Sample records for processes controlling ice

  1. An experimental study of icing control using DBD plasma actuator

    NASA Astrophysics Data System (ADS)

    Cai, Jinsheng; Tian, Yongqiang; Meng, Xuanshi; Han, Xuzhao; Zhang, Duo; Hu, Haiyang

    2017-08-01

    Ice accretion on aircraft or wind turbine has been widely recognized as a big safety threat in the past decades. This study aims to develop a new approach for icing control using an AC-DBD plasma actuator. The experiments of icing control (i.e., anti-/de-icing) on a cylinder model were conducted in an icing wind tunnel with controlled wind speed (i.e., 15 m/s) and temperature (i.e., -10°C). A digital camera was used to record the dynamic processes of plasma anti-icing and de-icing whilst an infrared imaging system was utilized to map the surface temperature variations during the anti-/de-icing processes. It was found that the AC-DBD plasma actuator is very effective in both anti-icing and de-icing operations. While no ice formation was observed when the plasma actuator served as an anti-icing device, a complete removal of the ice layer with a thickness of 5 mm was achieved by activating the plasma actuator for ˜150 s. Such information demonstrated the feasibility of plasma anti-/de-icing, which could potentially provide more effective and safer icing mitigation strategies.

  2. Controlled ice nucleation in the field of freeze-drying: fundamentals and technology review.

    PubMed

    Geidobler, R; Winter, G

    2013-10-01

    In the scientific community as well as in commercial freeze-drying, controlled ice nucleation has received a lot of attention because increasing the ice nucleation temperature can significantly reduce primary drying duration. Furthermore, controlled ice nucleation enables to reduce the randomness of the ice nucleation temperature, which can be a serious scale-up issue during process development. In this review, fundamentals of ice nucleation in the field of freeze-drying are presented. Furthermore, the impact of controlled ice nucleation on product qualities is discussed, and methods to achieve controlled ice nucleation are presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Smagglce: Surface Modeling and Grid Generation for Iced Airfoils: Phase 1 Results

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Choo, Yung K.; Braun, Donald C.; Baez, Marivell; Gnepp, Steven

    1999-01-01

    SmaggIce (Surface Modeling and Grid Generation for Iced Airfoils) is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils with grid-based Computational Fluid Dynamics (CFD). It includes tools for data probing, boundary smoothing, domain decomposition, and structured grid generation and refinement. SmaggIce provides the underlying computations to perform these functions, a GUI (Graphical User Interface) to control and interact with those functions, and graphical displays of results, it is being developed at NASA Glenn Research Center. This paper discusses the overall design of SmaggIce as well as what has been implemented in Phase 1. Phase 1 results provide two types of software tools: interactive ice shape probing and interactive ice shape control. The ice shape probing tools will provide aircraft icing engineers and scientists with an interactive means to measure the physical characteristics of ice shapes. On the other hand, the ice shape control features of SmaggIce will allow engineers to examine input geometry data, correct or modify any deficiencies in the geometry, and perform controlled systematic smoothing to a level that will make the CFD process manageable.

  4. Environmental controls on micro fracture processes in shelf ice

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter

    2013-04-01

    The recent retreat and collapse of the ice shelves on the Antarctic Peninsula has been associated with regional atmospheric warming, oceanic warming, increased summer melt and shelf flexure. Although the cause of collapse is a matter of active discussion, the process is that of fracture of a creep-brittle material, close to its melting point. The environmental controls on how fracturing initiates, at a micro-scale, strongly determine the macroscopic disintegration of ice shelves. In particular the shelf temperature profile controls the plasticity of the ice shelf; the densification of shelf ice due to melting and re-freezing affects the crack tip stress intensity; the accretion of marine ice at the bottom of the shelf imposes a thermal/mechanical discontinuity; saline environments control crack tip stress corrosion; cyclic loading promotes sub-critical crack propagation. These strong environmental controls on shelf ice fracture means that assessing shelf stability is a non-deterministic problem. How these factors may be parameterized in ice shelf models, through the use of fracture mechanisms maps, is discussed. The findings are discussed in relation to the stability of Larsen C.

  5. Processes controlling surface, bottom and lateral melt of Arctic sea ice in a state of the art sea ice model.

    PubMed

    Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela

    2015-10-13

    We present a modelling study of processes controlling the summer melt of the Arctic sea ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community sea ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various sea ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated sea ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the processes driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several processes in driving the summer melt of sea ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).

  6. Constraining Aggregate-Scale Solar Energy Partitioning in Arctic Sea Ice Through Synthesis of Remote Sensing and Autonomous In-Situ Observations.

    NASA Astrophysics Data System (ADS)

    Wright, N.; Polashenski, C. M.; Deeb, E. J.; Morriss, B. F.; Song, A.; Chen, J.

    2015-12-01

    One of the key processes controlling sea ice mass balance in the Arctic is the partitioning of solar energy between reflection back to the atmosphere and absorption into the ice and upper ocean. We investigate the solar energy balance in the ice-ocean system using in-situ data collected from Arctic Observing Network (AON) sea ice sites and imagery from high resolution optical satellites. AON assets, including ice mass balance buoys and ice tethered profilers, monitor the storage and fluxes of heat in the ice-ocean system. High resolution satellite imagery, processed using object-based image classification techniques, allows us to quantify the evolution of surrounding ice conditions, including melt pond coverage and floe size distribution, at aggregate scale. We present results from regionally representative sites that constrain the partitioning of absorbed solar energy between ice melt and ocean storage, and quantify the strength of the ice-albedo feedback. We further demonstrate how the results can be used to validate model representations of the physical processes controlling ice-albedo feedbacks. The techniques can be extended to understand solar partitioning across the Arctic basin using additional sites and model based data integration.

  7. PLC based automatic control of pasteurize mix in ice cream production

    NASA Astrophysics Data System (ADS)

    Yao, Xudong; Liang, Kai

    2013-03-01

    This paper describes the automatic control device of pasteurized mix in the ice cream production process.We design a scheme of control system using FBD program language and develop the programmer in the STEP 7-Micro/WIN software, check for any bugs before downloading into PLC .These developed devices will able to provide flexibility and accuracy to control the step of pasteurized mix. The operator just Input the duration and temperature of pasteurized mix through control panel. All the steps will finish automatically without any intervention in a preprogrammed sequence stored in programmable logic controller (PLC). With the help of this equipment we not only can control the quality of ice cream for various conditions, but also can simplify the production process. This control system is inexpensive and can be widely used in ice cream production industry.

  8. NASA Iced Aerodynamics and Controls Current Research

    NASA Technical Reports Server (NTRS)

    Addy, Gene

    2009-01-01

    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  9. High-speed imaging of the transient ice accretion process on a NACA 0012 airfoil

    NASA Astrophysics Data System (ADS)

    Waldman, Rye; Hu, Hui

    2014-11-01

    Ice accretion on aircraft wings poses a performance and safety threat as aircraft encounter supercooled droplets suspended in the cloud layer. The details of the ice accretion depend on the atmospheric conditions and the fight parameters. We present the measurement results of the experiments conducted in the Iowa State icing wind tunnel on a NACA 0012 airfoil to study the transient ice accretion process under varying icing conditions. The icing process on the wing consists of a complex interaction of water deposition, surface water transport, and freezing. The aerodynamics affects the water deposition, the heat and mass transport, and ice accumulation; meanwhile, the accumulating ice also affects the aerodynamics. High-speed video of the unsteady icing accretion process was acquired under controlled environmental conditions to quantitatively measure the transient water run back, rivulet formation, and accumulated ice growth, and the experiments show how varying the environmental conditions modifies the ice accretion process. Funding support from the Iowa Energy Center with Grant No. 14-008-OG and National Science Foundation (NSF) with Grant No. CBET-1064196 and CBET-1438099 is gratefully acknowledged.

  10. The Role of Laboratory-Based Studies of the Physical and Biological Properties of Sea Ice in Supporting the Observation and Modeling of Ice Covered Seas

    NASA Astrophysics Data System (ADS)

    Light, B.; Krembs, C.

    2003-12-01

    Laboratory-based studies of the physical and biological properties of sea ice are an essential link between high latitude field observations and existing numerical models. Such studies promote improved understanding of climatic variability and its impact on sea ice and the structure of ice-dependent marine ecosystems. Controlled laboratory experiments can help identify feedback mechanisms between physical and biological processes and their response to climate fluctuations. Climatically sensitive processes occurring between sea ice and the atmosphere and sea ice and the ocean determine surface radiative energy fluxes and the transfer of nutrients and mass across these boundaries. High temporally and spatially resolved analyses of sea ice under controlled environmental conditions lend insight to the physics that drive these transfer processes. Techniques such as optical probing, thin section photography, and microscopy can be used to conduct experiments on natural sea ice core samples and laboratory-grown ice. Such experiments yield insight on small scale processes from the microscopic to the meter scale and can be powerful interdisciplinary tools for education and model parameterization development. Examples of laboratory investigations by the authors include observation of the response of sea ice microstructure to changes in temperature, assessment of the relationships between ice structure and the partitioning of solar radiation by first-year sea ice covers, observation of pore evolution and interfacial structure, and quantification of the production and impact of microbial metabolic products on the mechanical, optical, and textural characteristics of sea ice.

  11. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    PubMed Central

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; Hilgart, Mark C.; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K.; Smith, Janet L.; Fischetti, Robert F.

    2014-01-01

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce. PMID:25484844

  12. Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system

    DOE PAGES

    Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M.; ...

    2014-11-18

    The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates amore » collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce.« less

  13. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.

    PubMed

    Fang, Rui; Tanaka, Kazunari; Mudhivarthi, Vamsi; Bogner, Robin H; Pikal, Michael J

    2018-03-01

    Several controlled ice nucleation techniques have been developed to increase the efficiency of the freeze-drying process as well as to improve the quality of pharmaceutical products. Owing to the reduction in ice surface area, these techniques have the potential to reduce the degradation of proteins labile during freezing. The objective of this study was to evaluate the effect of ice nucleation temperature on the in-process stability of lactate dehydrogenase (LDH). LDH in potassium phosphate buffer was nucleated at -4°C, -8°C, and -12°C using ControLyo™ or allowed to nucleate spontaneously. Both the enzymatic activity and tetramer recovery after freeze-thawing linearly correlated with product ice nucleation temperature (n = 24). Controlled nucleation also significantly improved batch homogeneity as reflected by reduced inter-vial variation in activity and tetramer recovery. With the correlation established in the laboratory, the degradation of protein in manufacturing arising from ice nucleation temperature differences can be quantitatively predicted. The results show that controlled nucleation reduced the degradation of LDH during the freezing process, but this does not necessarily translate to vastly superior stability during the entire freeze-drying process. The capability of improving batch homogeneity provides potential advantages in scaling-up from lab to manufacturing scale. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Laboratory and Cloud Chamber Studies of Formation Processes and Properties of Atmospheric Ice Particles

    NASA Astrophysics Data System (ADS)

    Leisner, T.; Abdelmonem, A.; Benz, S.; Brinkmann, M.; Möhler, O.; Rzesanke, D.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2009-04-01

    The formation of ice in tropospheric clouds controls the evolution of precipitation and thereby influences climate and weather via a complex network of dynamical and microphysical processes. At higher altitudes, ice particles in cirrus clouds or contrails modify the radiative energy budget by direct interaction with the shortwave and longwave radiation. In order to improve the parameterisation of the complex microphysical and dynamical processes leading to and controlling the evolution of tropospheric ice, laboratory experiments are performed at the IMK Karlsruhe both on a single particle level and in the aerosol and cloud chamber AIDA. Single particle experiments in electrodynamic levitation lend themselves to the study of the interaction between cloud droplets and aerosol particles under extremely well characterized and static conditions in order to obtain microphysical parameters as freezing nucleation rates for homogeneous and heterogeneous ice formation. They also allow the observation of the freezing dynamics and of secondary ice formation and multiplication processes under controlled conditions and with very high spatial and temporal resolution. The inherent droplet charge in these experiments can be varied over a wide range in order to assess the influence of the electrical state of the cloud on its microphysics. In the AIDA chamber on the other hand, these processes are observable under the realistic dynamic conditions of an expanding and cooling cloud- parcel with interacting particles and are probed simultaneously by a comprehensive set of analytical instruments. By this means, microphysical processes can be studied in their complex interplay with dynamical processes as for example coagulation or particle evaporation and growth via the Bergeron - Findeisen process. Shortwave scattering and longwave absorption properties of the nucleating and growing ice crystals are probed by in situ polarised laser light scattering measurements and infrared extinction spectroscopy. In conjunction with ex situ single particle imaging and light scattering measurements the relation between the overall extinction and depolarization properties of the ice clouds and the morphological details of the constituent ice crystals are investigated. In our contribution we will concentrate on the parameterization of homogeneous and heterogeneous ice formation processes under various atmospheric conditions and on the optical properties of the ice crystals produced under these conditions. First attempts to parameterize the observations will be presented.

  15. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    NASA Astrophysics Data System (ADS)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of ice stream behavior. The crustal boundary governs the interaction between these systems exerts a fundamental control on the stability of the Ross Ice Shelf.

  16. Controlled ice nucleation using freeze-dried Pseudomonas syringae encapsulated in alginate beads.

    PubMed

    Weng, Lindong; Tessier, Shannon N; Swei, Anisa; Stott, Shannon L; Toner, Mehmet

    2017-04-01

    The control of ice nucleation is of fundamental significance in many process technologies related to food and pharmaceutical science and cryobiology. Mechanical perturbation, electromagnetic fields and ice-nucleating agents (INAs) have been known to induce ice nucleation in a controlled manner. But these ice-nucleating methods may suffer from cumbersome manual operations, safety concerns of external fields, and biocompatibility and recovery issues of INA particles, especially when used in living systems. Given the automatic ice-seeding nature of INAs, a promising solution to overcome some of the above limitations is to engineer a biocomposite that accommodates the INA particles but minimizes their interactions with biologics, as well as enabling the recovery of used particles. In this study, freeze-dried Pseudomonas syringae, a model ice-nucleating agent, was encapsulated into microliter-sized alginate beads. We evaluated the performance of the bacterial hydrogel beads to initiate ice nucleation in water and aqueous glycerol solution by investigating factors including the size and number of the beads and the local concentration of INA particles. In the aqueous sample of a fixed volume, the total mass of the INA particles (m) was found to be the governing parameter that is solely responsible for determining the ice nucleation performance of the bacterial hydrogel beads. The freezing temperature has a strong positive linear correlation with log 10 m. The findings in this study provide an effective, predictable approach to control ice nucleation, which can improve the outcome and standardization of many ice-assisted process technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Properties of frozen dairy desserts processed by microfluidization of their mixes.

    PubMed

    Olson, D W; White, C H; Watson, C E

    2003-04-01

    Sensory properties and rate of meltdown of nonfat (0% fat) and low-fat (2% fat) vanilla ice creams processed either by conventional valve homogenization or microfluidization of their mixes were compared with each other and to ice cream (10% fat) processed by conventional valve homogenization. Mixes for frozen dairy desserts containing 0, 2, and 10% fat were manufactured. Some of the nonfat and low-fat ice cream mixes were processed by microfluidization at 50, 100, 150, and 200 MPa, and the remaining nonfat and low-fat ice cream mixes and all of the ice cream mix were processed by conventional valve homogenization at 13.8 MPa, first stage, and 3.4 MPa, second stage. The finished frozen and hardened products were evaluated at d 1 and 45 for meltdown rate and for flavor and body and texture by preference testing. Nonfat and low-fat ice creams that usually had a slower meltdown were produced when processing their mixes by microfluidization instead of by conventional valve homogenization. Sensory scores for the ice cream were significantly higher than sensory scores for the nonfat and low-fat ice creams, but the sensory scores for the conventional valve homogenized controls for the nonfat ice cream and low-fat ice cream were not significantly different from the sensory scores for the nonfat ice cream and low-fat ice cream processed by microfluidization of the mixes, respectively. Microfluidization produced nonfat and low-fat ice creams that usually had a slower meltdown without affecting sensory properties.

