building synthesis systems becomes much easier since the models can be used in verification and in adaptation of the synthesis systems. We illustrate our approach using an example from signal processing.

  12. An Analysis of Machine- and Human-Analytics in Classification.

    PubMed

    Tam, Gary K L; Kothari, Vivek; Chen, Min

    2017-01-01

    In this work, we present a study that traces the technical and cognitive processes in two visual analytics applications to a common theoretic model of soft knowledge that may be added into a visual analytics process for constructing a decision-tree model. Both case studies involved the development of classification models based on the "bag of features" approach. Both compared a visual analytics approach using parallel coordinates with a machine-learning approach using information theory. Both found that the visual analytics approach had some advantages over the machine learning approach, especially when sparse datasets were used as the ground truth. We examine various possible factors that may have contributed to such advantages, and collect empirical evidence for supporting the observation and reasoning of these factors. We propose an information-theoretic model as a common theoretic basis to explain the phenomena exhibited in these two case studies. Together we provide interconnected empirical and theoretical evidence to support the usefulness of visual analytics.

  13. The Effect of Visual Information on the Manual Approach and Landing

    NASA Technical Reports Server (NTRS)

    Wewerinke, P. H.

    1982-01-01

    The effect of visual information in combination with basic display information on the approach performance. A pre-experimental model analysis was performed in terms of the optimal control model. The resulting aircraft approach performance predictions were compared with the results of a moving base simulator program. The results illustrate that the model provides a meaningful description of the visual (scene) perception process involved in the complex (multi-variable, time varying) manual approach task with a useful predictive capability. The theoretical framework was shown to allow a straight-forward investigation of the complex interaction of a variety of task variables.

  14. Carbon Dynamics and Export from Flooded Wetlands: A Modeling Approach

    EPA Science Inventory

    Described in this article is development and validation of a process based model for carbon cycling in flooded wetlands, called WetQual-C. The model considers various biogeochemical interactions affecting C cycling, greenhouse gas emissions, organic carbon export and retention. ...

  15. Effect of inlet modelling on surface drainage in coupled urban flood simulation

    NASA Astrophysics Data System (ADS)

    Jang, Jiun-Huei; Chang, Tien-Hao; Chen, Wei-Bo

    2018-07-01

    For a highly developed urban area with complete drainage systems, flood simulation is necessary for describing the flow dynamics from rainfall, to surface runoff, and to sewer flow. In this study, a coupled flood model based on diffusion wave equations was proposed to simulate one-dimensional sewer flow and two-dimensional overland flow simultaneously. The overland flow model provides details on the rainfall-runoff process to estimate the excess runoff that enters the sewer system through street inlets for sewer flow routing. Three types of inlet modelling are considered in this study, including the manhole-based approach that ignores the street inlets by draining surface water directly into manholes, the inlet-manhole approach that drains surface water into manholes that are each connected to multiple inlets, and the inlet-node approach that drains surface water into sewer nodes that are connected to individual inlets. The simulation results were compared with a high-intensity rainstorm event that occurred in 2015 in Taipei City. In the verification of the maximum flood extent, the two approaches that considered street inlets performed considerably better than that without street inlets. When considering the aforementioned models in terms of temporal flood variation, using manholes as receivers leads to an overall inefficient draining of the surface water either by the manhole-based approach or by the inlet-manhole approach. Using the inlet-node approach is more reasonable than using the inlet-manhole approach because the inlet-node approach greatly reduces the fluctuation of the sewer water level. The inlet-node approach is more efficient in draining surface water by reducing flood volume by 13% compared with the inlet-manhole approach and by 41% compared with the manhole-based approach. The results show that inlet modeling has a strong influence on drainage efficiency in coupled flood simulation.

  16. Improved workflow modelling using role activity diagram-based modelling with application to a radiology service case study.

    PubMed

    Shukla, Nagesh; Keast, John E; Ceglarek, Darek

    2014-10-01

    The modelling of complex workflows is an important problem-solving technique within healthcare settings. However, currently most of the workflow models use a simplified flow chart of patient flow obtained using on-site observations, group-based debates and brainstorming sessions, together with historic patient data. This paper presents a systematic and semi-automatic methodology for knowledge acquisition with detailed process representation using sequential interviews of people in the key roles involved in the service delivery process. The proposed methodology allows the modelling of roles, interactions, actions, and decisions involved in the service delivery process. This approach is based on protocol generation and analysis techniques such as: (i) initial protocol generation based on qualitative interviews of radiology staff, (ii) extraction of key features of the service delivery process, (iii) discovering the relationships among the key features extracted, and, (iv) a graphical representation of the final structured model of the service delivery process. The methodology is demonstrated through a case study of a magnetic resonance (MR) scanning service-delivery process in the radiology department of a large hospital. A set of guidelines is also presented in this paper to visually analyze the resulting process model for identifying process vulnerabilities. A comparative analysis of different workflow models is also conducted. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. The Scenario-Based Engineering Process (SEP): a user-centered approach for the development of health care systems.

    PubMed

    Harbison, K; Kelly, J; Burnell, L; Silva, J

    1995-01-01

    The Scenario-based Engineering Process (SEP) is a user-focused methodology for large and complex system design. This process supports new application development from requirements analysis with domain models to component selection, design and modification, implementation, integration, and archival placement. It is built upon object-oriented methodologies, domain modeling strategies, and scenario-based techniques to provide an analysis process for mapping application requirements to available components. We are using SEP in the health care applications that we are developing. The process has already achieved success in the manufacturing and military domains and is being adopted by many organizations. SEP should prove viable in any domain containing scenarios that can be decomposed into tasks.

  18. A meta-model based approach for rapid formability estimation of continuous fibre reinforced components

    NASA Astrophysics Data System (ADS)

    Zimmerling, Clemens; Dörr, Dominik; Henning, Frank; Kärger, Luise

    2018-05-01

    Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is considered to facilitate a lean and economic part and process design under consideration of manufacturing effects.

  19. Evaluation of Student Models on Current Socio-Scientific Topics Based on System Dynamics

    ERIC Educational Resources Information Center

    Nuhoglu, Hasret

    2014-01-01

    This study aims to 1) enable primary school students to develop models that will help them understand and analyze a system, through a learning process based on system dynamics approach, 2) examine and evaluate students' models related to socio-scientific issues using certain criteria. The research method used is a case study. The study sample…

  20. Simulating land surface energy fluxes using a microscopic root water uptake approach in a northern temperate forest

    NASA Astrophysics Data System (ADS)

    He, L.; Ivanov, V. Y.; Schneider, C.

    2012-12-01

    The predictive accuracy of current land surface models has been limited by uncertainties in modeling transpiration and its sensitivity to the plant-available water in the root zone. Models usually distribute vegetation transpiration demand as sink terms in one-dimensional soil-water accounting model, according to the vertical root density profile. During water-limited situations, the sink terms are constrained using a heuristic "Feddes-type" water stress function. This approach significantly simplifies the actual three-dimensional physical process of root water uptake and may predict an early onset of water-limited transpiration. Recently, a microscopic root water uptake approach was proposed to simulate the three-dimensional radial moisture fluxes from the soil to roots, and water flux transfer processes along the root systems. During dry conditions, this approach permits the compensation of decreased root water uptake in water-stressed regions by increasing uptake density in moister regions. This effect cannot be captured by the Feddes heuristic function. This study "loosely" incorporates the microscopic root water uptake approach based on aRoot model into an ecohydrological model tRIBS+VEGGIE. The ecohydrological model provides boundary conditions for the microscopic root water uptake model (e.g., potential transpiration, soil evaporation, and precipitation influx), and the latter computes the actual transpiration and profiles of sink terms. Based on the departure of the actual latent heat flux from the potential value, the other energy budget components are adjusted. The study is conducted for a northern temperate mixed forest near the University of Michigan Biological Station. Observational evidence for this site suggests little-to-no control of transpiration by soil moisture yet the commonly used Feddes-type approach implies severe water limitation on transpiration during dry episodes. The study addresses two species: oak and aspen. The effects of differences in root architecture on actual transpiration are explored. The energy components simulated with the microscopic modeling approach are tested against observational data. Through the improved spatiotemporal representation of small-scale root water uptake process, the microscopic modeling framework leads to a better agreement with the observational data than the Feddes-type approach. During dry periods, relatively high transpiration is sustained, as water uptake regions shift from densely to sparsely rooted layers, or from drier to moister soil areas. Implications and approaches for incorporating microscopic modeling methodologies within large-scale land-surface parameterizations are discussed.

  1. Model-Based Anomaly Detection for a Transparent Optical Transmission System

    NASA Astrophysics Data System (ADS)

    Bengtsson, Thomas; Salamon, Todd; Ho, Tin Kam; White, Christopher A.

    In this chapter, we present an approach for anomaly detection at the physical layer of networks where detailed knowledge about the devices and their operations is available. The approach combines physics-based process models with observational data models to characterize the uncertainties and derive the alarm decision rules. We formulate and apply three different methods based on this approach for a well-defined problem in optical network monitoring that features many typical challenges for this methodology. Specifically, we address the problem of monitoring optically transparent transmission systems that use dynamically controlled Raman amplification systems. We use models of amplifier physics together with statistical estimation to derive alarm decision rules and use these rules to automatically discriminate between measurement errors, anomalous losses, and pump failures. Our approach has led to an efficient tool for systematically detecting anomalies in the system behavior of a deployed network, where pro-active measures to address such anomalies are key to preventing unnecessary disturbances to the system's continuous operation.

  2. On some approaches to model reversible magnetization processes

    NASA Astrophysics Data System (ADS)

    Chwastek, K.; Baghel, A. P. S.; Sai Ram, B.; Borowik, B.; Daniel, L.; Kulkarni, S. V.

    2018-04-01

    This paper focuses on the problem of how reversible magnetization processes are taken into account in contemporary descriptions of hysteresis curves. For comparison, three versions of the phenomenological T(x) model based on hyperbolic tangent mapping are considered. Two of them are based on summing the output of the hysteresis operator with a linear or nonlinear mapping. The third description is inspired by the concept of the product Preisach model. Total susceptibility is modulated with a magnetization-dependent function. The models are verified using measurement data for grain-oriented electrical steel. The proposed third description represents minor loops most accurately.

  3. Predicting Error Bars for QSAR Models

    NASA Astrophysics Data System (ADS)

    Schroeter, Timon; Schwaighofer, Anton; Mika, Sebastian; Ter Laak, Antonius; Suelzle, Detlev; Ganzer, Ursula; Heinrich, Nikolaus; Müller, Klaus-Robert

    2007-09-01

    Unfavorable physicochemical properties often cause drug failures. It is therefore important to take lipophilicity and water solubility into account early on in lead discovery. This study presents log D7 models built using Gaussian Process regression, Support Vector Machines, decision trees and ridge regression algorithms based on 14556 drug discovery compounds of Bayer Schering Pharma. A blind test was conducted using 7013 new measurements from the last months. We also present independent evaluations using public data. Apart from accuracy, we discuss the quality of error bars that can be computed by Gaussian Process models, and ensemble and distance based techniques for the other modelling approaches.

