Science.gov

Sample records for processed vegetables aplicacao

  1. Fruit, vegetable, and grain processing wastes

    SciTech Connect

    Andrews, R.M.; Soderquist, M.R.

    1980-06-01

    This is a literature review of fruit, vegetable and grain processing wastes. The factors affecting water usage and methods of conservation were examined. Various processes were investigated which included the pulp recovery from caustic peeled tomato skin, the dewatering of citrus, washing leafy vegetables with recycled process water and the potato processing industry.

  2. Minimally processed vegetable salads: microbial quality evaluation.

    PubMed

    Fröder, Hans; Martins, Cecília Geraldes; De Souza, Katia Leani Oliveira; Landgraf, Mariza; Franco, Bernadette D G M; Destro, Maria Teresa

    2007-05-01

    The increasing demand for fresh fruits and vegetables and for convenience foods is causing an expansion of the market share for minimally processed vegetables. Among the more common pathogenic microorganisms that can be transmitted to humans by these products are Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. The aim of this study was to evaluate the microbial quality of a selection of minimally processed vegetables. A total of 181 samples of minimally processed leafy salads were collected from retailers in the city of Sao Paulo, Brazil. Counts of total coliforms, fecal coliforms, Enterobacteriaceae, psychrotrophic microorganisms, and Salmonella were conducted for 133 samples. L. monocytogenes was assessed in 181 samples using the BAX System and by plating the enrichment broth onto Palcam and Oxford agars. Suspected Listeria colonies were submitted to classical biochemical tests. Populations of psychrotrophic microorganisms >10(6) CFU/g were found in 51% of the 133 samples, and Enterobacteriaceae populations between 10(5) and 106 CFU/g were found in 42% of the samples. Fecal coliform concentrations higher than 10(2) CFU/g (Brazilian standard) were found in 97 (73%) of the samples, and Salmonella was detected in 4 (3%) of the samples. Two of the Salmonella-positive samples had <10(2) CFU/g concentrations of fecal coliforms. L. monocytogenes was detected in only 1 (0.6%) of the 181 samples examined. This positive sample was simultaneously detected by both methods. The other Listeria species identified by plating were L. welshimeri (one sample of curly lettuce) and L. innocua (2 samples of watercress). The results indicate that minimally processed vegetables had poor microbiological quality, and these products could be a vehicle for pathogens such as Salmonella and L. monocytogenes.

  3. Radiation processing of minimally processed vegetables and aromatic plants

    NASA Astrophysics Data System (ADS)

    Trigo, M. J.; Sousa, M. B.; Sapata, M. M.; Ferreira, A.; Curado, T.; Andrada, L.; Botelho, M. L.; Veloso, M. G.

    2009-07-01

    Vegetables are an essential part of people's diet all around the world. Due to cultivate techniques and handling after harvest, these products, may contain high microbial load that can cause food borne outbreaks. The irradiation of minimally processed vegetables is an efficient way to reduce the level of microorganisms and to inhibit parasites, helping a safe global trade. Evaluation of the irradiation's effects was carried out in minimal processed vegetables, as coriander ( Coriandrum sativum L .), mint ( Mentha spicata L.), parsley ( Petroselinum crispum Mill, (A.W. Hill)), lettuce ( Lactuca sativa L.) and watercress ( Nasturium officinale L.). The inactivation level of natural microbiota and the D 10 values of Escherichia coli O157:H7 and Listeria innocua in these products were determined. The physical-chemical and sensorial characteristics before and after irradiation at a range of 0.5 up to 2.0 kGy applied doses were also evaluated. No differences were verified in the overall of sensorial and physical properties after irradiation up to 1 kGy, a decrease of natural microbiota was noticed (⩾2 log). Based on the determined D10, the amount of radiation necessary to kill 10 5E. coli and L. innocua was between 0.70 and 1.55 kGy. Shelf life of irradiated coriander, mint and lettuce at 0.5 kGy increased 2, 3 and 4 days, respectively, when compared with non-irradiated.

  4. Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, Erkan; Bras, Rafael L.

    2005-06-01

    Topography acts as a template for numerous landscape processes that include hydrologic, ecologic, and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on thresholds for channel initiation and landform evolution using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on a power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. This approach is validated using data. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants and is killed by geomorphic disturbances (runoff erosion and landsliding) and wildfires. Analytical results suggest that in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion-dominated landscape, under none or poor vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the Channel Hillslope Integrated Landscape Development (CHILD) model confirm the findings based on the analytical theory. A highly dissected fluvial landscape emerges when surface is assumed bare. When vegetation cover is modeled, landscape relief increases

  5. Vegetation modulated landscape evolution: Effects of vegetation on landscape processes, drainage density and topography

    NASA Astrophysics Data System (ADS)

    Bras, R. L.; Istanbulluoglu, E.

    2004-12-01

    Topography acts as a template for numerous landscape processes that includes hydrologic, ecologic and biologic phenomena. These processes not only interact with each other but also contribute to shaping the landscape as they influence geomorphic processes. We have investigated the effects of vegetation on known geomorphic relations, thresholds for channel initiation and landform evolution, using both analytical and numerical approaches. Vegetation is assumed to form a uniform ground cover. Runoff erosion is modeled based on power function of excess shear stress, in which shear stress efficiency is inversely proportional to vegetation cover. Plant effect on slope stability is represented by additional cohesion provided by plant roots. Vegetation cover is assumed to reduce sediment transport rates due to physical creep processes (rainsplash, dry ravel, and expansion and contraction of sediments) according to a negative exponential relationship. Vegetation grows as a function of both available cover and unoccupied space by plants, and is killed by geomorphic disturbances (runoff erosion and landsliding), and wildfires. Analytical results suggest that, in an equilibrium basin with a fixed vegetation cover, plants may cause a transition in the dominant erosion process at the channel head. A runoff erosion dominated landscape, under none or loose vegetation cover, may become landslide dominated under a denser vegetation cover. The sign of the predicted relationship between drainage density and vegetation cover depends on the relative influence of vegetation on different erosion phenomena. With model parameter values representative of the Oregon Coast Range (OCR), numerical experiments conducted using the CHILD model. Numerical experiments reveal the importance of vegetation disturbances on the landscape structure. Simulated landscapes resemble real-world catchments in the OCR when vegetation disturbances are considered.

  6. [Microbiological quality of minimally processed vegetable salads].

    PubMed

    Wójcik-Stopczyńska, Barbara

    2004-01-01

    The microbiological condition of minimally processed vegetable salads (7-days durability) purchased in the retail network of Szczecin has been assessed. The study included 14 kinds of salads manufactured by two producers. The total count of mesophilic aerobic bacteria and their spores, aid-forming bacteria (lactobacilli), titre of coliforms, occurrence of pathogenic bacteria and counts of moulds and yeast were determined. No pathogenic bacteria (Salmonella, Staphylococcus aureus, Bacillus cereus and Proteus) was detected in all salads. However contamination by saprophytic microorganisms was high in salads of both producers. Total count of mesophilic aerobic bacteria was higher than recommended level (> 10(5) cfu/g) in majority of salads. The high quantities of yeast (> 10(3) jtk/g) and lactobacilli (10(3)-10(5) fu/g) were also stated. The titre of coliforms was reduced (down to 0.01-0.0001 g). The count of moulds did not exceed 100 cfu/g in a most of samples. Moulds occurring in tested samples were represented mainly by Penicillium sp.

  7. Fruit, vegetable, and grain processing wastes. [Industrial wastes

    SciTech Connect

    Morrell, R.A.; Schmidt, H.E. Jr.

    1982-06-01

    Waste processing methods utilized in the food-processing industry are reviewed. The industrial waste associated with fruits, vegetables, and grain are examined. The utilization of the waste products after processing is discussed.

  8. U.S. Fruit and Vegetable Processing Industries.

    ERIC Educational Resources Information Center

    Buckley, Katharine C.; And Others

    Because of shifts in consumer tastes and preferences, demographics, technology, government regulation, and the expanding interdependence of world markets, the United States fruit and vegetable processing industries must operate in a constantly changing and uncertain economic environment. U.S. per capita use of processed fruits and vegetables is…

  9. Coatings for minimally processed fruits and vegetables

    USDA-ARS?s Scientific Manuscript database

    Fresh-cut fruit and vegetables are gaining increasing popularity and market share. Techniques to enhance stability of fresh cut produce are reviewed. Among these techniques, edibles coatings can provide protection against dehydration, microbial decay and decrease events related to physiological sene...

  10. Role of vegetation on erosion processes: experimental investigation

    NASA Astrophysics Data System (ADS)

    Termini, Donatella

    2014-05-01

    Investigations on soil-system ecology are ever more oriented toward quantitative information based on the study of the linkages between physical processes and ecological response in rivers. As it is known, in presence of vegetation, the hydrodynamics characteristics of flow are principally determined by the mutual interrelation between the flow velocity field and the hydraulic behavior (completely submerged or emergent) of the vegetation elements. Much effort has been made toward identifying the theoretical law to interpret the vertical profile of flow longitudinal velocity in vegetated channels. Many theoretical and experimental studies in laboratory channels have been carried out and especially the case of submerged flexible vegetation has been examined (Termini, 2012). The effects of vegetation on flow velocity are significant and of crucial importance for stabilizing sediments and reducing erosion. Vegetation has a complex effect on walls roughness and the study of the hydrodynamic conditions of flow is difficult. Although most studies based on the "boundary layer" scheme so that the hydrodynamic conditions inside and above the vegetated layer are considered separately, some authors (Ghisalberti and Nepft, 2002; Carollo et al., 2008) claim that the "mixing layer" scheme is more appropriate to define the velocity profile both inside and outside the vegetated layer. Experimental program has been recently carried out in two laboratory flumes constructed at the laboratory of Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali - University of Palermo (Italy) with real and flexible vegetation on the bed. In this paper, attention is paid to the influence of vegetation on the erosion processes both on the bed and on the channel banks. The structure of the detailed flow velocity field is analyzed and compared with that obtained in absence of vegetation. Attention is then devoted to the analysis of soil erosion mechanism. Carollo F.G., Ferro V

  11. Dynamic Iodine Uptake Process in Vegetation Labeled by I-125

    NASA Astrophysics Data System (ADS)

    Weng, H.; Yan, A.; Hong, C.; Qin, Y.; Xie, L.

    2005-12-01

    Low iodine in vegetation is responsible for the occurrence of iodine deficiency in human body. It is of important scientific and practical implications to thoroughly understand the absorption and accumulation process of iodine in vegetation and to seek efficient pathways supplementing iodine for human health. Through aquaculture trial of green vegetable, the dynamic absorption process of I-125, as an isotopic tracer, and its accumulation and distribution in vegetable are studied. The results show that, after green vegetable is aqua-cultured for 5 min, micro I-125 can be monitored in root and after 10 min, it is also monitored in leaves, which indicates a rapid absorption and transportation. As culture time continues, I-125 in root, stem and leaves apparently increases, but the content distribution is differing. Most of the I-125 absorbed by green vegetable is enriched in root, and only one fourth of the total amount is transported upwards and mainly distributes in stem. The content of I-125 in leaves accounts for 5% which is mainly accumulated around the leaf margin. I-125 uptake in stem is larger at night than at daylight, whereas in leaves, its uptake is lower at night than at daylight, suggesting that iodine uptake is an active process and its transportation and accumulation process is related to photosynthesis.

  12. Effect of flexible vegetation on localized erosion processes

    NASA Astrophysics Data System (ADS)

    Termini, Donatella

    2013-04-01

    The knowledge of the hydraulic characteristics of flow over vegetation is very important to support the management of fluvial processes. The effects of vegetation on flow velocity are significant and of crucial importance for stabilizing sediments and reducing erosion along the channel. But, because of the temporal changing of roughness due to natural vegetative growth, the response of vegetation to the flow can change in time. Thus, vegetation has a complex effect on walls roughness and the study of the hydrodynamic conditions of flow is difficult. Many theoretical and experimental investigations have been performed in order to analyze both the mean flow and turbulence structure of open-channel flow (Nezu and Rodi 1986; Ghisalberti and Nepf, 2002). Recent experimental runs carried out in laboratory channels with flexible vegetation, realized by using artificial filaments (Kutija and Hong 1996; Ikeda and Kanazawa 1996), investigated some peculiar characteristics of flow turbulence structure and revealed the generation of periodic organized vortices whose center is located slightly above the top of the vegetation layer. Ghisalberti and Nepf (2002) confirmed the formation of such vortices, highlighting that, in the case of flexible vegetation, the vortex-driven oscillation of velocity drives coherent vegetation waving, producing a spatially and temporally variable drag force. In this paper, attention is paid to the influence of vegetation on the erosion processes both on the bed and on the channel banks. Experiments were carried out both in a straight channel and in a meandering channel, both constructed at the Department of Civil, Environmental, Aerospatial and of Materials (DICAM) - University of Palermo (Italy). The formation of turbulence structures inside the vegetated layer is verified, providing some insight into the mechanisms of sediment transport. Nezu, I. & Rodi, W. 1986. Open-channel flow measurements with a Laser Doppler Anemometer. Journal of Hydraulic

  13. The microbiology of minimally processed fresh fruits and vegetables.

    PubMed

    Nguyen-the, C; Carlin, F

    1994-01-01

    Minimally processed fresh (MPF) fruits and vegetables are good media for growth of microorganisms. They have been involved in outbreaks because of the consumption of products contaminated by pathogens. They are also sensitive to various spoilage microorganisms such as pectinolytic bacteria, saprophytic Gram-negative bacteria, lactic acid bacteria, and yeasts. Contamination of MPF fruits and vegetables occurs at every stage of the food chain, from cultivation to processing. Polluted environments during cultivation or poor hygienic conditions in processing increase the risk of contamination with foodborne pathogens. Although MPF fruits and vegetables may harbor psychrotrophic microorganisms such as fluorescent pseudomonads or Listeria monocytogenes, good control of refrigeration temperature limits growth of spoilage and pathogenic microorganisms. Modified atmospheres are often efficient to maintain or improve visual organoleptic quality of MPF fruits and vegetables, but their effects on microorganisms are inconsistent. Chemical disinfection can partially reduce the initial bacterial contamination; irradiation seems to be more efficient. The applications of legislations and quality assurance systems to control contamination, survival, and growth of foodborne pathogens in MPF fruits and vegetables are discussed.

  14. EFFECTS OF GEOMORPHIC PROCESSES AND HYDROLOGIC REGIMES ON RIPARIAN VEGETATION

    EPA Science Inventory

    In this chapter, the relationships among riparian vegetation and geomorphic and hydrologic processes in central Great Basin watersheds are evaluated over a range of scales. These relationships are examined through a series of case studies that have been conducted by the Great Ba...

  15. Pulsed electric field processing for fruit and vegetables

    USDA-ARS?s Scientific Manuscript database

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  16. EFFECTS OF GEOMORPHIC PROCESSES AND HYDROLOGIC REGIMES ON RIPARIAN VEGETATION

    EPA Science Inventory

    In this chapter, the relationships among riparian vegetation and geomorphic and hydrologic processes in central Great Basin watersheds are evaluated over a range of scales. These relationships are examined through a series of case studies that have been conducted by the Great Ba...

  17. Discoloration in raw and processed fruits and vegetables.

    PubMed

    Adams, J B; Brown, H M

    2007-01-01

    Discoloration in fruits and vegetables is reviewed in relation to the chemical and biochemical causes of black, brown, red, yellow, and green discolorations. In raw materials, only a limited understanding has so far been achieved of the internal black and brown discolorations. The biochemical signaling pathways triggered by wounding or chilling-storage, the nature of the enzymes and reactive oxygen species involved, and the identity of the phenolic compounds oxidized are areas where further information is desirable. In processed materials, a greater comprehension is needed of the role of ascorbic acid reactions in the browning of fruits and "pinking" of Brassicaceous vegetables, and more information is desirable on the structure and properties of the discoloring pigments in many products. It is concluded that a greater knowledge of these areas, and of the naturally-occurring constituents that can accelerate or inhibit the causative reactions, would lead to the development of more efficient methods of controlling fruit and vegetable discolorations.

  18. Process for producing vegetative and tuber growth regulator

    NASA Technical Reports Server (NTRS)

    Stutte, Gary W. (Inventor); Yorio, Neil C. (Inventor)

    1999-01-01

    A process of making a vegetative and tuber growth regulator. The vegetative and tuber growth regulator is made by growing potato plants in a recirculating hydroponic system for a sufficient time to produce the growth regulator. Also, the use of the vegetative and growth regulator on solanaceous plants, tuber forming plants and ornamental seedlings by contacting the roots or shoots of the plant with a sufficient amount of the growth regulator to regulate the growth of the plant and one more of canopy size, plant height, stem length, internode number and presence of tubers in fresh mass. Finally, a method for regulating the growth of potato plants using a recirculating hydroponic system is described.

  19. NOAA/AVHRR vegetation indices and agriculture-meteorology processes

    NASA Astrophysics Data System (ADS)

    Gupta, Rajendra Kumar

    1992-07-01

    Enzymes controlled biochemical reactions in photosynthesis and respiration processes are affected by temperature making Growing Degree Days (GDDs) an important crop growth agromet parameter. NOAA/AVHRR Ratio Vegetation Index (RVI) and Normalized Difference Vegetation Index (NDVI) provide integrated aspect of non-linear crop-growth processes. This paper describes the inter-relationships between temporal profiles of air temperature GDDs and RVI/NDVI over Ludhiana district wherein the 94.9% of agriculture area has been under wheat. The Regression Coefficients (RC) for RVI have been lower than that for NDVI in case of mean air temperature GDDs and are significant at 99% confidence level. Similar relationship has been also observed for maximum air temperature GDDs except that regression with RVI is significant at 98% confidence level. Such relationship with minimum air temperature GDDs is significant at 99% confidence level once the regression is restricted to mid of Milking-Dough stage.

  20. Preliminary process engineering evaluation of ethanol production from vegetative crops

    NASA Astrophysics Data System (ADS)

    Moreira, A. R.; Linden, J. C.; Smith, D. H.; Villet, R. H.

    1982-12-01

    Vegetative crops show good potential as feedstock for ethanol production via cellulose hydrolysis and yeast fermentation. The low levels of lignin encountered in young plant tissues show an inverse relationship with the high cellulose digestibility during hydrolysis with cellulose enzymes. Ensiled sorghum species and brown midrib mutants of sorghum exhibit high glucose yields after enzyme hydrolysis as well. Vegetative crop materials as candidate feedstocks for ethanol manufacture should continue to be studied. The species studied so far are high value cash crops and result in relatively high costs for the final ethanol product. Unconventional crops, such as pigweed, kochia, and Russian thistle, which can use water efficiently and grow on relatively arid land under conditions not ideal for food production, should be carefully evaluated with regard to their cultivation requirements, photosynthesis rates, and cellulose digestibility. Such crops should result in more favorable process economics for alcohol production.

  1. Bacterial colonization and biofilm development on minimally processed vegetables.

    PubMed

    Carmichael, I; Harper, I S; Coventry, M J; Taylor, P W; Wan, J; Hickey, M W

    1998-12-01

    Bacterial biofilms have been observed and reported on food and food-processing surfaces and can contribute to increased risks for product quality and food safety. The colonization of fruit and vegetables by pectynolitic bacteria like Pseudonomas fluorescens attributable to conditions such as soft rot, can also manifest as biofilms. A developed biofilm structure can provide a protective environment for pathogens such as Listeria monocytogenes reducing the effectiveness of sanitisers and other inhibitory agents. Understanding the colonization of bacteria on leaf surfaces is essential to the development of a better understanding of the leaf ecology of vegetable products. Studies of microbial colonization of leaf surfaces have been conducted using SEM and more recently using confocal microsocpy techniques. In the current study, a Leica TCS NT laser scanning confocal microscope was used to investigate biofilm formation using vital fluorescence staining on intact vegetable leaves. Reflection contrast and fluorescence three-dimensional imaging successfully delineated bacterial and biofilm morphology without disturbing the bacterial or leaf surface structure. The results demonstrate the presence and development of biofilm on the surface of lettuce. The biofilms appeared to originate on the cuticle in distinct micro-environments such as in the natural depression of the stomata, or in the intercellular junction. Bacteria also adhered to and developed biofilm colonies within an hour of contact and with clean stainless steel surfaces. Our study investigates the progression of biofilm formation from leaf colonization, and will assist in characterising the critical mechanisms of plant/host interaction and facilitate the development of improved preservation, sanitising and packaging strategies for minimally processed vegetable products.

  2. Effects of industrial processing on folate content in green vegetables.

    PubMed

    Delchier, Nicolas; Ringling, Christiane; Le Grandois, Julie; Aoudé-Werner, Dalal; Galland, Rachel; Georgé, Stéphane; Rychlik, Michael; Renard, Catherine M G C

    2013-08-15

    Folates are described to be sensitive to different physical parameters such as heat, light, pH and leaching. Most studies on folates degradation during processing or cooking treatments were carried out on model solutions or vegetables only with thermal treatments. Our aim was to identify which steps were involved in folates loss in industrial processing chains, and which mechanisms were underlying these losses. For this, the folates contents were monitored along an industrial canning chain of green beans and along an industrial freezing chain of spinach. Folates contents decreased significantly by 25% during the washing step for spinach in the freezing process, and by 30% in the green beans canning process after sterilisation, with 20% of the initial amount being transferred into the covering liquid. The main mechanism involved in folate loss during both canning green beans and freezing spinach was leaching. Limiting the contact between vegetables and water or using steaming seems to be an adequate measure to limit folates losses during processing.

  3. Optimization of biodiesel production process using recycled vegetable oil

    NASA Astrophysics Data System (ADS)

    Lugo, Yarely

    Petro diesel toxic emissions and its limited resources have created an interest for the development of new energy resources, such as biodiesel. Biodiesel is traditionally produced by a transesterification reaction between vegetable oil and an alcohol in the presence of a catalyst. However, this process is slow and expensive due to the high cost of raw materials. Low costs feedstock oils such as recycled and animal fats are available but they cannot be transesterified with alkaline catalysts due to high content of free fatty acids, which can lead to undesirable reactions such as saponification. In this study, we reduce free fatty acids content by using an acid pre-treatment. We compare sulfuric acid, hydrochloric acid and ptoluenesulfonic acid (PTSA) to pre-treat recycled vegetable oil. PTSA removes water after 60 minutes of treatment at room temperature or within 15 minutes at 50°C. The pretreatment was followed by a transesterification reaction using alkaline catalyst. To minimize costs and accelerate reaction, the pretreatment and transesterification reaction of recycle vegetable oil was conducted at atmospheric pressure in a microwave oven. Biodiesel was characterized using a GC-MS method.

  4. Effects of elk herbivory on vegetation and nitrogen processes

    USGS Publications Warehouse

    Schoenecker, Kathryn A.; Singer, Francis J.; Zeigenfuss, Linda C.; Binkley, Dan; Menezes, Romulo S.C.

    2004-01-01

    We used 35-year and 4-year ungulate exclosures to determine the effects of elk (Cervus elaphus) herbivory on above-ground and below-ground production and soil fertility on the elk winter range in Rocky Mountain National Park (RMNP), Colorado, USA. We used paired grazed and ungrazed plots to evaluate ungulate herbivory effects in short and tall willow (Salix spp.), aspen (Populus spp.), and upland grass/shrub vegetation associations. We measured nitrogen (N) fluxes (litter deposition, fecal and urinary deposition from elk, movements of N by elk, N mineralization, soil N availability, elk consumption rates) within the elk winter, above-ground and below-ground N pools (herbaceous, shrub and root biomass, %N in plants, roots, and soil), and N fluxes on and off the elk winter range (seasonal movement of N by elk). Nitrogen mineralization and soil nitrate (NO3) pools were reduced in the short willow community (P = 0.07 and 0.10, respectively; n = 4 sites) in grazed plots, but not in the upland grass/shrub community or tall willow sites (P >0.10). Annual growth of willows was reduced by 98% in grazed plots, relative to 35-year exclosures, and 66% relative to 4-year exclosures. Thus, height, canopy size, and litter biomass of willows were reduced, and N yield of willows was 64% less in grazed plots. We evaluated movement of N by elk among 6 major vegetation associations and found that elk grazed more and bedded less in willow vegetation association compared to mixed conifer, mesic meadow, and grassland/shrub associations (P = 0.014, 0.001, and 0.026, respectively), suggesting that elk herbivory and movement led to a net loss of N in the willow vegetation association. Elk spent less total time in willows than mesic meadow association, yet they consumed large amounts of willow plant biomass. We recommend management of elk numbers and elk herbivory that takes into consideration impacts to N process function, as negative effects from current levels of herbivory were observed

  5. 21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Pasteurized process cheese spread with fruits... with fruits, vegetables, or meats. (a) Pasteurized process cheese spread with fruits, vegetables, or... properly prepared cooked, canned, or dried fruit; any properly prepared cooked, canned, or dried vegetable...

  6. 21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized process cheese spread with fruits... with fruits, vegetables, or meats. (a) Pasteurized process cheese spread with fruits, vegetables, or... properly prepared cooked, canned, or dried fruit; any properly prepared cooked, canned, or dried vegetable...

  7. 21 CFR 133.170 - Pasteurized process cheese with fruits, vegetables, or meats.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Pasteurized process cheese with fruits, vegetables... fruits, vegetables, or meats. (a) Unless a definition and standard of identity specifically applicable is established by another section of this part, a pasteurized process cheese with fruits, vegetables, or meats...

  8. 21 CFR 133.174 - Pasteurized process cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese food with fruits... with fruits, vegetables, or meats. (a) Pasteurized process cheese food with fruits, vegetables, or... fruit; any properly prepared cooked, canned, or dried vegetable; any properly prepared cooked or canned...

  9. 21 CFR 133.174 - Pasteurized process cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Pasteurized process cheese food with fruits... with fruits, vegetables, or meats. (a) Pasteurized process cheese food with fruits, vegetables, or... fruit; any properly prepared cooked, canned, or dried vegetable; any properly prepared cooked or canned...

  10. 21 CFR 133.170 - Pasteurized process cheese with fruits, vegetables, or meats.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized process cheese with fruits, vegetables... fruits, vegetables, or meats. (a) Unless a definition and standard of identity specifically applicable is established by another section of this part, a pasteurized process cheese with fruits, vegetables, or meats...

  11. 21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Pasteurized process cheese spread with fruits... with fruits, vegetables, or meats. (a) Pasteurized process cheese spread with fruits, vegetables, or... properly prepared cooked, canned, or dried fruit; any properly prepared cooked, canned, or dried vegetable...

  12. 21 CFR 133.170 - Pasteurized process cheese with fruits, vegetables, or meats.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Pasteurized process cheese with fruits, vegetables... fruits, vegetables, or meats. (a) Unless a definition and standard of identity specifically applicable is established by another section of this part, a pasteurized process cheese with fruits, vegetables, or meats...

  13. 21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese spread with fruits... with fruits, vegetables, or meats. (a) Pasteurized process cheese spread with fruits, vegetables, or... properly prepared cooked, canned, or dried fruit; any properly prepared cooked, canned, or dried vegetable...

  14. 21 CFR 133.170 - Pasteurized process cheese with fruits, vegetables, or meats.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese with fruits, vegetables... fruits, vegetables, or meats. (a) Unless a definition and standard of identity specifically applicable is established by another section of this part, a pasteurized process cheese with fruits, vegetables, or meats...

  15. 21 CFR 133.174 - Pasteurized process cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Pasteurized process cheese food with fruits... with fruits, vegetables, or meats. (a) Pasteurized process cheese food with fruits, vegetables, or... fruit; any properly prepared cooked, canned, or dried vegetable; any properly prepared cooked or canned...

  16. 21 CFR 133.174 - Pasteurized process cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Pasteurized process cheese food with fruits... with fruits, vegetables, or meats. (a) Pasteurized process cheese food with fruits, vegetables, or... fruit; any properly prepared cooked, canned, or dried vegetable; any properly prepared cooked or canned...

  17. 21 CFR 133.180 - Pasteurized process cheese spread with fruits, vegetables, or meats.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese spread with fruits... with fruits, vegetables, or meats. (a) Pasteurized process cheese spread with fruits, vegetables, or... properly prepared cooked, canned, or dried fruit; any properly prepared cooked, canned, or dried vegetable...

  18. 21 CFR 133.170 - Pasteurized process cheese with fruits, vegetables, or meats.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Pasteurized process cheese with fruits, vegetables... fruits, vegetables, or meats. (a) Unless a definition and standard of identity specifically applicable is established by another section of this part, a pasteurized process cheese with fruits, vegetables, or meats...

  19. 21 CFR 133.174 - Pasteurized process cheese food with fruits, vegetables, or meats.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Pasteurized process cheese food with fruits... with fruits, vegetables, or meats. (a) Pasteurized process cheese food with fruits, vegetables, or... fruit; any properly prepared cooked, canned, or dried vegetable; any properly prepared cooked or canned...

  20. Effect of Processing on Magnesium Content of Green Leafy Vegetables

    NASA Astrophysics Data System (ADS)

    Rai, D.; Agrawal, R.; Kumar, R.; Rai, A. Kumar; Rai, G. Kumar

    2014-01-01

    In the present paper, we have studied the effect of different food processing techniques like blanching, microwave processing, boiling, frying, and different drying methods on depletion of minerals especially magnesium in green leafy vegetables (leaves of Trigonella foenum, common name methi, and Spinacia oleracea, common name spinach) using laser-induced breakdown spectroscopy (LIBS). These processing techniques are frequently used at home as well as in food processing industries. The LIBS spectra of the fresh leaves of methi and spinach and their pellets (made by drying, grinding, and pressing the leaf) were recorded in a spectral range from 200 to 500 nm. After applying the above processing techniques, different pellets of these leaves were made in the same way. The LIBS spectra of these processed leaf samples were also recorded using the same experimental parameters as used for the fresh samples. Our results show that among the above processing techniques, frying most significantly reduces the content of magnesium, whereas the least loss of Mg is observed in the case of boiling. We have verified this result by recording the LIBS spectra of the intact fresh leaves and of those processed with different techniques. The same results were also obtained from the LIBS spectra of the intact leaves and their pellets. The LIBS spectra of methi and spinach leaves were also recorded after drying them using two different techniques — drying in vacuum and in a hot air oven; the results show that vacuum drying is more suitable in terms of minimizing loss of Mg content in leaves.

  1. Vegetation Monitoring with Gaussian Processes and Latent Force Models

    NASA Astrophysics Data System (ADS)

    Camps-Valls, Gustau; Svendsen, Daniel; Martino, Luca; Campos, Manuel; Luengo, David

    2017-04-01

    Monitoring vegetation by biophysical parameter retrieval from Earth observation data is a challenging problem, where machine learning is currently a key player. Neural networks, kernel methods, and Gaussian Process (GP) regression have excelled in parameter retrieval tasks at both local and global scales. GP regression is based on solid Bayesian statistics, yield efficient and accurate parameter estimates, and provides interesting advantages over competing machine learning approaches such as confidence intervals. However, GP models are hampered by lack of interpretability, that prevented the widespread adoption by a larger community. In this presentation we will summarize some of our latest developments to address this issue. We will review the main characteristics of GPs and their advantages in vegetation monitoring standard applications. Then, three advanced GP models will be introduced. First, we will derive sensitivity maps for the GP predictive function that allows us to obtain feature ranking from the model and to assess the influence of examples in the solution. Second, we will introduce a Joint GP (JGP) model that combines in situ measurements and simulated radiative transfer data in a single GP model. The JGP regression provides more sensible confidence intervals for the predictions, respects the physics of the underlying processes, and allows for transferability across time and space. Finally, a latent force model (LFM) for GP modeling that encodes ordinary differential equations to blend data-driven modeling and physical models of the system is presented. The LFM performs multi-output regression, adapts to the signal characteristics, is able to cope with missing data in the time series, and provides explicit latent functions that allow system analysis and evaluation. Empirical evidence of the performance of these models will be presented through illustrative examples.

  2. Hydrogeophysical evaluation of vegetation influence on ecohydrological processes

    NASA Astrophysics Data System (ADS)

    Sharma Acharya, Bharat

    Understanding the spatio-temporal heterogeneity of ecohydrological processes at the soil-plant interface and through the vadose zone is necessary to understand soil, vegetation and climate relations for land use and water resource management and planning in the south-central Great Plains, USA. We calibrated and validated a frequency domain dielectric sensor to quantify litter water content to estimate litter interception of precipitation in situ. Results from 6-months in situ measurement showed that the litter interception of a closed canopy redcedar woodland accounted for about 10% of gross rainfall, constituting a substantial component of the water budget in a sub-humid environment. Time-lapse electrical resistivity imaging was used to track deep moisture dynamics in a tallgrass prairie, prairie encroached by redcedar, closed-canopy redcedar woodland, and oak forest, and to evaluate subsurface flow in the tallgrass prairie with a thin soil over porous bedrock. Results indicated vegetation induced changes in the vertical soil moisture profile, increased spatial-temporal variability in root zone hydraulic conductivity under redcedar encroachment, two-layered moisture migration profiles, and subsurface lateral flow in the tallgrass prairie. Lateral flow was confirmed by short term temporal ERI that tracked movement of water from a berm infiltrometer. Water level from shallow monitoring wells showed higher water levels in the tallgrass prairie than in the redcedar woodland, which suggests that woody plants can decrease the water table in a perched aquifer by a significant amount. Mean soil chloride content varied between 5 to 162 mg L-1 in the tallgrass prairie and 88 to 612 mg L-1 in the prairie encroached by redcedar. Higher soil chloride concentrations under redcedar encroachment indicate reduced percolation and groundwater recharge potential associated with woody plant encroachment. The estimated deep drainage rate was 9.0 mm and 0.30 mm in the tallgrass prairie

  3. Fluvial processes and vegetation - Glimpses of the past, the present, and perhaps the future

    USGS Publications Warehouse

    Osterkamp, W.R.; Hupp, C.R.

    2010-01-01

    Most research before 1960 into interactions among fluvial processes, resulting landforms, and vegetation was descriptive. Since then, however, research has become more detailed and quantitative permitting numerical modeling and applications including agricultural-erosion abatement and rehabilitation of altered bottomlands. Although progress was largely observational, the empiricism increasingly yielded to objective recognition of how vegetation interacts with and influences geomorphic process. A review of advances relating fluvial processes and vegetation during the last 50 years centers on hydrologic reconstructions from tree rings, plant indicators of flow- and flood-frequency parameters, hydrologic controls on plant species, regulation of sediment movement by vegetation, vegetative controls on mass movement, and relations between plant cover and sediment movement. Extension of present studies of vegetation as a regulator of bottomland hydrologic and geomorphic processes may become markedly more sophisticated and widespread than at present. Research emphases that are likely to continue include vegetative considerations for erosion modeling, response of riparian-zone forests to disturbance such as dams and water diversion, the effect of vegetation on channel and bottomland dynamics, and rehabilitation of stream corridors. Research topics that presently are receiving attention are the effect of woody vegetation on the roughness of stream corridors and, hence, processes of flood conveyance and flood-plain sedimentation, the development of a theoretical basis for rehabilitation projects as opposed to fully empirical approaches, the effect of invasive plant species on the dynamics of bottomland vegetation, the quantification of below-surface biomass and related soil-stability factors for use in erosion-prediction models, and the effect of impoundments on downstream narrowing of channels and accompanying encroachment of vegetation. Bottomland vegetation partially

  4. [Study of microbial contamination of processed fresh vegetables and lettuce].

    PubMed

    efimochkina, N R; Bykova, I B; Batishcheva, S Iu; Minaeva, L P; Markova, Iu M; Korotkevich, Iu V; Shilov, G Iu; Sheveleva, S A

    2014-01-01

    Investigations of microbial contamination and species composition of the Enterobacteriaceae family in fresh vegetables and lettuce has been conducted. The objects of study were new types of fresh ready-to-eat vegetable foods - salads, sliced vegetables and mixtures thereof, sampled at the main stages of production, including washing, antimicrobial treatment with sodium hypochlorite, and packaging in the film under vacuum. Quantitative analysis of Enterobacteriaceae levels in fresh and packaged vegetables and salads showed that their part in the total amount of microbial contaminants is large enough. Average Enterobacteriaceae content ranged from 2,14 to 3,34 lg cfu/g, reaching in some samples values 4,38-4,74 lg, comparable with the levels of total bacteria. Considerable species diversity of microflora contaminating ready-to-eat vegetable products has been found. Bacteria of the genera Enterobactel; Pantoea, Citrobacter, Serratia, Pseudomonas, Kluyvera, Klebsiella, Escherichia, Rahnella, Acinetobacter were found in the salads and sliced vegetables. In the tested samples most frequently detected Enterobacter spp. - 37% of identified strains and Pantoea spp - 25% of strains. The data on the composition and levels of microbial contaminants in vegetable and salad products highlight not only the need to monitor coliform bacteria - traditional indicators of faecal contamination of raw materials, but also the need to introduce criteria for the amount of Enterobacteriaceae.

  5. Consumer behaviour towards vegetables: a study on domestic processing of broccoli and carrots by Dutch households.

    PubMed

    Bongoni, R; Verkerk, R; Dekker, M; Steenbekkers, L P A

    2015-06-01

    Preferences for sensory properties (e.g. taste and texture) are assumed to control cooking behaviour with respect to vegetables. Conditions such as the cooking method, amount of water used and the time-temperature profile determine the nutritional quality (e.g. vitamins and phytochemicals) of cooked vegetables. Information on domestic processing and any underlying motives can be used to inform consumers about cooking vegetables that are equally liked and are nutrient-rich. Two online self-reporting questionnaires were used to identify domestic processing conditions of broccoli and carrots by Dutch households. Questions on various aspects of domestic processing and consumer motives were included. Descriptive data analysis and hierarchical cluster analysis were performed for both vegetables, separately, to group consumers with similar motives and behaviour towards vegetables. Approximately 70% of consumers boiled vegetables, 8-9% steamed vegetables, 10-15% stir fried raw vegetables and 8-10% stir fried boiled vegetables. Mainly texture was used as a way to decide the 'doneness' of the vegetables. For both vegetables, three clusters of consumers were identified: texture-orientated, health-orientated, or taste-orientated. The texture-orientated consumers are identified as the most prevalent (56-59%) group in the present study. Statistically significant associations are found between domestic processing conditions and clusters, whereas no such association are found between demographic details and clusters. A wide variation in domestic processing of broccoli and carrots is found in the present study. Mainly sensory properties (i.e. texture and taste) determined the domestic processing conditions. The findings of the present study can be used to optimise cooking to yield vegetables that meet consumer's specific sensory preference and are higher in nutrients, and as well as to communicate with target consumer groups. © 2014 The British Dietetic Association Ltd.

  6. Coevolution of hydraulic, soil and vegetation processes in estuarine wetlands

    NASA Astrophysics Data System (ADS)

    Trivisonno, Franco; Rodriguez, Jose F.; Riccardi, Gerardo; Saco, Patricia; Stenta, Hernan

    2014-05-01

    Estuarine wetlands of south eastern Australia, typically display a vegetation zonation with a sequence mudflats - mangrove forest - saltmarsh plains from the seaward margin and up the topographic gradient. Estuarine wetlands are among the most productive ecosystems in the world, providing unique habitats for fish and many terrestrial species. They also have a carbon sequestration capacity that surpasess terrestrial forest. Estuarine wetlands respond to sea-level rise by vertical accretion and horizontal landward migration, in order to maintain their position in the tidal frame. In situations in which buffer areas for landward migration are not available, saltmarsh can be lost due to mangrove encroachment. As a result of mangrove invasion associated in part with raising estuary water levels and urbanisation, coastal saltmarsh in parts of south-eastern Australia has been declared an endangered ecological community. Predicting estuarine wetlands response to sea-level rise requires modelling the coevolving dynamics of water flow, soil and vegetation. This paper presents preliminary results of our recently developed numerical model for wetland dynamics in wetlands of the Hunter estuary of NSW. The model simulates continuous tidal inflow into the wetland, and accounts for the effect of varying vegetation types on flow resistance. Coevolution effects appear as vegetation types are updated based on their preference to prevailing hydrodynamic conditions. The model also considers that accretion values vary with vegetation type. Simulations are driven using local information collected over several years, which includes estuary water levels, accretion rates, soil carbon content, flow resistance and vegetation preference to hydraulic conditions. Model results predict further saltmarsh loss under current conditions of moderate increase of estuary water levels.

  7. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Importation of dried, cured, or processed fruits... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and...

  8. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Importation of dried, cured, or processed fruits... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and...

  9. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Importation of dried, cured, or processed fruits... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and...

  10. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Importation of dried, cured, or processed fruits... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and...

  11. 7 CFR 319.56-11 - Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Importation of dried, cured, or processed fruits... QUARANTINE NOTICES Fruits and Vegetables § 319.56-11 Importation of dried, cured, or processed fruits, vegetables, nuts, and legumes. (a) Dried, cured, or processed fruits and vegetables (except frozen fruits and...

  12. Information processing in patients in vegetative and minimally conscious states.

    PubMed

    Real, Ruben G L; Veser, Sandra; Erlbeck, Helena; Risetti, Monica; Vogel, Dominik; Müller, Friedemann; Kotchoubey, Boris; Mattia, Donatella; Kübler, Andrea

    2016-02-01

    Evaluation of a short two-tone oddball paradigm to discriminate between the vegetative state (VS) and minimal consciousness state (MCS) in a sample of patients with severe disorders of consciousness (DOC). EEG was recorded from 45 DOC patients and 14 healthy participants while listening to an auditory oddball paradigm presented in a passive - just listen - and an active - count the odd tones - condition. In patients, the experiment was repeated after a minimum of one week. Prevalence of the P300 was higher in healthy participants (71%) than in patients, but did not discriminate between VS (T1: ∼10%; T2: ∼11%) and MCS (T1: ∼13%; T2: 25%) patients. Results cast doubt on whether this simple auditory stimulation paradigm, which requires cognitive action from the listener, is sensitive enough to discriminate between patients with DOC. The sensitivity of the P300 ERP obtained in a short two-tone oddball paradigm presented in a passive and an active condition appears to be too low for routine application in a clinical setting aiming at distinguishing between VS and MCS patients. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. Forest forming process and dynamic vegetation models under global change

    Treesearch

    A. Shvidenko; E. Gustafson

    2009-01-01

    The paper analyzes mathematical models that are used to project the dynamics of forest ecosystems on different spatial and temporal scales. Landscape disturbance and succession models (LDSMs) are of a particular interest for studying the forest forming process in Northern Eurasia. They have a solid empirical background and are able to model ecological processes under...

  14. Connectivity processes and riparian vegetation of the upper Paraná River, Brazil

    NASA Astrophysics Data System (ADS)

    Stevaux, José C.; Corradini, Fabrício A.; Aquino, Samia

    2013-10-01

    In fluvial systems, the relationship between a dominant variable (e.g. flood pulse) and its dependent ones (e.g. riparian vegetation) is called connectivity. This paper analyzes the connectivity elements and processes controlling riparian vegetation for a reach of the upper Paraná River (Brazil) and estimates the future changes in channel-vegetation relationship as a consequence of the managing of a large dam. The studied reach is situated 30 km downstream from the Porto Primavera Dam (construction finished in 1999). Through aerial photography (1:25,000, 1996), RGB-CBERS satellite imagery and a previous field botany survey it was possible to elaborate a map with the five major morpho-vegetation units: 1) Tree-dominated natural levee, 2) Shrubby upper floodplain, 3) Shrub-herbaceous mid floodplain, 4) Grass-herbaceous lower floodplain and 5) Shrub-herbaceous flood runoff channel units. By use of a detailed topographic survey and statistical tools each morpho-vegetation type was analyzed according to its connectivity parameters (frequency, recurrence, permanence, seasonality, potamophase, limnophase and FCQ index) in the pre- and post-dam closure periods of the historical series. Data showed that most of the morpho-vegetation units were predicted to present changes in connectivity parameters values after dam closing and the new regime could affect, in different intensity, the river ecology and particularly the riparian vegetation. The methods used in this study can be useful for dam impact studies in other South American tropical rivers.

  15. 75 FR 11147 - Process for Requesting a Variance From Vegetation Standards for Levees and Floodwalls

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ... Department of the Army, Corps of Engineers Process for Requesting a Variance From Vegetation Standards for... of Engineers (Corps), published its proposed update to its current process for requesting a variance... stated that written comments must be submitted on or before March 11, 2010. Instructions for...

  16. 75 FR 6364 - Process for Requesting a Variance From Vegetation Standards for Levees and Floodwalls

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ..., the MSC Commander shall submit the request to HQUSACE, via the Regional Integration Team (RIT) process... supersedes the applicable regional variance policy and process contained in Engineer Regulation (ER) 500-1-1... Program, and Appendix E, Regional Variances to Levee Vegetation Standards, 30 September 2001. c. Engineer...

  17. Computer and control applications in a vegetable processing plant

    USDA-ARS?s Scientific Manuscript database

    There are many advantages to the use of computers and control in food industry. Software in the food industry takes 2 forms - general purpose commercial computer software and software for specialized applications, such as drying and thermal processing of foods. Many applied simulation models for d...

  18. Housing Seasonal Workers for the Minnesota Processed Vegetable Industry

    ERIC Educational Resources Information Center

    Ziebarth, Ann

    2006-01-01

    The place where we live and work is a reflection of a complex set of economic conditions and social relationships. Very little information is available regarding housing for Minnesota's migrant workers. It is estimated that approximately 20,000 people migrate to Minnesota each summer to work in the production and processing of green peas and sweet…

  19. Housing Seasonal Workers for the Minnesota Processed Vegetable Industry

    ERIC Educational Resources Information Center

    Ziebarth, Ann

    2006-01-01

    The place where we live and work is a reflection of a complex set of economic conditions and social relationships. Very little information is available regarding housing for Minnesota's migrant workers. It is estimated that approximately 20,000 people migrate to Minnesota each summer to work in the production and processing of green peas and sweet…

  20. Experimental observation of the rule of flexible vegetation on erosion processes

    NASA Astrophysics Data System (ADS)

    Termini, D.

    2012-04-01

    Vegetation altering hydrodynamic conditions of an open channel flow controls the exchanges of sediment, nutrients and contaminants. Thus, the knowledge of the hydraulic characteristics of flow over vegetation is very important to support the management of fluvial processes. But, the analysis of the hydrodynamic conditions is complex because vegetation is flexible in varying degrees and it oscillates in the flow changing position. Furthermore, because of temporal changing of roughness due to natural vegetative growth, the response of vegetation to the flow can change in time. Many theoretical and experimental investigations have been performed in order to analyze both the mean flow and turbulence structure of open-channel flow (Nezu and Rodi 1986; Lemmin and Rolland 1997; Shvidchenko and Pender 2001; Ghisalberti and Nepf, 2002). Recent experimental runs carried out in laboratory channels with flexible vegetation, realized by using artificial filaments (Kutija and Hong 1996; Ikeda and Kanazawa 1996), investigated some peculiar characteristics of flow turbulence structure and revealed the generation of periodic organized vortices whose center is located slightly above the top of the vegetation layer. On the other hand, recent experimental studies conducted by Termini and Sammartano (2012) in a mobile-bed laboratory channel, and in absence of vegetation, have demonstrated that the formation of coherent turbulence structures plays an important role in sediment transport and in scouring evolution. In particular, ejection and sweep events contribute significantly to erosion, deposition and sediment suspension. In this paper, in order to give a contribution to the understanding of the rule of vegetation on the analyzed erosion process, experimental results obtained in the same laboratory channel, but with bed covered by flexible vegetation, are presented. Attention is paid to interaction vegetation/erosion both along the vegetated-bed channel reach and downstream of it. In

  1. Vegetation dynamics and climate variability-associated biophysical process in West Africa

    NASA Astrophysics Data System (ADS)

    Song, G.; Xue, Y.; Cox, P. M.

    2012-12-01

    West Africa is a bioclimatic zone of predominantly annual grasses with shrubs and trees with a steep gradient in climate, soils, vegetation, fauna, land use and human utilization. West Africa ecosystem region suffered from the most severe and longest drought in the world during the Twentieth Century since the later 1960s. This study systematically investigates how climate variability and anomalies in West Africa affect the regional terrestrial ecosystem, including plant functional types' (PFT) spatial distribution and temporal variations and vegetation characteristics, through biophysical and photosynthesis processes at different scales. We use the offline Simplified Simple Biosphere Version 4/ Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), which is a fully coupled biophysical-dynamic vegetation (DVM) model to adequately incorporate the complex non-linear coupling dynamics between ecosystem and climate variability. The biophysical parameters in SSiB4 are adjusted with TRIFFID-produced vegetation parameter values, which ensure adequate biophysical process coupling. A 59-year simulation from 1948 was conducted using the meteorological forcing, which consists of substantial seasonal, interannual, and interdecal variability and long term dry trend. The results show that the simulated PFT's and leaf area index (LAI) correspond well to climate variability and are consistent with satellite derived vegetation conditions. The simulated inter-decadal variability in vegetation conditions is consistent with the Sahel drought in the 1970s and the 1980s and partial recovery in the 1990s and the 2000s (fig1). To further understand the biophysical mechanism of interactions of water, carbon, radiation, and vegetation dynamics, analyses are conducted to find relationships between vegetation variability and environmental conditions. It is found that the vegetation characteristics simulated by SSiB4/TRIFFID responds primarily to five

  2. The influence of badland surfaces and erosion processes on vegetation cover

    NASA Astrophysics Data System (ADS)

    Hardenbicker, Ulrike; Matheis, Sarah

    2014-05-01

    To assess the links between badland geomorphology and vegetation cover, we used detailed mapping in the Avonlea badlands, 60 km southwest of Regina, Saskatchewan Canada. Three badlands surfaces are typical in the study area: a basal pediment surface, a mid-slope of bentonitic mudstone with typical popcorn surface, and an upper slope with mud-cemented sandstone. Badland development was triggered by rapid post Pleistocene incision of a meltwater channel in Upper Cretaceous marine and lagoonal sediments. After surveying and mapping of a test area, sediment samples were taken to analyze geophysical parameters. A detailed geomorphic map and vegetation map (1:1000) were compared and analyzed in order to determine the geomorphic environment for plant colonization. The shrink-swell capacity of the bentonitic bedrock, slaking potential and dispersivity are controlled by soil texture, clay mineralogy and chemistry, strongly influencing the timing and location of runoff and the relative significance of surface and subsurface erosional processes. The absence of shrink-swell cracking of the alluvial surfaces of the pediments indicates a low infiltration capacity and sheetflow. The compact lithology of the sandstone is responsible for its low permeability and high runoff coefficient. Slope drainage of steep sandstone slopes is routed through a deep corrasional pipe network. Silver sagebrush (Artemisia cana) is the only species growing on the popcorn surface of the mudrock, which is in large parts vegetation free. The basal pediment shows a distinct 2 m band surrounding the mudrock outcrop without vegetation as a result of high sedimentation rate due to slope wash. Otherwise the typical pioneer vegetation of this basal pediment are grasses. In the transition zone below the steep sandstone cliffs and above the gentle bentonitic mudrock surfaces patches of short-grass vegetation are found, marking slumped blocks with intact vegetation and soil cover. These patches are surrounded by

  3. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains--a review.

    PubMed

    Nayak, Balunkeswar; Liu, Rui Hai; Tang, Juming

    2015-01-01

    Understanding the influence of processing operations such as drying/dehydration, canning, extrusion, high hydrostatic pressure, pulsed electric field, and ohmic heating on the phytochemicals of fruits, vegetables, and grains is important in retaining the health benefiting properties of these antioxidative compounds in processed food products. Most of the previous investigations in the literature on the antioxidants of fruits, vegetables, and grains have shown that food-processing operations reduced the antioxidants of the processed foods, which is also the usual consumer perception. However, in the last decade some articles in the literature reported that the evaluation of nutritional quality of processed fruits and vegetables not only depend on the quantity of vitamin C but should include analyses of other antioxidant phytochemicals and antioxidant activity. Thermal processing increased the total antioxidant activity of tomato and sweet corn. Most importantly, analysis also depends on the condition, type, and mechanism of antioxidant assays used. This review aims to provide concise information on the influence of various thermal and nonthermal food-processing operations on the stability and kinetics of health beneficial phenolic antioxidants of fruits, vegetables, and grains.

  4. Effect of hydrothermal processing on phenolic acids and flavonols contents in selected brassica vegetables.

    PubMed

    Sikora, Elżbieta; Cieślik, Ewa; Filipiak-Florkiewicz, Agnieszka; Leszczyńska, Teresa

    2012-01-01

    Commonly occurring diseases can have the origin in oxidative processes ongoing in the human body. Vegetables of Brassicaceae family are the essential sources of natural antioxidants, especially phenolic compounds, in the human diet. The research was aimed to estimate the content of phenolic compounds in selected vegetables and their quantity changes during hydrothermal processes. The vegetables subjected to analysis were: kale, broccoli, Brussels sprouts, and white and green cauliflower. The fresh and processed (blanched, cooked, frozen, cooked after freezing) vegetables were freeze-dried. The levels of phenolic acids and flavonols by HPLC method were estimated. The presence of derivatives of hydroxycinnamic acid, mainly of caffeic acid, p-coumaric acid, sinapic acid and of flavonols - kaempferol, and in smaller amounts of quercetin was found. The largest amounts of above components were present in kale (total 94.4 mg•100 g-1 of fresh matter), whereas the smallest amounts were found in white and green cauliflower - 3.6 mg•100 g-1 f.m. and 3.03 mg•100 g-1 f.m., respectively. The applied technological processes contributed to lover amounts of all tested compounds depending on the process and the vegetable kind. The biggest loses, up to 70-80%, took place during cooking of raw and previously frozen vegetables. Analysed Brassicaceae were characterized by high contents of the investigated flavonoids. The best source of those compounds was kale whereas the smallest amounts of searched components were presented in cauliflowers. The used hydrothermal processes led to losses of searched compounds.

  5. Analysis of spatio-temporal dynamics of Arctic region vegetation based on integrated data processing

    NASA Astrophysics Data System (ADS)

    Mochalov, Viktor; Zelentsov, Viacheslav; Grigirieva, Olga; Brovkina, Olga; Lavrinenko, Igor; Pimanov, Ilia

    2017-04-01

    Currently, there is a significant amount of in-situ data, airborne and satellite observations for the assessment of tundra vegetation. However, the issues of simultaneous analysis of these data remain topical, as well as the development of methods for integrated processing of heterogeneous (in-situ, airborne, space) and multi-temporal data for analyzing the spatio-temporal dynamics of vegetation across large regions and identifying relationships of occurring changes. The study was aimed to fill this gap on the territory of Russia's Far North. The objectives of the study were: 1/ mapping of vegetation types; 2/ assessing the territories which are suitable for grazing reindeers in winter and summer periods; 3/ substantiation of requirements to remote sensing data for vegetation mapping; and 4/ identification of the territories under anthropogenic disturbances. The study area was located in the Nenets Autonomous Okrug of Russia. Time-series satellite Resurs-P, Kanopus-V and Sentinel-2 data, and geobotanical systematic description of study area were used for classification of vegetation types, identification of vegetation dynamic and disturbed territories. Territory for grazing reindeers were assessed based on map of vegetation types and thirty-year field monitoring of reindeers feed and habitats. The integrated processing of data used in the study was implemented by a complex methodical scheme, which included algorithms and methods for processing of satellite data, requirement to remote sensing data, decision to reduce the cost of data collection and to provide the required level of results quality, and recommendations for management of industrial activity in the Nenets Autonomous Okrug of Russia.

  6. Prevalence of Listeria monocytogenes in Retail Lightly Pickled Vegetables and Its Successful Control at Processing Plants.

    PubMed

    Taguchi, Masumi; Kanki, Masashi; Yamaguchi, Yuko; Inamura, Hideichi; Koganei, Yosuke; Sano, Tetsuya; Nakamura, Hiromi; Asakura, Hiroshi

    2017-03-01

    Incidences of food poisoning traced to nonanimal food products have been increasingly reported. One of these was a recent large outbreak of Shiga toxin-producing Escherichia coli (STEC) O157 infection from the consumption of lightly pickled vegetables, indicating the necessity of imposing hygienic controls during manufacturing. However, little is known about the bacterial contamination levels in these minimally processed vegetables. Here we examined the prevalence of STEC, Salmonella spp., and Listeria monocytogenes in 100 lightly pickled vegetable products manufactured at 55 processing factories. Simultaneously, we also performed quantitative measurements of representative indicator bacteria (total viable counts, coliform counts, and β-glucuronidase-producing E. coli counts). STEC and Salmonella spp. were not detected in any of the samples; L. monocytogenes was detected in 12 samples manufactured at five of the factories. Microbiological surveillance at two factories (two surveys at factory A and three surveys at factory B) between June 2014 and January 2015 determined that the areas predominantly contaminated with L. monocytogenes included the refrigerators and packaging rooms. Genotyping provided further evidence that the contaminants found in these areas were linked to those found in the final products. Taken together, we demonstrated the prevalence of L. monocytogenes in lightly pickled vegetables sold at the retail level. Microbiological surveillance at the manufacturing factories further clarified the sources of the contamination in the retail products. These data indicate the necessity of implementing adequate monitoring programs to minimize health risks attributable to the consumption of these minimally processed vegetables.

  7. Functional Applications of Lignocellulolytic Enzymes in the Fruit and Vegetable Processing Industries.

    PubMed

    Toushik, Sazzad Hossen; Lee, Kyung-Tai; Lee, Jin-Sung; Kim, Keun-Sung

    2017-03-01

    Cellulose, hemicellulose, pectin (carbohydrate), and lignin (noncarbohydrate) polymers are the main substrates of lignocellulose-degrading enzymes. They are present in large amounts in the primary cell wall and dietary fibers of major fruits and vegetables. During processing of fruits and vegetables to the corresponding final food products, lignocellulosic substrates are hydrolyzed by different lignocellulolytic enzymes. Currently, lignocellulolytic enzymes such as cellulases, xylanases, pectinases, and laccases are extensively used during the processing of fruits and vegetables, in applications like texturizing and flavoring of products in the food industries. The present article provides an updated overview of functional applications of lignocellulolytic enzymes in the juice processing, oil extraction, and alcoholic beverage processing industries. Extensive use of lignocellulolytic enzymes in different food processing industries not only accelerates the production rates but also improves product quality. It is also possible to ensure the efficient use of fruits and vegetables globally by employing lignocellulolytic enzymes in the corresponding processing industries to convert them into food commodities, which will not only raise their economic value in the global market but also increase food availability, which will help mitigate nutritional problems worldwide. © 2017 Institute of Food Technologists®.

  8. Phenopix: a R package to process digital images of a vegetation cover

    NASA Astrophysics Data System (ADS)

    Filippa, Gianluca; Cremonese, Edoardo; Migliavacca, Mirco; Galvagno, Marta; Morra di Cella, Umberto; Richardson, Andrew

    2015-04-01

    Plant phenology is a globally recognized indicator of the effects of climate change on the terrestrial biosphere. Accordingly, new tools to automatically track the seasonal development of a vegetation cover are becoming available and more and more deployed. Among them, near-continuous digital images are being collected in several networks in the US, Europe, Asia and Australia in a range of different ecosystems, including agricultural lands, deciduous and evergreen forests, and grasslands. The growing scientific interest in vegetation image analysis highlights the need of easy to use, flexible and standardized processing techniques. In this contribution we illustrate a new open source package called "phenopix" written in R language that allows to process images of a vegetation cover. The main features include: (i) define of one or more areas of interest on an image and process pixel information within them, (ii) compute vegetation indexes based on red green and blue channels, (iii) fit a curve to the seasonal trajectory of vegetation indexes and extract relevant dates (aka thresholds) on the seasonal trajectory; (iv) analyze image pixels separately to extract spatially explicit phenological information. The utilities of the package will be illustrated in detail for two subalpine sites, a grassland and a larch stand at about 2000 m in the Italian Western Alps. The phenopix package is a cost free and easy-to-use tool that allows to process digital images of a vegetation cover in a standardized, flexible and reproducible way. The software is available for download at the R forge web site (r-forge.r-project.org/projects/phenopix/).

  9. Use of post-harvest/processed sugarcane bagasse as a vegetable mulch

    USDA-ARS?s Scientific Manuscript database

    Research was conducted in 2015 to investigate the use of sugarcane bagasse as a natural mulch for vegetable production. Louisiana processed 11.6 million mt of sugarcane in 2014, producing 1.36 million mt of raw sugar and an estimated 2.7 million mt of bagasse. Bagasse is the fibrous material remaini...

  10. Spherical Lactic Acid-producing Bacteria of Southern-grown Raw and Processed Vegetables

    PubMed Central

    Mundt, J. Orvin; Graham, Wanda F.; McCarty, I. E.

    1967-01-01

    The frequency and levels of population of the spherical lactic acid-producing bacteria were determined on raw and processed yellow summer and zucchini squash, a variety of greens, green beans, okra, southern peas, and butter and lima beans, and on fresh cucumbers and corn flowers. Six taxa occurred consistently: Leuconostoc mesenteroides, yellow-pigmented streptococci, Streptococcus faecium, Aerococcus viridans, and S. faecalis and S. faecalis var. liquefaciens. The same taxa occurred with the same order of frequency on processed, frozen vegetables, but with a marked decrease in the occurrence of S. faecalis var. liquefaciens. S. lactis, S. cremoris, S. equinus, S. bovis, and pediococci were isolated infrequently. No other member of the viridans group of the streptococci and no member of the pyogenic group was isolated. Approximately 88% of the cultures were identified. Total counts of the lactic-acid-producing bacteria rarely exceeded 105 per gram of sample, and there was a reduction by 90% during the second year of study, probably because of drought. Only one bacterial species was found on 40% of the raw and 34% of the processed vegetable samples. Two or more species or taxa were present on the remainder of 153 raw and 56 processed vegetable samples. A. viridans was present on squash, greens, okra, and southern peas, and its frequency of occurrence on vegetables suggests that plants are its natural habitat. PMID:16349739

  11. Processes of change for increasing fruit and vegetable consumption among economically disadvantaged African American adolescents

    USDA-ARS?s Scientific Manuscript database

    This study sought to identify Transtheoretical model processes of change associated with consumption of >=5 daily servings of fruit and vegetables in a sample of economically disadvantaged African American adolescents (N=549; mean (SD) age=12.44 (.99) years; 61% female; 15% African American Hispanic...

  12. A flexible numerical component to simulate surface runoff transport and biogeochemical processes through dense vegetation

    NASA Astrophysics Data System (ADS)

    Munoz-Carpena, R.; Perez-Ovilla, O.

    2012-12-01

    Methods to estimate surface runoff pollutant removal using dense vegetation buffers (i.e. vegetative filter strips) usually consider a limited number of factors (i.e. filter length, slope) and are in general based on empirical relationships. When an empirical approach is used, the application of the model is limited to those conditions of the data used for the regression equations. The objective of this work is to provide a flexible numerical mechanistic tool to simulate dynamics of a wide range of surface runoff pollutants through dense vegetation and their physical, chemical and biological interactions based on equations defined by the user as part of the model inputs. A flexible water quality model based on the Reaction Simulation Engine (RSE) modeling component is coupled to a transport module based on the traditional Bubnov -Galerkin finite element method to solve the advection-dispersion-reaction equation using the alternating split-operator technique. This coupled transport-reaction model is linked to the VFSMOD-W (http://abe.ufl.edu/carpena/vfsmod) program to mechanistically simulate mobile and stabile pollutants through dense vegetation based on user-defined conceptual models (differential equations written in XML language as input files). The key factors to consider in the creation of a conceptual model are the components in the buffer (i.e. vegetation, soil, sediments) and how the pollutant interacts with them. The biogeochemical reaction component was tested successfully with laboratory and field scale experiments. One of the major advantages when using this tool is that the pollutant transport and removal thought dense vegetation is related to physical and biogeochemical process occurring within the filter. This mechanistic approach increases the range of use of the model to a wide range of pollutants and conditions without modification of the core model. The strength of the model relies on the mechanistic approach used for simulating the removal of

  13. Monitoring dynamical vegetation processes with solar-induced chlorophyll fluorescence measurements from space (Invited)

    NASA Astrophysics Data System (ADS)

    Moreno, J. F.; Guanter, L.; Alonso, L.; Gomez-Chova, L.; Drusch, M.; Kraft, S.; Carnicero, B.; Bezy, J.