  18. Remote Characterization of Ice Shelf Surface and Basal Processes: Examples from East Antarctica

    NASA Astrophysics Data System (ADS)

    Greenbaum, J. S.; Blankenship, D. D.; Grima, C.; Schroeder, D. M.; Soderlund, K. M.; Young, D. A.; Kempf, S. D.; Siegert, M. J.; Roberts, J. L.; Warner, R. C.; van Ommen, T. D.

    2017-12-01

    The ability to remotely characterize surface and basal processes of ice shelves has important implications for conducting systematic, repeatable, and safe evaluations of their stability in the context of atmospheric and oceanic forcing. Additionally, techniques developed for terrestrial ice shelves can be adapted to orbital radar sounding datasets planned for forthcoming investigations of icy moons. This has been made possible through recent advances in radar signal processing that enable these data to be used to test hypotheses derived from conceptual and numerical models of ice shelf- and ice shell-ocean interactions. Here, we present several examples of radar sounding-derived characterizations of surface and basal processes underway on ice shelves in East Antarctica. These include percolation of near-surface meltwater in warm austral summers, brine infiltration along ice shelf calving fronts, basal melt rate and distribution, and basal freeze distribution. On Europa, near-surface brines and their migration may impact local geological variability, while basal processes likely control the distribution of melt and freeze. Terrestrially, we emphasize radar-sounding records of the Totten Glacier Ice Shelf which hosts each of these processes as well as the highest known density of basal melt channels of any terrestrial ice shelf. Further, with a maximum floating ice thickness of over 2.5 km, the pressure at Totten's basal interface may be similar to that at Europa's ice-ocean interface; therefore, evaluating surface and basal processes of Totten Glacier and other ice shelves could serve as analogs for understanding melting processes of Europa's ice shell.

  19. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers.

    PubMed

    Congdon, Thomas; Dean, Bethany T; Kasperczak-Wright, James; Biggs, Caroline I; Notman, Rebecca; Gibson, Matthew I

    2015-09-14

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL(-1). Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes.

  20. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers

    PubMed Central

    2015-01-01

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL–1. Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes PMID:26258729

  1. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    NASA Astrophysics Data System (ADS)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream profiles, as a function of location on the GIS (hence ice thickness and background melt rate) using spectral techniques to quantify longitudinal stream profiles. This work should provide a predictive guide for which processes are responsible for ice sheet topography scales from several m (DEM resolution) up to several ice thicknesses.

  2. Applications of AVHRR-Derived Ice Motions for the Arctic and Antarctic

    NASA Technical Reports Server (NTRS)

    Maslanik, James; Emery, William

    1998-01-01

    Characterization and diagnosis of sea ice/atmosphere/ocean interactions require a synthesis of observations and modeling to identify the key mechanisms controlling the ice/climate system. In this project, we combined product generation, observational analyses, and modeling to define and interpret variability in ice motion in conjunction with thermodynamic factors such as surface temperature and albedo. The goals of this work were twofold: (1) to develop and test procedures to produce an integrated set of polar products from remotely-sensed and supporting data; and (2) to apply these data to understand processes at work in controlling sea ice distribution.

  3. Sensitivity study of a dynamic thermodynamic sea ice model

    NASA Astrophysics Data System (ADS)

    Holland, David M.; Mysak, Lawrence A.; Manak, Davinder K.; Oberhuber, Josef M.

    1993-02-01

    A numerical simulation of the seasonal sea ice cover in the Arctic Ocean and the Greenland, Iceland, and Norwegian seas is presented. The sea ice model is extracted from Oberhuber's (1990) coupled sea ice-mixed layer-isopycnal general circulation model and is written in spherical coordinates. The advantage of such a model over previous sea ice models is that it can be easily coupled to either global atmospheric or ocean general circulation models written in spherical coordinates. In this model, the thermodynamics are a modification of that of Parkinson and Washington (1979), while the dynamics use the full Hibler (1979) viscous-plastic rheology. Monthly thermodynamic and dynamic forcing fields for the atmosphere and ocean are specified. The simulations of the seasonal cycle of ice thickness, compactness, and velocity, for a control set of parameters, compare favorably with the known seasonal characteristics of these fields. A sensitivity study of the control simulation of the seasonal sea ice cover is presented. The sensitivity runs are carried out under three different themes, namely, numerical conditions, parameter values, and physical processes. This last theme refers to experiments in which physical processes are either newly added or completely removed from the model. Approximately 80 sensitivity runs have been performed in which a change from the control run environment has been implemented. Comparisons have been made between the control run and a particular sensitivity run based on time series of the seasonal cycle of the domain-averaged ice thickness, compactness, areal coverage, and kinetic energy. In addition, spatially varying fields of ice thickness, compactness, velocity, and surface temperature for each season are presented for selected experiments. A brief description and discussion of the more interesting experiments are presented. The simulation of the seasonal cycle of Arctic sea ice cover is shown to be robust.

  4. Spatial scales of light transmission through Antarctic pack ice: Surface flooding vs. floe-size distribution

    NASA Astrophysics Data System (ADS)

    Arndt, S.; Meiners, K.; Krumpen, T.; Ricker, R.; Nicolaus, M.

    2016-12-01

    Snow on sea ice plays a crucial role for interactions between the ocean and atmosphere within the climate system of polar regions. Antarctic sea ice is covered with snow during most of the year. The snow contributes substantially to the sea-ice mass budget as the heavy snow loads can depress the ice below water level causing flooding. Refreezing of the snow and seawater mixture results in snow-ice formation on the ice surface. The snow cover determines also the amount of light being reflected, absorbed, and transmitted into the upper ocean, determining the surface energy budget of ice-covered oceans. The amount of light penetrating through sea ice into the upper ocean is of critical importance for the timing and amount of bottom sea-ice melt, biogeochemical processes and under-ice ecosystems. Here, we present results of several recent observations in the Weddell Sea measuring solar radiation under Antarctic sea ice with instrumented Remotely Operated Vehicles (ROV). The combination of under-ice optical measurements with simultaneous characterization of surface properties, such as sea-ice thickness and snow depth, allows the identification of key processes controlling the spatial distribution of the under-ice light. Thus, our results show how the distinction between flooded and non-flooded sea-ice regimes dominates the spatial scales of under-ice light variability for areas smaller than 100-by-100m. In contrast, the variability on larger scales seems to be controlled by the floe-size distribution and the associated lateral incidence of light. These results are related to recent studies on the spatial variability of Arctic under-ice light fields focusing on the distinctly differing dominant surface properties between the northern (e.g. summer melt ponds) and southern (e.g. year-round snow cover, surface flooding) hemisphere sea-ice cover.

  5. Ice Nucleation in Deep Convection

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Ackerman, Andrew; Stevens, David; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The processes controlling production of ice crystals in deep, rapidly ascending convective columns are poorly understood due to the difficulties involved with either modeling or in situ sampling of these violent clouds. A large number of ice crystals are no doubt generated when droplets freeze at about -40 C. However, at higher levels, these crystals are likely depleted due to precipitation and detrainment. As the ice surface area decreases, the relative humidity can increase well above ice saturation, resulting in bursts of ice nucleation. We will present simulations of these processes using a large-eddy simulation model with detailed microphysics. Size bins are included for aerosols, liquid droplets, ice crystals, and mixed-phase (ice/liquid) hydrometers. Microphysical processes simulated include droplet activation, freezing, melting, homogeneous freezing of sulfate aerosols, and heterogeneous ice nucleation. We are focusing on the importance of ice nucleation events in the upper part of the cloud at temperatures below -40 C. We will show that the ultimate evolution of the cloud in this region (and the anvil produced by the convection) is sensitive to these ice nucleation events, and hence to the composition of upper tropospheric aerosols that get entrained into the convective column.

  6. Percolation blockage: A process that enables melt pond formation on first year Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Polashenski, Chris; Golden, Kenneth M.; Perovich, Donald K.; Skyllingstad, Eric; Arnsten, Alexandra; Stwertka, Carolyn; Wright, Nicholas

    2017-01-01

    Melt pond formation atop Arctic sea ice is a primary control of shortwave energy balance in the Arctic Ocean. During late spring and summer, the ponds determine sea ice albedo and how much solar radiation is transmitted into the upper ocean through the sea ice. The initial formation of ponds requires that melt water be retained above sea level on the ice surface. Both theory and observations, however, show that first year sea ice is so highly porous prior to the formation of melt ponds that multiday retention of water above hydraulic equilibrium should not be possible. Here we present results of percolation experiments that identify and directly demonstrate a mechanism allowing melt pond formation. The infiltration of fresh water into the pore structure of sea ice is responsible for blocking percolation pathways with ice, sealing the ice against water percolation, and allowing water to pool above sea level. We demonstrate that this mechanism is dependent on fresh water availability, known to be predominantly from snowmelt, and ice temperature at melt onset. We argue that the blockage process has the potential to exert significant control over interannual variability in ice albedo. Finally, we suggest that incorporating the mechanism into models would enhance their physical realism. Full treatment would be complex. We provide a simple temperature threshold-based scheme that may be used to incorporate percolation blockage behavior into existing model frameworks.

  7. Frazil-ice growth rate and dynamics in mixed layers and sub-ice-shelf plumes

    NASA Astrophysics Data System (ADS)

    Rees Jones, David W.; Wells, Andrew J.

    2018-01-01

    The growth of frazil or granular ice is an important mode of ice formation in the cryosphere. Recent advances have improved our understanding of the microphysical processes that control the rate of ice-crystal growth when water is cooled beneath its freezing temperature. These advances suggest that crystals grow much faster than previously thought. In this paper, we consider models of a population of ice crystals with different sizes to provide insight into the treatment of frazil ice in large-scale models. We consider the role of crystal growth alongside the other physical processes that determine the dynamics of frazil ice. We apply our model to a simple mixed layer (such as at the surface of the ocean) and to a buoyant plume under a floating ice shelf. We provide numerical calculations and scaling arguments to predict the occurrence of frazil-ice explosions, which we show are controlled by crystal growth, nucleation, and gravitational removal. Faster crystal growth, higher secondary nucleation, and slower gravitational removal make frazil-ice explosions more likely. We identify steady-state crystal size distributions, which are largely insensitive to crystal growth rate but are affected by the relative importance of secondary nucleation to gravitational removal. Finally, we show that the fate of plumes underneath ice shelves is dramatically affected by frazil-ice dynamics. Differences in the parameterization of crystal growth and nucleation give rise to radically different predictions of basal accretion and plume dynamics, and can even impact whether a plume reaches the end of the ice shelf or intrudes at depth.

  8. The implementation of a Hazard Analysis and Critical Control Point management system in a peanut butter ice cream plant.

    PubMed

    Hung, Yu-Ting; Liu, Chi-Te; Peng, I-Chen; Hsu, Chin; Yu, Roch-Chui; Cheng, Kuan-Chen

    2015-09-01

    To ensure the safety of the peanut butter ice cream manufacture, a Hazard Analysis and Critical Control Point (HACCP) plan has been designed and applied to the production process. Potential biological, chemical, and physical hazards in each manufacturing procedure were identified. Critical control points for the peanut butter ice cream were then determined as the pasteurization and freezing process. The establishment of a monitoring system, corrective actions, verification procedures, and documentation and record keeping were followed to complete the HACCP program. The results of this study indicate that implementing the HACCP system in food industries can effectively enhance food safety and quality while improving the production management. Copyright © 2015. Published by Elsevier B.V.

  9. HybridICE® filter: ice separation in freeze desalination of mine waste waters.

    PubMed

    Adeniyi, A; Maree, J P; Mbaya, R K K; Popoola, A P I; Mtombeni, T; Zvinowanda, C M

    2014-01-01

    Freeze desalination is an alternative method for the treatment of mine waste waters. HybridICE(®) technology is a freeze desalination process which generates ice slurry in surface scraper heat exchangers that use R404a as the primary refrigerant. Ice separation from the slurry takes place in the HybridICE filter, a cylindrical unit with a centrally mounted filter element. Principally, the filter module achieves separation of the ice through buoyancy force in a continuous process. The HybridICE filter is a new and economical means of separating ice from the slurry and requires no washing of ice with water. The performance of the filter at a flow-rate of 25 L/min was evaluated over time and with varied evaporating temperature of the refrigerant. Behaviours of the ice fraction and residence time were also investigated. The objective was to find ways to improve the performance of the filter. Results showed that filter performance can be improved by controlling the refrigerant evaporating temperature and eliminating overflow.

  10. Ice nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature, and cooling rate

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Toon, O. B.

    1994-01-01

    We have investigated the processes that control ice crystal nucleation in the upper troposphere using a numerical model. Nucleation of ice resulting from cooling was simulated for a range of aerosol number densities, initial temperatures, and cooling rates. In contrast to observations of stratus clouds, we find that the number of ice crystals that nucleate in cirrus is relatively insensitive to the number of aerosols present. The ice crystal size distribution at the end of the nucleation process is unaffected by the assumed initial aerosol number density. Essentially, nucleation continues until enough ice crystals are present such that their deposition growth rapidly depletes the vapor and shuts off any further nucleation. However, the number of ice crystals nucleated increases rapidly with decreasing initial temperature and increasing cooling rate. This temperature dependence alone could explain the large ice crystal number density observed in very cold tropical cirrus.

  11. Controlled ice nucleation in cryopreservation--a review.

    PubMed

    Morris, G John; Acton, Elizabeth

    2013-04-01

    We review here for the first time, the literature on control of ice nucleation in cryopreservation. Water and aqueous solutions have a tendency to undercool before ice nucleation occurs. Control of ice nucleation has been recognised as a critical step in the cryopreservation of embryos and oocytes but is largely ignored for other cell types. We review the processes of ice nucleation and crystal growth in the solution around cells and tissues during cryopreservation with an emphasis on non IVF applications. The extent of undercooling that is encountered during the cooling of various cryocontainers is defined and the methods that have been employed to control the nucleation of ice are examined. The effects of controlled ice nucleation on the structure of the sample and the outcome of cryopreservation of a range of cell types and tissues are presented and the physical events which define the cellular response are discussed. Nucleation of ice is the most significant uncontrolled variable in conventional cryopreservation leading to sample to sample variation in cell recovery, viability and function and should be controlled to allow standardisation of cryopreservation protocols for cells for biobanking, cell based assays or clinical application. This intervention allows a way of increasing viability of cells and reducing variability between samples and should be included as standard operating procedures are developed. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. River-ice break-up/freeze-up: a review of climatic drivers, historical trends and future predictions

    NASA Astrophysics Data System (ADS)

    Prowse, T. D.; Bonsal, B. R.; Duguay, C. R.; Lacroix, M. P.

    2007-10-01

    River ice plays a fundamental role in biological, chemical and physical processes that control freshwater regimes of the cold regions. Moreover, it can have enormous economic implications for river-based developments. All such activities and processes can be modified significantly by any changes to river-ice thickness, composition or event timing and severity. This paper briefly reviews some of the major hydraulic, mechanical and thermodynamic processes controlling river-ice events and how these are influenced by variations in climate. A regional and temporal synthesis is also made of the observed historical trends in river-ice break-up/freeze-up occurrence from the Eurasian and North American cold regions. This involves assessment of several hydroclimatic variables that have influenced past trends and variability in river-ice break-up/freeze-up dates including air-temperature indicators (e.g. seasonal temperature, 0°C isotherm dates and various degree-days) and large-scale atmospheric circulation patterns or teleconnections. Implications of future climate change on the timing and severity of river-ice events are presented and discussed in relation to the historical trends. Attention is drawn to the increasing trends towards the occurrence of mid-winter break-up events that can produce especially severe flood conditions but prove to be the most difficult type of event to model and predict.

  13. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 2. Sensitivity to external forcings

    NASA Astrophysics Data System (ADS)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    A coupled ice stream-ice shelf-ocean cavity model is used to assess the sensitivity of the coupled system to far-field ocean temperatures, varying from 0.0 to 1.8°C, as well as sensitivity to the parameters controlling grounded ice flow. A response to warming is seen in grounding line retreat and grounded ice loss that cannot be inferred from the response of integrated melt rates alone. This is due to concentrated thinning at the ice shelf lateral margin, and to processes that contribute to this thinning. Parameters controlling the flow of grounded ice have a strong influence on the response to sub-ice shelf melting, but this influence is not seen until several years after an initial perturbation in temperatures. The simulated melt rates are on the order of that observed for Pine Island Glacier in the 1990s. However, retreat rates are much slower, possibly due to unrepresented bedrock features.