  4. Review on experiment-based two- and three-dimensional models for wound healing

    PubMed Central

    Gefen, Amit

    2016-01-01

    Traumatic and chronic wounds are a considerable medical challenge that affects many populations and their treatment is a monetary and time-consuming burden in an ageing society to the medical systems. Because wounds are very common and their treatment is so costly, approaches to reveal the responses of a specific wound type to different medical procedures and treatments could accelerate healing and reduce patient suffering. The effects of treatments can be forecast using mathematical modelling that has the predictive power to quantify the effects of induced changes to the wound-healing process. Wound healing involves a diverse and complex combination of biophysical and biomechanical processes. We review a wide variety of contemporary approaches of mathematical modelling of gap closure and wound-healing-related processes, such as angiogenesis. We provide examples of the understanding and insights that may be garnered using those models, and how those relate to experimental evidence. Mathematical modelling-based simulations can provide an important visualization tool that can be used for illustrational purposes for physicians, patients and researchers. PMID:27708762

  5. Wafer plane inspection with soft resist thresholding

    NASA Astrophysics Data System (ADS)

    Hess, Carl; Shi, Rui-fang; Wihl, Mark; Xiong, Yalin; Pang, Song

    2008-10-01

    Wafer Plane Inspection (WPI) is an inspection mode on the KLA-Tencor TeraScaTM platform that uses the high signalto- noise ratio images from the high numerical aperture microscope, and then models the entire lithographic process to enable defect detection on the wafer plane[1]. This technology meets the needs of some advanced mask manufacturers to identify the lithographically-significant defects while ignoring the other non-lithographically-significant defects. WPI accomplishes this goal by performing defect detection based on a modeled image of how the mask features would actually print in the photoresist. There are several advantages to this approach: (1) the high fidelity of the images provide a sensitivity advantage over competing approaches; (2) the ability to perform defect detection on the wafer plane allows one to only see those defects that have a printing impact on the wafer; (3) the use of modeling on the lithographic portion of the flow enables unprecedented flexibility to support arbitrary illumination profiles, process-window inspection in unit time, and combination modes to find both printing and non-printing defects. WPI is proving to be a valuable addition to the KLA-Tencor detection algorithm suite. The modeling portion of WPI uses a single resist threshold as the final step in the processing. This has been shown to be adequate on several advanced customer layers, but is not ideal for all layers. Actual resist chemistry has complicated processes including acid and base-diffusion and quench that are not consistently well-modeled with a single resist threshold. We have considered the use of an advanced resist model for WPI, but rejected it because the burdensome requirements for the calibration of the model were not practical for reticle inspection. This paper describes an alternative approach that allows for a "soft" resist threshold to be applied that provides a more robust solution for the most challenging processes. This approach is just finishing beta testing with a customer developing advanced node designs.

  6. Adapting Rational Unified Process (RUP) approach in designing a secure e-Tendering model

    NASA Astrophysics Data System (ADS)

    Mohd, Haslina; Robie, Muhammad Afdhal Muhammad; Baharom, Fauziah; Darus, Norida Muhd; Saip, Mohamed Ali; Yasin, Azman

    2016-08-01

    e-Tendering is an electronic processing of the tender document via internet and allow tenderer to publish, communicate, access, receive and submit all tender related information and documentation via internet. This study aims to design the e-Tendering system using Rational Unified Process approach. RUP provides a disciplined approach on how to assign tasks and responsibilities within the software development process. RUP has four phases that can assist researchers to adjust the requirements of various projects with different scope, problem and the size of projects. RUP is characterized as a use case driven, architecture centered, iterative and incremental process model. However the scope of this study only focusing on Inception and Elaboration phases as step to develop the model and perform only three of nine workflows (business modeling, requirements, analysis and design). RUP has a strong focus on documents and the activities in the inception and elaboration phases mainly concern the creation of diagrams and writing of textual descriptions. The UML notation and the software program, Star UML are used to support the design of e-Tendering. The e-Tendering design based on the RUP approach can contribute to e-Tendering developers and researchers in e-Tendering domain. In addition, this study also shows that the RUP is one of the best system development methodology that can be used as one of the research methodology in Software Engineering domain related to secured design of any observed application. This methodology has been tested in various studies in certain domains, such as in Simulation-based Decision Support, Security Requirement Engineering, Business Modeling and Secure System Requirement, and so forth. As a conclusion, these studies showed that the RUP one of a good research methodology that can be adapted in any Software Engineering (SE) research domain that required a few artifacts to be generated such as use case modeling, misuse case modeling, activity diagram, and initial class diagram from a list of requirements as identified earlier by the SE researchers

  7. Alterations in choice behavior by manipulations of world model.

    PubMed

    Green, C S; Benson, C; Kersten, D; Schrater, P

    2010-09-14

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) "probability matching"-a consistent example of suboptimal choice behavior seen in humans-occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.

  8. Alterations in choice behavior by manipulations of world model

    PubMed Central

    Green, C. S.; Benson, C.; Kersten, D.; Schrater, P.

    2010-01-01

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) “probability matching”—a consistent example of suboptimal choice behavior seen in humans—occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning. PMID:20805507

  9. [The history of development of evolutionary methods in St. Petersburg school of computer simulation in biology].

    PubMed

    Menshutkin, V V; Kazanskiĭ, A B; Levchenko, V F

    2010-01-01

    The history of rise and development of evolutionary methods in Saint Petersburg school of biological modelling is traced and analyzed. Some pioneering works in simulation of ecological and evolutionary processes, performed in St.-Petersburg school became an exemplary ones for many followers in Russia and abroad. The individual-based approach became the crucial point in the history of the school as an adequate instrument for construction of models of biological evolution. This approach is natural for simulation of the evolution of life-history parameters and adaptive processes in populations and communities. In some cases simulated evolutionary process was used for solving a reverse problem, i. e., for estimation of uncertain life-history parameters of population. Evolutionary computations is one more aspect of this approach application in great many fields. The problems and vistas of ecological and evolutionary modelling in general are discussed.

  10. Developing a CD-CBM Anticipatory Approach for Cavitation - Defining a Model-Based Descriptor Consistent Across Processes, Phase 1 Final Report Context-Dependent Prognostics and Health Assessment: A New Paradigm for Condition-based Maintenance SBIR Topic No. N98-114

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgood, G.O.; Dress, W.B.; Kercel, S.W.

    1999-06-01

    The objective of this research, and subsequent testing, was to identify specific features of cavitation that could be used as a model-based descriptor in a context-dependent condition-based maintenance (CD-CBM) anticipatory prognostic and health assessment model. This descriptor is based on the physics of the phenomena, capturing the salient features of the process dynamics. The test methodology and approach were developed to make the cavitation features the dominant effect in the process and collected signatures. This would allow the accurate characterization of the salient cavitation features at different operational states. By developing such an abstraction, these attributes can be used asmore » a general diagnostic for a system or any of its components. In this study, the particular focus will be pumps. As many as 90% of pump failures are catastrophic. They seem to be operating normally and fail abruptly without warning. This is true whether the failure is sudden hardware damage requiring repair, such as a gasket failure, or a transition into an undesired operating mode, such as cavitation. This means that conventional diagnostic methods fail to predict 90% of incipient failures and that in addressing this problem, model-based methods can add value where it is actually needed.« less

  11. Bayesian Model Selection under Time Constraints

    NASA Astrophysics Data System (ADS)

    Hoege, M.; Nowak, W.; Illman, W. A.

    2017-12-01

    Bayesian model selection (BMS) provides a consistent framework for rating and comparing models in multi-model inference. In cases where models of vastly different complexity compete with each other, we also face vastly different computational runtimes of such models. For instance, time series of a quantity of interest can be simulated by an autoregressive process model that takes even less than a second for one run, or by a partial differential equations-based model with runtimes up to several hours or even days. The classical BMS is based on a quantity called Bayesian model evidence (BME). It determines the model weights in the selection process and resembles a trade-off between bias of a model and its complexity. However, in practice, the runtime of models is another weight relevant factor for model selection. Hence, we believe that it should be included, leading to an overall trade-off problem between bias, variance and computing effort. We approach this triple trade-off from the viewpoint of our ability to generate realizations of the models under a given computational budget. One way to obtain BME values is through sampling-based integration techniques. We argue with the fact that more expensive models can be sampled much less under time constraints than faster models (in straight proportion to their runtime). The computed evidence in favor of a more expensive model is statistically less significant than the evidence computed in favor of a faster model, since sampling-based strategies are always subject to statistical sampling error. We present a straightforward way to include this misbalance into the model weights that are the basis for model selection. Our approach follows directly from the idea of insufficient significance. It is based on a computationally cheap bootstrapping error estimate of model evidence and is easy to implement. The approach is illustrated in a small synthetic modeling study.

  12. Adaptive Gaussian mixture models for pre-screening in GPR data

    NASA Astrophysics Data System (ADS)

    Torrione, Peter; Morton, Kenneth, Jr.; Besaw, Lance E.

    2011-06-01

    Due to the large amount of data generated by vehicle-mounted ground penetrating radar (GPR) antennae arrays, advanced feature extraction and classification can only be performed on a small subset of data during real-time operation. As a result, most GPR based landmine detection systems implement "pre-screening" algorithms to processes all of the data generated by the antennae array and identify locations with anomalous signatures for more advanced processing. These pre-screening algorithms must be computationally efficient and obtain high probability of detection, but can permit a false alarm rate which might be higher than the total system requirements. Many approaches to prescreening have previously been proposed, including linear prediction coefficients, the LMS algorithm, and CFAR-based approaches. Similar pre-screening techniques have also been developed in the field of video processing to identify anomalous behavior or anomalous objects. One such algorithm, an online k-means approximation to an adaptive Gaussian mixture model (GMM), is particularly well-suited to application for pre-screening in GPR data due to its computational efficiency, non-linear nature, and relevance of the logic underlying the algorithm to GPR processing. In this work we explore the application of an adaptive GMM-based approach for anomaly detection from the video processing literature to pre-screening in GPR data. Results with the ARA Nemesis landmine detection system demonstrate significant pre-screening performance improvements compared to alternative approaches, and indicate that the proposed algorithm is a complimentary technique to existing methods.

  13. Modeling the dynamics of multipartite quantum systems created departing from two-level systems using general local and non-local interactions

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco

    2017-12-01

    Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.

  14. A Correlation-Based Transition Model using Local Variables. Part 1; Model Formation

    NASA Technical Reports Server (NTRS)

    Menter, F. R.; Langtry, R. B.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.

    2006-01-01

    A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but from a framework for the implementation of correlation-based models into general-purpose CFD methods.

  15. The Rangeland Hydrology and Erosion Model: A dynamic approach for predicting soil loss on rangelands

    USDA-ARS?s Scientific Manuscript database

    In this study we present the improved Rangeland Hydrology and Erosion Model (RHEM V2.3), a process-based erosion prediction tool specific for rangeland application. The article provides the mathematical formulation of the model and parameter estimation equations. Model performance is assessed agains...

  16. Exploring component-based approaches in forest landscape modeling

    Treesearch

    H. S. He; D. R. Larsen; D. J. Mladenoff

    2002-01-01

    Forest management issues are increasingly required to be addressed in a spatial context, which has led to the development of spatially explicit forest landscape models. The numerous processes, complex spatial interactions, and diverse applications in spatial modeling make the development of forest landscape models difficult for any single research group. New...

  17. Urban tree growth modeling

    Treesearch

    E. Gregory McPherson; Paula J. Peper

    2012-01-01

    This paper describes three long-term tree growth studies conducted to evaluate tree performance because repeated measurements of the same trees produce critical data for growth model calibration and validation. Several empirical and process-based approaches to modeling tree growth are reviewed. Modeling is more advanced in the fields of forestry and...