    2009-12-01

    Fluorescence is a powerful non-invasive tool to track the status, resilience, and recovery of photochemical processes and moreover provides important information on overall vegetation photosynthetic performance with implications for related carbon sequestration, allowing to measure planetary photosynthesis by means of a global monitoring of steady-state chlorophyll fluorescence in terrestrial vegetation. The FLuorescence EXperiment (FLEX) is designed to observe the photosynthetic activity of the vegetation layer, by using a completely novel technique measuring the chlorophyll fluorescence signal that originates from the core of the photosynthetic machinery, i.e. the ‘breathing’ of the vegetation layer of the living planet. Conceived as a technology demonstration mission, it proposes a set of instruments for the measurement of the interrelated features of fluorescence, spectral reflectance, and canopy temperature, by using a dedicated small satellite flying in tandem with GMES Sentinel-3. This will provide a completely new possibility to quantify the photosynthetic efficiency of terrestrial ecosystems at the global scale, to improve the predictability of dynamical vegetation models on scales comprising canopies and biomes, and to provide an improved estimate of GPP for a better understanding of the global carbon cycle. It will also improve understanding of the role of vegetation in the coupled global carbon / water cycles, the global assessment of the vegetation health conditions and vegetation stress and the support the development of future crop production strategies in a changing climate. The measurement represent a challenge: the weak fluorescence signal is masked by the reflected background radiance, and accurate compensation of all perturbing effects becomes essential. Recent developments have demonstrated the feasibility of the measurements of canopy fluorescence from space. Recent model developments and data processing tools have made possible to

  14. Matching ecohydrological processes and scales of banded vegetation patterns in semiarid catchments

    NASA Astrophysics Data System (ADS)

    Paschalis, Athanasios; Katul, Gabriel G.; Fatichi, Simone; Manoli, Gabriele; Molnar, Peter

    2016-03-01

    While the claim that water-carbon interactions result in spatially coherent vegetation patterning is rarely disputed in many arid and semiarid regions, the significance of the detailed water pathways and other high frequency variability remain an open question. How the short temporal scale meteorological fluctuations form the long-term spatial variability of available soil water in complex terrains due to the various hydrological, land surface, and vegetation dynamic feedbacks frames the scope of the work here. Knowledge of the detailed mechanistic feedbacks among soil, plants, and the atmosphere will lead to advances in our understanding of plant water availability in arid and semiarid ecosystems and will provide insights for future model development concerning vegetation pattern formation. In this study, quantitative estimates of water fluxes and vegetation productivity are provided for a semiarid ecosystem with established vegetation bands on hillslopes using numerical simulations. A state-of-the-science process based ecohydrological model is used, which resolves hydrological and plant physiological processes at the relevant space and time scales, for relatively small periods (e.g., decades) of mature ecosystems (i.e., spatially static vegetation distribution). To unfold the mechanisms that shape the spatial distribution of soil moisture, plant productivity and the relevant surface/subsurface and atmospheric water fluxes, idealized hillslope numerical experiments are constructed, where the effects of soil type, slope steepness, and overland flow accumulation area are quantified. Those mechanisms are also simulated in the presence of complex topography features on landscapes. The main results are (a) short temporal scale meteorological variability and accurate representation of the scales at which each ecohydrological process operates are crucial for the estimation of the spatial variability of soil water availability to the plant root zone; (b) water fluxes such

  15. Application of membrane separation in fruit and vegetable juice processing: a review.

    PubMed

    Ilame, Susmit A; Satyavir, V Singh

    2015-01-01

    Fruit and vegetable juices are used due to convenience. The juices are rich in various minerals, vitamins, and other nutrients. To process the juices and their clarification and/or concentration is required. The membranes are being used for these purposes. These processes are preferred over others because of high efficiency and low temperature. Membranes and their characteristics have been discussed in brief for knowing suitability of membranes for fruit and vegetable juices. Membrane separation is low temperature process in which the organoleptic quality of the juice is almost retained. In this review, different membrane separation methods including Microfiltration, Ultrafiltration, and Reverse osmosis for fruit juices reported in the literature are discussed. The major fruit and vegetable juices using membrane processes are including the Reverse osmosis studies for concentration of Orange juice, Carrot juice, and Grape juice are discusses. The Microfiltration and Ultrafiltration are used for clarification of juices of mosambi juice, apple juice, pineapple juice, and kiwifruit juice. The various optimized parameters in membranes studies are pH, TAA, TSS, and AIS. In this review, in addition to above the OD is also discussed, where the membranes are used.

  16. Repeat-pass InSAR processing for Vegetation Height Calculation: Theory and a validated example

    NASA Astrophysics Data System (ADS)

    Siqueira, P.; Lei, Y.

    2014-12-01

    million hectare region. The results have been validated using the LVIS lidar system and a map of vegetation height provided by Woods Hole Research Center. This talk will describe the process that was used for creating this map, and how the data processing was automated to account for differences in temporal decorrelation over this large study area.

  17. Floristic and vegetation successional processes within landslides in a Mediterranean environment.

    PubMed

    Neto, Carlos; Cardigos, Patrícia; Oliveira, Sérgio Cruz; Zêzere, José Luís

    2017-01-01

    Floristic and vegetation analysis in seven Mediterranean landslides led to the understanding of the successional processes occurring in different landslide disturbed sectors. Our study showed that in landslides that occurred between 1996 and 2010 there is a clear differentiation between the three main landslide sectors (scarp, main body and foot) concerning floristic composition, vegetation structure, floristic richness, successional processes and plant functional type. Additional differences were found between landslide areas and undisturbed agricultural areas adjacent to landslides. In this study 48 floristic relevés were made using a stratified random sampling design. The main landslide body exhibits the highest floristic richness whereas the landslide scarp has the lowest coverage rate and the highest presence of characteristic species from ruderal and strongly perturbed habitats. Finally, the landslide foot shows a late stage in the succession (maquis or pre-forest stage) with a high dominance of vines. We further discuss the importance of landslides as reservoirs of biodiversity especially for Mediterranean orchids.

  18. Visual processing during recovery from vegetative state to consciousness: comparing behavioral indices to brain responses.

    PubMed

    Wijnen, V J M; Eilander, H J; de Gelder, B; van Boxtel, G J M

    2014-11-01

    Auditory stimulation is often used to evoke responses in unresponsive patients who have suffered severe brain injury. In order to investigate visual responses, we examined visual evoked potentials (VEPs) and behavioral responses to visual stimuli in vegetative patients during recovery to consciousness. Behavioral responses to visual stimuli (visual localization, comprehension of written commands, and object manipulation) and flash VEPs were repeatedly examined in eleven vegetative patients every two weeks for an average period of 2.6months, and patients' VEPs were compared to a healthy control group. Long-term outcome of the patients was assessed 2-3years later. Visual response scores increased during recovery to consciousness for all scales: visual localization, comprehension of written commands, and object manipulation. VEP amplitudes were smaller, and latencies were longer in the patient group relative to the controls. VEPs characteristics at first measurement were related to long-term outcome up to three years after injury. Our findings show the improvement of visual responding with recovery from the vegetative state to consciousness. Elementary visual processing is present, yet according to VEP responses, poorer in vegetative and minimally conscious state than in healthy controls, and remains poorer when patients recovered to consciousness. However, initial VEPs are related to long-term outcome. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Effect of grassland vegetation type on the responses of hydrological processes to seasonal precipitation patterns

    NASA Astrophysics Data System (ADS)

    Salve, Rohit; Sudderth, Erika A.; St. Clair, Samuel B.; Torn, Margaret S.

    2011-11-01

    SummaryUnder future climate scenarios, rainfall patterns and species composition in California grasslands are predicted to change, potentially impacting soil-moisture dynamics and ecosystem function. The primary objective of this study was to assess the impact of altered rainfall on soil-moisture dynamics in three annual grassland vegetation types. We monitored seasonal changes in soil moisture under three different rainfall regimes in mesocosms planted with: (1) a mixed forb-grass community, (2) an Avena barbata monoculture, and (3) an Erodium botrys monoculture. We applied watering treatments in pulses, followed by dry periods that are representative of natural rainfall patterns in California annual grasslands. While rainfall was the dominant treatment, its impact on hydrological processes varied over the growing season. Surprisingly, there were only small differences in the hydrologic response among the three vegetation types. We found significant temporal variability in evapotranspiration, seepage, and soil-moisture content. Both Water Use Efficiency (WUE) and Rain Use Efficiency (RUE) decreased as annual precipitation totals increased. Results from this investigation suggest that both precipitation and vegetation have a significant interactive effect on soil-moisture dynamics. When combined, seasonal precipitation and grassland vegetation influence near-surface hydrology in ways that cannot be predicted from manipulation of a single variable.

  20. Influence of High-Pressure Processing on the Profile of Polyglutamyl 5-Methyltetrahydrofolate in Selected Vegetables

    PubMed Central

    Wang, Chao; Riedl, Ken M.; Somerville, Jeremy; Balasubramaniam, V. M.; Schwartz, Steven J.

    2013-01-01

    In plants, folate occurs predominantly as 5-methyltetrahydrofolate (5MTHF) polyglutamyl forms. Differences in stability and bioavailability of food folate compared to synthetic folic acid have been attributed to the presence of the polyglutamyl chain. High-pressure processing (HPP) was tested for whether it might shorten polyglutamyl chains of 5MTHF species in fresh vegetables by enabling action of native γ-glutamylhydrolase (GGH). A validated ultrahigh-performance reversed-phase liquid chromatography–tandem mass spectrometry method using stable isotope as internal standard was applied for characterizing 5MTHF polyglutamyl profiles. HPP conditions included 300, 450, and 600 MPa at 30 °C for 0 or 5 min, and vegetables were vacuum-packed before treatment. Investigated vegetables included cauliflower (Brassica oleracea), baby carrots (Daucus carota), and carrot greens (D. carota). HPP treatment caused conversion of polyglutamyl 5MTHF species to short-chain and monoglutamyl forms. Maximal conversion of polyglutamyl folate to monoglutamyl folate occurred at the highest pressure/time combination investigated, 600 MPa/30 °C/5 min. Under this condition, cauliflower monoglutamyl folate increased nearly 4-fold, diglutamyl folate 32-fold, and triglutamyl folate 8-fold; carrot monoglutamyl increased 23-fold and diglutamyl 32-fold; and carrot greens monoglutamyl increased 2.5-fold and the diglutamyl form 19-fold. Although some folate degradation was observed at certain intermediate HPP conditions, total 5MTHF folate was largely preserved at 600 MPa/5 min. Thus, HPP of raw vegetables is a feasible strategy for enhancing vegetable monoglutamate 5MTHF. PMID:21770413

  1. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence

    PubMed Central

    Jung, Yangjin; Jang, Hyein; Matthews, Karl R

    2014-01-01

    The popularity in the consumption of fresh and fresh-cut vegetables continues to increase globally. Fresh vegetables are an integral part of a healthy diet, providing vitamins, minerals, antioxidants and other health-promoting compounds. The diversity of fresh vegetables and packaging formats (spring mix in clamshell container, bagged heads of lettuce) support increased consumption. Unfortunately, vegetable production and processing practices are not sufficient to ensure complete microbial safety. This review highlights a few specific areas that require greater attention and research. Selected outbreaks are presented to emphasize the need for science-based ‘best practices’. Laboratory and field studies have focused on inactivation of pathogens associated with manure in liquid, slurry or solid forms. As production practices change, other forms and types of soil amendments are being used more prevalently. Information regarding the microbial safety of fish emulsion and pellet form of manure is limited. The topic of global climate change is controversial, but the potential effect on agriculture cannot be ignored. Changes in temperature, precipitation, humidity and wind can impact crops and the microorganisms that are associated with production environments. Climate change could potentially enhance the ability of pathogens to survive and persist in soil, water and crops, increasing human health risks. Limited research has focused on the prevalence and behaviour of viruses in pre and post-harvest environments and on vegetable commodities. Globally, viruses are a major cause of foodborne illnesses, but are seldom tested for in soil, soil amendments, manure and crops. Greater attention must also be given to the improvement in the microbial quality of seeds used in sprout production. Human pathogens associated with seeds can result in contamination of sprouts intended for human consumption, even when all appropriate ‘best practices’ are used by sprout growers. PMID

  2. Effect of the food production chain from farm practices to vegetable processing on outbreak incidence.

    PubMed

    Jung, Yangjin; Jang, Hyein; Matthews, Karl R

    2014-11-01

    The popularity in the consumption of fresh and fresh-cut vegetables continues to increase globally. Fresh vegetables are an integral part of a healthy diet, providing vitamins, minerals, antioxidants and other health-promoting compounds. The diversity of fresh vegetables and packaging formats (spring mix in clamshell container, bagged heads of lettuce) support increased consumption. Unfortunately, vegetable production and processing practices are not sufficient to ensure complete microbial safety. This review highlights a few specific areas that require greater attention and research. Selected outbreaks are presented to emphasize the need for science-based 'best practices'. Laboratory and field studies have focused on inactivation of pathogens associated with manure in liquid, slurry or solid forms. As production practices change, other forms and types of soil amendments are being used more prevalently. Information regarding the microbial safety of fish emulsion and pellet form of manure is limited. The topic of global climate change is controversial, but the potential effect on agriculture cannot be ignored. Changes in temperature, precipitation, humidity and wind can impact crops and the microorganisms that are associated with production environments. Climate change could potentially enhance the ability of pathogens to survive and persist in soil, water and crops, increasing human health risks. Limited research has focused on the prevalence and behaviour of viruses in pre and post-harvest environments and on vegetable commodities. Globally, viruses are a major cause of foodborne illnesses, but are seldom tested for in soil, soil amendments, manure and crops. Greater attention must also be given to the improvement in the microbial quality of seeds used in sprout production. Human pathogens associated with seeds can result in contamination of sprouts intended for human consumption, even when all appropriate 'best practices' are used by sprout growers. © 2014 The

  3. Contribution of understorey vegetation and soil processes to boreal forest isoprenoid exchange

    NASA Astrophysics Data System (ADS)

    Mäki, Mari; Heinonsalo, Jussi; Hellén, Heidi; Bäck, Jaana

    2017-03-01

    Boreal forest floor emits biogenic volatile organic compounds (BVOCs) from the understorey vegetation and the heterogeneous soil matrix, where the interactions of soil organisms and soil chemistry are complex. Earlier studies have focused on determining the net exchange of VOCs from the forest floor. This study goes one step further, with the aim of separately determining whether the photosynthesized carbon allocation to soil affects the isoprenoid production by different soil organisms, i.e., decomposers, mycorrhizal fungi, and roots. In each treatment, photosynthesized carbon allocation through roots for decomposers and mycorrhizal fungi was controlled by either preventing root ingrowth (50 µm mesh size) or the ingrowth of roots and fungi (1 µm mesh) into the soil volume, which is called the trenching approach. Isoprenoid fluxes were measured using dynamic (steady-state flow-through) chambers from the different treatments. This study aimed to analyze how important the understorey vegetation is as a VOC sink. Finally, a statistical model was constructed based on prevailing temperature, seasonality, trenching treatments, understory vegetation cover, above canopy photosynthetically active radiation (PAR), soil water content, and soil temperature to estimate isoprenoid fluxes. The final model included parameters with a statistically significant effect on the isoprenoid fluxes. The results show that the boreal forest floor emits monoterpenes, sesquiterpenes, and isoprene. Monoterpenes were the most common group of emitted isoprenoids, and the average flux from the non-trenched forest floor was 23 µg m-2 h-1. The results also show that different biological factors, including litterfall, carbon availability, biological activity in the soil, and physico-chemical processes, such as volatilization and absorption to the surfaces, are important at various times of the year. This study also discovered that understorey vegetation is a strong sink of monoterpenes. The

  4. Vegetation as a tool in the interpretation of fluvial geomorphic processes and landforms

    USGS Publications Warehouse

    Hupp, Cliff R.; Dufour, S; Bornette, G

    2016-01-01

    This chapter exemplifies that vegetation can be used as a tool for geomorphic interpretation in several major ways. It presents a general overview: through dendrogeomorphic analysis (tree rings) to estimate the timing of important geomorphic events including floods and mass wasting and to estimate rates of erosion and sedimentation; through the documentation and interpretation of species distributional patterns that are established in response to prevailing hydrogeomorphic conditions; and through the role that it plays, depending on size, shape and growth form, in flow rates and subsequent erosion and deposition processes. Floods, from prolonged inundation characteristic of relatively large, low-gradient basins to high-gradient and short-period destructive events, are the most important extrinsic factor in bottomland systems. Vegetation organization, composition and plant community dynamics on river floodplains are controlled by disturbance type and scale, and biological characteristics of plants linked to resistance to disturbance, resilience and competitive ability.

  5. [Examination of processed vegetable foods for the presence of common DNA sequences of genetically modified tomatoes].

    PubMed

    Kitagawa, Mamiko; Nakamura, Kosuke; Kondo, Kazunari; Ubukata, Shoji; Akiyama, Hiroshi

    2014-01-01

    The contamination of processed vegetable foods with genetically modified tomatoes was investigated by the use of qualitative PCR methods to detect the cauliflower mosaic virus 35S promoter (P35S) and the kanamycin resistance gene (NPTII). DNA fragments of P35S and NPTII were detected in vegetable juice samples, possibly due to contamination with the genomes of cauliflower mosaic virus infecting juice ingredients of Brassica species and soil bacteria, respectively. Therefore, to detect the transformation construct sequences of GM tomatoes, primer pairs were designed for qualitative PCR to specifically detect the border region between P35S and NPTII, and the border region between nopaline synthase gene promoter and NPTII. No amplification of the targeted sequences was observed using genomic DNA purified from the juice ingredients. The developed qualitative PCR method is considered to be a reliable tool to check contamination of products with GM tomatoes.

  6. The Influence of vegetation on processes of shallow soil erosion in subalpine catchment areas in Western Austria

    NASA Astrophysics Data System (ADS)

    von der Thannen, M.; Weissteiner, C.; Rauch, H. P.; Tilch, N.; Kohl, B.

    2012-04-01

    Shallow soil erosion processes have been increasing within the last decades in the high montane and subalpine altitudinal zone of Western Austria. Explanations for the progression of eroded areas in the 2nd half of the 20th century have been subject of various research projects. The studies result in different possible explanations and process catenae regarding triggering effects, material dislocation processes and a following development of the erosive spots. Diverse results are based on different scales of the studies and the specific disciplinary driven approach of the researchers. In order to better understand the process catenae of the dynamics of shallow soil erosion processes this research project is based on an interdisciplinary, pluri-scale approach applied in different areas of the subalpine zone in Western Austria. The focus of this paper is restricted to one catchment area and highlights the influence of different plant parameters on shallow soil erosion processes. The research area "Thüringerberg" is located in the lithographic flysch unit in the subalpine zone in Vorarlberg, in Western Austria. Its vegetation is strongly characterized by agricultural activities of local people, mainly alpine pasturing. Generally the vegetation can be classified in three different types of vegetation: dry grasslands, pioneers and higher perennial herbs. The grassland, which is dominating in the area, is dominated by the vegetation community Caricetum ferrugineae. Additionally Seslerio-Semperviretum, Polygono-Trisetion, defective vegetation community with Agrostis stolonifera and defective vegetation community with Dactylis glomerata occur. Fieldwork has been conducted during summer 2011, from August, 8th up to the 18th, at highest development level of the plants. Vegetation data has been recorded around every single soil erosion process (above, sideways, below and inside). Observed vegetation parameters are: height, frequency, distribution, coverage and dominance

  7. The Importance of Representing Certain Key Vegetation Canopy Processes Explicitly in a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Napoly, A.; Boone, A. A.; Martin, E.; Samuelsson, P.

    2015-12-01

    Land surface models are moving to more detailed vegetation canopy descriptions in order to better represent certain key processes, such as Carbon dynamics and snowpack evolution. Since such models are usually applied within coupled numerical weather prediction or spatially distributed hydrological models, these improvements must strike a balance between computational cost and complexity. The consequences of simplified or composite canopy approaches can be manifested in terms of increased errors with respect to soil temperatures, estimates of the diurnal cycle of the turbulent fluxes or snow canopy interception and melt. Vegetated areas and particularly forests are modeled in a quite simplified manner in the ISBA land surface model. However, continuous developments of surface processes now require a more accurate description of the canopy. A new version of the the model now includes a multi energy balance (MEB) option to explicitly represent the canopy and the forest floor. It will be shown that certain newly included processes such as the shading effect of the vegetation, the explicit heat capacity of the canopy, and the insulating effect of the forest floor turn out to be essential. A detailed study has been done for four French forested sites. It was found that the MEB option significantly improves the ground heat flux (RMSE decrease from 50W/m2 to 10W/m2 on average) and soil temperatures when compared against measurements. Also the sensible heat flux calculation was improved primarily owing to a better phasing with the solar insulation owing to a lower vegetation heat capacity. However, the total latent heat flux is less modified compared to the classical ISBA simulation since it is more related to water uptake and the formulation of the stomatal resistance (which are unchanged). Next, a benchmark over 40 Fluxnet sites (116 cumulated years) was performed and compared with results from the default composite soil-vegetation version of ISBA. The results show

  8. The role of vegetation and bed-level fluctuations in the process of channel narrowing

    USGS Publications Warehouse

    Friedman, J.M.; Osterkamp, W.R.; Lewis, W.M.

    1996-01-01

    A catastrophic flood in 1965 on Plum Creek, a perennial sandbed stream in the western Great Plains, removed most of the bottomland vegetation and transformed the single-thalweg stream into a wider, braided channel. Following eight years of further widening associated with minor high flows, a process of channel narrowing began in 1973; narrowing continues today. The history of channel narrowing was reconstructed by counting the annual rings of 129 trees and shrubs along a 5-km reach of Plum Creek near Louviers, Colorado. Sixty-three of these plants were excavated in order to determine the age and elevation of the germination point. The reconstructed record of channel change was verified from historical aerial photographs, and then compared to sediment stratigraphy and records of discharge and bed elevation from a streamflow gaging station in the study reach. Channel narrowing at Plum Creek occurs in two ways. First, during periods of high flow, sand and fine gravel are delivered to the channel, temporarily raising the general bed-level. Subsequently, several years of uninterrupted low flows incise a narrower channel. Second, during years of low flow, vegetation becomes established on the subaerial part of the present channel bed. In both cases, surfaces stabilize as a result of vegetation growth and vertical accretion of sediment.

  9. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review.

    PubMed

    Valencia-Chamorro, Silvia A; Palou, Lluís; Del Río, Miguel A; Pérez-Gago, María B

    2011-01-01

    The use of edible films and coatings is an environmentally friendly technology that offers substantial advantages for shelf-life increase of many food products including fruits and vegetables. The development of new natural edible films and coatings with the addition of antimicrobial compounds to preserve fresh and minimally processed fruits and vegetables is a technological challenge for the industry and a very active research field worldwide. Antimicrobial agents have been successfully added to edible composite films and coatings based on polysaccharides or proteins such as starch, cellulose derivatives, chitosan, alginate, fruit puree, whey protein isolated, soy protein, egg albumen, wheat gluten, or sodium caseinate. This paper reviews the development of edible films and coatings with antimicrobial activity, typically through the incorporation of antimicrobial food additives as ingredients, the effect of these edible films on the control of target microorganisms, the influence of antimicrobial agents on mechanical and barrier properties of stand-alone edible films, and the effect of the application of antimicrobial edible coatings on the quality of fresh and fresh-cut fruits and vegetables.

  10. Microbial Evaluation of Fresh, Minimally-processed Vegetables and Bagged Sprouts from Chain Supermarkets

    PubMed Central

    Jeddi, Maryam Zare; Yunesian, Masud; Gorji, Mohamad Es'haghi; Noori, Negin; Pourmand, Mohammad Reza

    2014-01-01

    ABSTRACT The aim of this study was to evaluate the bacterial and fungal quality of minimally-processed vegetables (MPV) and sprouts. A total of 116 samples of fresh-cut vegetables, ready-to-eat salads, and mung bean and wheat sprouts were randomly collected and analyzed. The load of aerobic mesophilic bacteria was minimum and maximum in the fresh-cut vegetables and fresh mung bean sprouts respectively, corresponding to populations of 5.3 and 8.5 log CFU/g. E. coli O157:H7 was found to be absent in all samples; however,  other E. coli strains were detected in 21 samples (18.1%), and Salmonella spp. were found in one mung bean (3.1%) and one ready-to-eat salad sample (5%). Yeasts were the predominant organisms and were found in 100% of the samples. Geotrichum, Fusarium, and Penicillium spp. were the most prevalent molds in mung sprouts while Cladosporium and Penicillium spp. were most frequently found in ready-to-eat salad samples. According to results from the present study, effective control measures should be implemented to minimize the microbiological contamination of fresh produce sold in Tehran, Iran. PMID:25395902

  11. Microbial evaluation of fresh, minimally-processed vegetables and bagged sprouts from chain supermarkets.

    PubMed

    Jeddi, Maryam Zare; Yunesian, Masud; Gorji, Mohamad Es'haghi; Noori, Negin; Pourmand, Mohammad Reza; Khaniki, Gholam Reza Jahed

    2014-09-01

    The aim of this study was to evaluate the bacterial and fungal quality of minimally-processed vegetables (MPV) and sprouts. A total of 116 samples of fresh-cut vegetables, ready-to-eat salads, and mung bean and wheat sprouts were randomly collected and analyzed. The load of aerobic mesophilic bacteria was minimum and maximum in the fresh-cut vegetables and fresh mung bean sprouts respectively, corresponding to populations of 5.3 and 8.5 log CFU/g. E. coli O157:H7 was found to be absent in all samples; however,  other E. coli strains were detected in 21 samples (18.1%), and Salmonella spp. were found in one mung bean (3.1%) and one ready-to-eat salad sample (5%). Yeasts were the predominant organisms and were found in 100% of the samples. Geotrichum, Fusarium, and Penicillium spp. were the most prevalent molds in mung sprouts while Cladosporium and Penicillium spp. were most frequently found in ready-to-eat salad samples. According to results from the present study, effective control measures should be implemented to minimize the microbiological contamination of fresh produce sold in Tehran, Iran.

  12. Effects of food processing on pesticide residues in fruits and vegetables: a meta-analysis approach.

    PubMed

    Keikotlhaile, B M; Spanoghe, P; Steurbaut, W

    2010-01-01

    Pesticides are widely used in food production to increase food security despite the fact that they can have negative health effects on consumers. Pesticide residues have been found in various fruits and vegetables; both raw and processed. One of the most common routes of pesticide exposure in consumers is via food consumption. Most foods are consumed after passing through various culinary and processing treatments. A few literature reviews have indicated the general trend of reduction or concentration of pesticide residues by certain methods of food processing for a particular active ingredient. However, no review has focused on combining the obtained results from different studies on different active ingredients with differences in experimental designs, analysts and analysis equipment. In this paper, we present a meta-analysis of response ratios as a possible method of combining and quantifying effects of food processing on pesticide residue levels. Reduction of residue levels was indicated by blanching, boiling, canning, frying, juicing, peeling and washing of fruits and vegetables with an average response ratio ranging from 0.10 to 0.82. Baking, boiling, canning and juicing indicated both reduction and increases for the 95% and 99.5% confidence intervals.

  13. Evaluation of on-farm biological treatment processes for wastewaters from vegetable peeling.

    PubMed

    Lehtoa, M; Sipilä, I; Sorvala, S; Hellstedt, M; Kymäläinen, H R; Sjöberg, A M

    2009-01-01

    This study highlights the need for the development of simple, efficient, and cost-effective farm-scale applications to treat wastewater arising from vegetable-peeling operations. The aim was to evaluate two full-scale biological wastewater treatment systems, a sequencing batch reactor (SBR) and a biofilter, and a chemical wastewater treatment system on farms carrying out peeling of vegetables. The types, design criteria and parameters of the processes, as well as properties of the untreated and treated wastewaters were presented and evaluated. Seven-day biochemical oxygen demand (BOD7) entering the SBR was 3100 +/- 529 mg l(-1) (mean +/- standard deviation). The results showed that the SBR was very stable and effective in the treatment of carrot-processing wastewaters, the BOD7 for effluent being about 10 mg l(-1). The biofilter examined did not operate well because the pH too low: the reduction for BOD7 was 63% and, for COD, 58%. When wastewater from potato processing was treated with aluminium sulphate and conveyed to an artificial pond, removal of BOD7 was 67% and that of COD 69%. This method is only suitable for pre- or post-treatment of these wastewaters. Control of the treatment processes appeared to be essential for their proper functioning.

  14. The Role of Nurses in Coping Process of Family Caregivers of Vegetative Patients: A Qualitative Study

    PubMed Central

    Imanigoghary, Zahra; Peyrovi, Hamid; Nouhi, Esmat; Kazemi, Majid

    2017-01-01

    ABSTRACT Background: Vegetative state (VS) occurs through return of the brain stem after coma state. After hospital discharge, responsibility of caring for VS patients is transferred to their families, which causes a high burden on them. Nurses have an important role in helping the family caregivers to meet their needs and cope with difficulties. To explore the role of nurses during coping process of family caregivers of VS patients. Methods: This study is a part of a larger qualitative study which was performed in Kerman province, Iran during 2014- 2015. Purposive and theoretical sampling was used. 14 caregivers participated in the study. Data were gathered using face-to-face in-depth interviews and managed by MAXQDA 10 software. Analysis was done through constant Comparative Method. Results: Three themes of “nurse as a pursuer teacher”, “nurse as a compassionate caregiver”, and “nurse as a supporter” were derived from analysis that represent various roles of a nurse in the coping process of family caregivers of vegetative patients during the care process. Conclusion: Nurses can play an effective role in improving the caregivers’ well-being by considering the importance of training at discharge time and during home care, helping families in providing care and support them during care process. PMID:28097180

  15. Inventories of Delaware's coastal vegetation and land-use utilizing digital processing of ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Bartlett, D.; Rogers, R.; Reed, L.

    1974-01-01

    The author has identified the following significant results. Analysis of ERTS-1 color composite images using analogy processing equipment confirmed that all the major wetlands plant species were distinguishable at ERTS-1 scale. Furthermore, human alterations of the coastal zone were easily recognized since such alterations typically involve removal of vegetative cover resulting in a change of spectral signature. The superior spectral resolution of the CCTs as compared with single band or composite imagery has indeed provided good discrimination through digital analysis of the CCTs with the added advantage of rapid production of thematic maps and data.

  16. A novel approach for calculating shelf life of minimally processed vegetables.

    PubMed

    Corbo, Maria Rosaria; Del Nobile, Matteo Alessandro; Sinigaglia, Milena

    2006-01-15

    Shelf life of minimally processed vegetables is often calculated by using the kinetic parameters of Gompertz equation as modified by Zwietering et al. [Zwietering, M.H., Jongenburger, F.M., Roumbouts, M., van't Riet, K., 1990. Modelling of the bacterial growth curve. Applied and Environmental Microbiology 56, 1875-1881.] taking 5x10(7) CFU/g as the maximum acceptable contamination value consistent with acceptable quality of these products. As this method does not allow estimation of the standard errors of the shelf life, in this paper the modified Gompertz equation was re-parameterized to directly include the shelf life as a fitting parameter among the Gompertz parameters. Being the shelf life a fitting parameter is possible to determine its confidence interval by fitting the proposed equation to the experimental data. The goodness-of-fit of this new equation was tested by using mesophilic bacteria cell loads from different minimally processed vegetables (packaged fresh-cut lettuce, fennel and shredded carrots) that differed for some process operations or for package atmosphere. The new equation was able to describe the data well and to estimate the shelf life. The results obtained emphasize the importance of using the standard errors for the shelf life value to show significant differences among the samples.

  17. Spontaneous vegetation encroachment upon bauxite residue (red mud) as an indicator and facilitator of in situ remediation processes.

    PubMed

    Santini, Talitha C; Fey, Martin V

    2013-01-01

    The spontaneous colonization of a bauxite residue (alumina refining tailings) deposit by local vegetation in Linden, Guyana, over 30 years, indicates that natural weathering processes can ameliorate tailings to the extent that it can support vegetation. Samples were collected from vegetated and unvegetated areas to investigate the relationships between bauxite residue properties and vegetation cover. Compared to unvegetated areas, bauxite residue in vegetated areas had lower pH (mean pH 7.9 vs 10.9), lower alkalinity (mean titratable alkalinity 0.4 vs 1.4 mol H(+) kg(-1)), lower electrical conductivity (mean EC 0.3 vs 2.1 mS cm(-1)), lower total Al (mean Al2O3 19.8 vs 25.8% wt) and Na (mean Na2O 0.9 vs 3.7% wt), and less sodalite and calcite. Accumulation of N, NH4(+), and organic C occurred under vegetation, demonstrating the capacity for plants to modify residue to suit their requirements as a soil-like growth medium. Aeolian redistribution of coarse grained tailings appeared to support vegetation establishment by providing a thin zone of enhanced drainage at the surface. Natural pedogenic processes may be supplemented by irrigation, enhanced drainage, and incorporation of sand and organic matter at other tailings deposits to accelerate the remediation process and achieve similar results in a shorter time frame.

  18. Prevalence and level of Listeria monocytogenes and other Listeria sp. in ready-to-eat minimally processed and refrigerated vegetables.

    PubMed

    Kovačević, Mira; Burazin, Jelena; Pavlović, Hrvoje; Kopjar, Mirela; Piližota, Vlasta

    2013-04-01

    Minimally processed and refrigerated vegetables can be contaminated with Listeria species bacteria including Listeria monocytogenes due to extensive handling during processing or by cross contamination from the processing environment. The objective of this study was to examine the microbiological quality of ready-to-eat minimally processed and refrigerated vegetables from supermarkets in Osijek, Croatia. 100 samples of ready-to-eat vegetables collected from different supermarkets in Osijek, Croatia, were analyzed for presence of Listeria species and Listeria monocytogenes. The collected samples were cut iceberg lettuces (24 samples), other leafy vegetables (11 samples), delicatessen salads (23 samples), cabbage salads (19 samples), salads from mixed (17 samples) and root vegetables (6 samples). Listeria species was found in 20 samples (20 %) and Listeria monocytogenes was detected in only 1 sample (1 %) of cut red cabbage (less than 100 CFU/g). According to Croatian and EU microbiological criteria these results are satisfactory. However, the presence of Listeria species and Listeria monocytogenes indicates poor hygiene quality. The study showed that these products are often improperly labeled, since 24 % of analyzed samples lacked information about shelf life, and 60 % of samples lacked information about storage conditions. With regard to these facts, cold chain abruption with extended use after expiration date is a probable scenario. Therefore, the microbiological risk for consumers of ready-to-eat minimally processed and refrigerated vegetables is not completely eliminated.

  19. Effect of the chlorinated washing of minimally processed vegetables on the generation of haloacetic acids.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes

    2012-07-25

    Chlorine solutions are usually used to sanitize fruit and vegetables in the fresh-cut industry due to their efficacy, low cost, and simple use. However, disinfection byproducts such as haloacetic acids (HAAs) can be formed during this process, which can remain on minimally processed vegetables (MPVs). These compounds are toxic and/or carcinogenic and have been associated with human health risks; therefore, the U.S. Environmental Protection Agency has set a maximum contaminant level for five HAAs at 60 μg/L in drinking water. This paper describes the first method to determine the nine HAAs that can be present in MPV samples, with static headspace coupled with gas chromatography-mass spectrometry where the leaching and derivatization of the HAAs are carried out in a single step. The proposed method is sensitive, with limits of detection between 0.1 and 2.4 μg/kg and an average relative standard deviation of ∼8%. From the samples analyzed, we can conclude that about 23% of them contain at least two HAAs (<0.4-24 μg/kg), which showed that these compounds are formed during washing and then remain on the final product.

  20. Integrated microwave processing system for the extraction of organophosphorus pesticides in fresh vegetables.

    PubMed

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Xu, Xu; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-03-01

    A simple and efficient integrated microwave processing system (IMPS) was firstly assembled and validated for the extraction of organophosphorus pesticides in fresh vegetables. Two processes under microwave irradiation, dynamic microwave-assisted extraction (DMAE) and microwave-accelerated solvent elution (MASE), were integrated for simplifying the pretreatment of the sample. Extraction, separation, enrichment and elution were finished in a simple step. The organophosphorus pesticides were extracted from the fresh vegetables into hexane with DMAE, and then the extract was directly introduced into the enrichment column packed with active carbon fiber (ACF). Subsequently, the organophosphorus pesticides trapped on the ACF were eluted with ethyl acetate under microwave irradiation. No further filtration or cleanup was required before analysis of the eluate by gas chromatography-mass spectrometry. Some experimental parameters affecting extraction efficiency were investigated and optimized, such as microwave output power, kind and volume of extraction solvent, extraction time, amount of sorbent, elution microwave power, kind and volume of elution solvent, elution solvent flow rate. Under the optimized conditions, the recoveries were in the range of 71.5-105.2%, and the relative standard deviations were lower than 11.6%. The experiment results prove that the present method is a simple and effective sample preparation method for the determination of pesticides in solid samples.

  1. Effect of fruit and vegetable processing on reduction of synthetic pyrethroid residues.

    PubMed

    Chauhan, Reena; Kumari, Beena; Rana, M K

    2014-01-01

    In this review, we emphasize that the advantages associated with applying pesticides to enhance agricultural productivity must be weighed against the possible health hazards arising from the appearance of toxic pesticide residues in food. First and foremost, pesticides should be handled and applied in compliance with good agricultural practices to minimize environmental or food commodity contamination.In developing countries, good agricultural practices are not fully abided by.When vegetables are produced in such countries, pesticides are applied or prospectively applied at each growth stage of the crop. Hence, contamination of vegetables and other food commodities occur. It is well known that processing of food derived from pesticide treated crop commodities can serve to reduce residues that reach consumers. Food safety can therefore partially be enhanced by employing suitable food processing techniques and appropriate storage periods, even in developing countries. Even common and simple household processing techniques for certain foods acquire significance as means to reduce the intake of harmful pesticide food residues.Pesticide residue levels in post-harvest raw agricultural commodities (RAC) are affected by the storage, handling and the processing steps they pass through, while being prepared for human consumption. The review of cogent literature presented in this article demonstrated differences among the pyrethroid insecticide residues present on or in foods, depending on how the RAC from which they came were processed for consumption. Peeling vegetables or fruit reduced pyrethroid residues the most (60-100% ), and juicing was nearly as effective in reducing residues (70-100% ). The least reduction occurred for foodstuffs that were only washed with tap water (I 0-70% ). Washing RACs with saline water and detergent was more effective(34-60%) in reducing residues than was simple washing under tap water. Freezing is also effective in reducing residue levels and

  2. Optimization of cow dung spiked pre-consumer processing vegetable waste for vermicomposting using Eisenia fetida.

    PubMed

    Garg, V K; Gupta, Renuka

    2011-01-01

    This paper reports the optimization of cow dung (CD) spiked pre-consumer processing vegetable waste (PPVW) for vermicomposting using Eisenia fetida in a laboratory scale study. Vermicomposting process decreased carbon and organic matter concentration and increased N, P and K content in the vermicompost. The C:N ratio was decreased by 45-69% in different vermireactors indicating stabilization of the waste. The heavy metal content was within permissible limits of their application in agricultural soils. It has been concluded from the results that addition of PPVW up to 40% with CD can produce a good quality vermicompost. Whereas, growth and fecundity of E. fetida was best when reared in 20% PPVW+80% CD feed mixture. However, higher percentages of PPVW in different vermireactors significantly affected the growth and fecundity of worms.

  3. Effects of river hydrology and fluvial processes on riparian vegetation establishment, growth, and survival

    NASA Astrophysics Data System (ADS)

    Shafroth, P. B.; Merritt, D. M.; Wilcox, A. C.

    2012-12-01

    Stream hydrology, sediment, and geology interact to determine the spatial and temporal availability of river bottomland substrates on which plants establish and grow. Collectively, these surfaces comprise a mosaic of landscape patches with associated plant communities that fall along key gradients of physical disturbance and water availability. Aspects of flow such as magnitude, frequency, timing, and rate of change of floods and magnitude and duration of low flows, interact with sediment flux and plant traits to determine plant distribution and fitness in different parts of the bottomland. Flow and sediment dynamics can influence different aspects of the plant life cycle such as germination, establishment, growth, and survival. Feedbacks between plants and fluvial processes, such as increased surface roughness and associated reductions in flow velocity and potential for aggradation, can determine differential survival of plant species depending on their tolerance of high velocity flow and associated shear stress, dislodgement, or burial by sediment. We present an overview of some key relationships between flow, sediment, plant traits, and riparian vegetation responses, and provide specific examples from our research on rivers in the semi-arid western U.S., including unaltered systems, dam-altered systems, and in the context of development of environmental flows to restore native riparian vegetation communities. Further, we describe the riparian response guilds framework and demonstrate how it can facilitate both an understanding of vegetation response to changing flow, sediment, and disturbance regimes and the development of priorities for flow management. Through understanding how guilds of species respond to variations in flow and sediment regimes, we are be better able to anticipate and predict biotic change in response to human-caused and climate-driven flow alteration.

  4. Review of vegetable fermentations with particular emphasis on processing modifications, microbial ecology, and spoilage

    USDA-ARS?s Scientific Manuscript database

    The consumption of vegetables is widespread in the world and represents a major component of the human diet. Microorganisms (mainly lactic acid bacteria, yeasts, Enterobacteriaceae, Propionibacterium and Clostridium species) play a significant role in vegetable fermentations, affecting the quality a...

  5. Assessment of the stability of pesticides during the cryogenic processing of fruits and vegetables.

    PubMed

    Fussell, R J; Hetmanski, M T; Colyer, A; Caldow, M; Smith, F; Findlay, D

    2007-11-01

    An evaluation of the stability of pesticides in fruit and vegetables during cryogenic sample processing (comminution of samples in the presence of dry ice) is reported. Pesticides were spiked onto the undamaged surface of individual units of fruit before freezing and comminution. The mean recoveries of pesticides spiked before and after comminution of the sample were compared to determine the relative stability of the individual pesticides during cryogenic sample processing. A stable internal deposition standard (IDS) was used to correct for physical losses and volumetric errors. Mean recovery results together with associated standard errors were obtained using restricted maximum likelihood (REML) analysis. A total of 134 pesticides in four commodities (apples, grapes, lettuce and oranges) were evaluated. The results demonstrated that 120 pesticides were stable (i.e. the mean difference in recovery of pesticides spiked pre- and post-processing was <20%) during cryogenic sample processing. Fourteen pesticides showed some instability or loss (i.e. the mean difference in recovery of pesticides spiked pre- and post-processing was >20%) during cryogenic sample processing: biphenyl, cadusafos, captan, chlorothalonil, dichlorvos, disulfoton, ethoxyquin, etridiazole, heptenophos, malaoxon, phorate, tebuconazole, tecnazene and trifluralin.

  6. Role of submerged vegetation in the retention processes of three plant protection products in flow-through stream mesocosms.

    PubMed

    Stang, Christoph; Wieczorek, Matthias Valentin; Noss, Christian; Lorke, Andreas; Scherr, Frank; Goerlitz, Gerhard; Schulz, Ralf

    2014-07-01

    Quantitative information on the processes leading to the retention of plant protection products (PPPs) in surface waters is not available, particularly for flow-through systems. The influence of aquatic vegetation on the hydraulic- and sorption-mediated mitigation processes of three PPPs (triflumuron, pencycuron, and penflufen; logKOW 3.3-4.9) in 45-m slow-flowing stream mesocosms was investigated. Peak reductions were 35-38% in an unvegetated stream mesocosm, 60-62% in a sparsely vegetated stream mesocosm (13% coverage with Elodea nuttallii), and in a similar range of 57-69% in a densely vegetated stream mesocosm (100% coverage). Between 89% and 93% of the measured total peak reductions in the sparsely vegetated stream can be explained by an increase of vegetation-induced dispersion (estimated with the one-dimensional solute transport model OTIS), while 7-11% of the peak reduction can be attributed to sorption processes. However, dispersion contributed only 59-71% of the peak reductions in the densely vegetated stream mesocosm, where 29% to 41% of the total peak reductions can be attributed to sorption processes. In the densely vegetated stream, 8-27% of the applied PPPs, depending on the logKOW values of the compounds, were temporarily retained by macrophytes. Increasing PPP recoveries in the aqueous phase were accompanied by a decrease of PPP concentrations in macrophytes indicating kinetic desorption over time. This is the first study to provide quantitative data on how the interaction of dispersion and sorption, driven by aquatic macrophytes, influences the mitigation of PPP concentrations in flowing vegetated stream systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Intense light pulses decontamination of minimally processed vegetables and their shelf-life.

    PubMed

    Gómez-López, V M; Devlieghere, F; Bonduelle, V; Debevere, J

    2005-08-15

    Intense light pulses (ILP) is a new method intended for decontamination of food surfaces by killing microorganisms using short time high frequency pulses of an intense broad spectrum, rich in UV-C light. This work studied in a first step the effect of food components on the killing efficiency of ILP. In a second step, the decontamination of eight minimally processed (MP) vegetables by ILP was evaluated, and thirdly, the effect of this treatment on the shelf-life of MP cabbage and lettuce stored at 7 degrees C in equilibrium modified atmosphere packages was assessed by monitoring headspace gas concentrations, microbial populations and sensory attributes. Proteins and oil decreased the decontamination effect of ILP, whilst carbohydrates and water showed variable results depending on the microorganism. For this reason, high protein and fat containing food products have little potential to be efficiently treated by ILP. Vegetables, on the other hand, do not contain high concentrations of both compounds and could therefore be suitable for ILP treatment. For the eight tested MP vegetables, log reductions up to 2.04 were achieved on aerobic mesophilic counts. For the shelf-life studies, respiration rates at 3% O2 and 7 degrees C were 14.63, 17.89, 9.17 and 16.83 ml O2/h kg produce for control and treated cabbage, and control and treated lettuce respectively; used packaging configurations prevented anoxic conditions during the storage times. Log reductions of 0.54 and 0.46 for aerobic psychrothrophic count (APC) were achieved after flashing MP cabbage and lettuce respectively. APC of treated cabbage became equal than that from control at day 2, and higher at day 7, when the tolerance limit (8 log) was reached and the panel detected the presence of unacceptable levels of off-odours. Control never reached 8 log in APC and were sensory acceptable until the end of the experiment (9 days). In MP lettuce, APC of controls reached rejectable levels at day 2, whilst that of treated

  8. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Li, F.; Zeng, X. D.; Levis, S.

    2012-07-01

    A process-based fire parameterization of intermediate complexity has been developed for global simulations in the framework of a Dynamic Global Vegetation Model (DGVM) in an Earth System Model (ESM). Burned area in a grid cell is estimated by the product of fire counts and average burned area of a fire. The scheme comprises three parts: fire occurrence, fire spread, and fire impact. In the fire occurrence part, fire counts rather than fire occurrence probability are calculated in order to capture the observed high burned area fraction in areas of high fire frequency and realize parameter calibration based on MODIS fire counts product. In the fire spread part, post-fire region of a fire is assumed to be elliptical in shape. Mathematical properties of ellipses and some mathematical derivations are applied to improve the equation and assumptions of an existing fire spread parameterization. In the fire impact part, trace gas and aerosol emissions due to biomass burning are estimated, which offers an interface with atmospheric chemistry and aerosol models in ESMs. In addition, flexible time-step length makes the new fire parameterization easily applied to various DGVMs. Global performance of the new fire parameterization is assessed by using an improved version of the Community Land Model version 3 with the Dynamic Global Vegetation Model (CLM-DGVM). Simulations are compared against the latest satellite-based Global Fire Emission Database version 3 (GFED3) for 1997-2004. Results show that simulated global totals and spatial patterns of burned area and fire carbon emissions, regional totals and spreads of burned area, global annual burned area fractions for various vegetation types, and interannual variability of burned area are reasonable, and closer to GFED3 than CLM-DGVM simulations with the commonly used Glob-FIRM fire parameterization and the old fire module of CLM-DGVM. Furthermore, average error of simulated trace gas and aerosol emissions due to biomass burning

  9. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments.

    PubMed

    Abadias, M; Usall, J; Anguera, M; Solsona, C; Viñas, I

    2008-03-31

    A survey of fresh and minimally-processed fruit and vegetables, and sprouts was conducted in several retail establishments in the Lleida area (Catalonia, Spain) during 2005-2006 to determine whether microbial contamination, and in particular potentially pathogenic bacteria, was present under these commodities. A total of 300 samples--including 21 ready-to-eat fruits, 28 whole fresh vegetables, 15 sprout samples and 237 ready-to-eat salads containing from one to six vegetables--were purchased from 4 supermarkets. They were tested for mesophilic and psychrotrophic aerobic counts, yeasts and moulds, lactic acid bacteria, Enterobacteriaceae, presumptive E. coli and Listeria monocytogenes counts as well as for the presence of Salmonella, E. coli O157:H7, Yersinia enterocolitica and thermotolerant Campylobacter. Results for the fresh-cut vegetables that we analyzed showed that, in general, the highest microorganism counts were associated with grated carrot, arugula and spinach (7.8, 7.5 and 7.4 log cfu g(-1) of aerobic mesophilic microorganisms; 6.1, 5.8 and 5.2 log cfu g(-1) of yeast and moulds; 5.9, 4.0 and 5.1 log cfu g(-1) lactic acid bacteria and 6.2, 5.3 and 6.0 log cfu g(-1) of Enterobacteriaceae). The lowest counts were generally associated with fresh-cut endive and lettuce (6.2 and 6.3 log cfu g(-1) of aerobic mesophilic microorganisms; 4.4 and 4.6 log cfu g(-1) of yeast and moulds; 2.7 and 3.8 log cfu g(-1) lactic acid bacteria and 4.8 and 4.4 log cfu g(-1) of Enterobacteriaceae). Counts of psychrotrophic microorganisms were as high as those of mesophilic microorganisms. Microbiological counts for fresh-cut fruit were very low. Sprouts were highly contaminated with mesophilic (7.9 log cfu g(-1)), psychrotrophic microorganisms (7.3 log cfu g(-1)) and Enterobacteriaceae (7.2 log cfu g(-1)) and showed a high incidence of E. coli (40% of samples). Of the samples analyzed, four (1.3%) were Salmonella positive and two (0.7%) harboured L. monocytogenes. None of the

  10. Agricultural recycling of treatment-plant sludge: a case study for a vegetable-processing factory.

    PubMed

    Dolgen, Deniz; Alpaslan, M Necdet; Delen, Nafiz

    2007-08-01

    The present study evaluated the possibility of using the sludge produced by a vegetable-processing factory in agriculture. The sludge was amended with a soil mixture (i.e., a mixture of sand, soil, and manure) and was applied at 0, 165, 330, 495 and 660 t/ha to promote the growth of cucumbers. The effects of various sludge loadings on plant growth were assessed by counting plants and leaves, measuring stem lengths, and weighing the green parts and roots of the plants. We also compared heavy metal uptake by the plants for sludge loadings of 330, 495, and 660 t/ha with various recommended standards for vegetables. Our results showed that plant growth patterns were influenced to some extent by the sludge loadings. In general, the number of leaves, stem length, and dry weight of green parts exhibited a pronounced positive growth response compared with an unfertilized control, and root growth showed a lesser but still significant response at sludge loadings of 165 and 330 t/ha. The sludge application caused no significant increase in heavy metal concentrations in the leaves, though zinc (Zn) and iron (Fe) were found at elevated concentrations. However, despite the Zn and Fe accumulation, we observed no toxicity symptoms in the plants. This may be a result of cucumber's tolerance of high metal levels.

  11. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes

    NASA Astrophysics Data System (ADS)

    Sprenger, Matthias; Leistert, Hannes; Gimbel, Katharina; Weiler, Markus

    2016-09-01

    Water stable isotopes (18O and 2H) are widely used as ideal tracers to track water through the soil and to separate evaporation from transpiration. Due to the technical developments in the last two decades, soil water stable isotope data have become easier to collect. Thus, the application of isotope methods in soils is growing rapidly. Studies that make use of soil water stable isotopes often have a multidisciplinary character since an interplay of processes that take place in the vadose zone has to be considered. In this review, we provide an overview of the hydrological processes that alter the soil water stable isotopic composition and present studies utilizing pore water stable isotopes. The processes that are discussed include the water input as precipitation or throughfall, the output as evaporation, transpiration, or recharge, and specific flow and transport processes. Based on the review and supported by additional data and modeling results, we pose a different view on the recently proposed two water world hypothesis. As an alternative to two distinct pools of soil water, where one pool is enriched in heavy isotopes and used by the vegetation and the other pool does not undergo isotopic fractionation and becomes recharge, the water gets successively mixed with newly introduced rainwater during the percolation process. This way, water initially isotopically enriched in the topsoil loses the fractionation signal with increasing infiltration depth, leading to unfractionated isotopic signals in the groundwater.

  12. Mapping forest vegetation with ERTS-1 MSS data and automatic data processing techniques

    NASA Technical Reports Server (NTRS)

    Messmore, J.; Copeland, G. E.; Levy, G. F.

    1975-01-01

    This study was undertaken with the intent of elucidating the forest mapping capabilities of ERTS-1 MSS data when analyzed with the aid of LARS' automatic data processing techniques. The site for this investigation was the Great Dismal Swamp, a 210,000 acre wilderness area located on the Middle Atlantic coastal plain. Due to inadequate ground truth information on the distribution of vegetation within the swamp, an unsupervised classification scheme was utilized. Initially pictureprints, resembling low resolution photographs, were generated in each of the four ERTS-1 channels. Data found within rectangular training fields was then clustered into 13 spectral groups and defined statistically. Using a maximum likelihood classification scheme, the unknown data points were subsequently classified into one of the designated training classes. Training field data was classified with a high degree of accuracy (greater than 95 percent), and progress is being made towards identifying the mapped spectral classes.

  13. Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.

    2017-03-01

    Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.

  14. Spectral band selection for vegetation properties retrieval using Gaussian processes regression

    NASA Astrophysics Data System (ADS)

    Verrelst, Jochem; Rivera, Juan Pablo; Gitelson, Anatoly; Delegido, Jesus; Moreno, José; Camps-Valls, Gustau

    2016-10-01

    With current and upcoming imaging spectrometers, automated band analysis techniques are needed to enable efficient identification of most informative bands to facilitate optimized processing of spectral data into estimates of biophysical variables. This paper introduces an automated spectral band analysis tool (BAT) based on Gaussian processes regression (GPR) for the spectral analysis of vegetation properties. The GPR-BAT procedure sequentially backwards removes the least contributing band in the regression model for a given variable until only one band is kept. GPR-BAT is implemented within the framework of the free ARTMO's MLRA (machine learning regression algorithms) toolbox, which is dedicated to the transforming of optical remote sensing images into biophysical products. GPR-BAT allows (1) to identify the most informative bands in relating spectral data to a biophysical variable, and (2) to find the least number of bands that preserve optimized accurate predictions. To illustrate its utility, two hyperspectral datasets were analyzed for most informative bands: (1) a field hyperspectral dataset (400-1100 nm at 2 nm resolution: 301 bands) with leaf chlorophyll content (LCC) and green leaf area index (gLAI) collected for maize and soybean (Nebraska, US); and (2) an airborne HyMap dataset (430-2490 nm: 125 bands) with LAI and canopy water content (CWC) collected for a variety of crops (Barrax, Spain). For each of these biophysical variables, optimized retrieval accuracies can be achieved with just 4 to 9 well-identified bands, and performance was largely improved over using all bands. A PROSAIL global sensitivity analysis was run to interpret the validity of these bands. Cross-validated RCV2 (NRMSECV) accuracies for optimized GPR models were 0.79 (12.9%) for LCC, 0.94 (7.2%) for gLAI, 0.95 (6.5%) for LAI and 0.95 (7.2%) for CWC. This study concludes that a wise band selection of hyperspectral data is strictly required for optimal vegetation properties mapping.

  15. Production of acetic acid by hydrothermal two-step process of vegetable wastes for use as a road deicer

    NASA Astrophysics Data System (ADS)

    Jin, F.; Watanabe, Y.; Kishita, A.; Enomoto, H.; Kishida, H.

    2008-07-01

    This study aimed to produce acetic acid from vegetable wastes by a new hydrothermal two-step process. A continuous flow reaction system with a maximum treatment capacity of 2 kg/h of dry biomass developed by us was used. Five kinds of vegetables of carrots, white radish, chinese cabbage, cabbage and potato were selected as the representation of vegetable wastes. First, batch experiments with the selected vegetables were performed under the condition of 300°C, 1 min for the first step, and 300°C, 1 min and 70% oxygen supply for the second step, which is the optimum condition for producing acetic acid in the case of using starch as test material. The highest yields of acetic acid from five vegetables were almost the same as those obtained from starch. Subsequently, similar the highest yield of acetic acid and experimental conditions from vegetables were also obtained successfully using the continuous flow reaction system. These results should be useful for developing an industrial scale process.

  16. 7 CFR 52.38c - Statistical sampling procedures for lot inspection of processed fruits and vegetables by attributes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Statistical sampling procedures for lot inspection of processed fruits and vegetables by attributes. 52.38c Section 52.38c Agriculture Regulations of the... PROCESSED FOOD PRODUCTS 1 Regulations Governing Inspection and Certification Sampling § 52.38c...

  17. An intermediate process-based fire parameterization in Dynamic Global Vegetation Model

    NASA Astrophysics Data System (ADS)

    Li, F.; Zeng, X.

    2011-12-01

    An intermediate process-based fire parameterization has been developed for global fire simulation. It fits the framework of Dynamic Global Vegetation Model (DGVM) which has been a pivot component in Earth System Model (ESM). The fire parameterization comprises three parts: fire occurrence, fire spread, and fire impact. In the first part, the number of fires is determined by ignition counts due to anthropogenic and natural causes and three constraints: fuel load, fuel moisture, and human suppression. Human caused ignition and suppression is explicitly considered as a nonlinear function of population density. The fire counts rather than fire occurrence probability is estimated to avoid underestimating the observed high burned area fraction in tropical savannas where fire occurs frequently. In the second part, post-fire region is assumed to be elliptical in shape with the wind direction along the major axis and the point of ignition at one of the foci. Burned area is determined by fire spread rate,fire duration, and fire counts. Mathematical characteristics of ellipse and some mathematical derivations are used to avoid redundant and unreasonable equations and assumptions in the CTEM-FIRE and make the parameterization equations self-consistently. In the third part, the impact of fire on vegetation component and structure, carbon cycle, trace gases and aerosol emissions are taken into account. The new estimates of trace gas and aerosol emissions due to biomass burning offers an interface with aerosol and atmospheric chemistry model in ESMs. Furthermore, in the new fire parameterization, fire occurrence part and fire spread part can be updated hourly or daily, and fire impact part can be updated daily, monthly, or annually. Its flexibility in selection of time-step length makes it easily applied to various DGVMs. The improved Community Land Model 3.0's Dynamic Global Vegetation Model (CLM-DGVM) is used as the model platform to assess the global performance of the new

  18. Effects of Freeze-Dried Vegetable Products on the Technological Process and the Quality of Dry Fermented Sausages.

    PubMed

    Eisinaite, Viktorija; Vinauskiene, Rimante; Viskelis, Pranas; Leskauskaite, Daiva

    2016-09-01

    The aim of this study was to compare the chemical composition of freeze-dried vegetable powders: celery, celery juice, parsnip and leek. The effect of different freeze-dried vegetables onto the ripening process and the properties of dry fermented sausages was also evaluated. Vegetable products significantly (p < 0.05) differed in their chemical composition: celery products contained higher amounts of nitrates, total phenolic compounds and lower amounts of sucrose, parsnip had higher concentration of proteins, leek was rich in fat. The analysis of pH, water activity, lactic acid bacteria, coagulase-positive staphylococci and coliforms content showed that the incorporation of freeze-dried vegetables had no negative effect on the fermentation and ripening process of dry fermented sausages. In addition, the color parameters for sausages with the added lyophilised celery products were considerable (p < 0.05) more stable during these processes. At the end of the ripening process the sausages made with lyophilised celery juice were characterised by higher lightness and lower hardness than those made with the addition of other vegetable products and control. Freeze-dried celery, celery juice, parsnip and leek have some potential for the usage as a functional ingredient or as a source for indirect addition of nitrate in the production of fermented sausages.

  19. Information Processes Mediate the Effect of a Health Communication Intervention on Fruit and Vegetable Consumption

    PubMed Central

    Ko, Linda K.; Campbell, Marci K.; Lewis, Megan A.; Earp, Jo Anne; DeVellis, Brenda

    2016-01-01

    Health communication interventions have been effective in promoting fruit and vegetable consumption (FVC). To explore mechanisms underlying health communication effectiveness, we investigated whether information processes mediated the relationship between health communication and FVC, using data from NC STRIDES. NC STRIDES tested the efficacy of two health communication strategies to promote FVC among a diverse population-based sample of older adults. Participants were randomized to one of four groups: control, tailored print communication (TPC), telephone motivational interviewing (TMI), or combined (TPC+TMI). Multi-sample structural equation models were constructed to analyze data from 469 participants. Information processes mediated the effect of TMI and TPC+TMI on FVC. TMI had an indirect effect on FVC through relevance of the communications. TPC+TMI influenced FVC through perceived relevance of the communications, trust in the communications, and dose recall via two paths. In the first path, relevance was associated with trust. Trust was associated with recall, and greater recall predicted FVC. In the second path, relevance was associated with dose recall, and more recall predicted FVC. Thus, we found that key information processes mediated the relationship between a health communication intervention and FVC. Further research should investigate ways to enhance relevance, trust, and recall during the delivery of interventions. PMID:21132593

  20. Mapping of submerged aquatic vegetation with a physically based process chain

    NASA Astrophysics Data System (ADS)

    Heege, Thomas; Bogner, Anke; Pinnel, Nicole

    2004-02-01

    Mapping the submerse vegetation is of prime importance for the ecological evaluation of an entire lake. Remote sensing techniques are efficient for such mapping tasks, if the retrieval algorithms and processing methods are robust and mostly independent from additional ground truth measurements. The Modular Inversion Program (MIP) follows this concept. It is a processing tool designed for the recovery of hydro-biological parameters from multi- and hyper-spectral remote sensing data. The architecture of the program consists of physical inversion schemes that derive bio-physical parameters from the measured radiance signal at the sensor. Program modules exist for the retrieval of aerosols, sun glitter correction, atmospheric corrections, retrieval of water constituents among others. For the purpose of mapping the bottom coverage in optically shallow waters, two modules have been added to MIP. The first module calculates the bottom reflectance using the subsurface reflectance, the depth and an approximation of the water constituent concentrations as input. The second module fractionalizes the bottom reflectance to three endmembers of specific reflectance spectra by linear unmixing. The three endmembers are specific reflectance spectra of bottom sediments, small growing macrophytes (Characeae) and tall macrophytes such as Potamogeton perfoliatus & P. pectinatus. The processing system has been tested with data collected from the multi-spectral airborne scanner Daedalus AADS1268 at Lake Constance, Germany, for multi- temporal analysis.

  1. Spatial Predictive Process Models Yield Improved Forecasts of Vegetation Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Swanson, A.; Dobrowski, S. Z.; Mynsberge, A.

    2010-12-01

    Species distribution models (SDMs) relate the presence and absence of plant species to environmental covariates, and are commonly used to forecast climate change impacts on biota. Such models have predicted increased extinction risk and dramatic shifts in habitat for many species, but their validity relies on the assumption that SDM projections are transferable through space and time, an assumption that is largely untested due to the rarity of independent data for assessing transferability. In practice, there are many obstacles to the SDM approach that can limit their transferability. For example, most SDMs are non-spatial, treating observations as independent even when close in space. This can lead to biased parameter estimates, overconfidence in predictions, and invalid tests of predictor significance. SDMs also fail to account for biotic effects known to be important in shaping species distributions. Spatial ‘predictive process’ models show promise in increasing both the biological and statistical realism of species distribution models. Predictive process models introduce a spatially autocorrelated covariate into parametric statistical approaches. The spatial process covariate can serve as a proxy to unmeasured factors affecting species distribution, such as dispersal or competition, and can account for sampling bias. Implemented in a Bayesian framework, the parameters of the spatial process are estimated concurrently with the conventional model coefficients, and associated uncertainties are propagated through to spatially explicit predictions. We hypothesize that SDMs incorporating a predictive process term will produce predictions with greater transferability than conventional approaches, and will more readily capture the species-climate relationship in an unbiased fashion. To test this, we fit conventional and spatial predictive process GLMs (Generalized Linear Models) to historic (1910-1940) vegetation data from the mountain ranges of California

  2. Biogeomorphological influence of slope processes and sedimentology on vascular talus vegetation in the southern Cascades, California

    NASA Astrophysics Data System (ADS)

    Pérez, Francisco L.

    2012-02-01

    The vascular vegetation of alpine talus slopes between 2035 and 3095 m altitude was studied at Lassen Volcanic National Park (California) in the Cascade Range. Taluses show a diverse flora, with 79 plant species; growth forms include coniferous trees, shrubs, suffrutices, herbs, graminoids, and ferns. Spatial patterns of plant distribution were studied along 40 point-intercept transects. Plant cover was low (0-32.7%) on all slopes, spatially variable, and showed no consistent trends. Sedimentological characteristics were determined by photosieving next to 1500 plants; this census indicated preferential plant growth on blocks and cobbles, with 43.2% and 23.3% of the plants growing on these stones, respectively; fewer specimens were rooted on pebbles (13%) or on stone-free gravel areas (20.5%). Growth forms displayed different substrate preferences: 92.5% of the shrubs and 83% of the suffrutices colonized blocks or cobbles, but only 57.2% of the herbs and 59.8% of the graminoids grew on large stones. Plants are associated with large clasts because (1) coarse talus is more stable than fine sediment areas, which are more frequently disturbed by various geomorphic processes, and (2) large stones help conserve substrate water beneath them while moisture quickly evaporates from fine debris. Root patterns were studied for 30 plant species; 10 specimens for each species were excavated and inspected, and several root growth ratios calculated. All species exhibited pronounced root asymmetry, as roots for most plants grew upslope from their shoot base. For 23 species, all specimens had 100% of their roots growing upslope; for the other 7 species, 92.2-99.3% of below-ground biomass extended uphill. This uneven root distribution is ascribed to continual substrate instability and resulting talus shift; as cascading debris progressively buries roots and stems, plants are gradually pushed and/or stretched downhill. Various disturbance events affect root development. Slope erosion

  3. The effect of High Pressure and High Temperature processing on carotenoids and chlorophylls content in some vegetables.