  14. Emerging techniques for assisting and accelerating food freezing processes: A review of recent research progresses.

    PubMed

    Cheng, Lina; Sun, Da-Wen; Zhu, Zhiwei; Zhang, Zi

    2017-03-04

    Freezing plays an important role in food preservation and the emergence of rapid freezing technologies can be highly beneficial to the food industry. This paper reviews some novel food freezing technologies, including high-pressure freezing (HPF), ultrasound-assisted freezing (UAF), electrically disturbed freezing (EF) and magnetically disturbed freezing (MF), microwave-assisted freezing (MWF), and osmo-dehydro-freezing (ODF). HPF and UAF can initiate ice nucleation rapidly, leading to uniform distribution of ice crystals and the control of their size and shape. Specifically, the former is focused on increasing the degree of supercooling, whereas the latter aims to decrease it. Direct current electric freezing (DC-EF) and alternating current electric freezing (AC-EF) exhibit different effects on ice nucleation. DC-EF can promote ice nucleation and AC-EF has the opposite effect. Furthermore, ODF has been successfully used for freezing various vegetables and fruit. MWF cannot control the nucleation temperature, but can decrease supercooling degree, thus decreasing the size of ice crystals. The heat and mass transfer processes during ODF have been investigated experimentally and modeled mathematically. More studies should be carried out to understand the effects of these technologies on food freezing process.

  15. Ice-nucleating bacteria control the order and dynamics of interfacial water

    DOE PAGES

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; ...

    2016-04-22

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less

  16. Ice-nucleating bacteria control the order and dynamics of interfacial water

    PubMed Central

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-01-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  17. High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000 years

    NASA Astrophysics Data System (ADS)

    Méheust, Marie; Stein, Ruediger; Fahl, Kirsten; Max, Lars; Riethdorf, Jan-Rainer

    2016-04-01

    Due to its strong influence on heat and moisture exchange between the ocean and the atmosphere, sea ice is an essential component of the global climate system. In the context of its alarming decrease in terms of concentration, thickness and duration, understanding the processes controlling sea-ice variability and reconstructing paleo-sea-ice extent in polar regions have become of great interest for the scientific community. In this study, for the first time, IP25, a recently developed biomarker sea-ice proxy, was used for a high-resolution reconstruction of the sea-ice extent and its variability in the western North Pacific and western Bering Sea during the past 18,000 years. To identify mechanisms controlling the sea-ice variability, IP25 data were associated with published sea-surface temperature as well as diatom and biogenic opal data. The results indicate that a seasonal sea-ice cover existed during cold periods (Heinrich Stadial 1 and Younger Dryas), whereas during warmer intervals (Bølling-Allerød and Holocene) reduced sea ice or ice-free conditions prevailed in the study area. The variability in sea-ice extent seems to be linked to climate anomalies and sea-level changes controlling the oceanographic circulation between the subarctic Pacific and the Bering Sea, especially the Alaskan Stream injection though the Aleutian passes.

  18. Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain

    2007-06-01

    The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over the final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.

  19. Artificial Bone and Teeth through Controlled Ice Growth in Colloidal Suspensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomsia, Antoni P.; Saiz, Eduardo; Deville, Sylvain

    2007-06-14

    The formation of regular patterns is a common feature of many solidification processes involving cast materials. We describe here how regular patterns can be obtained in porous alumina and hydroxyapatite (HAP) by controlling the freezing of ceramic slurries followed by subsequent ice sublimation and sintering, leading to multilayered porous ceramic structures with homogeneous and well-defined architecture. These porous materials can be infiltrated with a second phase of choice to yield biomimetic nacre-like composites with improved mechanical properties, which could be used for artificial bone and teeth applications. Proper control of the solidification patterns provides powerful means of control over themore » final functional properties. We discuss the relationships between the experimental results, ice growth fundamentals, the physics of ice and the interaction between inert particles and the solidification front during directional freezing.« less

  20. High-definition infrared thermography of ice nucleation and propagation in wheat under natural frost conditions and controlled freezing

    USDA-ARS?s Scientific Manuscript database

    Infrared thermography has been used to visualize the freezing process in plants and has greatly enhanced our knowledge of ice nucleation and propagation in plants. The majority of IR analyses have been conducted under controlled rather than natural conditions and often on plant parts instead of wh...

  1. Application of GRACE to the assessment of model-based estimates of monthly Greenland Ice Sheet mass balance (2003-2012)

    NASA Astrophysics Data System (ADS)

    Schlegel, Nicole-Jeanne; Wiese, David N.; Larour, Eric Y.; Watkins, Michael M.; Box, Jason E.; Fettweis, Xavier; van den Broeke, Michiel R.

    2016-09-01

    Quantifying the Greenland Ice Sheet's future contribution to sea level rise is a challenging task that requires accurate estimates of ice sheet sensitivity to climate change. Forward ice sheet models are promising tools for estimating future ice sheet behavior, yet confidence is low because evaluation of historical simulations is challenging due to the scarcity of continental-wide data for model evaluation. Recent advancements in processing of Gravity Recovery and Climate Experiment (GRACE) data using Bayesian-constrained mass concentration ("mascon") functions have led to improvements in spatial resolution and noise reduction of monthly global gravity fields. Specifically, the Jet Propulsion Laboratory's JPL RL05M GRACE mascon solution (GRACE_JPL) offers an opportunity for the assessment of model-based estimates of ice sheet mass balance (MB) at ˜ 300 km spatial scales. Here, we quantify the differences between Greenland monthly observed MB (GRACE_JPL) and that estimated by state-of-the-art, high-resolution models, with respect to GRACE_JPL and model uncertainties. To simulate the years 2003-2012, we force the Ice Sheet System Model (ISSM) with anomalies from three different surface mass balance (SMB) products derived from regional climate models. Resulting MB is compared against GRACE_JPL within individual mascons. Overall, we find agreement in the northeast and southwest where MB is assumed to be primarily controlled by SMB. In the interior, we find a discrepancy in trend, which we presume to be related to millennial-scale dynamic thickening not considered by our model. In the northwest, seasonal amplitudes agree, but modeled mass trends are muted relative to GRACE_JPL. Here, discrepancies are likely controlled by temporal variability in ice discharge and other related processes not represented by our model simulations, i.e., hydrological processes and ice-ocean interaction. In the southeast, GRACE_JPL exhibits larger seasonal amplitude than predicted by the models while simultaneously having more pronounced trends; thus, discrepancies are likely controlled by a combination of missing processes and errors in both the SMB products and ISSM. At the margins, we find evidence of consistent intra-annual variations in regional MB that deviate distinctively from the SMB annual cycle. Ultimately, these monthly-scale variations, likely associated with hydrology or ice-ocean interaction, contribute to steeper negative mass trends observed by GRACE_JPL. Thus, models should consider such processes at relatively high (monthly-to-seasonal) temporal resolutions to achieve accurate estimates of Greenland MB.

  2. Radar image interpretation techniques applied to sea ice geophysical problems

    NASA Technical Reports Server (NTRS)

    Carsey, F. D.

    1983-01-01

    The geophysical science problems in the sea ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the processes which control the interaction of air-sea and ice at the ice margins is discussed. The science problems relate to basic questions of sea ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of interactions between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.

  3. Surface and basal ice shelf mass balance processes of the Southern McMurdo Ice Shelf determined through radar statistical reconnaissance

    NASA Astrophysics Data System (ADS)

    Grima, C.; Koch, I.; Greenbaum, J. S.; Soderlund, K. M.; Blankenship, D. D.; Young, D. A.; Fitzsimons, S.

    2017-12-01

    The McMurdo ice shelves (northern and southern MIS), adjacent to the eponymous station and the Ross Ice Shelf, Antarctica, are known for large gradients in surface snow accumulation and snow/ice impurities. Marine ice accretion and melting are important contributors to MIS's mass balance. Due to erosive winds, the southern MIS (SMIS) shows a locally negative surface mass balance. Thus, marine ice once accreted at the ice shelf base crops out at the surface. However, the exact processes that exert primary control on SMIS mass balance have remained elusive. Radar statistical reconnaissance (RSR) is a recent technique that has been used to characterize the surface properties of the Earth's cryosphere, Mars, and Titan from the stochastic character of energy scattered by the surface. Here, we apply RSR to map the surface density and roughness of the SMIS and extend the technique to derive the basal reflectance and scattering coefficients of the ice-ocean interface. We use an airborne radar survey grid acquired over the SMIS in the 2014-2015 austral summer by the University of Texas Institute for Geophysics with the High Capability Radar Sounder (HiCARS2; 60-MHz center frequency and 15-MHz bandwidth). The RSR-derived snow density values and patterns agree with directly -measured ice shelf surface accumulation rates. We also compare the composition of SMIS ice surface samples to test the ability of RSR to discriminate ices with varying dielectric properties (e.g., marine versus meteoric ice) and hypothesize relationships between the RSR-derived basal reflectance/scattered coefficients and accretion or melting at the ice-ocean interface. This improved knowledge of air-ice and ice-ocean boundaries provides a new perspective on the processes governing SMIS surface and basal mass balance.

  4. The relevance of grain dissection for grain size reduction in polar ice: insights from numerical models and ice core microstructure analysis

    NASA Astrophysics Data System (ADS)

    Steinbach, Florian; Kuiper, Ernst-Jan N.; Eichler, Jan; Bons, Paul D.; Drury, Martyn R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-09-01

    The flow of ice depends on the properties of the aggregate of individual ice crystals, such as grain size or lattice orientation distributions. Therefore, an understanding of the processes controlling ice micro-dynamics is needed to ultimately develop a physically based macroscopic ice flow law. We investigated the relevance of the process of grain dissection as a grain-size-modifying process in natural ice. For that purpose, we performed numerical multi-process microstructure modelling and analysed microstructure and crystallographic orientation maps from natural deep ice-core samples from the North Greenland Eemian Ice Drilling (NEEM) project. Full crystallographic orientations measured by electron backscatter diffraction (EBSD) have been used together with c-axis orientations using an optical technique (Fabric Analyser). Grain dissection is a feature of strain-induced grain boundary migration. During grain dissection, grain boundaries bulge into a neighbouring grain in an area of high dislocation energy and merge with the opposite grain boundary. This splits the high dislocation-energy grain into two parts, effectively decreasing the local grain size. Currently, grain size reduction in ice is thought to be achieved by either the progressive transformation from dislocation walls into new high-angle grain boundaries, called subgrain rotation or polygonisation, or bulging nucleation that is assisted by subgrain rotation. Both our time-resolved numerical modelling and NEEM ice core samples show that grain dissection is a common mechanism during ice deformation and can provide an efficient process to reduce grain sizes and counter-act dynamic grain-growth in addition to polygonisation or bulging nucleation. Thus, our results show that solely strain-induced boundary migration, in absence of subgrain rotation, can reduce grain sizes in polar ice, in particular if strain energy gradients are high. We describe the microstructural characteristics that can be used to identify grain dissection in natural microstructures.

  5. A Mission to Observe Ice in Clouds from Space

    NASA Technical Reports Server (NTRS)

    Ackerman, S.; O'CStarr, D.; Skofronick-Jackson, G.; Evans, F.; Wang, J. R.; Racette, P.; Norris, P.; daSilva, A.; Soden, B.

    2006-01-01

    To date there have been multiple satellite missions to observe and retrieve cloud top properties and the liquid in, and precipitation from, clouds. There are currently a few missions that attempt to measure cloud ice properties as a byproduct of other observations. However, we do not yet quantitatively understand the processes that control the water budget of the upper troposphere where ice is the predominant phase, and how these processes are linked to precipitation processes and the radiative energy budget. The ice in clouds either melts into rain or is detrained, and persists, as cirrus clouds affecting the hydrological and energy cycle, respectively. Fully modeling the Earth's climate and improving weather and climate forecasts requires accurate satellite measurements of various cloud properties at the temporal and spatial scales of cloud processes. The uncertainty in knowledge of these ice characteristics is reflected in the large discrepancies in model simulations of the upper tropospheric water budget. Model simulations are sensitive to the partition of ice between precipitation and outflow processes, i.e., to the parameterization of ice clouds and ice processes. This presentation will describe the Submillimeter-wave InfraRed Ice Cloud Experiment (SIRICE) concept, a satellite mission designed to acquire global Earth radiance measurements in the infrared and submillimeter-wave region (183-874 GHz). If successful, this mission will bridge the measurement gap between microwave sounders and shorter-wavelength infrared and visible sensors. The brightness temperatures at submillimeter-wave frequencies are especially sensitive to cirrus ice particle sizes (because they are comparable to the wavelength). This allows for more accurate ice water path estimates when multiple channels are used to probe into the cloud layers. Further, submillimeter wavelengths offer simplicity in the retrieval algorithms because they do not probe into the liquid and near surface portions of clouds, thus requiring only one term of the radiative transfer equation (ice scattering) to relate brightness temperatures to ice. Scientific justification and the SIRICE approach to measuring ice water path and particle size that span a range encompassing both the hydrologically active and radiatively active components of cloud systems will be presented.

  6. Ice and debris in the fretted terrain, Mars

    NASA Astrophysics Data System (ADS)

    Lucchitta, B. K.

    1984-02-01

    Viking moderate and high resolution images along the northern highland margin have been monoscopically and stereoscopically examined in order to study the development of fretted terrain. Young debris aprons around mesas and debris in tributary channels create typical fretted morphologies identical to ancient fretted morphologies. This suggests that the debris-apron process operating relatively recently also shaped the fretted terrain of the past. The debris aprons were lubricated by interstitial ice derived from ground ice. Abundant collapse features suggest that ground ice existed and may have flowed in places. The fretting process has been active for a long period and may be active today. The location of debris aprons in two latitudinal belts may be controlled by atmospheric conditions that permit ice in the region to remain in the ground below depths of about one meter and temperatures warm enough for ice to flow.

  7. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography

    NASA Astrophysics Data System (ADS)

    Hou, Youmin; Yu, Miao; Shang, Yuhe; Zhou, Peng; Song, Ruyuan; Xu, Xiaonan; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai

    2018-02-01

    Preventing or minimizing ice formation in supercooled water is of prominent importance in many infrastructures, transportation, and cooling systems. The overall phase change heat transfer on icephobic surfaces, in general, is intentionally sacrificed to suppress the nucleation of water and ice. However, in a condensation frosting process, inhibiting freezing without compromising the water condensation has been an unsolved challenge. Here we show that this conflict between anti-icing and efficient condensation cooling can be resolved by utilizing biphilic topography with patterned high-contrast wettability. By creating a varying interfacial thermal barrier underneath the supercooled condensate, the biphilic structures tune the nucleation rates of water and ice in the sequential condensation-to-freezing process. Our experimental and theoretical investigation of condensate freezing dynamics further unravels the correlation between the onset of droplet freezing and its characteristic radius, offering a new insight for controlling the multiphase transitions among vapor, water, and ice in supercooled conditions.

  8. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography.

    PubMed

    Hou, Youmin; Yu, Miao; Shang, Yuhe; Zhou, Peng; Song, Ruyuan; Xu, Xiaonan; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai

    2018-02-16

    Preventing or minimizing ice formation in supercooled water is of prominent importance in many infrastructures, transportation, and cooling systems. The overall phase change heat transfer on icephobic surfaces, in general, is intentionally sacrificed to suppress the nucleation of water and ice. However, in a condensation frosting process, inhibiting freezing without compromising the water condensation has been an unsolved challenge. Here we show that this conflict between anti-icing and efficient condensation cooling can be resolved by utilizing biphilic topography with patterned high-contrast wettability. By creating a varying interfacial thermal barrier underneath the supercooled condensate, the biphilic structures tune the nucleation rates of water and ice in the sequential condensation-to-freezing process. Our experimental and theoretical investigation of condensate freezing dynamics further unravels the correlation between the onset of droplet freezing and its characteristic radius, offering a new insight for controlling the multiphase transitions among vapor, water, and ice in supercooled conditions.

  9. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers

    NASA Astrophysics Data System (ADS)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.