  18. THz spectroscopy: An emerging technology for pharmaceutical development and pharmaceutical Process Analytical Technology (PAT) applications

    NASA Astrophysics Data System (ADS)

    Wu, Huiquan; Khan, Mansoor

    2012-08-01

    As an emerging technology, THz spectroscopy has gained increasing attention in the pharmaceutical area during the last decade. This attention is due to the fact that (1) it provides a promising alternative approach for in-depth understanding of both intermolecular interaction among pharmaceutical molecules and pharmaceutical product quality attributes; (2) it provides a promising alternative approach for enhanced process understanding of certain pharmaceutical manufacturing processes; and (3) the FDA pharmaceutical quality initiatives, most noticeably, the Process Analytical Technology (PAT) initiative. In this work, the current status and progress made so far on using THz spectroscopy for pharmaceutical development and pharmaceutical PAT applications are reviewed. In the spirit of demonstrating the utility of first principles modeling approach for addressing model validation challenge and reducing unnecessary model validation "burden" for facilitating THz pharmaceutical PAT applications, two scientific case studies based on published THz spectroscopy measurement results are created and discussed. Furthermore, other technical challenges and opportunities associated with adapting THz spectroscopy as a pharmaceutical PAT tool are highlighted.

  19. The mechanism and design of sequencing batch reactor systems for nutrient removal--the state of the art.

    PubMed

    Artan, N; Wilderer, P; Orhon, D; Morgenroth, E; Ozgür, N

    2001-01-01

    The Sequencing Batch Reactor (SBR) process for carbon and nutrient removal is subject to extensive research, and it is finding a wider application in full-scale installations. Despite the growing popularity, however, a widely accepted approach to process analysis and modeling, a unified design basis, and even a common terminology are still lacking; this situation is now regarded as the major obstacle hindering broader practical application of the SBR. In this paper a rational dimensioning approach is proposed for nutrient removal SBRs based on scientific information on process stoichiometry and modelling, also emphasizing practical constraints in design and operation.

  20. Improved Traceability of Mission Concept to Requirements Using Model Based Systems Engineering

    NASA Technical Reports Server (NTRS)

    Reil, Robin

    2014-01-01

    Model Based Systems Engineering (MBSE) has recently been gaining significant support as a means to improve the traditional document-based systems engineering (DBSE) approach to engineering complex systems. In the spacecraft design domain, there are many perceived and propose benefits of an MBSE approach, but little analysis has been presented to determine the tangible benefits of such an approach (e.g. time and cost saved, increased product quality). This thesis presents direct examples of how developing a small satellite system model can improve traceability of the mission concept to its requirements. A comparison of the processes and approaches for MBSE and DBSE is made using the NASA Ames Research Center SporeSat CubeSat mission as a case study. A model of the SporeSat mission is built using the Systems Modeling Language standard and No Magics MagicDraw modeling tool. The model incorporates mission concept and requirement information from the missions original DBSE design efforts. Active dependency relationships are modeled to analyze the completeness and consistency of the requirements to the mission concept. Overall experience and methodology are presented for both the MBSE and original DBSE design efforts of SporeSat.

  1. A quality by design approach to scale-up of high-shear wet granulation process.

    PubMed

    Pandey, Preetanshu; Badawy, Sherif

    2016-01-01

    High-shear wet granulation is a complex process that in turn makes scale-up a challenging task. Scale-up of high-shear wet granulation process has been studied extensively in the past with various different methodologies being proposed in the literature. This review article discusses existing scale-up principles and categorizes the various approaches into two main scale-up strategies - parameter-based and attribute-based. With the advent of quality by design (QbD) principle in drug product development process, an increased emphasis toward the latter approach may be needed to ensure product robustness. In practice, a combination of both scale-up strategies is often utilized. In a QbD paradigm, there is also a need for an increased fundamental and mechanistic understanding of the process. This can be achieved either by increased experimentation that comes at higher costs, or by using modeling techniques, that are also discussed as part of this review.

  2. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; García-Navarro, Pilar; Murillo, Javier

    2012-07-01

    SummaryHydrological simulation of rain-runoff processes is often performed with lumped models which rely on calibration to generate storm hydrographs and study catchment response to rain. In this paper, a distributed, physically-based numerical model is used for runoff simulation in a mountain catchment. This approach offers two advantages. The first is that by using shallow-water equations for runoff flow, there is less freedom to calibrate routing parameters (as compared to, for example, synthetic hydrograph methods). The second, is that spatial distributions of water depth and velocity can be obtained. Furthermore, interactions among the various hydrological processes can be modeled in a physically-based approach which may depend on transient and spatially distributed factors. On the other hand, the undertaken numerical approach relies on accurate terrain representation and mesh selection, which also affects significantly the computational cost of the simulations. Hence, we investigate the response of a gauged catchment with this distributed approach. The methodology consists of analyzing the effects that the mesh has on the simulations by using a range of meshes. Next, friction is applied to the model and the response to variations and interaction with the mesh is studied. Finally, a first approach with the well-known SCS Curve Number method is studied to evaluate its behavior when coupled with a shallow-water model for runoff flow. The results show that mesh selection is of great importance, since it may affect the results in a magnitude as large as physical factors, such as friction. Furthermore, results proved to be less sensitive to roughness spatial distribution than to mesh properties. Finally, the results indicate that SCS-CN may not be suitable for simulating hydrological processes together with a shallow-water model.

  3. Computational Phenotyping in Psychiatry: A Worked Example

    PubMed Central

    2016-01-01

    Abstract Computational psychiatry is a rapidly emerging field that uses model-based quantities to infer the behavioral and neuronal abnormalities that underlie psychopathology. If successful, this approach promises key insights into (pathological) brain function as well as a more mechanistic and quantitative approach to psychiatric nosology—structuring therapeutic interventions and predicting response and relapse. The basic procedure in computational psychiatry is to build a computational model that formalizes a behavioral or neuronal process. Measured behavioral (or neuronal) responses are then used to infer the model parameters of a single subject or a group of subjects. Here, we provide an illustrative overview over this process, starting from the modeling of choice behavior in a specific task, simulating data, and then inverting that model to estimate group effects. Finally, we illustrate cross-validation to assess whether between-subject variables (e.g., diagnosis) can be recovered successfully. Our worked example uses a simple two-step maze task and a model of choice behavior based on (active) inference and Markov decision processes. The procedural steps and routines we illustrate are not restricted to a specific field of research or particular computational model but can, in principle, be applied in many domains of computational psychiatry. PMID:27517087

  4. Computational Phenotyping in Psychiatry: A Worked Example.

    PubMed

    Schwartenbeck, Philipp; Friston, Karl

    2016-01-01

    Computational psychiatry is a rapidly emerging field that uses model-based quantities to infer the behavioral and neuronal abnormalities that underlie psychopathology. If successful, this approach promises key insights into (pathological) brain function as well as a more mechanistic and quantitative approach to psychiatric nosology-structuring therapeutic interventions and predicting response and relapse. The basic procedure in computational psychiatry is to build a computational model that formalizes a behavioral or neuronal process. Measured behavioral (or neuronal) responses are then used to infer the model parameters of a single subject or a group of subjects. Here, we provide an illustrative overview over this process, starting from the modeling of choice behavior in a specific task, simulating data, and then inverting that model to estimate group effects. Finally, we illustrate cross-validation to assess whether between-subject variables (e.g., diagnosis) can be recovered successfully. Our worked example uses a simple two-step maze task and a model of choice behavior based on (active) inference and Markov decision processes. The procedural steps and routines we illustrate are not restricted to a specific field of research or particular computational model but can, in principle, be applied in many domains of computational psychiatry.

  5. A simple microviscometric approach based on Brownian motion tracking.

    PubMed

    Hnyluchová, Zuzana; Bjalončíková, Petra; Karas, Pavel; Mravec, Filip; Halasová, Tereza; Pekař, Miloslav; Kubala, Lukáš; Víteček, Jan

    2015-02-01

    Viscosity-an integral property of a liquid-is traditionally determined by mechanical instruments. The most pronounced disadvantage of such an approach is the requirement of a large sample volume, which poses a serious obstacle, particularly in biology and biophysics when working with limited samples. Scaling down the required volume by means of microviscometry based on tracking the Brownian motion of particles can provide a reasonable alternative. In this paper, we report a simple microviscometric approach which can be conducted with common laboratory equipment. The core of this approach consists in a freely available standalone script to process particle trajectory data based on a Newtonian model. In our study, this setup allowed the sample to be scaled down to 10 μl. The utility of the approach was demonstrated using model solutions of glycerine, hyaluronate, and mouse blood plasma. Therefore, this microviscometric approach based on a newly developed freely available script can be suggested for determination of the viscosity of small biological samples (e.g., body fluids).

  6. [Mindfulness-Based Cognitive Therapy (MBCT) and the 'Third Wave' of Cognitive-Bahavioral Therapies (CBT)].

    PubMed

    Garay, Cristian J; Korman, Guido P; Keegan, Eduardo G

    2015-01-01

    The paper presents the reasons that led to the incorporation of mindfulness as part of a cognitive therapy approach to the prevention of relapse of recurrent depressive disorders. It describes the context in which models focused on the contents of cognition gave way to models focused on cognitive processes. We highlight the problems encountered by the standard cognitive model when trying to account for the cognitive vulnerability of individuals who, having experienced a depressive episode, are in remission. We briefly describe the theoretical foundations of Mindfulness-Based Cognitive Therapy and its therapeutic approach.

  7. Developing a CD-CBM Anticipatory Approach for Cavitation - Defining a Model Descriptor Consistent Between Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allgood, G.O.; Dress, W.B.; Kercel, S.W.

    1999-05-10

    A major problem with cavitation in pumps and other hydraulic devices is that there is no effective method for detecting or predicting its inception. The traditional approach is to declare the pump in cavitation when the total head pressure drops by some arbitrary value (typically 3o/0) in response to a reduction in pump inlet pressure. However, the pump is already cavitating at this point. A method is needed in which cavitation events are captured as they occur and characterized by their process dynamics. The object of this research was to identify specific features of cavitation that could be used asmore » a model-based descriptor in a context-dependent condition-based maintenance (CD-CBM) anticipatory prognostic and health assessment model. This descriptor was based on the physics of the phenomena, capturing the salient features of the process dynamics. An important element of this concept is the development and formulation of the extended process feature vector @) or model vector. Thk model-based descriptor encodes the specific information that describes the phenomena and its dynamics and is formulated as a data structure consisting of several elements. The first is a descriptive model abstracting the phenomena. The second is the parameter list associated with the functional model. The third is a figure of merit, a single number between [0,1] representing a confidence factor that the functional model and parameter list actually describes the observed data. Using this as a basis and applying it to the cavitation problem, any given location in a flow loop will have this data structure, differing in value but not content. The extended process feature vector is formulated as follows: E`> [ , {parameter Iist}, confidence factor]. (1) For this study, the model that characterized cavitation was a chirped-exponentially decaying sinusoid. Using the parameters defined by this model, the parameter list included frequency, decay, and chirp rate. Based on this, the process feature vector has the form: @=> [, {01 = a, ~= b, ~ = c}, cf = 0.80]. (2) In this experiment a reversible catastrophe was examined. The reason for this is that the same catastrophe could be repeated to ensure the statistical significance of the data.« less

  8. Imaging model for the scintillator and its application to digital radiography image enhancement.

    PubMed

    Wang, Qian; Zhu, Yining; Li, Hongwei

    2015-12-28

    Digital Radiography (DR) images obtained by OCD-based (optical coupling detector) Micro-CT system usually suffer from low contrast. In this paper, a mathematical model is proposed to describe the image formation process in scintillator. By solving the correlative inverse problem, the quality of DR images is improved, i.e. higher contrast and spatial resolution. By analyzing the radiative transfer process of visible light in scintillator, scattering is recognized as the main factor leading to low contrast. Moreover, involved blurring effect is also concerned and described as point spread function (PSF). Based on these physical processes, the scintillator imaging model is then established. When solving the inverse problem, pre-correction to the intensity of x-rays, dark channel prior based haze removing technique, and an effective blind deblurring approach are employed. Experiments on a variety of DR images show that the proposed approach could improve the contrast of DR images dramatically as well as eliminate the blurring vision effectively. Compared with traditional contrast enhancement methods, such as CLAHE, our method could preserve the relative absorption values well.