    PubMed

    Sánchez, Celia; Baranda, Ana Beatriz; Martínez de Marañón, Iñigo

    2014-11-15

    The effect of High Pressure (HP) and High Pressure High Temperature (HPHT) processing on carotenoid and chlorophyll content of six vegetables was evaluated. In general, carotenoid content was not significantly influenced by HP or HPHT treatments (625 MPa; 5 min; 20, 70 and 117 °C). Regarding chlorophylls, HP treatment caused no degradation or slight increases, while HPHT processes degraded both chlorophylls. Chlorophyll b was more stable than chlorophyll a at 70 °C, but both of them were highly degraded at 117 °C. HPHT treatment at 117 °C provided products with a good retention of carotenoids and colour in the case of red vegetables. Even though the carotenoids also remained in the green vegetables, their chlorophylls and therefore their colour were so affected that milder temperatures need to be applied. As an industrial scale equipment was used, results will be useful for future industrial implementation of this technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees.

    PubMed

    Lopez-Sanchez, Patricia; de Vos, R C H; Jonker, H H; Mumm, R; Hall, R D; Bialek, L; Leenman, R; Strassburg, K; Vreeken, R; Hankemeier, T; Schumm, S; van Duynhoven, J

    2015-02-01

    The effects of conventional industrial processing steps on global phytochemical composition of broccoli, tomato and carrot purees were investigated by using a range of complementary targeted and untargeted metabolomics approaches including LC-PDA for vitamins, (1)H NMR for polar metabolites, accurate mass LC-QTOF MS for semi-polar metabolites, LC-MRM for oxylipins, and headspace GC-MS for volatile compounds. An initial exploratory experiment indicated that the order of blending and thermal treatments had the highest impact on the phytochemicals in the purees. This blending-heating order effect was investigated in more depth by performing alternate blending-heating sequences in triplicate on the same batches of broccoli, tomato and carrot. For each vegetable and particularly in broccoli, a large proportion of the metabolites detected in the purees was significantly influenced by the blending-heating order, amongst which were potential health-related phytochemicals and flavour compounds like vitamins C and E, carotenoids, flavonoids, glucosinolates and oxylipins. Our metabolomics data indicates that during processing the activity of a series of endogenous plant enzymes, such as lipoxygenases, peroxidases and glycosidases, including myrosinase in broccoli, is key to the final metabolite composition and related quality of the purees. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Discovery of environmental rhodamine B contamination in paprika during the vegetation process.

    PubMed

    Lu, Qingguo; Gao, Wei; Du, Jingjing; Zhou, Li; Lian, Yunhe

    2012-05-16

    Recently, rhodamine B (RhB) in paprika and chilli has attracted much attention. Almost all the literature has deemed that the detectable RhB was attributed to malicious intents in the fabrication process. However, the occurrence of increasing cases with ultratrace levels of RhB was difficult to understand on the basis of that statement. Here, we report on the discovery of environmental RhB contamination in paprika during its vegetation process. Samples including paprika, soils, and stems collected from seven fields in the Xinjiang Region, China, were detected by ultraperformance liquid chromatography-tandem mass spectrometry. Far from any anthropogenic addition, the ultratrace RhB concentrations in all the paprika samples provided unambiguous evidence that environmental RhB contamination in paprika had really occurred over its growth period. Further illation suggests that the soil contaminated by RhB is one of the major contamination sources and that there may be a degradation of RhB in paprika during the late maturation stage. The discovery has significant implications for re-evaluating the origin of the RhB in paprika- and chilli-containing products.

  6. Characterization of lactococci isolated from minimally processed fresh fruit and vegetables.

    PubMed

    Kelly, W J; Davey, G P; Ward, L J

    1998-12-08

    Lactic acid bacteria isolated from minimally processed fresh fruit and vegetable products were identified as Lactococcus lactis subsp. lactis on the basis of phenotypic tests, presence of lactococcal IS elements, and partial sequence analysis of the 16S rRNA gene. Isolated bacteria were differentiated using pulsed-field gel electrophoresis of SmaI digests of genomic DNA. Sprouted seeds were the best source of strains, and lactococci appear to be the dominant microflora on these products during the period they are intended to be eaten. Although these plant strains showed many similarities to strains of L. lactis used as dairy starter cultures, their carbohydrate fermentation patterns were unusual and probably reflect their environmental origin. Most strains fermented sucrose and xylose, and some also fermented raffinose and melibiose. Most of the bacteriocin-producing strains produced nisin, and nisin genes could also be detected in strains that showed no bacteriocin activity, or that produced a different bacteriocin with a narrow spectrum of activity. One strain produced nisin but was unable to ferment sucrose, properties that have been generally regarded as linked. These strains may have uses as biopreservatives for minimally processed plant products.

  7. Effect of combination processing on the microbial, chemical and sensory quality of ready-to-eat (RTE) vegetable pulav

    NASA Astrophysics Data System (ADS)

    Kumar, R.; George, Johnsy; Rajamanickam, R.; Nataraju, S.; Sabhapathy, S. N.; Bawa, A. S.

    2011-12-01

    Effect of irradiation in combination with retort processing on the shelf life and safety aspects of an ethnic Indian food product like vegetable pulav was investigated. Gamma irradiation of RTE vegetable pulav was carried out at different dosage rates with 60Co followed by retort processing. The combination processed samples were analysed for microbiological, chemical and sensory characteristics. Microbiological analysis indicated that irradiation in combination with retort processing has significantly reduced the microbial loads whereas the chemical and sensory analysis proved that this combination processing is effective in retaining the properties even after storage for one year at ambient conditions. The results also indicated that a minimum irradiation dosage at 4.0 kGy along with retort processing at an F0 value of 2.0 is needed to achieve the desired shelf life with improved organoleptic qualities.

  8. What Works? Process Evaluation of a School-Based Fruit and Vegetable Distribution Program in Mississippi

    ERIC Educational Resources Information Center

    Potter, Susan C.; Schneider, Doris; Coyle, Karin K.; May, Gary; Robin, Leah; Seymour, Jenna

    2011-01-01

    Background: During the 2004-2005 school year, the Mississippi Department of Education, Office of Child Nutrition, initiated a pilot program to distribute free fruit and vegetable snacks to students during the school day. This article describes the first-year implementation of the Mississippi Fruit and Vegetable Pilot Program. Methods: The process…

  9. What Works? Process Evaluation of a School-Based Fruit and Vegetable Distribution Program in Mississippi

    ERIC Educational Resources Information Center

    Potter, Susan C.; Schneider, Doris; Coyle, Karin K.; May, Gary; Robin, Leah; Seymour, Jenna

    2011-01-01

    Background: During the 2004-2005 school year, the Mississippi Department of Education, Office of Child Nutrition, initiated a pilot program to distribute free fruit and vegetable snacks to students during the school day. This article describes the first-year implementation of the Mississippi Fruit and Vegetable Pilot Program. Methods: The process…

  10. Validation of a tool to measure processes of change for fruit and vegetable consumption among male college students.

    PubMed

    Oliveira, Maria do Carmo Fontes de; Anderson, Jennifer; Auld, Garry; Kendall, Patricia

    2005-01-01

    To develop a valid tool to measure processes of change for fruit and vegetable consumption, and examine the relationship between stage and processes of change among several cultural groups. Cross-sectional, using a self-report questionnaire. Convenience sample of male college students living in apartments. 105 US white, 53 international Latino, and 92 international Asian males. Fruit and vegetable intake, stage and processes of change characterizations. Analysis of covariance, with age as a covariate, was used to determine differences in processes of change scores among 3 cultural groups and stages of change. Two-way analysis of variance investigated relationships between stage of change and fruit and vegetable consumption. The pattern of differences across cultural groups was examined using chi-squared analysis. Self-reported fruit and vegetable intake was higher (P < .01) in action and maintenance than in other stages. Participants in precontemplation/contemplation used significantly less of any process of change than those in preparation or action/maintenance. There were no significant interactions between stage of change and culture for any of the processes of change, but international Asians used significantly more dramatic relief and environmental reevaluation than did US whites and more stimulus control processes than US whites or international Latinos. At all stages, students used significantly more cognitive/experiential processes than behavioral processes. The use of processes increased within action-oriented stages, consistent with previous studies using the Transtheoretical Model in the nutritional area. The greater use of cognitive/experiential than behavioral processes at all stages was not consistent with predictions. Evidence of cultural differences in the use of processes of change was found.

  11. The influence of meteorological factors on growth and vegetation process of Perilla frutescens (L.) Britton in Lithuania.

    PubMed

    Ragazinskiene, Ona; Seinauskiene, Erika; Janulis, Valdimaras; Jankauskaite, Lina; Milasius, Arvydas

    2006-01-01

    The results of a study on the dependence of growth and vegetation process of Perilla frutescens (L.) Britton upon meteorological factors are presented in the article. The investigations were conducted at Kaunas Botanical Garden of Vytautas Magnus University during vegetation periods in 2001-2005. The object of investigations was Perilla frutescens (L.) Britton, a medicinal annual herbaceous plant of Lamiaceae Lindl. family, native of Eastern Asia, which passes the whole development cycle under climatic conditions of Central Lithuania. The duration of vegetation period of Perilla frutescens on the average is 167 days. The earliest beginning of vegetation and optimal climatic conditions for growth are when hydrothermic coefficient reaches 1.60-1.80 (conditions of excessive humidity). Optimal climatic conditions for massive flowering and seed maturation are observed when hydrothermic coefficient decreases to 1.20 - then massive flowering starts 10 days earlier and lasts 25 days longer. A strong correlation was found between massive flowering and hydrothermic coefficient (r(2)=0.9408). Using mathematical-statistical methods, the consistent patterns of growth and vegetation process of Perilla frutescens (L.) Britton were determined, specifying the time for raw material preparation what determines its quality and quantity.

  12. Identifying vegetation's influence on multi-scale fluvial processes based on plant trait adaptations

    NASA Astrophysics Data System (ADS)

    Manners, R.; Merritt, D. M.; Wilcox, A. C.; Scott, M.

    2015-12-01

    Riparian vegetation-geomorphic interactions are critical to the physical and biological function of riparian ecosystems, yet we lack a mechanistic understanding of these interactions and predictive ability at the reach to watershed scale. Plant functional groups, or groupings of species that have similar traits, either in terms of a plant's life history strategy (e.g., drought tolerance) or morphology (e.g., growth form), may provide an expression of vegetation-geomorphic interactions. We are developing an approach that 1) identifies where along a river corridor plant functional groups exist and 2) links the traits that define functional groups and their impact on fluvial processes. The Green and Yampa Rivers in Dinosaur National Monument have wide variations in hydrology, hydraulics, and channel morphology, as well as a large dataset of species presence. For these rivers, we build a predictive model of the probable presence of plant functional groups based on site-specific aspects of the flow regime (e.g., inundation probability and duration), hydraulic characteristics (e.g., velocity), and substrate size. Functional group traits are collected from the literature and measured in the field. We found that life-history traits more strongly predicted functional group presence than did morphological traits. However, some life-history traits, important for determining the likelihood of a plant existing along an environmental gradient, are directly related to the morphological properties of the plant, important for the plant's impact on fluvial processes. For example, stem density (i.e., dry mass divided by volume of stem) is positively correlated to drought tolerance and is also related to the modulus of elasticity. Growth form, which is related to the plant's susceptibility to biomass-removing fluvial disturbances, is also related to frontal area. Using this approach, we can identify how plant community composition and distribution shifts with a change to the flow

  13. A Gaussian Process Approach to Quantifying the Uncertainty of Vegetation Parameters from Remote Sensing Observations

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Morris, R. D.; Kottas, A.; Taddy, M.; Ganapol, B. D.

    2006-12-01

    We describe a methodology that can have a major impact on estimating the uncertainties involved in using biogeochemical models that take remote sensing data as inputs. It allows a full probabilistic uncertainty analysis of a complex computational model, such as those used in modeling light reflectance from vegetation or carbon fluxes. We show an example of the methodology applied to a radiative transfer model (RTM), producing estimates of parameters important to carbon budget determination. Modeling the biosphere requires inputs of biospheric parameters over extended regions. The only practical measurement technology is satellite remote sensing. Generating estimates of the biospheric parameters requires inverting the physical process between the parameters and the observations. These model, for example, plant growth and the radiative transfer of energy within the canopy to produce a model of the upwelling radiation. Inverting the model gives an estimate of plant growth, and hence carbon sequestration. Here we focus on Leaf Area Index (LAI). LAI can be related to MODIS data using a physically-based approach, radiative transfer modeling. Recently a nested Leaf-Canopy RTM (LCM2) has been developed to simulate the the interaction between light and vegetation. The model computes wavelength-dependent hemispherical reflectance as function of canopy morphological (eg, LAI) and biochemical (eg, chlorophyll concentration) parameters. Retrieval algorithms based on the canopy equation have proven to be efficient in determining LAI using remote measurements; much work is still required to effectively quantify the uncertainty of the retrieved parameters. Hence, we propose a Bayesian statistical analysis of the LCM2 computer model output. Gaussian processes (GPs) provide the foundation for the statistical model framework. The GP defines a prior for the functional input-output relationship generated by the LCM2, and the prior-to-posterior analysis yields a flexible statistical

  14. 7 CFR 52.38c - Statistical sampling procedures for lot inspection of processed fruits and vegetables by attributes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Statistical sampling procedures for lot inspection of processed fruits and vegetables by attributes. 52.38c Section 52.38c Agriculture Regulations of the... Regulations Governing Inspection and Certification Sampling § 52.38c Statistical sampling procedures for...

  15. 7 CFR 52.38c - Statistical sampling procedures for lot inspection of processed fruits and vegetables by attributes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Statistical sampling procedures for lot inspection of processed fruits and vegetables by attributes. 52.38c Section 52.38c Agriculture Regulations of the... Regulations Governing Inspection and Certification Sampling § 52.38c Statistical sampling procedures for...

  16. A Robust Gold Deconvolution Approach for LiDAR Waveform Data Processing to Characterize Vegetation Structure

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.; Sheridan, R.; Ku, N. W.

    2014-12-01

    Increasing attention has been paid in the remote sensing community to the next generation Light Detection and Ranging (lidar) waveform data systems for extracting information on topography and the vertical structure of vegetation. However, processing waveform lidar data raises some challenges compared to analyzing discrete return data. The overall goal of this study was to present a robust de-convolution algorithm- Gold algorithm used to de-convolve waveforms in a lidar dataset acquired within a 60 x 60m study area located in the Harvard Forest in Massachusetts. The waveform lidar data was collected by the National Ecological Observatory Network (NEON). Specific objectives were to: (1) explore advantages and limitations of various waveform processing techniques to derive topography and canopy height information; (2) develop and implement a novel de-convolution algorithm, the Gold algorithm, to extract elevation and canopy metrics; and (3) compare results and assess accuracy. We modeled lidar waveforms with a mixture of Gaussian functions using the Non-least squares (NLS) algorithm implemented in R and derived a Digital Terrain Model (DTM) and canopy height. We compared our waveform-derived topography and canopy height measurements using the Gold de-convolution algorithm to results using the Richardson-Lucy algorithm. Our findings show that the Gold algorithm performed better than the Richardson-Lucy algorithm in terms of recovering the hidden echoes and detecting false echoes for generating a DTM, which indicates that the Gold algorithm could potentially be applied to processing of waveform lidar data to derive information on terrain elevation and canopy characteristics.

  17. Lightning Impulse Breakdown Characteristics and Electrodynamic Process of Insulating Vegetable Oil-Based Nanofluid

    NASA Astrophysics Data System (ADS)

    Li, Jian; Zhang, Zhao-Tao; Zou, Ping; Du, Bin; Liao, Rui-Jin

    2012-06-01

    Insulating vegetable oils are considered environment-friendly and fire-resistant substitutes for insulating mineral oils. This paper presents the lightning impulse breakdown characteristic of insulating vegetable oil and insulating vegetable oil-based nanofluids. It indicates that Fe3O4 nanoparticles can increase the negative lightning impulse breakdown voltages of insulating vegetable oil by 11.8% and positive lightning impulse breakdown voltages by 37.4%. The propagation velocity of streamer is reduced by the presence of nanoparticles. The propagation velocities of streamer to positive and negative lightning impulse breakdown in the insulating vegetable oil-based nanofluids are 21.2% and 14.4% lesser than those in insulating vegetable oils, respectively. The higher electrical breakdown strength and lower streamer velocity is explained by the charging dynamics of nanoparticles in insulating vegetable oil. Space charge build-up and space charge distorted filed in point-sphere gap is also described. The field strength is reduced at the streamer tip due to the low mobility of negative nanoparticles.

  18. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: Biotechnology and scopes.

    PubMed

    Panda, Sandeep K; Mishra, Swati S; Kayitesi, Eugenie; Ray, Ramesh C

    2016-04-01

    Wastes generated from fruits and vegetables are organic in nature and contribute a major share in soil and water pollution. Also, green house gas emission caused by fruit and vegetable wastes (FVWs) is a matter of serious environmental concern. This review addresses the developments over the last one decade on microbial processing technologies for production of enzymes and organic acids from FVWs. The advances in genetic engineering for improvement of microbial strains in order to enhance the production of the value added bio-products as well as the concept of zero-waste economy have been briefly discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1979-01-01

    The success of remotely mapping wetland vegetation of the southwestern coast of Florida is examined. A computerized technique to process aircraft and LANDSAT multispectral scanner data into vegetation classification maps was used. The cost effectiveness of this mapping technique was evaluated in terms of user requirements, accuracy, and cost. Results indicate that mangrove communities are classified most cost effectively by the LANDSAT technique, with an accuracy of approximately 87 percent and with a cost of approximately 3 cent per hectare compared to $46.50 per hectare for conventional ground survey methods.

  20. Occurrence of rhodamine B contamination in capsicum caused by agricultural materials during the vegetation process.

    PubMed

    Gao, Wei; Wu, Naiying; Du, Jingjing; Zhou, Li; Lian, Yunhe; Wang, Lei; Liu, Dengshuai

    2016-08-15

    This paper reports on the environmental rhodamine B (RhB) contamination in capsicum caused by agricultural materials during the vegetation process. Ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was applied to detect 64 capsicum samples from China, Peru, India and Burma. Results demonstrated that RhB was found in all samples at low concentrations (0.11-0.98 μg/kg), indicating RhB contamination in capsicums is probably a ubiquitous phenomenon. In addition, studies into soils, roots, stems and leaves in Handan of Hebei province, China showed that the whole ecologic chain had been contaminated with RhB with the highest levels in leaves. The investigation into the agricultural environment in Handan of Hebei province and Korla of Xinjiang province, China demonstrated that the appearances of RhB contamination in the tested capsicums are mainly due to the agricultural materials contamination. The study verified that environmental contamination should be an important origin for the RhB contamination in capsicum fruits. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Determination of 5-log pathogen reduction times for heat-processed, acidified vegetable brines.

    PubMed

    Breidt, F; Hayes, J S; Osborne, J A; McFeeters, R F

    2005-02-01

    Recent outbreaks of acid-resistant food pathogens in acid foods, including apple cider and orange juice, have raised concerns about the safety of acidified vegetable products. We determined pasteurization times and temperatures needed to assure a 5-log reduction in the numbers of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella strains in acidified cucumber pickle brines. Cocktails of five strains of each pathogen were (separately) used for heat-inactivation studies between 50 and 60 degrees C in brines that had an equilibrated pH value of 4.1. Salmonella strains were found to be less heat resistant than E. coli O157:H7 or L. monocytogenes strains. The nonlinear killing curves generated during these studies were modeled using a Weibull function. We found no significant difference in the heat-killing data for E. coli O157:H7 and L. monocytogenes (P = 0.9709). The predicted 5-log reduction times for E. coli O157:H7 and L. monocytogenes were found to fit an exponential decay function. These data were used to estimate minimum pasteurization times and temperatures needed to ensure safe processing of acidified pickle products and show that current industry pasteurization practices offer a significant margin of safety.

  2. Management of food and vegetable processing waste spiked with buffalo waste using earthworms (Eisenia fetida).

    PubMed

    Sharma, Kavita; Garg, V K

    2017-03-01

    The present investigation was focused on the vermicomposting of food and vegetable processing waste (VW) mixed with buffalo dung (BW) under laboratory condition employing Eisenia fetida earthworm species. Four different proportions of VW and BW were prepared and subjected to vermicomposting after 3 weeks of pre-composting. After vermicomposting, nitrogen (7.82-20.73 g/kg), total available phosphate (4.80-11.74 g/kg) and total potassium (7.43-12.75 g/kg) content increased significantly as compared to initial feed stocks. Significant reduction was observed in pH (7.56 to 6.55), total organic carbon (48.25-23.54%) and organic matter (83.18-40.68%). Metal content (Fe, Cu, Zn and Ni) was higher in all the vermicomposts than feedstocks. Data on growth and reproduction of earthworm revealed that the highest biomass gain and fecundity of worms were attained in 100% BW followed by [BW75% + VW25%] > [BW50% + VW50%] > [BW25% + VW75%] feedstocks. Results evidenced the suitability of VW (up to 50%) spiked with BW for increasing earthworm population and in providing potent organic manure for agricultural applications.

  3. CO₂ processing and hydration of fruit and vegetable tissues by clathrate hydrate formation.

    PubMed

    Takeya, Satoshi; Nakano, Kohei; Thammawong, Manasikan; Umeda, Hiroki; Yoneyama, Akio; Takeda, Tohoru; Hyodo, Kazuyuki; Matsuo, Seiji

    2016-08-15

    CO2 hydrate can be used to preserve fresh fruits and vegetables, and its application could contribute to the processing of carbonated frozen food. We investigated water transformation in the frozen tissue of fresh grape samples upon CO2 treatment at 2-3 MPa and 3°C for up to 46 h. Frozen fresh bean, radish, eggplant and cucumber samples were also investigated for comparison. X-ray diffraction indicated that after undergoing CO2 treatment for several hours, structure I CO2 hydrate formed within the grape tissue. Phase-contrast X-ray imaging using the diffraction-enhanced imaging technique revealed the presence of CO2 hydrate within the intercellular spaces of these tissues. The carbonated produce became effervescent because of the dissociation of CO2 hydrate through the intercellular space, especially above the melting point of ice. In addition, suppressed metabolic activity resulting from CO2 hydrate formation, which inhibits water and nutrient transport through intercellular space, can be expected.

  4. Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables.

    PubMed

    Abadias, Maribel; Usall, Josep; Oliveira, Márcia; Alegre, Isabel; Viñas, Inmaculada

    2008-03-31

    Consumption of minimally-processed, or fresh-cut, fruit and vegetables has rapidly increased in recent years, but there have also been several reported outbreaks associated with the consumption of these products. Sodium hypochlorite is currently the most widespread disinfectant used by fresh-cut industries. Neutral electrolyzed water (NEW) is a novel disinfection system that could represent an alternative to sodium hypochlorite. The aim of the study was to determine whether NEW could replace sodium hypochlorite in the fresh-cut produce industry. The effects of NEW, applied in different concentrations, at different treatment temperatures and for different times, in the reduction of the foodborne pathogens Salmonella, Listeria monocytogenes and Escherichia coli O157:H7 and against the spoilage bacterium Erwinia carotovora were tested in lettuce. Lettuce was artificially inoculated by dipping it in a suspension of the studied pathogens at 10(8), 10(7) or 10(5) cfu ml(-1), depending on the assay. The NEW treatment was always compared with washing with deionized water and with a standard hypochlorite treatment. The effect of inoculum size was also studied. Finally, the effect of NEW on the indigenous microbiota of different packaged fresh-cut products was also determined. The bactericidal activity of diluted NEW (containing approximately 50 ppm of free chlorine, pH 8.60) against E. coli O157:H7, Salmonella, L. innocua and E. carotovora on lettuce was similar to that of chlorinated water (120 ppm of free chlorine) with reductions of 1-2 log units. There were generally no significant differences when treating lettuce with NEW for 1 and 3 min. Neither inoculation dose (10(7) or 10(5) cfu ml(-1)) influenced the bacterial reduction achieved. Treating fresh-cut lettuce, carrot, endive, corn salad and 'Four seasons' salad with NEW 1:5 (containing about 50 ppm of free chlorine) was equally effective as applying chlorinated water at 120 ppm. Microbial reduction depended on the

  5. Post-fire Gully Rejuvenation - Evidence of Process Thresholds Controlled by Vegetation Disturbance

    NASA Astrophysics Data System (ADS)

    Hyde, K.; Woods, S.

    2011-12-01

    High intensity rainfall may trigger gully rejuvenation on hillslopes recently disturbed by wildfire, leading to debris-laden flows which generally contribute the majority of sediment transported in post-fire erosion events. We investigated the extent to which the occurrence of gully rejuvenation can be predicted based upon burn severity, rainfall data and basin morphometric variables. Field surveys were conducted at six Northern Rockies sites to identify occurrence of gully rejuvenation in first order catchments and to map and characterize the location of gully heads. NEXRAD and rain gage data analysis coupled with field observations characterized rainfall intensity and extent. Building on previous work we quantified burn severity using the Vegetation Disturbance Index (VDI), a continuous metric based upon Burned Area Reflectance Classification (BARC) maps derived from satellite imagery using the dNBR algorithm. GIS analysis combined the VDI with morphometric factors expected to influence hillslope stability. Gully heads marked abrupt transition in channel form. Above gully heads, channels were shallow and U-shaped with gentle transition to the hillslope and fine root hairs intact. Angular edges marked deep gully head incisions which down-cut channel floors from 0.2-0.3 to 1.0 meter or more. Any remaining roots were coarse and the hillslope transition was sharp. Gully heads were located at variable distances below the master rill head of the catchment hollow. Distances were obviously greater where live canopy remained upslope. Gully head morphology strongly suggests flow force transition and exceedance of an erosion process threshold. The variable distance of the gully head below the hollow suggest upslope controls influencing initiation point, possibly degree and spatial pattern of burn severity. Binary logistic regression revealed stronger correlation between gully rejuvenation and VDI than morphometric variables. The statistical strength using the continuous

  6. Impact of food processing and storage conditions on nitrate content in canned vegetable-based infant foods.

    PubMed

    Tamme, T; Reinik, M; Roasto, M; Meremäe, K; Kiis, A

    2009-08-01

    The nitrate and nitrite contents were determined in canned vegetable-based infant foods of five varieties. Furthermore, changes in nitrate content during industrial processing were studied. Samples were taken from raw materials, homogenized mixtures, and final products after sterilization, and then analyzed for nitrate and nitrite content by high-pressure liquid chromatography. Processing steps preceding heat treatment, such as vegetable peeling and washing, decreased the nitrate concentrations in the range of 17 to 52%. During processing, the nitrate content in canned infant foods decreased 39 to 50%, compared with nitrate concentration in the raw-vegetable mixture. The final nitrate concentration in infant foods depends mainly on the initial nitrate content of the raw-vegetable mixture. The effect of storage time (24 and 48 h) and temperature (4 to 6 degrees C and 20 to 22 degrees C) on nitrate and nitrite content in opened canned infant-food samples was studied. After 24 h of storage at refrigerated and room temperatures, the mean nitrate content increased on average by 7 and 13%, and after 48 h of storage by 15 and 29%, respectively. The nitrite content in all analyzed samples was below the quantification limit. Storage requirements of industrial manufacturers must be followed strictly. Opened can foods, stored under refrigerated conditions, have to be consumed within 2 days, as recommended by manufacturers. The infant-food producers must pay more attention to the quality of raw materials. Nitrate content analyses should be added as compulsory tests to the quality assurance programs.

  7. Process Model for Studying Regional 13C Stable Isotope Exchange between Vegetation and Atmosphere

    NASA Astrophysics Data System (ADS)

    Chen, J. M.; Chen, B.; Huang, L.; Tans, P.; Worthy, D.; Ishizawa, M.; Chan, D.

    2007-12-01

    The variation of the stable isotope 13CO2 in the air in exchange with land ecosystems results from fractionation processes in both plants and soil during photosynthesis and respiration. Its diurnal and seasonal variations therefore contain information on the carbon cycle. We developed a model (BEPS-iso) to simulate its exchange between vegetation and the atmosphere. To be useful for regional carbon cycle studies, the model has the following characteristics: (i) it considers the turbulent mixing in the vertical profile from the soil surface to the top of the planetary boundary layer (PBL); (ii) it scales individual leaf photosynthetic discrimination to the whole canopy through the separation of sunlit and shaded leaf groups; (iii) through simulating leaf-level photosynthetic processes, it has the capacity to mechanistically examine isotope discrimination resulting from meteorological forcings, such as radiation, precipitation and humidity; and (iv) through complete modeling of radiation, energy and water fluxes, it also simulates soil moisture and temperature needed for estimating ecosystem respiration and the 13C signal from the soil. After validation using flask data acquired at 20 m level on a tower near Fraserdale, Ontario, Canada, during intensive campaigns (1998-2000), the model has been used for several purposes: (i) to investigate the diurnal and seasonal variations in the disequilibrium in 13C fractionation between ecosystem respiration and photosynthesis, which is an important step in using 13C measurements to separate these carbon cycle components; (ii) to quantify the 13C rectification in the PBL, which differs significantly from CO2 rectification because of the diurnal and seasonal disequilibriums; and (iii) to model the 13C spatial and temporal variations over the global land surface for the purpose of CO2 inversion using 13C as an additional constraint.

  8. Coupling groundwater, vegetation and atmosphere processes: a comparison of two integrated models

    NASA Astrophysics Data System (ADS)

    Sulis, M.; Williams, J. L.; Shrestha, P.; Maxwell, R. M.; Masbou, M.; Simmer, C.

    2012-12-01

    The correct modelling of the mutual response to and feedback between atmospheric, hydrological, and ecological processes is an important prerequisite for accurate climate/meteorological projection, environmental protection, and water management. As such, numerical models based on a detailed representation of both groundwater and atmospheric dynamics have gained increasing attention within the scientific community. In this study, we compare two integrated systems that dynamically simulate soil-vegetation-atmosphere interactions. One system is the combination of the Weather Research and Forecasting (WRF) atmospheric model coupled with the three-dimensional variably saturated subsurface ParFlow model. Both sub-models are internally coupled in an explicit, operator-splitting manner via the Noah land surface scheme. The second system consists of the regional climate and weather forecast model COSMO coupled also with ParFlow but via the Community Land Model (CLM). In this second system the external OASIS coupler is used to pass relevant fluxes and state variables between these three components via the MPI parallel communications protocol. The comparison on how interactions are simulated and how different processes are integrated/coupled is carried out by selecting a set of test cases. These tests involve a flat domain with idealized initial and boundary conditions, as well as simulations over the Rur catchment in Germany based upon equilibrium initial conditions for the subsurface and realistic atmospheric conditions at the boundaries. We explore and explain the differences in model response, and we discuss the pros and cons of the two approaches by emphasizing the role played by factors such as temporal subcycling and coupling frequency between model components.

  9. Effect of novel ultrasound based processing on the nutrition quality of different fruit and vegetable juices.

    PubMed

    Khandpur, Paramjeet; Gogate, Parag R

    2015-11-01

    Increasing consumer awareness regarding the health benefits of different nutrients in food have led to the requirement of assessing the effect of food processing approaches on the quality attributes. The present work focuses on understanding the effects of novel approaches based on the use of ultrasound and ultraviolet irradiations on the nutritional quality of different fruit and vegetable juices (orange, sweet lime, carrot and spinach juices) and its comparison with the conventional thermal pasteurization operated at 80°C for 10 min. The ultrasound sterilization parameters were maintained at ultrasound frequency of 20 kHz and power of 100 W with treatment time as 15 min. For the case of ultraviolet irradiations, 2 UVC lamps (254 nm) of 8 W were placed in parallel on either sides of the reactor. The treated juices were analyzed for total phenol content, antioxidant activity, vitamin C, carbohydrates etc. It has been established that ultrasound processed juice retained most of the nutrient components to higher extent in comparison to all the other techniques used in the work. Combination of ultrasound and ultraviolet irradiations used to achieve an effective decontamination of juices (recommended 5 log reduction of microorganisms) also retained nutrients to a higher level in comparison to the thermal method; however some losses were observed as compared to the use of only ultrasound which could be attributed to inefficient heat exchange in the combined approach. A scale up attempt was also made for treatment of spinach juice using ultrasonic reactors and analysis for quality attributes confirmed that the juice satisfied the criteria of required nutrient contents for 18 days shelf life trial in refrigerated storage conditions. The present work has clearly established the usefulness of ultrasound based treatment in maintaining the nutritional quality of beverages while giving enhanced shelf life as compared to the conventional approaches.

  10. Vegetation as a driver of temporal variations in slope stability: The impact of hydrological processes

    NASA Astrophysics Data System (ADS)

    Kim, John H.; Fourcaud, Thierry; Jourdan, Christophe; Maeght, Jean-Luc; Mao, Zhun; Metayer, James; Meylan, Louise; Pierret, Alain; Rapidel, Bruno; Roupsard, Olivier; de Rouw, Anneke; Sanchez, Mario Villatoro; Wang, Yan; Stokes, Alexia

    2017-05-01

    Although vegetation is increasingly used to mitigate landslide risks, how vegetation affects the temporal variability of slope stability is poorly understood, especially in earthquake-prone regions. We combined 3-year long soil moisture monitoring, measurements of soil physical properties and plant functional traits, and numerical modeling to compare slope stability under paired land uses with and without trees in tropical, subtropical, and temperate landslide- and earthquake-prone regions. Trees improved stability for 5-12 months per year from drawdown of soil moisture and resulted in less interannual variability in the duration of high-stability periods compared to slopes without trees. Our meta-analysis of published data also showed that slopes with woody vegetation were more stable and less sensitive to climate and soil factors than slopes with herbaceous vegetation. However, estimates of earthquake magnitude necessary to destabilize slopes at our sites suggest that large additional stabilization from trees is necessary for meaningful protection against external triggers.

  11. Geomorphic and vegetative recovery processes along modified stream channels of West Tennessee

    USGS Publications Warehouse

    Simon, Andrew; Hupp, C.R. Tennessee

    1992-01-01

    Hundreds of miles of streams in West Tennessee have been channelized or otherwise modt@ed since the turn of century. After all or parts of a stream are straightened, dredged, or cleared, systematic hydrologic, geomorphic, and ecologic processes collectively begin to reduce energy conditions towards the premodified state. One hundred and five sites along 15 streams were studied in the Obion, Forked Deer, Hatchie, and Wolf River basins. All studied streams, except the Hatchie River, have had major channel modi@cation along all or parts of their courses. Bank material shear-strength properties were determined through drained borehole-shear testing (168 tests) and used to interpret present critical bank conditions and factors of safety, and to estimate future channel-bank stability. Mean values of cohesive strength and angle of internal friction were 1.26 pounds per square inch and 30.1 degrees, respectively. Dendrogeomorphic analyses were made using botanical evidence of channel-bank failures to determine rates of channel widening; buried riparian stems were analyzed to determine rates of bank accretion. Channel bed-level changes through time and space were represented by a power equation. Plant ecological analyses were ma& to infer relative bank stability, to identify indicator species of the stage of bank recovery, and to determine patterns of vegetation development through the course of channel evolution. Quantitative data on morphologic changes were used with previously developed six-stage models of channel evolution and bank-slope development to estimate trends of geomorphic and ecologic processes and forms through time. Immediately after channel modr@cations, a 10- to 1%yearperiod of channel-bed degradation ensues at and upstream from the most recent modifications (area of maximum disturbance). Channel-bed lowering by &gradation was as much as 20 feet along some stream reaches. Downstream from the area of maximum disturbance, the bed was aggraded by the

  12. Stimulants of Toll-like receptor (TLR)-2 and TLR-4 are abundant in certain minimally-processed vegetables.

    PubMed

    Erridge, Clett

    2011-06-01

    Stimulants of the innate immune receptors Toll-like receptor (TLR)-2 and TLR4 have been shown to promote insulin resistance and atherosclerosis in animal models of these diseases. As minimally processed vegetables (MPV) can contain a relatively large bacterial load compared to other foodstuffs, we aimed to quantify the abundance of stimulants of TLR2 and TLR4 in MPV using a transfection-based bioassay calibrated with Escherichia coli LPS and the synthetic lipopeptide Pam(3)CSK(4). Of 5 classes of MPV and 3 classes of related vegetable products considered to be likely to contain a high microbial load, diced onion and bean sprouts contained the highest levels of stimulants of TLR2 (up to 18.5 μg Pam(3)CSK(4)-equivalents per g) and TLR4 (up to 11.4 μg LPS-equivalents per g). By contrast, the majority of fresh whole vegetables examined reproducibly contained minimal or undetectable levels of TLR2- or TLR4-stimulants. The accumulation of TLR-stimulants in MPVs correlated well with growth of enterobacterial spoilage organisms. In conclusion, the modern trend towards eating minimally processed vegetables rather than whole foods is likely to be associated with increased oral exposure to stimulants of TLR2 and TLR4. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Vegetable dietary fibres made with minimal processing improve health-related faecal parameters in a valid rat model.

    PubMed

    Monro, John; Mishra, Suman; Redman, Claire; Somerfield, Sheryl; Ng, Jovyn

    2016-06-15

    Dietary fibre-induced faecal bulking and hydration are important contributors to large bowel function and health, and are affected by the dietary fibre structure. To determine faecal bulk-related parameters for vegetable dietary fibres with retained structure, cold water fragmentation of vegetables was used to make minimally processed vegetable fibres (MPVF) from swede, broccoli and asparagus. A valid adult rat model was used to subject the fibres to processes of hind gut fermentation and faecal accumulation similar to those in humans. All the MPVFs had high faecal bulking indexes (FBIs, mean ± sem: wheat bran (reference), 100 ± 6.0; asparagus 168 ± 5.7; swede 135 ± 6.1; broccoli 135 ± 5.9; broccoli rind 205 ± 10.4), and caused large increases in the theoretical colonic water load at 10 g per 100 g diet (increase over baseline (%): wheat bran, 137 ± 8.3; asparagus, 236 ± 25, swede 193 ± 8.8; broccoli 228 ± 12; broccoli rind 223 ± 8.5). Faecal bulking by MPVFs was much greater than by fermentable extracted polysaccharides such as pectin and raftilose, or by commercial fibres made from highly processed cell walls. The results show natural, non-degraded vegetable fibres with retained botanical structure have beneficial effects not provided by structure-less fermentable dietary fibres. Dietary fibre-deficient diets supplemented with prebiotics cannot, therefore, adequately substitute for varied diets containing adequate vegetables, fruits and wholegrain cereals in which fermentation is associated with enough retained structure to conserve physicochemical properties of benefit to colonic function.

  14. Innovative processes and technologies for modified atmosphere packaging of fresh and fresh-cut fruits and vegetables: A review.

    PubMed

    Wilson, Matthew Deas; Stanley, Roger A; Eyles, Alieta; Ross, Tom

    2017-09-11

    Modified atmosphere packaging (MAP) technology has been commercially viable since the 1970s. Currently, MAP is extensively used worldwide to preserve the quality and extend the shelf-life of whole fresh fruits and vegetables, but is also increasingly used to extend the shelf-life of minimally processed fresh fruit and vegetables. This review discusses new processes and technologies that can be used to improve quality preservation and consumer acceptability of minimally processed produce where high respiration rates and challenging degradation processes operate. New packaging innovations are enabling producers and retailers to further maintain quality for longer. Innovative approaches to extend shelf-life include active MAP with differentially permeable films, films that incorporate antimicrobial properties, edible coatings that confer barriers properties, and the use of non-traditional gases to modify respiration. Intelligent packaging using integrated sensor technologies that can indicate maturity, ripeness, respiration rate and spoilage are also appearing. This review demonstrates that preservation technologies and associated packaging developments that can be combined with modified atmosphere are constantly evolving technology platforms. Adoption of combinations of technology improvements will be critical in responding to commercial trends towards more minimally processed fresh-cut and ready-to-eat fruit and vegetable products, which require specialized packaging solutions.

  15. [Process study on hysteresis of vegetation cover influencing sand-dust events].

    PubMed

    Xu, Xing-Kui; Wang, Xiao-Tao; Zhang, Feng

    2009-02-15

    Data analysis from satellite and weather stations during 1982-2000 shows nonlinear relationship between vegetation cover and sand-dust events is present in most part of China. Vegetation cover ratio in summer can impact significantly on the frequency of sand-dust storms from winter to spring in the source regions of sand-dust events. It is not quite clear about the hysteresis that vegetation cover in summer influence sand-dust events during winter and spring. A quasi-geostrophic barotropic model is used under the condition of 3 magnitude of frictional coefficient to investigate the cause of the hysteresis. Wind velocity shows a greatest decline at 90% during 72 h as initial wind velocity is 10 m/s for magnitude of frictional coefficient between atmosphere and water surface, greatest decline at 100% during 18 h for magnitude of frictional coefficient between atmosphere and bare soil and a 100% reduction of wind speed during 1 h for magnitude of frictional coefficient between atmosphere and vegetation cover. Observation and simulation prove that residual root and stem from summervegetation are one of factors to influence sand-dust events happened during winter and spring. Air inhibition from residual root and stem is a most important reason for hysteresis that vegetation cover influence sand-dust events.

  16. Control of disinfection by-products in canned vegetables caused by water used in their processing.

    PubMed

    Cardador, Maria Jose; Gallego, Mercedes

    2017-01-01

    Canned vegetables come into contact with sanitizers and/or treated water in industry during several steps (namely washing, sanitising, blanching and filling with sauces or brine solutions) and therefore they can contain disinfection by-products - DBPs). This study focused on the occurrence of trihalomethanes (THMs) and haloacetic acids (HAAs) in a wide variety of canned vegetables (75 samples). For each vegetable, the edible solid and liquid phases of the package were separated and analysed individually. DBPs can be present in both solid (up to eight species) and liquid (up to 11 species) phases, their levels being higher in liquid ones. Volatile THMs predominate in the edible solid phase (up to four species), while HAAs do so in the liquid phase (up to five species) according to their ionic and non-volatile nature. The lowest concentrations of DBPs were found in tomatoes because they were often preserved in their own juice, without water.

  17. Waveform LiDAR processing: comparison of classic approaches and optimized Gold deconvolution to characterize vegetation structure and terrain elevation

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Popescu, S. C.; Krause, K.

    2016-12-01

    Waveform Light Detection and Ranging (LiDAR) data have advantages over discrete-return LiDAR data in accurately characterizing vegetation structure. However, we lack a comprehensive understanding of waveform data processing approaches under different topography and vegetation conditions. The objective of this paper is to highlight a novel deconvolution algorithm, the Gold algorithm, for processing waveform LiDAR data with optimal deconvolution parameters. Further, we present a comparative study of waveform processing methods to provide insight into selecting an approach for a given combination of vegetation and terrain characteristics. We employed two waveform processing methods: 1) direct decomposition, 2) deconvolution and decomposition. In method two, we utilized two deconvolution algorithms - the Richardson Lucy (RL) algorithm and the Gold algorithm. The comprehensive and quantitative comparisons were conducted in terms of the number of detected echoes, position accuracy, the bias of the end products (such as digital terrain model (DTM) and canopy height model (CHM)) from discrete LiDAR data, along with parameter uncertainty for these end products obtained from different methods. This study was conducted at three study sites that include diverse ecological regions, vegetation and elevation gradients. Results demonstrate that two deconvolution algorithms are sensitive to the pre-processing steps of input data. The deconvolution and decomposition method is more capable of detecting hidden echoes with a lower false echo detection rate, especially for the Gold algorithm. Compared to the reference data, all approaches generate satisfactory accuracy assessment results with small mean spatial difference (<1.22 m for DTMs, < 0.77 m for CHMs) and root mean square error (RMSE) (<1.26 m for DTMs, < 1.93 m for CHMs). More specifically, the Gold algorithm is superior to others with smaller root mean square error (RMSE) (< 1.01m), while the direct decomposition approach

  18. Improved parameterization of managed grassland in a global process-based vegetation model using Bayesian statistics

    NASA Astrophysics Data System (ADS)

    Rolinski, S.; Müller, C.; Lotze-Campen, H.; Bondeau, A.

    2010-12-01

    More than a quarter of the Earth’s land surface is covered by grassland, which is also the major part (~ 70 %) of the agricultural area. Most of this area is used for livestock production in different degrees of intensity. The dynamic global vegetation model LPJmL (Sitch et al., Global Change Biology, 2003; Bondeau et al., Global Change Biology, 2007) is one of few process-based model that simulates biomass production on managed grasslands at the global scale. The implementation of managed grasslands and its evaluation has received little attention so far, as reference data on grassland productivity are scarce and the definition of grassland extent and usage are highly uncertain. However, grassland productivity is related to large areas, and strongly influences global estimates of carbon and water budgets and should thus be improved. Plants are implemented in LPJmL in an aggregated form as plant functional types assuming that processes concerning carbon and water fluxes are quite similar between species of the same type. Therefore, the parameterization of a functional type is possible with parameters in a physiologically meaningful range of values. The actual choice of the parameter values from the possible and reasonable phase space should satisfy the condition of the best fit of model results and measured data. In order to improve the parameterization of managed grass we follow a combined procedure using model output and measured data of carbon and water fluxes. By comparing carbon and water fluxes simultaneously, we expect well-balanced refinements and avoid over-tuning of the model in only one direction. The comparison of annual biomass from grassland to data from the Food and Agriculture Organization of the United Nations (FAO) per country provide an overview about the order of magnitude and the identification of deviations. The comparison of daily net primary productivity, soil respiration and water fluxes at specific sites (FluxNet Data) provides

  19. State of polyphenols in the drying process of fruits and vegetables.

    PubMed

    McSweeney, M; Seetharaman, K

    2015-01-01

    This review presents an overview of drying technologies and its impact on the polyphenol content of vegetables and fruits. Polyphenols contribute to many health benefits and can act as antioxidants. Specifically an increased intake of polyphenols has been shown to decrease the incidence of cardiovascular disease; furthermore, it has been shown to help reduce the risk of neurodegenerative diseases in humans. Many researchers have reported on the effect of different drying techniques on the polyphenol content in fruits and vegetables. Polyphenol degradation mechanisms proposed in literature and pretreatments that potentially lead to higher retention of polyphenols during drying are also discussed.

  20. Adjustment to the Curve Number Nrcs-Cn to Account for the Vegetation Effect on the Hydrological Processes

    NASA Astrophysics Data System (ADS)

    Gonzalez, A.; Temimi, M.; Khanbilvardi, R.

    2012-12-01

    The objective of this work is to develop an approach that makes use of remotely sensed Greenness Fraction (GF) as a proxy for the vegetation density to automatically adjust the Curve Number model (NRCS-CN) to account for the effect of the changes in vegetation growth on hydrological processes. Daily gauged precipitation-runoff pairs (1948 to 2003) from the MOdel Parameter Estimation EXperiment dataset (MOPEX) over 26 watersheds across the U.S. were used to estimate monthly averaged CNs (CNsim) and then compared to the monthly GF. An adjustment factor was then proposed for the typical static CN inputs which do not account for the vegetation growth over time; the result was a vegetation-adjusted CN (CNveg adj). The improvement in the performance of the NRCS-CN methodology was assessed. The results evidence how the CNveg adj compensates the underestimation of the standard CN (CNstd). The ratio of the estimated runoff using the CNstd (Qstd) to the observed runoff (Qobs) was 0.36; while with the CNveg adj (Qveg adj) was 0.98. The correlation coefficient of simulated and observed runoff when using CNstd and CNveg adj, was 0.42 and 0.92, respectively. Likewise, the Nash-Sutcliffe coefficient of Qstd was -0.92 and 0.85 for Qveg adj. This implies that the adjustment to the CN is crucial for improved hydrological modeling and, therefore, for flood and flash flood monitoring and forecasting.

  1. Thermal pasteurization of ready-to-eat foods and vegetables: Critical factors for process design and effects on quality.

    PubMed

    Peng, Jing; Tang, Juming; Barrett, Diane M; Sablani, Shyam S; Anderson, Nathan; Powers, Joseph R

    2017-09-22

    Increasing consumer desire for high quality ready-to-eat foods makes thermal pasteurization important to both food producers and researchers. To be in compliance with the Food Safety Modernization Act (FSMA), food companies seek regulatory and scientific guidelines to ensure that their products are safe. Clearly understanding the regulations for chilled or frozen foods is of fundamental importance to the design of thermal pasteurization processes for vegetables that meet food safety requirements. This article provides an overview of the current regulations and guidelines for pasteurization in the U.S. and in Europe for control of bacterial pathogens. Poorly understood viral pathogens, in terms of their survival in thermal treatments, are an increasing concern for both food safety regulators and scientists. New data on heat resistance of viruses in different foods are summarized. Food quality attributes are sensitive to thermal degradation. A review of thermal kinetics of inactivation of quality-related enzymes in vegetables and the effects of thermal pasteurization on vegetable quality is presented. The review also discusses shelf-life of thermally pasteurized vegetables.

  2. Health status of birds fed diets containing three differently processed discarded vegetable-bovine blood-rumen content mixtures.

    PubMed

    Ekunseitan, D A; Balogun, O O; Sogunle, O M; Yusuf, A O; Ayoola, A A; Egbeyale, L T; Adeyemi, O A; Allison, I B; Iyanda, A I

    2013-04-01

    This study was conducted to determine the effect of feeding three differently processed mixtures on health status of broilers. A total of 1080 day-old Marshal broilers were fed; discarded vegetable-fresh bovine blood-fresh rumen digesta (P1), discarded vegetable-ensiled bovine blood-fresh rumen digesta (P2) and discarded vegetable-fresh bovine blood-ensiled rumen digesta (P3) at three levels of inclusion (0, 3 and 6%). Data on blood parameters was taken and were subjected to 3 x 3 factorial arrangements in a completely randomized design. Birds fed P1 had least values (p < 0.05) of serum glucose, total protein, globulin, uric acid and creatinine at starter phase. Birds fed diets containing 3 and 6% level of inclusion recorded the highest (p < 0.05) Packed cell volume, Haemoglobin, White blood cell and Red blood cell values. However, those fed at 0% level of inclusion recorded the highest albumin value. At finisher phase, birds fed P2 and P3 had the highest glucose, uric acid and creatinine values. 6% level of inclusion significantly (p < 0.05) increased the total protein and albumin values. Therefore, for enhanced performance and without comprising the health condition of birds; broiler chickens could be fed diets containing discarded vegetable-fresh bovine blood-ensiled rumen digesta (P3) up to 6% level of inclusion.

  3. Geomorphic process and vegetation diversity in the active riverbed and the floodplain in the Kamikochi valley, central Japan

    NASA Astrophysics Data System (ADS)

    Shimazu, H.

    2012-04-01

    The Kamikochi valley is located in a mountainous area in central Japan. The R. Azusa in this valley is a braided river with floodplains. Dense riparian forests cover the floodplains and fragmented small pioneer plant patches and isolated old pioneer trees are distributed in the active riverbed. This study aims to discuss the relationships between geomorphic processes of the river and vegetation diversity. Yearly mapping of the riverbed micro-landforms revealed that channel migrations and landform changes in the active riverbed occurs once every one or several years during a bankfull flood in the rainy season. Germination ages of riparian trees using a dendrochronological technique, their established layers and landform structure were examined to reconstruct floodplain dynamics. Major channel migrations destroyed the riparian forest repeatedly and the recent event occurred about 100 years ago. This caused a longitudinal zonal structure of the riparian forest vegetation, elm-fir forest, mature pioneer forest and young pioneer forests. The young pioneer forest is located alongside the present riverbed. The mature pioneer forest lies between the older elm-fir forests. The pioneer plants germinated simultaneously on the abandoned channel after channel migration. These trees became the mature pioneer forest. Ditches and lobes including boulders are found in the floodplain. The ditches extend parallel to the direction of the present and former channels. The lobes are distributed alongside them. Younger trees under the canopy grow on the lobes in the inner part of the floodplain. These young trees and lobes show that dominant sedimentation process in the floodplain is not lateral flooding, but longitudinal flooding. Sediments from the present channel flew downward through the ditches and were overflowed on the floodplain. This process destroyed the vegetation in and alongside the ditches causing vegetation diversity in the inner part of the riparian forest. Several species

  4. Field application of glyphosate induces molecular changes affecting vegetative growth processes in leafy spurge

    USDA-ARS?s Scientific Manuscript database

    Recommended rates of glyphosate for non-cultivated areas destroy the aboveground shoots of the perennial plant leafy spurge. However, such applications cause little or no damage to underground adventitious buds (UABs), and thus the plant readily regenerates vegetatively. High concentrations of glyph...

  5. Process Evaluation of the Fresh Fruit and Vegetable Program Implementation in a New Jersey Elementary School

    ERIC Educational Resources Information Center

    Bai, Yeon; Feldman, Charles; Wunderlich, Shahla M.; Aletras, Stefanie C.

    2011-01-01

    Purpose/Objectives: The U.S. Department of Agriculture provides funding to elementary schools for the Fresh Fruit and Vegetable Program (FFVP) to encourage healthy eating. The purpose of this study was to examine factors facilitating or challenging the program's successful implementation in one New Jersey school. Methods: Researchers conducted an…

  6. Effect of home food processing on chlordecone (organochlorine) content in vegetables.

    PubMed

    Clostre, Florence; Letourmy, Philippe; Thuriès, Laurent; Lesueur-Jannoyer, Magalie

    2014-08-15

    Decades after their use and their ban, organochlorine pesticides still pollute soil, water and food and lead to human and ecosystem exposure. In the case of chlordecone, human exposure is mainly due to the consumption of polluted food. We studied the effect of preparation and cooking in five vegetable products, three root vegetables (yam, dasheen and sweet potato) and two cucurbits (cucumber and pumpkin), among the main contributors to exposure to chlordecone in food in the French West Indies. Boiling the vegetables in water had no effect on chlordecone content of the vegetables and consequently on consumer exposure. The peel was three to 40-fold more contaminated than the pulp except cucumber, where the difference was less contrasted. The edible part is thus significantly less contaminated and peeling is recommended after rinsing to reduce consumer exposure, particularly for food grown in home gardens with contaminated soils. The type of soil had no consistent effect on CLD distribution but plot did. Peel and pulp composition (lipids and fibers) appear to partially account for CLD distribution in the product. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Information for forest process models: a review of NRS-FIA vegetation measurements

    Treesearch

    Charles D. Canham; William H. McWilliams

    2012-01-01

    The Forest and Analysis Program of the Northern Research Station (NRS-FIA) has re-designed Phase 3 measurements and intensified the sample intensity following a study to balance costs, utility, and sample size. The sampling scheme consists of estimating canopy-cover percent for six vegetation growth habits on 24-foot-radius subplots in four height classes and as an...

  8. When Fruits and Vegetables Are Optional, Elementary School Children Choose Processed over Whole Offerings

    ERIC Educational Resources Information Center

    Amin, Sarah A.; Yon, Bethany A.; Taylor, Jennifer C.; Johnson, Rachel K.

    2014-01-01

    Purpose/Objectives: Increasing children's fruit and vegetable (FV) consumption is an important goal for the National School Lunch Program (NSLP). In 2012 the NSLP began requiring students to select a FV. The objective of this study was to compare children's FV choices in two school cafeteria environments a year before these new USDA regulations…

  9. When Fruits and Vegetables Are Optional, Elementary School Children Choose Processed over Whole Offerings

    ERIC Educational Resources Information Center

    Amin, Sarah A.; Yon, Bethany A.; Taylor, Jennifer C.; Johnson, Rachel K.

    2014-01-01

    Purpose/Objectives: Increasing children's fruit and vegetable (FV) consumption is an important goal for the National School Lunch Program (NSLP). In 2012 the NSLP began requiring students to select a FV. The objective of this study was to compare children's FV choices in two school cafeteria environments a year before these new USDA regulations…

  10. ISSUES IN DIGITAL IMAGE PROCESSING OF AERIAL PHOTOGRAPHY FOR MAPPING SUBMERSED AQUATIC VEGETATION

    EPA Science Inventory

    The paper discusses the numerous issues that needed to be addressed when developing a methodology for mapping Submersed Aquatic Vegetation (SAV) from digital aerial photography. Specifically, we discuss 1) choice of film; 2) consideration of tide and weather constraints; 3) in-s...

  11. Process Evaluation of the Fresh Fruit and Vegetable Program Implementation in a New Jersey Elementary School

    ERIC Educational Resources Information Center

    Bai, Yeon; Feldman, Charles; Wunderlich, Shahla M.; Aletras, Stefanie C.

    2011-01-01

    Purpose/Objectives: The U.S. Department of Agriculture provides funding to elementary schools for the Fresh Fruit and Vegetable Program (FFVP) to encourage healthy eating. The purpose of this study was to examine factors facilitating or challenging the program's successful implementation in one New Jersey school. Methods: Researchers conducted an…

  12. ISSUES IN DIGITAL IMAGE PROCESSING OF AERIAL PHOTOGRAPHY FOR MAPPING SUBMERSED AQUATIC VEGETATION

    EPA Science Inventory

    The paper discusses the numerous issues that needed to be addressed when developing a methodology for mapping Submersed Aquatic Vegetation (SAV) from digital aerial photography. Specifically, we discuss 1) choice of film; 2) consideration of tide and weather constraints; 3) in-s...

  13. Direct and terrestrial vegetation-mediated effects of environmental change on aquatic ecosystem processes

    Treesearch

    Becky A. Ball; John S. Kominoski; Heather E. Adams; Stuart E. Jones; Evan S. Kane; Terrance D. Loecke; Wendy M. Mahaney; Jason P. Martina; Chelse M. Prather; Todd M.P. Robinson; Christopher T. Solomon

    2010-01-01

    Global environmental changes have direct effects on aquatic ecosystems, as well as indirect effects through alterations of adjacent terrestrial ecosystem structure and functioning. For example, shifts in terrestrial vegetation communities resulting from global changes can affect the quantity and quality of water, organic matter, and nutrient inputs to aquatic...

  14. Soil-vegetation-atmosphere processes: Simulation and field measurement for deforested sites in northern Thailand

    NASA Astrophysics Data System (ADS)

    Giambelluca, Thomas W.; Tran, Liem T.; Ziegler, Alan D.; Menard, Trae P.; Nullet, Michael A.

    1996-11-01

    In recent efforts to predict the climatic impacts of tropical deforestation an extreme scenario of impoverished grassland has been used to represent the future deforested landscape. Currently, deforested areas of the tropics are composed of a mosaic of crops, bare soil, grassland, and secondary vegetation of various ages. The dominant feature of deforested land is often secondary vegetation. Parameter values for important forest replacement land covers, including secondary vegetation, have been shown to differ from those of forest much less than that assumed in general circulation model (GCM) deforestation experiments. For this study, the biosphere-atmosphere transfer scheme (BATS) is run in uncoupled mode using measured input data in place of GCM forcing and using the same parameter settings employed in recent deforestation experiments. Model output is compared with measurements taken over seven different deforested land surfaces in northern Thailand. Comparisons reveal that the simulation of deforested land overestimates reflected shortwave radiation, the diurnal range of surface temperature for secondary vegetation, surface soil moisture loss during periods without rain, and surface soil moisture increase at the start of a rainy period and underestimates net radiation, the diurnal range of surface temperature on recently used land surfaces, and root zone soil moisture increase at the start of a rainy period at most sites. Most deforested land surfaces, especially intermediate and advanced secondary vegetation, are more similar, in terms of land surface-atmosphere interaction, to the model simulation of forest than of deforested land as depicted in GCM experiments. These comparisons suggest that modelers aspiring to make realistic simulations of deforestation should adopt parameter settings representative of the diverse range of forest replacement land covers, instead of again using the grassland scenario.

  15. Impacts of the 2014 Drought on Vegetation Processes in the Sierra Nevada of California

    NASA Astrophysics Data System (ADS)

    Loik, M. E.; Wade, C. E.; Reed, C. C.

    2014-12-01

    Sierra Nevada snowpack provides over 60 percent of California's freshwater supplies. The drought of 2014 has been unprecedented in the state's history, and followed below-average precipitation for the hydrologic years 2012 and 2013. Record-low precipitation has resulted in minimal Sierra Nevada snow pack and runoff, and massive reductions in reservoir storage, which has triggered widespread drought adaptation measures for one of the world's largest economies. We assessed the impacts of the 2014 drought on vegetation processes in the headwaters of the Owens River, which is one of the main watersheds for the city of Los Angeles. We monitored water relations, photosynthesis, growth and Leaf Area Index of tree, shrub, herb, and grass species. In order to better understand the effects of drought, we examined responses to watering manipulations, long-term snow fences, elevation gradient analysis, and comparisons to previous wetter years. 1 April 2014 snow pack depth was 330 mm (average for 1928 - 2012 = 1344 mm, CV = 49%). Despite widespread mortality of Pinus jeffreyi saplings (mean 1.5 m tall) at 2300 m, older trees as well as saplings of Pinus contorta showed new growth. There were no significant differences in water potential (Ψ) for the two conifer species in a wet year (2006, 1 April snow depth = 2240 mm) vs. 2014. Water potential for P. contorta in 2014 was higher at 2900 m than at 2300 m but photosynthetic CO2 assimilation (A) and stomatal conductance (gs), were not different. By contrast, Ψ, A, gs, Vcmax and Jmax for the widespread shrub Artemisia tridentata increased along a gradient from 2100 m to 2900 m in 2014. Watering only significantly increased these photosynthetic parameters at the lowest, driest elevation. At the middle elevation, Leaf Area Index in 2014 was about 20% of the 2006 value for the N-fixing shrub Purshia tridentata. Results show reductions in photosynthesis and growth for some species but not others in response to the severe drought

  16. Outcome and Process Evaluation of a Norwegian School-Randomized Fruit and Vegetable Intervention: Fruits and Vegetables Make the Marks (FVMM)

    ERIC Educational Resources Information Center

    Bere, E.; Veierod, M. B.; Bjelland, M.; Klepp, K.-I.

    2006-01-01

    This study reports the effect of the Fruits and Vegetables Make the Marks intervention, a school-based fruit and vegetable intervention consisting of a home economics classroom component and parental involvement and encouraged participation in the Norwegian School Fruit Programme, all delivered during the school year of 2001-02. Nine randomly…

  17. Initial adjustments within a new river channel: Interactions between fluvial processes, colonizing vegetation, and bank profile development.

    PubMed

    Gurnell, Angela M; Morrissey, Ian P; Boitsidis, Angela J; Bark, Tony; Clifford, Nicholas J; Petts, Geoffrey E; Thompson, Kenneth

    2006-10-01

    A conceptual model of the morphological development of the riparian margins of newly cut river channels is presented, suggesting early feedbacks between vegetation growth and bank form. To test the model, observations of long and cross profiles, bank sediment and seed deposition, and bank vegetation development were collected over the first 2 years of river flows through a reach of the River Cole, West Midlands, UK. The newly created channel had a sinuous planform and varying asymmetric trapezoidal cross section in sympathy with the planform. No imposed bedforms or bank reseeding were included in the design. Over the 2 years, development of bedforms was rapid, with bed sediment sorting and bank profile adjustment occurring more steadily and progressively. Six classes of bank profile were identified by the end of the study period, illustrating close associations with sediment aggradation, vegetation colonization, and growth patterns. Vegetation colonization of the banks was seeded predominantly from local sources during the summer and from hydrochory (transport by the river) during the winter. Colonizing vegetation on the riverbanks appeared to act as a significant propagule source by the second summer and as an increasingly important roughness element, trapping both propagules and sediment, within the second year and providing early feedback into bank evolution. As a result, the time required for riparian margin development in the conceptual model was found to be considerably longer than observed in the study river. In addition, the role of surface wash/bank failure in modifying the bank profile and transporting seeds onto the upper bank face during the first year of bank development was found to be important in initiating rapid bank vegetation colonization and surface stabilization. This set of processes had not been incorporated in the initial conceptual model. In relation to channel restoration, this research illustrates that in small temperate rivers of modest

  18. Evaluation of climate-related carbon turnover processes in global vegetation models for boreal and temperate forests.