    2016-04-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  10. A Parameter Tuning Scheme of Sea-ice Model Based on Automatic Differentiation Technique

    NASA Astrophysics Data System (ADS)

    Kim, J. G.; Hovland, P. D.

    2001-05-01

    Automatic diferentiation (AD) technique was used to illustrate a new approach for parameter tuning scheme of an uncoupled sea-ice model. Atmospheric forcing field of 1992 obtained from NCEP data was used as enforcing variables in the study. The simulation results were compared with the observed ice movement provided by the International Arctic Buoy Programme (IABP). All of the numerical experiments were based on a widely used dynamic and thermodynamic model for simulating the seasonal sea-ice chnage of the main Arctic ocean. We selected five dynamic and thermodynamic parameters for the tuning process in which the cost function defined by the norm of the difference between observed and simulated ice drift locations was minimized. The selected parameters are the air and ocean drag coefficients, the ice strength constant, the turning angle at ice-air/ocean interface, and the bulk sensible heat transfer coefficient. The drag coefficients were the major parameters to control sea-ice movement and extent. The result of the study shows that more realistic simulations of ice thickness distribution was produced by tuning the simulated ice drift trajectories. In the tuning process, the L-BFCGS-B minimization algorithm of a quasi-Newton method was used. The derivative information required in the minimization iterations was provided by the AD processed Fortran code. Compared with a conventional approach, AD generated derivative code provided fast and robust computations of derivative information.

  11. Sea Ice, Climate and Fram Strait

    NASA Technical Reports Server (NTRS)

    Hunkins, K.

    1984-01-01

    When sea ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. Sea ice also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the ice pack in that area including the interactions between sea, air and ice.

  12. Rate and state dependent processes in sea ice deformation

    NASA Astrophysics Data System (ADS)

    Sammonds, P. R.; Scourfield, S.; Lishman, B.

    2014-12-01

    Realistic models of sea ice processes and properties are needed to assess sea ice thickness, extent and concentration and, when run within GCMs, provide prediction of climate change. The deformation of sea ice is a key control on the Arctic Ocean dynamics. But the deformation of sea ice is dependent not only on the rate of the processes involved but also the state of the sea ice and particular in terms of its evolution with time and temperature. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction to block sliding in ice ridges. The shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Frictional resistance to sliding can vary by more than two orders of magnitude depending on the state of the interface. But this in turn is dependent upon both imposed conditions and sea ice properties such as size distribution of interfacial broken ice, angularity, porosity, salinity, etc. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear from which a rate and state constitutive relation for shear deformation is derived. Finally we apply this to field measurement of sea ice friction made during experiments in the Barents Sea to assess the other environmental factors, the state terms, that need to be modelled in order to up-scale to Arctic Ocean-scale dynamics.

  13. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Person, Mark; McIntosh, Jennifer; Bense, Victor; Remenda, V. H.

    2007-09-01

    While the geomorphic consequences of Pleistocene megafloods have been known for some time, it has been only in the past 2 decades that hydrogeologists and glaciologists alike have begun to appreciate the important impact that ice sheet-aquifer interactions have had in controlling subsurface flow patterns, recharge rates, and the distribution of fresh water in confined aquifer systems across North America. In this paper, we document the numerous lines of geochemical, isotopic, and geomechanical evidence of ice sheet hydrogeology across North America. We also review the mechanical, thermal, and hydrologic processes that control subsurface fluid migration beneath ice sheets. Finite element models of subsurface fluid flow, permafrost formation, and ice sheet loading are presented to investigate the coupled nature of transport processes during glaciation/deglaciation. These indicate that recharge rates as high as 10 times modern values occurred as the Laurentide Ice Sheet overran the margins of sedimentary basins. The effects of ice sheet loading and permafrost formation result in complex transient flow patterns within aquifers and confining units alike. Using geochemical and environmental isotopic data, we estimate that the volume of glacial meltwater emplaced at the margins of sedimentary basins overrun by the Laurentide Ice Sheet totals about 3.7 × 104 km3, which is about 0.2% of the volume of the Laurentide Ice Sheet. Subglacial infiltration estimates based on continental-scale hydrologic models are even higher (5-10% of meltwater generated). These studies in sum call into question the widely held notion that groundwater flow patterns within confined aquifer systems are controlled primarily by the water table configuration during the Pleistocene. Rather, groundwater flow patterns were likely much more complex and transient in nature than has previously been thought. Because Pleistocene recharge rates are believed to be highly variable, these studies have profound implications for water resource managers charged with determining sustainable pumping rates from confined aquifers that host ice sheet meltwater.

  14. Local processes and regional patterns - Interpreting a multi-decadal altimetry record of Greenland Ice Sheet changes

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; van den Broeke, M. R.; Kuipers Munneke, P.; van der Veen, C. J.; Khan, S. A.; Porter, D. F.

    2016-12-01

    This study presents a new, comprehensive reconstruction of Greenland Ice Sheet elevation changes, generated using the Surface Elevation And Change detection (SERAC) approach. 35-year long elevation-change time series (1980-2015) were obtained at more than 150,000 locations from observations acquired by NASA's airborne and spaceborne laser altimeters (ATM, LVIS, ICESat), PROMICE laser altimetry data (2007-2011) and a DEM covering the ice sheet margin derived from stereo aerial photographs (1970s-80s). After removing the effect of Glacial Isostatic Adjustment (GIA) and the elastic crustal response to changes in ice loading, the time series were partitioned into changes due to surface processes and ice dynamics and then converted into mass change histories. Using gridded products, we examined ice sheet elevation, and mass change patterns, and compared them with other estimates at different scales from individual outlet glaciers through large drainage basins, on to the entire ice sheet. Both the SERAC time series and the grids derived from these time series revealed significant spatial and temporal variations of dynamic mass loss and widespread intermittent thinning, indicating the complexity of ice sheet response to climate forcing. To investigate the regional and local controls of ice dynamics, we examined thickness change time series near outlet glacier grounding lines. Changes on most outlet glaciers were consistent with one or more episodes of dynamic thinning that propagates upstream from the glacier terminus. The spatial pattern of the onset, duration, and termination of these dynamic thinning events suggest a regional control, such as warming ocean and air temperatures. However, the intricate spatiotemporal pattern of dynamic thickness change suggests that, regardless of the forcing responsible for initial glacier acceleration and thinning, the response of individual glaciers is modulated by local conditions. We use statistical methods, such as principal component analysis and multivariate regression to analyze the dynamic ice-thickness change time series derived by SERAC and to investigate the primary forcings and controls on outlet glacier changes.

  15. Observing Ice in Clouds from Space

    NASA Technical Reports Server (NTRS)

    Ackerman, S.; Star, D. O'C.; Skofronick-Jackson, G.; Evans, F.; Wang, J. R.; Norris, P.; daSilva, A.; Soden, B.

    2006-01-01

    There are many satellite observations of cloud top properties and the liquid and rain content of clouds, however, we do not yet quantitatively understand the processes that control the water budget of the upper troposphere where ice is the predominant phase, and how these processes are linked to precipitation processes and the radiative energy budget. The ice in clouds in the upper troposphere either melts into rain or is detrained, and persists, as cirrus clouds affecting the hydrological and energy cycle, respectively. Fully modeling the Earth's climate and improving weather and climate forecasts requires accurate satellite measurements of various cloud properties at the temporal and spatial scales of cloud processes. These properties include cloud horizontal and vertical structure, cloud water content and some measure of particle sizes and shapes. The uncertainty in knowledge of these ice characteristics is reflected in the large discrepancies in model simulations of the upper tropospheric water budget. Model simulations are sensitive to the partition of ice between precipitation and outflow processes, i.e., to the parameterization of ice clouds and ice processes. One barrier to achieving accurate global ice cloud properties is the lack of adequate observations at millimeter and submillimeter wavelengths (183-874 GHz). Recent advances in instrumentation have allowed for the development and implementation of an airborne submillimeter-wave radiometer. The brightness temperatures at these frequencies are especially sensitive to cirrus ice particle sizes (because they are comparable to the wavelength). This allows for more accurate ice water path estimates when multiple channels are used to probe into the cloud layers. Further, submillimeter wavelengths offer simplicity in the retrieval algorithms because they do not probe into the liquid and near surface portions of clouds, thus requiring only one term of the radiative transfer equation (ice scattering) to relate brightness temperatures to ice. The next step is a satellite mission designed to acquire global Earth radiance measurements in the submillimeter-wave region, thus bridging the measurement gap between microwave sounders and shorter-wavelength infrared and visible sensors. This presentation provides scientific justification and an approach to measuring ice water path and particle size from a satellite platform that spans a range encompassing both the hydrologically active and radiatively active components of cloud systems.

  16. Radar Imaging of Europa's Subsurface Properties and Processes: The View from Earth

    NASA Astrophysics Data System (ADS)

    Blankenship, D. D.; Moore, W. B.; Young, D. A.; Peters, M. E.

    2007-12-01

    A primary objective of future Europa studies will be to characterize the distribution of shallow subsurface water as well as to identify any ice-ocean interface. Another objective will be to understand the formation of surface and subsurface features associated with interchange processes between any ocean and the surface. Achieving these objectives will require either direct or inferred knowledge of the position of any ice/water interfaces as well as any brine or layer pockets. We will review the hypothesized processes that control the thermal, compositional and structural (TCS) properties, and therefore the dielectric character, of the subsurface of Europa's icy shell. Our approach will be to extract the TCS properties for various subsurface processes thought to control the formation of major surface (e.g., ridges/bands, lenticulae, chaos, cratering...) and subsurface (e.g., rigid shell eutectics, diapirs, accretionary lenses ...) features on Europa. We will then assess the spectrum of analog processes and TCS properties represented by Earth's cryosphere including both Arctic and Antarctic ice sheets, ice shelves and valley glaciers. There are few complete analogs over the full TCS space but, because of the wide range of ice thickness, impurities and strain rates for Earth's cryosphere, there are many more analogs than many Earth and planetary researchers might imagine for significant portions of this space (e.g., bottom crevasses, marine ice shelf/subglacial lake accretion, surging polythermal glaciers...).Our ultimate objective is to use these Earth analog studies to define the radar imaging approach for Europa's subsurface that will be most useful for supporting/refuting the hypotheses for the formation of major surface/subsurface features as well as for "pure" exploration of Europa's icy shell and its interface with the underlying ocean.

  17. Understanding Recent Mass Balance Changes of the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    vanderVeen, Cornelius

    2003-01-01

    The ultimate goal of this project is to better understand the current transfer of mass between the Greenland Ice Sheet, the world's oceans and the atmosphere, and to identify processes controlling the rate of this transfer, to be able to predict with greater confidence future contributions to global sea level rise. During the first year of this project, we focused on establishing longer-term records of change of selected outlet glaciers, reevaluation of mass input to the ice sheet and analysis of climate records derived from ice cores, and modeling meltwater production and runoff from the margins of the ice sheet.

  18. Synoptic Control of Contrail Cirrus Life Cycles and Their Modification Due to Reduced Soot Number Emissions

    NASA Astrophysics Data System (ADS)

    Bier, A.; Burkhardt, U.; Bock, L.

    2017-11-01

    The atmospheric state, aircraft emissions, and engine properties determine formation and initial properties of contrails. The synoptic situation controls microphysical and dynamical processes and causes a wide variability of contrail cirrus life cycles. A reduction of soot particle number emissions, resulting, for example, from the use of alternative fuels, strongly impacts initial ice crystal numbers and microphysical process rates of contrail cirrus. We use the European Centre/Hamburg (ECHAM) climate model version 5 including a contrail cirrus modul, studying process rates, properties, and life cycles of contrail cirrus clusters within different synoptic situations. The impact of reduced soot number emissions is approximated by a reduction in the initial ice crystal number, exemplarily studied for 80%. Contrail cirrus microphysical and macrophysical properties can depend much more strongly on the synoptic situation than on the initial ice crystal number. They can attain a large cover, optical depth, and ice water content in long-lived and large-scale ice-supersaturated areas, making them particularly climate-relevant. In those synoptic situations, the accumulated ice crystal loss due to sedimentation is increased by around 15% and the volume of contrail cirrus, exceeding an optical depth of 0.02, and their short-wave radiative impact are strongly decreased due to reduced soot emissions. These reductions are of little consequence in short-lived and small-scale ice-supersaturated areas, where contrail cirrus stay optically very thin and attain a low cover. The synoptic situations in which long-lived and climate-relevant contrail cirrus clusters can be found over the eastern U.S. occur in around 25% of cases.

  19. Carbon Dioxide Transfer Through Sea Ice: Modelling Flux in Brine Channels

    NASA Astrophysics Data System (ADS)

    Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.

    2010-12-01

    For many years sea ice was thought to act as a barrier to the flux of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while sea ice may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year ice), it may also be highly permeable (e.g. thin, first year ice) with some studies observing significant fluxes of CO2. Sea ice covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of sea ice and direction of flux related to sea ice temperature and the presence of brine channels in the ice, as well as seasonal processes such as whether the ice is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the sea ice and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the sea ice is thought to enhance this process. Micro-organisms present within the sea ice will also contribute to the CO2 flux dynamics. Recent evidence of decreasing sea ice extent and the associated change from a multi-year ice to first-year ice dominated system suggest the potential for increased CO2 flux through regions of thinner, more porous sea ice. A full understanding of the processes and feedbacks controlling the flux in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the air-sea CO2 flux in sea ice covered regions is not currently included in global climate models. Incorporating this carbon flux system into Earth System models requires the development of a well-parameterised sea ice-air flux model. In our work we use the Los Alamos sea ice model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC processes and ice algae production to the model. Initial studies with this model on quantification of CO2 flux for different sea ice types (first year, multi-year) will be presented. Comparisons with available in-situ/laboratory data will also be discussed.

  20. Occurrence and Forms of Water and Ice on the Earth and Beyond, and the Origin(s) of Life

    NASA Technical Reports Server (NTRS)

    Blake, David F.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    The natural history of the biogenic elements (H,C,O,N) from their first association within cold molecular clouds to their delivery to the Earth during the late bombardment of the inner solar system, is intimately linked to water ice. The earliest organic compounds are formed in cold interstellar molecular clouds as a result of UV and thermal processing of sub-micrometer ice grains which contain trapped carbon and nitrogen molecules. Structural changes in the water ice host underlie and fundamentally control important macroscopic phenomena such as the outgassing of volatiles, the rates of chemical reactions, and processing and retention of organic compounds. Prebiotic organic material was in all likelihood delivered the early Earth in a pristine state as a consequence of its sequestration within a protective water ice host.

  1. Remote Sensing of Lake Ice Phenology in Alaska

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Pavelsky, T.

    2017-12-01

    Lake ice phenology (e.g. ice break-up and freeze-up timing) in Alaska is potentially sensitive to climate change. However, there are few current lake ice records in this region, which hinders the comprehensive understanding of interactions between climate change and lake processes. To provide a lake ice database with over a comparatively long time period (2000 - 2017) and large spatial coverage (4000+ lakes) in Alaska, we have developed an algorithm to detect the timing of lake ice using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. This approach generally consists of three major steps. First, we use a cloud mask (MOD09GA) to filter out satellite images with heavy cloud contamination. Second, daily MODIS reflectance values (MOD09GQ) of lake surface are used to extract ice pixels from water pixels. The ice status of lakes can be further identified based on the fraction of ice pixels. Third, to improve the accuracy of ice phenology detection, we execute post-processing quality control to reduce false ice events caused by outliers. We validate the proposed algorithm over six lakes by comparing with Landsat-based reference data. Validation results indicate a high correlation between the MODIS results and reference data, with normalized root mean square error (NRMSE) ranging from 1.7% to 4.6%. The time series of this lake ice product is then examined to analyze the spatial and temporal patterns of lake ice phenology.

  2. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Gobat, J. I.; Perry, M. J.; Freitag, L. E.; Webster, S.

    2016-12-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer and Atlantic waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, how the balance of processes shift as a function of ice fraction and distance from open water, and how these processes impact sea ice evolution, a network of autonomous platforms sampled the atmosphere-ice-ocean system in the Beaufort, beginning in spring, well before the start of melt, and ending with the autumn freeze-up. Four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Gliders penetrated up to 200 km into the ice pack, under complete ice cover for up to 10 consecutive days. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse late in the season as they progress through the MIZ and into open water. Stratification just above the Pacific Summer Water rapidly weakens near the ice edge and temperature variance increases, likely due to mixing or energetic vertical exchange associated with strong lateral gradients at the MIZ. This presentation will discuss the evolution of the Arctic upper ocean over the summer to the start of freeze up and the relationship of its variability to sea ice extent and atmospheric forcing.