  9. Hamiltonian Monte Carlo acceleration using surrogate functions with random bases.

    PubMed

    Zhang, Cheng; Shahbaba, Babak; Zhao, Hongkai

    2017-11-01

    For big data analysis, high computational cost for Bayesian methods often limits their applications in practice. In recent years, there have been many attempts to improve computational efficiency of Bayesian inference. Here we propose an efficient and scalable computational technique for a state-of-the-art Markov chain Monte Carlo methods, namely, Hamiltonian Monte Carlo. The key idea is to explore and exploit the structure and regularity in parameter space for the underlying probabilistic model to construct an effective approximation of its geometric properties. To this end, we build a surrogate function to approximate the target distribution using properly chosen random bases and an efficient optimization process. The resulting method provides a flexible, scalable, and efficient sampling algorithm, which converges to the correct target distribution. We show that by choosing the basis functions and optimization process differently, our method can be related to other approaches for the construction of surrogate functions such as generalized additive models or Gaussian process models. Experiments based on simulated and real data show that our approach leads to substantially more efficient sampling algorithms compared to existing state-of-the-art methods.

  10. Transactions in domain-specific information systems

    NASA Astrophysics Data System (ADS)

    Zacek, Jaroslav

    2017-07-01

    Substantial number of the current information system (IS) implementations is based on transaction approach. In addition, most of the implementations are domain-specific (e.g. accounting IS, resource planning IS). Therefore, we have to have a generic transaction model to build and verify domain-specific IS. The paper proposes a new transaction model for domain-specific ontologies. This model is based on value oriented business process modelling technique. The transaction model is formalized by the Petri Net theory. First part of the paper presents common business processes and analyses related to business process modeling. Second part defines the transactional model delimited by REA enterprise ontology paradigm and introduces states of the generic transaction model. The generic model proposal is defined and visualized by the Petri Net modelling tool. Third part shows application of the generic transaction model. Last part of the paper concludes results and discusses a practical usability of the generic transaction model.

  11. Knowledge-based modularization and global optimization of artificial neural network models in hydrological forecasting.

    PubMed

    Corzo, Gerald; Solomatine, Dimitri

    2007-05-01

    Natural phenomena are multistationary and are composed of a number of interacting processes, so one single model handling all processes often suffers from inaccuracies. A solution is to partition data in relation to such processes using the available domain knowledge or expert judgment, to train separate models for each of the processes, and to merge them in a modular model (committee). In this paper a problem of water flow forecast in watershed hydrology is considered where the flow process can be presented as consisting of two subprocesses -- base flow and excess flow, so that these two processes can be separated. Several approaches to data separation techniques are studied. Two case studies with different forecast horizons are considered. Parameters of the algorithms responsible for data partitioning are optimized using genetic algorithms and global pattern search. It was found that modularization of ANN models using domain knowledge makes models more accurate, if compared with a global model trained on the whole data set, especially when forecast horizon (and hence the complexity of the modelled processes) is increased.

  12. Bayesian Total-Evidence Dating Reveals the Recent Crown Radiation of Penguins

    PubMed Central

    Heath, Tracy A.; Ksepka, Daniel T.; Stadler, Tanja; Welch, David; Drummond, Alexei J.

    2017-01-01

    The total-evidence approach to divergence time dating uses molecular and morphological data from extant and fossil species to infer phylogenetic relationships, species divergence times, and macroevolutionary parameters in a single coherent framework. Current model-based implementations of this approach lack an appropriate model for the tree describing the diversification and fossilization process and can produce estimates that lead to erroneous conclusions. We address this shortcoming by providing a total-evidence method implemented in a Bayesian framework. This approach uses a mechanistic tree prior to describe the underlying diversification process that generated the tree of extant and fossil taxa. Previous attempts to apply the total-evidence approach have used tree priors that do not account for the possibility that fossil samples may be direct ancestors of other samples, that is, ancestors of fossil or extant species or of clades. The fossilized birth–death (FBD) process explicitly models the diversification, fossilization, and sampling processes and naturally allows for sampled ancestors. This model was recently applied to estimate divergence times based on molecular data and fossil occurrence dates. We incorporate the FBD model and a model of morphological trait evolution into a Bayesian total-evidence approach to dating species phylogenies. We apply this method to extant and fossil penguins and show that the modern penguins radiated much more recently than has been previously estimated, with the basal divergence in the crown clade occurring at \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\sim}12.7$\\end{document} Ma and most splits leading to extant species occurring in the last 2 myr. Our results demonstrate that including stem-fossil diversity can greatly improve the estimates of the divergence times of crown taxa. The method is available in BEAST2 (version 2.4) software www.beast2.org with packages SA (version at least 1.1.4) and morph-models (version at least 1.0.4) installed. [Birth–death process; calibration; divergence times; MCMC; phylogenetics.] PMID:28173531

  13. PROcess Based Diagnostics PROBE

    NASA Technical Reports Server (NTRS)

    Clune, T.; Schmidt, G.; Kuo, K.; Bauer, M.; Oloso, H.

    2013-01-01

    Many of the aspects of the climate system that are of the greatest interest (e.g., the sensitivity of the system to external forcings) are emergent properties that arise via the complex interplay between disparate processes. This is also true for climate models most diagnostics are not a function of an isolated portion of source code, but rather are affected by multiple components and procedures. Thus any model-observation mismatch is hard to attribute to any specific piece of code or imperfection in a specific model assumption. An alternative approach is to identify diagnostics that are more closely tied to specific processes -- implying that if a mismatch is found, it should be much easier to identify and address specific algorithmic choices that will improve the simulation. However, this approach requires looking at model output and observational data in a more sophisticated way than the more traditional production of monthly or annual mean quantities. The data must instead be filtered in time and space for examples of the specific process being targeted.We are developing a data analysis environment called PROcess-Based Explorer (PROBE) that seeks to enable efficient and systematic computation of process-based diagnostics on very large sets of data. In this environment, investigators can define arbitrarily complex filters and then seamlessly perform computations in parallel on the filtered output from their model. The same analysis can be performed on additional related data sets (e.g., reanalyses) thereby enabling routine comparisons between model and observational data. PROBE also incorporates workflow technology to automatically update computed diagnostics for subsequent executions of a model. In this presentation, we will discuss the design and current status of PROBE as well as share results from some preliminary use cases.

  14. Sensory neural pathways revisited to unravel the temporal dynamics of the Simon effect: A model-based cognitive neuroscience approach.

    PubMed

    Salzer, Yael; de Hollander, Gilles; Forstmann, Birte U

    2017-06-01

    The Simon task is one of the most prominent interference tasks and has been extensively studied in experimental psychology and cognitive neuroscience. Despite years of research, the underlying mechanism driving the phenomenon and its temporal dynamics are still disputed. Within the framework of the review, we adopt a model-based cognitive neuroscience approach. We first go over key findings in the literature of the Simon task, discuss competing qualitative cognitive theories and the difficulty of testing them empirically. We then introduce sequential sampling models, a particular class of mathematical cognitive process models. Finally, we argue that the brain architecture accountable for the processing of spatial ('where') and non-spatial ('what') information, could constrain these models. We conclude that there is a clear need to bridge neural and behavioral measures, and that mathematical cognitive models may facilitate the construction of this bridge and work towards revealing the underlying mechanisms of the Simon effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.

    PubMed

    Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H

    2018-03-29

    Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Model-based verification and validation of the SMAP uplink processes

    NASA Astrophysics Data System (ADS)

    Khan, M. O.; Dubos, G. F.; Tirona, J.; Standley, S.

    Model-Based Systems Engineering (MBSE) is being used increasingly within the spacecraft design community because of its benefits when compared to document-based approaches. As the complexity of projects expands dramatically with continually increasing computational power and technology infusion, the time and effort needed for verification and validation (V& V) increases geometrically. Using simulation to perform design validation with system-level models earlier in the life cycle stands to bridge the gap between design of the system (based on system-level requirements) and verifying those requirements/validating the system as a whole. This case study stands as an example of how a project can validate a system-level design earlier in the project life cycle than traditional V& V processes by using simulation on a system model. Specifically, this paper describes how simulation was added to a system model of the Soil Moisture Active-Passive (SMAP) mission's uplink process. Also discussed are the advantages and disadvantages of the methods employed and the lessons learned; which are intended to benefit future model-based and simulation-based development efforts.

  17. Radiation induced dissolution of UO 2 based nuclear fuel - A critical review of predictive modelling approaches

    NASA Astrophysics Data System (ADS)

    Eriksen, Trygve E.; Shoesmith, David W.; Jonsson, Mats

    2012-01-01

    Radiation induced dissolution of uranium dioxide (UO 2) nuclear fuel and the consequent release of radionuclides to intruding groundwater are key-processes in the safety analysis of future deep geological repositories for spent nuclear fuel. For several decades, these processes have been studied experimentally using both spent fuel and various types of simulated spent fuels. The latter have been employed since it is difficult to draw mechanistic conclusions from real spent nuclear fuel experiments. Several predictive modelling approaches have been developed over the last two decades. These models are largely based on experimental observations. In this work we have performed a critical review of the modelling approaches developed based on the large body of chemical and electrochemical experimental data. The main conclusions are: (1) the use of measured interfacial rate constants give results in generally good agreement with experimental results compared to simulations where homogeneous rate constants are used; (2) the use of spatial dose rate distributions is particularly important when simulating the behaviour over short time periods; and (3) the steady-state approach (the rate of oxidant consumption is equal to the rate of oxidant production) provides a simple but fairly accurate alternative, but errors in the reaction mechanism and in the kinetic parameters used may not be revealed by simple benchmarking. It is essential to use experimentally determined rate constants and verified reaction mechanisms, irrespective of whether the approach is chemical or electrochemical.

  18. Developing a local least-squares support vector machines-based neuro-fuzzy model for nonlinear and chaotic time series prediction.

    PubMed

    Miranian, A; Abdollahzade, M

    2013-02-01

    Local modeling approaches, owing to their ability to model different operating regimes of nonlinear systems and processes by independent local models, seem appealing for modeling, identification, and prediction applications. In this paper, we propose a local neuro-fuzzy (LNF) approach based on the least-squares support vector machines (LSSVMs). The proposed LNF approach employs LSSVMs, which are powerful in modeling and predicting time series, as local models and uses hierarchical binary tree (HBT) learning algorithm for fast and efficient estimation of its parameters. The HBT algorithm heuristically partitions the input space into smaller subdomains by axis-orthogonal splits. In each partitioning, the validity functions automatically form a unity partition and therefore normalization side effects, e.g., reactivation, are prevented. Integration of LSSVMs into the LNF network as local models, along with the HBT learning algorithm, yield a high-performance approach for modeling and prediction of complex nonlinear time series. The proposed approach is applied to modeling and predictions of different nonlinear and chaotic real-world and hand-designed systems and time series. Analysis of the prediction results and comparisons with recent and old studies demonstrate the promising performance of the proposed LNF approach with the HBT learning algorithm for modeling and prediction of nonlinear and chaotic systems and time series.

  19. Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.