    PubMed

    Thurner, Martin; Beer, Christian; Ciais, Philippe; Friend, Andrew D; Ito, Akihiko; Kleidon, Axel; Lomas, Mark R; Quegan, Shaun; Rademacher, Tim T; Schaphoff, Sibyll; Tum, Markus; Wiltshire, Andy; Carvalhais, Nuno

    2017-02-13

    Turnover concepts in state-of-the-art global vegetation models (GVMs) account for various processes, but are often highly simplified and may not include an adequate representation of the dominant processes that shape vegetation carbon turnover rates in real forest ecosystems at a large spatial scale. Here we evaluate vegetation carbon turnover processes in GVMs participating in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP; including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT) using estimates of vegetation carbon turnover rate (k) derived from a combination of remote sensing based products of biomass and net primary production (NPP). We find that current model limitations lead to considerable biases in the simulated biomass and in k (severe underestimations by all models except JeDi and VISIT compared to observation-based average k), likely contributing to underestimation of positive feedbacks of the northern forest carbon balance to climate change caused by changes in forest mortality. A need for improved turnover concepts related to frost damage, drought and insect outbreaks in order to better reproduce observation-based spatial patterns in k is identified. Since direct frost damage effects on mortality are usually not accounted for in these GVMs, simulated relationships between k and winter length in boreal forests are not consistent between different regions and strongly biased compared to the observation-based relationships. Some models show a response of k to drought in temperate forests as a result of impacts of water availability on NPP, growth efficiency or carbon balance dependent mortality as well as soil or litter moisture effects on leaf turnover or fire. However, further direct drought effects like carbon starvation (only in HYBRID4) or hydraulic failure are usually not taken into account by the investigated GVMs. While they are considered dominant large-scale mortality agents, mortality mechanisms related to insects

  19. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  20. Importance of vegetation processes for model spread in the fast precipitation response to CO2 forcing

    NASA Astrophysics Data System (ADS)

    DeAngelis, Anthony M.; Qu, Xin; Hall, Alex

    2016-12-01

    In the current generation of climate models, the projected increase in global precipitation over the 21st century ranges from 2% to 10% under a high-emission scenario. Some of this uncertainty can be traced to the rapid response to carbon dioxide (CO2) forcing. We analyze an ensemble of simulations to better understand model spread in this rapid response. A substantial amount is linked to how the land surface partitions a change in latent versus sensible heat flux in response to the CO2-induced radiative perturbation; a larger increase in sensible heat results in a larger decrease in global precipitation. Model differences in the land surface response appear to be strongly related to the vegetation response to increased CO2, specifically, the closure of leaf stomata. Future research should thus focus on evaluation of the vegetation physiological response, including stomatal conductance parameterizations, for the purpose of constraining the fast response of Earth's hydrologic cycle to CO2 forcing.

  1. Geomorphic and vegetation processes of the Willamette River floodplain, Oregon: current understanding and unanswered science questions

    USGS Publications Warehouse

    Wallick, J. Rose; Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Hulse, David; Gregory, Stanley V.

    2013-01-01

    4. How is the succession of native floodplain vegetation shaped by present-day flow and sediment conditions? Answering these questions will produce baseline data on the current distributions of landforms and habitats (question 1), the extent of the functional floodplain (question 2), and the effects of modern flow and sediment regimes on future floodplain landforms, habitats, and vegetation succession (questions 3 and 4). Addressing questions 1 and 2 is a logical next step because they underlie questions 3 and 4. Addressing these four questions would better characterize the modern Willamette Basin and help in implementing and setting realistic targets for ongoing management strategies, demonstrating their effectiveness at the site and basin scales, and anticipating future trends and conditions.

  2. Assembly Processes under Severe Abiotic Filtering: Adaptation Mechanisms of Weed Vegetation to the Gradient of Soil Constraints

    PubMed Central

    Nikolic, Nina; Böcker, Reinhard; Kostic-Kravljanac, Ljiljana; Nikolic, Miroslav

    2014-01-01

    Questions Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? Location Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. Methods We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). Results The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. Conclusion Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations

  3. Adult intake of minimally processed fruits and vegetables: Associations with cardiometabolic disease risk factors

    PubMed Central

    Horino, Masako; McCarthy, William J.

    2016-01-01

    Background The U.S. Department of Agriculture launchedChooseMyPlate.gov nutrition recommendations designed to encourage increased fruit and vegetable intake in part as a strategy for improving weight control through the consumption of high satiation foods. Objective The purpose of this cross-sectional study was to assess the relationship between adults’ reported daily intake of fruits and non-starchy vegetables (i.e., those thought to have the lowest energy density) expressed as a proportion of their total daily food intake and objectively measured cardiovascular and metabolic disease risk factors using data from the 2009–2010 National Health and Examination Survey (NHANES). Physical activity was included as a moderator variable. Design This study employed a cross-sectional examination of 2009–2010 NHANES data to assess how daily fruit and non-starchy vegetable intake were associated with anthropometric measures and cardiometabolic blood chemistry markers. Participants/setting Adults free of cardiac or metabolic disease (N=1,197) participated in 24-hour dietary recalls; a variety of cardiometabolic biomarkers and anthropometric measures were also collected from participants. Main outcome measures Among participants with complete data on all variables, the ratio of the combined cup equivalents of fruit and non-starchy vegetable intake to the total gram weight of all foods consumed daily (FV ratio) served as the primary independent variable. Main dependent measures included: fasting glucose, insulin, glycosylated hemoglobin, HDL cholesterol, LDL cholesterol, triglycerides, total cholesterol, waist circumference, and body mass index. Statistical analyses performed Demographic and behavioral predictors of the FV ratio and the association between the FV ratio and cardiometabolic disease risk factors were examined using multivariate regression. Results BMI (β = −2.58, 95% CI [−3.88, −1.28]), waist circumference (β = −6.33, 95% CI [−9.81, −2.84]), and

  4. Adult Intake of Minimally Processed Fruits and Vegetables: Associations with Cardiometabolic Disease Risk Factors.

    PubMed

    Cavallo, David N; Horino, Masako; McCarthy, William J

    2016-09-01

    The US Department of Agriculture launched ChooseMyPlate.gov nutrition recommendations designed to encourage increased fruit and vegetable intake, in part, as a strategy for improving weight control through the consumption of high-satiation foods. The purpose of this cross-sectional study was to assess the relationship between adults' reported daily intake of fruits and nonstarchy vegetables (ie, those thought to have the lowest energy density) expressed as a proportion of their total daily food intake and objectively measured cardiovascular and metabolic disease risk factors using data from the 2009-2010 National Health and Nutrition Examination Survey (NHANES). Physical activity was included as a moderator variable. This study employed a cross-sectional examination of 2009-2010 NHANES data to assess how daily fruit and nonstarchy vegetable intake was associated with anthropometric measures and cardiometabolic blood chemistry markers. Adults free of cardiac or metabolic disease (n=1,197) participated in 24-hour dietary recalls; a variety of cardiometabolic biomarkers and anthropometric measures were also collected from participants. Among participants with complete data on all variables, the ratio of the combined cup-equivalents of fruit and nonstarchy vegetable intake to the total gram weight of all foods consumed daily (F/V ratio) served as the primary independent variable. Main dependent measures included fasting glucose, insulin, glycosylated hemoglobin, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, total cholesterol, waist circumference, and body mass index. Demographic and behavioral predictors of the F/V ratio and the association between the F/V ratio and cardiometabolic disease risk factors were examined using multivariate regression. Body mass index (β=-2.58; 95% CI -3.88 to -1.28), waist circumference (β=-6.33; 95% CI -9.81 to -2.84), and insulin (β=-0.21; 95% CI -0.37 to -0.05) were inversely

  5. Single-thread channels resulting from a localization process driven by vegetation

    NASA Astrophysics Data System (ADS)

    Narteau, C.; Tal, M.

    2009-12-01

    The unpredictable manner in which braided rivers evolve is in stark contrast to the orderly migration pattern of meandering rivers driven by erosion along outer bends and deposition along inner banks. Braided channels are the default pattern that develops when an unbounded water flow interacts with noncohesive sediment. A series of laboratory experiments demonstrated that plants alone are able to achieve the two key mechanisms to developing meandering: slowing the rate of widening and discouraging channel cutoffs. Plants initially colonized braid-bars that were emergent during low flow. By adding cohesion to the sediment and increasing roughness, vegetation deterred the flow from reoccupying areas which were colonized. By decreasing erosion rates, plants made it possible for deposition along the inner bank to match the rate of erosion along the outer bank. This enabled the channel to develop sinuosity and migrate laterally while suppressing channel splitting and the creation of new channel width. Areas with established vegetation provided stable conditions which promoted new seedling establishment and expansion of the vegetated area. A generic mechanism of width production in the braided state is the opportunistic creation of new channels. As existing flow paths become slightly less favorable, for example by bar deposition or an increase in sinuosity, new ones are readily created in areas that are not currently occupied by flow. By making it more difficult for flow to occupy vegetated areas, plants in effect decouple the transition between wet and dry areas, making it harder for areas that are dry (vegetated) to turn wet (reoccupied by flow) and less likely for areas that are wet to become dry. The net effect is localization of the flow into a single-thread channel with transitions between wet and dry occurring predominantly along the channel margin and driving lateral migration while a single-thread channel remains intact. We are using a 1D cellular automata model

  6. Outcome and process evaluation of a Norwegian school-randomized fruit and vegetable intervention: Fruits and Vegetables Make the Marks (FVMM).

    PubMed

    Bere, E; Veierød, M B; Bjelland, M; Klepp, K-I

    2006-04-01

    This study reports the effect of the Fruits and Vegetables Make the Marks intervention, a school-based fruit and vegetable intervention consisting of a home economics classroom component and parental involvement and encouraged participation in the Norwegian School Fruit Programme, all delivered during the school year of 2001-02. Nine randomly chosen schools received the intervention and 10 schools served as control schools. Participating pupils completed questionnaires at baseline (September 2001), at Follow-up 1 (May-June 2002) and at Follow-up 2 (May 2003). A total of 369 pupils (69%; mean age, 11.3 years at baseline) participated in all three surveys. No effect of the intervention was found for intake of fruit and vegetables eaten at school or all day, neither at Follow-up 1 nor at Follow-up 2. On analysing the effects on potential mediators, significant differences between intervention and control groups were found for Awareness of the five-a-day recommendations only. The intervention programme was rated as very good by the teachers, and the pupils reported that they enjoyed it. However, the intervention failed to change fruit and vegetable intake, probably because it did not succeed in changing the pupils' preferences for or the accessibility of fruit and vegetables--the two strongest correlates of children's fruit and vegetable intake.

  7. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves

    PubMed Central

    Figiel, Adam; Michalska, Anna

    2016-01-01

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying. PMID:28042845

  8. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.

    PubMed

    Figiel, Adam; Michalska, Anna

    2016-12-30

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  9. Thermal, high pressure, and electric field processing effects on plant cell membrane integrity and relevance to fruit and vegetable quality.

    PubMed

    Gonzalez, Maria E; Barrett, Diane M

    2010-09-01

    Advanced food processing methods that accomplish inactivation of microorganisms but minimize adverse thermal exposure are of great interest to the food industry. High pressure (HP) and pulsed electric field (PEF) processing are commercially applied to produce high quality fruit and vegetable products in the United States, Europe, and Japan. Both microbial and plant cell membranes are significantly altered following exposure to heat, HP, or PEF. Our research group sought to quantify the degree of damage to plant cell membranes that occurs as a result of exposure to heat, HP, or PEF, using the same analytical methods. In order to evaluate whether new advanced processing methods are superior to traditional thermal processing methods, it is necessary to compare them. In this review, we describe the existing state of knowledge related to effects of heat, HP, and PEF on both microbial and plant cells. The importance and relevance of compartmentalization in plant cells as it relates to fruit and vegetable quality is described and various methods for quantification of plant cell membrane integrity are discussed. These include electrolyte leakage, cell viability, and proton nuclear magnetic resonance (¹H-NMR).

  10. Thermal, High Pressure, and Electric Field Processing Effects on Plant Cell Membrane Integrity and Relevance to Fruit and Vegetable Quality

    PubMed Central

    Gonzalez, Maria E; Barrett, Diane M

    2010-01-01

    Advanced food processing methods that accomplish inactivation of microorganisms but minimize adverse thermal exposure are of great interest to the food industry. High pressure (HP) and pulsed electric field (PEF) processing are commercially applied to produce high quality fruit and vegetable products in the United States, Europe, and Japan. Both microbial and plant cell membranes are significantly altered following exposure to heat, HP, or PEF. Our research group sought to quantify the degree of damage to plant cell membranes that occurs as a result of exposure to heat, HP, or PEF, using the same analytical methods. In order to evaluate whether new advanced processing methods are superior to traditional thermal processing methods, it is necessary to compare them. In this review, we describe the existing state of knowledge related to effects of heat, HP, and PEF on both microbial and plant cells. The importance and relevance of compartmentalization in plant cells as it relates to fruit and vegetable quality is described and various methods for quantification of plant cell membrane integrity are discussed. These include electrolyte leakage, cell viability, and proton nuclear magnetic resonance (1H-NMR). PMID:20492210

  11. KUREX-91 - A USSR/US study for global climate processes in steppe vegetation

    NASA Technical Reports Server (NTRS)

    Deering, Donald W.; Kozoderov, Vladimir V.

    1992-01-01

    Researchers use satellite remote sensing of the earth's reflected and emitted radiation as correlated indices of the variables they measure on the ground or within the atmosphere. The Kursk 1991 Experiment (KUREX-91) was conducted to develop capabilities for monitoring global change, and to understand how the earth's land-surface vegetation and atmospheric boundary layer interact. The experiment enabled scientific interactions between the international participants, and comparisons of instruments and data. Intensive ground measurements were coordinated with helicopter, aircraft and satellite data acquisitions.

  12. Encapsulation of Active Compounds in Fruit and Vegetable Juice Processing: Current State and Perspectives.

    PubMed

    Speranza, Barbara; Petruzzi, Leonardo; Bevilacqua, Antonio; Gallo, Mariangela; Campaniello, Daniela; Sinigaglia, Milena; Corbo, Maria Rosaria

    2017-06-01

    The production of value-added and/or functional juices has increased significantly in recent years, following an increased consumer demand to promote health and/or prevent disease through diet and nutrition. Micro and nano-encapsulation are promising technologies to protect and deliver sensitive compounds, allowing a controlled release in the target sites. This paper offers an overview of current applications, limits and challenges of encapsulation technologies in the production of fruit and vegetable juices, with a particular emphasis on products derived from different botanical sources. © 2017 Institute of Food Technologists®.

  13. Processing of vegetable-borne carotenoids in the human stomach and duodenum.

    PubMed

    Tyssandier, Viviane; Reboul, Emmanuelle; Dumas, Jean-François; Bouteloup-Demange, Corinne; Armand, Martine; Marcand, Julie; Sallas, Marcel; Borel, Patrick

    2003-06-01

    Carotenoids are thought to diminish the incidence of certain degenerative diseases, but the mechanisms involved in their intestinal absorption are poorly understood. Our aim was to obtain basic data on the fate of carotenoids in the human stomach and duodenum. Ten healthy men were intragastrically fed three liquid test meals differing only in the vegetable added 3 wk apart and in a random order. They contained 40 g sunflower oil and mashed vegetables as the sole source of carotenoids. Tomato purée provided 10 mg lycopene as the main carotenoid, chopped spinach (10 mg lutein), and carrot purée (10 mg beta-carotene). Samples of stomach and duodenal contents and blood samples were collected at regular time intervals after meal intake. all-trans and cis carotenoids were assayed in stomach and duodenal contents, in the fat and aqueous phases of those contents, and in chylomicrons. The cis-trans beta-carotene and lycopene ratios did not significantly vary in the stomach during digestion. Carotenoids were recovered in the fat phase present in the stomach during digestion. The proportion of all-trans carotenoids found in the micellar phase of the duodenum was as follows (means +/- SE): lutein (5.6 +/- 0.4%), beta-carotene (4.7 +/- 0.3%), lycopene (2.0 +/- 0.2%). The proportion of 13-cis beta-carotene in the micellar phase was significantly higher (14.8 +/- 1.6%) than that of the all-trans isomer (4.7 +/- 0.3%). There was no significant variation in chylomicron lycopene after the tomato meal, whereas there was significant increase in chylomicron beta-carotene and lutein after the carrot and the spinach meals, respectively. There is no significant cis-trans isomerization of beta-carotene and lycopene in the human stomach. The stomach initiates the transfer of carotenoids from the vegetable matrix to the fat phase of the meal. Lycopene is less efficiently transferred to micelles than beta-carotene and lutein. The very small transfer of carotenoids from their vegetable

  14. Heart rate variability: an index of brain processing in vegetative state? An artificial intelligence, data mining study.

    PubMed

    Riganello, F; Candelieri, A; Quintieri, M; Conforti, D; Dolce, G

    2010-12-01

    Brain processing at varying levels of functional complexity has been documented in vegetative state. In this study, data mining procedures are applied to identify significant changes in heart rate variability (an emerging objective descriptor of autonomic correlates of brain activation) in response to complex auditory stimuli with emotional value (music). The heart rate of subjects in vegetative state from brain damage (n=6) or spontaneous hemorrhage (n=3) and 16 healthy controls was recorded while they passively listened to four pre-selected music samples by different authors (mean recording time: 3m and 36s±24s). The parametric and non-parametric frequency spectra were computed on the heart rate, spectra were compared within/across subjects and music authors, and the spectra descriptors were entered into a 1-R rules data mining procedure (WEKA software Leave One Out and Ten Fold Cross validation). The procedure independently classified the heart rate spectral patterns of both patients and controls and the emotions reported by healthy subjects as "positive" or "negative". In both healthy controls and vegetative state subjects, the power spectra while passively listening to music differed from baseline when compared irrespective of the music authorship and from each other when compared across music samples. Data mining sorted the nu_LF (normalized parameter unit of the spectrum low frequency range) as the significant descriptor of heart rate variability in the conditions of the study. The nu_LF classification of the healthy controls' HRV changes in response to music replicated that based on subjective reports with 75-93.7% accuracy. Although preliminary, these findings suggest that autonomic changes with possible emotional value can be induced by complex stimuli also in vegetative state, with implications on the residual responsiveness of these subjects. Heart rate variability descriptors and data mining methods appear applicable to investigate brain function in

  15. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  16. Effect of hydrothermal processing on total polyphenolics and antioxidant potential of underutilized leafy vegetables, Boerhaavia diffusa and Portulaca oleracea.

    PubMed

    Nagarani, Gunasekaran; Abirami, Arumugam; Nikitha, Prasad; Siddhuraju, Perumal

    2014-05-01

    To investigate the effect of different processing methods on antioxidant properties of acetone extract of aerial parts from Boerhaavia diffusa and Portulaca oleracea. The total phenolic and flavonoid contents were determined by Folin-Ciocalteau and aluminum chloride method, respectively. FRAP, metal chelating activity, DPPH, ABTS, nitric oxide, hydroxyl and superoxide radical scavenging activities, carotene/linoleic acid bleaching activity were used for the determination of antioxidant capacity. The total phenolics in Boerhaavia diffusa (82.79-162.80 mg GAE/g extract) were found to be higher when compared to that of Portulaca oleracea (22.94-10.02 mg GAE/g extract). Hydrothermal processing enhanced the level of inhibition on synthetic radicals such as DPPH (3 439-309 549 mmol TE/g extract) and ABTS (17 808-53 818 mmol TE/g extract) as well as biologically relevant radicals such as superoxide anion (70%-90%) and nitric oxide (49%-57%). In addition, boiling of the vegetables were found to be maximum capacity of FRAP (6 404.95 mmol Fe (II)/g extract) and metal chelating activity (1.53 mg EDTA/g extract) than the respective raw samples. The present investigation suggests that the processing enhance the functionality and improves the availability of bioactive substances of these vegetables. In addition, they also exhibited more potent antioxidant activity. Therefore these natural weeds from the crop land ecosystem could be suggested as cost effective indigenous green vegetables for human diet and potential feed resources for animals. Further extensive studies on role and importance of those weeds in sustaining the agro biodiversity are also needed.

  17. Effect of hydrothermal processing on total polyphenolics and antioxidant potential of underutilized leafy vegetables, Boerhaavia diffusa and Portulaca oleracea

    PubMed Central

    Nagarani, Gunasekaran; Abirami, Arumugam; Nikitha, Prasad; Siddhuraju, Perumal

    2014-01-01

    Objective To investigate the effect of different processing methods on antioxidant properties of acetone extract of aerial parts from Boerhaavia diffusa and Portulaca oleracea. Methods The total phenolic and flavonoid contents were determined by Folin-Ciocalteau and aluminum chloride method, respectively. FRAP, metal chelating activity, DPPH, ABTS, nitric oxide, hydroxyl and superoxide radical scavenging activities, carotene/linoleic acid bleaching activity were used for the determination of antioxidant capacity. Results The total phenolics in Boerhaavia diffusa (82.79-162.80 mg GAE/g extract) were found to be higher when compared to that of Portulaca oleracea (22.94-10.02 mg GAE/g extract). Hydrothermal processing enhanced the level of inhibition on synthetic radicals such as DPPH (3 439-309 549 mmol TE/g extract) and ABTS (17 808-53 818 mmol TE/g extract) as well as biologically relevant radicals such as superoxide anion (70%-90%) and nitric oxide (49%-57%). In addition, boiling of the vegetables were found to be maximum capacity of FRAP (6 404.95 mmol Fe (II)/g extract) and metal chelating activity (1.53 mg EDTA/g extract) than the respective raw samples. Conclusions The present investigation suggests that the processing enhance the functionality and improves the availability of bioactive substances of these vegetables. In addition, they also exhibited more potent antioxidant activity. Therefore these natural weeds from the crop land ecosystem could be suggested as cost effective indigenous green vegetables for human diet and potential feed resources for animals. Further extensive studies on role and importance of those weeds in sustaining the agro biodiversity are also needed. PMID:25183131

  18. The interplay of intention, autonomy, and sex with dietary planning: A conditional process model to predict fruit and vegetable intake.

    PubMed

    Lange, Daniela; Corbett, Jana; Lippke, Sonia; Knoll, Nina; Schwarzer, Ralf

    2015-11-01

    Dietary intentions are supposed to engender planning processes, which in turn stimulate dietary behaviour change. However, some studies failed to find such mediation effects, which suggest more complex and not yet unravelled relationships between these factors. One explanation may be that mediation works better under certain circumstances or only for specific subgroups. This study addresses this reasoning by examining autonomy beliefs and sex as putative moderators of the hypothesized mediation chain. In a longitudinal design with three measurement points in time (1 week and 1 month apart), 912 women and 214 men were surveyed. Planning, intention, dietary autonomy beliefs, and sex were used to predict fruit and vegetable intake within a conditional process model designed to identify mechanisms of change. The intention-planning-behaviour chain was qualified by a triple interaction involving autonomy beliefs and sex as moderators between intention and planning. Higher dietary autonomy resulted in higher levels of planning fruit and vegetable intake. For men, even in case of higher intention, at least medium levels of autonomy beliefs were necessary to facilitate planning processes. For women, already lower levels of autonomy beliefs can engender postintentional planning strategies and seem to even compensate lower intention. Intention and planning are key predictors of dietary change. However, these variables work better under specific conditions (with a sufficient level of autonomy), and differently in subgroups (men vs. women). These results may explain the inconsistent findings of previous studies on the mediating effect of planning and allow for a better description of the mechanisms by which intentions may influence behaviour. Statement of contribution What is already known on this subject? The adoption of health-enhancing dietary behaviours can be facilitated by intentions and planning. Planning to eat more fruit and vegetable helps to translate intentions into

  19. Inventories of Delaware's coastal vegetation and land-use utilizing digital processing of ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Klemas, V.; Bartlett, D.; Rogers, R.; Reed, L.

    1974-01-01

    Digital analysis of ERTS-1 imagery was used in an attempt to map and inventory the significant ecological communities of Delaware's coastal zone. Eight vegetation and land use discrimination classes were selected: (1) phragmites communis (Giant Reed grass); (2) spartina alterniflora (Salt marsh cord grass); (3) spartina patens (Salt marsh hay); (4) shallow water and exposed mud; (5) deep water (2 meters); (6) forest; (7) agriculture; and (8) exposed sand and concrete. Canonical analysis showed that classification accuracy was quite good with spartina alterniflora, exposed sand-concrete, and forested land - all discriminated with between 94% and 100% accuracy. The shallow water-mud and deep water categories were classified with accuracies of 88% and 93% respectively. Phragmites communis showed a classification accuracy of 83% with all confusion occurring with spartina patens which may be due to use of mixed stands of these species as training sets. Discrimination of spartina patens was very poor (accuracy 52%).

  20. Process optimization for extraction of carotenoids from shrimp waste with vegetable oils.

    PubMed

    Sachindra, N M; Mahendrakar, N S

    2005-07-01

    Shrimp waste is an important source of natural carotenoid. Studies were carried out to determine the extraction yield of shrimp waste carotenoids in different vegetable oils. Highest yield was obtained by extraction using refined sunflower oil compared to groundnut oil, gingelly oil, mustard oil, soy oil, coconut oil and rice bran oil. The extraction yield of carotenoids in sunflower oil was significantly influenced by level of oil to waste (p < 0.05), time (p < 0.01) and temperature (p < 0.001) of heating waste with oil before centrifugation to separate pigmented oil. A regression equation was derived for carotenoid yield as a function of time of heating, temperature of heating and oil level to waste. The optimized conditions for extraction of shrimp waste carotenoids in sunflower oil were determined to be oil level to waste of 2, temperature of 70 degrees C and heating time of 150 min.

  1. Evaluation of DGVMs in tropical areas: linking patterns of vegetation cover, climate and fire to ecological processes

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara

    2017-04-01

    Many current Dynamic Global Vegetation Models (DGVMs), including those incorporated into Earth System Models (ESMs), are able to realistically reproduce the distribution of the most worldwide biomes. However, they display high uncertainty in predicting the forest, savanna and grassland distributions and the transitions between them in tropical areas. These biomes are the most productive terrestrial ecosystems, and owing to their different biogeophysical and biogeochemical characteristics, future changes in their distributions could have also impacts on climate states. In particular, expected increasing temperature and CO2, modified precipitation regimes, as well as increasing land-use intensity could have large impacts on global biogeochemical cycles and precipitation, affecting the land-climate interactions. The difficulty of the DGVMs in simulating tropical vegetation, especially savanna structure and occurrence, has been associated with the way they represent the ecological processes and feedbacks between biotic and abiotic conditions. The inclusion of appropriate ecological mechanisms under present climatic conditions is essential for obtaining reliable future projections of vegetation and climate states. In this work we analyse observed relationships of tree and grass cover with climate and fire, and the current ecological understanding of the mechanisms driving the forest-savanna-grassland transition in Africa to evaluate the outcomes of a current state-of-the-art DGVM and to assess which ecological processes need to be included or improved within the model. Specifically, we analyse patterns of woody and herbaceous cover and fire return times from MODIS satellite observations, rainfall annual average and seasonality from TRMM satellite measurements and tree phenology information from the ESA global land cover map, comparing them with the outcomes of the LPJ-GUESS DGVM, also used by the EC-Earth global climate model. The comparison analysis with the LPJ

  2. Effects of Near Soil Surface Characteristics on the Soil Detachment Process in a Chronological Series of Vegetation Restoration

    NASA Astrophysics Data System (ADS)

    Wang, Bing

    2017-04-01

    The effects of near soil surface characteristics on the soil detachment process might be different at different stages of vegetation restoration. This study was performed to investigate the effects of the near soil surface factors of plant litter, biological soil crusts (BSCs), dead roots and live roots on the soil detachment process by overland flow at different stages of restoration. Soil samples (1 m long, 0.1 m wide, and 0.05 m high) under four treatment conditions were collected from 1-yr-old and 24-yr-old natural grasslands and subjected to flow scouring under five different shear stresses ranging from 5.3 to 14.6 Pa. The results indicated that the effects of near soil surface characteristics on soil detachment were substantial during the process of vegetation restoration. The total reduction in the soil detachment capacity of the 1-yr-old grassland was 98.1%, and of this total, 7.9%, 30.0% and 60.2% was attributed to the litter, BSCs and plant roots, respectively. In the 24-yr-old grassland, the soil detachment capacity decreased by 99.0%, of which 13.2%, 23.5% and 62.3% was caused by the litter, BSCs and plant roots, respectively. Combined with the previously published data of a 7-yr-old grassland, the influence of plant litter on soil detachment was demonstrated to increase with restoration time, but soil detachment was also affected by the litter type and composition. The role of BSCs was greater than that of plant litter in reducing soil detachment during the early stages of vegetation recovery. However, its contribution weakened with time since restoration. The influence of plant roots accounted for at least half or up to two-thirds of the total near soil surface factors, of which more than 72.6% was attributed to the physical binding effects of the roots. The chemical bonding effect of the roots increased with time since restoration and was greater than the effect of the litter on soil detachment in the late stages of vegetation restoration. The

  3. Effects of future climate change, CO2 enrichment, and vegetation structure variation on hydrological processes in China

    USGS Publications Warehouse

    Zhu, Qiuan; Jiang, Hong; Peng, Changhui; Liu, Jinxun; Fang, Xiuqin; Wei, Xiaohua; Liu, Shirong; Zhou, Guomo

    2012-01-01

    Investigating the relationship between factors (climate change, atmospheric CO2 concentrations enrichment, and vegetation structure) and hydrological processes is important for understanding and predicting the interaction between the hydrosphere and biosphere. The Integrated Biosphere Simulator (IBIS) was used to evaluate the effects of climate change, rising CO2, and vegetation structure on hydrological processes in China at the end of the 21st century. Seven simulations were implemented using the assemblage of the IPCC climate and CO2 concentration scenarios, SRES A2 and SRES B1. Analysis results suggest that (1) climate change will have increasing effects on runoff, evapotranspiration (ET), transpiration (T), and transpiration ratio (transpiration/evapotranspiration, T/E) in most hydrological regions of China except in the southernmost regions; (2) elevated CO2 concentrations will have increasing effects on runoff at the national scale, but at the hydrological region scale, the physiology effects induced by elevated CO2 concentration will depend on the vegetation types, climate conditions, and geographical background information with noticeable decreasing effects shown in the arid Inland region of China; (3) leaf area index (LAI) compensation effect and stomatal closure effect are the dominant factors on runoff in the arid Inland region and southern moist hydrological regions, respectively; (4) the magnitudes of climate change (especially the changing precipitation pattern) effects on the water cycle are much larger than those of the elevated CO2 concentration effects; however, increasing CO2 concentration will be one of the most important modifiers to the water cycle; (5) the water resource condition will be improved in northern China but depressed in southernmost China under the IPCC climate change scenarios, SRES A2 and SRES B1.

  4. Process-based modeling of vegetation dynamics, snow, evapotranspiration and soil moisture patterns in an alpine catchment

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Della Chiesa, Stefano; Engel, Michael; Niedrist, Georg; Brenner, Johannes G.; Endrizzi, Stefano; Dall'Amico, Matteo; Cordano, Emanuele; Tappeiner, Ulrike; Rigon, Riccardo

    2014-05-01

    Mountain regions are particularly sensitive to climate change and at the same time they represent a key water resource not only locally but as well for lowland areas. Because of the complexity of mountain landscapes and the high climatic variability at a local scale, detailed quantification of key water budget components as snow cover, soil moisture and groundwater recharge is required. Therefore, there is a strong need to improve the capability of hydrological models to identify patterns in complex terrain (i.e. when variability of spatial characteristics counts), and to quantify changes of the water cycle components explicitly, considering interactions and feedbacks with climate and vegetation. Process-based hydrological models represent promising tools for addressing those needs. However, even if their inherent complexity sometimes limits their applicability for operational purpose, they offer great potential in terms of tools to test hypotheses, which can be verified in the field. GEOtop is a hydrological model that calculates the energy and mass exchanges between soil, vegetation, and atmosphere, accounting for land cover, water redistribution, snow processes, glacier mass budget and the effects of complex terrain and thus is one of the few models that was built with this complexity in mind. Recently, it has also been coupled with a dynamic vegetation model in order to simulate alpine grassland ecosystems. In this contribution, we want to present an application of the GEOtop model in simulating above ground biomass (Bag) production, evapotranspiration (ET), soil moisture (SM) and snow water equivalent (SWE) patterns for a catchment of about 100 km2, located in the Venosta/Vinschgau valley in the European Alps. Despite the Alps are one of the 'water towers of Europe', water scarcity issues can affect the region where the model is applied, and an intensive hydrological and ecological monitoring activity with ground observations and remote-sensing products has

  5. Gully erosion processes impacted by vegetation on gully beds based on an in situ scouring experiment in a Dry-hot Valley of Southwest China

    NASA Astrophysics Data System (ADS)

    Dong, Yifan; Xiong, Donghong; Su, Zhengan

    2015-04-01

    Vegetation can protect soil from water erosion. Some previous researches on the subjects of vegetation and gully erosion were mainly focused on the topography changes cause by vegetation and the conservation effects and techniques. While the mechanics of vegetation effects on the hydraulic processes of gully bed to influence the erosion processes were still not very clear. In this study, an in situ scouring experiment was conducted 11 times assuming a consistent flow condition (7 times with a flow discharge of 83.3L/min and 4 times with a flow discharge of 166.7 L/min on five gully head plots with gully bed lengths of 20 m, which were constructed with similar initial topography (height of the headcuts were 0.5m, the slope of gully beds were from 18.2% to 19.1%) and same soil type (Dry red soil which classified as Rhodoxeralfs in USDA Soil Taxonomy ). Five vegetation condition levels were set on gully bed (the same vegetation density and different lengths of the vegetation sites as 0 m, 4m, 8m, 12m and 16m). Each scouring last 1h and the flow rate, flow depth and flow width were recorded every 10 minutes, after each scouring the topography changes were measured by RTK GPS. The total gully bed erosion volume (TEV) exhibited a significant exponentially decreasing relationship with increasing length of the vegetation sites (VL) due to the similar relationship between the VL and the runoff erosion capacity. The hydrodynamic parameters in the vegetation sites were clearly lower than those in bare sites and caused the average TEV of the vegetation sites to be approximately 3.3 times lower than that of the bare gully bed. However, the vegetation protection efficiency did not increase as the length of the vegetation sites increased. The hydrodynamics of the bare site sections showed a good relationship with TEV, while in the vegetation sites, the relationship was quite weak, indicating that hydraulics conditions were not the main factors influencing gully bed erosion in the

  6. Effects of volcanic and hydrologic processes on forest vegetation: Chaitén Volcano, Chile

    Treesearch

    Frederick J. Swanson; Julia A. Jones; Charles M. Crisafulli; Antonio. Lara

    2013-01-01

    The 2008-2009 eruption of Chaiten Volcano (Chile) involved a variety of volcanic and associated hydrologic processes that damaged nearby forests. These processes included coarse (gravel) and fine (silt to sand) tephra fall, a laterally directed blast, fluvial deposition of remobilized tephra, a variety of low-temperature mass-movement processes, and a pyroclastic flow...

  7. Role of Boreal Vegetation in Controlling Ecosystem Processes and Feedbacks to Climate

    NASA Technical Reports Server (NTRS)

    Chapin, F. S., III; Hooper, D. U.; Hobbie, S. E.; Verville, J. H.

    1997-01-01

    In the field, dark respiration rates are greatest in cores from more northerly locations. This is due in part to greater amounts of dwarf shrub biomass in the more northerly cores, but also to differences in soil organic matter quality. Laboratory incubations of these soils under common conditions show some evidence for greater pools of available carbon in soils from more northerly tundra sites, although the most northerly site does not fit this pattern for reasons which are unclear at this time. While field measurements of cores transplanted among different vegetation types at the same location (Toolik Lake) show relatively small differences in whole ecosystem carbon flux, laboratory incubation of these same soils shows that there are large differences in soil respiration rates under common conditions. This is presumably due to differences in organic matter quality. Microenvironmental site factors (temperature, soil moisture, degree of anaerobiosis, etc.) may be responsible for evening out these differences in the field. These site factors, which differ with slope, aspect, and drainage within a given location along the latitudinal gradient, appear to exert at least as strong a control over carbon fluxes as do macroclimatic factors among sites across the latitudinal gradient. While our field measurements indicate that, in the short term, warming will tend to increase ecosystem losses Of CO2 via respiration more than they will increase plant gross assimilation, the degree to which different topographically-defined plant communities will respond is likely to vary.

  8. Vegetables affect the expression of genes involved in carcinogenic and anticarcinogenic processes in the lungs of female C57BL/6 mice.

    PubMed

    van Breda, Simone G; van Agen, Ebienus; van Sanden, Suzy; Burzykowski, Tomasz; Kleinjans, Jos C; Delft, Joost H van

    2005-11-01

    Worldwide, lung cancer is the most prevalent and lethal malignant disease. In addition to avoidance of the most predominant risk factor, i.e., tobacco use, consumption of high amounts of vegetables and fruits could be an effective means of preventing lung cancer. However, the molecular mechanisms underlying lung cancer risk reduction by vegetables are not clear. In the present study, the effect of vegetables on gene expression changes in the lungs of female C57Bl/6 mice was investigated using cDNA microarray technology. The mice were fed 1 of 8 diets for 2 wk: a control diet containing no vegetables (diet 1); a diet containing a vegetable mixture at 100 (diet 2, 10% dose), 200 (diet 3, 20% dose), or 400 (diet 4, 40% dose) g/kg; or a diet containing cauliflower at 70 (diet 5, 7% dose); carrots at 73 (diet 6, 7.3% dose); peas at 226 (diet 7, 22.6% dose); or onions at 31 (diet 8, 3.1% dose) g/kg. The vegetable mixture consisted of these 4 individual vegetables. After the mice were killed, the lungs were removed and total RNA was isolated from the lungs for expression analysis of 602 genes involved in pathways of (anti)-carcinogenesis. The results of this study suggest that individual vegetables have a higher potential of modulating genes (5 from the 8 modulated genes) in favor of lung cancer risk prevention, in comparison with the vegetable mixture (2 from the 7 modulated genes); the other gene modulations are expected to enhance lung cancer risk. The pathways involved were miscellaneous and included cell growth, apoptosis, biotransformation, and immune response. Furthermore, carrots were able to modulate most gene expressions, and most of these effects occurred in processes that favored lung cancer risk prevention. The current study provides more insight into the genetic mechanisms by which vegetables, in particular carrots, can prevent lung cancer risk.

  9. The Analysis of Seasonal Activity of Photosynthesis and Efficiency of various Vegetative Communities on a Basis NDVI for Modeling of Biosphere Processes

    NASA Astrophysics Data System (ADS)

    Ivanova, A.; Bartsev, S.; Kartushinsky, A.

    The models reflecting the behavior of biosphere as a whole are necessary to effectively study the biosphere processes based on knowledge of the dynamics of regional natural phenomena. For such models it is necessary to select and to systematize regionally dependent types of vegetative covers. Their seasonal dynamics allows to reveal important climatic phenomena and processes. The main purpose of our work is parameterization of seasonal activity photosynthesis and evaluation of productivity for various types of vegetative covers based on satellite data. As the major parameter we used a Normalized Difference Vegetation Index - NDVI, as a quantitative parameter of photosynthesis active biomasses. It is known that seasonal changes of concentration CO2 are caused mainly by seasonal changes of the photosynthesis cycle and the destruction of vegetative biomass of land ecosystems. We combined the method of NDVI satellite data assimilation with ground-true data sets and atmospheric data for modeling carbon cycle in biosphere. The method of definition of seasonal activity of photosynthesis and efficiency of vegetative types covers on temporary sets of NDVI values is based on the use of the set of parameters describing the specific features of each considered vegetative community (efficiency, biomass etc.) and thematic maps, affecting containing the information about various spatially distribute phenomena affecting the behavior of plants (map of temperature distribution, soil types, landscape maps etc.). According to Geographic Information System technologies carried out statistical processing of the GIS-data, which has allowed to allocate the correlation dependencies between: a characteristic landscape, soil cover, surface temperature and NDVI. The laws of interaction and spatial distribution of the considered parameters have been revealed. The test sites with various types of a vegetative cover were analyzed for Eastern Siberia, Russia. We used the satellite data NOAA

  10. DEHYDRATED FRUIT AND VEGETABLES,

    DTIC Science & Technology

    FRUITS , *VEGETABLES, QUALITY CONTROL, DEHYDRATED FOODS, PROCESSING, PACKAGING, STORAGE, TASTE, ODORS, COLORS, ACCEPTABILITY, IMPURITIES, MOISTURE, CONTAMINATION, PEST CONTROL, PHYSICAL PROPERTIES, USSR.

  11. Re-vegetation processes in cutaway peat production fields in Estonia in relation to peat quality and water regime.

    PubMed

    Orru, Mall; Ots, Katri; Orru, Hans

    2016-12-01

    Eighty-one cutaway peat production fields with a total area of about 9000 ha exist and were studied in Estonia in 2005-2015. Only a very small number of the fields (seven) have been restored-either afforested or used for growing berries. The re-vegetation of Estonian cutaway peat production fields is mainly the result of natural processes, which are generally very slow due to an unfavourable water regime or a too thin remaining peat layer. The fields are mostly covered by cotton grass and birches. Often sparse vegetation covers 15-20% of a peat field, but some fields have turned into heaths or grasslands with plant coverage up to 60%. However, due to changes in environmental (mainly hydrological) conditions and peat characteristics (mainly peat type), these areas can also be new niches for several species. A number of moss species new to or rare in Estonia, e.g. Pohlia elongata, Ephemerum serratum, Campylopus introflexus and Bryum oblongum, were recorded.

  12. Evaluation of the assimilation of As by vegetables in contaminated soils submitted to a remediation process

    NASA Astrophysics Data System (ADS)

    Pérez-Sirvent, Carmen; Martinez Sanchez, Maria Jose; Agudo, Ines; Belen Martinez, Lucia; Bech, Jaume

    2016-04-01

    A greenhouse trial was carried out to evaluate the assimilation of heavy metals by three types of plants (lettuce, onion and broccoli), different parts of which are destined for human and farm animals consumption (leaves, roots, fruits). The experiments were carried out to check the validity of the use of calcareous materials to recover soils contaminated with heavy metals. The aim of this work was to apply a technology for decontamination to ensure that As do not enter into the trophic chain at risky levels and analyze and to assess the risk pre and post operational of the different treatments proposed. The materials used was a soils to be remediated (mining soils) and the materials used for remediation were lime filler and Construction and Demolition Waste (CDW). The plants were cultivated in greenhouse with several types of soil. Five experiments were used, namely, Tc (contaminated soil), T1 (uncontaminated soil (blank soil)), T2 (50% T1 + 50% Tc), T3 (Tc + (25%) lime residues coming from quarries) and T4 (Tc + (25%) residues coming from demolition and construction activities). The entire project involves twenty experiments which were prepared from soils highly contaminated mixed with two types of calcareous materials. The total As content of the soils samples, rhizosphere and vegetable samples, were measured and the translocation factor (TF), which is defined as the ratio of metal concentration in the leaves or shoots to the roots, and the Bioconcentration factor (BCF), which is defined as the ratio of metal concentration in the roots to that in soil were calculated. The use of CDR is shown to be a suitable way for remediating soils contaminated by metals. The methodology permits a revalorization of CDW.

  13. The effect of vegetation type and fire on permafrost thaw: An empirical test of a process based model

    NASA Astrophysics Data System (ADS)

    Thierry, Aaron; Estop-Aragones, Cristian; Fisher, James; Hartley, Iain; Murton, Julian; Phoenix, Gareth; Street, Lorna; Williams, Mathew

    2015-04-01

    As conditions become more favourable for plant growth in the high latitudes, most models predict that these areas will take up more carbon during the 21st century. However, vast stores of carbon are frozen in boreal and arctic permafrost, and warming may result in some of this carbon being released to the atmosphere. The recent inclusion of permafrost thaw in large-scale model simulations has suggested that the permafrost feedback could potentially substantially reduce the predicted global net uptake of carbon by terrestrial ecosystems, with major implications for the rate of climate change. However, large uncertainties remain in predicting rates of permafrost thaw and in determining the impacts of thaw in contrasting ecosystems, with many of the key processes missing from carbon-climate models. The role that different plant communities play in insulating soils and protecting permafrost is poorly quantified, with key groups such as mosses absent in many models. But it is thought that they may play a key role in determining permafrost resilience. In order to test the importance of these ecological processes we use a new specially acquired dataset from sites in the Canadian arctic to develop, parameterise and evaluate a detailed process-based model of vegetation-soil-permafrost interactions which includes an insulating moss understory. We tested the sensitivity of modelled active layer depth to a series of factors linked to fire disturbance, which is common in boreal permafrost areas. We show how simulations of active layer depth (ALD) respond to removals of (i) vascular vegetation, (ii) moss cover, and (iii) organic soil layers. We compare model responses to observed patterns from Canada. We also describe the sensitivity of our modelled ALD to changes in temperature and precipitation. We found that four parameters controlled most of the sensitivity in the modelled ALD, linked to conductivity of organic soils and mosses.

  14. Multiscale Precipitation Processes Over Mountain Terrain - Landform and Vegetation Controls of Microphysics and Convection in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Barros, A. P.; Wilson, A. M.; Sun, X.; Duan, Y.

    2015-12-01

    Recent precipitation observations in mountainous regions do not exhibit the classical orographic enhancement with elevation, especially where fog and multi-layer clouds are persistent. The role of landform in modulating moisture convergence patterns and constraining the thermodynamic environment that supports the development of complex vertical structures of clouds and precipitation is discussed first using observations and model results from the IPHEx (Integrated Precipitation and Hydrology Experiment) field campaign in the Southern Appalachian Mountains (SAM). Analysis of the complex spatial heterogeneity of precipitation microphysics in the SAM suggests that seeder-feeder interactions (SFI) among stratiform precipitation, low level clouds (LLC), and fog play a governing role on the diurnal and seasonal cycles of observed precipitation regimes. Further, in the absence of synoptic-scale forcing, results suggest that evapotranspiration makes a significant contribution to the moisture budget in the lower atmosphere, creating super-saturation conditions favorable to CCN activation, LLC formation, and light rainfall. To investigate the role of evapotranspiration on the diurnal cycle of mountain precipitation further, range-scale modeling studies were conducted in the Central Andes. Specifically, high resolution WRF simulations for realistic and quasi-idealized ET withdrawal case-studies show that evapotranspiration fluxes modulated by landform govern convective activity in the lower troposphere, including cloud formation and precipitation processes that account for daily precipitation amounts as high as 50-70% depending on synoptic conditions and season. These studies suggest multiscale vegetation controls of orographic precipitation processes via atmospheric instability on the one hand, and low level super-saturation and local microphysics on the other. A conceptual model of multiscale interactions among vegetation, landform and moist processes over complex

  15. Processes of change for increasing fruit and vegetable consumption among economically disadvantaged African American adolescents.

    PubMed

    Di Noia, Jennifer; Thompson, Debbe

    2012-01-01

    This study sought to identify Transtheoretical Model processes of change associated with consumption of ≥5 daily servings of FVs in a sample of economically disadvantaged African American adolescents (N=549; mean (SD) age=12.44 (.99) years; 61% female; 15% African American Hispanic). Participants completed measures of stages and processes of change, and were ranked according to intake level based on their reported stage. Spearman correlations and independent samples t tests were used in cross-sectional analyses of the relationship between processes of change and FV consumption. Consciousness raising, environmental reevaluation, helping relationships and stimulus control processes were significantly associated with FV consumption (ρ≥.12; p<.01), and were practiced more often by youths who consumed ≥5 daily servings of FVs relative to those who did not (p<.05). Findings highlight the potential of these processes for increasing FV consumption in this population.

  16. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-12-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation results

  17. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    USGS Publications Warehouse

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  18. Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies, part 1: high-pressure processing.

    PubMed

    Terefe, Netsanet Shiferaw; Buckow, Roman; Versteeg, Cornelis

    2014-01-01

    The activity of endogenous deteriorative enzymes together with microbial growth (with associated enzymatic activity) and/or other non-enzymatic (usually oxidative) reactions considerably shorten the shelf life of fruits and vegetable products. Thermal processing is commonly used by the food industry for enzyme and microbial inactivation and is generally effective in this regard. However, thermal processing may cause undesirable changes in product's sensory as well as nutritional attributes. Over the last 20 years, there has been a great deal of interest shown by both the food industry and academia in exploring alternative food processing technologies that use minimal heat and/or preservatives. One of the technologies that have been investigated in this context is high-pressure processing (HPP). This review deals with HPP focusing on its effectiveness for controlling quality-degrading enzymes in horticultural products. The scientific literature on the effects of HPP on plant enzymes, mechanism of action, and intrinsic and extrinsic factors that influence the effectiveness of HPP for controlling plant enzymes is critically reviewed. HPP inactivates vegetative microbial cells at ambient temperature conditions, resulting in a very high retention of the nutritional and sensory characteristics of the fresh product. Enzymes such as polyphenol oxidase (PPO), peroxidase (POD), and pectin methylesterase (PME) are highly resistant to HPP and are at most partially inactivated under commercially feasible conditions, although their sensitivity towards pressure depends on their origin as well as their environment. Polygalacturonase (PG) and lipoxygenase (LOX) on the other hand are relatively more pressure sensitive and can be substantially inactivated by HPP at commercially feasible conditions. The retention and activation of enzymes such as PME by HPP can be beneficially used for improving the texture and other quality attributes of processed horticultural products as well as

  19. Effects of processing methods on the proximate composition and momordicosides K and L content of bitter melon vegetable.

    PubMed

    Donya, Alice; Hettiarachchy, Navam; Liyanage, Rohana; Lay, Jackson; Chen, Pengyin; Jalaluddin, Mohammed

    2007-07-11

    Bitter melon (Mormodica charantia L.) has been associated with health benefits such as hypoglycemic, antiatherogenic, and anti-HIV activities. The vegetable, however, has an unpleasant bitter taste. The purpose of this research was to establish the effect of various processing methods on the moisture, lipid, and protein content of the Sri Lanka variety of bitter melon and to determine the effect of the processing methods on momordicosides K and L contents. The processing methods used were frying, blanching, sun drying, oven drying, freeze drying, and bitter masking with five different commercial bitter masking agents. Moisture, lipid, and protein analyses were done using standard AACC methods. Drying decreased moisture content from 92% to 9.5-10.2%. Frying lowered moisture content to 0.8% while increasing lipid content from 3.6 to 67%. Protein content remained unaffected by treatments. A liquid chromatography-electrospray ionization-mass spectrometry (LC/ESI/MS) method was used to identify momordicosides K and L in methanolic extracts of fresh and processed samples. Only extracted ion chromatographs for blanched bitter melon and bitter melon with MY 68 agent showed the absence of momordicosides K and L.

  20. Application of the microbiological method DEFT/APC to detect minimally processed vegetables treated with gamma radiation

    NASA Astrophysics Data System (ADS)

    Araújo, M. M.; Duarte, R. C.; Silva, P. V.; Marchioni, E.; Villavicencio, A. L. C. H.

    2009-07-01

    Marketing of minimally processed vegetables (MPV) are gaining impetus due to its convenience, freshness and apparent health effect. However, minimal processing does not reduce pathogenic microorganisms to safe levels. Food irradiation is used to extend the shelf life and to inactivate food-borne pathogens. In combination with minimal processing it could improve safety and quality of MPV. A microbiological screening method based on the use of direct epifluorescent filter technique (DEFT) and aerobic plate count (APC) has been established for the detection of irradiated foodstuffs. The aim of this study was to evaluate the applicability of this technique in detecting MPV irradiation. Samples from retail markets were irradiated with 0.5 and 1.0 kGy using a 60Co facility. In general, with a dose increment, DEFT counts remained similar independent of the irradiation while APC counts decreased gradually. The difference of the two counts gradually increased with dose increment in all samples. It could be suggested that a DEFT/APC difference over 2.0 log would be a criteria to judge if a MPV was treated by irradiation. The DEFT/APC method could be used satisfactorily as a screening method for indicating irradiation processing.

  1. Numerical modelling of snow and frozen soil processes for a multi-layer atmosphere-soil-vegetation model

    NASA Astrophysics Data System (ADS)

    Katata, Genki; Mauder, Matthias

    2014-05-01

    Snowcover plays an important role in Earth's climate system because of its high albedo, low thermal conductivity, roughness length, and ability to store water. A sophisticated process-based snow model is useful for representing the complex snow physics. In the present study, an existing multi-layer atmosphere-SOiL-VEGetation model (SOLVEG) developed by the authors was modified to simulate snow and frozen soil processes. The schemes of a multi-layer snow structure for heat and liquid water transports in snow and freeze-thaw processes of soil moisture were incorporated into the model. In the snow scheme, the liquid water transfer in snow was modeled based on the processes of both capillary rise and gravitational drainage in order to accurately simulate water movement in unsaturated snow. The performance of the modified model was tested at the pre-alpine grassland site in TERestrial ENvironmental Observatories (TERENO) networks in Germany. The modified model overall reproduced the temporal changes in observations of surface energy fluxes, albedo, snow depth and surface temperature, and soil temperature and moisture. The measured increases of soil water content due to infiltration of melted snow to the soil were simulated by the modified model. The observed large negative sensible and positive latent heat fluxes associated with the typical south foehn, a warm and dry downslope wind of the Alps, were also reproduced in the simulation.

  2. Temporal processes that contribute to nonlinearity in vegetation responses to ozone exposure and dose

    Treesearch

    Robert L. Heath; Allen S. Lefohn; Robert C. Musselman

    2009-01-01

    Ozone interacts with plant tissue through distinct temporal processes. Sequentially, plants are exposed to ambient O3 hat (1) moves through the leaf boundary layer, (2) is taken up into plant tissue primarily through stomata, and (3) undergoes chemical interaction within plant tissue, first by initiating alterations and then as part of plant...

  3. Inactivation kinetics and photoreactivation of vegetable oxidative enzymes after combined UV-C processing

    USDA-ARS?s Scientific Manuscript database

    The inactivation kinetics of lipoxygenase (LOX), peroxidase (POD) and polyphenoloxidase (PPO) in phosphate buffer (pH 4.0 and 7.0) treated by combined thermal (25-65 C) and UV-C (1-10 min) processes were fitted using a traditional first-order kinetics model and the Weibull distribution function. For...

  4. 7 CFR 318.13-14 - Movement of processed fruits, vegetables, and other products.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-14 Movement of processed... sufficiently as to preclude the survival of any live pests can be moved interstate from Hawaii, Puerto Rico...

  5. 7 CFR 318.13-14 - Movement of processed fruits, vegetables, and other products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-14 Movement of processed... sufficiently as to preclude the survival of any live pests can be moved interstate from Hawaii, Puerto Rico...

  6. 7 CFR 318.13-14 - Movement of processed fruits, vegetables, and other products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-14 Movement of processed... sufficiently as to preclude the survival of any live pests can be moved interstate from Hawaii, Puerto Rico...

  7. 7 CFR 318.13-14 - Movement of processed fruits, vegetables, and other products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-14 Movement of processed... sufficiently as to preclude the survival of any live pests can be moved interstate from Hawaii, Puerto Rico...

  8. 7 CFR 318.13-14 - Movement of processed fruits, vegetables, and other products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-14 Movement of processed... sufficiently as to preclude the survival of any live pests can be moved interstate from Hawaii, Puerto Rico...

  9. Geomorphic controls on Great Basin riparian vegetation at the watershed and process zone scales

    Treesearch

    Blake Meneken Engelhardt

    2009-01-01

    Riparian ecosystems supply valuable resources in all landscapes, but especially in semiarid regions such as the Great Basin of the western United States. Over half of Great Basin streams are thought to be in poor ecological condition and further deterioration is of significant concern to stakeholders. A thorough understanding of how physical processes acting at...

  10. Process of change for increasing fruit and vegetable consumption among economically disadvantaged African American adolescents

    USDA-ARS?s Scientific Manuscript database

    This study sought to identify Transtheoretical Model processes of change associated with consumption of = 5 daily servings of FVs in a sample of economically disadvantaged African American adolescents (N = 549; mean (SD) age = 12.44 (.99) years; 61% female; 15% African American Hispanic). Participan...

  11. [Variations of ground vegetation and soil properties during the growth process of artificial sand-fixing Caragana intermedia plantations in desert steppe].

    PubMed

    Liu, Ren-Tao; Chai, Yong-Qing; Xu, Kun; Zhu, Fan

    2012-11-01

    To study the variation characteristics of ground vegetation and soil properties during the growth process of Caragana intermedia plantations in desert steppe is of scientific significance in revealing the ecological effect of the plantations on the restoration of desertified grassland ecosystem. In this paper, an investigation was conducted on the ground vegetation and soil properties in 6-, 15-, 24-, and 36-yr artificial sand-fixing C. intermedia plantations in desert steppe of Ningxia, Northwest China, with the variation characteristics of the ground vegetation and soil properties during the growth process of the C. intermedia plantations analyzed. With the growth and development of the plantations, the shrub crown width, height, sprout number, and basal diameter all increased significantly, the contents of soil coarse sand and fine sand had significant decrease while those of very fine sand and clay silt were in adverse, the soil organic carbon, total N, and total P contents increased linearly, and the soil pH decreased significantly. During the growth process of the plantations, the species number and individual number of ground vegetation increased significantly, and the vegetation coverage and height presented the order of 24- > 15- > 6- > 36-yr plantation. The soil texture, bulk density, nutrient contents, and pH value were the main factors affecting the species and individual number as well as the coverage of ground vegetation in C. intermedia plantations. It was suggested that in desert steppe, the growth process of artificial sand-fixing C. intermedia plantation benefited the improvement of soil conditions and the recovery of ground vegetation, and promoted the restoration of degraded grassland ecosystem in desert steppe.

  12. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    PubMed

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth

  13. The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate

    NASA Astrophysics Data System (ADS)

    Lozano-Parra, Javier; Schnabel, Susanne; Ceballos-Barbancho, Antonio

    2015-10-01

    Soil water is recognized as the key factor that controls the organization and functioning of dryland ecosystems. However, in spite of its great importance in ecohydrological processes as well as in modelling applications, most of the studies focus on daily or longer timescales, while its dynamics at shorter timescales are very little known. The main objective of this work was to determine the role of vegetation covers (grassland and tree canopy) in the soil hydrological response using measurements with high temporal resolution in evergreen oak woodland with Mediterranean climate. For this, soil water content was measured with capacitive sensors installed in the soil profile at different depths registering continuously with a high time resolution. Three study areas were monitored for two and half hydrological years. Results obtained revealed that rainwater amounts reaching the soil may temporarily be modified by covers according to precipitation properties and antecedent conditions (from dry to wet) before the rain episode. Rainfall amounts triggering a positive soil hydrological response decreased as initial states became drier, being more accentuated below tree canopies. The frequency of re-wetting cycles and the antecedent states seem to be as important or even more than either the duration or the precipitation amount. Therefore, the role of vegetation was more decisive under drier environmental conditions, where events lower than 6 mm and 2 mm never caused soil hydrological response either below tree canopy or grassland, respectively. This is important because initial conditions were independent of seasonality and because more than half of all rainfall events registered amounts smaller than 5 mm. If changes on precipitation patterns turn out in drier conditions, the predominance of such situations could have important ecohydrological consequences in semiarid ecosystems.

  14. The relationship between vegetation, slope stability and channel processes leading to the recruitment and mobilization of large woody debris

    NASA Astrophysics Data System (ADS)

    Gasser, Eric; Dorren, Luuk; Hübl, Johannes; Schwarz, Massimiliano

    2017-04-01

    Large woody debris fulfills important ecological functions in river systems, but it also increases the risk of damage during flood events in populated regions or along traffic routes. The mobilization and recruitment of "fresh" large woody debris has often been documented to be an important component of the total amount of wood transported during flood events in mountainous catchments. Therefore, research interest on recruitment, transport and deposition of large woody debris has arisen during the last decades. Although the main contributing processes are generally acknowledged and several modeling approaches have been proposed, less is known about the precise mechanisms behind recruitment and mobilization in mountainous catchments. Additionally, the role of vegetation in influencing the magnitude and the frequency of these mechanisms is often neglected or not considered in detail. Root reinforcement is particularly recognized to play an important role on bank erosion, bank failure and shallow landslides, but remains particularly difficult to quantify and implement in numerical models. This work presents a new modeling framework for simulating the effect of the spatio-temporal distribution of root reinforcement on bank erosion and slope stability in small mountainous catchments. The main objective of the work is to couple an existing shallow landslide model (SlideforMAP) with a bank erosion module to improve the prediction of large woody debris recruitment at mountainous catchment scales. Therefore the spatial structure of forest and its effect on root reinforcement, as obtained by remote sensing data, will be explicitly accounted for. Based on a first case study, we present results that help to quantify the effect of vegetation on the recruitment of „fresh" large woody debris and allow to detect potential contributing areas in small mountainous catchments. Further, suggestions on where forest management could improve overall slope and bank stability will be made

  15. [Possible use of growth regulators for plant processes in selected grain pod-vegetables].

    PubMed

    Unger, J

    1976-01-01

    The cultivation of beans and peas as grain legumes in large-scale production requires plants with a high yield and suitable for machine harvesting. Growth regulators for plant processes can also be applied to achieve these properties. The effect on the yield by growth regulators, as demonstrated in pot and field trials, seems to enable their application in an established intensive cultivation of beans and peas. Prior to this, however, it has to be demonstrated that these positive effects of growth regulator application can reproduced economically in different locations and with different species.

  16. Evaluation of snow process over short vegetation in land surface modeling

    NASA Astrophysics Data System (ADS)

    Lee, Y. L.; Mahrt, L.

    2003-12-01

    Sublimation and snow melt process over short canopies are examined with a two- layer canopy model. The model's performance is evaluated with observation from the North Park Basin, Colorado, taken during the Cold Land Surface Processe s Experiment. The site is covered with a sage community with an average height of 30cm. Two cases with weak winds are selected for further examination. In the first case, the snow covers the ground surface but there is no intercepte d snow in the canopy. In the second case, the canopy is partially covered with intercepted snow. Improved representation of snow interception, subcanopy parameterization and the change of relative canopy height due to changing snow depth are implemented in the land surface model. The modified model better simulates both sublimation and sensible heat flux from the canopy and ground surface by giving more realistic energy partition between the ground and the canopy. It is shown that the modelled latent heat flux is sensitive to the intercepted snow amount because less intercepted snow leads to greater absorption of solar energy by the canopy, more buoyancy generation of turbulence above the canopy and possible stratification of the subcanopy. Hence, it is necessary to establish an appropriate treatment for intercepted snow amount in the model. Key words: sublimation, short canopy, subcanopy snow

  17. Vegetation of the Elwha River estuary: Chapter 8 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Shafroth, Patrick B.; Fuentes, Tracy L.; Pritekel, Cynthia; Beirne, Matthew M.; Beauchamp, Vanessa B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The Elwha River estuary supports one of the most diverse coastal wetland complexes yet described in the Salish Sea region, in terms of vegetation types and plant species richness. Using a combination of aerial imagery and vegetation plot sampling, we identified 6 primary vegetation types and 121 plant species in a 39.7 ha area. Most of the estuary is dominated by woody vegetation types, with mixed riparian forest being the most abundant (20 ha), followed by riparian shrub (6.3 ha) and willow-alder forest (3.9 ha). The shrub-emergent marsh transition vegetation type was fourth most abundant (2.2 ha), followed by minor amounts of dunegrass (1.75 ha) and emergent marsh (0.2 ha). This chapter documents the abundance, distribution, and floristics of these six vegetation types, including plant species richness, life form, species origin (native or introduced), and species wetland indicator status. These data will serve as a baseline to which future changes can be compared, following the impending removal of Glines Canyon and Elwha Dams upstream on the Elwha River. Dam removals may alter many of the processes, materials, and biotic interactions that influence the estuary plant communities, including hydrology, salinity, sediment and wood transport, nutrients, and plant-microbe interactions.

  18. Evaluating North America Paleoclimate Simulations for 6 ka and 21 ka Using a Combination of Observed Paleovegetation Data and Process-Based Vegetation Model Simulations

    NASA Astrophysics Data System (ADS)

    Shafer, S. L.; Bartlein, P. J.

    2015-12-01

    Paleoclimate model simulations are often evaluated using observed paleovegetation data (e.g., pollen and plant macrofossils) that record vegetation responses to past climate changes. These observed vegetation data can be combined with mechanistic vegetation model simulations to develop process-based evaluations of paleoclimate model simulations. The use of mechanistic vegetation model simulations allows us to identify the particular spatial and temporal features of individual paleoclimate simulations that may be producing agreement or disagreement between the observed and simulated vegetation data. We used this approach to evaluate a set of eight PMIP3 (Paleoclimate Modelling Intercomparison Project phase 3) paleoclimate simulations for 6 ka and 21 ka from the CMIP5 (Coupled Model Intercomparison Project phase 5) database. Climate data were regridded onto a 10-km grid of North America using the PMIP3 vegetation simulation protocol. The regridded climate data were used as input to BIOME4, an equilibrium vegetation model, to simulate 6 ka and 21 ka biomes across the study area. The simulated biome data were compared with observed paleovegetation data from the BIOME 6000 (version 4.2) dataset. In general, agreement between simulated and observed biomes was greater for forest biomes than for non-forest biomes. We evaluated specific instances of disagreement between the simulated and observed biomes to determine whether the biome disagreement was produced by the climate model simulation (e.g., temperature bias), the vegetation model simulation (e.g., inability to simulate important disturbance regimes), the observed paleovegetation data (e.g., limits in the biomization method), or a combination of these factors. The results are summarized and we describe some of the strengths and limitations of this data-model comparison approach for evaluating paleoclimate simulations.