  3. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, Craig; Rainville, Luc; Perry, Mary Jane

    2016-04-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kgm-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  4. Upper Ocean Evolution Across the Beaufort Sea Marginal Ice Zone from Autonomous Gliders

    NASA Astrophysics Data System (ADS)

    Lee, C.; Rainville, L.; Perry, M. J.

    2016-02-01

    The observed reduction of Arctic summertime sea ice extent and expansion of the marginal ice zone (MIZ) have profound impacts on the balance of processes controlling sea ice evolution, including the introduction of several positive feedback mechanisms that may act to accelerate melting. Examples of such feedbacks include increased upper ocean warming though absorption of solar radiation, elevated internal wave energy and mixing that may entrain heat stored in subsurface watermasses (e.g., the relatively warm Pacific Summer (PSW) and Atlantic (AW) waters), and elevated surface wave energy that acts to deform and fracture sea ice. Spatial and temporal variability in ice properties and open water fraction impact these processes. To investigate how upper ocean structure varies with changing ice cover, and how the balance of processes shift as a function of ice fraction and distance from open water, four long-endurance autonomous Seagliders occupied sections that extended from open water, through the marginal ice zone, deep into the pack during summer 2014 in the Beaufort Sea. Sections reveal strong fronts where cold, ice-covered waters meet waters that have been exposed to solar warming, and O(10 km) scale eddies near the ice edge. In the pack, Pacific Summer Water and a deep chlorophyll maximum form distinct layers at roughly 60 m and 80 m, respectively, which become increasingly diffuse as they progress through the MIZ and into open water. The isopynal layer between 1023 and 1024 kg m-3, just above the PSW, consistently thickens near the ice edge, likely due to mixing or energetic vertical exchange associated with strong lateral gradients in this region. This presentation will discuss the upper ocean variability, its relationship to sea ice extent, and evolution over the summer to the start of freeze up.

  5. Triple Isotope Water Measurements of Lake Untersee Ice using Off-Axis ICOS

    NASA Astrophysics Data System (ADS)

    Berman, E. S.; Huang, Y. W.; Andersen, D. T.; Gupta, M.; McKay, C. P.

    2015-12-01

    Lake Untersee (71.348°S, 13.458°E) is the largest surface freshwater lake in the interior of the Gruber Mountains of central Queen Maud Land in East Antarctica. The lake is permanently covered with ice, is partly bounded by glacier ice and has a mean annual air temperature of -10°C. In contrast to other Antarctic lakes the dominating physical process controlling ice-cover dynamics is low summer temperatures and high wind speeds resulting in sublimation rather than melting as the main mass-loss process. The ice-cover of the lake is composed of lake-water ice formed during freeze-up and rafted glacial ice derived from the Anuchin Glacier. The mix of these two fractions impacts the energy balance of the lake, which directly affects ice-cover thickness. Ice-cover is important if one is to understand the physical, chemical, and biological linkages within these unique, physically driven ecosystems. We have analyzed δ2H, δ18O, and δ17O from samples of lake and glacier ice collected at Lake Untersee in Dec 2014. Using these data we seek to answer two specific questions: Are we able to determine the origin and history of the lake ice, discriminating between rafted glacial ice and lake water? Can isotopic gradients in the surface ice indicate the ablation (sublimation) rate of the surface ice? The triple isotope water analyzer developed by Los Gatos Research (LGR 912-0032) uses LGR's patented Off-Axis ICOS (Integrated Cavity Output Spectroscopy) technology and incorporates proprietary internal thermal control for high sensitivity and optimal instrument stability. This analyzer measures δ2H, δ18O, and δ17O from water, as well as the calculated d-excess and 17O-excess. The laboratory precision in high performance mode for both δ17O and δ18O is 0.03 ‰, and for δ2H is 0.2 ‰. Methodology and isotope data from Lake Untersee samples are presented. Figure: Ice samples were collected across Lake Untersee from both glacial and lake ice regions for this study.

  6. Polycrystalline methane hydrate: Synthesis from superheated ice, and low-temperature mechanical properties

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1998-01-01

    We describe a new and efficient technique to grow aggregates of pure methane hydrate in quantities suitable for physical and material properties testing. Test specimens were grown under static conditions by combining cold, pressurized CH4 gas with granulated H2O ice, and then warming the reactants to promote the reaction CH4(g) + 6H2O(s???1) ??? CH4??6H2O (methane hydrate). Hydrate formation evidently occurs at the nascent ice/liquid water interface on ice grain surfaces, and complete reaction was achieved by warming the system above the ice melting point and up to 290 K, at 25-30 MPa, for approximately 8 h. The resulting material is pure, cohesive, polycrystalline methane hydrate with controlled grain size and random orientation. Synthesis conditions placed the H2O ice well above its melting temperature while reaction progressed, yet samples and run records showed no evidence for bulk melting of the unreacted portions of ice grains. Control experiments using Ne, a non-hydrate-forming gas, showed that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting are easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably to temperatures well above its ordinary melting point while reacting to form hydrate. Direct observations of the hydrate growth process in a small, high-pressure optical cell verified these conclusions and revealed additional details of the hydrate growth process. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T = 140-200 K, Pc = 50-100 MPa, and ?? = 10-4 10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to an unusually high degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; X-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.

  7. Magnesium enriched lactic acid bacteria as a carrier for probiotic ice cream production.

    PubMed

    Góral, Małgorzata; Kozłowicz, Katarzyna; Pankiewicz, Urszula; Góral, Dariusz

    2018-01-15

    The following strains of bacteria: Lactobacillus rhamnosus B 442, Lactobacillus rhamnosus 1937, and Lactococcus lactis JBB 500 were enriched with magnesium ions using Pulsed Electric Fields. The potentially probiotic strains were added to the mixture in the DVS process and applied for the production of ice cream which were then analyzed physicochemically and microbiologically. Results showed that addition of bacteria enriched with magnesium did not change chemical parameters of the ice cream and did not affect the freezing process, meltability, and hardness. No significant differences were noted in colour of the samples. The ice cream with addition of bacteria enriched with magnesium had higher adhesiveness. The results of viability determination showed that the total number of microorganisms in the ice cream was higher than in the starter cultures. Viability of the bacteria enriched with magnesium in the obtained ice cream was lower in comparison to the control samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Road icing forecasting and detecting system

    NASA Astrophysics Data System (ADS)

    Xu, Hongke; Zheng, Jinnan; Li, Peiqi; Wang, Qiucai

    2017-05-01

    Regard for the facts that the low accuracy and low real-time of the artificial observation to determine the road icing condition, and it is difficult to forecast icing situation, according to the main factors influencing the road-icing, and the electrical characteristics reflected by the pavement ice layer, this paper presents an innovative system, that is, ice-forecasting of the highway's dangerous section. The system bases on road surface water salinity measurements and pavement temperature measurement to calculate the freezing point of water and temperature change trend, and then predicts the occurrence time of road icing; using capacitance measurements to verdict the road surface is frozen or not; This paper expounds the method of using single chip microcomputer as the core of the control system and described the business process of the system.

  9. Oxidation and textural characteristics of butter and ice cream with modified fatty acid profiles.

    PubMed

    Gonzalez, S; Duncan, S E; O'Keefe, S F; Sumner, S S; Herbein, J H

    2003-01-01

    The primary objective of this study was to evaluate oxidation and firmness of butter and ice cream made with modified milkfat containing enhanced amounts of linoleic acid or oleic acid. The influence of the fatty acid profile of the HO milkfat relating to product properties as compared with the influence the fatty acid profile of the HL milkfat was the main focus of the research. Altering the degree of unsaturation in milkfat may affect melting characteristics and oxidation rates, leading to quality issues in dairy products. Three milkfat compositions (high-oleic, high-linoleic, and control) were obtained by modifying the diets of Holstein cows. Ice cream and butter were processed from milkfat obtained from cows in each dietary group. Butter and ice cream samples were analyzed to determine fatty acid profile and firmness. High-oleic milkfat resulted in a softer butter. Solid fat index of high-oleic and high-linoleic milkfat was lower than the control. Control ice cream mix had higher viscosity compared with high-oleic and high-linoleic, but firmness of all ice creams was similar when measured between -17 and -13 degrees C. Nutritional and textural properties of butter and ice cream can be improved by modifying the diets of cows.

  10. Radiative-dynamical and microphysical processes of thin cirrus clouds controlling humidity of air entering the stratosphere

    NASA Astrophysics Data System (ADS)

    Dinh, Tra; Fueglistaler, Stephan

    2016-04-01

    Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.

  11. Grounding Zones, Subglacial Lakes, and Dynamics of an Antarctic Ice Stream: The WISSARD Glaciological Experiment

    NASA Astrophysics Data System (ADS)

    Tulaczyk, S. M.; Schwartz, S. Y.; Fisher, A. T.; Powell, R. D.; Fricker, H. A.; Anandakrishnan, S.; Horgan, H. J.; Scherer, R. P.; Walter, J. I.; Siegfried, M. R.; Mikucki, J.; Christianson, K.; Beem, L.; Mankoff, K. D.; Carter, S. P.; Hodson, T. O.; Marsh, O.; Barcheck, C. G.; Branecky, C.; Neuhaus, S.; Jacobel, R. W.

    2015-12-01

    Interactions of West Antarctic ice streams with meltwater at their beds, and with seawater at their grounding lines, are widely considered to be the primary drivers of ice stream flow variability on different timescales. Understanding of processes controlling ice flow variability is needed to build quantitative models of the Antarctic Ice Sheet that can be used to help predict its future behavior and to reconstruct its past evolution. The ice plain of Whillans Ice Stream provides a natural glaciological laboratory for investigations of Antarctic ice flow dynamics because of its highly variable flow rate modulated by tidal processes and fill-drain cycles of subglacial lakes. Moreover, this part of Antarctica has one of the longest time series of glaciological observations, which can be used to put recently acquired datasets in a multi-decadal context. Since 2007 Whillans Ice Stream has been the focus of a regional glaciological experiment, which included surface GPS and passive-source seismic sensors, radar and seismic imaging of subglacial properties, as well as deep borehole geophysical sensors. This experiment was possible thanks to the NSF-funded multidisciplinary WISSARD project (Whillans Ice Stream Subglacial Access Research Drilling). Here we will review the datasets collected during the WISSARD glaciological experiment and report on selected results pertaining to interactions of this ice stream with water at its bed and its grounding line.

  12. Understanding ice sheet evolution to avoid massive sea level rise instead of experiencing it (Louis Agassiz Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Rignot, Eric

    2017-04-01

    With unabated climate warming, massive sea level rise from the melting of ice sheets in Greenland and Antarctica looms at the horizon. This is unfortunately an experiment that we can afford to run only once. Satellite and airborne sensors have significantly helped reveal the magnitude of the mass balance of the ice sheets, where the changes take place, when they started, how they change with time and the nature of the physical processes controlling them. These observations have constrained the maturation of numerical modeling techniques for projecting changes in these ice sheets, including the coupling of ocean and ice sheet models, yet significant uncertainties remain to make these projections directly policy relevant and many challenges remain. I will review the state of balance of the ice sheets as we know it today and the fundamental processes that will drive fast ice sheet retreat and sea level change: ice-ocean interaction and iceberg calving. Ice-ocean interaction are dominated by the wind-forced intrusion of warm, salty, subsurface waters toward the ice sheet periphery to melt ice from below at rates orders of magnitude greater than at the surface. In Greenland, these rates are difficult to observe, but model simulations indicate rates of ice melt along vertical calving faces of meters per day, along with undercutting of the ice faces. Constraining the temperature of the ocean waters from high resolution models and observations, however, remains a significant challenge. I will describe the progress we have made in addressing one major issue which is the mapping of fjord bathymetry around Greenland to define the pathways for warm waters. In Antarctica, the rates of melt are measured from remote sensing data but averaged over long periods, so that we are dependent on in-situ observations to understand the interaction of ocean waters with ice within the sub-ice-shelf cavities. I will describe progress made in mapping the bathymetry of the ice shelves and how the results have impacted our understanding of these interactions. In terms of calving, there is a range of processes acting upon the glacier and ice shelf faces, proceeding from the surface and mostly from below, that are still not sufficiently well explored. I will discuss processes elucidated in Greenland (undercutting and rotation of ice blocks near floatation) and those that are not well known in Antarctica.

  13. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that the maximum concentration observed during breakup was more than an order of magnitude larger than the typical values observed under stable ice cover (>300 mg/L, versus 5 - 15 mg/L). This result is consistent with the few historic studies of river ice breakup in which water samples were collected. This study shows that acoustic profilers can be used to monitor suspended sediment fluxes under ice, ultimately reducing the uncertainty in sediment budget computations for ice-affected rivers.

  14. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Stephen J.; Kathmann, Shawn M.; Slater, B.

    2015-05-14

    Ice formation is one of the most common and important processes on earth and almost always occurs at the surface of a material. A basic understanding of how the physicochemical properties of a material’s surface affect its ability to form ice has remained elusive. Here, we use molecular dynamics simulations to directly probe heterogeneous ice nucleation at a hexagonal surface of a nanoparticle of varying hydrophilicity. Surprisingly, we find that structurally identical surfaces can both inhibit and promote ice formation and analogous to a chemical catalyst, it is found that an optimal interaction between the surface and the water existsmore » for promoting ice nucleation.We use our microscopic understanding of the mechanism to design a modified surface in silico with enhanced ice nucleating ability. C 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.« less

  15. Bioprospecting for microbial products that affect ice crystal formation and growth.

    PubMed

    Christner, Brent C

    2010-01-01

    At low temperatures, some organisms produce proteins that affect ice nucleation, ice crystal structure, and/or the process of recrystallization. Based on their ice-interacting properties, these proteins provide an advantage to species that commonly experience the phase change from water to ice or rarely experience temperatures above the melting point. Substances that bind, inhibit or enhance, and control the size, shape, and growth of ice crystals could offer new possibilities for a number of agricultural, biomedical, and industrial applications. Since their discovery more than 40 years ago, ice nucleating and structuring proteins have been used in cryopreservation, frozen food preparation, transgenic crops, and even weather modification. Ice-interacting proteins have demonstrated commercial value in industrial applications; however, the full biotechnological potential of these products has yet to be fully realized. The Earth's cold biosphere contains an almost endless diversity of microorganisms to bioprospect for microbial compounds with novel ice-interacting properties. Microorganisms are the most appropriate biochemical factories to cost effectively produce ice nucleating and structuring proteins on large commercial scales.

  16. The impact of short-term heat storage on the ice-albedo feedback loop

    NASA Astrophysics Data System (ADS)

    Polashenski, C.; Wright, N.; Perovich, D. K.; Song, A.; Deeb, E. J.

    2016-12-01

    The partitioning of solar energy in the ice-ocean-atmosphere environment is a powerful control over Arctic sea ice mass balance. Ongoing transitions of the sea ice toward a younger, thinner state are enhancing absorption of solar energy and contributing to further declines in sea ice in a classic ice-albedo feedback. Here we investigate the solar energy balance over shorter timescales. In particular, we are concerned with short term delays in the transfer of absorbed solar energy to the ice caused by heat storage in the upper ocean. By delaying the realization of ice melt, and hence albedo decline, heat storage processes effectively retard the intra-season ice-albedo feedback. We seek to quantify the impact and variability of such intra-season storage delays on full season energy absorption. We use in-situ data collected from Arctic Observing Network (AON) sea ice sites, synthesized with the results of imagery processed from high resolution optical satellites, and basin-scale remote sensing products to approach the topic. AON buoys are used to monitor the storage and flux of heat, while satellite imagery allows us to quantify the evolution of surrounding ice conditions and predict the aggregate scale solar absorption. We use several test sites as illustrative cases and demonstrate that temporary heat storage can have substantial impacts on seasonal energy absorption and ice loss. A companion to this work is presented by N. Wright at this meeting.