    PubMed

    Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence

    2012-08-29

    Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real numbers, mainly based on differential equations and chemical kinetics formalism; (2) and qualitative modeling, representing chemical species concentrations or activities by a finite set of discrete values. Both approaches answer particular (and often different) biological questions. Qualitative modeling approach permits a simple and less detailed description of the biological systems, efficiently describes stable state identification but remains inconvenient in describing the transient kinetics leading to these states. In this context, time is represented by discrete steps. Quantitative modeling, on the other hand, can describe more accurately the dynamical behavior of biological processes as it follows the evolution of concentration or activities of chemical species as a function of time, but requires an important amount of information on the parameters difficult to find in the literature. Here, we propose a modeling framework based on a qualitative approach that is intrinsically continuous in time. The algorithm presented in this article fills the gap between qualitative and quantitative modeling. It is based on continuous time Markov process applied on a Boolean state space. In order to describe the temporal evolution of the biological process we wish to model, we explicitly specify the transition rates for each node. For that purpose, we built a language that can be seen as a generalization of Boolean equations. Mathematically, this approach can be translated in a set of ordinary differential equations on probability distributions. We developed a C++ software, MaBoSS, that is able to simulate such a system by applying Kinetic Monte-Carlo (or Gillespie algorithm) on the Boolean state space. This software, parallelized and optimized, computes the temporal evolution of probability distributions and estimates stationary distributions. Applications of the Boolean Kinetic Monte-Carlo are demonstrated for three qualitative models: a toy model, a published model of p53/Mdm2 interaction and a published model of the mammalian cell cycle. Our approach allows to describe kinetic phenomena which were difficult to handle in the original models. In particular, transient effects are represented by time dependent probability distributions, interpretable in terms of cell populations.

  20. The framework for simulation of bioinspired security mechanisms against network infrastructure attacks.

    PubMed

    Shorov, Andrey; Kotenko, Igor

    2014-01-01

    The paper outlines a bioinspired approach named "network nervous system" and methods of simulation of infrastructure attacks and protection mechanisms based on this approach. The protection mechanisms based on this approach consist of distributed procedures of information collection and processing, which coordinate the activities of the main devices of a computer network, identify attacks, and determine necessary countermeasures. Attacks and protection mechanisms are specified as structural models using a set-theoretic approach. An environment for simulation of protection mechanisms based on the biological metaphor is considered; the experiments demonstrating the effectiveness of the protection mechanisms are described.

  1. Development of Integrated Modular Avionics Application Based on Simulink and XtratuM

    NASA Astrophysics Data System (ADS)

    Fons-Albert, Borja; Usach-Molina, Hector; Vila-Carbo, Joan; Crespo-Lorente, Alfons

    2013-08-01

    This paper presents an integral approach for designing avionics applications that meets the requirements for software development and execution of this application domain. Software design follows the Model-Based design process and is performed in Simulink. This approach allows easy and quick testbench development and helps satisfying DO-178B requirements through the use of proper tools. The software execution platform is based on XtratuM, a minimal bare-metal hypervisor designed in our research group. XtratuM provides support for IMA-SP (Integrated Modular Avionics for Space) architectures. This approach allows the code generation of a Simulink model to be executed on top of Lithos as XtratuM partition. Lithos is a ARINC-653 compliant RTOS for XtratuM. The paper concentrates in how to smoothly port Simulink designs to XtratuM solving problems like application partitioning, automatic code generation, real-time tasking, interfacing, and others. This process is illustrated with an autopilot design test using a flight simulator.

  2. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology

    USGS Publications Warehouse

    Fatichi, Simone; Vivoni, Enrique R.; Odgen, Fred L; Ivanov, Valeriy Y; Mirus, Benjamin B.; Gochis, David; Downer, Charles W; Camporese, Matteo; Davison, Jason H; Ebel, Brian A.; Jones, Norm; Kim, Jongho; Mascaro, Giuseppe; Niswonger, Richard G.; Restrepo, Pedro; Rigon, Riccardo; Shen, Chaopeng; Sulis, Mauro; Tarboton, David

    2016-01-01

    Process-based hydrological models have a long history dating back to the 1960s. Criticized by some as over-parameterized, overly complex, and difficult to use, a more nuanced view is that these tools are necessary in many situations and, in a certain class of problems, they are the most appropriate type of hydrological model. This is especially the case in situations where knowledge of flow paths or distributed state variables and/or preservation of physical constraints is important. Examples of this include: spatiotemporal variability of soil moisture, groundwater flow and runoff generation, sediment and contaminant transport, or when feedbacks among various Earth’s system processes or understanding the impacts of climate non-stationarity are of primary concern. These are situations where process-based models excel and other models are unverifiable. This article presents this pragmatic view in the context of existing literature to justify the approach where applicable and necessary. We review how improvements in data availability, computational resources and algorithms have made detailed hydrological simulations a reality. Avenues for the future of process-based hydrological models are presented suggesting their use as virtual laboratories, for design purposes, and with a powerful treatment of uncertainty.

  3. Rice growing farmers efficiency measurement using a slack based interval DEA model with undesirable outputs

    NASA Astrophysics Data System (ADS)

    Khan, Sahubar Ali Mohd. Nadhar; Ramli, Razamin; Baten, M. D. Azizul

    2017-11-01

    In recent years eco-efficiency which considers the effect of production process on environment in determining the efficiency of firms have gained traction and a lot of attention. Rice farming is one of such production processes which typically produces two types of outputs which are economic desirable as well as environmentally undesirable. In efficiency analysis, these undesirable outputs cannot be ignored and need to be included in the model to obtain the actual estimation of firm's efficiency. There are numerous approaches that have been used in data envelopment analysis (DEA) literature to account for undesirable outputs of which directional distance function (DDF) approach is the most widely used as it allows for simultaneous increase in desirable outputs and reduction of undesirable outputs. Additionally, slack based DDF DEA approaches considers the output shortfalls and input excess in determining efficiency. In situations when data uncertainty is present, the deterministic DEA model is not suitable to be used as the effects of uncertain data will not be considered. In this case, it has been found that interval data approach is suitable to account for data uncertainty as it is much simpler to model and need less information regarding the underlying data distribution and membership function. The proposed model uses an enhanced DEA model which is based on DDF approach and incorporates slack based measure to determine efficiency in the presence of undesirable factors and data uncertainty. Interval data approach was used to estimate the values of inputs, undesirable outputs and desirable outputs. Two separate slack based interval DEA models were constructed for optimistic and pessimistic scenarios. The developed model was used to determine rice farmers efficiency from Kepala Batas, Kedah. The obtained results were later compared to the results obtained using a deterministic DDF DEA model. The study found that 15 out of 30 farmers are efficient in all cases. It is also found that the average efficiency values of all farmers for deterministic case is always lower than the optimistic scenario and higher than pessimistic scenario. The results confirm with the hypothesis since farmers who operates in optimistic scenario are in best production situation compared to pessimistic scenario in which they operate in worst production situation. The results show that the proposed model can be applied when data uncertainty is present in the production environment.

  4. Goal-Based Domain Modeling as a Basis for Cross-Disciplinary Systems Engineering

    NASA Astrophysics Data System (ADS)

    Jarke, Matthias; Nissen, Hans W.; Rose, Thomas; Schmitz, Dominik

    Small and medium-sized enterprises (SMEs) are important drivers for innovation. In particular, project-driven SMEs that closely cooperate with their customers have specific needs in regard to information engineering of their development process. They need a fast requirements capture since this is most often included in the (unpaid) offer development phase. At the same time, they need to maintain and reuse the knowledge and experiences they have gathered in previous projects extensively as it is their core asset. The situation is complicated further if the application field crosses disciplinary boundaries. To bridge the gaps and perspectives, we focus on shared goals and dependencies captured in models at a conceptual level. Such a model-based approach also offers a smarter connection to subsequent development stages, including a high share of automated code generation. In the approach presented here, the agent- and goal-oriented formalism i * is therefore extended by domain models to facilitate information organization. This extension permits a domain model-based similarity search, and a model-based transformation towards subsequent development stages. Our approach also addresses the evolution of domain models reflecting the experiences from completed projects. The approach is illustrated with a case study on software-intensive control systems in an SME of the automotive domain.

  5. A META-COMPOSITE SOFTWARE DEVELOPMENT APPROACH FOR TRANSLATIONAL RESEARCH

    PubMed Central

    Sadasivam, Rajani S.; Tanik, Murat M.

    2013-01-01

    Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users’ needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements. PMID:23504436

  6. A meta-composite software development approach for translational research.

    PubMed

    Sadasivam, Rajani S; Tanik, Murat M

    2013-06-01

    Translational researchers conduct research in a highly data-intensive and continuously changing environment and need to use multiple, disparate tools to achieve their goals. These researchers would greatly benefit from meta-composite software development or the ability to continuously compose and recompose tools together in response to their ever-changing needs. However, the available tools are largely disconnected, and current software approaches are inefficient and ineffective in their support for meta-composite software development. Building on the composite services development approach, the de facto standard for developing integrated software systems, we propose a concept-map and agent-based meta-composite software development approach. A crucial step in composite services development is the modeling of users' needs as processes, which can then be specified in an executable format for system composition. We have two key innovations. First, our approach allows researchers (who understand their needs best) instead of technicians to take a leadership role in the development of process models, reducing inefficiencies and errors. A second innovation is that our approach also allows for modeling of complex user interactions as part of the process, overcoming the technical limitations of current tools. We demonstrate the feasibility of our approach using a real-world translational research use case. We also present results of usability studies evaluating our approach for future refinements.

  7. Modeling cell adhesion and proliferation: a cellular-automata based approach.

    PubMed

    Vivas, J; Garzón-Alvarado, D; Cerrolaza, M

    Cell adhesion is a process that involves the interaction between the cell membrane and another surface, either a cell or a substrate. Unlike experimental tests, computer models can simulate processes and study the result of experiments in a shorter time and lower costs. One of the tools used to simulate biological processes is the cellular automata, which is a dynamic system that is discrete both in space and time. This work describes a computer model based on cellular automata for the adhesion process and cell proliferation to predict the behavior of a cell population in suspension and adhered to a substrate. The values of the simulated system were obtained through experimental tests on fibroblast monolayer cultures. The results allow us to estimate the cells settling time in culture as well as the adhesion and proliferation time. The change in the cells morphology as the adhesion over the contact surface progress was also observed. The formation of the initial link between cell and the substrate of the adhesion was observed after 100 min where the cell on the substrate retains its spherical morphology during the simulation. The cellular automata model developed is, however, a simplified representation of the steps in the adhesion process and the subsequent proliferation. A combined framework of experimental and computational simulation based on cellular automata was proposed to represent the fibroblast adhesion on substrates and changes in a macro-scale observed in the cell during the adhesion process. The approach showed to be simple and efficient.

  8. Breast cancer screening in an era of personalized regimens: a conceptual model and National Cancer Institute initiative for risk-based and preference-based approaches at a population level.

    PubMed

    Onega, Tracy; Beaber, Elisabeth F; Sprague, Brian L; Barlow, William E; Haas, Jennifer S; Tosteson, Anna N A; D Schnall, Mitchell; Armstrong, Katrina; Schapira, Marilyn M; Geller, Berta; Weaver, Donald L; Conant, Emily F

    2014-10-01

    Breast cancer screening holds a prominent place in public health, health care delivery, policy, and women's health care decisions. Several factors are driving shifts in how population-based breast cancer screening is approached, including advanced imaging technologies, health system performance measures, health care reform, concern for "overdiagnosis," and improved understanding of risk. Maximizing benefits while minimizing the harms of screening requires moving from a "1-size-fits-all" guideline paradigm to more personalized strategies. A refined conceptual model for breast cancer screening is needed to align women's risks and preferences with screening regimens. A conceptual model of personalized breast cancer screening is presented herein that emphasizes key domains and transitions throughout the screening process, as well as multilevel perspectives. The key domains of screening awareness, detection, diagnosis, and treatment and survivorship are conceptualized to function at the level of the patient, provider, facility, health care system, and population/policy arena. Personalized breast cancer screening can be assessed across these domains with both process and outcome measures. Identifying, evaluating, and monitoring process measures in screening is a focus of a National Cancer Institute initiative entitled PROSPR (Population-based Research Optimizing Screening through Personalized Regimens), which will provide generalizable evidence for a risk-based model of breast cancer screening, The model presented builds on prior breast cancer screening models and may serve to identify new measures to optimize benefits-to-harms tradeoffs in population-based screening, which is a timely goal in the era of health care reform. © 2014 American Cancer Society.