  19. Leaf optical system modeled as a stochastic process. [solar radiation interaction with terrestrial vegetation

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Garratt, M. W.

    1977-01-01

    A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.

  20. Leaf optical system modeled as a stochastic process. [solar radiation interaction with terrestrial vegetation

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Garratt, M. W.

    1977-01-01

    A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.

  1. Sediment Transport Processes over the Seasonally Vegetated Bayhead Delta of the Susquehanna River, Upper Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Sanford, L. P.; Palinkas, C. M.; Gurbisz, C.; Russ, E.; Myrie, A.

    2016-02-01

    Susquehanna Flats (SF) in upper Chesapeake Bay is the subaqueous bayhead delta of the Susquehanna River. It is a large (>50 km2) predominantly sandy feature, with finer sediments towards the southern end. The SF received large sediment loads during the 19th and early 20thcenturies, but sediment loads were curtailed by construction of the Conowingo Dam (CD) several km upstream in 1928. The large beds of submerged grasses (SAV) that historically occupied the SF effectively disappeared following Hurricane Agnes in 1972, but have recovered dramatically in the last decade. The CD also has recently reached sediment storage capacity and episodic sediment loads to the SF are increasing. We carried out observations of physical and sedimentological processes over the SF from 2013-2015, with SAV observations starting several years previously. In combination with nearby continuous monitoring stations, these data provide a glimpse of the processes that control sediment delivery, retention, and bypassing in the vicinity of the SF. The dominant sediment transport feature over the SF is the seasonal influence of the SAV beds. While the shallow depths of the flats tend to focus flow and sediment fluxes into the navigation channel even in winter, seasonal increases in SAV abundance greatly reinforce this pattern. By late summer, both fine sediment erodibility and water column turbidity are significantly lower inside the beds than outside. However, the SAV beds also increase sediment retention. The most dramatic example of this was during a large flow event after a tropical storm in 2011, when large amounts of fine sediment were deposited in the beds. Late spring turbidity levels did not return to normal until the 3rd year after the storm. 7Be distributions in the surface sediments of the bed also show evidence of enhanced sediment retention during the growing season. An idealized flow and sediment transport model of the SF system replicates and expands on these observational results.

  2. Atmospheric pressure plasma jet for bacterial decontamination and property improvement of fruit and vegetable processing wastewater

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Aleam H.; Shariff, Samir M. Al; Ouf, Salama A.; Benghanem, Mohamed

    2016-05-01

    An atmospheric pressure plasma jet was tested for decontaminating and improving the characteristics of wastewater derived from blackberry, date palm, tomato and beetroot processing industries. The jet was generated by blowing argon gas through a cylindrical alumina tube while a high voltage was applied between two electrodes surrounding the tube. Oxygen gas was mixed with argon at the rate of 0.2% and the argon mass flow was fixed at 4.5 slm. Images show that the generated plasma jet penetrated the treated wastewater samples. Plasma emission spectra show the presence of O and OH radicals as well as excited molecular nitrogen and argon. Complete decontamination of wastewater derived from date palm and tomato processing was achieved after 120 and 150 s exposure to the plasma jet, respectively. The bacterial count of wastewater from blackberry and beetroot was reduced by 0.41 and 2.24 log10 colony-forming units (CFU) per ml, respectively, after 180 s. Escherichia coli was the most susceptible bacterial species to the cold plasma while Shigella boydii had the minimum susceptibility, recording 1.30 and 3.34 log10 CFU ml-1, respectively, as compared to the 7.00 log10 initial count. The chemical oxygen demands of wastewater were improved by 57.5-93.3% after 180 s exposure to the plasma jet being tested. The endotoxins in the wastewater were reduced by up to 90.22%. The variation in plasma effectiveness is probably related to the antioxidant concentration of the different investigated wastewaters.

  3. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    NASA Astrophysics Data System (ADS)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S. L.; Poulter, B.; Viovy, N.

    2013-04-01

    Stand-replacing fires are the dominant fire type in North American boreal forest and leave a historical legacy of a mosaic landscape of different aged forest cohorts. To accurately quantify the role of fire in historical and current regional forest carbon balance using models, one needs to explicitly simulate the new forest cohort that is established after fire. The present study adapted the global process-based vegetation model ORCHIDEE to simulate boreal forest fire CO2 emissions and follow-up recovery after a stand-replacing fire, with representation of postfire new cohort establishment, forest stand structure and the following self-thinning process. Simulation results are evaluated against three clusters of postfire forest chronosequence observations in Canada and Alaska. Evaluation variables for simulated postfire carbon dynamics include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index (LAI), and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). The model simulation results, when forced by local climate and the atmospheric CO2 history on each chronosequence site, generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with measurement accuracy (for CO2 flux ~100 g C m-2 yr-1, for biomass carbon ~1000 g C m-2 and for soil carbon ~2000 g C m-2). We find that current postfire forest carbon sink on evaluation sites observed by chronosequence methods is mainly driven by historical atmospheric CO2 increase when forests recover from fire disturbance. Historical climate generally exerts a negative effect, probably due to increasing water stress caused by significant temperature increase without sufficient increase in precipitation. Our simulation results demonstrate that a global

  4. Effect of processing by hydrostatic high pressure of two ready to heat vegetable meals and stability after refrigerated storage.

    PubMed

    Masegosa, Rosa; Delgado-Adámez, Jonathan; Contador, Rebeca; Sánchez-Íñiguez, Francisco; Ramírez, Rosario

    2014-12-01

    The effect of high pressure processing (HPP) (400 and 600 MPa for 1 and 5 min) and the stability during storage were studied in two ready to heat vegetable meals: meal A, mainly composed by pumpkin and broccoli, and meal B, mainly composed by eggplant, zucchini, chard and spinach. The treatment at 600 MPa/5 min was the most effective to reduce the initial microbial loads of the meals and maintained better the microbial safety during storage. HPP had no effect on the physico-chemical and sensory properties. HPP at 600 MPa increased the antioxidant activity of the meal A. In contrast HPP reduced the antioxidant activity of the meal B, although in general high levels of antioxidants were maintained after processing and during storage. In conclusion, treatments at 600 MPa for 5 min were the most suitable to increase the shelf-life of the meals without affecting their physico-chemical, antioxidant and sensory properties. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Tannin fingerprinting in vegetable tanned leather by solid state NMR spectroscopy and comparison with leathers tanned by other processes.

    PubMed

    Romer, Frederik H; Underwood, Andrew P; Senekal, Nadine D; Bonnet, Susan L; Duer, Melinda J; Reid, David G; van der Westhuizen, Jan H

    2011-01-28

    Solid state ¹³C-NMR spectra of pure tannin powders from four different sources--mimosa, quebracho, chestnut and tara--are readily distinguishable from each other, both in pure commercial powder form, and in leather which they have been used to tan. Groups of signals indicative of the source, and type (condensed vs. hydrolyzable) of tannin used in the manufacture are well resolved in the spectra of the finished leathers. These fingerprints are compared with those arising from leathers tanned with other common tanning agents. Paramagnetic chromium (III) tanning causes widespread but selective disappearance of signals from the spectrum of leather collagen, including resonances from acidic aspartyl and glutamyl residues, likely bound to Cr (III) structures. Aluminium (III) and glutaraldehyde tanning both cause considerable leather collagen signal sharpening suggesting some increase in molecular structural ordering. The ²⁷Al-NMR signal from the former material is consistent with an octahedral coordination by oxygen ligands. Solid state NMR thus provides easily recognisable reagent specific spectral fingerprints of the products of vegetable and some other common tanning processes. Because spectra are related to molecular properties, NMR is potentially a powerful tool in leather process enhancement and quality or provenance assurance.

  6. Combining self-affirmation with the extended parallel process model: the consequences for motivation to eat more fruit and vegetables.

    PubMed

    Napper, Lucy E; Harris, Peter R; Klein, William M P

    2014-01-01

    There is potential for fruitful integration of research using the Extended Parallel Process Model (EPPM) with research using Self-affirmation Theory. However, to date no studies have attempted to do this. This article reports an experiment that tests whether (a) the effects of a self-affirmation manipulation add to those of EPPM variables in predicting intentions to improve a health behavior and (b) self-affirmation moderates the relationship between EPPM variables and intentions. Participants (N = 80) were randomized to either a self-affirmation or control condition prior to receiving personally relevant health information about the risks of not eating at least five portions of fruit and vegetables per day. A hierarchical regression model revealed that efficacy, threat × efficacy, self-affirmation, and self-affirmation × efficacy all uniquely contributed to the prediction of intentions to eat at least five portions per day. Self-affirmed participants and those with higher efficacy reported greater motivation to change. Threat predicted intentions at low levels of efficacy, but not at high levels. Efficacy had a stronger relationship with intentions in the nonaffirmed condition than in the self-affirmed condition. The findings indicate that self-affirmation processes can moderate the impact of variables in the EPPM and also add to the variance explained. We argue that there is potential for integration of the two traditions of research, to the benefit of both.

  7. Using UAVs and digital image processing to quantify areas of soil and vegetation

    NASA Astrophysics Data System (ADS)

    Chaves, A. A.; La Scalea, R. A.; Colturato, A. B.; Kawabata, C. L. O.; Furtado, E. L.; Castelo Branco, K. R. L. J.

    2015-09-01

    Unmanned aerial vehicles (UAVs) are becoming a very popular tool for remote sensing and crop monitoring. They are more easily deployed, cheaper and can obtain images with higher spatial-resolution than satellites. Some small, commercial UAVs can obtain images with spatial-resolution as low as 1.5cm per pixel. This opens up the range of possible remote sensing and monitoring applications. Moreover, they can cover large areas in very little time, such as 50 ha in about 20min, which makes UAVs the ideal tool for monitoring large farms and plantations. On the other hand, it is important to know precisely the area covered by farms in order to avoid invasion of other properties or preserved areas, and also to detect flaws in the plantation area. However, it is difficult to measure planted areas in some cases, such as Eucalyptus crops. Therefore, this paper aims to evaluate the use of UAV imagery for precise area measurement in Eucalyptus crops. We developed an image-processing algorithm to segment regions of soil, low biomass and high biomass and tested it on a Eucalyptus plantation in the city of Lenis Paulista -SP, Brazil. Results show that the area quantification is very accurate especially for bare soil regions and this method can be used to estimate areas in other scenarios.

  8. Zn-biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable Lactuca sativa L.

    PubMed

    Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña

    2017-04-01

    Excessive rates of nitrogen (N) fertilizers may result in elevated concentrations of nitrate (NO3(-) ) in plants. Considering that many programs of biofortification with trace elements are being performed, it has become important to study how the application of these elements affects plant physiology and, particularly, N utilization in leaf crops. The main objective of the present study was to determine whether the NO3(-) accumulation and the nitrogen use efficiency was affected by the application of different doses of Zn in Lactuca sativa plants. Zn doses in the range 80-100 µmol L(-1) produced an increase in Zn concentration provoking a decrease of NO3(-) concentration and increase of the nitrate reductase, glutamine synthetase and aspartate aminotransferase activities, as well as the photorespiration processes. As result, we observed an increase in reduced N, total N concentration and N utilization efficiency. Consequently, at a dose of 80 µmol L(-1) of Zn, the amino acid concentration increased significantly. Adequate Zn fertilization is an important critical player in lettuce, especially at a dose of 80 µmol L(-1) of Zn, because it could result in an increase in the Zn concentration, a reduction of NO3(-) levels and an increase the concentration of essential amino acids, with all of them having beneficial properties for the human diet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  9. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of eco-hydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965-1969) from -0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010-2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  10. Basic discriminative and semantic processing in patients in the vegetative and minimally conscious state.

    PubMed

    Erlbeck, Helena; Real, Ruben G L; Kotchoubey, Boris; Mattia, Donatella; Bargak, Jakob; Kübler, Andrea

    2017-03-01

    Patients who survive injuries to the brain following accidents or diseases often acquire a disorder of consciousness (DOC). Assessment of the state of consciousness in these patients is difficult since they are usually incapable of reproducible motor movements. The application of event-related potentials (ERP) recorded via EEG constitutes one promising approach to complement the assessment of cognitive functions in DOC patients. For these assessments, a hierarchical approach was suggested which means that paradigms aiming at higher order ERPs are only presented if early responses were found. In this study, 19 behaviorally unresponsive or low-responsive DOC patients were presented with three auditory paradigms using passive instructions. The paradigms aimed at eliciting the Mismatch Negativity (MMN) and N400 and were applied at two time points. One oddball paradigm (MMN) and two semantic paradigms (word-pairs: N400 Words; sentences: N400 Sentences) were included. The majority of patients (n=15) did not show any response to the stimulation. In the MMN paradigm, an MMN was identified in two patients, in the N400 Words paradigm, only an N1 was identified in one patient, and in the N400 Sentences paradigm, a late positive complex (LPC) was identified in two patients. These data contradict the hierarchical approach since the LPC was identified in patients who did not exhibit an MMN. They further support the notion that even higher information processing as addressed with the N400 paradigms is preserved in a minority of DOC patients. Thus, in this sample, around 10% of the DOC patients exhibited indicators of preserved consciousness. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An integrated modelling framework of catchment-scale ecohydrological processes: 2. The role of water subsidy by overland flow on vegetation dynamics in a semi-arid catchment

    USDA-ARS?s Scientific Manuscript database

    In water-limited regions, surface water and carbon fluxes are strongly controlled by soil water availability, which may be highly variable at very small spatial scales (e.g. metres) because of variations in terrain, soils, and vegetation conditions and to processes of water redistribution along hill...

  12. New Bio-Ceramization Processes Applied to Vegetable Hierarchical Structures for Bone Regeneration: An Experimental Model in Sheep

    PubMed Central

    Filardo, Giuseppe; Tampieri, Anna; Cabezas-Rodríguez, Rafael; Di Martino, Alessandro; Fini, Milena; Giavaresi, Gianluca; Lelli, Marco; Martínez-Fernández, Julian; Martini, Lucia; Ramírez-Rico, Joaquin; Salamanna, Francesca; Sandri, Monica; Sprio, Simone; Marcacci, Maurilio

    2014-01-01

    Bone loss is still a major problem in orthopedics. The purpose of this experimental study is to evaluate the safety and regenerative potential of a new scaffold based on a bio-ceramization process for bone regeneration in long diaphyseal defects in a sheep model. The scaffold was obtained by transformation of wood pieces into porous biomorphic silicon carbide (BioSiC®). The process enabled the maintenance of the original wood microstructure, thus exhibiting hierarchically organized porosity and high mechanical strength. To improve cell adhesion and osseointegration, the external surface of the hollow cylinder was made more bioactive by electrodeposition of a uniform layer of collagen fibers that were mineralized with biomimetic hydroxyapatite, whereas the internal part was filled with a bio-hybrid HA/collagen composite. The final scaffold was then implanted in the metatarsus of 15 crossbred (Merinos-Sarda) adult sheep, divided into 3 groups: scaffold alone, scaffold with platelet-rich plasma (PRP) augmentation, and scaffold with bone marrow stromal cells (BMSCs) added during implantation. Radiological analysis was performed at 4, 8, 12 weeks, and 4 months, when animals were sacrificed for the final radiological, histological, and histomorphometric evaluation. In all tested treatments, these analyses highlighted the presence of newly formed bone at the bone scaffolds' interface. Although a lack of substantial effect of PRP was demonstrated, the scaffold+BMSC augmentation showed the highest value of bone-to-implant contact and new bone growth inside the scaffold. The findings of this study suggest the potential of bio-ceramization processes applied to vegetable hierarchical structures for the production of wood-derived bone scaffolds, and document a suitable augmentation procedure in enhancing bone regeneration, particularly when combined with BMSCs. PMID:24099033

  13. Benchmarking of two terrestrial ecosystem models using a parsimonious set of tests for carbon processes and vegetation phenology

    NASA Astrophysics Data System (ADS)

    Dalmonech, D.; Zaehle, S.

    2010-12-01

    A large proportion of the uncertainty in coupled carbon-cycle climate models stems from uncertainty in the climate response of the terrestrial biosphere. Evaluation of terrestrial biosphere models (TEMs) coupled to climate models is therefore an important task to gain confidence in the predictive capability of these coupled models in response to climate change. Starting from recent works of global model benchmarks initiatives (Randerson et al. 2009, Cadule et al.2010), the present work address the definition of novel tests and quantitative performance measures to discriminate the capability of models to reproduce some observed pattern of carbon cycle as response to climate changes in the last two decades. Observed atmospheric carbon dioxide concentration and remote sensing data on vegetation greenness as were used valuable and precise benchmark to test and evaluate the performance of two models (JSBACH and O-CN) in terms of carbon processes and C exchange with the atmosphere at global spatial scales and on different temporal scales. A set of atmospheric carbon dioxide traits and phenological parameters to be tested and statistical evaluation of model results are defined. In particular, metrics are addressed to detect the capability of the models to reproduce the salient features of the observed processes at seasonal and decadal time scales and along biogeographical gradients. Benchmarking results of model performance are summarized in order to provide an objective and robust measure of ecosystem terrestrial model performance with the goal of facilitating a more direct comparison between models and the identification of structural modelweaknesses. The study highlights the importance to evaluate a wide spectrum of processes but with the need for the individuation of a subset of standard metrics. Ref. Randerson J.T. et al. Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Global Change Biology vol 15, 2009. Cadule et al

  14. New bio-ceramization processes applied to vegetable hierarchical structures for bone regeneration: an experimental model in sheep.

    PubMed

    Filardo, Giuseppe; Kon, Elizaveta; Tampieri, Anna; Cabezas-Rodríguez, Rafael; Di Martino, Alessandro; Fini, Milena; Giavaresi, Gianluca; Lelli, Marco; Martínez-Fernández, Julian; Martini, Lucia; Ramírez-Rico, Joaquin; Salamanna, Francesca; Sandri, Monica; Sprio, Simone; Marcacci, Maurilio

    2014-02-01

    Bone loss is still a major problem in orthopedics. The purpose of this experimental study is to evaluate the safety and regenerative potential of a new scaffold based on a bio-ceramization process for bone regeneration in long diaphyseal defects in a sheep model. The scaffold was obtained by transformation of wood pieces into porous biomorphic silicon carbide (BioSiC®). The process enabled the maintenance of the original wood microstructure, thus exhibiting hierarchically organized porosity and high mechanical strength. To improve cell adhesion and osseointegration, the external surface of the hollow cylinder was made more bioactive by electrodeposition of a uniform layer of collagen fibers that were mineralized with biomimetic hydroxyapatite, whereas the internal part was filled with a bio-hybrid HA/collagen composite. The final scaffold was then implanted in the metatarsus of 15 crossbred (Merinos-Sarda) adult sheep, divided into 3 groups: scaffold alone, scaffold with platelet-rich plasma (PRP) augmentation, and scaffold with bone marrow stromal cells (BMSCs) added during implantation. Radiological analysis was performed at 4, 8, 12 weeks, and 4 months, when animals were sacrificed for the final radiological, histological, and histomorphometric evaluation. In all tested treatments, these analyses highlighted the presence of newly formed bone at the bone scaffolds' interface. Although a lack of substantial effect of PRP was demonstrated, the scaffold+BMSC augmentation showed the highest value of bone-to-implant contact and new bone growth inside the scaffold. The findings of this study suggest the potential of bio-ceramization processes applied to vegetable hierarchical structures for the production of wood-derived bone scaffolds, and document a suitable augmentation procedure in enhancing bone regeneration, particularly when combined with BMSCs.

  15. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes

    NASA Astrophysics Data System (ADS)

    Ge, Zhen-Ming; Wang, Heng; Cao, Hao-Bin; Zhao, Bin; Zhou, Xiao; Peltola, Heli; Cui, Li-Fang; Li, Xiu-Zhen; Zhang, Li-Quan

    2016-06-01

    The impacts of sea-level rise (SLR) on coastal ecosystems have attracted worldwide attention in relation to global change. In this study, the salt marsh model for the Yangtze Estuary (SMM-YE, developed in China) and the Sea Level Affecting Marshes Model (SLAMM, developed in the U.S.) were used to simulate the effects of SLR on the coastal salt marshes in eastern China. The changes in the dominant species in the plant community were also considered. Predictions based on the SLAMM indicated a trend of habitat degradation up to 2100; total salt marsh habitat area continued to decline (4–16%) based on the low-level scenario, with greater losses (6–25%) predicted under the high-level scenario. The SMM-YE showed that the salt marshes could be resilient to threats of SLR through the processes of accretion of mudflats, vegetation expansion and sediment trapping by plants. This model predicted that salt marsh areas increased (3–6%) under the low-level scenario. The decrease in the total habitat area with the SMM-YE under the high-level scenario was much lower than the SLAMM prediction. Nevertheless, SLR might negatively affect the salt marsh species that are not adapted to prolonged inundation. An adaptive strategy for responding to changes in sediment resources is necessary in the Yangtze Estuary.

  16. Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process.

    PubMed

    Lu, Wen-Jing; Wang, Hong-Tao; Nie, Yong-Feng; Wang, Zhi-Chao; Huang, De-Yang; Qiu, Xiang-Yang; Chen, Jin-Chun

    2004-01-01

    A lab-scale composting experiment was carried out using vegetable and flower stalks waste to study the effectiveness of ligno-cellulolytic microorganisms (LCMs) obtained from the previous isolation on composting process, especially on enhancement of biodegradation rate of these organic materials. The addition of LCMs to compost showed promised to be a valuable asset by rendering timely benefits in efficiency, maturity, and quality of the composting. This was evidenced by a significant increase of temperature, O2 consumption and CO2 emission, and population density of LCMs in compost mass compared with that of biotic (addition of culture of horse feces) and abiotic (1% molasses amendment) treatments, as well as control trial. The phytotoxicity assay showed that the substrate became mature after 60 days' composting. The LCMs inoculation enhanced the biodegradation of the composting materials as evidenced by an increasing screening ratio (1.2 cm sieve pore) of 34.5% in the treated trail, compared with that of control, which elucidated that big advantage of adding selected inoculants over other treatment, and screening ratio is a reasonable index to compare the quality of different compost. However, the inoculation seemed to have no significant effect on the moisture content, pH, and the final organic carbon of the composting materials.

  17. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes.

    PubMed

    Ge, Zhen-Ming; Wang, Heng; Cao, Hao-Bin; Zhao, Bin; Zhou, Xiao; Peltola, Heli; Cui, Li-Fang; Li, Xiu-Zhen; Zhang, Li-Quan

    2016-06-23

    The impacts of sea-level rise (SLR) on coastal ecosystems have attracted worldwide attention in relation to global change. In this study, the salt marsh model for the Yangtze Estuary (SMM-YE, developed in China) and the Sea Level Affecting Marshes Model (SLAMM, developed in the U.S.) were used to simulate the effects of SLR on the coastal salt marshes in eastern China. The changes in the dominant species in the plant community were also considered. Predictions based on the SLAMM indicated a trend of habitat degradation up to 2100; total salt marsh habitat area continued to decline (4-16%) based on the low-level scenario, with greater losses (6-25%) predicted under the high-level scenario. The SMM-YE showed that the salt marshes could be resilient to threats of SLR through the processes of accretion of mudflats, vegetation expansion and sediment trapping by plants. This model predicted that salt marsh areas increased (3-6%) under the low-level scenario. The decrease in the total habitat area with the SMM-YE under the high-level scenario was much lower than the SLAMM prediction. Nevertheless, SLR might negatively affect the salt marsh species that are not adapted to prolonged inundation. An adaptive strategy for responding to changes in sediment resources is necessary in the Yangtze Estuary.

  18. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes

    PubMed Central

    Ge, Zhen-Ming; Wang, Heng; Cao, Hao-Bin; Zhao, Bin; Zhou, Xiao; Peltola, Heli; Cui, Li-Fang; Li, Xiu-Zhen; Zhang, Li-Quan

    2016-01-01

    The impacts of sea-level rise (SLR) on coastal ecosystems have attracted worldwide attention in relation to global change. In this study, the salt marsh model for the Yangtze Estuary (SMM-YE, developed in China) and the Sea Level Affecting Marshes Model (SLAMM, developed in the U.S.) were used to simulate the effects of SLR on the coastal salt marshes in eastern China. The changes in the dominant species in the plant community were also considered. Predictions based on the SLAMM indicated a trend of habitat degradation up to 2100; total salt marsh habitat area continued to decline (4–16%) based on the low-level scenario, with greater losses (6–25%) predicted under the high-level scenario. The SMM-YE showed that the salt marshes could be resilient to threats of SLR through the processes of accretion of mudflats, vegetation expansion and sediment trapping by plants. This model predicted that salt marsh areas increased (3–6%) under the low-level scenario. The decrease in the total habitat area with the SMM-YE under the high-level scenario was much lower than the SLAMM prediction. Nevertheless, SLR might negatively affect the salt marsh species that are not adapted to prolonged inundation. An adaptive strategy for responding to changes in sediment resources is necessary in the Yangtze Estuary. PMID:27334452

  19. Color, flavor, texture, and nutritional quality of fresh-cut fruits and vegetables: desirable levels, instrumental and sensory measurement, and the effects of processing.

    PubMed

    Barrett, Diane M; Beaulieu, John C; Shewfelt, Rob

    2010-05-01

    The color, flavor, texture, and the nutritional value of fresh-cut fruit and vegetable products are factors critical to consumer acceptance and the success of these products. In this chapter, desirable and undesirable quality attributes of fresh-cut fruit and vegetable products are reviewed. Both instrumental and sensory measurements for determining these critical quality attributes are discussed. The advantages and disadvantages of sensory and instrumental quality measurements are described. A review of typical unit operations involved in the production of fresh-cut products is presented. The effects of fresh-cut processing techniques and treatments on sensory quality, including the appearance, texture, flavor (taste and aroma) of vegetables, and fruits are detailed.

  20. Residual behaviour of profenofos on some field-grown vegetables and its removal using various washing solutions and household processing.

    PubMed

    Radwan, M A; Abu-Elamayem, M M; Shiboob, M H; Abdel-Aal, A

    2005-04-01

    Profenofos (Selecron 72% EC), was sprayed on field-grown pepper and eggplant at the recommended rate of 1.28 kg a,i/ha. Fruit samples were collected at 1 h to 14 days after application and analysed to determine the content and dissipation rate of profenofos. The effect of different washing solutions and some household processing on the removal of such residues from treated vegetables were also investigated. Profenofos residues were quantified by using gas chromatography. The results showed that the consumable safety time were found to be 10 days on sweet pepper and 14 days on hot pepper and eggplant fruits. The initial disappearance of profenofos appeared to follow first order kinetics with different rates of reaction of 0.38, 0.40 and 0.35 day(-1) for hot pepper, sweet pepper and eggplant, respectively. The corresponding half-lives (t1/2) were 1.84, 1.74 and 1.96 days. Also, the results indicated that tap water, potassium permenganate and acetic acid solution gave high percent removal of profenofos residues from hot and sweet pepper fruits, while no detectable residues was found in eggplant fruit after washing with soap and acetic acid solutions. In general, all tested washing solutions gave higher percent removal of profenofos residues from eggplant fruit than the two other pepper fruits. Blanching and frying of pepper and eggplant fruits resulted in great reduction to almost completely removed (approximately 100%) of the deposited profenofos. In addition, pickling process removed 92.58 and 95.61% from hot pepper fruit after one week and after two weeks, respectively.

  1. Towards an understanding of coupled physical and biological processes in the cultivated Sahel - 2. Vegetation and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Boulain, N.; Cappelaere, B.; Ramier, D.; Issoufou, H. B. A.; Halilou, O.; Seghieri, J.; Guillemin, F.; Oï, M.; Gignoux, J.; Timouk, F.

    2009-08-01

    SummaryThis paper analyses the dynamics of vegetation and carbon during the West African monsoon season, for millet crop and fallow vegetation covers in the cultivated area of the Sahel. Comparing these two dominant land cover types informs on the impact of cultivation on productivity and carbon fluxes. Biomass, leaf area index (LAI) and carbon fluxes were monitored over a 2-year period for these two vegetation systems in the Wankama catchment of the AMMA (African monsoon multidisciplinary analyses) experimental super-site in West Niger. Carbon fluxes and water use efficiency observed at the field scale are confronted with ecophysiological measurements (photosynthetic response to light, and relation of water use efficiency to air humidity) made at the leaf scale for the dominant plant species in the two vegetation systems. The two rainy seasons monitored were dissimilar with respect to rain patterns, reflecting some of the interannual variability. Distinct responses in vegetation development and in carbon dynamics were observed between the two vegetation systems. Vegetation development in the fallow was found to depend more on rainfall distribution along the season than on its starting date. A quite opposite behaviour was observed for the crop vegetation: the date of first rain appears as a principal factor of millet growth. Carbon flux exchanges were well correlated to vegetation development. High responses of photosynthesis to light were observed for the dominant herbaceous and shrub species of the fallow at the leaf and field scales. Millet showed high response at the leaf scale, but a much lesser response at the field scale. This pattern, also observed for water use efficiency, is to be related to the low density of the millet cover. A simple LAI-based model for scaling up the photosynthetic response from leaf to field scale was found quite successful for the fallow, but was less conclusive for the crop, due to spatial variability of LAI. Time/space variations

  2. Parent material, vegetation or slope position - which soil-forming factor controls the intensity of podzolization process in the soils of the Sudety Mountains montane zone?

    NASA Astrophysics Data System (ADS)

    Musielok, Łukasz

    2016-04-01

    Climatic conditions, parent material and vegetation type are considered to be the main soil-forming factors controlling podzolization process advancement. Moreover, in hilly and mountainous areas properties of soils that are undergoing podzolization process are influenced significantly by its location on a slope, due to lateral translocation of soil solutions. The Sudety Mts. are a medium-high mountain range characterized by geological mosaic with many different sedimentary, igneous and metamorphic rocks, mostly poor in alkali elements. Most of the Sudety Mts. area lies in a lower montane zone, where the dominant natural vegetation were temperate mixed and deciduous forests. However, since 18th century natural vegetation was significantly transformed by widespread introduction of spruce monocultures. These distinguishing features of the Sudety Mts. natural environment are considered to be responsible for prevalence of podzolized soil in this area, however the intensity of podzolization process is very differentiated. The aim of presented research was to determine the influence of varying parent material, different vegetation types and different slope positions the on the soil properties variability, and thus, to answer the question which of the analyzed soil-forming factors is controlling the podzolization process advancement in the Sudety Mountains montane zone? Data from A, E, Bs and C horizons of 16 soil profiles developed from different parent materials (granite, sandstone, andesites and mica schists), located under various types of vegetation (spruce and beech forests) and in different slope positions (upper, middle and lower parts of the slopes) were taken into the analysis. All analyzed soil profiles were located in lower montane zone between 550 and 950 m a. s. l. to avoid the influence of varying climatic conditions. One-way ANOVA and Principal Components Analysis (PCA) were used to analyze differentiation of soil texture, pH, organic carbon and nitrogen

  3. Morphological and photosynthetic variations in the process of spermatia formation from vegetative cells in Porphyra yezoensis Ueda (Bangiales, Rhodophyta) and their responses to desiccation.

    PubMed

    Yang, Rui-Ling; Zhou, Wei; Shen, Song-Dong; Wang, Guang-Ce; He, Lin-Wen; Pan, Guang-Hua

    2012-05-01

    Porphyra yezoensis has a macroscopic foliage gametophyte phase with only a single cell layer, and is ideally suited for the study of the sexual differentiation process, from the vegetative cell to the spermatia. Firstly, we compared variations in the responses of the vegetative and male sectors to desiccation. Later, cell tracking experiments were carried out during the formation of spermatia from vegetative cells. The two sectors showed similar tolerance to desiccation, and the formation of spermatia from vegetative cells was independent of the degree of desiccation. Both light and scanning electron microscopy (SEM) observations of the differentiation process showed that the formation of spermatia could be divided into six phases: the one-cell, two-cell, four-cell, eight-cell, pre-release and spermatia phases. Photomicrographs of Fluorescent Brightener staining showed that the released spermatia had no cell walls. Photosynthetic data showed that there was a significant rise in Y(II) in the four-cell phase, indicating an increase in photosynthetic efficiency of PSII during this phase. We propose that this photosynthetic rise may be substantial and provide the increased energy needed for the formation and release of spermatia in P. yezoensis.

  4. Implementation of strategies to increase adolescents' access to fruit and vegetables at school: process evaluation findings from the Boost study.

    PubMed

    Aarestrup, Anne Kristine; Suldrup Jørgensen, Thea; Jørgensen, Sanne Ellegaard; Hoelscher, Deanna M; Due, Pernille; Krølner, Rikke

    2015-02-06

    Access to fruit and vegetables (FV) is associated with adolescents' FV consumption. However, little is known about implementation of strategies to increase access to FV at schools. We examined the implementation of two environmental components designed to increase access to FV at Danish schools. We used data from 20 intervention schools involved in the school-based multicomponent Boost trial targeting 13-year-olds' FV consumption. The environmental components at school included daily provision of free FV and promotion of a pleasant eating environment. Questionnaire data was collected by the end of the nine-month intervention period among 1,121 pupils (95%), from all school principals (n = 20) and half way through the intervention period and by the end of the intervention among 114 teachers (44%). The implementation of the components was examined descriptively using the following process evaluation measures; fidelity, dose delivered, dose received and reach. Schools with stable high implementation levels over time were characterised by context, intervention appreciation and implementation of other components. For all process evaluation measures, the level of implementation varied by schools, classes and over time. Dose received: 45% of pupils (school range: 13-72%, class range: 7-77%) ate the provided FV daily; 68% of pupils (school range: 40-93%, class range: 24-100%) reported that time was allocated to eating FV in class. Reach: The intake of FV provided did not differ by SEP nor gender, but more girls and low SEP pupils enjoyed eating FV together. Dose delivered: The proportion of teachers offering FV at a daily basis decreased over time, while the proportion of teachers cutting up FV increased over time. Schools in which high proportions of teachers offered FV daily throughout the intervention period were characterized by being: small; having a low proportion of low SEP pupils; having a school food policy; high teacher- and pupil intervention appreciation

  5. ChSte7 Is Required for Vegetative Growth and Various Plant Infection Processes in Colletotrichum higginsianum

    PubMed Central

    Chen, Meijuan; Yan, Yaqin; Gu, Qiongnan; Huang, Junbin

    2016-01-01

    Colletotrichum higginsianum is an important hemibiotrophic phytopathogen that causes crucifer anthracnose in various regions of the world. In many plant-pathogenic fungi, the Ste11-Ste7-Fus3/Kss1 kinase pathway is essential to pathogenicity and various plant infection processes. To date, the role of ChSte7 in C. higginsianum encoding a MEK orthologue of Ste7 in Saccharomyces cerevisiae has not been elucidated. In this report, we investigated the function of ChSte7 in the pathogen. The ChSte7 is predicted to encode a 522-amino-acid protein with a S_TKc conserved domain that shares 44% identity with Ste7 in S. cerevisiae. ChSte7 disruption mutants showed white colonies with irregularly shaped edges and extremely decreased growth rates and biomass productions. The ChSte7 disruption mutants did not form appressoria and showed defects in pathogenicity on leaves of Arabidopsis thaliana. When inoculated onto wounded leaf tissues, the ChSte7 disruption mutants grew only on the surface of host tissues but failed to cause lesions beyond the wound site. In contrast, both the wild-type and complementation strains showed normal morphology, produced appressoria, and caused necrosis on leaves of Arabidopsis. Analysis with qRT-PCR suggested that ChSte7 was highly expressed during the late stages of infection. Taken together, our results demonstrate that ChSte7 is involved in regulation of vegetative growth, appressorial formation of C. higginsianum, and postinvasive growth in host tissues. PMID:27563675

  6. The impact of biopreservatives and storage temperature in the quality and safety of minimally processed mixed vegetables for soup.

    PubMed

    Alvarez, María V; Ponce, Alejandra G; Mazzucotelli, Cintia A; Moreira, María R

    2015-03-30

    The combined effects of bioactive agents (tea tree essential oil, propolis extract and gallic acid) and storage temperature on the microbiological and sensory quality of fresh-cut mixed vegetables for soup (celery, leek and butternut squash) were studied with the objective of preserving its quality and safety. Refrigeration temperature was confirmed as the main factor to limit the growth of spoilage and pathogenic microorganisms. Biopreservatives applied on mixed vegetables were effective only when combined with optimal refrigeration temperature (5 °C). Bioactive compounds showed slight effectiveness in controlling the microbiota present in mixed vegetables, although coliforms were greatly reduced by gallic acid and propolis treatments, achieving 0.5-2 log unit reductions during storage. Also, these agents showed antimicrobial activity against endogenous Escherichia coli and inoculated E. coli O157:H7, exerting a bacteriostatic effect and reducing population counts by 0.9-1.2 log CFU g(-1) at 10 days of refrigerated storage. The combination of propolis treatment with refrigerated storage conditions effectively preserved the sensory quality and prolonged the sensory shelf life of fresh-cut mixed vegetables by 3 days. The use of natural agents such as propolis extract to preserve the quality and safety of mixed vegetables for soup might be an interesting option to address the concerns of the consumer about the use of synthetic chemical antimicrobials potentially harmful to health. © 2014 Society of Chemical Industry.

  7. Understanding soil erosion process within herbaceous vegetative hedges using plant functional traits approach in North-West Europe

    NASA Astrophysics Data System (ADS)

    Kervroëdan, Léa; Armand, Romain; Saunier, Mathieu; Faucon, Michel-Pierre

    2017-04-01

    Runoff and soil erosion induce major environmental and economic damages. Concentrated runoff control by aboveground plant biomass in upstream areas constitutes a key feature to reduce runoff and soil erosion in Western Europe (WE). Indeed, aboveground plant biomass can reduce runoff and soil erosion respectively by increasing hydraulic roughness and trapping sediments. However, studies of plant effect on runoff reduction are usually based on the taxonomical characterisation of species and do not refer to effect of aboveground plant functional traits. Plant functional traits approach allows to understand ecosystem processes and quantify services. Traits effect could vary depending on hydrological processes (i.e., discharge) and their aggregation could have a synergetic effect on hydraulic roughness and erosion reduction. In this study, objectives are to i) examine effects of aboveground plant functional traits of herbaceous hedges on hydraulic roughness; ii) test the effects of their aggregation on hydraulic roughness. Seven aboveground functional traits were measured on 14 indigenous plant species from North-West Europe with a high morphological variability (stem and leaf densities; stem diameter, stiffness and dry matter content; leaf area and specific leaf area (SLA)). Those species are perennial herbaceous caespitose or comprising dry biomass in winter. Effects of plant functional traits and their abundance within the community on hydraulic roughness were examined using a runoff simulator at four discharges. Furthermore, the effect of plant functional diversity was analysed using four monospecific (mono-trait) conditions compared to multispecific (multi-traits) conditions. Results showed traits and their abundance influence hydraulic roughness. Indeed, leaf density and leaf area (traits), as well as plant community weighted stem, leaf and shoot areas, stem diameter and SLA are significantly correlated to hydraulic roughness. Moreover, leaf density and leaf area

  8. The fire effect on Cerrado: Analysis of the erosive process associated with native vegetation by the use of experimental plots

    NASA Astrophysics Data System (ADS)

    Costa, Yasmmin; Rodrigues, Sílvio

    2015-04-01

    In Brazil vast areas of vegetation are devastated each year by the use of fire that recorded more than 200,000 hotspots annually. In this context, the state of Minas Gerais appears first in the number of fires and burned areas due to its long stretch of reforested area in an environment where a prolonged dry season contributes to the occurrence and spread of fire in the Cerrado vegetation. This research consists of a comparative study through the controlled application of fire under different conditions of natural vegetation of the focusing on the change in rates of runoff, sediment production and vegetation density in order to evaluate the influence of burning related to soil erosion. The area of study is located in Uberlândia at an altitude of 850 meters above sea level and in the respective geographic coordinates 18°56'56"S and 48°12'21"W that composes the watershed of Glória stream. The climate is characterized by dry winters and rainy summer. On this area five experimental plots was established from the specific characteristic of its vegetation cover, slope and drainage, thus differentiated: well drained soil with the presence of a dense grass (plot A), well drained soil with the presence of shrub and grasses (plot B), poorly drained with a non-dense grass (plot C), well drained soil with grass (plot D), and well drained with grasses and tree cover(plot E). The plots have 1m2 that is connected with a trough collector that concentrate the water flow generated by runoff with a 30 liter gallon that was weekly measured. The data relating to runoff and sediment yield were obtained from the collection of water derived from water stored in gallons, in which first was homogenized, measured quantity and collected 1 liter of water to be filtrated in the laboratory. The analysis method of vegetation density was performed based on the methodology proposed by Pinese Junior, Cruz and Rodrigues (2008), using the software ENVI 4.3 to interpret and quantify the image

  9. Simulating the effects of native vegetation configurations on water quality using a multi-agent system coupled to a distributed hydrological process model

    NASA Astrophysics Data System (ADS)

    Ryan, J. G.; McAlpine, C. A.; Ludwig, J. A.

    2004-12-01

    Within Australia, excessive clearing of native vegetation has resulted in many landscapes becoming increasingly dysfunctional with respect to the retention of water and nutrients, and the maintenance of biodiversity. This problem is being addressed by the National Action Plan for Salinity and Water Quality, which promotes the management of vegetation cover at the farm and catchment scale to: stabilize soils; regulate groundwater to control dryland salinity; minimize chemical residues, nutrients, and sediment run-off to streams and waterways; as well as the maintenance of environmental flows for healthy waterways. However, the performance of potential landscape designs for the retention of water, nutrients and sediments, such as the reestablishment of tree belts and riparian vegetation, must be socially and economically feasible as well as improving landscape function. The implementation of alternative design strategies occurs at the farm-scale, but also must be applicable at the hill-slope and catchment scales, as well as incorporating temporal variability, and be practical to implement where data is limiting. A method is presented based upon a coupled multi-agent system (MAS) simulation and distributed parameter hydrological process model to optimize the integration of native vegetation within agroecosystems, in order to maintain desired outcomes for sustainable landscape function.

  10. Ecosystem processes at the watershed scale: hydrologic vegetation gradient as an indicator for lateral hydrologic connectivity of headwater catchments

    Treesearch

    Taehee Hwang; James M. Vose; Christina. Tague

    2012-01-01

    Lateral water flow in catchments can produce important patterns in water and nutrient fluxes and stores and also influences the long-term spatial development of forest ecosystems. Specifically, patterns of vegetation type and density along hydrologic flow paths can represent a signal of the redistribution of water and nitrogen mediated by lateral hydrologic flow. This...

  11. Site specific diel methane emission mechanisms in landfills: A field validated process based on vegetation and climate factors.

    PubMed

    Xin, Danhui; Hao, Yongxia; Shimaoka, Takayuki; Nakayama, Hirofumi; Chai, Xiaoli

    2016-11-01

    Diel methane emission fluxes from a landfill that was covered by vegetation were investigated to reveal the methane emission mechanisms based on the interaction of vegetation characteristics and climate factors. The methane emissions showed large variation between daytime and nighttime, and the trend of methane emissions exhibited clear bimodal patterns from both Setaria viridis- and Neyraudia reynaudiana-covered areas. Plants play an important role in methane transportation as well as methane oxidation. The notable decrease in methane emissions after plants were cut suggests that methane transportation via plants is the primary way of methane emissions in the vegetated areas of landfill. Within plants, the methane emission fluxes were enhanced due to a convection mechanism. Given that the methane emission flux is highly correlated with the solar radiation during daytime, the convection mechanism could be attributed to the increase in solar radiation. Whereas the methane emission flux is affected by a combined impact of the wind speed and pedosphere characteristics during nighttime. An improved understanding of the methane emission mechanisms in vegetated landfills is expected to develop a reliable model for landfill methane emissions and to attenuate greenhouse gas emissions from landfills.

  12. Dietary fruit, vegetable, fat, and red and processed meat intakes and Barrett’s esophagus risk: a systematic review and meta-analysis

    PubMed Central

    Zhao, Zhanwei; Pu, Zhongshu; Yin, Zifang; Yu, Pengfei; Hao, Yiming; Wang, Qian; Guo, Min; Zhao, Qingchuan

    2016-01-01

    The relationships between dietary fruit, vegetable, fat, and red and processed meat intakes and Barrett’s esophagus (BE) risk remain inconclusive. We conducted a systematic review and meta-analysis to summarize the available evidence on these issues. PubMed, EMBASE and the Cochrane Library were searched for studies published from inception through October 2015. A total of eight studies were included in this analysis. Fruit intake was not associated with BE risk (OR = 0.65, 95% CI = 0.37–1.13), but vegetable intake was strongly associated with BE risk (OR = 0.45, 95% CI = 0.29–0.71). Saturated fat, red meat and processed meat intakes were not associated with BE risk with OR = 1.25 (95% CI = 0.82–1.91), OR = 0.85 (95% CI = 0.61–1.17) and OR = 1.03 (95% CI = 0.73–1.46), respectively. Dietary vegetable not fruits intake may be associated with decreased BE risk. Fat and red and processed meat intakes may not contribute to an increased BE risk. Well-designed, large prospective studies with better established dose-response relationships are needed to further validate these issues. PMID:27256629

  13. Modelling vegetated dune landscapes

    NASA Astrophysics Data System (ADS)

    Baas, A. C. W.; Nield, J. M.

    2007-03-01

    This letter presents a self-organising cellular automaton model capable of simulating the evolution of vegetated dunes with multiple types of plant response in the environment. It can successfully replicate hairpin, or long-walled, parabolic dunes with trailing ridges as well as nebkha dunes with distinctive deposition tails. Quantification of simulated landscapes with eco-geomorphic state variables and subsequent cluster analysis and PCA yields a phase diagram of different types of coastal dunes developing from blow-outs as a function of vegetation vitality. This diagram indicates the potential sensitivity of dormant dune fields to reactivation under declining vegetation vitality, e.g. due to climatic changes. Nebkha simulations with different grid resolutions demonstrate that the interaction between the (abiotic) geomorphic processes and the biological vegetation component (life) introduces a characteristic length scale on the resultant landforms that breaks the typical self-similar scaling of (un-vegetated) bare-sand dunes.

  14. Climate Extremes, Vegetation Change, and Decoupling of Interactive Fire-Grazing Processes Exacerbate Fly Parasitism of Cattle.

    PubMed

    Scasta, John D; Talley, Justin L; Engle, David M; Debinski, Diane M

    2017-02-17

    We assessed local horn fly (Haematobia irritans L.) and face fly (Musca autumnalis De Geer) communities on cattle in 2012 and 2013 relative to vegetation and climate data to understand how parasitism of cattle is influenced by change in climate and vegetation structure. We compared heterogeneity management using spatially and temporally discrete fires (i.e., patch-burning one-third of a pasture annually) to homogeneity management (i.e., burning entire pasture in 2012 then no burning in 2013), with cattle grazing all years in both treatments. Predicted emergence of horn flies and face flies was 24 and 34 d earlier in 2012 associated with earlier spring warming, a significant deviation from the five-year mean. Intraannual horn fly dynamics were explained by concurrent high ambient air temperature the day of observations, but face flies were explained by low ambient air temperatures and dry conditions 3 wk before observations. Importance values of information for the theoretic models including fire treatments ranged from 0.89 to 1, indicating that both horn flies and face flies are sensitive to habitat alterations and fire-driven animal movements. Ordination indicates herds on unburned pastures were dissimilar to herds on pastures burned with patchy fires or pastures burned completely and species-specific fly responses to different vegetation structure metrics. For example, horn flies were correlated with vegetation visual obstruction, and face flies were correlated with woody plant cover. Vegetation structure may be as important as climate in driving the dynamics of fly parasites of cattle.

  15. Headspace components that discriminate between thermal and high pressure high temperature treated green vegetables: identification and linkage to possible process-induced chemical changes.

    PubMed

    Kebede, Biniam T; Grauwet, Tara; Tabilo-Munizaga, Gipsy; Palmers, Stijn; Vervoort, Liesbeth; Hendrickx, Marc; Van Loey, Ann

    2013-12-01

    For the first time in literature, this study compares the process-induced chemical reactions in three industrially relevant green vegetables: broccoli, green pepper and spinach treated with thermal and high pressure high temperature (HPHT) processing. Aiming for a fair comparison, the processing conditions were selected based on the principle of equivalence. A comprehensive integration of MS-based metabolic fingerprinting techniques, advanced data preprocessing and statistical data analysis has been implemented as untargeted/unbiased multiresponse screening tool to uncover changes in the volatile fraction. For all vegetables, thermal processing, compared to HPHT, seems to enhance Maillard and Strecker degradation reaction, triggering the formation of furanic compounds and Strecker aldehydes. In most cases, high pressure seems to accelerate (an)aerobic thermal degradation of unsaturated fatty acids leading to the formation of aliphatic aldehydes and ketones. In addition, both thermal and HPHT processing accelerated the formation of sulfur-containing compounds. This work demonstrated that the approach is effective in identifying and comparing different process-induced chemical changes, adding depth to our perspective in terms of studying a highly complex chemical changes occurring during food processing.

  16. [Assessment of the validity and reliability of the processes of change scale based on the transtheoretical model of vegetable consumption behavior in Japanese male workers].

    PubMed

    Kushida, Osamu; Murayama, Nobuko

    2012-12-01

    A core construct of the Transtheoretical model is that the processes and stages of change are strongly related to observable behavioral changes. We created the Processes of Change Scale of vegetable consumption behavior and examined the validity and reliability of this scale. In September 2009, a self-administered questionnaire was administered to male Japanese employees, aged 20-59 years, working at 20 worksites in Niigata City in Japan. The stages of change (precontempration, contemplation, preparation, action, and maintenance stage) were measured using 2 items that assessed participants' current implementation of the target behavior (eating 5 or more servings of vegetables per day) and their readiness to change their habits. The Processes of Change Scale of vegetable consumption behavior comprised 10 items assessing 5 cognitive processes (consciousness raising, emotional arousal, environmental reevaluation, self-reevaluation, and social liberation) and 5 behavioral processes (commitment, rewards, helping relationships, countering, and environment control). Each item was selected from an existing scale. Decisional balance (pros [2 items] and cons [2 items]), and self-efficacy (3 items) were also assessed, because these constructs were considered to be relevant to the processes of change. The internal consistency reliability of the scale was examined using Cronbach's alpha. Its construct validity was examined using a factor analysis of the processes of change, decisional balance, and self-efficacy variables, while its criterion-related validity was determined by assessing the association between the scale scores and the stages of change. The data of 527 (out of 600) participants (mean age, 41.1 years) were analyzed. Results indicated that the Processes of Change Scale had sufficient internal consistency reliability (Cronbach's alpha: cognitive processes=0.722, behavioral processes=0.803). The processes of change were divided into 2 factors: "consciousness raising

  17. Studies of modern pollen assemblages for pollen dispersal- deposition- preservation process understanding and for pollen-based reconstructions of past vegetation, climate, and human impact: A review based on case studies in China

    NASA Astrophysics Data System (ADS)

    Xu, Qinghai; Zhang, Shengrui; Gaillard, Marie-jose; Li, Manyue; Cao, Xianyong; Tian, Fang; Li, Furong

    2016-10-01

    Fossil pollen, as a direct proxy record of past vegetation, and indirect proxy record of past climate, plays an essential role in revealing and reconstructing past vegetation and climate. However, relationships between pollen, vegetation and climate are not linear, hence quantitative reconstructions of past vegetation and climate based on pollen records are not straightforward, and results may be highly contradictory and difficult to interpret. One of the main causes of discrepancies between results has been the lack of comprehensive and systematical studies on modern pollen dispersal and deposition processes, particularly on the quantification of these processes. Based on empirical studies performed in China over the last 30 years, this paper provides the state-of-the-art of the understanding of pollen dispersal and deposition processes in China and the remaining questions to be investigated. We show that major progress has been achieved in the study of modern pollen dispersal and deposition processes, and in the application of models of the pollen-vegetation-climate relationships for quantitative reconstruction of past vegetation and climate. However, several issues are not entirely solved or understood yet, such as how to quantify the reworking and re-deposition of pollen grains in quaternary alluvial sediments, the influence of pollen preservation on pollen assemblages, and human impact on vegetation. Even so, the progress made during the last decades makes it possible to achieve significantly more precise and informative reconstructions of past vegetation, land-use and climate in China than was possible earlier.

  18. Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites

    PubMed Central

    De Kauwe, Martin G; Medlyn, Belinda E; Zaehle, Sönke; Walker, Anthony P; Dietze, Michael C; Wang, Ying-Ping; Luo, Yiqi; Jain, Atul K; El-Masri, Bassil; Hickler, Thomas; Wårlind, David; Weng, Ensheng; Parton, William J; Thornton, Peter E; Wang, Shusen; Prentice, I Colin; Asao, Shinichi; Smith, Benjamin; McCarthy, Heather R; Iversen, Colleen M; Hanson, Paul J; Warren, Jeffrey M; Oren, Ram; Norby, Richard J

    2014-01-01

    Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets. PMID:24844873

  19. Where does the carbon go? A model-data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites.

    PubMed

    De Kauwe, Martin G; Medlyn, Belinda E; Zaehle, Sönke; Walker, Anthony P; Dietze, Michael C; Wang, Ying-Ping; Luo, Yiqi; Jain, Atul K; El-Masri, Bassil; Hickler, Thomas; Wårlind, David; Weng, Ensheng; Parton, William J; Thornton, Peter E; Wang, Shusen; Prentice, I Colin; Asao, Shinichi; Smith, Benjamin; McCarthy, Heather R; Iversen, Colleen M; Hanson, Paul J; Warren, Jeffrey M; Oren, Ram; Norby, Richard J

    2014-08-01

    Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Scanning electron microscopy combined with image processing technique: Microstructure and texture analysis of legumes and vegetables for instant meal.

    PubMed

    Pieniazek, Facundo; Messina, Valeria

    2016-04-01

    Development and innovation of new technologies are necessary especially in food quality; due that most instrumental technique for measuring quality properties involves a considerable amount of manual work. Image analysis is a technique that allows to provide objective evaluations from digitalized images that can estimate quality parameters for consumer's acceptance. The aim of the present research was to study the effect of freeze drying on the microstructure and texture of legume and vegetables using scanning electron microscopy at different magnifications' combined with image analysis. Cooked and cooked freeze dried rehydrated legumes and vegetables were analyzed individually by scanning electron microscopy at different magnifications' (250, 500, and 1000×).Texture properties were analyzed by texture analyzer and image analysis. Significant differences (P < 0.05) were obtained for image and instrumental texture parameters. A linear trend with a linear correlation was applied for instrumental and image features. Results showed that image features calculated from Grey level co-occurrence matrix at 1,000× had high correlations with instrumental features. In rice, homogeneity and contrast can be applied to evaluate texture parameters gumminess and adhesiviness; Lentils: contrast, correlation, energy, homogeneity, and entropy for hardness, adhesiviness, gumminess, and chewiness; Potato and carrots: contrast, energy, homogeneity and entropy for adhesiviness, chewiness, hardness, cohesiviness, and resilence. Results revealed that combing scanning electron microscopy with image analysis can be a useful tool to analyze quality parameters in legumes and vegetables.

  1. Vegetable Oil-Biorefinery.

    PubMed

    Pudel, Frank; Wiesen, Sebastian

    2017-03-07

    Conventional vegetable oil mills are complex plants, processing oil, fruits, or seeds to vegetable fats and oils of high quality and predefined properties. Nearly all by-products are used. However, most of the high valuable plant substances occurring in oil fruits or seeds besides the oil are used only in low price applications (proteins as animal feeding material) or not at all (e.g., phenolics). This chapter describes the state-of-the-art of extraction and use of oilseed/oil fruit proteins and phyto-nutrients in order to move from a conventional vegetable oil processing plant to a proper vegetable oil-biorefinery producing a wide range of different high value bio-based products.

  2. Microbial consortium role in processing liquid waste of vegetables in Keputran Market Surabaya as organic liquid fertilizer ferti-plus

    NASA Astrophysics Data System (ADS)

    Rizqi, Fauziah; Supriyanto, Agus; Lestari, Intan; Lita Indri D., L.; Elmi Irmayanti, A.; Rahmaniyah, Fadilatur

    2016-03-01

    Many activities in this market is directly proportional to increase production of vegetables waste, especially surabaya. Therefore, in this study aims to utilize liquid waste of vegetables into liquid organic fertilizer by mixing microbial consorsium. The microbial consorsium consist of Azotobacter chrococcum, Azospirillum brasilense, Rhizobium leguminosarum, Bacillus subtilis, Bacillus megaterium, Pseudomonas putida, and Pseudomonas fluorescens. Ttreatment of microbial concentrations (5%, 10%, 15%) and the length of the incubation period (7 days, 14 days, 21 days) used in this research. The parameters used are: C/N ratio, levels of CNP, and BOD value. This study uses a standard organic fertilizer value according SNI19-7030-2004, The results show the value of C/N ratio comply with the ISO standards. C levels showed an increase during the incubation period but not compare with standards. N levels that compare with standards are microbial treatment in all group concentration except control group with an incubation period of 21 days is > 7. P levels compare with the existing standards in the group of microbe concentration of 10% and 15% during the incubation period. The value of the initial BOD liquid waste of vegetable is 790.25 mg / L, this value indicates that the waste should not go into the water body. Accordingly, the results of this study can not be used as a liquid organic fertilizer, but potentially if it is used as a natural career or build natural soil. The Building natural soil is defined as the natural ingredients that can be used to improve soil properties.

  3. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple

    PubMed Central

    Guo, Xinwei; Ma, Zeyang; Zhang, Zhonghui; Cheng, Lailiang; Zhang, Xiuren; Li, Tianhong

    2017-01-01

    Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition) in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE) patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene regulation, stress responses, and auxin and gibberellin (GA) pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt) sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM) pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology. PMID:28611800

  4. A demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Butera, M. K. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. Major vegetative classes identified by the remote sensing technique were cypress swamp, pine, wetland grasses, salt grass, mixed mangrove, black mangrove, Brazilian pepper. Australian pine and melaleuca were not satisfactorily classified from LANDSAT. Aircraft scanners provided better resolution resulting in a classification of finer surface detail. An edge effect, created by the integration of diverse spectral responses within boundary elements of digital data, affected the wetlands classification. Accuracy classification for aircraft was 68% and for LANDSAT was 74%.

  5. Quantification of Listeria monocytogenes in minimally processed leafy vegetables using a combined method based on enrichment and 16S rRNA real-time PCR.

    PubMed

    Aparecida de Oliveira, Maria; Abeid Ribeiro, Eliana Guimarães; Morato Bergamini, Alzira Maria; Pereira De Martinis, Elaine Cristina

    2010-02-01

    Modern lifestyle markedly changed eating habits worldwide, with an increasing demand for ready-to-eat foods, such as minimally processed fruits and leafy greens. Packaging and storage conditions of those products may favor the growth of psychrotrophic bacteria, including the pathogen Listeria monocytogenes. In this work, minimally processed leafy vegetables samples (n = 162) from retail market from Ribeirão Preto, São Paulo, Brazil, were tested for the presence or absence of Listeria spp. by the immunoassay Listeria Rapid Test, Oxoid. Two L. monocytogenes positive and six artificially contaminated samples of minimally processed leafy vegetables were evaluated by the Most Probable Number (MPN) with detection by classical culture method and also culture method combined with real-time PCR (RTi-PCR) for 16S rRNA genes of L. monocytogenes. Positive MPN enrichment tubes were analyzed by RTi-PCR with primers specific for L. monocytogenes using the commercial preparation ABSOLUTE QPCR SYBR Green Mix (ABgene, UK). Real-time PCR assay presented good exclusivity and inclusivity results and no statistical significant difference was found in comparison with the conventional culture method (p < 0.05). Moreover, RTi-PCR was fast and easy to perform, with MPN results obtained in ca. 48 h for RTi-PCR in comparison to 7 days for conventional method.

  6. Implementation of a ground truth process for development of a submerged aquatic vegetation (SAV) mapping protocol using hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Hall, Carlton R.; Bostater, Charles R., Jr.; Virnstein, Robert W.

    2006-09-01

    Protocol development for science based mapping of submerged aquatic vegetation (SAV) requires comprehensive ground truth data describing the full range of variability observed in the target. The Indian River Lagoon, Florida, extends along 250 km of the east central Florida coast adjacent to the Atlantic Ocean. The lagoon crosses the transition zone between the Caribbean and Carolinian zoogeographic provinces making it highly diverse. For large scale mapping and management of SAV four common and three uncommon species of seagrass (Tracheophyta) and three broad groups of macroalgae; red algae (Rhodophyta), green algae (Chlorophyta), and brown algae (Phaeophyta) are recognized. Based on technical and cost limitations we established twenty, 7-10 km long flight transects for collection of 1.2 m2 spatial resolution hyperspectral imagery covering the length of the lagoon. Emphasis was placed on the area near the Sebastian River and adjacent Sebastian Inlet. Twenty six 40 m long ground truth transects were established in the lagoon using 1 m2 white panels to mark each transect end. Each transect target was located in the field using high precision GPS. Transects were positioned to cover a range of depths, SAV densities, mixed and monotypic species beds, water quality conditions and general sediment types. A 3 m wide by 30 m long grid was centered on each transect to avoid spectral influences of the white targets. Water depth, species of seagrasses, estimates of vegetation cover percentage, estimates of epiphytic density, and measured canopy height were made for each 1 m2 (n=90). This target based grid arrangement allows for identification and extraction of pixel based hyperspectral signatures corresponding to individual ground truth grid cells without significant concern for rectification and registration error.

  7. Treatment of vegetable oils

    SciTech Connect

    Bessler, T.R.

    1986-05-13

    A process is described for preparing an injectable vegetable oil selected from the group consisting of soybean oil and sunflower oil and mixtures thereof which comprise: (a) first treating the vegetable oil at a temperature of 80/sup 0/C to about 130/sup 0/C with an acid clay; (b) deodorizing the vegetable oil with steam at a temperature of 220/sup 0/C to about 280/sup 0/C and applying a vacuum to remove volatilized components; (c) treating the deodorized vegetable oil, at a temperature of from about 10/sup 0/C to about 60/sup 0/C, with an acid clay to reduce the content of a member selected from the group consisting of diglycerides, tocopherol components, and trilinolenin and mixtures thereof, wherein the acid clay is added in a weight ratio to the deoderized vegetable oil of from about 1:99 to about 1:1; and (d) thereafter conducting a particulate filtration to remove a substantial portion of the acid clay from the vegetable oil, wherein the filtration is accomplished with filters having a pore size of from about 0.1 to 0.45 microns, thereby obtaining the injectable oil.

  8. Spatial hydrological flow processes, water quality, sediment and vegetation community distributions in a natural floodplain fen - implication for the Flood Pulse Concept

    NASA Astrophysics Data System (ADS)

    Keizer, Floris; Schot, Paul; Wassen, Martin; Kardel, Ignacy; Okruszko, Tomasz

    2017-04-01

    We studied spatial patterns in inundation water quality, sediment and vegetation distribution in a floodplain fen in Poland to map interacting peatland hydrological processes. Using PCA and K-means cluster analysis, we identified four water types, related to river water inundation, discharge of clean and polluted groundwater, and precipitation and snowmelt dilution. Spatially, these hydrochemical water types are related to known water sources in the floodplain and occupy distinctive zones. River water is found along the river, clean and polluted groundwater at the valley margins and groundwater diluted with precipitation and snowmelt water in the central part of the floodplain. This implies that, despite the floodplain being completely inundated, nutrient input from river flooding occurs only in a relatively narrow zone next to the river. Our findings question the relevance of the edge of inundation, as presented in the Flood Pulse Concept, as delineating the zone of input and turnover of nutrients. Secondly, we studied rich-fen and freshwater vegetation community distributions in relation to the presented inundation water quality types. We successfully determined inundation water quality preference for 14 out of 17 studied rich-fen and freshwater communities in the floodplain. Spatial patterns in preference show vegetation with attributed river water preference to occur close to the river channel, with increasing distance to the river followed by communities with no preference, diluted groundwater preference in the central part, and clean and polluted groundwater preference at the valley margins. In inundation water, nutrients are known to be transported mainly as attached to sediment, besides in dissolved state. This means that in the zone where sediment deposition occurs, nutrient input can be a relevant contribution to the nutrient input of the floodplain. We found a significant decrease in sediment-attached nutrient deposition with distance from the river

  9. Understory vegetation

    Treesearch

    Steve Sutherland; Todd F. Hutchinson; Jennifer L. Windus

    2003-01-01

    This chapter documents patterns of species composition and diversity within the understory vegetation layer and provides a species list for the four study areas in southern Ohio. Within each of 108 plots, we recorded the frequency of all vascular plant species in sixteen 2-m² quadrats. We recorded 297 species, including 187 forbs (176 perennials, 9 annuals, 2...