  17. Modeling and Grid Generation of Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

    2007-01-01

    SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishchenko, L; Khan, M; Aizenberg, J

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescencemore » of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishchenko, Lidiya; Khan, M.; Aizenberg, Joanna

    Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescencemore » of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Furthermore, control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. The combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.« less

  20. Flexural-response of the McMurdo Ice Shelf to surface lake filling and drainage

    NASA Astrophysics Data System (ADS)

    Banwell, A. F.; MacAyeal, D. R.; Willis, I.; Macdonald, G. J.; Goodsell, B.

    2017-12-01

    Antarctic ice-shelf instability and break-up, as exhibited by the Larsen B ice shelf in 2002, remains one of the most difficult glaciological processes to observe directly. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have previously been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain. During the austral summer of 2016/2017, we monitored the filling and draining of four surface lakes on the McMurdo Ice Shelf, Antarctica, and the effect of these processes on ice-shelf flexure. Water-depth data from pressure sensors reveal that two lakes filled to >2 m in depth and subsequently drained over multiple week timescales, which had a simultaneous effect on vertical ice deflection in the area. Differential GPS data from 12 receivers over three months show that vertical deflection varies as a function of distance from the maximum load change (i.e. at the lake centre). Using remote sensing techniques applied to both Landsat 8 and Worldview imagery, we also quantify the meltwater volume in these two lakes through the melt season, which, together with the vertical deflection data, are used to constrain key flexural parameter values in numerical models of ice-shelf flexure.

  1. Micromechanics of sea ice gouge in shear zones

    NASA Astrophysics Data System (ADS)

    Sammonds, Peter; Scourfield, Sally; Lishman, Ben

    2015-04-01

    The deformation of sea ice is a key control on the Arctic Ocean dynamics. Shear displacement on all scales is an important deformation process in the sea cover. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe interaction and block sliding in ice ridges through to the micro-scale mechanics. Shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Recent observations made during fieldwork in the Barents Sea show that shear produces a gouge similar to a fault gouge in a shear zone in the crust. A range of sizes of gouge are exhibited. The consolidation of these fragments has a profound influence on the shear strength and the rate of the processes involved. We review experimental results in sea ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating sea ice floe motion and interaction and compare these with laboratory experiments on ice friction done in direct shear, and upscale to field measurement of sea ice friction and gouge deformation made during experiments off Svalbard. We find that consolidation, fragmentation and bridging play important roles in the overall dynamics and fit the model of Sammis and Ben-Zion, developed for understanding the micro-mechanics of rock fault gouge, to the sea ice problem.

  2. Basal Freeze-on: An Active Component of Hydrology from the Ice Divide to the Margin

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Tinto, K. J.; Abdi, A.; Creyts, T. T.; Wolovick, M.; Das, I.; Ferraccioli, F.; Csatho, B. M.

    2012-12-01

    Subglacial hydrology is considered a key control of ice sheet dynamics. Here we show that basal freeze-on is a process that can terminate basal hydrologic networks both in the interior of East Antarctica and at the margins of the Greenland Ice Sheet. Basal freeze-on modifies the ice thickness, ice structure, and ice rheology and therefore must be considered in developing accurate understanding of how hydrology interacts with ice dynamics. In East Antarctica, the freeze-on process follows well-defined hydrologic networks within Gamburtsev Mountain valleys. The steep mountain topography strongly controls the routing of the subglacial water. Ice surface slope drives the water up the mountain valleys and freeze-on occurs at the valley heads. Freeze-on ice is characterized by distinct basal radar reflectors that emerge from the hydrologic network. Evidence that these spatially coherent reflectors demark accreted ice is the upward deflection of the overlying internal layers accompanied by thickening of base of the ice sheet. Individual accretion bodies can be 25 km wide across flow, 100 km along flow with average thicknesses of ~500m although the maximum thickness is 1100m. Regional accumulation rates near the accretion sites average 4cm/yr with low ice velocity (1.5 m/yr). The volume of the ice enclosed by the accretion ice reflectors is 45-1064 km3. The accretion occurs beneath 2200-3000m thick ice and has been persistent for at least 50,000yr. Other basal reflectors in northern Greenland appear in radar from NASA's Icebridge mission and CRESIS. To identify freeze-on ice, we use specific criteria: reflectors must originate from the bed, must be spatially continuous from line to line and the meteoric stratigraphy is deflected upward. The absence of coincident gravity anomalies indicates these reflectors define distinct packages of ice rather than frozen sediment or off-nadir subglacial topography. In the Petermann Glacier Catchment, one of the largest in northern Greenland, we have identified 14 distinct basal ice packages over a wide region. The accumulation rate (~17 cm/yr) and ice velocity (~5-200m/yr) are higher than East Antarctica. These accretion bodies are 10-50 km wide, up to 940m thick and can be traced up to 140 km. The volume of the ice enclosed by the accretion ice reflector units is ~70-300 km3. We estimate that the freeze-on process in Petermann has been active for at least 6,000yr. Water has been mapped beneath much of the Greenland ice sheet and adjacent to the inland freeze-on site flat bright reflectors are interpreted as basal water. The onset of fast flow in Petermann Glacier is associated with the development of the thickest unit of freeze-on ice. Other areas of Greenland also have basal freeze-on ice. North of Jakobshavn Isbrae where the ice sheet is ~1000 m thick, evidence exists for a nearly 10 km wide, 200 m thick unit of basal ice in airborne radar. Located close to the site where basal freeze-on outcrops at the ice sheet margin at Pakitsoq, this unit may be the result of freeze-on of water draining from a supraglacial lake. Basal freeze-on is a critical component of subglacial hydrology. The evidence for large scale freeze-on East Antarctica and many areas of Greenland indicates widespread modification of the base of the ice sheet by basal hydrology.

  3. Formation processes of sea ice floe size distribution in the interior pack and its relationship to the marginal ice zone off East Antarctica

    NASA Astrophysics Data System (ADS)

    Toyota, Takenobu; Kohout, Alison; Fraser, Alexander D.

    2016-09-01

    To understand the behavior of the Seasonal Ice Zone (SIZ), which is composed of sea-ice floes of various sizes, knowledge of the floe size distribution (FSD) is important. In particular, FSD in the Marginal Ice Zone (MIZ), controlled by wave-ice interaction, plays an important role in determining the retreating rates of sea-ice extent on a global scale because the cumulative perimeter of floes enhances melting. To improve the understanding of wave-ice interaction and subsequent effects on FSD in the MIZ, FSD measurements were conducted off East Antarctica during the second Sea Ice Physics and Ecosystems eXperiment (SIPEX-2) in late winter 2012. Since logistical reasons limited helicopter operations to two interior ice regions, FSD in the interior ice region was determined using a combination of heli-photos and MODIS satellite visible images. The possible effect of wave-ice interaction in the MIZ was examined by comparison with past results obtained in the same MIZ, with our analysis showing: (1) FSD in the interior ice region is basically scale invariant for both small- (<100 m) and large- (>1 km) scale regimes; (2) although fractal dimensions are quite different between these two regimes, they are both rather close to that in the MIZ; and (3) for floes <100 m in diameter, a regime shift which appeared at 20-40 m in the MIZ is absent. These results indicate that one role of wave-ice interaction is to modulate the FSD that already exists in the interior ice region, rather than directly determine it. The possibilities of floe-floe collisions and storm-induced lead formation are considered as possible formation processes of FSD in the interior pack.

  4. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    USGS Publications Warehouse

    Mark Torre Jorgenson,; Mikhail Kanevskiy,; Yuri Shur,; Natalia Moskalenko,; Dana Brown,; Wickland, Kimberly P.; Striegl, Robert G.; Koch, Joshua C.

    2015-01-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  5. Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization

    NASA Astrophysics Data System (ADS)

    Jorgenson, M. T.; Kanevskiy, M.; Shur, Y.; Moskalenko, N.; Brown, D. R. N.; Wickland, K.; Striegl, R.; Koch, J.

    2015-11-01

    Ground ice is abundant in the upper permafrost throughout the Arctic and fundamentally affects terrain responses to climate warming. Ice wedges, which form near the surface and are the dominant type of massive ice in the Arctic, are particularly vulnerable to warming. Yet processes controlling ice wedge degradation and stabilization are poorly understood. Here we quantified ice wedge volume and degradation rates, compared ground ice characteristics and thermal regimes across a sequence of five degradation and stabilization stages and evaluated biophysical feedbacks controlling permafrost stability near Prudhoe Bay, Alaska. Mean ice wedge volume in the top 3 m of permafrost was 21%. Imagery from 1949 to 2012 showed thermokarst extent (area of water-filled troughs) was relatively small from 1949 (0.9%) to 1988 (1.5%), abruptly increased by 2004 (6.3%) and increased slightly by 2012 (7.5%). Mean annual surface temperatures varied by 4.9°C among degradation and stabilization stages and by 9.9°C from polygon center to deep lake bottom. Mean thicknesses of the active layer, ice-poor transient layer, ice-rich intermediate layer, thermokarst cave ice, and wedge ice varied substantially among stages. In early stages, thaw settlement caused water to impound in thermokarst troughs, creating positive feedbacks that increased net radiation, soil heat flux, and soil temperatures. Plant growth and organic matter accumulation in the degraded troughs provided negative feedbacks that allowed ground ice to aggrade and heave the surface, thus reducing surface water depth and soil temperatures in later stages. The ground ice dynamics and ecological feedbacks greatly complicate efforts to assess permafrost responses to climate change.

  6. Ice2sea - the future glacial contribution to sea-level rise

    NASA Astrophysics Data System (ADS)

    Vaughan, D. G.; Ice2sea Consortium

    2009-04-01

    The melting of continental ice (glaciers, ice caps and ice sheets) is a substantial source of current sea-level rise, and one that is accelerating more rapidly than was predicted even a few years ago. Indeed, the most recent report from Intergovernmental Panel on Climate Change highlighted that the uncertainty in projections of future sea-level rise is dominated by uncertainty concerning continental ice, and that understanding of the key processes that will lead to loss of continental ice must be improved before reliable projections of sea-level rise can be produced. Such projections are urgently required for effective sea-defence management and coastal adaptation planning. Ice2sea is a consortium of European institutes and international partners seeking European funding to support an integrated scientific programme to improve understanding concerning the future glacial contribution to sea-level rise. This includes improving understanding of the processes that control, past, current and future sea-level rise, and generation of improved estimates of the contribution of glacial components to sea-level rise over the next 200 years. The programme will include targeted studies of key processes in mountain glacier systems and ice caps (e.g. Svalbard), and in ice sheets in both polar regions (Greenland and Antarctica) to improve understanding of how these systems will respond to future climate change. It will include fieldwork and remote sensing studies, and develop a suite of new, cross-validated glacier and ice-sheet model. Ice2sea will deliver these results in forms accessible to scientists, policy-makers and the general public, which will include clear presentations of the sources of uncertainty. Our aim is both, to provide improved projections of the glacial contribution to sea-level rise, and to leave a legacy of improved tools and techniques that will form the basis of ongoing refinements in sea-level projection. Ice2sea will provide exciting opportunities for many early-career glaciologists and ice-modellers in a variety of host institutes.

  7. Size Controllable, Transparent, and Flexible 2D Silver Meshes Using Recrystallized Ice Crystals as Templates.

    PubMed

    Wu, Shuwang; Li, Linhai; Xue, Han; Liu, Kai; Fan, Qingrui; Bai, Guoying; Wang, Jianjun

    2017-10-24

    Ice templates have been widely utilized for the preparation of porous materials due to the obvious advantages, such as environmentally benign and applicable to a wide range of materials. However, it remains a challenge to have controlled pore size as well as dimension of the prepared porous materials with the conventional ice template, since it often employs the kinetically not-stable growing ice crystals as the template. For example, there is no report so far for the preparation of 2D metal meshes with tunable pore size based on the ice template, although facile and eco-friendly prepared metal meshes are highly desirable for wearable electronics. Here, we report the preparation of 2D silver meshes with tunable mesh size employing recrystallized ice crystals as templates. Ice recrystallization is a kinetically stable process; therefore, the grain size of recrystallized ice crystals can be easily tuned, e.g., by adding different salts and changing the annealing temperature. Consequently, the size and line width of silver meshes obtained after freeze-drying can be easily adjusted, which in turn varied the conductivity of the obtained 2D silver film. Moreover, the silver meshes are transparent and display stable conductivity after the repeated stretching and bending. It can be envisioned that this approach for the preparation of 2D conducting films is of practical importance for wearable electronics. Moreover, this study provides a generic approach for the fabrication of 2D meshes with a controllable pore size.

  8. On the Rocks: Microbiological Quality and Microbial Diversity of Packaged Ice in Southern California.

    PubMed

    Lee, Kun Ho; Ab Samad, Liana S; Lwin, Phillip M; Riedel, Stefan F; Magin, Ashley; Bashir, Mina; Vaishampayan, Parag A; Lin, Wei-Jen

    2017-06-01

    Ice is defined as a food and is frequently used in direct contact with food and beverages. Packaged ice is commercially produced and can be easily found in grocery and convenience stores. However, the quality and safety of packaged ice products is not consistent. The Packaged Ice Quality Control Standards manual (PIQCS) published by the International Packaged Ice Association provides the quality and processing standards for packaged ice produced by its members. Packaged ice produced on the premise of stores (on-site packaged ice) is not required to be in compliance with these standards. In this study, packaged ice produced by manufacturing plants or by in-store bagger (ISB) machines and on-site packaged ice were compared for their microbiological quality and microbial diversity. Our results revealed that 19% of the 120 on-site packaged ice samples did not meet the PIQCS microbial limit of 500 CFU/mL (or g) and also the absence of coliforms and Escherichia coli . Staphylococci were found in 34% of the on-site packaged ice samples, most likely through contamination from the packaging workers. None of the ISB and manufactured packaged ice samples had unacceptable microbial levels, and all were devoid of staphylococci. Salmonella was absent in all samples analyzed in this study. Microbial community analysis of ice based on 16S/18S rRNA targeted sequencing revealed a much higher microbial diversity and abundance in the on-site packaged ice than in the ISB ice. Proteobacteria, especially Alphaproteobacteria and Betaproteobacteria, were the dominant bacterial groups in all samples tested. Most of these bacteria were oligotrophic; however, a few opportunistic or potential pathogens were found at low levels in the on-site packaged ice but not in the ISB packaged ice. The types of microbes identified may provide information needed to investigate potential sources of contamination. Our data also suggest a need for enforcement of processing standards during the on-site packaging of ice.

  9. Transient Conditions at the Ice/bed Interface Under a Palaeo-ice Stream Derived from Numerical Simulation of Groundwater Flow and Sedimentological Observations in a Drumlin Field, NW Poland

    NASA Astrophysics Data System (ADS)

    Hermanowski, P.; Piotrowski, J. A.

    2017-12-01

    Evacuation of glacial meltwater through the substratum is an important agent modulating the ice/bed interface processes. The amount of meltwater production, subglacial water pressure, flow patterns and fluxes all affect the strength of basal coupling and thus impact the ice-sheet dynamics. Despite much research into the subglacial processes of past ice sheets which controlled sediment transport and the formation of specific landforms, our understanding of the ice/bed interface remains fragmentary. In this study we numerically simulated, using finite difference and finite element codes, groundwater flow pattern and fluxes during an ice advance in the Stargard Drumlin Field, NW Poland to examine the potential influence of groundwater drainage on the landforming processes. The results are combined with sedimentological observations of the internal composition of the drumlins to validate the outcome of the numerical model. Our numerical experiments of groundwater flow suggest a highly time-dependent response of the subglacial hydrogeological system to the advancing ice margin. This is manifested as diversified areas of downward- and upward-oriented groundwater flows whereby the drumlin field area experienced primarily groundwater discharge towards the ice sole. The investigated drumlins are composed of (i) mainly massive till with thin stringers of meltwater sand, and (ii) sorted sediments carrying ductile deformations. The model results and sedimentological observations suggest a high subglacial pore-water pressure in the drumlin field area, which contributed to sediment deformation intervening with areas of basal decoupling and enhanced basal sliding.

  10. Sea ice-induced cold air advection as a mechanism controlling tundra primary productivity

    NASA Astrophysics Data System (ADS)

    Macias-Fauria, M.; Karlsen, S. R.