  9. An Empirical and Qualitative Study of the Strategic Planning Process of a Higher Education Institution

    ERIC Educational Resources Information Center

    Aleong, Chandra

    2007-01-01

    This paper discusses whether there are differences in performance based on differences in strategy. First, an attempt was made to determine whether the institution had a strategy, and if so, did it follow a particular model. Major models of strategy are the industry analysis approach, the resource based view or the RBV model and the more recent,…

  10. Integrating models with data in ecology and palaeoecology: advances towards a model-data fusion approach.

    PubMed

    Peng, Changhui; Guiot, Joel; Wu, Haibin; Jiang, Hong; Luo, Yiqi

    2011-05-01

    It is increasingly being recognized that global ecological research requires novel methods and strategies in which to combine process-based ecological models and data in cohesive, systematic ways. Model-data fusion (MDF) is an emerging area of research in ecology and palaeoecology. It provides a new quantitative approach that offers a high level of empirical constraint over model predictions based on observations using inverse modelling and data assimilation (DA) techniques. Increasing demands to integrate model and data methods in the past decade has led to MDF utilization in palaeoecology, ecology and earth system sciences. This paper reviews key features and principles of MDF and highlights different approaches with regards to DA. After providing a critical evaluation of the numerous benefits of MDF and its current applications in palaeoecology (i.e., palaeoclimatic reconstruction, palaeovegetation and palaeocarbon storage) and ecology (i.e. parameter and uncertainty estimation, model error identification, remote sensing and ecological forecasting), the paper discusses method limitations, current challenges and future research direction. In the ongoing data-rich era of today's world, MDF could become an important diagnostic and prognostic tool in which to improve our understanding of ecological processes while testing ecological theory and hypotheses and forecasting changes in ecosystem structure, function and services. © 2011 Blackwell Publishing Ltd/CNRS.

  11. Validation of a Parametric Approach for 3d Fortification Modelling: Application to Scale Models

    NASA Astrophysics Data System (ADS)

    Jacquot, K.; Chevrier, C.; Halin, G.

    2013-02-01

    Parametric modelling approach applied to cultural heritage virtual representation is a field of research explored for years since it can address many limitations of digitising tools. For example, essential historical sources for fortification virtual reconstructions like plans-reliefs have several shortcomings when they are scanned. To overcome those problems, knowledge based-modelling can be used: knowledge models based on the analysis of theoretical literature of a specific domain such as bastioned fortification treatises can be the cornerstone of the creation of a parametric library of fortification components. Implemented in Grasshopper, these components are manually adjusted on the data available (i.e. 3D surveys of plans-reliefs or scanned maps). Most of the fortification area is now modelled and the question of accuracy assessment is raised. A specific method is used to evaluate the accuracy of the parametric components. The results of the assessment process will allow us to validate the parametric approach. The automation of the adjustment process can finally be planned. The virtual model of fortification is part of a larger project aimed at valorising and diffusing a very unique cultural heritage item: the collection of plans-reliefs. As such, knowledge models are precious assets when automation and semantic enhancements will be considered.

  12. The use of algorithmic behavioural transfer functions in parametric EO system performance models

    NASA Astrophysics Data System (ADS)

    Hickman, Duncan L.; Smith, Moira I.

    2015-10-01

    The use of mathematical models to predict the overall performance of an electro-optic (EO) system is well-established as a methodology and is used widely to support requirements definition, system design, and produce performance predictions. Traditionally these models have been based upon cascades of transfer functions based on established physical theory, such as the calculation of signal levels from radiometry equations, as well as the use of statistical models. However, the performance of an EO system is increasing being dominated by the on-board processing of the image data and this automated interpretation of image content is complex in nature and presents significant modelling challenges. Models and simulations of EO systems tend to either involve processing of image data as part of a performance simulation (image-flow) or else a series of mathematical functions that attempt to define the overall system characteristics (parametric). The former approach is generally more accurate but statistically and theoretically weak in terms of specific operational scenarios, and is also time consuming. The latter approach is generally faster but is unable to provide accurate predictions of a system's performance under operational conditions. An alternative and novel architecture is presented in this paper which combines the processing speed attributes of parametric models with the accuracy of image-flow representations in a statistically valid framework. An additional dimension needed to create an effective simulation is a robust software design whose architecture reflects the structure of the EO System and its interfaces. As such, the design of the simulator can be viewed as a software prototype of a new EO System or an abstraction of an existing design. This new approach has been used successfully to model a number of complex military systems and has been shown to combine improved performance estimation with speed of computation. Within the paper details of the approach and architecture are described in detail, and example results based on a practical application are then given which illustrate the performance benefits. Finally, conclusions are drawn and comments given regarding the benefits and uses of the new approach.

  13. Simple Process-Based Simulators for Generating Spatial Patterns of Habitat Loss and Fragmentation: A Review and Introduction to the G-RaFFe Model

    PubMed Central

    Pe'er, Guy; Zurita, Gustavo A.; Schober, Lucia; Bellocq, Maria I.; Strer, Maximilian; Müller, Michael; Pütz, Sandro

    2013-01-01

    Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model “G-RaFFe” generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature. PMID:23724108

  14. Simple process-based simulators for generating spatial patterns of habitat loss and fragmentation: a review and introduction to the G-RaFFe model.

    PubMed

    Pe'er, Guy; Zurita, Gustavo A; Schober, Lucia; Bellocq, Maria I; Strer, Maximilian; Müller, Michael; Pütz, Sandro

    2013-01-01

    Landscape simulators are widely applied in landscape ecology for generating landscape patterns. These models can be divided into two categories: pattern-based models that generate spatial patterns irrespective of the processes that shape them, and process-based models that attempt to generate patterns based on the processes that shape them. The latter often tend toward complexity in an attempt to obtain high predictive precision, but are rarely used for generic or theoretical purposes. Here we show that a simple process-based simulator can generate a variety of spatial patterns including realistic ones, typifying landscapes fragmented by anthropogenic activities. The model "G-RaFFe" generates roads and fields to reproduce the processes in which forests are converted into arable lands. For a selected level of habitat cover, three factors dominate its outcomes: the number of roads (accessibility), maximum field size (accounting for land ownership patterns), and maximum field disconnection (which enables field to be detached from roads). We compared the performance of G-RaFFe to three other models: Simmap (neutral model), Qrule (fractal-based) and Dinamica EGO (with 4 model versions differing in complexity). A PCA-based analysis indicated G-RaFFe and Dinamica version 4 (most complex) to perform best in matching realistic spatial patterns, but an alternative analysis which considers model variability identified G-RaFFe and Qrule as performing best. We also found model performance to be affected by habitat cover and the actual land-uses, the latter reflecting on land ownership patterns. We suggest that simple process-based generators such as G-RaFFe can be used to generate spatial patterns as templates for theoretical analyses, as well as for gaining better understanding of the relation between spatial processes and patterns. We suggest caution in applying neutral or fractal-based approaches, since spatial patterns that typify anthropogenic landscapes are often non-fractal in nature.

  15. Scalability of grid- and subbasin-based land surface modeling approaches for hydrologic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tesfa, Teklu K.; Ruby Leung, L.; Huang, Maoyi

    2014-03-27

    This paper investigates the relative merits of grid- and subbasin-based land surface modeling approaches for hydrologic simulations, with a focus on their scalability (i.e., abilities to perform consistently across a range of spatial resolutions) in simulating runoff generation. Simulations produced by the grid- and subbasin-based configurations of the Community Land Model (CLM) are compared at four spatial resolutions (0.125o, 0.25o, 0.5o and 1o) over the topographically diverse region of the U.S. Pacific Northwest. Using the 0.125o resolution simulation as the “reference”, statistical skill metrics are calculated and compared across simulations at 0.25o, 0.5o and 1o spatial resolutions of each modelingmore » approach at basin and topographic region levels. Results suggest significant scalability advantage for the subbasin-based approach compared to the grid-based approach for runoff generation. Basin level annual average relative errors of surface runoff at 0.25o, 0.5o, and 1o compared to 0.125o are 3%, 4%, and 6% for the subbasin-based configuration and 4%, 7%, and 11% for the grid-based configuration, respectively. The scalability advantages of the subbasin-based approach are more pronounced during winter/spring and over mountainous regions. The source of runoff scalability is found to be related to the scalability of major meteorological and land surface parameters of runoff generation. More specifically, the subbasin-based approach is more consistent across spatial scales than the grid-based approach in snowfall/rainfall partitioning, which is related to air temperature and surface elevation. Scalability of a topographic parameter used in the runoff parameterization also contributes to improved scalability of the rain driven saturated surface runoff component, particularly during winter. Hence this study demonstrates the importance of spatial structure for multi-scale modeling of hydrological processes, with implications to surface heat fluxes in coupled land-atmosphere modeling.« less

  16. Continuous-time discrete-space models for animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Hooten, Mevin B.; Alldredge, Mat W.

    2015-01-01

    The processes influencing animal movement and resource selection are complex and varied. Past efforts to model behavioral changes over time used Bayesian statistical models with variable parameter space, such as reversible-jump Markov chain Monte Carlo approaches, which are computationally demanding and inaccessible to many practitioners. We present a continuous-time discrete-space (CTDS) model of animal movement that can be fit using standard generalized linear modeling (GLM) methods. This CTDS approach allows for the joint modeling of location-based as well as directional drivers of movement. Changing behavior over time is modeled using a varying-coefficient framework which maintains the computational simplicity of a GLM approach, and variable selection is accomplished using a group lasso penalty. We apply our approach to a study of two mountain lions (Puma concolor) in Colorado, USA.

  17. PREDICTIVE UNCERTAINTY IN HYDROLOGIC AND WATER QUALITY MODELING: APPROACHES, APPLICATION TO ENVIRONMENTAL MANAGEMENT, AND FUTURE CHALLENGES (PRESENTATION)

    EPA Science Inventory

    Extant process-based hydrologic and water quality models are indispensable to water resources planning and environmental management. However, models are only approximations of real systems and often calibrated with incomplete and uncertain data. Reliable estimates, or perhaps f...

  18. PREDICTIVE UNCERTAINTY IN HYDROLOGIC AND WATER QUALITY MODELING: APPROACHES, APPLICATION TO ENVIRONMENTAL MANAGEMENT, AND FUTURE CHALLENGES

    EPA Science Inventory

    Extant process-based hydrologic and water quality models are indispensable to water resources planning and environmental management. However, models are only approximations of real systems and often calibrated with incomplete and uncertain data. Reliable estimates, or perhaps f...

  19. An adaptive ARX model to estimate the RUL of aluminum plates based on its crack growth

    NASA Astrophysics Data System (ADS)

    Barraza-Barraza, Diana; Tercero-Gómez, Víctor G.; Beruvides, Mario G.; Limón-Robles, Jorge

    2017-01-01

    A wide variety of Condition-Based Maintenance (CBM) techniques deal with the problem of predicting the time for an asset fault. Most statistical approaches rely on historical failure data that might not be available in several practical situations. To address this issue, practitioners might require the use of self-starting approaches that consider only the available knowledge about the current degradation process and the asset operating context to update the prognostic model. Some authors use Autoregressive (AR) models for this purpose that are adequate when the asset operating context is constant, however, if it is variable, the accuracy of the models can be affected. In this paper, three autoregressive models with exogenous variables (ARX) were constructed, and their capability to estimate the remaining useful life (RUL) of a process was evaluated following the case of the aluminum crack growth problem. An existing stochastic model of aluminum crack growth was implemented and used to assess RUL estimation performance of the proposed ARX models through extensive Monte Carlo simulations. Point and interval estimations were made based only on individual history, behavior, operating conditions and failure thresholds. Both analytic and bootstrapping techniques were used in the estimation process. Finally, by including recursive parameter estimation and a forgetting factor, the ARX methodology adapts to changing operating conditions and maintain the focus on the current degradation level of an asset.