  10. Fermented Vegetables

    USDA-ARS?s Scientific Manuscript database

    The wide variety of fermented foods of the world can be classified by the materials obtained from the fermentation, such as alcohol (beer, wine), organic acid such as lactic acid and acetic acid (vegetables, dairy), carbon dioxide (bread), and amino acids or peptides from protein (fish fermentations...

  11. Vegetation dynamics

    Treesearch

    Sammy L. King; Marianne K. Burke; Terry J. Antrobus; Sarah Billups

    2000-01-01

    A disturbance can be defined as "any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes resources, substrate availability, or the physical environment" (Pickett and White 1985). Vegetation dynamics are a function of the temporal and spatial patterns of the disturbance regime. Natural disturbance regimes...

  12. Vegetative regeneration

    Treesearch

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  13. Novel simple process for tocopherols selective recovery from vegetable oils by adsorption and desorption with an anion-exchange resin.

    PubMed

    Hiromori, Kousuke; Shibasaki-Kitakawa, Naomi; Nakashima, Kazunori; Yonemoto, Toshikuni

    2016-03-01

    A novel and simple low-temperature process was used to recover tocopherols from a deodorizer distillate, which is a by-product of edible oil refining. The process consists of three operations: the esterification of free fatty acids with a cation-exchange resin catalyst, the adsorption of tocopherols onto an anion-exchange resin, and tocopherol desorption from the resin. No degradation of tocopherols occurred during these processes. In the tocopherol-rich fraction, no impurities such as sterols or glycerides were present. These impurities are commonly found in the product of the conventional process. This novel process improves the overall recovery ratio and the mass fraction of the product (75.9% and 51.0wt%) compared with those in the conventional process (50% and 35wt%).

  14. Biotic and abiotic processes in eastside ecosystems: the effects of management on plant and community ecology and on stand and landscape vegetation dynamics.

    Treesearch

    Charles G. Johnson; Rodrick R. Clausnitzer; Peter J. Mehringer; Chadwick D. Oliver

    1994-01-01

    Paleo-vegetation studies have shown that vegetation has changed in composition and extent in the intermountain Pacific Northwest over the past 20,000 years. Today, both natural and human-induced disturbances have long-term influence on the structure and composition of eastside vegetation. Disturbance may enhance landscape diversity, therefore, the scale of modifying...

  15. Bacterial communities and enzymatic activities in the vegetation-activated sludge process (V-ASP) and related advantages by comparison with conventional constructed wetland.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Zhao, Ke; Du, Changhang; Shao, Yunxian

    2016-11-01

    A new-developed vegetation-activated sludge process (V-ASP) was implemented for decentralized domestic wastewater treatment, and studied in lab-scale and full-scale. The main purpose of this work was the investigation of biomass activities and microbial communities in V-ASP by comparison with conventional constructed wetland (CW), to unveil the causations of its consistently higher pollutants removal efficiencies. Compared with CWs, V-ASP has greater vegetation nitrogen and phosphorus uptake rates, higher biomass and enzymatic activities, and more bacteria community diversity. The microbial community structure was comprehensively analyzed by using high-throughput sequencing. It was observed that Proteobacteria was dominated in both CWs and V-ASPs, while their subdivisions distribution was rather different. V-ASPs contained a higher nitrite-oxidizing bacteria (Nitrospira) abundances that resulted in a consistently better nitrogen removal efficiency. Hence, a long-term experiment of full-scale V-ASP displayed stably excellent capability in resistance of influent loading shocks and seasonal temperature effect.

  16. Estimation of water consumption for ecosystems based on Vegetation Interfaces Processes Model: A case study of the Aksu River Basin, Northwest China.

    PubMed

    Yang, Peng; Xia, Jun; Zhan, Chesheng; Mo, Xingguo; Chen, Xuejuan; Hu, Shi; Chen, Jie

    2017-09-12

    Based on the Moderate Resolution Imaging Spectroradiometer (MODIS) - Normalized Difference Vegetation Index (NDVI), the Vegetation Interfaces Processes (VIP) model simulated the spatio-temporal patterns of actual evapotranspiration (ET) and the water consumption of different ecosystems in the Aksu River Basin, Northwest China between 2000 and 2015. The results revealed that: (1) the applicability of the VIP model was confirmed, with good agreement (R(2)=0.79, P<0.05) between the VIP-ET and water balance model (WB)-ET in the Aksu River Basin; (2)arable land showed the highest annual actual ET per unit pixel (362.4mm/pixel), followed by forest (159.6mm/pixel), and grass land (142.8mm/pixel); (3) water consumption for arable, forest, and grass land were determined as 19.45×10(8), 1.94×10(8), and 28×10(8)m(3)/a, respectively; and (4) there was a significant trend (P<0.05) of increasing water consumption of 0.379×10(8)m(3)/a in the artificial ecosystem, but there was no significant trend in the time series of the natural ecosystem. Overall, the study demonstrated that the VIP model is able to supply important information for water resource management at the catchment-scale. Copyright © 2017. Published by Elsevier B.V.

  17. Ecosystems past: prehistory of California vegetation

    Treesearch

    C.I. Millar; W.B. Woolfenden

    2016-01-01

    The history of California's vegetation, from origins in the Mesozoic through Quaternary is outlined. Climatic and geologic history and the processes driving changes in vegetation over time are also described. 

  18. On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological timescales

    NASA Astrophysics Data System (ADS)

    Buendía, C.; Arens, S.; Hickler, T.; Higgins, S. I.; Porada, P.; Kleidon, A.

    2014-07-01

    In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycles including chemical weathering at the global scale. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. We find that active P uptake is an essential mechanism for sustaining P availability on long timescales, whereas biotic de-occlusion might serve as a buffer on timescales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modelling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on old soils has a smaller biomass production rate when P becomes limiting. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and

  19. On the potential vegetation feedbacks that enhance phosphorus availability - insights from a process-based model linking geological and ecological time scales

    NASA Astrophysics Data System (ADS)

    Buendíia, C.; Arens, S.; Hickler, T.; Higgins, S. I.; Porada, P.; Kleidon, A.

    2013-12-01

    In old and heavily weathered soils, the availability of P might be so small that the primary production of plants is limited. However, plants have evolved several mechanisms to actively take up P from the soil or mine it to overcome this limitation. These mechanisms involve the active uptake of P mediated by mycorrhiza, biotic de-occlusion through root clusters, and the biotic enhancement of weathering through root exudation. The objective of this paper is to investigate how and where these processes contribute to alleviate P limitation on primary productivity. To do so, we propose a process-based model accounting for the major processes of the carbon, water, and P cycle including chemical weathering at the global scale. We use simulation experiments to assess the relative importance of the different uptake mechanisms to alleviate P limitation on biomass production. Implementing P limitation on biomass synthesis allows the assessment of the efficiencies of biomass production across different ecosystems. We find that active P-uptake is an essential mechanism for sustaining P availability on long time scales, whereas biotic de-occlusion might serve as a buffer on time scales shorter than 10 000 yr. Although active P uptake is essential for reducing P losses by leaching, humid lowland soils reach P limitation after around 100 000 yr of soil evolution. Given the generalized modeling framework, our model results compare reasonably with observed or independently estimated patterns and ranges of P concentrations in soils and vegetation. Furthermore, our simulations suggest that P limitation might be an important driver of biomass production efficiency (the fraction of the gross primary productivity used for biomass growth), and that vegetation on older soils becomes P-limited leading to a smaller biomass production efficiency. With this study, we provide a theoretical basis for investigating the responses of terrestrial ecosystems to P availability linking geological and

  20. Applying process mapping and analysis as a quality improvement strategy to increase the adoption of fruit, vegetable, and water breaks in Australian primary schools.

    PubMed

    Biggs, Janice S; Farrell, Louise; Lawrence, Glenda; Johnson, Julie K

    2014-03-01

    Over the past decade, public health policy in Australia has prioritized the prevention and control of obesity and invested in programs that promote healthy eating-related behaviors, which includes increasing fruit and vegetable consumption in children. This article reports on a study that used process mapping and analysis as a quality improvement strategy to improve the delivery of a nutrition primary prevention program delivered in primary schools in New South Wales, Australia. Crunch&Sip® has been delivered since 2008. To date, adoption is low with only 25% of schools implementing the program. We investigated the cause of low adoption and propose actions to increase school participation. We conducted semistructured interviews with key stakeholders and analyzed the process of delivering Crunch&Sip to schools. Interviews and process mapping and analysis identified a number of barriers to schools adopting the program. The analyses identified the need to simplify and streamline the process of delivering the program to schools and introduce monitoring and feedback loops to track ongoing participation. The combination of stakeholder interviews and process mapping and analysis provided important practical solutions to improving program delivery and also contributed to building an understanding of factors that help and hinder program adoption. The insight provided by this analysis helped identify usable routine measures of adoption, which were an improvement over those used in the existing program plan. This study contributed toward improving the quality and efficiency of delivering a health promoting program to work toward achieving healthy eating behaviors in children.

  1. Demonstrating vegetation dynamics using SIMPPLLE

    Treesearch

    Glenda Scott; Jimmie D. Chew

    1997-01-01

    Understanding vegetation dynamics, both spatially and temporally, is essential to the management of natural resources. SIMPPLLE has been designed to help us quantify and communicate these concepts: What levels of process, i.e., fire or insect and disease, to expect; how they spread; what the vegetative distribution and composition is over time; and how silvicultural...

  2. Biotic and abiotic processes of eastside ecosystems: The effects of management on plant and community ecology, and on stand and landscape vegetation dynamics. Forest Service general technical report

    SciTech Connect

    Johnson, C.G.; Clausnitzer, R.R.; Mehringer, P.J.; Oilver, C.D.

    1994-02-01

    Paleo-vegetation studies have shown that vegetation has changed in composition and extent in the intermountain Pacific Northwest over the past 20,000 years. Today, both natural and human-induced disturbances have long-term influence on the structure and composition of eastside vegetation. Disturbance may enhance landscape diversity, therefore, the scale of modifying events and activities needs to shift from species and stand to the landscape level. Knowledge of plant succession is the foundation of a sound vegetation management program where the primary goal is to retard, arrest, or accelerate the natural forces of vegetation change.

  3. Application of satellite data and LARS's data processing techniques to mapping vegetation of the Dismal Swamp. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Messmore, J. A.

    1976-01-01

    The feasibility of using digital satellite imagery and automatic data processing techniques as a means of mapping swamp forest vegetation was considered, using multispectral scanner data acquired by the LANDSAT-1 satellite. The site for this investigation was the Dismal Swamp, a 210,000 acre swamp forest located south of Suffolk, Va. on the Virginia-North Carolina border. Two basic classification strategies were employed. The initial classification utilized unsupervised techniques which produced a map of the swamp indicating the distribution of thirteen forest spectral classes. These classes were later combined into three informational categories: Atlantic white cedar (Chamaecyparis thyoides), Loblolly pine (Pinus taeda), and deciduous forest. The subsequent classification employed supervised techniques which mapped Atlantic white cedar, Loblolly pine, deciduous forest, water and agriculture within the study site. A classification accuracy of 82.5% was produced by unsupervised techniques compared with 89% accuracy using supervised techniques.

  4. Experimental scale and dimensionality requirements for reproducing and studying coupled land-atmosphere-vegetative processes in the intermediate scale laboratory settings

    NASA Astrophysics Data System (ADS)

    Trautz, Andrew; Illangasekare, Tissa; Rodriguez-Iturbe, Ignacio; Helmig, Rainer; Heck, Katharina

    2016-04-01

    Past investigations of coupled land-atmosphere-vegetative processes have been constrained to two extremes, small laboratory bench-scale and field scale testing. In recognition of the limitations of studying the scale-dependency of these fundamental processes at either extreme, researchers have recently begun to promote the use of experimentation at intermediary scales between the bench and field scales. A requirement for employing intermediate scale testing to refine heat and mass transport theory regarding land-atmosphere-vegetative processes is high spatial-temporal resolution datasets generated under carefully controlled experimental conditions in which both small and field scale phenomena can be observed. Field experimentation often fails these criteria as a result of sensor network limitations as well as the natural complexities and uncertainties introduced by heterogeneity and constantly changing atmospheric conditions. Laboratory experimentation, which is used to study three-dimensional (3-D) processes, is often conducted in 2-D test systems as a result of space, instrumentation, and cost constraints. In most flow and transport problems, 2-D testing is not considered a serious limitation because the bypassing of flow and transport due to geo-biochemical heterogeneities can still be studied. Constraining the study of atmosphere-soil-vegetation interactions to 2-D systems introduces a new challenge given that the soil moisture dynamics associated with these interactions occurs in three dimensions. This is an important issue that needs to be addressed as evermore intricate and specialized experimental apparatuses like the climate-controlled wind tunnel-porous media test system at CESEP are being constructed and used for these types of studies. The purpose of this study is to therefore investigate the effects of laboratory experimental dimensionality on observed soil moisture dynamics in the context of bare-soil evaporation and evapotranspiration

  5. Effects of Holocene vegetation change on soils across the forest-grassland transition, northern Minnesota, and implications for erosion processes

    NASA Astrophysics Data System (ADS)

    Mason, Joseph; Kasmerchak, Chase; Keita, Hawa; Liang, Mengyu; Gruley, Kristine

    2016-04-01

    Boundaries between forest and grassland in the midlatitudes and their shifts in response to Holocene climatic change, provide opportunities to detect effects of life on landscapes. In northern Minnesota, USA, paleoecological research has documented that grassland and/or savanna expanded eastward in the dry early to middle Holocene. In the late Holocene, forest cover expanded westward at the expense of savanna and grassland. We studied soils at 20 sites spanning the forest-grassland transition. A dramatic change in soil morphology coincides approximately, though not exactly, with that transition as recorded in 1870s-1880s land surveys, suggesting that soils change rapidly in response to forest expansion (we are attempting to constrain the timescale of response through radiocarbon dating of deep soil organic matter in which stable C isotopes record past presence of grassland). The key changes from grassland to forest are loss of organic matter below a thin surface A horizon and greatly enhanced mobility and downward translocation of clay - particularly smectite - in forest soils. This results in upper soil horizons that have relatively low smectite content and low microaggregate stability (as detected through laser diffraction analysis of aggregate disintegration in laboratory experiments), especially below the thin A horizon. The best explanation for this change appears to involve differences in how OM is added to and accumulated in the soil under forest and grassland; soil acidity and base saturation change more gradually eastward along a gradient more likely to reflect climate than vegetation. Evidence of bioturbation (especially gopher burrowing) is much more common at former grassland sites. In addition to mixing OM downward in the soil, burrowing moves detrital carbonates upward, probably enhancing OM accumulation and aggregate stability. Research on geomorphic response to Holocene climatic change in the Midwestern US has often emphasized higher potential

  6. Determination of the energy potential of gases produced in the pyrolysis processes of the vegetal carbon manufacture industry.

    PubMed

    Gañan, J; González, J F; González-García, C M; Cuerda-Correa, E M; Macías-García, A

    2006-03-01

    In this work, a pyrolysis plant located in Valverde de Leganes, Badajoz (SW Spain) was studied. At present, only the solid phase obtained by pyrolysis finds an application as domestic fuel. In order to analyze the feasibility of a further energetic exploitation of the plant under study, the gases flowing through the chimneys were collected at different times throughout the pyrolysis process. Next, they were characterized and quantified by gas chromatography, the energy potential of each of the gases being determined. According to the results obtained in this study, a total energy potential of 5.6 x 10(7) MJ (i.e., 1.78 MW(t)) might be generated yearly. Hence, considering an overall process yield equal to 20%, up to 358 KW(e) would be produced. This power would supply enough electric energy to the industry, the remaining being added to the common electric network.

  7. Performance analysis of image processing algorithms for classification of natural vegetation in the mountains of southern California

    NASA Technical Reports Server (NTRS)

    Yool, S. R.; Star, J. L.; Estes, J. E.; Botkin, D. B.; Eckhardt, D. W.

    1986-01-01

    The earth's forests fix carbon from the atmosphere during photosynthesis. Scientists are concerned that massive forest removals may promote an increase in atmospheric carbon dioxide, with possible global warming and related environmental effects. Space-based remote sensing may enable the production of accurate world forest maps needed to examine this concern objectively. To test the limits of remote sensing for large-area forest mapping, we use Landsat data acquired over a site in the forested mountains of southern California to examine the relative capacities of a variety of popular image processing algorithms to discriminate different forest types. Results indicate that certain algorithms are best suited to forest classification. Differences in performance between the algorithms tested appear related to variations in their sensitivities to spectral variations caused by background reflectance, differential illumination, and spatial pattern by species. Results emphasize the complexity between the land-cover regime, remotely sensed data and the algorithms used to process these data.

  8. Performance analysis of image processing algorithms for classification of natural vegetation in the mountains of southern California

    NASA Technical Reports Server (NTRS)

    Yool, S. R.; Star, J. L.; Estes, J. E.; Botkin, D. B.; Eckhardt, D. W.

    1986-01-01

    The earth's forests fix carbon from the atmosphere during photosynthesis. Scientists are concerned that massive forest removals may promote an increase in atmospheric carbon dioxide, with possible global warming and related environmental effects. Space-based remote sensing may enable the production of accurate world forest maps needed to examine this concern objectively. To test the limits of remote sensing for large-area forest mapping, we use Landsat data acquired over a site in the forested mountains of southern California to examine the relative capacities of a variety of popular image processing algorithms to discriminate different forest types. Results indicate that certain algorithms are best suited to forest classification. Differences in performance between the algorithms tested appear related to variations in their sensitivities to spectral variations caused by background reflectance, differential illumination, and spatial pattern by species. Results emphasize the complexity between the land-cover regime, remotely sensed data and the algorithms used to process these data.

  9. Natural Disaster Scenarios in the Food Security Early Warning Contingency Planning Process: The Role of Remotely Sensed Vegetation and Rainfall Data

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Funk, C. C.; Choularton, R.

    2006-12-01

    In this talk, we will explore how scenarios are used in early warning systems in Africa as they respond to the food security consequences of droughts and floods, and determine ways EWS could use remote sensing products more effectively. Early warning of an incipient agricultural drought triggers the contingency planning process at the national governmental level, supported by international organizations such as USAID's Famine Early Warning Network or FEWS NET. Contingency planning focuses on updating relevant national contingency plans. These scenarios are usually described as `Worst Case', `Mid-Case', and `Best Case', and focus on providing guidance for humanitarian organizations' assistance planning process. There is an increasingly apparent need to provide appropriate, nuanced, and constructive assistance. Remote sensing can support this objective by providing earlier early warning, giving aid organizations the time necessary to coordinate effective aid packages and policies. In this talk we will explore how recently developed projections of vegetation data one to four months into the future could be used to guide the scenarios both spatially and temporally, and provide probabilities for which case is most likely to occur. A case study of Ethiopia and its contingency planning process for the past few years will be presented.

  10. Using stable isotopes in process-based ecohydrologic modelling to infer vegetation imprint on water fluxes, partitioning and storage in boreal ecosystems

    NASA Astrophysics Data System (ADS)

    Kuppel, S.; Tetzlaff, D.; Maneta, M. P.; Soulsby, C.

    2016-12-01

    Tracing stable water isotopes has been extensively used in a wide range of geographical environments as a means to understand the sources, flow paths and transit times of the water leaving a landscape via evapotranspiration, surface runoff and/or stream flow. By integrated analysis of the measured isotopic signature of plant xylem water with that of precipitation, soil water, groundwater and stream flow, recent attention has been given to assessing how plant water use may affect preferential hydrologic pathways and storage compartments in the critical zone. While these datasets provide invaluable information to further refine modelling approaches, in most cases their use has been limited to informing conceptual hydrologic models with simplified vegetation and energy balance (e.g., rainfall-runoff models), making it difficult to disentangle key controls among biological and physical processes. This issue is especially relevant in northern latitudes where the hydrological implications of projected environmental change are essentially unknown though expected to be marked. In this study we have implemented isotopic tracers in a physical, grid-based ecohydrologic model which combines a hydrologic scheme of intermediate complexity with an explicit representation of plant growth and phenology while resolving the energy balance across the soil-vegetation-atmosphere continuum. This calibrated approach is informed by/compared to datasets resulting from extensive field campaigns (e.g., water isotopes, streamflow, local geophysics, micrometeorology) conducted within the ERC-funded "VeWa" project across six long-term experimental sites across the wider North (Scotland, Sweden, Canada and the US). This effort is a first step towards understanding ecohydrologic functioning of northern environments across spatial and temporal scales.

  11. Genetic variability of nitrogen accumulation during vegetative development and remobilization during the forcing process in witloof chicory tuberized root (Cichorium intybus L.).

    PubMed

    Cassan, Laurent; Corbineau, Françoise; Limami, Anis M

    2008-11-01

    A better knowledge of genetic variability of traits related to nitrogen use efficiency (NUE) is a potential strategy to optimize N fertilization and to reduce environmental pollution without decreasing marketable yield and quality. To this aim, in this study, 13 cultivars of witloof chicory were compared with three reference cultivars known for their adaptation to low, intermediate and high N availability in the field during the vegetative phase of development. Pertinent criteria used for this study were determined by a thorough comparison of nitrogen reserve accumulation in tuberized roots during vegetative development and mobilization during the forcing process in the three reference cultivars. Cluster analysis allowed us to sort the cultivars into four main groups we named G1, G2, G3 and G4. Cultivars of group G4, better adapted to soils with high nitrogen contents (N-demanding cultivars), showed higher total N, nitrate, total amino acids (AA), glutamine contents and lower total N and AA mobilization for chicon growth than did cultivars of group G1, adapted to soils with low nitrogen content (N-sensitive cultivars). An intermediate behavior was exhibited by cultivars of groups G2 and G3, characterized as N tolerant. It is proposed that either chicory growers or breeders may take advantage of the genetic variability revealed in the present study to gain flexibility in choosing the right cultivar for the type of soil available (N-rich soil vs N-poor soil) or to adapt the level of N fertilization to the type of cultivar (N-demanding vs N-sensitive) in order to target the highest NUE for the best chicon yield and trade quality.

  12. Isotopic Composition of Atmospheric Mercury in China: New Evidence for Sources and Transformation Processes in Air and in Vegetation.

    PubMed

    Yu, Ben; Fu, Xuewu; Yin, Runsheng; Zhang, Hui; Wang, Xun; Lin, Che-Jen; Wu, Chuansheng; Zhang, Yiping; He, Nannan; Fu, Pingqing; Wang, Zifa; Shang, Lihai; Sommar, Jonas; Sonke, Jeroen E; Maurice, Laurence; Guinot, Benjamin; Feng, Xinbin

    2016-09-06

    The isotopic composition of atmospheric total gaseous mercury (TGM) and particle-bound mercury (PBM) and mercury (Hg) in litterfall samples have been determined at urban/industrialized and rural sites distributed over mainland China for identifying Hg sources and transformation processes. TGM and PBM near anthropogenic emission sources display negative δ(202)Hg and near-zero Δ(199)Hg in contrast to relatively positive δ(202)Hg and negative Δ(199)Hg observed in remote regions, suggesting that different sources and atmospheric processes force the mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) in the air samples. Both MDF and MIF occur during the uptake of atmospheric Hg by plants, resulting in negative δ(202)Hg and Δ(199)Hg observed in litter-bound Hg. The linear regression resulting from the scatter plot relating the δ(202)Hg to Δ(199)Hg data in the TGM samples indicates distinct anthropogenic or natural influences at the three study sites. A similar trend was also observed for Hg accumulated in broadleaved deciduous forest foliage grown in areas influenced by anthropogenic emissions. The relatively negative MIF in litter-bound Hg compared to TGM is likely a result of the photochemical reactions of Hg(2+) in foliage. This study demonstrates the diagnostic stable Hg isotopic composition characteristics for separating atmospheric Hg of different source origins in China and provides the isotopic fractionation clues for the study of Hg bioaccumulation.

  13. Effects of acidic deposition on nutrient uptake, nutrient cycling and growth processes of vegetation in the spruce-fir ecosystem

    SciTech Connect

    McLaughlin, S.B.; Garten, C.T.; Wullschleger, S.D.

    1996-10-16

    This report summarizes progress in three years of field research designed to evaluate biological and chemical indicators of the current and future health of the Southern Appalachian spruce-fir ecosystem. The emphasis of this research has been on the identification and understanding of mechanisms through which current levels of acidic deposition are impacting ecosystem processes. The identification of these principal mechanisms and key biological indicators of change was designed to improve our capabilities to detect, monitor, and assess the effects of air quality regulations and attendant future air quality changes on ecosystem response. Individual research tasks focused on the following research areas: (1) the significance of foliar uptake of atmospheric sources of nitrogen in relationship to plant utilization of N from available soil reserves; (2) linkages between atmospheric inputs to the soil surface, solution chemistry, and decomposition in the upper organic soil horizons; (3) effects of soil solution chemistry on uptake of cations and aluminum by fine roots; and (4) the effects of varying rates of calcium supply on carbon metabolism of Fraser fir and red spruce, and the relationship between calcium levels in wood cells and integrity of wood formed in bole and branches. Each of the individual tasks was designed to focus upon a mechanism or process that we consider critical to understanding chemical and biological linkages. These linkages will be important determinants in understanding the basis of past and potential future responses of the high elevation Southern Appalachian Forest to acidic deposition and other co-occurring environmental stresses. This report contains (1) background and rationale for the research undertaken in 1992-94; (2) a summary of principal research findings; (3) publications from this research; and (4) characterization of data sets produced by this research which will be the basis of future research, analyses and/or publications.

  14. Development of a dynamic growth-death model for Escherichia coli O157:H7 in minimally processed leafy green vegetables.

    PubMed

    McKellar, Robin C; Delaquis, Pascal

    2011-11-15

    Escherichia coli O157:H7, an occasional contaminant of fresh produce, can present a serious health risk in minimally processed leafy green vegetables. A good predictive model is needed for Quantitative Risk Assessment (QRA) purposes, which adequately describes the growth or die-off of this pathogen under variable temperature conditions experienced during processing, storage and shipping. Literature data on behaviour of this pathogen on fresh-cut lettuce and spinach was taken from published graphs by digitization, published tables or from personal communications. A three-phase growth function was fitted to the data from 13 studies, and a square root model for growth rate (μ) as a function of temperature was derived: μ=(0.023*(Temperature-1.20))(2). Variability in the published data was incorporated into the growth model by the use of weighted regression and the 95% prediction limits. A log-linear die-off function was fitted to the data from 13 studies, and the resulting rate constants were fitted to a shifted lognormal distribution (Mean: 0.013; Standard Deviation, 0.010; Shift, 0.001). The combined growth-death model successfully predicted pathogen behaviour under both isothermal and non-isothermal conditions when compared to new published data. By incorporating variability, the resulting model is an improvement over existing ones, and is suitable for QRA applications. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  15. Assessment of PAH dissipation processes in large-scale outdoor mesocosms simulating vegetated road-side swales.

    PubMed

    Leroy, M C; Legras, M; Marcotte, S; Moncond'huy, V; Machour, N; Le Derf, F; Portet-Koltalo, F

    2015-07-01

    Biofilters have been implemented in urban areas due to their ability to improve road runoff quality. However, little is known about the role of soil microorganisms and plants on pollutant remediation in planted swales. Therefore, four large-scale outdoor mesocosms were built and co-contaminated with metals and model polycyclic aromatic hydrocarbons (PAHs) (phenanthrene (Phen), pyrene (Pyr) and benzo[a]pyrene (BaP)), to better understand the complex functioning of swale-like environments. Three macrophyte plant species were tested for enhanced remediation of PAHs: Juncus effusus, Iris pseudacorus, Phalaris arundinacea and a grass mix. Long-term dynamics of PAHs in water outflow and soil was studied. Results showed that only 0.07 to 0.22% of total PAHs were released in water outflow after one year. Two years after contamination, soil sample analyses showed a dissipation of 99.6% for Phen and 99.4% for Pyr whatever the mesocosm considered and ranging from 75.5 to 91% for BaP, depending on plant species. Furthermore, dissipation time-courses may be described by a biphasic process. Experiments showed that the grass mix facilitated BaP long-term biodegradation. Grass appeared also to be the best filter for suspended solids because of its dense rhizosphere, which prevents the transfer of BaP to groundwater.

  16. Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management

    NASA Astrophysics Data System (ADS)

    Chang, Jinfeng; Ciais, Philippe; Herrero, Mario; Havlik, Petr; Campioli, Matteo; Zhang, Xianzhou; Bai, Yongfei; Viovy, Nicolas; Joiner, Joanna; Wang, Xuhui; Peng, Shushi; Yue, Chao; Piao, Shilong; Wang, Tao; Hauglustaine, Didier A.; Soussana, Jean-Francois; Peregon, Anna; Kosykh, Natalya; Mironycheva-Tokareva, Nina

    2016-06-01

    Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5° by 0.5°. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 1901-2012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, rising CO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1 × 106 km2 in 1901 to 12.3 × 106 km2 in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and interannual variability of grassland productivity at global scale well and thus is

  17. Combining Livestock Production Information in a Process-Based Vegetation Model to Reconstruct the History of Grassland Management

    NASA Technical Reports Server (NTRS)

    Chang, Jinfeng; Ciais, Philippe; Herrero, Mario; Havlik, Petr; Campioli, Matteo; Zhang, Xianzhou; Bai, Yongfei; Viovy, Nicolas; Joiner, Joanna; Wang, Xuhui; hide

    2016-01-01

    Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5deg by 0.5deg. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 19012012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, risingCO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1 x 10(exp 6) km(exp 2) in 1901 to 12.3 x 10(exp 6) kmI(exp 2) in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and inter-annual variability of grassland productivity at global

  18. Vegetables affect the expression of genes involved in anticarcinogenic processes in the colonic mucosa of C57BL/6 female mice.

    PubMed

    van Breda, Simone G J; van Agen, Ebienus; van Sanden, Suzy; Burzykowski, Tomasz; Kienhuis, Anne S; Kleinjans, Jos C S; van Delft, Joost H M

    2005-08-01

    There is abundant epidemiological evidence that vegetable consumption decreases colorectal cancer (CRC) risk. However, the molecular targets in the genome are mostly unknown. The present study investigated the effects of vegetable consumption on gene expression in the colon mucosa of female C57Bl/6 mice using cDNA microarray technology. Mice were fed one of 8 diets: a control diet containing no vegetables (diet 1); a diet containing 100 g/kg (diet 2, 10% dose), 200 g/kg (diet 3, 20% dose), or 400 g/kg (diet 4, 40% dose) of a vegetable mixture; or a diet containing 70 g/kg of cauliflower (diet 5, 7% dose), 73 g/kg of carrots (diet 6, 7.3% dose), 226 g/kg of peas (diet 7, 22.6% dose); or 31 g/kg of onions (diet 8, 3.1% dose). The vegetable mixture used in diets 2 to 4 consisted of the 4 individual vegetables used in diets 5 to 8: cauliflower (30% wet wt), carrots (30% wet wt), peas (30% wet wt), and onions (10% wet wt). To assess gene expression changes, colonic mucosal cells were collected after the mice were killed. Total RNA was isolated and microarray technology was used to measure the expression levels of 602 genes simultaneously. For 39 genes, significant dose-dependent effects were found, although in general the relations were not linear. For 15 genes, the altered expression could indeed explain reduced cancer risk at various stages of CRC development. Eleven genes were modulated by the vegetable mixture as well as by one or more of the individual vegetables. For 7 of the genes, the modulation by the mixture was due to the effect of a particular vegetable. These genes are of particular interest because they were consistently affected and could be involved in the prevention of CRC by vegetable consumption.

  19. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance

    SciTech Connect

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-05-01

    Highlights: • Single-phase and two-phase systems were compared for fruit and vegetable waste digestion. • Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS and 83% VS removal. • Substrate solubilization was high in acidification conditions at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2. • Energy yield was lower by 33% for two-phase system compared to the single-phase system. • Simple and straight-forward operation favored single phase process over two-phase process. - Abstract: Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kg VS/m{sup 3} d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m{sup 3} CH{sub 4}/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kg VS/m{sup 3} d and then achieved stable performance at 7.0 kg VS/m{sup 3} d and pH 5.5–6.2, with very high substrate solubilization rate and a methane yield of 0.30 m{sup 3} CH{sub 4}/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of

  20. Linking carbon-water- and nitrogen fluxes at forest ecosystems throughout Europe with a coupled soil-vegetation process model "LandscapeDNDC"

    NASA Astrophysics Data System (ADS)

    Molina Herrera, Saul; Grote, Rüdiger; Haas, Edwin; Kiese, Ralf; Butterbach-Bahl, Klaus

    2013-04-01

    2), accuracy (r2eff) and agreement (RMSPEn) while for reproducing daily NEE and ET as well as soil moisture was accompanied by a good statistical precision and agreement. In addition, beside C fixation also simulated C allocation into different vegetation compartments agreed well with measured data on biomass development and vegetation structure. Also soil respiration and N2O emissions agreed well with field observations. Soil respiration was driven by GPP and the rates of N2O fluxes depended on soil ecosystem properties and were influenced by litter C/N inputs and weather conditions. In conclusion by use of general tree species parameterizations LandscapeDNDC was capable to simulate and capture impacts of a multitude of environmental drivers on forest ecosystem C-, N-, water dynamics, as well as linking above - and belowground processes across various sites in Europe. Nevertheless, the quality of measured data (e.g. spatial representation, time resolution) as well as the existing description of ecosystem processes in the model should be considered when evaluating the capability of process based models to be used for evaluation of biogeochemical ecosystem functioning.

  1. Teaching children to like and eat vegetables.

    PubMed

    Wadhera, Devina; Capaldi Phillips, Elizabeth D; Wilkie, Lynn M

    2015-10-01

    Higher vegetable intake has been related to lower risks of diabetes, cardiovascular disease, several cancers and obesity. Yet children consume fewer than the recommended servings of fruits and vegetables set forth by the USDA. Exposure to vegetables has successfully improved children's liking for and consumption of vegetables particularly for children younger than two years. In contrast, associative conditioning seems necessary for older children, especially with bitter vegetables. We review studies using both exposure and associative conditioning to teach children to like vegetables, including flavor-flavor learning and flavor-calorie learning. Recognizing these different processes helps reconcile discrepant literature and may provide techniques for increasing preferences for vegetables in children. Associative conditioning and exposure can be used by parents and others to enhance children's liking for and consumption of vegetables.

  2. Inactivation of vegetative cells by continuous high-pressure processing: new insights on the contribution of thermal effects and release device.

    PubMed

    Cavender, George A; Kerr, William L

    2011-09-01

    Dynamic or continuous high-pressure processing of fluid foods has drawn significant interest as a microbial reduction process in the past decade, and many attempts have been made to better understand the mechanisms involved in that reduction. This study was intended to provide insight into the contributions of thermal effects and differences in pressure release components in the inactivation of 2 vegetative pathogen analogs--the Gram-positive Listeria innocua and the Gram-negative Escherichia coli. Fluids containing microbial loads of 10(8) or greater were subjected to continuous high-pressure processing at 200 to 210 MPa. Without active cooling of the release components, all fluids experienced a temperature rise in excess of 70 °C, thus occluding any pressure-related effects for all release components. Active cooling of the valve bodies of the 2 valve-style release components (a conical disruption valve and a micrometering valve) allowed the temperature rise to be abated enough to isolate the effects unique to a given valve. In Tryptic soy broth trials, the mean inactivation levels of E. coli between valves were similar--5.16 log and 5.33 log for the micrometering and conical disruption valves, respectively. When repeated with L. innocua, a similar inactivation level was observed in the conical disruption valve (5.1 log) but not the micrometering valve (3.02). Listeria innocua trials were also repeated using fluid whole milk, which showed a lower levels of inactivation--2.04 log for the micrometering valve and 2.51 log for the conical valve. This paper compares some of the most common pressure release components used in continuous high-pressure processing and attempts to isolate the contributions of thermal effects from those of pressure and shear. This information is important to those seeking to compare and evaluate the effectiveness of a proposed set of process parameters for microbial inactivation. Further, the ability to reduce the extreme nature of the

  3. Surface properties of the Ni-silica gel catalyst precursors for the vegetable oil hydrogenation process: N2 sorption and XPS studies

    NASA Astrophysics Data System (ADS)

    Nikolova, D.; Krstić, J.; Spasov, L.; Simeonov, D.; Lončarević, D.; Stefanov, Pl.; Jovanović, D.

    2011-12-01

    The effect of the type of the silica gel pore structure on the surface properties of the Ni-silica gel catalyst precursors for the vegetable oil hydrogenation process has been examined applying N2 sorption and X-ray photoelectron spectroscopy techniques. The nickel catalyst precursors with identical composition (SiO2/Ni = 1.0) has been synthesized by precipitation of Ni(NO3)2 · 6H2O solution with Na2CO3 solution on the three types of silica gel with different pore structures. It is shown that the usage of the silica gel supports with different texture as source of SiO2 causes different location of Ni-species into the support pores and on the external surface area. The XPS data confirm the formation of surface species with different strength of interaction and different dispersion. These surface characteristics of the precursors will predetermine the formation of the active nickel metallic phase as well as the mass transfer of the reactants and products to and from the catalytic sites.

  4. Testing of a reactive transport processes module for a coupled (groundwater/surface water) physically based model on a vegetative buffer strip (Beaujolais, France).

    NASA Astrophysics Data System (ADS)

    Gatel, L.; Lauvernet, C.; Carluer, N.; Paniconi, C.

    2016-12-01

    In the context of the European Water Framework Directive (WFD, 2000/60/EC), which aims to achieve a good ecological and chemical status for all natural aquatic environments, tools to help understand and quantify pesticide transfers in agricultural watersheds are necessary. Models which are physically based and spatially distributed can be particularly useful for representing in detail processes and interactions between the soil surface and subsurface and thus to evaluate the management of landscape elements remediation. The present study aims to test and validate a recently added reactive transport to the coupled surface water/groundwater model CATHY, in order to represent pesticide transfers. Contaminant reactions implemented in CATHY for this study are linear adsorption and degradation (first order kinetics). The advection part of the model is solved according to the finite volume method and reactions are computed on volumes using a sequential non-iterative approach. The CATHY model has been tested on laboratory data and with a Morris sensitivity analysis and is applied now in real field conditions, on a vegetative buffer strip monitored by Irstea in a vineyard catchment (Beaujolais, France). The site is instrumented with lysimeters, flow and solute concentration measurement devices. This test represents a complex step into the model validation, initial and boundary conditions are not fully controlled, and field parameters measurement are not fully known.

  5. The Influence of Climate Variation and Change on Structure and Processes in Nearshore Vegetated Communities of Puget Sound and other Northwest Estuaries

    SciTech Connect

    Thom, Ronald M.; Borde, Amy B.; Blanton, Susan L.; Woodruff, Dana L.; Williams, Gregory D.

    2001-02-14

    We have been investigating the potential for variations in ocean temperature and carbon dioxide to affect nearshore vegetated communities in the Pacific Northwest. Experimental studies as well as long-term monitoring suggest that these communities will respond to climate change and that alterations in their functions may impact fisheries resources. This paper addresses the effects of sea level rise on coastal communities; temperature variations on eelgrass; carbon dioxide-enriched seawater on photosynthetic rates of mudflats, seagrasses, and bull kelp; and of increased climate variability on primary production. Conclusions show there is a clear need to focus investigations on the potential effects of a warmer and CO2-rich environment on Puget Sound's nearshore ecosystem. Experimental data as well as filed studies strongly indicate that temperature is a major factor controlling benthic primary production, respiration and community production in Pacific Northwest estuarine ecosystems. A shift in temperature will predictably affect these processes. The actual amount of effect, the complexities of change and the ultimate impact on fisheries resources are unquantified and highly speculative at this time.

  6. Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity.

    PubMed

    Di Maria, Francesco; Sordi, Alessio; Cirulli, Giuseppe; Gigliotti, Giovanni; Massaccesi, Luisa; Cucina, Mirko

    2014-09-01

    The co-digestion of a variable amount of fruit and vegetable waste in a waste mixed sludge digester was investigated using a pilot scale apparatus. The organic loading rate (OLR) was increased from 1.46 kg VS/m(3) day to 2.8 kg VS/m(3) day. The hydraulic retention time was reduced from 14 days to about 10 days. Specific bio-methane production increased from about 90 NL/kg VS to the maximum value of about 430 NL/kg VS when OLR was increased from 1.46 kg VS/m(3) day to 2.1 kg VS/m(3) day. A higher OLR caused an excessive reduction in the hydraulic retention time, enhancing microorganism wash out. Process stability evaluated by the total volatile fatty acids concentration (mg/l) to the alkalinity buffer capacity (eq. mg/l CaCO3) ratio (i.e. FOS/TAC) criterion was <0.1 indicating high stability for OLR <2.46 kg VS/m(3 )day. For higher OLR, FOS/TAC increased rapidly. Residual phytotoxicty of the digestate evaluated by the germination index (GI) (%) was quite constant for OLR<2.46 kg VS/m(3)day, which is lower than the 60% limit, indicating an acceptable toxicity level for crops. For OLR>2.46 kg VS/m(3) day, GI decreased rapidly. This corresponding trend between FOS/TAC and GI was further investigated by the definition of the GI ratio (GIR) parameter. Comparison between GIR and FOS/TAC suggests that GI could be a suitable criterion for evaluating process stability.

  7. Recovery times of riparian vegetation

    NASA Astrophysics Data System (ADS)

    Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca

    2016-04-01

    Riparian vegetation is a key element in a number of processes that determine the eco-geomorphological features of the river landscape. Depending on the river water stage fluctuations, vegetation biomass randomly switches between growth and decay phases, and its biomass exhibits relevant temporal variations. A full understanding of vegetation dynamics is therefore only possible if the hydrological stochastic forcing is considered. In this vein, we focus on the recovery time of vegetation, namely the typical time taken by vegetation to recover a health state starting from a low biomass value (induced, for instance, by an intense flood). The minimalistic stochastic modeling approach is used for describing vegetation dynamics (i.e., the noise-driven alternation of growth and decay phases). The recovery time of biomass is then evaluated according to the theory of the mean first passage time in systems driven by dichotomous noise. The effect of the main hydrological and biological parameters on the vegetation recovery was studied, and the dynamics along the riparian transect was described in details. The effect of climate change and human interventions (e.g., river damming) was also investigated. We found that: (i) the oscillations of the river stage delay the recovery process (up to one order of magnitude, with respect to undisturbed conditions); (ii) hydrological/biological alterations (due to climate change, damming, exotic species invasion) modify the timescales of the recovery. The result provided can be a useful tool for the management of the river. They open the way to the estimation of: (i) the recovery time of vegetation after devastating floods, clear cutting or fires and; (ii) the timescale of the vegetation response to hydrological and biological alterations.

  8. Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: comparison of start-up, reactor stability and process performance.

    PubMed

    Ganesh, Rangaraj; Torrijos, Michel; Sousbie, Philippe; Lugardon, Aurelien; Steyer, Jean Philippe; Delgenes, Jean Philippe

    2014-05-01

    Single-phase and two-phase digestion of fruit and vegetable waste were studied to compare reactor start-up, reactor stability and performance (methane yield, volatile solids reduction and energy yield). The single-phase reactor (SPR) was a conventional reactor operated at a low loading rate (maximum of 3.5 kgVS/m3 d), while the two-phase system consisted of an acidification reactor (TPAR) and a methanogenic reactor (TPMR). The TPAR was inoculated with methanogenic sludge similar to the SPR, but was operated with step-wise increase in the loading rate and with total recirculation of reactor solids to convert it into acidification sludge. Before each feeding, part of the sludge from TPAR was centrifuged, the centrifuge liquid (solubilized products) was fed to the TPMR and centrifuged solids were recycled back to the reactor. Single-phase digestion produced a methane yield of 0.45 m3 CH4/kg VS fed and VS removal of 83%. The TPAR shifted to acidification mode at an OLR of 10.0 kgVS/m3 d and then achieved stable performance at 7.0 kgVS/m3 d and pH 5.5-6.2, with very high substrate solubilization rate and a methane yield of 0.30 m3 CH4/kg COD fed. The two-phase process was capable of high VS reduction, but material and energy balance showed that the single-phase process was superior in terms of volumetric methane production and energy yield by 33%. The lower energy yield of the two-phase system was due to the loss of energy during hydrolysis in the TPAR and the deficit in methane production in the TPMR attributed to COD loss due to biomass synthesis and adsorption of hard COD onto the flocs. These results including the complicated operational procedure of the two-phase process and the economic factors suggested that the single-phase process could be the preferred system for FVW.

  9. Monitoring vegetation phenology using MODIS

    USGS Publications Warehouse

    Zhang, Xiayong; Friedl, Mark A.; Schaaf, Crystal B.; Strahler, Alan H.; Hodges, John C.F.; Gao, Feng; Reed, Bradley C.; Huete, Alfredo

    2003-01-01

    Accurate measurements of regional to global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate–biosphere interactions. Since the mid-1980s, satellite data have been used to study these processes. In this paper, a new methodology to monitor global vegetation phenology from time series of satellite data is presented. The method uses series of piecewise logistic functions, which are fit to remotely sensed vegetation index (VI) data, to represent intra-annual vegetation dynamics. Using this approach, transition dates for vegetation activity within annual time series of VI data can be determined from satellite data. The method allows vegetation dynamics to be monitored at large scales in a fashion that it is ecologically meaningful and does not require pre-smoothing of data or the use of user-defined thresholds. Preliminary results based on an annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS) data for the northeastern United States demonstrate that the method is able to monitor vegetation phenology with good success.

  10. A multiplex RTi-PCR reaction for simultaneous detection of Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus on fresh, minimally processed vegetables.

    PubMed

    Elizaquível, Patricia; Aznar, Rosa

    2008-08-01

    In this work, a new multiplex single-tube real-time PCR approach is presented for the detection of Escherichia coli O157:H7, Salmonella spp. and Staphylococcus aureus, three of the more frequent food-borne bacterial pathogens that are usually investigated in a variety of food matrices. The study includes the design and specificity testing, of a new primer and probe specific for Salmonella spp. Reaction conditions were adjusted for the simultaneous amplification and detection of specific fragments in the beta-glucuronidase (uidA, E. coli) and Thermonulease (nuc, Sta. aureus) genes, and in the replication origin sequence (oriC, Salmonella spp.). Melting-curve analysis using a SYBR Green I RTi-PCR approach showed characteristic T(m) values demonstrating the specific and efficient amplification of the three fragments. Subsequently, a TaqMan RTi-PCR approach was settled, using FAM, NED and VIC fluorescently labelled specific probes for an automated detection. It was equally sensitive than uniplex RTi-PCR reactions in Sta. aureus and E. coli O157:H7, using same amounts of purified DNA, and allowed detection of 10 genome equivalents in the presence of 10(2) or 10(4) genome equivalents of the other two pathogens. Finally, it was tested in artificially inoculated fresh, minimally processed vegetables, revealing a sensitivity of 10(3)CFUg(-1) each of these pathogens in direct detection, following DNA extraction with DNeasy Tissue Kit (Qiagen). The multiplex RTi-PCR developed scored the sensitivity recognised for PCR in food and it allows a high-throughput and automation, thus it is promising as a rapid and cost-effective test for the food industry.

  11. Emergence of river dynamics through changing vegetation patterns

    NASA Astrophysics Data System (ADS)

    van Oorschot, Mijke; Kleinhans, Maarten; Middelkoop, Hans; Geerling, Gertjan

    2016-04-01

    Riparian vegetation interacts with morphodynamic processes in rivers to create distinct habitat mosaics supporting a large biodiversity. The aim of our work is to quantitatively investigate the emergent patterns in vegetation and river morphology at the river reach scale by dynamically modelling the processes and their interactions. Here, we coupled an advanced morphodynamic model to a novel dynamic riparian vegetation model to study the interaction between vegetation and morphodynamics. Vegetation colonizes bare substrate within the seed dispersal window, passes several growth stages with different properties and can die through flooding, desiccation, uprooting, scour or burial. We have compared river morphology and vegetation patterns of scenarios without vegetation, with static vegetation that does not grow or die and several dynamic vegetation scenarios with a range of vegetation strategies and eco-engineering properties. Results show that dynamic vegetation has a decreased lateral migration of meander bends and maintains its active meandering behavior as opposed to the scenarios without vegetation and with static vegetation. Also the patterns in vegetation and fluvial morphology and the vegetation age distribution mostly resemble the natural situation when compared to aerial photos of the study area. We find that river dynamics, specifically sinuosity and sediment transport, are very sensitive to vegetation properties that determine vegetation density, settlement location and survival. Future work will include the effects of invasive species, addition of silt and the effect of various river management strategies.

  12. Powdered hide model for vegetable tanning

    USDA-ARS?s Scientific Manuscript database

    Powdered hide samples for this initial study of vegetable tanning were prepared from hides that were dehaired by a typical sulfide or oxidative process, and carried through the delime/bate step of a tanning process. In this study, we report on interactions of the vegetable tannin, quebracho with th...

  13. Research in remote sensing of vegetation

    NASA Technical Reports Server (NTRS)

    Schrumpf, Barry J.; Ripple, William J.; Isaacson, Dennis L.

    1988-01-01

    The research topics undertaken were primarily selected to further the understanding of fundamental relationships between electromagnetic energy measured from Earth orbiting satellites and terrestrial features, principally vegetation. Vegetation is an essential component in the soil formation process and the major factor in protecting and holding soil in place. Vegetation plays key roles in hydrological and nutrient cycles. Awareness of improvement or deterioration in the capacity of vegetation and the trends that those changes may indicate are, therefore, critical detections to make. A study of the relationships requires consideration of the various portions of the electromagnetic spectrum; characteristics of detector system; synergism that may be achieved by merging data from two or more detector systems or multiple dates of data; and vegetational characteristics. The vegetation of Oregon is sufficiently diverse as to provide ample opportunity to investigate the relationships suggested above several vegetation types.

  14. The Alaska vegetation classification.

    Treesearch

    L.A. Viereck; C.T. Dyrness; A.R. Batten; K.J. Wenzlick

    1992-01-01

    The Alaska vegetation classification presented here is a comprehensive, statewide system that has been under development since 1976. The classification is based, as much as possible, on the characteristics of the vegetation itself and is designed to categorize existing vegetation, not potential vegetation. A hierarchical system with five levels of resolution is used...

  15. Parental involvement and association with adolescents' fruit and vegetable intake at follow-up: Process evaluation results from the multi-component school-based Boost intervention.

    PubMed

    Jørgensen, Sanne Ellegård; Jørgensen, Thea Suldrup; Aarestrup, Anne Kristine; Due, Pernille; Krølner, Rikke

    2016-10-26

    Based on the assumption of parental influence on adolescent behavior, multicomponent school-based dietary interventions often include a parental component. The effect of this intervention component is seldom reported and the evidence is inconsistent. We conducted a systematic process evaluation of the parental component and examined whether the leveal of parental involvement in a large multi-component intervention: the Boost study was associated with adolescents' fruit and vegetable (FV) intake at follow-up. The Boost study was targeting FV intake among 1,175 Danish 7(th) graders (≈13- year-olds) in the school year 2010/11. The study included a school component: free FV in class and curricular activities; a local community component: fact sheets for sports- and youth clubs; and a parental component: presentation of Boost at a parent-school meeting, 6 newsletters to parents, 3 guided student-parent curricular activities, and a student-parent Boost event. Students whose parent replied to the follow-up survey (n = 347). Questionnaire data from students, parents and teachers at 20 intervention schools. Process evaluation measures: dose delivered, dose received, appreciation and level of parental involvement. Parental involvement was trichotomized into: low/no (0-2 points), medium (3 points) and high (4-6 points). The association between level of parental involvement and self-reported FV intake (24-h recall), was analyzed using multilevel regression analyses. The Boost study was presented at a parent-school meeting at all intervention schools. The dose delivered was low to moderate for the three other parental elements. Most parents appreciated the intervention and talked with their child about Boost (83.5 %). High, medium and low parental involvement was found among 30.5 %, 29.6 % and 39.4 % of the students respectively. Parental involvement was highest among women. More men agreed that the parental newsletters provided new information. Students with a medium

  16. Glyphosate’s impact on vegetative growth in leafy spurge identifies molecular processes and hormone cross-talk associated with increased branching

    USDA-ARS?s Scientific Manuscript database

    Leafy spurge (Euphorbia esula) is a perennial weed that is considered glyphosate tolerant. Tolerance is partly attributed to escape through establishment of new vegetative shoots from an abundance of underground adventitious buds. Sub-lethal concentrations of foliar applied glyphosate resulted in ne...

  17. Experimental investigation of the effect of vegetation on soil, sediment erosion, and salt transport processes in the Upper Colorado River Basin Mancos Shale formation, Price, Utah, USA.

    USDA-ARS?s Scientific Manuscript database

    Because of concerns about salinity in the Colorado River, this study focused on saline and sodic soils associated with the Mancos Shale formation with the objective of investigating mechanisms driving sediment yield and salinity loads and the role of vegetation in altering soil chemistry in the Pric...

  18. The Change4Life convenience store programme to increase retail access to fresh fruit and vegetables: a mixed methods process evaluation.

    PubMed

    Adams, Jean; Halligan, Joel; Burges Watson, Duika; Ryan, Vicky; Penn, Linda; Adamson, Ashley J; White, Martin

    2012-01-01

    Consumption of fruit and vegetables is important for health, but is often lower than recommended and tends to be socio-economically patterned with lower consumption in more deprived groups. In 2008, the English Department of Health introduced the Change4Life convenience store programme. This aimed to increase retail access to fresh fruit and vegetables in deprived, urban areas by providing existing convenience stores with a range of support and branded point-of-sale materials and equipment. We undertook a mixed-methods study of the Change4Life convenience store programme in the North East of England around two years after initial implementation. Store mapping (n = 87; 100% stores) and systematic in-store observations (n = 74; 85% stores) provided information on intervention fidelity; the variety, purchase price and quality of fresh fruit and vegetables on sale; and purchase price compared to a major supermarket. Ten qualitative interviews with a purposive sample of retailers and other professionals explored experiences of the intervention and provided further insight on quantitative results. Intervention stores were primarily located in socio-economically disadvantaged areas. Fidelity, in terms of presence of branded materials and equipment, was low and much was not being used as intended. Fresh fruit and vegetables on sale were of high quality and had a purchase price around 10% more than comparable products at a major supermarket. Interviewees were supportive of the health improvement aim of the intervention. Retailers were appreciative of part-funding for chill cabinets and free point-of-sale materials. The intervention suffered from: poor initial and on-going communication between the intervention delivery team and retailers; poor availability of replacement point-of-sale materials; and failure to cement intended links with health workers and community organisations. Overall, intervention fidelity was low and the intervention is unlikely to have had a

  19. The Change4Life Convenience Store Programme to Increase Retail Access to Fresh Fruit and Vegetables: A Mixed Methods Process Evaluation

    PubMed Central

    Adams, Jean; Halligan, Joel; Burges Watson, Duika; Ryan, Vicky; Penn, Linda; Adamson, Ashley J.; White, Martin

    2012-01-01

    Background Consumption of fruit and vegetables is important for health, but is often lower than recommended and tends to be socio-economically patterned with lower consumption in more deprived groups. In 2008, the English Department of Health introduced the Change4Life convenience store programme. This aimed to increase retail access to fresh fruit and vegetables in deprived, urban areas by providing existing convenience stores with a range of support and branded point-of-sale materials and equipment. Methods We undertook a mixed-methods study of the Change4Life convenience store programme in the North East of England around two years after initial implementation. Store mapping (n = 87; 100% stores) and systematic in-store observations (n = 74; 85% stores) provided information on intervention fidelity; the variety, purchase price and quality of fresh fruit and vegetables on sale; and purchase price compared to a major supermarket. Ten qualitative interviews with a purposive sample of retailers and other professionals explored experiences of the intervention and provided further insight on quantitative results. Results Intervention stores were primarily located in socio-economically disadvantaged areas. Fidelity, in terms of presence of branded materials and equipment, was low and much was not being used as intended. Fresh fruit and vegetables on sale were of high quality and had a purchase price around 10% more than comparable products at a major supermarket. Interviewees were supportive of the health improvement aim of the intervention. Retailers were appreciative of part-funding for chill cabinets and free point-of-sale materials. The intervention suffered from: poor initial and on-going communication between the intervention delivery team and retailers; poor availability of replacement point-of-sale materials; and failure to cement intended links with health workers and community organisations. Conclusions Overall, intervention fidelity was low and the

  20. Microbial carbon recycling: an underestimated process controlling soil carbon dynamics - Part 2: A C3-C4 vegetation change field labelling experiment

    NASA Astrophysics Data System (ADS)

    Basler, A.; Dippold, M.; Helfrich, M.; Dyckmans, J.

    2015-11-01

    The mean residence times (MRT) of different compound classes of soil organic matter (SOM) do not match their inherent recalcitrance to decomposition. One reason for this is the stabilization within the soil matrix, but recycling, i.e. the reuse of "old" organic material to form new biomass may also play a role as it uncouples the residence times of organic matter from the lifetime of discrete molecules in soil. We analysed soil sugar dynamics in a natural 30-year old labelling experiment after a wheat-maize vegetation change to determine the extent of recycling and stabilization by assessing differences in turnover dynamics between plant and microbial-derived sugars: while plant-derived sugars are only affected by stabilization processes, microbial sugars may be subject to both, stabilization and recycling. To disentangle the dynamics of soil sugars, we separated different density fractions (free particulate organic matter (fPOM), light occluded particulate organic matter (≤ 1.6 g cm-3; oPOM1.6), dense occluded particulate organic matter (≤ 2 g cm-3; oPOM2) and mineral-associated organic matter (> 2 g cm-3; mineral)) of a silty loam under long-term wheat and maize cultivation. The isotopic signature of neutral sugars was measured by high pressure liquid chromatography coupled to isotope ratio mass spectrometry (HPLC/IRMS), after hydrolysis with 4 M Trifluoroacetic acid. While apparent MRT of sugars were comparable to total organic carbon in the bulk soil and mineral fraction, the apparent MRT of sugar carbon in the oPOM fractions were considerably lower than those of the total carbon of these fractions. This indicates that oPOM formation was fuelled by microbial activity feeding on new plant input. In the bulk soil, MRT of the mainly plant-derived xylose were significantly lower than those of mainly microbial-derived sugars like galactose, rhamnose, fucose, indicating that recycling of organic matter is an important factor regulating organic matter dynamics in

  1. Integrating Vegetation Classification, Mapping, and Strategic Inventory for Forest Management

    Treesearch

    C. K. Brewer; R. Bush; D. Berglund; J. A. Barber; S. R. Brown

    2006-01-01

    Many of the analyses needed to address multiple resource issues are focused on vegetation pattern and process relationships and most rely on the data models produced from vegetation classification, mapping, and/or inventory. The Northern Region Vegetation Mapping Project (R1-VMP) data models are based on these three integrally related, yet separate processes. This...

  2. Sediment Transport of Vegetated Channel Flow

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Chan, H.; Hsieh, P.

    2012-12-01

    Sediment transport is one of the points of river management. Since the reservoir is usually dredged by hydro-flushing, the river morphology, hydraulic constructions and aquatic habitats are changed by the flow full of sediment which is discharged from the reservoir. These phenomena are more complex for vegetated channels. The flow and streambed affected by the variation of water level in the vegetated channel are simulated by a numerical method. The Navier-Stokes equations which are taken Reynolds average and depth average into 2-D associated with the governing equation of sediment transport are solved by the finite volume method. The k-ɛ model is applied in the process, and the resistance is considered due to the vegetation in the channel. In the vegetated channel, the turbulent kinetic energy at the vegetation zone is reduced and it is rising at the non-vegetated flow zone from the interface between two zones. The flow at the vegetation zone becomes uniform when the upstream water depth increases. Similar situation of the bed shear stress is also found. The phenomenon becomes more apparent when the upstream water depth gets deeper. The channel bed is protected by planting vegetation, but the capability of erosion also increases in the same channel without vegetation. Besides, the model is verified to be well by employing the experimental data presented by Tsujimoto and Kitamura (1995). It is good for predicting the velocity distribution of corss-section in the vegetated channel.; ;

  3. Fruits and vegetables (image)

    MedlinePlus

    A healthy diet includes adding vegetables and fruit every day. Vegetables like broccoli, green beans, leafy greens, zucchini, cauliflower, cabbage, carrots, and tomatoes are low in calories and high in fiber, ...

  4. Handling Procedures of Vegetable Crops

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; French, Stephen J.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) is working towards future long duration manned space flights beyond low earth orbit. The duration of these missions may be as long as 2.5 years and will likely include a stay on a lunar or planetary surface. The primary goal of the Advanced Food System in these long duration exploratory missions is to provide the crew with a palatable, nutritious, and safe food system while minimizing volume, mass, and waste. Vegetable crops can provide the crew with added nutrition and variety. These crops do not require any cooking or food processing prior to consumption. The vegetable crops, unlike prepackaged foods, will provide bright colors, textures (crispy), and fresh aromas. Ten vegetable crops have been identified for possible use in long duration missions. They are lettuce, spinach, carrot, tomato, green onion, radish, bell pepper, strawberries, fresh herbs, and cabbage. Whether these crops are grown on a transit vehicle (e.g., International Space Station) or on the lunar or planetary surface, it will be necessary to determine how to safely handle the vegetables while maintaining acceptability. Since hydrogen peroxide degrades into water and oxygen and is generally recognized as safe (GRAS), hydrogen peroxide has been recommended as the sanitizer. The objective of th is research is to determine the required effective concentration of hydrogen peroxide. In addition, it will be determined whether the use of hydrogen peroxide, although a viable sanitizer, adversely affects the quality of the vegetables. Vegetables will be dipped in 1 % hydrogen peroxide, 3% hydrogen peroxide, or 5% hydrogen peroxide. Treated produce and controls will be stored in plastic bags at 5 C for up to 14 days. Sensory, color, texture, and total plate count will be measured. The effect on several vegetables including lettuce, radish, tomato and strawberries has been completed. Although each vegetable reacts to hydrogen peroxide differently, the

  5. A Reference Unit on Home Vegetable Gardening.

    ERIC Educational Resources Information Center

    McCully, James S., Comp.; And Others

    Designed to provide practical, up-to-date, basic information on home gardening for vocational agriculture students with only a limited knowledge of vegetable gardening, this reference unit includes step-by-step procedures for planning, planting, cultivating, harvesting, and processing vegetables in a small plot. Topics covered include plot…

  6. Natural vegetation inventory

    NASA Technical Reports Server (NTRS)

    Schrumpf, B. J.

    1973-01-01

    Unique characteristics of ERTS imagery can be used to inventory natural vegetation. While satellite images can seldom be interpreted and identified directly in terms of vegetation types, such types can be inferred by interpretation of physical terrain features and through an understanding of the ecology of the vegetation.

  7. The impact of climate and environmental processes on vegetation pattern in the Czechowskie lake catchment Czechowo Region (Northern Tuchola Pinewoods) during the Younger Dryas cooling

    NASA Astrophysics Data System (ADS)

    Noryśkiewicz, Agnieszka Maria; Kramkowski, Mateusz; Słowiński, Michał; Zawiska, Izabela; Lutyńska, Monika; Błaszkiewicz, Mirosław; Brauer, Achim

    2014-05-01

    Czechowskie lake is located in the northern part of the Tuchola Pinewoods District (Northern Poland) in a young glacial landscape. At present, the majority of the area is forested or used for agricultural purposes, but among them a high amount of basins filled with biogenic sediments are present. This area is very suitable for the postglacial vegetation development investigation because of the LST ash and laminated sediments which we found in the Trzechowskie palaeolake and Czechowskie Lake (Wulf et. all 2013). The aim of the research was to reconstruct the past landscape and vegetation response to Younger Dryas cooling and we present the results of the palinological analysis done for 6 core of biogenic sediments. Our main objective was to determine whether local factors such as topography and soil cover have a significant impact on the vegetation, eutrophy and sedimentation rate at this time. In the lake Czechowskie lake catchment we have six cores that cover postglacial succession (Lake Czechowskie small basin - profile JC-12-s; Lake Czechowskiego terrace - profile TK; Lake Czechowskie vicinity - profile "Oko and Cz/80; Trzechowskie paleolake - profile T/trz; Valley between paleolake Trzechowskie and Lake Czechowskie - profile DTCZ-4). The paleoecological research carried out involved an analysis of pollen, macrofossils, Cladocera, diatom, loss-on-ignition and CaCO3 content. The results show, that the dominant plant communities during the Youngers Dryas in the region nearby Lake Czechowskie are heliophytes xeric herb vegetation with juniper (Juniperus communis) shrubs and birch (Betula) and pine (Pinus sylvestris). In the pollen diagrams there was the difference noted in the participation of the dominant pollen, the juniper pollen was always high but varied from 18 to 37%, birch average pollen share was between 17-27%. The thickness and type of the sediment accumulated in Younger Dryas in the presented profiles differs significantly. In the profiles which

  8. Vegetable oil fuel standards

    SciTech Connect

    Pryde, E.H.