    2015-12-01

    The recent sharp decline in Arctic sea ice extent, concentration, and volume leaves urgent questions regarding its effects on ecological processes. Changes in tundra productivity have been associated with sea ice dynamics on the basis that most tundra ecosystems lay close to the sea. Although some studies have addressed the potential effect of sea ice decline on the primary productivity of terrestrial arctic ecosystems (Bhatt et al., 2010), a clear picture of the mechanisms and patterns linking both processes remains elusive. We hypothesised that sea ice might influence tundra productivity through 1) cold air advection during the growing season (direct/weather effect) or 2) changes in regional climate induced by changes in sea ice (indirect/climate effect). We present a test on the direct/weather effect hypothesis: that is, tundra productivity is coupled with sea ice when sea ice remains close enough from land vegetation during the growing season for cold air advection to limit temperatures locally. We employed weekly MODIS-derived Normalised Difference Vegetation Index (as a proxy for primary productivity) and sea ice data at a spatial resolution of 232m for the period 2000-2014 (included), covering the Svalbard Archipelago. Our results suggest that sea ice-induced cold air advection is a likely mechanism to explain patterns of NDVI trends and heterogeneous spatial dynamics in the Svalbard archipelago. The mechanism offers the potential to explain sea ice/tundra productivity dynamics in other Arctic areas.

  11. CryoSat Ice Processor: Known Processor Anomalies and Potential Future Product Evolutions

    NASA Astrophysics Data System (ADS)

    Mannan, R.; Webb, E.; Hall, A.; Bouffard, J.; Femenias, P.; Parrinello, T.; Bouffard, J.; Brockley, D.; Baker, S.; Scagliola, M.; Urien, S.

    2016-08-01

    Launched in 2010, CryoSat was designed to measure changes in polar sea ice thickness and ice sheet elevation. To reach this goal the CryoSat data products have to meet the highest performance standards and are subjected to a continual cycle of improvement achieved through upgrades to the Instrument Processing Facilities (IPFs). Following the switch to the Baseline-C Ice IPFs there are already planned evolutions for the next processing Baseline, based on recommendations from the Scientific Community, Expert Support Laboratory (ESL), Quality Control (QC) Centres and Validation campaigns. Some of the proposed evolutions, to be discussed with the scientific community, include the activation of freeboard computation in SARin mode, the potential operation of SARin mode over flat-to-slope transitory land ice areas, further tuning of the land ice retracker, the switch to NetCDF format and the resolution of anomalies arising in Baseline-C. This paper describes some of the anomalies known to affect Baseline-C in addition to potential evolutions that are planned and foreseen for Baseline-D.

  12. Modeling of submarine melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.

    2013-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.

  13. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing

    NASA Astrophysics Data System (ADS)

    Briard, Jennie G.; Poisson, Jessica S.; Turner, Tracey R.; Capicciotti, Chantelle J.; Acker, Jason P.; Ben, Robert N.

    2016-03-01

    During cryopreservation, ice recrystallization is a major cause of cellular damage. Conventional cryoprotectants such as dimethyl sulfoxide (DMSO) and glycerol function by a number of different mechanisms but do not mitigate or control ice recrystallization at concentrations utilized in cryopreservation procedures. In North America, cryopreservation of human red blood cells (RBCs) utilizes high concentrations of glycerol. RBC units frozen under these conditions must be subjected to a time-consuming deglycerolization process after thawing in order to remove the glycerol to <1% prior to transfusion thus limiting the use of frozen RBC units in emergency situations. We have identified several low molecular mass ice recrystallization inhibitors (IRIs) that are effective cryoprotectants for human RBCs, resulting in 70-80% intact RBCs using only 15% glycerol and slow freezing rates. These compounds are capable of reducing the average ice crystal size of extracellular ice relative to a 15% glycerol control validating the positive correlation between a reduction in ice crystal size and increased post-thaw recovery of RBCs. The most potent IRI from this study is also capable of protecting frozen RBCs against the large temperature fluctuations associated with transient warming.

  14. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing

    PubMed Central

    Briard, Jennie G.; Poisson, Jessica S.; Turner, Tracey R.; Capicciotti, Chantelle J.; Acker, Jason P.; Ben, Robert N.

    2016-01-01

    During cryopreservation, ice recrystallization is a major cause of cellular damage. Conventional cryoprotectants such as dimethyl sulfoxide (DMSO) and glycerol function by a number of different mechanisms but do not mitigate or control ice recrystallization at concentrations utilized in cryopreservation procedures. In North America, cryopreservation of human red blood cells (RBCs) utilizes high concentrations of glycerol. RBC units frozen under these conditions must be subjected to a time-consuming deglycerolization process after thawing in order to remove the glycerol to <1% prior to transfusion thus limiting the use of frozen RBC units in emergency situations. We have identified several low molecular mass ice recrystallization inhibitors (IRIs) that are effective cryoprotectants for human RBCs, resulting in 70–80% intact RBCs using only 15% glycerol and slow freezing rates. These compounds are capable of reducing the average ice crystal size of extracellular ice relative to a 15% glycerol control validating the positive correlation between a reduction in ice crystal size and increased post-thaw recovery of RBCs. The most potent IRI from this study is also capable of protecting frozen RBCs against the large temperature fluctuations associated with transient warming. PMID:27021850

  15. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing.

    PubMed

    Briard, Jennie G; Poisson, Jessica S; Turner, Tracey R; Capicciotti, Chantelle J; Acker, Jason P; Ben, Robert N

    2016-03-29

    During cryopreservation, ice recrystallization is a major cause of cellular damage. Conventional cryoprotectants such as dimethyl sulfoxide (DMSO) and glycerol function by a number of different mechanisms but do not mitigate or control ice recrystallization at concentrations utilized in cryopreservation procedures. In North America, cryopreservation of human red blood cells (RBCs) utilizes high concentrations of glycerol. RBC units frozen under these conditions must be subjected to a time-consuming deglycerolization process after thawing in order to remove the glycerol to <1% prior to transfusion thus limiting the use of frozen RBC units in emergency situations. We have identified several low molecular mass ice recrystallization inhibitors (IRIs) that are effective cryoprotectants for human RBCs, resulting in 70-80% intact RBCs using only 15% glycerol and slow freezing rates. These compounds are capable of reducing the average ice crystal size of extracellular ice relative to a 15% glycerol control validating the positive correlation between a reduction in ice crystal size and increased post-thaw recovery of RBCs. The most potent IRI from this study is also capable of protecting frozen RBCs against the large temperature fluctuations associated with transient warming.

  16. Using Airborne Radar Stratigraphy to Model Surface Accumulation Anomaly and Basal Control over Deformed Basal Ice in Greenland

    NASA Astrophysics Data System (ADS)

    Das, I.; Bell, R. E.; Creyts, T. T.; Wolovick, M.

    2013-12-01

    Large deformed ice structures have been imaged at the base of northern Greenland ice sheet by IceBridge airborne radar. Numerous deformed structures lie along the base of both Petermann Glacier and Northeast Ice stream catchments covering 10-13% of the catchment area. These structures may be combinations of basal freeze-on and folded ice that overturns and inverts stratigraphy. In the interior, where the ice velocity is low, the radar imaged height of the deformed structures are frequently a significant fraction of the ice thickness. They are related to basal freeze on and stick-slip at the base of the ice sheet and may be triggered by subglacial water, sediments or local geological conditions. The larger ones (at times up to 700 m thick and 140 km long) perturb the ice stratigraphy and create prominent undulations on the ice surface and modify the local surface mass balance. Here, we investigate the relationship between the deformed structures and surface processes using shallow and deep ice radar stratigraphy. The surface undulations caused by the deformed structures modulate the pattern of local surface snow accumulation. Using normalized differences of several near-surface stratigraphic layers, we have calculated the accumulation anomaly over these deformed structures. The accumulation anomalies can be as high as 20% of the local surface accumulation over some of the larger surface depressions caused by these deformed structures. We observe distinct differences in the phases of the near-surface internal layers on the Petermann and Northeast catchments. These differences indicate that the deformed bodies over Petermann are controlled by conditions at the bed different from the Northeast Ice stream. The distinctly different near-surface stratigraphy over the deformed structures in the Petermann and Northeast catchments have opened up a number of questions including their formation and how they influence the ice dynamics, ice stratigraphy and surface mass balance. In this study we will model the different physical conditions at the bed and ice rheology from their distinct signatures in the near-surface strata. The results will identify the distinct mechanisms that form these bodies and their control over the surface morphology and snow accumulation.

  17. First Results from the ASIBIA (Arctic Sea-Ice, snow, Biogeochemistry and Impacts on the Atmosphere) Sea-Ice Chamber

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; France, J.; von Glasow, R.; Thomas, M.

    2015-12-01

    The ocean-ice-atmosphere system is very complex, and there are numerous challenges with conducting fieldwork on sea-ice including costs, safety, experimental controls and access. By creating a new coupled Ocean-Sea-Ice-(Snow)-Atmosphere facility at the University of East Anglia, UK, we are able to perform controlled investigations in areas such as sea-ice physics, physicochemical and biogeochemical processes in sea-ice, and to quantify the bi-directional flux of gases in established, freezing and melting sea-ice. The environmental chamber is capable of controlled programmable temperatures from -55°C to +30°C, allowing a full range of first year sea-ice growing conditions in both the Arctic and Antarctic to be simulated. The sea-ice tank within the chamber measures 2.4 m x 1.4 m x 1 m water depth, with an identically sized Teflon film atmosphere on top of the tank. The tank and atmosphere forms a coupled, isolated mesocosm. Above the atmosphere is a light bank with dimmable solar simulation LEDs, and UVA and UVB broadband fluorescent battens, providing light for a range of experiments such as under ice biogeochemistry and photochemistry. Ice growth in the tank will be ideally suited for studying first-year sea-ice physical properties, with in-situ ice-profile measurements of temperature, salinity, conductivity, pressure and spectral light transmission. Under water and above ice cameras are installed to observe the physical development of the sea-ice. The ASIBIA facility is also well equipped for gas exchange and diffusion studies through sea-ice with a suite of climate relevant gas measuring instruments (CH4, CO2, O3, NOx, NOy permanently installed, further instruments available) able to measure either directly in the atmospheric component, or via a membrane for water side dissolved gases. Here, we present the first results from the ASIBIA sea-ice chamber, focussing on the physical development of first-year sea-ice and show the future plans for the facility over the coming years. The ASIBIA sea-ice facility is a key component of a 5-year ERC funded program with a long-term goal to develop parameterisations for local to global scale models based on experimental results.

  18. Open-source algorithm for detecting sea ice surface features in high-resolution optical imagery

    NASA Astrophysics Data System (ADS)

    Wright, Nicholas C.; Polashenski, Chris M.

    2018-04-01

    Snow, ice, and melt ponds cover the surface of the Arctic Ocean in fractions that change throughout the seasons. These surfaces control albedo and exert tremendous influence over the energy balance in the Arctic. Increasingly available meter- to decimeter-scale resolution optical imagery captures the evolution of the ice and ocean surface state visually, but methods for quantifying coverage of key surface types from raw imagery are not yet well established. Here we present an open-source system designed to provide a standardized, automated, and reproducible technique for processing optical imagery of sea ice. The method classifies surface coverage into three main categories: snow and bare ice, melt ponds and submerged ice, and open water. The method is demonstrated on imagery from four sensor platforms and on imagery spanning from spring thaw to fall freeze-up. Tests show the classification accuracy of this method typically exceeds 96 %. To facilitate scientific use, we evaluate the minimum observation area required for reporting a representative sample of surface coverage. We provide an open-source distribution of this algorithm and associated training datasets and suggest the community consider this a step towards standardizing optical sea ice imagery processing. We hope to encourage future collaborative efforts to improve the code base and to analyze large datasets of optical sea ice imagery.

  19. The principles of ultrasound and its application in freezing related processes of food materials: A review.

    PubMed

    Cheng, Xinfeng; Zhang, Min; Xu, Baoguo; Adhikari, Benu; Sun, Jincai

    2015-11-01

    Ultrasonic processing is a novel and promising technology in food industry. The propagation of ultrasound in a medium generates various physical and chemical effects and these effects have been harnessed to improve the efficiency of various food processing operations. Ultrasound has also been used in food quality control as diagnostic technology. This article provides an overview of recent developments related to the application of ultrasound in low temperature and closely related processes such as freezing, thawing, freeze concentration and freeze drying. The applications of high intensity ultrasound to improve the efficiency of freezing process, to control the size and size distribution of ice crystals and to improve the quality of frozen foods have been discussed in considerable detail. The use of low intensity ultrasound in monitoring the ice content and to monitor the progress of freezing process has also been highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Overview of ICE Project: Integration of Computational Fluid Dynamics and Experiments

    NASA Technical Reports Server (NTRS)

    Stegeman, James D.; Blech, Richard A.; Babrauckas, Theresa L.; Jones, William H.

    2001-01-01

    Researchers at the NASA Glenn Research Center have developed a prototype integrated environment for interactively exploring, analyzing, and validating information from computational fluid dynamics (CFD) computations and experiments. The Integrated CFD and Experiments (ICE) project is a first attempt at providing a researcher with a common user interface for control, manipulation, analysis, and data storage for both experiments and simulation. ICE can be used as a live, on-tine system that displays and archives data as they are gathered; as a postprocessing system for dataset manipulation and analysis; and as a control interface or "steering mechanism" for simulation codes while visualizing the results. Although the full capabilities of ICE have not been completely demonstrated, this report documents the current system. Various applications of ICE are discussed: a low-speed compressor, a supersonic inlet, real-time data visualization, and a parallel-processing simulation code interface. A detailed data model for the compressor application is included in the appendix.

  1. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1992-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering onmore » the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. Finally, the freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.« less

  3. Applied high-speed imaging for the icing research program at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slater, Howard; Owens, Jay; Shin, Jaiwon

    1991-01-01

    The Icing Research Tunnel at NASA Lewis Research Center provides scientists a scaled, controlled environment to simulate natural icing events. The closed-loop, low speed, refrigerated wind tunnel offers the experimental capability to test for icing certification requirements, analytical model validation and calibration techniques, cloud physics instrumentation refinement, advanced ice protection systems, and rotorcraft icing methodology development. The test procedures for these objectives all require a high degree of visual documentation, both in real-time data acquisition and post-test image processing. Information is provided to scientific, technical, and industrial imaging specialists as well as to research personnel about the high-speed and conventional imaging systems will be on the recent ice protection technology program. Various imaging examples for some of the tests are presented. Additional imaging examples are available from the NASA Lewis Research Center's Photographic and Printing Branch.

  4. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Shi, Y.

    2015-10-01

    Ice caves exist in locations where annual average air temperature is higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively investigate the mechanism of formation and preservation of the ice cave, we use the finite-element method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, colored lights, climatic conditions, etc. for sustainable development of the ice cave as a tourism resource. In some other ice caves in China, managers have installed airtight doors at these ice caves' entrances with the intention of "protecting" these caves, but this in fact prevents cooling in winter and these cave ices will entirely melt within tens of years.

  5. Numerical simulation of formation and preservation of Ningwu ice cave, Shanxi, China

    NASA Astrophysics Data System (ADS)

    Yang, S.; Shi, Y.

    2015-04-01

    Ice caves exist in locations where annual average temperature in higher than 0 °C. An example is Ningwu ice cave, Shanxi Province, the largest ice cave in China. In order to quantitatively explain the mechanism of formation and preservation of the ice cave, we use Finite Element Method to simulate the heat transfer process at this ice cave. There are two major control factors. First, there is the seasonal asymmetric heat transfer. Heat is transferred into the ice cave from outside, very inefficiently by conduction in spring, summer and fall. In winter, thermal convection occurs that transfers heat very efficiently out of the ice cave, thus cooling it down. Secondly, ice-water phase change provides a heat barrier for heat transfer into the cave in summer. The calculation also helps to evaluate effects of global warming, tourists, etc. for sustainable development of ice cave as tourism resource. In some other ice caves in China, managers installed air-tight doors at these ice caves entrance intending to "protect" these caves, but this prevent cooling down these caves in winters and these cave ices will entirely melt within tens of years.