  20. Pesticide fate at regional scale: Development of an integrated model approach and application

    NASA Astrophysics Data System (ADS)

    Herbst, M.; Hardelauf, H.; Harms, R.; Vanderborght, J.; Vereecken, H.

    As a result of agricultural practice many soils and aquifers are contaminated with pesticides. In order to quantify the side-effects of these anthropogenic impacts on groundwater quality at regional scale, a process-based, integrated model approach was developed. The Richards’ equation based numerical model TRACE calculates the three-dimensional saturated/unsaturated water flow. For the modeling of regional scale pesticide transport we linked TRACE with the plant module SUCROS and with 3DLEWASTE, a hybrid Lagrangian/Eulerian approach to solve the convection/dispersion equation. We used measurements, standard methods like pedotransfer-functions or parameters from literature to derive the model input for the process model. A first-step application of TRACE/3DLEWASTE to the 20 km 2 test area ‘Zwischenscholle’ for the period 1983-1993 reveals the behaviour of the pesticide isoproturon. The selected test area is characterised by an intense agricultural use and shallow groundwater, resulting in a high vulnerability of the groundwater to pesticide contamination. The model results stress the importance of the unsaturated zone for the occurrence of pesticides in groundwater. Remarkable isoproturon concentrations in groundwater are predicted for locations with thin layered and permeable soils. For four selected locations we used measured piezometric heads to validate predicted groundwater levels. In general, the model results are consistent and reasonable. Thus the developed integrated model approach is seen as a promising tool for the quantification of the agricultural practice impact on groundwater quality.

  1. Forecasting need and demand for home health care: a selective review

    PubMed Central

    Sharma, Rabinder K.

    1980-01-01

    Three models for forecasting home health care (HHC) needs are analyzed: HSA/SP model (Health Systems Agency of Southwestern Pennsylvania); Florida model (Florida State Department of Health and Rehabilitative Services); and Rhode Island model (Rhode Island Department of Community Affairs). A utilization approach to forecasting is also presented. In the HSA/SP and Florida models, need for HHC is based on a certain proportion of (a) hospital admissions and (b) patients entering HHC from other sources. The major advantage of these models is that they are relatively easy to use and explain; their major weaknesses are an imprecise definition of need and an incomplete model specification. The Rhode Island approach defines need for HHC in terms of the health status of the population as measured by chronic activity limitations. The major strengths of this approach are its explicit assumptions and its emphasis on consumer needs. The major drawback is that it requires considerable local area data. The utilization approach is based on extrapolation from observed utilization experience of the target population. Its main limitation is that it is based on current market imperfections; its major advantage is that it exposes existing deficiencies in HHC. The author concludes that each approach should be tested empirically in order to refine it, and that need and demand approaches be used jointly in the planning process. PMID:6893631

  2. Experimental and modeling approaches for food waste composting: a review.

    PubMed

    Li, Zhentong; Lu, Hongwei; Ren, Lixia; He, Li

    2013-10-01

    Composting has been used as a method to dispose food waste (FW) and recycle organic matter to improve soil structure and fertility. Considering the significance of composting in FW treatment, many researchers have paid their attention on how to improve FW composting efficiency, reduce operating cost, and mitigate the associated environmental damage. This review focuses on the overall studies of FW composting, not only various parameters significantly affecting the processes and final results, but also a number of simulation approaches that are greatly instrumental in well understanding the process mechanism and/or results prediction. Implications of many key ingredients on FW composting performance are also discussed. Perspects of effective laboratory experiments and computer-based simulation are finally investigated, demonstrating many demanding areas for enhanced research efforts, which include the screening of multi-functional additives, volatile organiccompound emission control, necessity of modeling and post-modeling analysis, and usefulness of developing more conjunctive AI-based process control techniques. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Studying light-harvesting models with superconducting circuits.

    PubMed

    Potočnik, Anton; Bargerbos, Arno; Schröder, Florian A Y N; Khan, Saeed A; Collodo, Michele C; Gasparinetti, Simone; Salathé, Yves; Creatore, Celestino; Eichler, Christopher; Türeci, Hakan E; Chin, Alex W; Wallraff, Andreas

    2018-03-02

    The process of photosynthesis, the main source of energy in the living world, converts sunlight into chemical energy. The high efficiency of this process is believed to be enabled by an interplay between the quantum nature of molecular structures in photosynthetic complexes and their interaction with the environment. Investigating these effects in biological samples is challenging due to their complex and disordered structure. Here we experimentally demonstrate a technique for studying photosynthetic models based on superconducting quantum circuits, which complements existing experimental, theoretical, and computational approaches. We demonstrate a high degree of freedom in design and experimental control of our approach based on a simplified three-site model of a pigment protein complex with realistic parameters scaled down in energy by a factor of 10 5 . We show that the excitation transport between quantum-coherent sites disordered in energy can be enabled through the interaction with environmental noise. We also show that the efficiency of the process is maximized for structured noise resembling intramolecular phononic environments found in photosynthetic complexes.

  4. How does slope form affect erosion in CATFLOW-SED?

    NASA Astrophysics Data System (ADS)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  5. Applying the Tuple Space-Based Approach to the Simulation of the Caspases, an Essential Signalling Pathway.

    PubMed

    Cárdenas-García, Maura; González-Pérez, Pedro Pablo

    2013-03-01

    Apoptotic cell death plays a crucial role in development and homeostasis. This process is driven by mitochondrial permeabilization and activation of caspases. In this paper we adopt a tuple spaces-based modelling and simulation approach, and show how it can be applied to the simulation of this intracellular signalling pathway. Specifically, we are working to explore and to understand the complex interaction patterns of the caspases apoptotic and the mitochondrial role. As a first approximation, using the tuple spacesbased in silico approach, we model and simulate both the extrinsic and intrinsic apoptotic signalling pathways and the interactions between them. During apoptosis, mitochondrial proteins, released from mitochondria to cytosol are decisively involved in the process. If the decision is to die, from this point there is normally no return, cancer cells offer resistance to the mitochondrial induction.

  6. The experience factory: Can it make you a 5? or what is its relationship to other quality and improvement concepts?

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.

    1992-01-01

    The concepts of quality improvements have permeated many businesses. It is clear that the nineties will be the quality era for software and there is a growing need to develop or adapt quality improvement approaches to the software business. Thus we must understand software as an artifact and software as a business. Since the business we are dealing with is software, we must understand the nature of software and software development. The software discipline is evolutionary and experimental; it is a laboratory science. Software is development not production. The technologies of the discipline are human based. There is a lack of models that allow us to reason about the process and the product. All software is not the same; process is a variable, goals are variable, etc. Packaged, reusable, experiences require additional resources in the form of organization, processes, people, etc. There have been a variety of organizational frameworks proposed to improve quality for various businesses. The ones discussed in this presentation include: Plan-Do-Check-Act, a quality improvement process based upon a feedback cycle for optimizing a single process model/production line; the Experience Factory/Quality Improvement Paradigm, continuous improvements through the experimentation, packaging, and reuse of experiences based upon a business's needs; Total Quality Management, a management approach to long term success through customer satisfaction based on the participation of all members of an organization; the SEI capability maturity model, a staged process improvement based upon assessment with regard to a set of key process areas until you reach a level 5 which represents a continuous process improvement; and Lean (software) Development, a principle supporting the concentration of the production on 'value added' activities and the elimination of reduction of 'not value added' activities.

  7. A service oriented approach for guidelines-based clinical decision support using BPMN.

    PubMed

    Rodriguez-Loya, Salvador; Aziz, Ayesha; Chatwin, Chris

    2014-01-01

    Evidence-based medical practice requires that clinical guidelines need to be documented in such a way that they represent a clinical workflow in its most accessible form. In order to optimize clinical processes to improve clinical outcomes, we propose a Service Oriented Architecture (SOA) based approach for implementing clinical guidelines that can be accessed from an Electronic Health Record (EHR) application with a Web Services enabled communication mechanism with the Enterprise Service Bus. We have used Business Process Modelling Notation (BPMN) for modelling and presenting the clinical pathway in the form of a workflow. The aim of this study is to produce spontaneous alerts in the healthcare workflow in the diagnosis of Chronic Obstructive Pulmonary Disease (COPD). The use of BPMN as a tool to automate clinical guidelines has not been previously employed for providing Clinical Decision Support (CDS).

  8. Reliability prediction of ontology-based service compositions using Petri net and time series models.

    PubMed

    Li, Jia; Xia, Yunni; Luo, Xin

    2014-01-01

    OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy.

  9. A Spiritually-based approach to breast cancer awareness: Cognitive response analysis of communication effectiveness

    PubMed Central

    Holt, Cheryl L.; Lee, Crystal; Wright, Katrina

    2017-01-01

    The purpose of this study was to compare the communication effectiveness of a spiritually-based approach to breast cancer early detection education with a secular approach, among African American women, by conducting a cognitive response analysis. A total of 108 women from six Alabama churches were randomly assigned by church to receive a spiritually-based or secular educational booklet discussing breast cancer early detection. Based on the Elaboration Likelihood Model (Petty & Cacioppo, 1981), after reading the booklets participants were asked to complete a thought-listing task writing down any thoughts they experienced and rating them as positive, negative, or neutral. Two independent coders then used five dimensions to code participants thoughts. Compared with the secular booklet, the spiritually-based booklet resulted in significantly more thoughts involving personal connection, self-assessment, and spiritually-based responses. These results suggest that a spiritually-based approach to breast cancer awareness may be more effective than the secular because it caused women to more actively process the message, stimulating central route processing. The incorporation of spiritually-based content into church-based breast cancer education could be a promising health communication approach for African American women. PMID:18443989

  10. Functional correlation approach to operational risk in banking organizations

    NASA Astrophysics Data System (ADS)

    Kühn, Reimer; Neu, Peter

    2003-05-01

    A Value-at-Risk-based model is proposed to compute the adequate equity capital necessary to cover potential losses due to operational risks, such as human and system process failures, in banking organizations. Exploring the analogy to a lattice gas model from physics, correlations between sequential failures are modeled by as functionally defined, heterogeneous couplings between mutually supportive processes. In contrast to traditional risk models for market and credit risk, where correlations are described as equal-time-correlations by a covariance matrix, the dynamics of the model shows collective phenomena such as bursts and avalanches of process failures.

  11. Comparison of Two Conceptually Different Physically-based Hydrological Models - Looking Beyond Streamflows

    NASA Astrophysics Data System (ADS)

    Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.

    2015-12-01

    Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or reject modeling hypotheses.

  12. Modelling morphology evolution during solidification of IPP in processing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantani, R., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it; De Santis, F., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it; Speranza, V., E-mail: rpantani@unisa.it, E-mail: fedesantis@unisa.it, E-mail: vsperanza@unisa.it, E-mail: gtitomanlio@unisa.it

    During polymer processing, crystallization takes place during or soon after flow. In most of cases, the flow field dramatically influences both the crystallization kinetics and the crystal morphology. On their turn, crystallinity and morphology affect product properties. Consequently, in the last decade, researchers tried to identify the main parameters determining crystallinity and morphology evolution during solidification In processing conditions. In this work, we present an approach to model flow-induced crystallization with the aim of predicting the morphology after processing. The approach is based on: interpretation of the FIC as the effect of molecular stretch on the thermodynamic crystallization temperature; modelingmore » the molecular stretch evolution by means of a model simple and easy to be implemented in polymer processing simulation codes; identification of the effect of flow on nucleation density and spherulites growth rate by means of simple experiments; determination of the condition under which fibers form instead of spherulites. Model predictions reproduce most of the features of final morphology observed in the samples after solidification.« less

  13. Integrating Narrative and Action Processes in Group Counseling Practice: A Multimodal Approach for Helping Clients

    ERIC Educational Resources Information Center

    Westwood, Marvin J.; Ewasiw, Joan F.