    1982-01-01

    Suggested standards for vegetable oils and ester fuels, as well as ASTM specifications for No. 2 diesel oil are given. The following physical properties were discussed: cetane number, cloud point, distillation temperatures, flash point, pour point, turbidity, viscosity, free fatty acids, iodine value, phosphorus, and wax. It was apparent that vegetable oils and their esters cannot meet ASTM specifications D975 for No. 2 diesel oil for use in the diesel engine. Vegetable oil modification or engine design modification may make it possible eventually for vegetable oils to become suitable alternative fuels. Vegetable oils must be recognized as experimental fuels until modifications have been tested thoroughly and generally accepted. 1 table. (DP)

  9. Ecological studies on the revegetation process of surface coal mined areas in North Dakota. 3. soil and vegetation development of abandoned mines. Final report Aug 75-Jun 82

    SciTech Connect

    Wali, M.K.; Pemble, R.H.

    1982-06-01

    Soil and vegetation development were studied on abandoned mine sites near Velva in Ward County, North Dakota. The sites studied were 1, 7, 17, 30 and 45 years old since abandonment; unmined sites were also studied to provide measures of comparison. Species diversity was the highest at unmined sites (114) and lowest at the 1 year old site (26). Stand-environmental complex ordinations encompassing 53 variables showed topographic variables to be the most important followed by site ages. Rates of nutrient accumulations were given in the report.

  10. Introduction to special section on Remote Characterization of Vegetation Structure: New Methods and Applications to Landscape-Regional-Global Scale Processes

    NASA Astrophysics Data System (ADS)

    Smith, Alistair M. S.; Greenberg, Jonathan A.; Vierling, Lee A.

    2008-09-01

    This special section stems from three sessions focusing on the "Remote Characterization of Vegetation Structure" that were held at the fall meeting of the American Geophysical Union (AGU) in December 2006, San Francisco. The sessions were well attended with more than 40 abstracts covering a range of poster and oral presentations. High levels of interest in this topic have led to the establishment of a de facto regular session within Biogeosciences at the fall meeting, with a similar number of abstracts presented in 2007 and a session planned for December 2008. The goal of these sessions was to highlight how recent advances in active and passive remote sensing technology, data acquisition methods, and analytical techniques could be used to both characterize vegetation structural metrics at multiple scales, and to further understand how these measures could be used as inputs in biogeochemical, biophysical, and ecological models. The papers in this special section represent the highlights of the latter objective and include participants from the conference special sessions, along with scientists from the wider scientific community. A companion special issue focusing on the former objective has been organized in the Canadian Journal of Remote Sensing and is due to be published in the fall of 2008. In this introduction, we provide context for this special section, summarize the main results of each contribution, and include suggestions for further strategic directions and activities in this area of research.

  11. Experimental Investigations on Uprooting of Riparian Vegetation

    NASA Astrophysics Data System (ADS)

    Francalanci, S.; Calvani, G.; Solari, L.; Gumiero, B.

    2016-12-01

    The morphology of a river reach is the result of many processes involving the motion of sediment (erosion, transport and deposition), the hydrological regime and the development and growth of vegetation. River evolution in the presence of vegetation depends on establishment of pioneer riparian seedlings on bars, and consequently on either their survival or death (Bertoldi et al, 2014). Flooding events can cause young vegetation mortality by burying it with sediment or by uprooting. Despite its important implications in river morphodynamics, interaction of vegetation with sediment transport and its decay due to high flow events have been poorly investigated in the past (Edmaier et al., 2011). In this work, we focused on vegetation uprooting by flow. Aims of the research are to define shear stress threshold and discharge/time relation for flow induced uprooting of juvenile seedlings. We considered two different types of vegetation: Avena Sativa, grown from seeds in external boxes, was used to reproduce annual grass, and Salix Purpurea, collected in the field, a more resistant shrub that can be commonly found in gravel bars. The experiments were carried out in a 5 m long flume in the Hydraulic Laboratory in Florence. The first part of the flume consisted of rigid bed, then a mobile vegetated bed was build for a length of about 2 m. The vegetation was subject to a stepwise increasing flow discharge in order to achieve the condition for quasi-instantaneous uprooting for the two species and to investigate the unit processes which can be observed in a vegetated gravel bar. Bertoldi, W., A. Siviglia, S. Tettamanti, M. Toffolon, D. Vetsch, and S. Francalanci (2014), Modeling vegetation controls on fluvial morphological trajectories, Geophys. Res. Lett., 41, 7167-7175, doi:10.1002/2014GL061666. Edmaier, K, P Burlando, and P Perona. 2011. `Mechanisms of Vegetation Uprooting by Flow in Alluvial Non- Cohesive Sediment'. Hydrology and Earth System Sciences 15(5): 1615-1627.

  12. Physiology of fresh-cut fruits and vegetables

    USDA-ARS?s Scientific Manuscript database

    The idea to pre-process fruits and vegetables in the fresh state started with fresh-cut salads and now has expanded to fresh-cut fruits and other vegetables. The fresh-cut portion of the fresh produce industry includes fruits, vegetables, sprouts, mushrooms and even herbs that are cut, cored, sliced...

  13. Data pre-processing: Stratospheric aerosol perturbing effect on the remote sensing of vegetation: Correction method for the composite NDVI after the Pinatubo eruption

    NASA Technical Reports Server (NTRS)

    Vermote, E.; Elsaleous, N.; Kaufman, Y. J.; Dutton, E.

    1994-01-01

    An operational stratospheric correction scheme used after the Mount Pinatubo (Phillipines) eruption (Jun. 1991) is presented. The stratospheric aerosol distribution is assumed to be only variable with latitude. Each 9 days the latitudinal distribution of the optical thickness is computed by inverting radiances observed in the NOAA AVHRR channel 1 (0.63 micrometers) and channel 2 (0.83 micrometers) over the Pacific Ocean. This radiance data set is used to check the validity of model used for inversion by checking consistency of the optical thickness deduced from each channel as well as optical thickness deduced from different scattering angles. Using the optical thickness profile previously computed and radiative transfer code assuming Lambertian boundary condition, each pixel of channel 1 and 2 are corrected prior to computation of NDVI (Normalized Difference Vegetation Index). Comparison between corrected, non corrected, and years prior to Pinatubo eruption (1989 to 1990) NDVI composite, shows the necessity and the accuracy of the operational correction scheme.

  14. Data pre-processing: Stratospheric aerosol perturbing effect on the remote sensing of vegetation: Correction method for the composite NDVI after the Pinatubo eruption

    NASA Technical Reports Server (NTRS)

    Vermote, E.; Elsaleous, N.; Kaufman, Y. J.; Dutton, E.

    1994-01-01

    An operational stratospheric correction scheme used after the Mount Pinatubo (Phillipines) eruption (Jun. 1991) is presented. The stratospheric aerosol distribution is assumed to be only variable with latitude. Each 9 days the latitudinal distribution of the optical thickness is computed by inverting radiances observed in the NOAA AVHRR channel 1 (0.63 micrometers) and channel 2 (0.83 micrometers) over the Pacific Ocean. This radiance data set is used to check the validity of model used for inversion by checking consistency of the optical thickness deduced from each channel as well as optical thickness deduced from different scattering angles. Using the optical thickness profile previously computed and radiative transfer code assuming Lambertian boundary condition, each pixel of channel 1 and 2 are corrected prior to computation of NDVI (Normalized Difference Vegetation Index). Comparison between corrected, non corrected, and years prior to Pinatubo eruption (1989 to 1990) NDVI composite, shows the necessity and the accuracy of the operational correction scheme.

  15. Effects of fruit juices, processed vegetable juice, orange peel and green tea on endogenous formation of N-nitrosoproline in subjects from a high-risk area for gastric cancer in Moping County, China.

    PubMed

    Xu, G P; Song, P J; Reed, P I

    1993-07-01

    The effects of four fruit juices, processed vegetable juice, orange peel, green tea and low dose vitamin C on endogenous N-nitrosation in 86 subjects from a high-risk area for gastric cancer in Moping County, China were studied using urinary excretion of N-nitrosoproline (NPRO) as an indicator. After ingestion of 300 mg L-proline, urinary excretion of NPRO was significantly increased from a baseline of 2.5 +/- 1.6 micrograms/day to 8.7 +/- 6.2 micrograms/day. (P < 0.001). Vitamin C (75 mg) administration significantly reduced NPRO formation (62.3%, P < 0.002) although NPRO excretion remained higher than the baseline level (4.2 +/- 1.3 vs 2.2 +/- 1.2 micrograms/day, P < 0.001). Intake of fruit juices and green tea extracts (containing 75 mg vitamin C) or of orange peel powder (containing 3 mg vitamin C) together with 300 mg L-proline inhibited NPRO formation effectively to the baseline level or to levels significantly lower than the baseline level (P < 0.05-0.005). A processed juice of a number of vegetables (300 ml) significantly catalysed endogenous nitrosation (14.7 +/- 11.8 vs 9.4 +/- 4.7 micrograms/day, P < 0.05). Endogenous N-nitrosation was unaffected by the presence of intragastric lesions. The present study shows that endogenous nitrosation in this population is profoundly affected by environmental factors and that inhibitors, such as vitamin C, alpha-tocopherol and other non-nutritive compounds in the foods do inhibit endogenous nitrosation either synergistically or in an additive manner. The significance of fruits and vegetables in prevention of human cancers is discussed.

  16. Geomorphic predictors of riparian vegetation in small mountain watersheds

    Treesearch

    Blake M. Engelhardt; Jeanne C. Chambers; Peter J. Weisberg

    2015-01-01

    Hydrogeomorphic processes operating at watershed, process zone and site scales influence the distribution of riparian vegetation. However, most studies examining the relationships between hydrogeomorphic processes and riparian vegetation are conducted at site scales. We quantified the relative importance of watershed, process zone and site geomorphic characteristics...

  17. Vegetation establishment in convectively accelerated streams

    NASA Astrophysics Data System (ADS)

    Crouzy, B.; McLelland, S. J.; Molnar, P.; Camporeale, C.; Perona, P.

    2013-12-01

    We study the conditions for vegetation establishment within river reaches with converging boundaries. Common to many such rivers worldwide is the existence of a limiting front (e.g., Figure 1a) beyond which all the riverbed vegetation is uprooted by flooding events. There are however exceptions, which leads to an interesting ecomorphodynamic problem (existence and position of the front). We use a theoretical 1-D framework based on morphodynamic equations modified in order to account for the presence of vegetation (Perona et al., submitted), and obtain the link between the position of the vegetated front and river eco-hydraulic variables under steady and unsteady conditions. We apply our framework to a number of flume experiments (unsteady flow) where Avena sativa L. (common oat) seedlings grow subject to periodic flow disturbances within a convergent flume channel (Figure 1b). We find that depending on the outcome of the competition between hydrological and biological processes there is either a limiting spatial front within the convergent section beyond which vegetation cannot survive, or vegetation colonizes the entire riverbed. The existence and the position of the front depend on the ability for vegetation to take root efficiently and withstand uprooting by the flow of the convectively accelerated stream (Crouzy et al., in press). The active role of vegetation and of unit streampower in this particular ecomorphodynamic process are then discussed in relation to the conceptual model of Gurnell and Petts (2006), and under the light of our theoretical and experimental results. REFERENCES - Crouzy, B., K. Edmaier, N. Pasquale and P. Perona (in press). Impact of floods on the statistical distribution of riverbed vegetation. Geomorphology doi:10.1016/j.geomorph.2012.09.013. - Gurnell A., Petts G. (2006). Trees as riparian engineers: The Tagliamento River, Italy. Earth Surface Processes and Landforms, 31: 1558--1574. - Perona, P., B. Crouzy, S. Mc Lelland, P. Molnar

  18. Influence of the bank vegetation on the river bed variations

    NASA Astrophysics Data System (ADS)

    Ruei Ke, Bo; Chan, Hsun-Chuan; Chen, You-Cheng

    2014-05-01

    In the natural rivers, woody vegetation commonly grows along the riverbank. When flood flows run through the woody vegetation zones, the stream processes are markedly affected. This study experimentally discusses the characteristics of flow fields and the changes of river bedform while water flows through woody vegetation zones. The experiments were produced in a flume with 20m long, 1m wide, and a fixed slope of 0.001. The woody vegetation was set in 10 square centimeters at one side of the flume. Experimental vegetation was simulated by the steel columns due to the stem of emergent woody vegetation near bed is rigid. The experimental flow was steady and flow velocity was adopted to near the critical flow for the initiation of sediment motion. Uniform sand with a median size of 0.88 mm was used as the bed sediment. The three dimensional flow fields of time-averaged velocity distributions and turbulent characteristics were measured by an Acoustic Doppler Velocimeter(ADV). The bed morphology of equilibrium scour condition was measured by a Laser Distance Meter. The interactions between water flows and river bed with vegetation ware investigated by observing the scour and deposition processes around the vegetation zone. In addition, the flow fields at flat bed and equilibrium scour conditions are measured separately. Furthermore, the influence of vegetation density on the flow and bedform was investigated by using the present experiment. When the flows passed through the vegetation zones, the approaching flow was retarded by the vegetation zone along the vegetation-bank side and accelerated in the main channel. The flow velocities also reduced downstream of the vegetation zones and the water depths dropped significantly in the streamwise direction. It was observed that the levels of the sediment deposition decreased at downstream of the vegetation zones as the vegetation density increased. Near the vegetation zone, the size of the scour hole increased as the

  19. Vegetation Change Analysis User's Manual

    SciTech Connect

    D. J. Hansen; W. K. Ostler

    2002-10-01

    Approximately 70 percent of all U.S. military training lands are located in arid and semi-arid areas. Training activities in such areas frequently adversely affect vegetation, damaging plants and reducing the resilience of vegetation to recover once disturbed. Fugitive dust resulting from a loss of vegetation creates additional problems for human health, increasing accidents due to decreased visibility, and increasing maintenance costs for roads, vehicles, and equipment. Diagnostic techniques are needed to identify thresholds of sustainable military use. A cooperative effort among U.S. Department of Energy, U.S. Department of Defense, and selected university scientists was undertaken to focus on developing new techniques for monitoring and mitigating military impacts in arid lands. This manual focuses on the development of new monitoring techniques that have been implemented at Fort Irwin, California. New mitigation techniques are described in a separate companion manual. This User's Manual is designed to address diagnostic capabilities needed to distinguish between various degrees of sustainable and nonsustainable impacts due to military training and testing and habitat-disturbing activities in desert ecosystems. Techniques described here focus on the use of high-resolution imagery and the application of image-processing techniques developed primarily for medical research. A discussion is provided about the measurement of plant biomass and shrub canopy cover in arid. lands using conventional methods. Both semiquantitative methods and quantitative methods are discussed and reference to current literature is provided. A background about the use of digital imagery to measure vegetation is presented.

  20. MC1: a dynamic vegetation model for estimating the distribution of vegetation and associated carbon, nutrients, and water—technical documentation. Version 1.0.

    Treesearch

    Dominique Bachelet; James M. Lenihan; Christopher Daly; Ronald P. Neilson; Dennis S. Ojima; William J. Parton

    2001-01-01

    Assessments of vegetation response to climate change have generally been made only by equilibrium vegetation models that predict vegetation composition under steady-state conditions. These models do not simulate either ecosystem biogeochemical processes or changes in ecosystem structure that may, in turn, act as feedbacks in determining the dynamics of vegetation...

  1. Probabilistic Evaluation of Anthropogenic Regulations In a Vegetated River Channel Using a Vegetation Dynamics Modeling

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hitoshi

    2015-04-01

    Vegetation overgrowth in fluvial floodplains, gravel beds, and sand bars has been a serious engineering problem for riparian management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have developed a stochastic model for predicting the vegetation dynamics in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the vegetation dynamics model, the flood discharge (i) is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The component for vegetation dynamics (iv) includes the effects of tree growth, mortality by floods, and infant tree recruitment. Vegetation condition has been observed mainly before and after floods since 2008 at a field site located between 23-24 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth sites in the Kako River floodplains. The predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. This presentation tries to examine effects of anthropogenic river regulations, i.e., thinning and cutting-down, in the vegetated channel in Kako River by using the vegetation dynamics model. Sensitivity of both the flood water level and the vegetation status in the channel is statistically evaluated in terms of the different cutting

  2. Effects of Telecoupling on Global Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Viña, A.; Liu, J.

    2016-12-01

    With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.

  3. Changes in the bacterial community in the fermentation process of kôso, a Japanese sugar-vegetable fermented beverage.

    PubMed

    Chiou, Tai-Ying; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Takahashi, Tomoya

    2017-02-01

    Kôso is a Japanese fermented beverage made with over 20 kinds of vegetables, mushrooms, and sugars. The changes in the bacterial population of kôso during fermentation at 25 °C over a period of 10 days were studied using 454 pyrosequencing of the 16S rRNA gene. The analysis detected 224 operational taxonomic units (OTUs) clustered from 8 DNA samples collected on days 0, 3, 7, and 10 from two fermentation batches. Proteobacteria were the dominant phylum in the starting community, but were replaced by Firmicutes within three days. Seventy-eight genera were identified from the 224 OTUs, in which Bifidobacterium, Leuconostoc, Lactococcus, and Lactobacillus dominated, accounting for over 96% of the total bacterial population after three days' fermentation. UniFrac-Principal Coordinate Analysis of longitudinal fermented samples revealed dramatic changes in the bacterial community in kôso, resulting in significantly low diversity at the end of fermentation as compared with the complex starting community.

  4. Use of FT-IR Spectra and PCA to the Bulk Characterization of Cell Wall Residues of Fruits and Vegetables Along a Fraction Process.

    PubMed

    Szymanska-Chargot, Monika; Zdunek, Artur

    2013-03-01

    This study focuses on the analysis of polysaccharide residues from the cell walls of fruits and vegetables: tomato, potato, pumpkin, carrot and celery root. An alcohol-insoluble residue was prepared from plant material by extraction using the hot ethyl alcohol method and then cell wall fractions soluble in trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetate, sodium carbonate and alkaline solution were sequentially extracted. Infrared spectroscopy combined with Fourier transform (FT-IR) was used to evaluate differences among cell wall residues and among species after each step of sequential extraction of pectins and hemicelluloses. Additionally, pectic substances were identified using an Automated Wet Chemistry Analyser. Principal component analysis (PCA) was applied to FT-IR spectra in two regions: 1,800-1,200 cm(-1) and 1,200-800 cm(-1) in order to distinguish different components of cell wall polysaccharides. This method also allowed us the possibility of highlighting the most important wavenumbers for each type of polysaccharide: 1,740, 1,610 and 1,240 cm(-1) denoting pectins or 1,370 and 1,317 cm(-1) denoting hemicelluloses and cellulose, respectively.

  5. Waste to energy applications in the Wisconsin canning industry: Economic and environmental evaluation of anaerobic treatment of vegetable processing wastewaters using a fixed film reactor: Project report

    SciTech Connect

    Stack, C.R.; Stover, E.L.

    1987-01-01

    This study was conducted to investigate the economic and environmental consequences of anaerobic wastewater treatment applied to a vegetable canning plant owned by Our Best Foods, Inc., Pulaski, Wisconsin. A pilot scale, upflow fixed film anaerobic reactor was utilized to determine pollutant removal efficiency, operational parameters, and basis of design of conceptual full scale conceptual full scale systems. Hydraulic retention times (HRT) as low as twelve hours and organic loading rates as high as 1.6 pounds total chemical oxygen demand (COD) per cubic foot of media per day were achieved during the pilot study. The total and soluble COD removals averaged 59% and 79% respectively for the duration of the study. The biogas produced from the anaerobic treatment pilot system typically contained 60 to 65% methane. About 3.0 cubic feet of methane (5.5 cubic feet of biogas) were produced at standard temperature and pressure (STP) per one pound of total COD removed. Wastewaters used in this study were found to be highly variable in their strength and chemical composition. Based upon the results of the pilot study, the projected economics of different hypothetical wastewater treatment options were examined and compared to the economics of the present waste disposal program. 18 refs., 2 figs., 8 tabs.

  6. Profiles of California vegetation

    Treesearch

    William B. Critchfield

    1971-01-01

    This publication brings together 57 elevational profiles illustrating the dominant vegetation of much of the Sierra Nevada, southern Coast Ranges, and montane southern California as it existed in the 1930's. The profiles were drawn by Michael N. Dobrotin for the U.S. Forest Service's Vegetation Type Map survey, which mapped nearly half of the State's...

  7. Soil and vegetation surveillance

    SciTech Connect

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  8. Tertiary vegetation history

    Treesearch

    C. I. Millar

    1996-01-01

    The Tertiary period, from 2.5 to 65 million years ago, was the time oforigin of the modern Sierra Nevada landscape. Climates, geology,and vegetation changed drastically in the Sierra Nevada during thistime, and analyses of this period provide both context for and insightinto vegetation dynamics of the current and future Sierra. During theearly Tertiary, warm-humid,...

  9. Vegetation and Soils

    Treesearch

    Marianne K. Burke; Sammy L. King; Mark H. Eisenbies; David Gartner

    2000-01-01

    Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in...

  10. Dynamics of self-organized vegetation patterns

    NASA Astrophysics Data System (ADS)

    Foti, R.; Ramirez, J. A.

    2011-12-01

    Vegetation patterns are a common and well-defined characteristic of many arid and semi-arid landscapes. In this study we explore some of the physical mechanisms responsible for the establishment of self-organized, non-random vegetation patterns that arise at the hillslope scale in many areas of the world, especially in arid and semi-arid regions. In doing so we use a water and energy balance model and provide a fundamental mechanistic understanding of the dynamics of vegetation pattern formation and development. Within the modeling, reciprocal effects of vegetation on the hillslope energy balance, runoff production and run-on infiltration, root density, surface albedo and soil moisture content are analyzed. In particular, we: 1) present a physically based mechanistic description of the processes leading to vegetation pattern formation; 2) Compare simulated vegetation coverage at the hillslope scale with observations; 3) quantify the relative impact of pattern-inducing dynamics on pattern formation; and 4) describe the relationships between vegetation patterns and the climatic, hydraulic and topographic characteristic of the system. The model is validated by comparing hillslope-scale simulations with available observations for the areas of Niger near Niamey and Somalia near Garoowe, where respectively tiger bushes and banded vegetation patterns are present. The model validation includes comparison of simulated and observed vegetation coverage as well as simulated and measured water fluxes, showing both qualitative and quantitative agreement between simulations and observations. The analysis of the system suggests that the main driver of pattern establishment is climate, in terms of average annual precipitation and incoming solar radiation. In particular, decreasing precipitation or, conversely, increasing incoming radiation are responsible for the system departure from fully vegetated with indistinguishable vegetation structures to sparsely vegetated with (self

  11. The Role of Historical Barriers in the Diversification Processes in Open Vegetation Formations during the Miocene/Pliocene Using an Ancient Rodent Lineage as a Model

    PubMed Central

    Nascimento, Fabrícia F.; Lazar, Ana; Menezes, Albert N.; Durans, Andressa da Matta; Moreira, Jânio C.; Salazar-Bravo, Jorge; D′Andrea, Paulo S.; Bonvicino, Cibele R.

    2013-01-01

    The Neotropics harbors a high diversity of species and several hypotheses have been proposed to account for this pattern. However, while species of forested domains are frequently studied, less is known of species from open vegetation formations occupying, altogether, a larger area than the Amazon Forest. Here we evaluate the role of historical barriers and the riverine hypothesis in the speciation patterns of small mammals by analyzing an ancient rodent lineage (Thrichomys, Hystricomorpha). Phylogenetic and biogeographic analyses were carried out with mitochondrial and nuclear DNA markers to analyze the evolutionary relationships between Thrichomys lineages occurring in dry domains along both banks of the Rio São Francisco. This river is one of the longest of South America whose course and water flow have been modified by inland tectonic activities and climate changes. Molecular data showed a higher number of lineages than previously described. The T. inermis species complex with 2n = 26, FN = 48 was observed in both banks of the river showing a paraphyletic arrangement, suggesting that river crossing had occurred, from east to west. A similar pattern was also observed for the T. apereoides complex. Thrichomys speciation occurred in Late Miocene when the river followed a different course. The current geographic distribution of Thrichomys species and their phylogenetic relationships suggested the existence of frequent past connections between both banks in the middle section of the Rio São Francisco. The extensive palaeodune region found in this area has been identified as a centre of endemism of several vertebrate species and is likely to be a center of Thrichomys diversification. PMID:24349576

  12. The role of historical barriers in the diversification processes in open vegetation formations during the Miocene/Pliocene using an ancient rodent lineage as a model.

    PubMed

    Nascimento, Fabrícia F; Lazar, Ana; Menezes, Albert N; Durans, Andressa da Matta; Moreira, Jânio C; Salazar-Bravo, Jorge; D'Andrea, Paulo S; Bonvicino, Cibele R

    2013-01-01

    The Neotropics harbors a high diversity of species and several hypotheses have been proposed to account for this pattern. However, while species of forested domains are frequently studied, less is known of species from open vegetation formations occupying, altogether, a larger area than the Amazon Forest. Here we evaluate the role of historical barriers and the riverine hypothesis in the speciation patterns of small mammals by analyzing an ancient rodent lineage (Thrichomys, Hystricomorpha). Phylogenetic and biogeographic analyses were carried out with mitochondrial and nuclear DNA markers to analyze the evolutionary relationships between Thrichomys lineages occurring in dry domains along both banks of the Rio São Francisco. This river is one of the longest of South America whose course and water flow have been modified by inland tectonic activities and climate changes. Molecular data showed a higher number of lineages than previously described. The T. inermis species complex with 2n = 26, FN = 48 was observed in both banks of the river showing a paraphyletic arrangement, suggesting that river crossing had occurred, from east to west. A similar pattern was also observed for the T. apereoides complex. Thrichomys speciation occurred in Late Miocene when the river followed a different course. The current geographic distribution of Thrichomys species and their phylogenetic relationships suggested the existence of frequent past connections between both banks in the middle section of the Rio São Francisco. The extensive palaeodune region found in this area has been identified as a centre of endemism of several vertebrate species and is likely to be a center of Thrichomys diversification.

  13. Boundary Shear Stress Along Vegetated Streambanks

    NASA Astrophysics Data System (ADS)

    Clark, L. A.; Wynn, T.

    2007-12-01

    Sediment, a leading cause of water quality impairment, damages aquatic ecosystems and interferes with recreational uses and water treatment processes. Streambank retreat can contribute as much as 85% of watershed sediment yield. Vegetation is an important component of stream restoration designs used to control streambank retreat, but vegetation effects on streambank boundary shear stress (SBSS) need to be quantified. The overall goal of this experiment is to predict boundary shear stress along vegetated streambanks. This goal will be met by determining a method for measuring boundary shear stress in the field along hydraulically rough streambanks, evaluating the effects of streambank vegetation on boundary shear stress in the field, and developing predictive methods based on measurable vegetative properties. First, three streambank vegetation types (herbaceous, shrubbery, and woody) will be modeled in a flume study to examine both boundary shear stress measurement theory and instruments for field use. An appropriate method (law of the wall, Reynold's stresses, TKE, or average wall shear stress) and field instrument (ADV, propeller, or Pitot tube) will be selected, resulting in a field technique to measure SBSS. Predictive methods for estimating SBSS, based on common vegetation measurements, will be developed in the flume study and validated with field data. This research is intended to improve our understanding of the role of riparian vegetation in stream morphology by evaluating the effects of vegetation on boundary shear stress, providing insight to the type and density of vegetation required for streambank stability. The results will also aide in quantifying sediment inputs from streambanks, providing quantitative information for stream restoration projects and watershed management planning.

  14. Practical aspects of analyzing vegetable oils in fire debris.

    PubMed

    Schwenk, Lisa M; Reardon, Michelle R

    2009-07-01

    Vegetable oils undergo burning, self-heating, and spontaneous ignition, resulting in their presence in fire debris. As these processes can affect the fatty acid content of vegetable oils, it is important that debris be properly handled in order to obtain reliable and informative data. This research investigated changes in vegetable oil content as a result of storage conditions and different types of burning. Material spiked with vegetable oils and burned was stored under various long-term conditions, and debris was tested by heating overnight using passive headspace concentration. Results indicated that refrigeration is ideal for fire debris samples suspected of containing vegetable oils and that including passive headspace concentration in the analytical scheme would not affect oils. Spontaneous ignition experiments were conducted to compare the effects of various burning processes on vegetable oil content. Vegetable oils that experienced nonpiloted ignition, self-heating, and spontaneous ignition produced noticeably different chromatograms from those that underwent piloted ignition.

  15. Phenolic compounds in Brassica vegetables.

    PubMed

    Cartea, María Elena; Francisco, Marta; Soengas, Pilar; Velasco, Pablo

    2010-12-30

    Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  16. Vegetable oils: a new alternative

    SciTech Connect

    Romano, S.

    1982-01-01

    This paper relates: (1) the use and production of methyl ester of vegetable oil, M.E.V.O., as fuel in diesel engines and the effect of the catalyst proportion, alcohol and vegetable oil V.O. on the transesterification process; (2) simple control methods during industrial preparation and the behavior of V.O. and M.E.V.O. on accelerated oxidation test to determine the maximum contration of V.O. in M.E.V.O. that do not cause problems on the injectors; and (3) the behavior of M.E.V.O. and V.O. on parafinic and naphtenic lubricants, with high T.B.N. and without organo-metallic compounds, using antioxidants as B.H.T. to reduce the oxidation effect. 9 figures, 7 tables.

  17. Vegetation against dune mobility.

    PubMed

    Durán, Orencio; Herrmann, Hans J

    2006-11-03

    Vegetation is the most common and most reliable stabilizer of loose soil or sand. This ancient technique is for the first time cast into a set of equations of motion describing the competition between aeolian sand transport and vegetation growth. Our set of equations is then applied to study quantitatively the transition between barchans and parabolic dunes driven by the dimensionless fixation index theta which is the ratio between the dune characteristic erosion rate and vegetation growth velocity. We find a fixation index theta(c) below which the dunes are stabilized, characterized by scaling laws.

  18. Vegetable Production System (Veggie)

    NASA Technical Reports Server (NTRS)

    Levine, Howard G.; Smith, Trent M.

    2016-01-01

    The Vegetable Production System (Veggie) was developed by Orbital Technologies Corp. to be a simple, easily stowed, and high growth volume yet low resource facility capable of producing fresh vegetables on the International Space Station (ISS). In addition to growing vegetables in space, Veggie can support a variety of experiments designed to determine how plants respond to microgravity, provide real-time psychological benefits for the crew, and conduct outreach activities. Currently, Veggie provides the largest volume available for plant growth on the ISS.

  19. Vegetation extraction from high-resolution satellite imagery using the Normalized Difference Vegetation Index (NDVI)

    NASA Astrophysics Data System (ADS)

    AlShamsi, Meera R.

    2016-10-01

    Over the past years, there has been various urban development all over the UAE. Dubai is one of the cities that experienced rapid growth in both development and population. That growth can have a negative effect on the surrounding environment. Hence, there has been a necessity to protect the environment from these fast pace changes. One of the major impacts this growth can have is on vegetation. As technology is evolving day by day, there is a possibility to monitor changes that are happening on different areas in the world using satellite imagery. The data from these imageries can be utilized to identify vegetation in different areas of an image through a process called vegetation detection. Being able to detect and monitor vegetation is very beneficial for municipal planning and management, and environment authorities. Through this, analysts can monitor vegetation growth in various areas and analyze these changes. By utilizing satellite imagery with the necessary data, different types of vegetation can be studied and analyzed, such as parks, farms, and artificial grass in sports fields. In this paper, vegetation features are detected and extracted through SAFIY system (i.e. the Smart Application for Feature extraction and 3D modeling using high resolution satellite ImagerY) by using high-resolution satellite imagery from DubaiSat-2 and DEIMOS-2 satellites, which provide panchromatic images of 1m resolution and spectral bands (red, green, blue and near infrared) of 4m resolution. SAFIY system is a joint collaboration between MBRSC and DEIMOS Space UK. It uses image-processing algorithms to extract different features (roads, water, vegetation, and buildings) to generate vector maps data. The process to extract green areas (vegetation) utilize spectral information (such as, the red and near infrared bands) from the satellite images. These detected vegetation features will be extracted as vector data in SAFIY system and can be updated and edited by end-users, such as

  20. Assessment of stage of change, decisional balance, self-efficacy, and use of processes of change of low-income parents for increasing servings of fruits and vegetables to preschool-aged children.

    PubMed

    Hildebrand, Deana A; Betts, Nancy M

    2009-01-01

    Use the Transtheoretical Model of Behavior Change (TTM) to determine the proportionate stage of change of low-income parents and primary caregivers (PPC) for increasing accessibility, measured as servings served, of fruits and vegetables (FV) to their preschool-aged children and evaluate response differences for theoretical constructs. Cross-sectional, quantitative survey design consisting of staging algorithm, construct scales, and food frequency questionnaire. Rural and urban communities in a southwestern state of the United States. 238 low-income PPC enrolled in federal nutrition education programs were recruited from group nutrition education sessions. Stage of change using a staging algorithm, TTM constructs of processes of change, decisional balance, and self-efficacy measured by multiple-item scales using Likert response, and fruit and vegetable servings served using a food frequency questionnaire. Descriptive analysis, Pearson's chi-square, analyses of variance with Tukey's Honestly Significant Difference post hoc test, and principal component function analysis. Of the surveyed PPC, 43% were in precontemplation/contemplation stages, and 29% were in the preparation stage for increasing FV accessibility (measured by servings served) to their preschool-aged children. PPC in the action/maintenance stages evidenced greater use of behavioral processes and had higher self-efficacy scores compared to PPC in precontemplation/contemplation and preparation stages. Interventions aimed at increasing FV accessibility for preschool-aged children should be tailored to meet PPCs' stage of change. Interventions targeting PPC in precontemplation/contemplation stages should use methods to share ideas for planning meals and snacks to include FV. Interventions for PPC in the preparation stage should aim to build skills in quick preparation of economical FV, address parental role modeling of FV consumption, and encourage goal setting. Learning formats providing social support may

  1. Scaling Vegetation on Experimental Channel Patterns

    NASA Astrophysics Data System (ADS)

    van Breemen, D. M.; van de Lageweg, W. I.; van Dijk, W. M.; Kleinhans, M. G.

    2010-12-01

    There are strong feedbacks between river channels, floodplains and riparian and floodplain vegetation. We study the effect of experimental vegetation on channel pattern. Through linear bar theory it is known that channel width-depth ratio affects bar pattern and relatively narrow channels with strong banks are required for meandering. Riparian vegetation is able to alter the channel width-depth ratio and therefore the channel pattern through strengthening of the banks. Floodplain vegetation adds hydraulic resistance so the flow is more focused into the channels. However, determination of the underlying mechanisms and processes has remained scarce and qualitative and hence these effects are not yet fully understood. The objectives of this study are 1) to develop a controllable and scalable method to reproduce vegetation effect in experimental self-formed channels, and 2) to experimentally determine the effects of riparian vegetation on bank strength, channel pattern and meandering dynamics. Sprouts of three plant species were systematically subjected to different seeding densities and to various growing conditions, including light intensity, submergence and nutrient starvation. Denser seeding reduced sprout growth after about a week. Stronger light increased plant growth and plant strength. Nutrient starvation caused different branching intensity of the root system. Tens of small-scale bank erosion experiments and bank failure experiments (see Kleinhans et al., this conference) were performed to quantify the strength of banks reinforced by plant roots at the experimental scale, demonstrating that bank strength is strongly determined by seeding density, rooting density and depth relative to channel depth. To study pattern evolution and morphodynamics we used a 1.25x7.5 m flume with a constant discharge and sediment feed. The introduction of vegetation in experiments results in narrower and deeper channels. Higher vegetation density leads to static channels with

  2. Family members' influence on family meal vegetable choices.

    PubMed

    Wenrich, Tionni R; Brown, J Lynne; Miller-Day, Michelle; Kelley, Kevin J; Lengerich, Eugene J

    2010-01-01

    Characterize the process of family vegetable selection (especially cruciferous, deep orange, and dark green leafy vegetables); demonstrate the usefulness of Exchange Theory (how family norms and experiences interact with rewards and costs) for interpreting the data. Eight focus groups, 2 with each segment (men/women vegetable likers/dislikers based on a screening form). Participants completed a vegetable intake form. Rural Appalachian Pennsylvania. Sixty-one low-income, married/cohabiting men (n = 28) and women (n = 33). Thematic analysis within Exchange Theory framework for qualitative data. Descriptive analysis, t tests and chi-square tests for quantitative data. Exchange Theory proved useful for understanding that regardless of sex or vegetable liker/disliker status, meal preparers see more costs than rewards to serving vegetables. Experience plus expectations of food preparer role and of deference to family member preferences supported a family norm of serving only vegetables acceptable to everyone. Emphasized vegetables are largely ignored because of unfamiliarity; family norms prevented experimentation and learning through exposure. Interventions to increase vegetable consumption of this audience could (1) alter family norms about vegetables served, (2) change perceptions of experiences, (3) reduce social and personal costs of serving vegetables, and (4) increase tangible and social rewards of serving vegetables. Copyright 2010 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.

  3. Global Enhanced Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona

  4. Grains and Starchy Vegetables

    MedlinePlus

    ... farro Wild rice Buckwheat Buckwheat flour Triticale Millet Quinoa Sorghum Do you have celiac disease? Check out ... and Starchy Vegetables Protein Foods What Can I Drink? Dairy Fruits donate en -- Make Your Donation Count - ...

  5. Coma / Vegetative State

    MedlinePlus

    ... Vegetative State Legal Issues Sleeping Problems Anxiety & Stress Concussion / Mild TBI Living with Traumatic Brain Injury Speech & ... Conscious States After Severe Brain Injury Brain Trauma, Concussion, and Coma What Is the Glasgow Coma Scale? ...

  6. Vegetative pyoderma gangrenosum.

    PubMed

    Kim, Randie H; Lewin, Jesse; Hale, Christopher S; Meehan, Shane A; Stein, Jennifer; Ramachandran, Sarika

    2014-12-16

    Vegetative pyoderma gangrenosum is a rare, superficial variant of pyoderma gangrenosum that is more commonly found on the trunk as single or multiple, non-painful lesions. There is typically no associated underlying systemic disease. Compared to classic pyoderma gangrenosum, vegetative lesions are more likely to heal without the use of systemic glucocorticoids, although up to 39% of patients required a short course of prednisone in a review of 46 cases. Treatments for vegetative pyoderma gangrenosum include topical and intralesional glucocorticoids, minocycline or doxycycline, dapsone, colchicine, and, rarely, alternative steroid-sparing immunosuppressants. We present a case of multiple vegetative pyoderma gangrenosum lesions arising in prior surgical sites in a patient found to have IgA monoclonal gammopathy and abnormal urinary protein electrophoresis.

  7. Global Enhanced Vegetation Index

    NASA Technical Reports Server (NTRS)

    2002-01-01

    By carefully measuring the wavelengths and intensity of visible and near-infrared light reflected by the land surface back up into space, the Moderate-resolution Imaging Spectroradiometer (MODIS) Team can quantify the concentrations of green leaf vegetation around the world. The above MODIS Enhanced Vegetation Index (EVI) map shows the density of plant growth over the entire globe. Very low values of EVI (white and brown areas) correspond to barren areas of rock, sand, or snow. Moderate values (light greens) represent shrub and grassland, while high values indicate temperate and tropical rainforests (dark greens). The MODIS EVI gives scientists a new tool for monitoring major fluctuations in vegetation and understanding how they affect, and are affected by, regional climate trends. For more information, read NASA Unveils Spectacular Suite of New Global Data Products from MODIS. Image courtesy MODIS Land Group/Vegetation Indices, Alfredo Huete, Principal Investigator, and Kamel Didan, University of Arizona

  8. Monitoring global vegetation

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.

    1981-01-01

    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.

  9. Vegetable oil fuels

    SciTech Connect

    Not Available

    1982-01-01

    Fifty contributions (presentations) involving more than one hundred people worldwide were given at the International Conference on Plant and Vegetable Oils as Fuels. The proceedings were in Fargo, North Dakota, from August 2-4, 1982. The conference helped to promote renewable fuels, bio-oils, from plant and vegetable oils. Separate abstracts were prepared for 44 items for inclusion in the Energy Data Base.

  10. Vegetation and soils

    USGS Publications Warehouse

    Burke, M.K.; King, S.L.; Eisenbies, M.H.; Gartner, D.

    2000-01-01

    Intro paragraph: Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in hypothesis generation about factors influencing community variation, and helps refine models of community structure. Hierarchical classification of communities is particularly useful for showing relationships among samples (Gauche 1982).

  11. Global relation between microwave satellite vegetation products and vegetation productivity

    NASA Astrophysics Data System (ADS)

    Teubner, Irene E.; Forkel, Matthias; Jung, Martin; Miralles, Diego G.; Dorigo, Wouter A.

    2017-04-01

    The occurrence of unfavourable environmental conditions like droughts commonly reduces the photosynthetic activity of ecosystems and, hence, their potential to take up carbon from the atmosphere. Ecosystem photosynthetic activity is commonly determined using remote sensing observations in the optical domain, which however have limitations particularly in regions of frequent cloud cover, e.g. the tropics. In this study, we explore the potential of vegetation optical depth (VOD) from microwave satellite observations as an alternative source for assessing vegetation productivity. VOD serves as an estimate for vegetation density and water content, which has an impact on plant physiological processes and hence should potentially provide a link to gross primary production (GPP). However, to date, it is unclear how microwave-retrieved VOD data and GPP data are related. We compare seasonal dynamics and anomalies of VOD retrievals from different satellite sensors and microwave frequencies with site level and global GPP estimates. We use VOD observations from active (ASCAT) and passive microwave sensors (AMSR-E, SMOS). We include eddy covariance measurements from the FLUXNET2015 dataset to assess the VOD products at site level. For a global scale analysis, we use the solar-induced chlorophyll fluorescence (SIF) observations from GOME-2 as a proxy for GPP and the FLUXCOM GPP product, which presents an upscaling of site measurements based on remote sensing data. Our results demonstrate that in general a good agreement between VOD and GPP or SIF exists. However, the strength of these relations depends on the microwave frequency, land cover type, and the time within the growing season. Correlations between anomalies of VOD and GPP or SIF support the assumption that microwave-derived VOD can be used to monitor vegetation productivity dynamics. The study is performed as part of the EOWAVE project funded by the Vienna University of Technology (http://eowave.geo.tuwien.ac.at/) and

  12. [Fruits and vegetables].

    PubMed

    Aranceta, Javier

    2004-06-01

    Fruits and vegetables are particularly interesting for health for their content in minerals, antioxidant vitamins, phytochemicals and dietary fiber. All these substances are related to lower risk for the development of health probems, such as certain types of cancer, cardiovascular diseases, type 2 diabetes, obesity, constipation or diverticolsys. The sound basis of scientific evidence led European and American scientific organizations and societies to recommend an intake up to 150-200 g of vegetables every day; ie. 2 or more portions daily and 3 or more portions of fruit; five portions of fruit and vegetables all together. According to the consumer panel from the Spanish Ministry of Agriculture, Fisheries and Food, between the late 80s and the end of the 90s. consumption of fruit and vegetables decreased. However, in late years this trend has slow down and even reversed. Results from food consumption studies based on individual level assessment in Spain estimate an average consumption of fruit and vegetables of 154 g/per person/day in adults aged 25-60 yr. Prevalence of inadequate intake of fruit and vegetables is high among children and young people. In this age group above 70% of the population consume less than 3 portions of fruit every day on average. Reorientation of prevailing food patterns nowadays require investment in measures aimed at increasing the consumption of plant foods and estimulate healthy food habits in families.

  13. Use of response surface methodology to study the combined effects of UV-C and thermal process on vegetable oxidative enzymes

    USDA-ARS?s Scientific Manuscript database

    The effects of ultraviolet processing (UV-C) (temperature, exposure time, and wavelength) and an environmental parameter (pH) were studied on three oxidative enzymes, namely, lipoxygenase (LOX), peroxidase (POD) and polyphenoloxidase (PPO) by using a central composite design. An initial screening de...

  14. Post-fire vegetation recovery in Portugal based on spot/vegetation data

    NASA Astrophysics Data System (ADS)

    Gouveia, C.; Dacamara, C. C.; Trigo, R. M.

    2010-04-01

    A procedure is presented that allows identifying large burned scars and the monitoring of vegetation recovery in the years following major fire episodes. The procedure relies on 10-day fields of Maximum Value Composites of Normalized Difference Vegetation Index (MVC-NDVI), with a 1 km×1 km spatial resolution obtained from the VEGETATION instrument. The identification of fire scars during the extremely severe 2003 fire season is performed based on cluster analysis of NDVI anomalies that persist during the vegetative cycle of the year following the fire event. Two regions containing very large burned scars were selected, located in Central and Southwestern Portugal, respectively, and time series of MVC-NDVI analysed before the fire events took place and throughout the post-fire period. It is shown that post-fire vegetation dynamics in the two selected regions may be characterised based on maps of recovery rates as estimated by fitting a monoparametric model of vegetation recovery to MVC-NDVI data over each burned scar. Results indicated that the recovery process in the region located in Central Portugal is mostly related to fire damage rather than to vegetation density before 2003, whereas the latter seems to have a more prominent role than vegetation conditions after the fire episode, e.g. in the case of the region in Southwestern Portugal. These differences are consistent with the respective predominant types of vegetation. The burned area located in Central Portugal is dominated by Pinus Pinaster whose natural regeneration crucially depends on the destruction of seeds present on the soil surface during the fire, whereas the burned scar in Southwestern Portugal was populated by Eucalyptus that may quickly re-sprout from buds after fire. Besides its simplicity, the monoparametric model of vegetation recovery has the advantage of being easily adapted to other low-resolution satellite data, as well as to other types of vegetation indices.

  15. Backscattering power spectrum for randomly moving vegetation

    NASA Astrophysics Data System (ADS)

    Jiankang, J.; Zhongzhi, Z.; Zhong, S.

    1986-08-01

    The vegetation backscattering power spectrum in the presence of winds is derived. The physical process of the action of stems and leaves of the vegetation is analyzed. A statistical distribution of the random velocity of stems and leaves is obtained, and the vegetation backscattering power spectral density which is dependent on the wind speed and direction as well as the incident wave parameters is given. In the case of uniform notion of vegetation in the direction of winds, the results provide a good interpretation of Fishbein's empirical model. The determination of the values of the equivalent parameters in the spectrum is discussed, and comparisons are made between the derived spectrum and measured published spectra with satisfactory consistence.

  16. Biomechanics of fruits and vegetables.

    PubMed

    Peleg, K

    1985-01-01

    The scope of fruit and vegetable biomechanics is reviewed. Sources of mechanical injury to produce in harvesting, processing, storage, packaging and transportation are briefly described. A survey of produce handling and transportation environments was conducted, whereby an envelope model encompassing composite spectra of trucks, railroad, marine and cargo aircraft is presented. The protective quality, i.e. strength of shipping containers is quantified in static and dynamic loading such as encountered in storage, handling and transportation. Mechanical response of fruits and vegetables in quasistatic and dynamic loading are formulated by a nonlinear rheological model, whereby a time and deformation dependent relaxation modulus is defined. A realistic link is established between the model and real fruits and vegetables by test procedures for determination of the parameters in the governing nonlinear equations. Based on the nonlinear relaxation modulus, mechanical damage of fruits and vegetables is quantified for static compression, transients and vibration loading as well as for combined static and dynamic loading, by equations of contact circle diameter, bruise depth and contact pressure. Distribution of loads over a maximal number of contact points per fruit is linked to geometrical patterns of produce packs. The application of Shock Damage Boundary techniques for produce-package testing is described along with a case study comparing the protective qualities of two types of apple packs. Produce damage quantification by direct fruit inspection in terms of a 'Bruise Index' is described, including a practical example, comparing the protective qualities of three types of apple packs in shipping tests. Indirect methods of mechanical injury evaluation, based on weight loss and CO2 emission differences between bruised and wholesome fruits are also briefly discussed.

  17. The Role of Riparian Vegetation in Protecting and Improving Chemical Water Quality in Streams

    Treesearch

    Michael G. Dosskey; Philippe Vidon; Noel P. Gurwick; Craig J. Allan; Tim P. Duval; Richard Lowrance

    2010-01-01

    We review the research literature and summarize the major processes by which riparian vegetation influences chemical water quality in streams, as well as how these processes vary among vegetation types, and discuss how these processes respond to removal and restoration of riparian vegetation and thereby determine the timing and level of response in stream water quality...

  18. Development of freeze dried vegetables

    NASA Technical Reports Server (NTRS)

    Larson, R. W.

    1970-01-01

    The development of freeze dried vegetables to be used in the Apollo food system is discussed. After the initial selection and screening of vegetables, several types of freeze dried vegetables were prepared in small batches. From these small batches, two vegetables were judged satisfactory for further testing and evaluation. These vegetables, mashed potatoes and asparagus, were subjected to storage at 100 deg plus or minus 5 F. for two weeks and then taste tested. The vegetables were also tested to determine if they complied with the microbiological requirements for Apollo food. The space food prototype production guide for the vegetables is submitted.

  19. Linking Weathering, Rock Moisture Dynamics, Geochemistry, Runoff, Vegetation and Atmospheric Processes through the Critical Zone: Graduate Student led Research at the Eel River Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Dietrich, W. E.

    2014-12-01

    In the Eel River Critical Zone Observatory lies Rivendell, a heavily-instrumented steep forested hillslope underlain by nearly vertically dipping argillite interbedded with sandstone. Under this convex hillslope lies "Zb", the transition to fresh bedrock, which varies from less than 6 m below the surface near the channel to 20 m at the divide. Rempe and Dietrich (2014, PNAS) show that the Zb profile can be predicted from the assumption that weathering occurs when drainage is induced in the uplifting fresh bedrock under hillslopes by lateral head gradients driven by channel incision at the hillslope boundary. Infiltrating winter precipitation is impeded at the lower conductivity boundary at Zb, generating perched groundwater that dynamically pulses water laterally to the channel, controlling stream runoff. Below the soil and above the water table lies an unsaturated zone through which all recharge to the perched groundwater (and thus all runoff to channels) occurs. It is this zone and the waters in them that profoundly affect critical zone processes. In our seasonally dry environment, the first rains penetrate past the soil and moisten the underlying weathered bedrock (Salve et al., 2012, WRR). It takes about 200 to 400 mm of cumulative rain, however, before the underlying groundwater rises significantly. Oshun et al (in review) show that by this cumulative rainfall the average of the wide-ranging isotopic signature of rain reaches a nearly constant average annual value. Consequently, the recharging perched groundwater shows only minor temporal isotopic variation. Kim et al, (2014, GCA) find that the winter high-flow groundwater chemistry is controlled by relatively fast-reacting cation exchange processes, likely occurring in transit in the unsaturated zone. Oshun also demonstrates that the Douglas fir rely on this rock moisture as a water source, while the broadleaf trees (oaks and madrone) use mostly soil moisture. Link et al (2014 WRR) show that Doug fir declines

  20. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  1. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  2. On the evaluation of vegetation resilience in Southern Italy by using satellite VEGETATION, MODIS, TM time series

    NASA Astrophysics Data System (ADS)

    Coluzzi, C.; Didonna, I.

    2009-04-01

    Satellite technologies can be profitably used for investigating the dynamics of vegetation re-growth after disturbance at different temporal and spatial scales. Nevertheless, disturbance -induced dynamical processes are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. The remote sensing of vegetation has been traditionally carried out by using vegetation indices, which are quantitative measures, based on vegetation spectral properties, that attempt to measure biomass or vegetative vigor. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf area index and the fraction of photosynthetically active radiation absorbed by vegetation. Therefore variations in NDVI values become indicative of variations in vegetation composition and dynamics. In this study, we analyze the mutiscale satellite temporal series ( 1998 to 2008) of NDVI and other vegetation indices from SPOT VEGETATION and Landsat TM data acquired for some significant test areas affetced and unaffected (Southern Italy) by different type of environmenta diturbances (drought, salinity, pollution, etc). Our objective is to characterize quantitatively the resilient effect of vegetation cover at different temporal and

  3. On the evaluation of vegetation resilience in Southern Italy by using VEGETATION, MODIS, TM satellite time series

    NASA Astrophysics Data System (ADS)

    Didonna, I.; Coluzzi, R.

    2009-04-01

    Satellite technologies can be profitably used for investigating the dynamics of vegetation re-growth after disturbance at different temporal and spatial scales. Nevertheless, disturbance -induced dynamical processes are very difficult to study since they affect the complex soil-surface-atmosphere system, due to the existence of feedback mechanisms involving human activity, ecological patterns and different subsystems of climate. The remote sensing of vegetation has been traditionally carried out by using vegetation indices, which are quantitative measures, based on vegetation spectral properties, that attempt to measure biomass or vegetative vigor. The vegetation indices operate by contrasting intense chlorophyll pigment absorption in the red against the high reflectance of leaf mesophyll in the near infrared. The simplest form of vegetation index is simply a ratio between two digital values from these two spectral bands. The most widely used index is the well-known normalized difference vegetation index NDVI = [NIR-R]/ [NIR+R]. The normalization of the NDVI reduces the effects of variations caused by atmospheric contaminations. High values of the vegetation index identify pixels covered by substantial proportions of healthy vegetation. NDVI is indicative of plant photosynthetic activity and has been found to be related to the green leaf area index and the fraction of photosynthetically active radiation absorbed by vegetation. Variations in NDVI values become indicative of variations in vegetation composition and dynamics. In this study, we analyze the mutiscale satellite temporal series ( 2000 to 2008) of NDVI and other vegetation indices from SPOT VEGETATION, MODIS and Landsat TM data acquired for some significant test areas affetced and unaffected (Southern Italy) by different types of environmental diturbances (drought, salinity, pollution, etc). Our objective was to characterize quantitatively the resilient effect of vegetation cover at differen temporal and

  4. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect

    2014-01-01

    Biodiesel, a renewable fuel produced from animal fats or vegetable oils, is popular among many vehicle owners and fleet managers seeking to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with straight vegetable oil (SVO), or waste oils from cooking and other processes, without intermediate processing. But SVO and waste oils differ from biodiesel (and conventional diesel) in some important ways and are generally not considered acceptable vehicle fuels for large-scale or long-term use.

  5. Operational pre-processing of MERIS, (A)ATSR and VEGETATION data for the ESA-CCI project Fire-Disturbance

    NASA Astrophysics Data System (ADS)

    Guenther, K. P.; Krauss, T.; Richter, R.; Mueller, R.; Fichtelmann, B.; Borg, E.; Bachmann, M.; Wurm, M.; Gsteiger, V.; Mueller, A.

    2012-04-01

    In 2010 ESA announced the Earthwatch Programme Element, Global Monitoring of Essential Climate Variables, (known as 'ESA Climate Change Initiative'), to support climate modellers with highly stable, long-term satellite-based products, called Essential Climate Variables (ECV). The primary ECV of the "Fire-Disturbance" project is the Burnt Area (BA). In order to derive the BA with an accuracy fulfilling the GCOS requirements, improvements in data pre-processing are required for the generation of consistent time series. That is, consistency in the time series of a single sensor as well as between different sensors shall be achieved, and also including an assessment of the related error budgets. For our improved pre-processing chain we developed generic algorithms for image matching resulting in precise geolocation using the global Landsat Mosaic GLS2000 as accurate reference. Additionally a global DEM is also used (W42 database including SRTM and other sources). Land-water masking is performed using a learning algorithm. On one side external static reference data as e.g. the water body mask from SRTM radar data and the GSHHS, on the other side two different pre-classification algorithms are included. Regions with consistence in these three different water masks are assumed as water with high probability and therefore used as training data. On basis of this result the not included remaining water pixels of static mask are checked. At least the not included rest of pre-classifications will be tested with a strong classification algorithm. Cloud and snow/ice detection is performed developing generic parameter as e.g. brightness or flatness together with the Normalized Difference Snow Index (NDSI). When thermal bands are available as e.g. for (A)ATSR temperature information is used to discriminate clouds and snow/ice. Furthermore confidence levels for all masks are generated on a per pixel level for every scene. Finally atmospheric correction is performed using the newly

  6. Products from vegetable oils

    SciTech Connect

    Bagby, M.O.

    1995-12-01

    Vegetable oils serve various industrial applications such as plasticizers, emulsifiers, surfactants, plastics and resins. Research and development approaches may take advantage of natural properties of the oils. More often it is advantageous to modify those properties for specific applications. One example is the preparation of ink vehicles using vegetable oils in the absence of petroleum. They are cost competitive with petroleum-based inks with similar quality factors. Vegetable oils have potential as renewable sources of fuels for the diesel engine. However, several characteristics can restrict their use. These include poor cold-engine startup, misfire and for selected fuels, high pour point and cloud point temperatures. Other characteristics include incomplete combustion causing carbon buildup, lube oil dilution and degradation, and elevated NO{sub x} emissions. Precombustion and fuel quality data are presented as a tool for understanding and solving these operational and durability problems.

  7. Climate Change Implications to Vegetation Production in Alaska

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S.R.

    2008-01-01

    Investigation of long-term meteorological satellite data revealed statistically significant vegetation response to climate drivers of temperature, precipitation and solar radiation with exclusion of fire disturbance in Alaska. Abiotic trends were correlated to satellite remote sensing observations of normalized difference vegetation index to understand biophysical processes that could impact ecosystem carbon storage. Warming resulted in disparate trajectories for vegetation growth due to precipitation and photosynthetically active radiation variation. Interior spruce forest low lands in late summer through winter had precipitation deficit which resulted in extensive fire disturbance and browning of undisturbed vegetation with reduced post-fire recovery while Northern slope moist alpine tundra had increased production due to warmer-wetter conditions during the late 1990s and early 2000s. Coupled investigation of Alaska s vegetation response to warming climate found spatially dynamic abiotic processes with vegetation browning not a result from increased fire disturbance.

  8. Mineral-vegetal co-milling: An effective process to improve lignocellulosic biomass fine milling and to increase interweaving between mixed particles.

    PubMed

    Motte, J-C; Delenne, J-Y; Rouau, X; Mayer-Laigle, C

    2015-09-01

    Fine-milling is a crucial objective for lignocellulosic biomass valorization. Co-milling appears to be a promising technique to improve its efficiency. However, the mechanisms occurring while co-milling remain poorly understood. In this study, an experimental work was performed to produce co-milled powders from both lignocellulosic (wheat, straw or pine sawdust) and mineral materials (limestone, quartzite or tile) with very contrasted physicochemical properties. The main consequences of co-milling were studied for both materials. A two-component mixing law for the prediction of the blend properties was proposed (particle sizes and true densities) to highlight the gain of this single processing step compared to separate milling and mixing. The predicted values were compared with experimental data for co-milled powders at 7 biomass contents from 0% to 100%. In all cases, co-milling leads to a reduction in particle size of lignocellulosic materials and create strong interweaving with mineral particles. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Evaluating models of climate and forest vegetation

    NASA Technical Reports Server (NTRS)

    Clark, James S.

    1992-01-01

    Understanding how the biosphere may respond to increasing trace gas concentrations in the atmosphere requires models that contain vegetation responses to regional climate. Most of the processes ecologists study in forests, including trophic interactions, nutrient cycling, and disturbance regimes, and vital components of the world economy, such as forest products and agriculture, will be influenced in potentially unexpected ways by changing climate. These vegetation changes affect climate in the following ways: changing C, N, and S pools; trace gases; albedo; and water balance. The complexity of the indirect interactions among variables that depend on climate, together with the range of different space/time scales that best describe these processes, make the problems of modeling and prediction enormously difficult. These problems of predicting vegetation response to climate warming and potential ways of testing model predictions are the subjects of this chapter.

  10. Vegetable oil as fuel

    SciTech Connect

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  11. Fermented and Acidified Vegetables

    USDA-ARS?s Scientific Manuscript database

    Vegetables may be preserved by fermentation, direct acidification, or a combination of these along with pasteurization or refrigeration and selected additives to yield products with an extended shelf life and enhanced safety. Organic acids such as lactic, acetic, sorbic and benzoic acids along with ...

  12. Vegetative propagation [Chapter 9

    Treesearch

    Tara Luna

    2009-01-01

    For the past 30 years, interest in the propagation of native plants has been growing. Many desirable and ecologically important species, however, are difficult or very time consuming to propagate by seeds. Thus, nursery growers may want to investigate how to propagate a species of interest by vegetative propagation. This can be done by combining classic horticultural...

  13. Impact of natural climate change and historical land use on vegetation cover and geomorphological process dynamics in the Serra dos Órgãos mountain range in Rio de Janeiro State, Brazil

    NASA Astrophysics Data System (ADS)

    Nehren, U.; Sattler, D.; Heinrich, J.

    2010-03-01

    The Serra dos Órgãos mountain range in the hinterland of Rio de Janeiro contains extensive remnants of the Atlantic Forest (Mata Atlântica) biome, which once covered about 1.5 million km² from Northeast to South Brazil and further inland to Paraguay and Argentina. As a result of historical deforestation and recent land use intensification processes today only 5 to 8% of the original Atlantic Forest remains. Despite the dramatic habitat loss and a high degree of forest fragmentation, the remnants are among the Earth’s most diverse habitats in terms of species richness. Furthermore, they are characterized by a high level of endemism. Therefore, the biome is considered a "hotspot of biodiversity". In the last years many efforts have been taken to investigate the Mata Atlântica biome in different spatial and time scales and from different scientific perspectives. We are working in the Atlantic Forest of Rio de Janeiro since 2004 and focus in our research particularly on Quaternary landscape evolution and landscape history. By means of landscape and soil archives we reconstruct changes in the landscape system, which are mainly the result of Quaternary climate variability, young tectonic uplift and human impact. The findings throw light on paleoecological conditions in the Late Quaternary and the impact of pre-colonial and colonial land use practices on these landscapes. In this context, a main focus is set on climate and human-driven changes of the vegetation cover and its consequences for the geomorphological process dynamics, in particular erosion and sedimentation processes. Research methods include geomorphological field studies, interpretation of satellite images, physical and chemical sediment and soil analyses as well as relative and absolute dating (Feo/Fed ratio and 14C dating). For the Late Quaternary landscape evolution, the findings are compared with results from paleoclimatic and paloecological investigations in Southeast and South Brazil using other

  14. Estimating the vegetation water content using a radar vegetation index

    USDA-ARS?s Scientific Manuscript database

    Vegetation water content is an important biophysical parameter. Here, the Radar Vegetation Index (RVI) based on polarimetric backscatter observations was evaluated for estimating vegetation water content. Analysis utilized a data set obtained by a ground-based multi-frequency polarimetric scatterome...

  15. FLUVIAL DISTURBANCE AND WETLAND VEGETATION DEVELOPMENT, UPPER MAIN STEM, WILLAMETTE RIVER, OREGON, USA

    EPA Science Inventory

    Hydrogeomorphic processes drive vegetation establishment, and promote development of diverse wetland and riparian types associated with lotic ecosystems. The main objective of this study was to estimate the rate and pattern of vegetation development on bars tracked since 1936, a...

  16. FLUVIAL DISTURBANCE AND WETLAND VEGETATION DEVELOPMENT, UPPER MAIN STEM, WILLAMETTE RIVER, OREGON, USA

    EPA Science Inventory

    Hydrogeomorphic processes drive vegetation establishment, and promote development of diverse wetland and riparian types associated with lotic ecosystems. The main objective of this study was to estimate the rate and pattern of vegetation development on bars tracked since 1936, a...

  17. Vegetation in drylands: Effects on wind flow and aeolian sediment transport

    USDA-ARS?s Scientific Manuscript database

    Drylands are characterised by patchy vegetation, erodible surfaces and erosive aeolian processes. Empirical and modelling studies have shown that vegetation elements provide drag on the overlying airflow, thus affecting wind velocity profiles and altering erosive dynamics on desert surfaces. However...

  18. The vegetative communities associated with mammals of the South. Chapter 2

    Treesearch

    Beverly Collins; Philip E. Hyatt; Margaret K. Trani

    2007-01-01

    This chapter describes the ecoregions and vegetation types associated with mammals of the South. The distribution of mammals in the South reflects historic biogeographical processes as well as physiography and vegetation.

  19. Toward a comprehensive landscape vegetation monitoring framework

    NASA Astrophysics Data System (ADS)

    Kennedy, Robert; Hughes, Joseph; Neeti, Neeti; Larrue, Tara; Gregory, Matthew; Roberts, Heather; Ohmann, Janet; Kane, Van; Kane, Jonathan; Hooper, Sam; Nelson, Peder; Cohen, Warren; Yang, Zhiqiang

    2016-04-01

    Blossoming Earth observation resources provide great opportunity to better understand land vegetation dynamics, but also require new techniques and frameworks to exploit their potential. Here, I describe several parallel projects that leverage time-series Landsat imagery to describe vegetation dynamics at regional and continental scales. At the core of these projects are the LandTrendr algorithms, which distill time-series earth observation data into periods of consistent long or short-duration dynamics. In one approach, we built an integrated, empirical framework to blend these algorithmically-processed time-series data with field data and lidar data to ascribe yearly change in forest biomass across the US states of Washington, Oregon, and California. In a separate project, we expanded from forest-only monitoring to full landscape land cover monitoring over the same regional scale, including both categorical class labels and continuous-field estimates. In these and other projects, we apply machine-learning approaches to ascribe all changes in vegetation to driving processes such as harvest, fire, urbanization, etc., allowing full description of both disturbance and recovery processes and drivers. Finally, we are moving toward extension of these same techniques to continental and eventually global scales using Google Earth Engine. Taken together, these approaches provide one framework for describing and understanding processes of change in vegetation communities at broad scales.

  20. Pesticides on fruits and vegetables

    MedlinePlus

    To help protect yourself and your family from pesticides on fruits and vegetables: Wash your hands with soap and water before you start preparing food. Discard the outer leaves of leafy vegetables such ...

  1. Refinement of microwave vegetation indices

    USDA-ARS?s Scientific Manuscript database

    Previous investigations have established the basis for a new type of vegetation index based on passive microwave satellite observations. These microwave vegetation indices (MVIs) have been qualitatively evaluated by examining global spatial and seasonal temporal features. Limited quantitative studie...

  2. Influence of spontaneous vegetation in stormwater infiltration system clogging.

    PubMed

    Gonzalez-Merchan, Carolina; Barraud, Sylvie; Bedell, Jean-Philippe

    2014-04-01

    The paper presents the role of spontaneous vegetation on the hydraulic performance of an infiltration basin. The objective of the research was more particularly to study this role of different types of spontaneous vegetation found in situ in an infiltration basin near Lyon. The saturated hydraulic conductivity of three areas covered by Phalaris arundinacea, Polygonum mite, Rumex crispus and similar non-vegetated zones was compared. Eight field campaigns were carried out from July 2010 to May 2011 in order to compare the performance of each type of vegetation and its evolution over time. The results suggest a positive impact of vegetation on hydraulic performance in particular in summer during the growth of the plants. The hydraulic conductivity in this period was twice to four times higher than in bare areas or in vegetated zones during the plant rest periods. Some species were also found more appropriate to limit clogging (Phalaris arundinacea) likely due to its specific structure and growth process.

  3. A Coupled Vegetation-Crust Model for Patchy Landscapes

    NASA Astrophysics Data System (ADS)

    Kinast, Shai; Ashkenazy, Yosef; Meron, Ehud

    2016-03-01

    A new model for patchy landscapes in drylands is introduced. The model captures the dynamics of biogenic soil crusts and their mutual interactions with vegetation growth. The model is used to identify spatially uniform and spatially periodic solutions that represent different vegetation-crust states, and map them along the rainfall gradient. The results are consistent extensions of the vegetation states found in earlier models. A significant difference between the current and earlier models of patchy landscapes is found in the bistability range of vegetated and unvegetated states; the incorporation of crust dynamics shifts the onset of vegetation patterns to a higher precipitation value and increases the biomass amplitude. These results can shed new light on the involvement of biogenic crusts in desertification processes that involve vegetation loss.

  4. Family Members' Influence on Family Meal Vegetable Choices

    ERIC Educational Resources Information Center

    Wenrich, Tionni R.; Brown, J. Lynne; Miller-Day, Michelle; Kelley, Kevin J.; Lengerich, Eugene J.

    2010-01-01

    Objective: Characterize the process of family vegetable selection (especially cruciferous, deep orange, and dark green leafy vegetables); demonstrate the usefulness of Exchange Theory (how family norms and experiences interact with rewards and costs) for interpreting the data. Design: Eight focus groups, 2 with each segment (men/women vegetable…

  5. Decontamination efficiency of high power ultrasound in the fruit and vegetable industry, a review.

    PubMed

    Bilek, Seda Ersus; Turantaş, Fulya

    2013-08-16

    Decontamination of fresh fruits and vegetables is an important unsolved technological problem. The main focus of this review is to summarize and synthesize the results of studies and articles about ultrasonic processing which can be adapted to the wash water decontamination process for fruits and vegetables. This review will also provide an overview about the importance of an effective wash water decontamination process in fruits and vegetables, the increase of foodborne outbreaks caused by fresh fruits and vegetables, microbial inactivation using ultrasound, and an interpretation of the high power ultrasound results in the fruits and vegetable industry. In addition, the limitations of ultrasonic processing in commercial applications have also been introduced.

  6. Evapotranspiration estimation in heterogeneous urban vegetation

    NASA Astrophysics Data System (ADS)

    Nagler, P. L.; Nouri, H.; Beecham, S.; Anderson, S.; Sutton, P.; Chavoshi, S.

    2015-12-01

    Finding a valid approach to measure the water requirements of mixed urban vegetation is a challenge. Evapotranspiration (ET) is the main component of a plant's water requirement. A better understanding of the ET of urban vegetation is essential for sustainable urbanisation. Increased implementation of green infrastructure will be informed by this work. Despite promising technologies and sophisticated facilities, ET estimation of urban vegetation remains insufficiently characterized. We reviewed the common field, laboratory and modelling techniques for ET estimation, mostly agriculture and forestry applications. We opted for 3 approaches of ET estimation: 1) an observational-based method using adjustment factors applied to reference ET, 2) a field-based method of Soil Water Balance (SWB) and 3) a Remote Sensing (RS)-based method. These approaches were applied to an experimental site to evaluate the most suitable ET estimation approach for an urban parkland. To determine in-situ ET, 2 lysimeters and 4 Neutron Moisture Meter probes were installed. Based on SWB principles, all input water (irrigation, precipitation and upward groundwater movements) and output water (ET, drainage, soil moisture and runoff) were measured monthly for 14 months. The observation based approach and the ground-based approach (SWB) were compared. Our predictions were compared to the actual irrigation rates (data provided by the City Council). Results suggest the observational-based method is the most appropriate urban ET estimation. We examined the capability of RS to estimate ET for urban vegetation. Image processing of 5 WorldView2 satellite images enabled modelling of the relationship between urban vegetation and vegetation indices derived from high resolution images. Our results indicate that an ETobservational-based -NDVI modelling approach is a reliable method of ET estimation for mixed urban vegetation. It also has the advantage of not depending on extensive field data collection.

  7. Vegetable oil fuels: A review

    SciTech Connect

    Karaosmanoglu, F.

    1999-04-01

    Using vegetable oils as fuel alternatives has economic, environmental, and energy benefits for Turkey. The present work provides insight to the status of vegetable oil fuels in Turkey. A brief historical background of the issue, as well as an up to date review of the research carried out on vegetable oil fuels, is given and the future of their production and application is discussed.

  8. Vegetable soybean tolerance to pyroxasulfone

    USDA-ARS?s Scientific Manuscript database

    If registered for use on vegetable soybean, pyroxasulfone would fill an important gap in weed management systems in the crop. In order to determine the potential crop injury risk of pyroxasulfone on vegetable soybean, the objective of this work was to quantify vegetable soybean tolerance to pyroxasu...

  9. Recommendations for Constructing Roadside Vegetation ...

    EPA Pesticide Factsheets

    Recommendations for external partners planting roadside vegetation. Intended for broad use, but immediate use will be to provide to project partners on the RESES roadside vegetation project and as an attachment to the RESES project QAPP Provide recommendations on the physical characteristics of roadside vegetation that can provide a local air quality benefit

  10. Stochastic Evaluation of Riparian Vegetation Dynamics in River Channels

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Kimura, R.; Toshimori, N.

    2013-12-01

    Vegetation overgrowth in sand bars and floodplains has been a serious problem for river management in Japan. From the viewpoints of flood control and ecological conservation, it would be necessary to accurately predict the vegetation dynamics for a long period of time. In this study, we have developed a stochastic model for predicting the dynamics of trees in floodplains with emphasis on the interaction with flood impacts. The model consists of the following four processes in coupling ecohydrology with biogeomorphology: (i) stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with vegetation, (iii) variation of riverbed topography and (iv) vegetation dynamics on the floodplain. In the model, the flood discharge is stochastically simulated using a Poisson process, one of the conventional approaches in hydrological time-series generation. The model for vegetation dynamics includes the effects of tree growth, mortality by flood impacts, and infant tree invasion. To determine the model parameters, vegetation conditions have been observed mainly before and after flood impacts since 2008 at a field site located between 23.2-24.0 km from the river mouth in Kako River, Japan. This site is one of the vegetation overgrowth locations in Kako River floodplains, where the predominant tree species are willows and bamboos. In this presentation, sensitivity of the vegetation overgrowth tendency is investigated in Kako River channels. Through the Monte Carlo simulation for several cross sections in Kako River, responses of the vegetated channels are stochastically evaluated in terms of the changes of discharge magnitude and channel geomorphology. The expectation and standard deviation of vegetation areal ratio are compared in the different channel cross sections for different river discharges and relative floodplain heights. The result shows that the vegetation status changes sensitively in the channels with larger discharge and insensitive in the lower floodplain

  11. Wave Dissipation by Vegetation

    DTIC Science & Technology

    2011-09-01

    relative to conditions without vegetation. During Hurricanes Charley and Wilma, water levels recorded in two Florida mangrove ecosystems were...reduced by as much as 9.4 cm per km inland. Although water levels were reduced as the surge moved through the coastal mangroves , the relative contribution...of mangroves was still unclear (Krauss et al. 2009). Numerical simulations by Loder et al. (2009) and ERDC/CHL CHETN-I-82 September 2011 2

  12. Nonlinearities in vegetation functioning

    NASA Astrophysics Data System (ADS)

    Ceballos-Núñez, Verónika; Müller, Markus; Metzler, Holger; Sierra, Carlos

    2016-04-01

    Given the current drastic changes in climate and atmospheric CO2 concentrations, and the role of vegetation in the global carbon cycle, there is increasing attention to the carbon allocation component in biosphere terrestrial models. Improving the representation of C allocation in models could be the key to having better predictions of the fate of C once it enters the vegetation and is partitioned to C pools of different residence times. C allocation has often been modeled using systems of ordinary differential equations, and it has been hypothesized that most models can be generalized with a specific form of a linear dynamical system. However, several studies have highlighted discrepancies between empirical observations and model predictions, attributing these differences to problems with model structure. Although efforts have been made to compare different models, the outcome of these qualitative assessments has been a conceptual categorization of them. In this contribution, we introduce a new effort to identify the main properties of groups of models by studying their mathematical structure. For this purpose, we performed a literature research of the relevant models of carbon allocation in vegetation and developed a database with their representation in symbolic mathematics. We used the Python package SymPy for symbolic mathematics as a common language and manipulated the models to calculate their Jacobian matrix at fixed points and their eigenvalues, among other mathematical analyses. Our preliminary results show a tendency of inverse proportionality between model complexity and size of time/space scale; complex interactions between the variables controlling carbon allocation in vegetation tend to operate at shorter time/space scales, and vice-versa. Most importantly, we found that although the linear structure is common, other structures with non-linearities have been also proposed. We, therefore, propose a new General Model that can accommodate these

  13. Characterization of global vegetation using AVHRR data

    NASA Astrophysics Data System (ADS)

    Kiang, Richard K.

    1998-03-01

    Increase in the levels of carbon dioxide and other greenhouse gases over the next half-century may result in an increase in global mean temperature. The recent discoveries of possible advance of arctic tree line into the tundra and earlier greening of northern vegetation provide additional warnings that global warming may indeed be occurring. On the Earth surface, land cover and its changes affect the coupling between the biosphere and the atmosphere, and control many important Earth system processes. Satellite remote sensing provides long-term, repeated coverage over extended area and is the essential data source for monitoring climate changes. An Advanced Very-High Resolution Radiometer (AVHRR) Pathfinder dataset from 1987, in 1 degree latitude-longitude resolution, is used in this study. Two reflective channels, two thermal channels, and Normalized Difference Vegetation Index are the input parameters. In conjunction with a global vegetation ground truth, a multi-layer neural network is trained and used for global vegetation characterization. As the same type of vegetation may appear very differently over different parts of the Earth at any given time, global classification is more difficult than local classification. It is shown that a multitemporal approach, in which data from multiple dates are used, may improve the accuracy.

  14. Organochlorine (chlordecone) uptake by root vegetables.

    PubMed

    Florence, Clostre; Philippe, Letourmy; Magalie, Lesueur-Jannoyer

    2015-01-01

    Chlordecone, an organochlorine insecticide, continues to pollute soils in the French West Indies. The main source of human exposure to this pollutant is food. Root vegetables, which are staple foods in tropical regions, can be highly contaminated and are thus a very effective lever for action to reduce consumer exposure. We analyzed chlordecone contamination in three root vegetables, yam, dasheen and sweet potato, which are among the main sources of chlordecone exposure in food in the French West Indies. All soil types do not have the same potential for the contamination of root vegetables, allophanic andosols being two to ten times less contaminating than non-allophanic nitisols and ferralsols. This difference was only partially explained by the higher OC content in allophanic soils. Dasheen corms were shown to accumulate more chlordecone than yam and sweet potato tubers. The physiological nature of the root vegetable may explain this difference. Our results are in good agreement with the hypothesis that chlordecone uptake by root vegetables is based on passive and diffusive processes and limited by transport and dilution during growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Building the United States National Vegetation Classification

    USGS Publications Warehouse

    Franklin, S.B.; Faber-Langendoen, D.; Jennings, M.; Keeler-Wolf, T.; Loucks, O.; Peet, R.; Roberts, D.; McKerrow, A.

    2012-01-01

    The Federal Geographic Data Committee (FGDC) Vegetation Subcommittee, the Ecological Society of America Panel on Vegetation Classification, and NatureServe have worked together to develop the United States National Vegetation Classification (USNVC). The current standard was accepted in 2008 and fosters consistency across Federal agencies and non-federal partners for the description of each vegetation concept and its hierarchical classification. The USNVC is structured as a dynamic standard, where changes to types at any level may be proposed at any time as new information comes in. But, because much information already exists from previous work, the NVC partners first established methods for screening existing types to determine their acceptability with respect to the 2008 standard. Current efforts include a screening process to assign confidence to Association and Group level descriptions, and a review of the upper three levels of the classification. For the upper levels especially, the expectation is that the review process includes international scientists. Immediate future efforts include the review of remaining levels and the development of a proposal review process.

  16. Accumulation and bioavailability of dietary carotenoids in vegetable crops.

    PubMed

    Kopsell, Dean A; Kopsell, David E

    2006-10-01

    Carotenoids are lipid-soluble pigments found in many vegetable crops that are reported to have the health benefits of cancer and eye disease reduction when consumed in the diet. Research shows that environmental and genetic factors can significantly influence carotenoid concentrations in vegetable crops, and that changing cultural management strategies could be advantageous, resulting in increased vegetable carotenoid concentrations. Improvements in vegetable carotenoid levels have been achieved using traditional breeding methods and molecular transformations to stimulate biosynthetic pathways. Postharvest and processing activities can alter carotenoid chemistry, and ultimately affect bioavailability. Bioavailability data emphasize the importance of carotenoid enhancement in vegetable crops and the need to characterize potential changes in carotenoid composition during cultivation, storage and processing before consumer purchase.

  17. Dynamic floodplain vegetation model development for the Kootenai River, USA.

    PubMed

    Benjankar, Rohan; Egger, Gregory; Jorde, Klaus; Goodwin, Peter; Glenn, Nancy F

    2011-12-01

    The Kootenai River floodplain in Idaho, USA, is nearly disconnected from its main channel due to levee construction and the operation of Libby Dam since 1972. The decreases in flood frequency and magnitude combined with the river modification have changed the physical processes and the dynamics of floodplain vegetation. This research describes the concept, methodologies and simulated results of the rule-based dynamic floodplain vegetation model "CASiMiR-vegetation" that is used to simulate the effect of hydrological alteration on vegetation dynamics. The vegetation dynamics are simulated based on existing theory but adapted to observed field data on the Kootenai River. The model simulates the changing vegetation patterns on an annual basis from an initial condition based on spatially distributed physical parameters such as shear stress, flood duration and height-over-base flow level. The model was calibrated and the robustness of the model was analyzed. The hydrodynamic (HD) models were used to simulate relevant physical processes representing historic, pre-dam, and post-dam conditions from different representative hydrographs. The general concept of the vegetation model is that a vegetation community will be recycled if the magnitude of a relevant physical parameter is greater than the threshold value for specific vegetation; otherwise, succession will take place toward maturation stage. The overall accuracy and agreement Kappa between simulated and field observed maps were low considering individual vegetation types in both calibration and validation areas. Overall accuracy (42% and 58%) and agreement between maps (0.18 and 0.27) increased notably when individual vegetation types were merged into vegetation phases in both calibration and validation areas, respectively. The area balance approach was used to analyze the proportion of area occupied by different vegetation phases in the simulated and observed map. The result showed the impact of the river

  18. Incineration of Low Level Radioactive Vegetation for Waste Volume Reduction

    SciTech Connect

    Malik, N.P.S.; Rucker, G.G.; Looper, M.G.

    1995-03-01

    The DOE changing mission at Savannah River Site (SRS) are to increase activities for Waste Management and Environmental Restoration. There are a number of Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) locations that are contaminated with radioactivity and support dense vegetation, and are targeted for remediation. Two such locations have been studied for non-time critical removal actions under the National Contingency Plan (NCP). Both of these sites support about 23 plant species. Surveys of the vegetation show that radiation emanates mainly from vines, shrubs, and trees and range from 20,000 to 200,000 d/m beta gamma. Planning for removal and disposal of low-level radioactive vegetation was done with two principal goals: to process contaminated vegetation for optimum volume reduction and waste minimization, and for the protection of human health and environment. Four alternatives were identified as candidates for vegetation removal and disposal: chipping the vegetation and packing in carbon steel boxes (lined with synthetic commercial liners) and disposal at the Solid Waste Disposal Facility at SRS; composting the vegetation; burning the vegetation in the field; and incinerating the vegetation. One alternative `incineration` was considered viable choice for waste minimization, safe handling, and the protection of the environment and human health. Advantages and disadvantages of all four alternatives considered have been evaluated. For waste minimization and ultimate disposal of radioactive vegetation incineration is the preferred option. Advantages of incineration are that volume reduction is achieved and low-level radioactive waste are stabilized. For incineration and final disposal vegetation will be chipped and packed in card board boxes and discharged to the rotary kiln of the incinerator. The slow rotation and longer resident time in the kiln will ensure complete combustion of the vegetative material.

  19. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  20. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  1. Riparian Vegetation Mapping Along the Hanford Reach

    SciTech Connect

    FOGWELL, T.W.

    2003-07-11

    During the biological survey and inventory of the Hanford Site conducted in the mid-1990s (1995 and 1996), preliminary surveys of the riparian vegetation were conducted along the Hanford Reach. These preliminary data were reported to The Nature Conservancy (TNC), but were not included in any TNC reports to DOE or stakeholders. During the latter part of FY2001, PNNL contracted with SEE Botanical, the parties that performed the original surveys in the mid 1990s, to complete the data summaries and mapping associated with the earlier survey data. Those data sets were delivered to PNNL and the riparian mapping by vegetation type for the Hanford Reach is being digitized during the first quarter of FY2002. These mapping efforts provide the information necessary to create subsequent spatial data layers to describe the riparian zone according to plant functional types (trees, shrubs, grasses, sedges, forbs). Quantification of the riparian zone by vegetation types is important to a number of DOE'S priority issues including modeling contaminant transport and uptake in the near-riverine environment and the determination of ecological risk. This work included the identification of vegetative zones along the Reach by changes in dominant plant species covering the shoreline from just to the north of the 300 Area to China Bar near Vernita. Dominant and indicator species included Agropyron dasytachyudA. smithii, Apocynum cannabinum, Aristida longiseta, Artemisia campestris ssp. borealis var scouleriana, Artemisa dracunculus, Artemisia lindleyana, Artemisia tridentata, Bromus tectorum, Chrysothamnus nauseosus, Coreopsis atkinsoniana. Eleocharis palustris, Elymus cinereus, Equisetum hyemale, Eriogonum compositum, Juniperus trichocarpa, Phalaris arundinacea, Poa compressa. Salk exigua, Scirpus acutus, Solidago occidentalis, Sporobolus asper,and Sporobolus cryptandrus. This letter report documents the data received, the processing by PNNL staff, and additional data gathered in FY2002

  2. Experimental Study of Flows Induced Scour around compound Vegetation Patch in Different Densities

    NASA Astrophysics Data System (ADS)

    Chan, Hsun-Chuan; Huang, Tai-Ran

    2015-04-01

    In the natural rivers, woody vegetation commonly grows along the riverbank. When flows run through the woody vegetation zones, the stream processes are markedly affected. Previous studies were to explore Single-density vegetation group. This study used a combination of dual-density vegetation group. We experimentally investigated the flows induced scour around vegetation patch in different density. Since vegetation grows along the nature bank, so the vegetation model is arranged along one side of the flume wall. The experiments were expected to simulate the near bank scour in the jointed effects of vegetation and levee. The woody vegetation was set in 10 square centimeters. Modelled vegetation was simulated by the steel columns in the emergent flow conditions. Uniform sand with a median size of 0.88 mm was used as the bed sediment. The experimental flow was steady and flow velocity was adopted to close to the initiation of sediment motion. It was observed sediment erosion phenomenon around the vegetation zone. The bed morphology of equilibrium scour condition was measured by a Laser Distance Meter in the cases of vegetation density equal to 0.03, 0.04, 0.05, 0.07, 0.09, 0.12, 0.15,0.2, and 0.3. Test result of the vegetation group compound arrangement made by a combination of density 0.03, 0.05, 0.09, and 0.12. The difference between double density and single density of the vegetation was compared. Vegetation densities were used to research the effects of vegetation on the maximum scour depth of the scour hole. Near the vegetation zone, the size of the scour hole increased as the vegetation density increased. However, the height of depositing dune is in a low correlation with vegetation density. Location of Maximum scour depth and the maximum accumulation will move upstream with the density increase.

  3. On the sources of vegetation activity variation, and their relation with water balance in Mexico

    Treesearch

    F. Mora; L.R. Iverson

    1998-01-01

    Natural landscape surface processes are largely controlled by the relationship between climate and vegetation. Water balance integrates the effects of climate on patterns of vegetation distribution and productivity, and for that season, functional relationships can be established using water balance variables as predictors of vegetation response. In this study, we...

  4. Vegetation and acidification, Chapter 5

    Treesearch

    David R. DeWalle; James N. Kochenderfer; Mary Beth Adams; Gary W. Miller

    2006-01-01

    In this chapter, the impact of watershed acidification treatments on WS3 at the Fernow Experimental Forest (FEF) and at WS9 on vegetation is presented and summarized in a comprehensive way for the first time. WS7 is used as a vegetative reference basin for WS3, while untreated plots within WS9 are used as a vegetative reference for WS9. Bioindicators of acidification...

  5. White vegetables: glycemia and satiety.

    PubMed

    Anderson, G Harvey; Soeandy, Chesarahmia Dojo; Smith, Christopher E

    2013-05-01

    The objective of this review is to discuss the effect of white vegetable consumption on glycemia, satiety, and food intake. White vegetables is a term used to refer to vegetables that are white or near white in color and include potatoes, cauliflowers, turnips, onions, parsnips, white corn, kohlrabi, and mushrooms (technically fungi but generally considered a vegetable). They vary greatly in their contribution to the energy and nutrient content of the diet and glycemia and satiety. As with other foods, the glycemic effect of many white vegetables has been measured. The results illustrate that interpretation of the semiquantitative comparative ratings of white vegetables as derived by the glycemic index must be context dependent. As illustrated by using the potato as an example, the glycemic index of white vegetables can be misleading if not interpreted in the context of the overall contribution that the white vegetable makes to the carbohydrate and nutrient composition of the diet and their functionality in satiety and metabolic control within usual meals. It is concluded that application of the glycemic index in isolation to judge the role of white vegetables in the diet and, specifically in the case of potato as consumed in ad libitum meals, has led to premature and possibly counterproductive dietary guidance.

  6. Salt marsh vegetation promotes efficient tidal channel networks.

    PubMed

    Kearney, William S; Fagherazzi, Sergio

    2016-07-19

    Tidal channel networks mediate the exchange of water, nutrients and sediment between an estuary and marshes. Biology feeds back into channel morphodynamics through the influence of vegetation on both flow and the cohesive strength of channel banks. Determining how vegetation affects channel networks is essential in understanding the biological functioning of intertidal ecosystems and their ecosystem services. However, the processes that control the formation of an efficient tidal channel network remain unclear. Here we compare the channel networks of vegetated salt marshes in Massachusetts and the Venice Lagoon to unvegetated systems in the arid environments of the Gulf of California and Yemen. We find that the unvegetated systems are dissected by less efficient channel networks than the vegetated salt marshes. These differences in network geometry reflect differences in the branching and meandering of the channels in the network, characteristics that are related to the density of vegetation on the marsh.

  7. Salt marsh vegetation promotes efficient tidal channel networks

    PubMed Central

    Kearney, William S.; Fagherazzi, Sergio

    2016-01-01

    Tidal channel networks mediate the exchange of water, nutrients and sediment between an estuary and marshes. Biology feeds back into channel morphodynamics through the influence of vegetation on both flow and the cohesive strength of channel banks. Determining how vegetation affects channel networks is essential in understanding the biological functioning of intertidal ecosystems and their ecosystem services. However, the processes that control the formation of an efficient tidal channel network remain unclear. Here we compare the channel networks of vegetated salt marshes in Massachusetts and the Venice Lagoon to unvegetated systems in the arid environments of the Gulf of California and Yemen. We find that the unvegetated systems are dissected by less efficient channel networks than the vegetated salt marshes. These differences in network geometry reflect differences in the branching and meandering of the channels in the network, characteristics that are related to the density of vegetation on the marsh. PMID:27430165

  8. Estimation of ecohydrological properties from inverse modeling of vegetation distributions

    NASA Astrophysics Data System (ADS)

    Thompson, S. E.; Katul, G. G.

    2012-12-01

    Spatial organization of vegetation into periodic, coherent patterns arises from the interaction of positive and negative ecohydrological feedbacks. The patterns reflect the characteristics of the interactions between plants and water that underlie their formation. Direct inference of the parameters describing these ecohydrological processes from observations of vegetation spatial patterns can facilitate the parameterization and predictive use of vegetation pattern models to predict water balance partitioning and desertification risk. An inference technique based on nonlinear filtering is proposed here and applied to estimate the parameters of a phenomenological model of vegetation biomass patterning. Results derived from modeled biomass data indicate that for sufficiently accurate biomass observations (signal to noise ratios >4), and spatial resolution of better than 10% of the pattern wavelength, nonlinear filtering techniques recovered model parameters with high fidelity. When applied to high resolution aerial photography, reasonable parameters within the pattern forming regime were inferred. The potential to extend these approaches to mechanistic models of vegetation distribution is discussed.

  9. Remote sensing of aquatic vegetation: theory and applications.

    PubMed

    Silva, Thiago S F; Costa, Maycira P F; Melack, John M; Novo, Evlyn M L M

    2008-05-01

    Aquatic vegetation is an important component of wetland and coastal ecosystems, playing a key role in the ecological functions of these environments. Surveys of macrophyte communities are commonly hindered by logistic problems, and remote sensing represents a powerful alternative, allowing comprehensive assessment and monitoring. Also, many vegetation characteristics can be estimated from reflectance measurements, such as species composition, vegetation structure, biomass, and plant physiological parameters. However, proper use of these methods requires an understanding of the physical processes behind the interaction between electromagnetic radiation and vegetation, and remote sensing of aquatic plants have some particular difficulties that have to be properly addressed in order to obtain successful results. The present paper reviews the theoretical background and possible applications of remote sensing techniques to the study of aquatic vegetation.

  10. Assessment of Stage of Change, Decisional Balance, Self-Efficacy, and Use of Processes of Change of Low-Income Parents for Increasing Servings of Fruits and Vegetables to Preschool-Aged Children

    ERIC Educational Resources Information Center

    Hildebrand, Deana A.; Betts, Nancy M.

    2009-01-01

    Objective: Use the Transtheoretical Model of Behavior Change (TTM) to determine the proportionate stage of change of low-income parents and primary caregivers (PPC) for increasing accessibility, measured as servings served, of fruits and vegetables (FV) to their preschool-aged children and evaluate response differences for theoretical constructs.…

  11. Assessment of Stage of Change, Decisional Balance, Self-Efficacy, and Use of Processes of Change of Low-Income Parents for Increasing Servings of Fruits and Vegetables to Preschool-Aged Children

    ERIC Educational Resources Information Center

    Hildebrand, Deana A.; Betts, Nancy M.

    2009-01-01

    Objective: Use the Transtheoretical Model of Behavior Change (TTM) to determine the proportionate stage of change of low-income parents and primary caregivers (PPC) for increasing accessibility, measured as servings served, of fruits and vegetables (FV) to their preschool-aged children and evaluate response differences for theoretical constructs.…

  12. Use of spectral channels and vegetation indices from satellite VEGETATION time series for the Post-Fire vegetation recovery estimation

    NASA Astrophysics Data System (ADS)

    Coluzzi, Rosa; Lasaponara, Rosa; Montesano, Tiziana; Lanorte, Antonio; de Santis, Fortunato

    2010-05-01

    Satellite data can help monitoring the dynamics of vegetation in burned and unburned areas. Several methods can be used to perform such kind of analysis. This paper is focused on the use of different satellite-based parameters for fire recovery monitoring. In particular, time series of single spectral channels and vegetation indices from SPOT-VEGETATION have investigated. The test areas is the Mediterranean ecosystems of Southern Italy. For this study we considered: 1) the most widely used index to follow the process of recovery after fire: normalized difference vegetation index (NDVI) obtained from the visible (Red) and near infrared (NIR) by using the following formula NDVI = (NIR_Red)/(NIR + Red), 2) moisture index MSI obtained from the near infrared and Mir for characterization of leaf and canopy water content. 3) NDWI obtained from the near infrared and Mir as in the case of MSI, but with the normalization (as the NDVI) to reduce the atmospheric effects. All analysis for this work was performed on ten-daily normalized difference vegetation index (NDVI) image composites (S10) from the SPOT- VEGETATION (VGT) sensor. The final data set consisted of 279 ten-daily, 1 km resolution NDVI S1O composites for the period 1 April 1998 to 31 December 2005 with additional surface reflectance values in the blue (B; 0.43-0.47,um), red (R; 0.61-0.68,um), near-infrared (NIR; 0.78-0.89,um) and shortwave-infrared (SWIR; 1.58-1.75,um) spectral bands, and information on the viewing geometry and pixel status. Preprocessing of the data was performed by the Vlaamse Instelling voor Technologisch Onderzoek (VITO) in the framework of the Global Vegetation Monitoring (GLOVEG) preprocessing chain. It consisted of the Simplified Method for Atmospheric Correction (SMAC) and compositing at ten-day intervals based on the Maximum Value Compositing (MVC) criterion. All the satellite time series were analysed using the Detrended Fluctuation Analysis (DFA) to estimate post fire vegetation recovery

  13. Monitoring tropical vegetation succession with LANDSAT data

    NASA Technical Reports Server (NTRS)

    Robinson, V. B. (Principal Investigator)

    1983-01-01

    The shadowing problem, which is endemic to the use of LANDSAT in tropical areas, and the ability to model changes over space and through time are problems to be addressed when monitoring tropical vegetation succession. Application of a trend surface analysis model to major land cover classes in a mountainous region of the Phillipines shows that the spatial modeling of radiance values can provide a useful approach to tropical rain forest succession monitoring. Results indicate shadowing effects may be due primarily to local variations in the spectral responses. These variations can be compensated for through the decomposition of the spatial variation in both elevation and MSS data. Using the model to estimate both elevation and spectral terrain surface as a posteriori inputs in the classification process leads to improved classification accuracy for vegetation of cover of this type. Spatial patterns depicted by the MSS data reflect the measurement of responses to spatial processes acting at several scales.

  14. Scour patterns around isolated vegetation elements

    NASA Astrophysics Data System (ADS)

    Yagci, Oral; Celik, Mehmet Furkan; Kitsikoudis, Vasileios; Ozgur Kirca, V. S.; Hodoglu, Can; Valyrakis, Manousos; Duran, Zaide; Kaya, Sinasi

    2016-11-01

    The complex multi-directional interactions between hydrological, biological and fluvial processes govern the formation and evolution of river landscapes. In this context, as key geomorphological agents, riparian trees are particularly important in trapping sediment and constructing distinct landforms, which subsequently evolve to larger ones. The primary objective of this paper is to experimentally investigate the scour/deposition patterns around different forms of individual vegetation elements. Flume experiments were conducted in which the scour patterns around different representative forms of individual in-stream obstructions (solid cylinder, hexagonal array of circular cylinders, several forms of emergent and submerged vegetation) were monitored by means of a high-resolution laser scanner. The three dimensional scour geometry around the simulated vegetation elements was quantified and discussed based on the introduced dimensionless morphometric characteristics. The findings reveal that the intact vegetation forms generated two elongated scour holes at the downstream with a pronounced ridge. For the impermeable form of the plant, the scour got localized, more deposition was detected within the monitoring zone, and the distance between the obstruction and deposition zone became shorter. It is also shown that with the effect of bending and the subsequent decrease of the projected area of the plant and the increase of bulk volume, the characteristic scour values decrease compared to the intact version, and the scour zone obtains a more elongated form and expands in the downstream direction.

  15. Fruits and vegetables dehydration

    NASA Astrophysics Data System (ADS)

    de Ita, A.; Flores, G.; Franco, F.

    2015-01-01

    Dehydration diagrams were determined by means of Differential Thermal Analysis, DTA, and Thermo Gravimetric Analysis, TGA, curves of several simultaneous fruits and vegetables, all under the same conditions. The greater mass loss is associated with water containing in the structure of the investigated materials at low temperature. In poblano chile water is lost in a single step. The banana shows a very sharply two stages, while jicama can be observed although with a little difficulty three stages. The major mass loss occurs in the poblano chile and the lower in banana. The velocity and temperature of dehydration vary within a small range for most materials investigated, except for banana and cactus how are very different.

  16. Modelling of vegetation volumes

    NASA Technical Reports Server (NTRS)

    Vanzyl, J. J.; Papas, C. H.; Engheta, N.; Elachi, C.

    1985-01-01

    The purpose is to describe work that is being done to find theoretical models to describe radar backscatter from vegetation layers. The geometry of the problem is shown. The information that one would like to find through the application of the results of these models would include: the thickness of the layer; the absorption in the layer (i.e., density, moisture content, and biomass); the geometry of the scatterers (i.e., shape and orientation); how much of the received power is due to volume scattering only; and a way to enhance the ratio of scattering that has some interaction with the ground surface. The proposed ways to find this information are discussed.

  17. Predicting Vegetation Patterning across Climate, Soil, and Topographic Gradients

    NASA Astrophysics Data System (ADS)

    Axelsson, C.; Hanan, N. P.

    2014-12-01

    Vegetation communities in water-limited systems sometimes form periodic patterns, e.g. banded, spotted and labyrinthine distributions of woody and herbaceous plants. Pattern formation is commonly linked to competition and facilitation among plants, and variation in runoff and infiltration capacity in the landscape. Based on previous studies, we expect that climate, soil type, and slope to a large degree influence the type of vegetation pattern found at a specific site. We have analyzed to what extent vegetation patterns on the African continent can be predicted based on available climatic, topographic, and soil data. Our focus is not restricted to periodic patterns in drylands, but encompasses a range of tropical ecosystems from arid to humid. Vegetation patterns observed in remote sensing data can be informative regarding the underlying ecological processes that shape the landscape, not only in strikingly periodic vegetation but also in savannas with randomly located or dispersed vegetation. We use high-resolution multispectral and panchromatic remote sensing data classified into woody, herbaceous, and bare ground components. From these images we extract spatial statistical metrics that define type and degree of vegetation patterning. We then relate variables from climate, soil and topographic datasets to the observed patterns in order to determine how well we can predict vegetation patterning and which climatic and edaphic variables are most informative. We discuss the results and the possible sources of uncertainty in the relationships.

  18. Patch-scale Representation of Vegetation within Hydraulic Models

    NASA Astrophysics Data System (ADS)

    Hardy, R. J.; Marjoribanks, T.; Lane, S. N.

    2016-12-01

    Submerged aquatic vegetation affects flow, sediment and ecological processes within rivers. Quantifying these effects is key to understanding the hydraulics and morphodynamics of natural river systems and implementing effective river management. Despite a wealth of research into vegetated flows, the detailed flow characteristics around real plants in natural channels are still poorly understood. Here we present a new methodology for representing vegetation patches within computational fluid dynamics (CFD) models of vegetated river channels. Vegetation is represented using a Mass Flux Scaling Algorithm (MFSA) and drag term within the Reynolds-Averaged Navier-Stokes Equations, which account for the mass and momentum effects of the vegetation respectively. The model is applied using three different grid resolutions (0.2, 0.1 & 0.05 m) using time-averaged solution methods and compared to field data. The results show that the model reproduces the complex spatial flow heterogeneity within the channel and that increasing the resolution leads to enhanced model accuracy. The model is able to reproduce with accuracy, commonly used reach-scale hydraulic metrics (Manning's n) but also provides spatial flow data which can be used to infer eco-geomorphic feedbacks and long term channel evolution. Specifically, the results demonstrate that while vegetation may cause both local erosion and deposition, at the reach-scale, vegetation can increase sedimentation by 50%.

  19. Removal of Atmospheric Particulates by Urban Vegetation: Implications for Human and Vegetative Health

    PubMed Central

    Smith, William H.

    1977-01-01

    A review of the literature reveals considerable evidence to support the suggestion that vegetative surfaces remove particulate matter from the atmosphere. Preliminary observations of the leaf surfaces of an important urban tree indicate the presence of numerous particulate contaminants. In view of the medical importance of fine particles in urban atmospheres, it is important to assess the efficiency of tree surfaces in particle retention. Can particulate loads be reduced below biologically significant thresholds by vegetation? Are trees acutely injured or subtly influenced in the process of this removal? A brief assessment of research needs is provided. ImagesFIG. 1FIG. 2FIG. 3FIG. 4FIG. 5FIG. 6 PMID:331695

  20. Behavior of glucosinolates in pickling cruciferous vegetables.

    PubMed

    Suzuki, Chise; Ohnishi-Kameyama, Mayumi; Sasaki, Keisuke; Murata, Takashi; Yoshida, Mitsuru

    2006-12-13

    Crucifer species, which include widely consumed vegetables, contain glucosinolates as secondary metabolites. Cruciferous vegetables are consumed in Japan in salt-preserved or pickled form as well as cooked and raw fresh vegetables. In this study, changes in contents of glucosinolates during the pickling process were investigated. 4-Methylthio-3-butenyl glucosinolate, a major glucosinolate in the root of Japanese radish, daikon (Raphanus sativus L.), was detected in pickled products with a short maturation period but not in those with a long maturation period. As a model pickling experiment, fresh watercress (Nasturtium officinale) and blanched watercress were soaked in 3% NaCl solution for 7 days. The results showed that the ratio of indole glucosinolates to total glucosinolates increased during the pickling process, whereas total glucosinolates decreased. Myrosinase digestion of glucosinolates in nozawana (Brassica rapa L.) indicated that indole glucosinolates, especially 4-methoxyglucobrassicin, were relatively resistant to the enzyme. The effect of pickling on glucosinolate content and the possible mechanism are discussed in view of degradation by myrosinase and synthetic reaction in response to salt stress or compression during the pickling process.

  1. Erosion by water: vegetative control

    USDA-ARS?s Scientific Manuscript database

    Vegetation controls erosion by dissipating the erosive forces of rainfall and runoff (erosivity - the strength of the forces causing erosion) and by reducing the susceptibility of soil to erosion (erodibility - how easily soil can be detached and transported). Vegetation alters the partitioning of r...

  2. Electromagnetic wave scattering from vegetation

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyan

    This dissertation contains the theoretical study of microwave scattering from vegetated media and the development of microwave scattering models with applications to these media. A vegetation canopy may consist of deciduous or coniferous leaves, branches, and trunks with certain size and orientation distributions. The formulation of the scattering model for each element of the canopy is carried out and its scatter patterns versus its size and orientation for like and cross polarizations are computed and presented. In particular, an extension is made where vegetation with a compound-leaf pattern is considered. For this type of vegetation, several leaves that form a specific pattern will scatter coherently as a group as opposed to each leaf scattering independently. Hence, a basic scattering element is a compound leaf with a specific leaf-pattern. Based on the study of scattering patterns of different vegetation elements, the scattering models for different vegetation media are formulated. For a leafy vegetation, we model it as a scattering layer with a given type of leaf. For a forested area, we treat it as a two-layer medium: the layer on top is the crown layer consisted of leaves and branches and below it is the trunk layer. In order to verify the validity of the theoretical models for different types of vegetation canopy, extensive comparisons between models and measurements are carried out.

  3. The Vegetable Bowl. [Student Booklet].

    ERIC Educational Resources Information Center

    Harris, Nancy

    This student booklet was developed as reading material for use with "The Vegetable Bowl," a unit designed to encourage elementary school children to eat a variety of vegetables. The booklet also contains ten pictures that can be colored by students. (BT)

  4. The Vegetable Bowl. Teacher's Guide.

    ERIC Educational Resources Information Center

    Harris, Nancy

    This teacher's guide was developed for use with "The Vegetable Bowl," a unit designed to encourage elementary school children to eat a variety of vegetables. The unit is designed for ten lessons; however, the sequencing and time used in the classroom may be adapted to the individual needs of the students. Instructional materials include:…

  5. Evolution of vegetated waterways design

    USDA-ARS?s Scientific Manuscript database

    In 1990, the USDA-ARS Hydraulic Engineering Research Unit (HERU) was recognized as a National Historic Landmark by ASABE for its groundbreaking work and development of vegetated waterways design procedures. In 2000, ASABE acknowledged the vegetated waterway design criteria as an Outstanding Achieve...

  6. Grafting effects on vegetable quality

    USDA-ARS?s Scientific Manuscript database

    In the United States, vegetable grafting is rare and few experiments have been done to determine optimal grafting procedures and production practices for different geographical and climatic regions in America. Grafting vegetables to control soilborne disease is a common practice in Asia, parts of E...

  7. Importance of vegetation distribution for future carbon balance

    NASA Astrophysics Data System (ADS)

    Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B.

    2015-12-01

    Projections of future terrestrial carbon uptake vary greatly between simulations. Net primary production (NPP), wild fires, vegetation dynamics (including biome shifts) and soil decomposition constitute the main processes governing the response of the terrestrial carbon cycle in a changing climate. While primary production and soil respiration are relatively well studied and implemented in all global ecosystem models used to project the future land sink of CO2, vegetation dynamics are less studied and not always represented in global models. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality and the associated turnover and proven skill in predicting vegetation distribution and succession. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the CMIP5 ensemble under RCP8.5 radiative forcing at year 2085. We exchanged carbon cycle processes between these 13 simulations and investigate the changes predicted by the emulator. This method allowed us to partition the entire ensemble carbon uptake uncertainty into individual processes. We found that NPP, vegetation dynamics (including biome shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33% respectively of uncertainties in modeled global C-uptake. Uncertainty due to vegetation dynamics was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by shifts in vegetation distribution, represent a significant fraction globally and regionally (tropical forests: 40

  8. Vegetation and climate interactions: an introduction

    NASA Astrophysics Data System (ADS)

    Ramstein, Gilles; de Boer, Hugo; Soh, Wuu-Kuang

    2017-04-01

    Plants play a key role in the climate system by influencing the hydrological cycle and the carbon cycle, as well as by affecting the Earths energy balance via changes in albedo. Moreover, changes in climate may result in adaptive responses in vegetation that can feedback to the climate system. The processes that are most dominantly affected depend on the time scale of interest. This session will explore climate and plant interactions and feedbacks through a very large spectrum of processes and time spans. At very short time scale (several minutes) plants may influence the formation of shallow cumulus clouds. At geological time scales (millions of years) evolutionary changes in plant functional traits, such as rooting depth, may influence mineral weathering rates and subsequent atmospheric CO2 levels. To introduce this session we will show that as soon as plants colonized continents the climate was deeply modified. This major change took place during Devonian and corresponds to the opening of a new terrestrial carbon reservoir (soil and vegetation) and therefore contribute to a large decrease of atmospheric CO2. But, this period is also associated with a large change in terrestrial albedo from dessert to vegetation cover. We shall explore the climate impact of such a "terrestrialisation" during Late Devonian (375 Ma). Building on from here, this session will investigate the climate-vegetation interactions through geological time (Late Paleozoic, Cretaceous, Holocene…) and Anthropocene projections. In modern times we are introducing a large quantity of CO2 to the atmospheric reservoir at extreme rates that is affecting the vegetation globally. Owing to recent developments the consequences of terrestrial biosphere interactions for climate change are accurately monitored and simulated through a hierarchy of different co=mplexity models. Therefore, we may predict major interactions which could take place during this century in terms of changes in the water cycle and

  9. Vegetation spatial variability and its effect on vegetation indices

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Choudhury, B. J.; Owe, M.

    1987-01-01

    Landsat MSS data were used to simulate low resolution satellite data, such as NOAA AVHRR, to quantify the fractional vegetation cover within a pixel and relate the fractional cover to the normalized difference vegetation index (NDVI) and the simple ratio (SR). The MSS data were converted to radiances from which the NDVI and SR values for the simulated pixels were determined. Each simulated pixel was divided into clusters using an unsupervised classification program. Spatial and spectral analysis provided a means of combining clusters representing similar surface characteristics into vegetated and non-vegetated areas. Analysis showed an average error of 12.7 per cent in determining these areas. NDVI values less than 0.3 represented fractional vegetated areas of 5 per cent or less, while a value of 0.7 or higher represented fractional vegetated areas greater than 80 per cent. Regression analysis showed a strong linear relation between fractional vegetation area and the NDVI and SR values; correlation values were 0.89 and 0.95 respectively. The range of NDVI values calculated from the MSS data agrees well with field studies.

  10. Classification of wetlands vegetation using small scale color infrared imagery

    NASA Technical Reports Server (NTRS)

    Williamson, F. S. L.

    1975-01-01

    A classification system for Chesapeake Bay wetlands was derived from the correlation of film density classes and actual vegetation classes. The data processing programs used were developed by the Laboratory for the Applications of Remote Sensing. These programs were tested for their value in classifying natural vegetation, using digitized data from small scale aerial photography. Existing imagery and the vegetation map of Farm Creek Marsh were used to determine the optimal number of classes, and to aid in determining if the computer maps were a believable product.

  11. How to deal with radiologically contaminated vegetation

    SciTech Connect

    Wilde, E.W.; Murphy, C.E.; Lamar, R.T.; Larson, M.J.

    1996-12-31

    This report describes the findings from a literature review conducted as part of a Department of Energy, Office of Technology Development Biomass Remediation Task. The principal objective of this project is to develop a process or group of processes to treat radiologically contaminated vegetation in a manner that minimizes handling, processing, and treatment costs. Contaminated, woody vegetation growing on waste sites at SRS poses a problem to waste site closure technologies that are being considered for these sites. It is feared that large sections of woody vegetation (logs) can not be buried in waste sites where isolation of waste is accomplished by capping the site. Logs or large piles of woody debris have the potential of decaying and leaving voids under the cap. This could lead to cap failure and entrance of water into the waste. Large solid objects could also interfere with treatments like in situ mixing of soil with grout or other materials to encapsulate the contaminated sediments and soils in the waste sites. Optimal disposal of the wood includes considerations of volume reduction, treatment of the radioactive residue resulting from volume reduction, or confinement without volume reduction. Volume reduction consists primarily of removing the carbon, oxygen, and hydrogen in the wood, leaving an ash that would contain most of the contamination. The only contaminant that would be released by volume reduction would by small amounts of the radioactive isotope of hydrogen, tritium. The following sections will describe the waste sites at SRS which contain contaminated vegetation and are potential candidates for the technology developed under this proposal. The description will provide a context for the magnitude of the problem and the logistics of the alternative solutions that are evaluated later in the review. 76 refs.

  12. Calcium biofortification and bioaccessibility in soilless "baby leaf" vegetable production.

    PubMed

    D'Imperio, Massimiliano; Renna, Massimiliano; Cardinali, Angela; Buttaro, Donato; Serio, Francesco; Santamaria, Pietro

    2016-12-15

    Calcium is an essential nutrient for human health, because it is a structural component and takes part in a variety of biological processes. The aim of this study was to increase Ca content of baby leaf vegetables (BLV: basil, mizuna, tatsoi and endive), as fresh-cut products. For the production of biofortified BLV, a floating system with two level of Ca (100 and 200mgL(-1)) in the nutrient solution was used. In addition, the assessment of bioaccessibility of Ca, by in vitro digestion process, was performed. In all vegetables, the Ca biofortification (200mgL(-1)) caused a significant Ca enrichment (9.5% on average) without affecting vegetables growth, oxalate contents and marketable quality. Calcium bioaccessibility ranged from 25% (basil) to 40% (endive) but the biofortified vegetables showed more bioaccessible Ca. These results underline the possibility to obtain Ca biofortified BLV by using agronomic approaches.

  13. Vegetation recovery on closed paths in temperate deciduous forests.

    PubMed

    Roovers, Pieter; Bossuyt, Beatrijs; Gulinck, Hubert; Hermy, Martin

    2005-02-01

    The objective of this study was to evaluate vegetation recovery on footpaths in woodland that have been closed for access for 6 years. A vegetation survey was conducted in four mesophile forests, in transects perpendicular to the trail. Analyses concentrated on the direction and rate of the recovery process. Vegetation on trail sides in these ecosystems recovered substantially. Non-metric multidimensional scaling based upon species composition separated the four sample locations and each cluster contained representatives of the three major trail zones: path centre, transition and undisturbed zones. Analysis of distribution of life forms, plant strategies and seedbank longevity indices showed no differences between trail zones. This indicates that vegetation on the path centre is likely to recover towards the plant composition of the undisturbed zone. Ellenberg values indicate that environmental variation is not related to former path structures, as significant variability was only observed between the forest sites. Furthermore, the analysis concentrated on characteristics of species relevant to the recovery process.

  14. Floating particle trapping and diffusion in vegetated open channel flow

    NASA Astrophysics Data System (ADS)

    Defina, Andrea; Peruzzo, Paolo

    2010-11-01

    In this paper we present early results of laboratory experiments to investigate the transport and diffusion of floating particles (e.g., buoyant seeds) in open channel flow with emergent vegetation. The experiments are aimed at providing a better understanding of the relevant particle-vegetation interaction mechanisms responsible for the observed diffusion processes. Qualitative observational data are then used to set up a stochastic model for floating particle transport and diffusion. Quantitative observations, such as the distribution of distances travelled by a particle before it is permanently captured by a plant and the arrival-time distributions at prescribed cross sections along the vegetated test section, are instead used to calibrate and validate the model. The comparison between theoretical predictions and experimental results is quite satisfactory and suggests that the observed relevant aspects of the particle-vegetation interaction processes are properly described in the model.

  15. Vegetative bioremediation of phenanthrene

    SciTech Connect

    Malathi, A.; Banks, M.K.; Schwab, A.P.

    1994-12-31

    The role of vegetation to stimulate the degradation and detoxification of toxic and recalcitrant organic chemicals at low soil concentrations is brought about by several mechanisms of plant-soil interactions, including improvement of physical and chemical properties of contaminated soils, increase in soil microbial activity and increase in contact between microbes associated with the roots and toxic compounds in a contaminated soil. This represents a potential cost effective and low maintenance alternative for waste management. However, there is not enough information concerning specific application of plants, chemicals and soils either in the form of laboratory or field results. In the research to be presented, different and diverse perennial plant species [grasses (monocot), legumes, and dicots] were collected from the native prairie grasslands and tested for their efficiency in mineralization of phenanthrene. The mineralization of phenanthrene was evaluated by the measurement of {sup 14}CO{sub 2} from the radiolabeled target compound incubated in a rhizosphere soil microcosm. Results from this study will indicate the potential of using different types of plants to enhance degradation of PAHs in contaminated soils.

  16. Carboniferous coal swamp vegetation

    SciTech Connect

    Phillips, T.L.; Peppers, R.A.; DiMichele, W.A.

    1984-01-01

    The Carboniferous Period was one of considerable change on the Earth. The volume explores these changes by using plant morphology and paleoecology to develop the relationship between plant evolution and the derived coal sources. Both are interrelated by the regional and stratigraphic trends in paleoecology and paleoclimatology. The book is divided into three sections dealing with geology, plant morphology including palynology, and paleoecology. In Section I, the paleogeography, geologic settings of major coal basins, coal resources, coal-ball origins and occurrences, and the sources of paleobotanical information are presented with biostratigraphic correlations of Europe and the United States. Section II emphasizes plant morphology as form and structure provide the means of identifying plants and, in turn, establishing development, size, habit, reproductive biology, environmental parameters, and evolutionary change. Quantitative abundances and stratigraphic ranges of plants and spores are compared and summarized. Lastly, Section III integrates coal-ball peats and coal-spore floras as complementary sources for the quantitative analyses of coal-swamp vegetation in relation to climate and coal. The local and regional swamp studies are interfaced and basinal geology and depositional interpretations in a stratigraphic succession.

  17. Indicators: Lakeshore Habitat/Riparian Vegetative Cover

    EPA Pesticide Factsheets

    Riparian and lakeshore vegetative cover consist of the vegetation corridor alongside streams, rivers, and lakes. Vegetative cover refers to overhanging or submerged tree limbs, shrubs, and other plants growing along the shore of the waterbody.

  18. Dielectric properties of marsh vegetation

    NASA Astrophysics Data System (ADS)

    Kochetkova, Tatiana D.; Suslyaev, Valentin I.; Shcheglova, Anna S.

    2015-10-01

    The present work is devoted to the measurement of the dielectric properties of mosses and lichens in the frequency range from 500 MHz to 18 GHz. Subjects of this research were three species of march vegetation - moss (Dicranum polysetum Michx), groundcedar (Diphasiastrum complanatum (L.) Holub) and lichen (Cladonia stellaris). Samples of vegetation were collected in Tomsk region, Western Siberia, Russia. Complex dielectric permittivity was measured in coaxial section by Agilent Technologies vector network analyzer E8363B. Green samples was measured for some moisture contents from 100% to 3-5 % during a natural drying. The measurements were performed at room temperature, which remained within 21 ÷ 23 ° C. The frequency dependence of the dielectric constant for the three species of marsh vegetation differ markedly. Different parts of the complex permittivity dependency on moisture were fitted by line for all frequency points. Two break point were observed corresponding to the transition of water in the vegetation in various phase states. The complex permittivity spectra of water in the vegetation allow determining the most likely corresponding dielectric model of water in the vegetation by the method of hypothesis testing. It is the Debye's model. Parameters of Debye's model were obtained by numerical methods for all of three states of water. This enables to calculate the dielectric constant of water at any frequency range from 500 MHz to 18 GHz and to find the parameters of the dielectric model of the vegetation.

  19. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.; Smith, M. O.; Adams, J. B.

    1993-01-01

    The problem of distinguishing between green vegetation, nonphotosynthetic vegetation (NPV, such as dry grass, leaf litter, and woody material), and soils in imaging-spectrometer data is addressed by analyzing an image taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Jasper Ridge Biological Preserve (California) on September 20, 1989, using spectral mixture analysis. Over 98 percent of the spectral variation could be explained by linear mixtures of three endmembers, green vegetation, shade, and soil. NPV, which could not be distinguished from soil when included as an endmember, was discriminated by residual spectra that contained cellulose and lignin absorptions. Distinct communities of green vegetation were distinguished by (1) nonlinear mixing effect caused by transmission and scattering by green leaves, (2) variations in a derived canopy-shade spectrum, and (3) the fraction of NPV.

  20. Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data

    NASA Technical Reports Server (NTRS)

    Roberts, D. A.; Smith, M. O.; Adams, J. B.

    1993-01-01

    The problem of distinguishing between green vegetation, nonphotosynthetic vegetation (NPV, such as dry grass, leaf litter, and woody material), and soils in imaging-spectrometer data is addressed by analyzing an image taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over the Jasper Ridge Biological Preserve (California) on September 20, 1989, using spectral mixture analysis. Over 98 percent of the spectral variation could be explained by linear mixtures of three endmembers, green vegetation, shade, and soil. NPV, which could not be distinguished from soil when included as an endmember, was discriminated by residual spectra that contained cellulose and lignin absorptions. Distinct communities of green vegetation were distinguished by (1) nonlinear mixing effect caused by transmission and scattering by green leaves, (2) variations in a derived canopy-shade spectrum, and (3) the fraction of NPV.

  1. Interactive visualization of vegetation dynamics

    USGS Publications Warehouse

    Reed, B.C.; Swets, D.; Bard, L.; Brown, J.; Rowland, J.

    2001-01-01

    Satellite imagery provides a mechanism for observing seasonal dynamics of the landscape that have implications for near real-time monitoring of agriculture, forest, and range resources. This study illustrates a technique for visualizing timely information on key events during the growing season (e.g., onset, peak, duration, and end of growing season), as well as the status of the current growing season with respect to the recent historical average. Using time-series analysis of normalized difference vegetation index (NDVI) data from the advanced very high resolution radiometer (AVHRR) satellite sensor, seasonal dynamics can be derived. We have developed a set of Java-based visualization and analysis tools to make comparisons between the seasonal dynamics of the current year with those from the past twelve years. In addition, the visualization tools allow the user to query underlying databases such as land cover or administrative boundaries to analyze the seasonal dynamics of areas of their own interest. The Java-based tools (data exploration and visualization analysis or DEVA) use a Web-based client-server model for processing the data. The resulting visualization and analysis, available via the Internet, is of value to those responsible for land management decisions, resource allocation, and at-risk population targeting.

  2. Effect of blanching and drying methods on the nutritional and sensory quality of leafy vegetables.

    PubMed

    Onayemi, O; Badifu, G I

    1987-01-01

    The nutrient retention and sensory quality factors of vegetables blanched by two methods and solar-dried or dried in the cabinet dryer were evaluated. The type and conditions of the blanching treatment prior to drying affect the retention of ascorbic acid, carotene, and ash in the dried vegetables. The sun-dried vegetables had inferior colour, texture and acceptibility compared to the vegetables dried in the cabinet dryer. There were significant differences in the rehydration and drying ratio of the dried vegetables. The implications of the blanching and drying processes for an effective preservation technique are discussed.

  3. Analyzing nonlinear variations in terrestrial vegetation in China during 1982-2012.

    PubMed

    Liu, Yanxu; Liu, Xianfeng; Hu, Yi'na; Li, Shuangshuang; Peng, Jian; Wang, Yanglin

    2015-11-01

    Quantifying the long-term trends of changes in terrestrial vegetation on a large scale is an effective method for detecting the effects of global environmental change. In view of the trend towards overall restoration and local degradation of terrestrial vegetation in China, it is necessary to pay attention to the spatial processes of vegetative restoration or degradation, as well as to clarify the temporal and spatial characteristics of vegetative growth in greater geographical detail. However, traditional linear regression analysis has some drawbacks when describing ecological processes. Combining nonparametric linear regression analysis with high-order nonlinear fitting, the temporal and spatial characteristics of terrestrial vegetative growth in China during 1982-2012 were detected using the third generation of Global Inventory Modeling and Mapping Studies (GIMMS3g) dataset. The results showed that high-order curves could be effective. The region joining Ordos City and Shaanxi Gansu Ningxia on the Loess Plateau may have experienced restoration-degradation-restoration processes of vegetative growth. In the Daloushan Mountains, degradation-restoration processes of vegetative growth may have occurred, and the occurrence of several hidden vegetative growth processes was located in different regions of eastern China. Changes in cultivated vegetation were inconsistent with changes in other vegetation types. In southern China and some high-altitude areas, temperature was the primary driver of vegetative growth on an interannual scale, while in the north, the effect of rainfall was more significant. Nevertheless, the influence of climate on vegetation activity in large urban areas was weak. The trend types of degradation-restoration processes in several regions were inconsistent with the implements of regional land development and protection strategy. Thus, the role of human activity cannot be ignored. In future studies, it will be still necessary to quantify the

  4. Vegetation Description, Rare Plant Inventory, and Vegetation Monitoring for Craig Mountain, Idaho.

    SciTech Connect

    Mancuso, Michael; Moseley, Robert

    1994-12-01

    The Craig Mountain Wildlife Mitigation Area was purchased by Bonneville Power Administration (BPA) as partial mitigation for wildlife losses incurred with the inundation of Dworshak Reservoir on the North Fork Clearwater River. Upon completion of the National Environmental Protection Act (NEPA) process, it is proposed that title to mitigation lands will be given to the Idaho Department of Fish and Game (IDFG). Craig Mountain is located at the northern end of the Hells Canyon Ecosystem. It encompasses the plateau and steep canyon slopes extending from the confluence of the Snake and Salmon rivers, northward to near Waha, south of Lewiston, Idaho. The forested summit of Craig Mountain is characterized by gently rolling terrain. The highlands dramatically break into the canyons of the Snake and Salmon rivers at approximately the 4,700 foot contour. The highly dissected canyons are dominated by grassland slopes containing a mosaic of shrubfield, riparian, and woodland habitats. During the 1993 and 1994 field seasons, wildlife, habitat/vegetation, timber, and other resources were systematically inventoried at Craig Mountain to provide Fish and Game managers with information needed to draft an ecologically-based management plan. The results of the habitat/vegetation portion of the inventory are contained in this report. The responsibilities for the Craig Mountain project included: (1) vegetation data collection, and vegetation classification, to help produce a GIS-generated Craig Mountain vegetation map, (2) to determine the distribution and abundance of rare plants populations and make recommendations concerning their management, and (3) to establish a vegetation monitoring program to evaluate the effects of Fish and Game management actions, and to assess progress towards meeting habitat mitigation goals.

  5. Development of a coupled wave-flow-vegetation interaction model

    USGS Publications Warehouse

    Beudin, Alexis; Kalra, Tarandeep; Ganju, Neil K.; Warner, John C.

    2017-01-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  6. Late-quaternary vegetational dynamics and community stability reconsidered

    NASA Astrophysics Data System (ADS)

    Delcourt, Paul A.; Delcourt, Hazel R.

    1983-03-01

    Defining the spatial and temporal limits of vegetational processes such as migration and invasion of established communities is a prerequisite to evaluating the degree of stability in plant communities through the late Quaternary. The interpretation of changes in boundaries of major vegetation types over the past 20,000 yr offers a complementary view to that provided by migration maps for particular plant taxa. North of approximately 43°N in eastern North America, continual vegetational disequilibrium has resulted from climatic change, soil development, and species migrations during postglacial times. Between 33° and 39°N, stable full-glacial vegetation was replaced by a relatively unstable vegetation during late-glacial climatic amelioration; stable interglacial vegetation developed there after about 9000 yr B.P. Late-Quaternary vegetation has been in dynamic equilibrium, with a relatively constant flora, south of 33°N on upland interfluves along the northern Gulf Coastal Plain, peninsular Florida, and west-central Mexico.

  7. Development of a coupled wave-flow-vegetation interaction model

    NASA Astrophysics Data System (ADS)

    Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.

    2017-03-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  8. Monitoring vegetation growth and morphodynamic effects after stream restoration

    NASA Astrophysics Data System (ADS)

    Vargas-Luna, Andrés; Crosato, Alessandra; Anders, Niels; Hoitink, Ton; Keesstra, Saskia; Uijttewaal, Wim

    2016-04-01

    Vegetation processes are widely recognized as a key component on the ecological and morphological development of river channels. Moreover, plants reduce flow velocities and bed-shear stresses by increasing the local hydraulic roughness and thus increasing water levels. Therefore, monitoring the vegetation development is an important activity in river management not only for protecting ecological services, but also in flood risk reduction; especially in times of a changing climate. This paper presents the analysis the effects of riparian vegetation growth on the morphology of a lowland restored stream located in The Netherlands, the Lunterse beek. An Unmanned Aerial Vehicle (UAV) was used to obtain aerial imagery at different time steps which was the basis for generating land cover maps with semi-automated image classification. In addition hydrological series and multi-temporal high-resolution bathymetric data allowed analysing river bed morphology and the relevance of seasonality. The UAV campaigns were found a crucial step to ease the vegetation mapping and monitoring. The morphological change observed in this stream, represented by the channel-width adjustment and the cross sectional evolution, is slowed down once vegetation is stablished on the stream. Results of this work show that the vegetation root system assert a strong control on soil stabilization, even during the winter season when the plants biomass is highly reduced. Seasonal variations in plant development appear important only during the first stages of establishment, when vegetation has a low density and, more importantly, a root system that is not fully developed yet.

  9. Influence of cooking methods on antioxidant activity of vegetables.

    PubMed

    Jiménez-Monreal, A M; García-Diz, L; Martínez-Tomé, M; Mariscal, M; Murcia, M A

    2009-04-01

    The influence of home cooking methods (boiling, microwaving, pressure-cooking, griddling, frying, and baking) on the antioxidant activity of vegetables has been evaluated in 20 vegetables, using different antioxidant activity assays (lipoperoxyl and hydroxyl radicals scavenging and TEAC). Artichoke was the only vegetable that kept its very high scavenging-lipoperoxyl radical capacity in all the cooking methods. The highest losses of LOO. scavenging capacity were observed in cauliflow