    2011-01-01

    The aim of this article is to introduce an integrated approach for helping clients. The approach combines and builds on two group-based interventions: guided autobiography and therapeutic enactment. Descriptions of the two interventions individually and a transtheoretical model for change are provided. How change occurs through the proposed…

  14. Radiology information system: a workflow-based approach.

    PubMed

    Zhang, Jinyan; Lu, Xudong; Nie, Hongchao; Huang, Zhengxing; van der Aalst, W M P

    2009-09-01

    Introducing workflow management technology in healthcare seems to be prospective in dealing with the problem that the current healthcare Information Systems cannot provide sufficient support for the process management, although several challenges still exist. The purpose of this paper is to study the method of developing workflow-based information system in radiology department as a use case. First, a workflow model of typical radiology process was established. Second, based on the model, the system could be designed and implemented as a group of loosely coupled components. Each component corresponded to one task in the process and could be assembled by the workflow management system. The legacy systems could be taken as special components, which also corresponded to the tasks and were integrated through transferring non-work- flow-aware interfaces to the standard ones. Finally, a workflow dashboard was designed and implemented to provide an integral view of radiology processes. The workflow-based Radiology Information System was deployed in the radiology department of Zhejiang Chinese Medicine Hospital in China. The results showed that it could be adjusted flexibly in response to the needs of changing process, and enhance the process management in the department. It can also provide a more workflow-aware integration method, comparing with other methods such as IHE-based ones. The workflow-based approach is a new method of developing radiology information system with more flexibility, more functionalities of process management and more workflow-aware integration. The work of this paper is an initial endeavor for introducing workflow management technology in healthcare.

  15. Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results

    NASA Astrophysics Data System (ADS)

    Silverstein, Daniel W.; Jensen, Lasse

    2012-02-01

    A vibronic coupling model based on time-dependent wavepacket approach is applied to simulate linear optical processes, such as one-photon absorbance and resonance Raman scattering, and nonlinear optical processes, such as two-photon absorbance and resonance hyper-Raman scattering, on a series of small molecules. Simulations employing both the long-range corrected approach in density functional theory and coupled cluster are compared and also examined based on available experimental data. Although many of the small molecules are prone to anharmonicity in their potential energy surfaces, the harmonic approach performs adequately. A detailed discussion of the non-Condon effects is illustrated by the molecules presented in this work. Linear and nonlinear Raman scattering simulations allow for the quantification of interference between the Franck-Condon and Herzberg-Teller terms for different molecules.

  16. Process development of a New Haemophilus influenzae type b conjugate vaccine and the use of mathematical modeling to identify process optimization possibilities.

    PubMed

    Hamidi, Ahd; Kreeftenberg, Hans; V D Pol, Leo; Ghimire, Saroj; V D Wielen, Luuk A M; Ottens, Marcel

    2016-05-01

    Vaccination is one of the most successful public health interventions being a cost-effective tool in preventing deaths among young children. The earliest vaccines were developed following empirical methods, creating vaccines by trial and error. New process development tools, for example mathematical modeling, as well as new regulatory initiatives requiring better understanding of both the product and the process are being applied to well-characterized biopharmaceuticals (for example recombinant proteins). The vaccine industry is still running behind in comparison to these industries. A production process for a new Haemophilus influenzae type b (Hib) conjugate vaccine, including related quality control (QC) tests, was developed and transferred to a number of emerging vaccine manufacturers. This contributed to a sustainable global supply of affordable Hib conjugate vaccines, as illustrated by the market launch of the first Hib vaccine based on this technology in 2007 and concomitant price reduction of Hib vaccines. This paper describes the development approach followed for this Hib conjugate vaccine as well as the mathematical modeling tool applied recently in order to indicate options for further improvements of the initial Hib process. The strategy followed during the process development of this Hib conjugate vaccine was a targeted and integrated approach based on prior knowledge and experience with similar products using multi-disciplinary expertise. Mathematical modeling was used to develop a predictive model for the initial Hib process (the 'baseline' model) as well as an 'optimized' model, by proposing a number of process changes which could lead to further reduction in price. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:568-580, 2016. © 2016 American Institute of Chemical Engineers.

  17. Effective use of integrated hydrological models in basin-scale water resources management: surrogate modeling approaches

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Wu, X.

    2015-12-01

    Integrated hydrological models (IHMs) consider surface water and subsurface water as a unified system, and have been widely adopted in basin-scale water resources studies. However, due to IHMs' mathematical complexity and high computational cost, it is difficult to implement them in an iterative model evaluation process (e.g., Monte Carlo Simulation, simulation-optimization analysis, etc.), which diminishes their applicability for supporting decision-making in real-world situations. Our studies investigated how to effectively use complex IHMs to address real-world water issues via surrogate modeling. Three surrogate modeling approaches were considered, including 1) DYCORS (DYnamic COordinate search using Response Surface models), a well-established response surface-based optimization algorithm; 2) SOIM (Surrogate-based Optimization for Integrated surface water-groundwater Modeling), a response surface-based optimization algorithm that we developed specifically for IHMs; and 3) Probabilistic Collocation Method (PCM), a stochastic response surface approach. Our investigation was based on a modeling case study in the Heihe River Basin (HRB), China's second largest endorheic river basin. The GSFLOW (Coupled Ground-Water and Surface-Water Flow Model) model was employed. Two decision problems were discussed. One is to optimize, both in time and in space, the conjunctive use of surface water and groundwater for agricultural irrigation in the middle HRB region; and the other is to cost-effectively collect hydrological data based on a data-worth evaluation. Overall, our study results highlight the value of incorporating an IHM in making decisions of water resources management and hydrological data collection. An IHM like GSFLOW can provide great flexibility to formulating proper objective functions and constraints for various optimization problems. On the other hand, it has been demonstrated that surrogate modeling approaches can pave the path for such incorporation in real-world situations, since they can dramatically reduce the computational cost of using IHMs in an iterative model evaluation process. In addition, our studies generated insights into the human-nature water conflicts in the specific study area and suggested potential solutions to address them.

  18. First-Stage Development and Validation of a Web-Based Automated Dietary Modeling Tool: Using Constraint Optimization Techniques to Streamline Food Group and Macronutrient Focused Dietary Prescriptions for Clinical Trials.

    PubMed

    Probst, Yasmine; Morrison, Evan; Sullivan, Emma; Dam, Hoa Khanh

    2016-07-28

    Standardizing the background diet of participants during a dietary randomized controlled trial is vital to trial outcomes. For this process, dietary modeling based on food groups and their target servings is employed via a dietary prescription before an intervention, often using a manual process. Partial automation has employed the use of linear programming. Validity of the modeling approach is critical to allow trial outcomes to be translated to practice. This paper describes the first-stage development of a tool to automatically perform dietary modeling using food group and macronutrient requirements as a test case. The Dietary Modeling Tool (DMT) was then compared with existing approaches to dietary modeling (manual and partially automated), which were previously available to dietitians working within a dietary intervention trial. Constraint optimization techniques were implemented to determine whether nonlinear constraints are best suited to the development of the automated dietary modeling tool using food composition and food consumption data. Dietary models were produced and compared with a manual Microsoft Excel calculator, a partially automated Excel Solver approach, and the automated DMT that was developed. The web-based DMT was produced using nonlinear constraint optimization, incorporating estimated energy requirement calculations, nutrition guidance systems, and the flexibility to amend food group targets for individuals. Percentage differences between modeling tools revealed similar results for the macronutrients. Polyunsaturated fatty acids and monounsaturated fatty acids showed greater variation between tools (practically equating to a 2-teaspoon difference), although it was not considered clinically significant when the whole diet, as opposed to targeted nutrients or energy requirements, were being addressed. Automated modeling tools can streamline the modeling process for dietary intervention trials ensuring consistency of the background diets, although appropriate constraints must be used in their development to achieve desired results. The DMT was found to be a valid automated tool producing similar results to tools with less automation. The results of this study suggest interchangeability of the modeling approaches used, although implementation should reflect the requirements of the dietary intervention trial in which it is used.

  19. First-Stage Development and Validation of a Web-Based Automated Dietary Modeling Tool: Using Constraint Optimization Techniques to Streamline Food Group and Macronutrient Focused Dietary Prescriptions for Clinical Trials

    PubMed Central

    Morrison, Evan; Sullivan, Emma; Dam, Hoa Khanh

    2016-01-01

    Background Standardizing the background diet of participants during a dietary randomized controlled trial is vital to trial outcomes. For this process, dietary modeling based on food groups and their target servings is employed via a dietary prescription before an intervention, often using a manual process. Partial automation has employed the use of linear programming. Validity of the modeling approach is critical to allow trial outcomes to be translated to practice. Objective This paper describes the first-stage development of a tool to automatically perform dietary modeling using food group and macronutrient requirements as a test case. The Dietary Modeling Tool (DMT) was then compared with existing approaches to dietary modeling (manual and partially automated), which were previously available to dietitians working within a dietary intervention trial. Methods Constraint optimization techniques were implemented to determine whether nonlinear constraints are best suited to the development of the automated dietary modeling tool using food composition and food consumption data. Dietary models were produced and compared with a manual Microsoft Excel calculator, a partially automated Excel Solver approach, and the automated DMT that was developed. Results The web-based DMT was produced using nonlinear constraint optimization, incorporating estimated energy requirement calculations, nutrition guidance systems, and the flexibility to amend food group targets for individuals. Percentage differences between modeling tools revealed similar results for the macronutrients. Polyunsaturated fatty acids and monounsaturated fatty acids showed greater variation between tools (practically equating to a 2-teaspoon difference), although it was not considered clinically significant when the whole diet, as opposed to targeted nutrients or energy requirements, were being addressed. Conclusions Automated modeling tools can streamline the modeling process for dietary intervention trials ensuring consistency of the background diets, although appropriate constraints must be used in their development to achieve desired results. The DMT was found to be a valid automated tool producing similar results to tools with less automation. The results of this study suggest interchangeability of the modeling approaches used, although implementation should reflect the requirements of the dietary intervention trial in which it is used. PMID:27471104

  20. Disentangling sampling and ecological explanations underlying species-area relationships

    USGS Publications Warehouse

    Cam, E.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Alpizar-Jara, R.; Flather, C.H.

    2002-01-01

    We used a probabilistic approach to address the influence of sampling artifacts on the form of species-area relationships (SARs). We developed a model in which the increase in observed species richness is a function of sampling effort exclusively. We assumed that effort depends on area sampled, and we generated species-area curves under that model. These curves can be realistic looking. We then generated SARs from avian data, comparing SARs based on counts with those based on richness estimates. We used an approach to estimation of species richness that accounts for species detection probability and, hence, for variation in sampling effort. The slopes of SARs based on counts are steeper than those of curves based on estimates of richness, indicating that the former partly reflect failure to account for species detection probability. SARs based on estimates reflect ecological processes exclusively, not sampling processes. This approach permits investigation of ecologically relevant hypotheses. The slope of SARs is not influenced by the slope of the relationship between habitat diversity and area. In situations in which not all of the species are detected during sampling sessions, approaches to estimation of species richness integrating species detection probability should be used to investigate the rate of increase in species richness with area.

Top