  6. Dark ice dynamics of the south-west Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Tedstone, Andrew J.; Bamber, Jonathan L.; Cook, Joseph M.; Williamson, Christopher J.; Fettweis, Xavier; Hodson, Andrew J.; Tranter, Martyn

    2017-11-01

    Runoff from the Greenland Ice Sheet (GrIS) has increased in recent years due largely to changes in atmospheric circulation and atmospheric warming. Albedo reductions resulting from these changes have amplified surface melting. Some of the largest declines in GrIS albedo have occurred in the ablation zone of the south-west sector and are associated with the development of dark ice surfaces. Field observations at local scales reveal that a variety of light-absorbing impurities (LAIs) can be present on the surface, ranging from inorganic particulates to cryoconite materials and ice algae. Meanwhile, satellite observations show that the areal extent of dark ice has varied significantly between recent successive melt seasons. However, the processes that drive such large interannual variability in dark ice extent remain essentially unconstrained. At present we are therefore unable to project how the albedo of bare ice sectors of the GrIS will evolve in the future, causing uncertainty in the projected sea level contribution from the GrIS over the coming decades. Here we use MODIS satellite imagery to examine dark ice dynamics on the south-west GrIS each year from 2000 to 2016. We quantify dark ice in terms of its annual extent, duration, intensity and timing of first appearance. Not only does dark ice extent vary significantly between years but so too does its duration (from 0 to > 80 % of June-July-August, JJA), intensity and the timing of its first appearance. Comparison of dark ice dynamics with potential meteorological drivers from the regional climate model MAR reveals that the JJA sensible heat flux, the number of positive minimum-air-temperature days and the timing of bare ice appearance are significant interannual synoptic controls. We use these findings to identify the surface processes which are most likely to explain recent dark ice dynamics. We suggest that whilst the spatial distribution of dark ice is best explained by outcropping of particulates from ablating ice, these particulates alone do not drive dark ice dynamics. Instead, they may enable the growth of pigmented ice algal assemblages which cause visible surface darkening, but only when the climatological prerequisites of liquid meltwater presence and sufficient photosynthetically active radiation fluxes are met. Further field studies are required to fully constrain the processes by which ice algae growth proceeds and the apparent dependency of algae growth on melt-out particulates.

  7. Toward Process-resolving Synthesis and Prediction of Arctic Climate Change Using the Regional Arctic System Model

    NASA Astrophysics Data System (ADS)

    Maslowski, W.

    2017-12-01

    The Regional Arctic System Model (RASM) has been developed to better understand the operation of Arctic System at process scale and to improve prediction of its change at a spectrum of time scales. RASM is a pan-Arctic, fully coupled ice-ocean-atmosphere-land model with marine biogeochemistry extension to the ocean and sea ice models. The main goal of our research is to advance a system-level understanding of critical processes and feedbacks in the Arctic and their links with the Earth System. The secondary, an equally important objective, is to identify model needs for new or additional observations to better understand such processes and to help constrain models. Finally, RASM has been used to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook of the Sea Ice Prediction Network. Future RASM forecasts, are likely to include increased resolution for model components and ecosystem predictions. Such research is in direct support of the US environmental assessment and prediction needs, including those of the U.S. Navy, Department of Defense, and the recent IARPC Arctic Research Plan 2017-2021. In addition to an overview of RASM technical details, selected model results are presented from a hierarchy of climate models together with available observations in the region to better understand potential oceanic contributions to polar amplification. RASM simulations are analyzed to evaluate model skill in representing seasonal climatology as well as interannual and multi-decadal climate variability and predictions. Selected physical processes and resulting feedbacks are discussed to emphasize the need for fully coupled climate model simulations, high model resolution and sensitivity of simulated sea ice states to scale dependent model parameterizations controlling ice dynamics, thermodynamics and coupling with the atmosphere and ocean.

  8. Investigating the Relative Contributions of Secondary Ice Formation Processes to Ice Crystal Number Concentrations Within Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, S.; Nenes, A.

    2015-12-01

    Measurements of the in-cloud ice nuclei concentration can be three or four orders of magnitude less than those of the in-cloud ice crystal number concentration. Different secondary formation processes, active after initial ice nucleation, have been proposed to explain this discrepancy, but their relative importance, and even the exact physics of each mechanism, are still unclear. We construct a simple bin microphysics model (2IM) including depositional growth, the Hallett-Mossop process, ice-ice collisions, and ice-ice aggregation, with temperature- and supersaturation-dependent efficiencies for each process. 2IM extends the time-lag collision model of Yano and Phillips to additional bins and incorporates the aspect ratio evolution of Jensen and Harrington. Model output and measured ice crystal size distributions are compared to answer three questions: (1) how important is ice-ice aggregation relative to ice-ice collision around -15°C, where the Hallett-Mossop process is no longer active; (2) what process efficiencies lead to the best reproduction of observed ice crystal size distributions; and (3) does ice crystal aspect ratio affect the dominant secondary formation process. The resulting parameterization is intended for eventual use in larger-scale mixed-phase cloud schemes.

  9. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    NASA Astrophysics Data System (ADS)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic patterns occur in the model, but with typically smaller magnitudes and with season-specific geographical and directional differences.

  10. Innovative Ingredients and Emerging Technologies for Controlling Ice Recrystallization, Texture, and Structure Stability in Frozen Dairy Desserts: A Review.

    PubMed

    Soukoulis, Christos; Fisk, Ian

    2016-11-17

    Over the past decade, ice cream manufacturers have developed a strong understanding of the functionality of key ingredients and processing, developing effective explanations for the link between structure forming agents, stability mechanisms, and perceived quality. Increasing demand for products perceived as healthier/more natural with minimal processing has identified a number of new tools to improve quality and storage stability of frozen dairy desserts. Ingredients such as dietary fiber, polysaccharides, prebiotics, alternate sweeteners, fat sources rich in unsaturated fatty acids and ice strucsturing proteins (ISP) have been successfully applied as cryoprotective, texturizing, and structuring agents. Emerging minimal processing technologies including hydrostatic pressure processing, ultrasonic or high pressure assisted freezing, low temperature extrusion and enzymatically induced biopolymers crosslinking have been evaluated for their ability to improve colloidal stability, texture and sensory quality. It is therefore timely for a comprehensive review.

  11. Immersion Freezing of Aluminas: The Effect of Crystallographic Properties on Ice Nucleation

    NASA Astrophysics Data System (ADS)

    King, M.; Chong, E.; Freedman, M. A.

    2017-12-01

    Atmospheric aerosol particles serve as the nuclei for heterogeneous ice nucleation, a process that allows for ice to form at higher temperatures and lower supersaturations with respect to ice. This process is essential to the formation of ice in cirrus clouds. Heterogeneous ice nucleation is affected by many factors including the composition, crystal structure, porosity, and surface area of the particles. However, these factors are not well understood and, as such, are difficult to account for in climate models. To test the effects of crystal structure on ice nucleation, a system of transition aluminas (Al2O3) that differ only in their crystal structure, despite being compositionally similar, were tested using immersion freezing. Particles were immersed in water and placed into a temperature controlled chamber. Freezing events were then recorded as the chamber was cooled to negative 30 °. Alpha-alumina, which is a member of the hexagonal crystal system, showed a significantly higher temperature at which all particles froze in comparison to other samples. This supports the hypothesis that, since a hexagonal crystal structure is the lowest energy state for ice, hexagonal surface structures would best facilitate ice nucleation. However, a similar sample of hexagonal chi-alumina did not show the same results. Further analysis of the samples will be done to characterize surface structures and composition. These conflicting data sets raise interesting questions about the effect of other surface features, such as surface area and porosity, on ice nucleation.

  12. The Importance of Habit Evolution for Maintaining Supercooled Liquid in Arctic Clouds

    NASA Astrophysics Data System (ADS)

    Sulia, K. J.; Harrington, J. Y.

    2010-12-01

    Low-level clouds cover large sections of the Arctic for much of the year, and these clouds are generally composed of supercooled liquid and contain regions of ice. These supercooled liquid clouds can persist for long periods of time with a large spatial extent. What are not well understood are the mechanisms whereby these clouds are able to maintain a supercooled liquid state rather than dissipating through the Bergeron mechanism, or the process by which ice crystals grow at the expense of liquid drops, with ice precipitation leading to cloud dissipation. Most prior research has focused on ice nucleation as providing a critical, first-order control on the glaciation rates of supercooled Arctic clouds. Ice nucleation is critical for its control over ice concentration, which then feeds into liquid depletion through its influence on the total ice mass growth rates. In addition, ice particle habit evolution can also strongly affect ice mass; however, the vapor growth rates based on habit evolution are routinely ignored in most mixed-phase methods. Most prior studies assume simple shapes or spheres as a proxy for ice habits. Recent studies have suggested that these simplified methods produce large uncertainties in estimates of the vapor growth rates, and hence the rate of glaciation, in supercooled clouds. Our studies show that these uncertainties are due to the inability of most models to predict ice particle aspect ratio. We therefore present results that help clarify the influence of ice habit on glaciation. We show that habit prediction is critical for estimates of glaciation in supercooled clouds, and that this is most important when ice concentrations are relatively low, as they appear to be in the Arctic.

  13. The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives

    NASA Astrophysics Data System (ADS)

    Ingólfsson, Ólafur; Landvik, Jon Y.

    2013-03-01

    The history of research on the Late Quaternary Svalbard-Barents Sea ice sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the Ice Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents sea ice sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major ice sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents Sea ice sheet has changed. The first reconstructions depicted it as a static, concentric, single-domed ice sheet, with ice flowing from an ice divide over the central northern Barents Sea that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere ice sheets. We now increasingly perceive it as a very dynamic, multidomed ice sheet, controlled by climate fluctuations, relative sea-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents Sea ice sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based ice sheets build-up and decay.

  14. When do glaciated landscapes form?

    NASA Astrophysics Data System (ADS)

    Koppes, M. N.

    2015-12-01

    Glacial erosion is a fundamental link between climate and the tectonic and surface processes that create topography. Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice masses, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, from the modern to orogenic. Recent numerical modeling efforts have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple index that relates erosion rate to ice dynamics. To provide a quantitative test of the links between glacial erosion, sliding and ice discharge, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes, from Patagonia to the Antarctic Peninsula. We find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 in Patagonia to 0.01-<0.1 mm yr-1 in the AP, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theories of glacial erosion. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold decrease in long-term relative to modern erosion rates may in part reflect the temporal averaging of temperate and polar conditions over the lifecycle of these glaciers. Hence, climatic variation, more than the extent of ice cover or tectonic changes, controls the pace at which glaciers shape mountains.

  15. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials

    NASA Astrophysics Data System (ADS)

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-05-01

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4+/-4.1 to 277.5+/-30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering.

  16. Boundary condition of grounding lines prior to collapse, Larsen-B Ice Shelf, Antarctica.

    PubMed

    Rebesco, M; Domack, E; Zgur, F; Lavoie, C; Leventer, A; Brachfeld, S; Willmott, V; Halverson, G; Truffer, M; Scambos, T; Smith, J; Pettit, E

    2014-09-12

    Grounding zones, where ice sheets transition between resting on bedrock to full floatation, help regulate ice flow. Exposure of the sea floor by the 2002 Larsen-B Ice Shelf collapse allowed detailed morphologic mapping and sampling of the embayment sea floor. Marine geophysical data collected in 2006 reveal a large, arcuate, complex grounding zone sediment system at the front of Crane Fjord. Radiocarbon-constrained chronologies from marine sediment cores indicate loss of ice contact with the bed at this site about 12,000 years ago. Previous studies and morphologic mapping of the fjord suggest that the Crane Glacier grounding zone was well within the fjord before 2002 and did not retreat further until after the ice shelf collapse. This implies that the 2002 Larsen-B Ice Shelf collapse likely was a response to surface warming rather than to grounding zone instability, strengthening the idea that surface processes controlled the disintegration of the Larsen Ice Shelf. Copyright © 2014, American Association for the Advancement of Science.

  17. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials

    PubMed Central

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S.; Zeng, Xiao Cheng; Wang, Jianjun

    2017-01-01

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4±4.1 to 277.5±30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering. PMID:28462937

  18. Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials.

    PubMed

    Wu, Shuwang; Zhu, Chongqin; He, Zhiyuan; Xue, Han; Fan, Qingrui; Song, Yanlin; Francisco, Joseph S; Zeng, Xiao Cheng; Wang, Jianjun

    2017-05-02

    Ice recrystallization is of great importance to both fundamental research and practical applications, however understanding and controlling ice recrystallization processes remains challenging. Here, we report the discovery of an ion-specific effect on ice recrystallization. By simply changing the initial type and concentration of ions in an aqueous solution, the size of ice grains after recrystallization can be tuned from 27.4±4.1 to 277.5±30.9 μm. Molecular dynamics simulations show that the ability of the ion to be incorporated into the ice phase plays a key role in the ultimate size of the ice grains after recrystallization. Moreover, by using recrystallized ice crystals as templates, 2D and 3D porous networks with tuneable pore sizes could be prepared from various materials, for example, NaBr, collagen, quantum dots, silver and polystyrene colloids. These porous materials are suitable for a wide range of applications, for example, in organic electronics, catalysis and bioengineering.

  19. A review of topographic controls on moraine distribution

    NASA Astrophysics Data System (ADS)

    Barr, Iestyn D.; Lovell, Harold

    2014-12-01

    Ice-marginal moraines are often used to reconstruct the dimensions of former ice masses, which are then used as proxies for palaeoclimate. This approach relies on the assumption that the distribution of moraines in the modern landscape is an accurate reflection of former ice margin positions during climatically controlled periods of ice margin stability. However, the validity of this assumption is open to question, as a number of additional, nonclimatic factors are known to influence moraine distribution. This review considers the role played by topography in this process, with specific focus on moraine formation, preservation, and ease of identification (topoclimatic controls are not considered). Published literature indicates that the importance of topography in regulating moraine distribution varies spatially, temporally, and as a function of the ice mass type responsible for moraine deposition. In particular, in the case of ice sheets and ice caps (> 1000 km2), one potentially important topographic control on where in a landscape moraines are deposited is erosional feedback, whereby subglacial erosion causes ice masses to become less extensive over successive glacial cycles. For the marine-terminating outlets of such ice masses, fjord geometry also exerts a strong control on where moraines are deposited, promoting their deposition in proximity to valley narrowings, bends, bifurcations, where basins are shallow, and/or in the vicinity of topographic bumps. Moraines formed at the margins of ice sheets and ice caps are likely to be large and readily identifiable in the modern landscape. In the case of icefields and valley glaciers (10-1000 km2), erosional feedback may well play some role in regulating where moraines are deposited, but other factors, including variations in accumulation area topography and the propensity for moraines to form at topographic pinning points, are also likely to be important. This is particularly relevant where land-terminating glaciers extend into piedmont zones (unconfined plains, adjacent to mountain ranges) where large and readily identifiable moraines can be deposited. In the case of cirque glaciers (< 10 km2), erosional feedback is less important, but factors such as topographic controls on the accumulation of redistributed snow and ice and the availability of surface debris, regulate glacier dimensions and thereby determine where moraines are deposited. In such cases, moraines are likely to be small and particularly susceptible to post-depositional modification, sometimes making them difficult to identify in the modern landscape. Based on this review, we suggest that, despite often being difficult to identify, quantify, and mitigate, topographic controls on moraine distribution should be explicitly considered when reconstructing the dimensions of palaeoglaciers and that moraines should be judiciously chosen before being used as indirect proxies for palaeoclimate (i.e., palaeoclimatic inferences should only be drawn from moraines when topographic controls on moraine distribution are considered insignificant).

  20. Comparison Between Terrestrial Explosion Crater Morphology in Floating Ice and Europan Chaos

    NASA Technical Reports Server (NTRS)

    Billings, S. E.; Kattenhorn, S. A.

    2003-01-01

    Craters created by explosives have been found to serve as valuable analogs to impact craters, within limits. Explosion craters have been created in floating terrestrial ice in experiments related to clearing ice from waterways. Features called chaos occur on the surface of Europa s floating ice shell. Chaos is defined as a region in which the background plains have been disrupted. Common features of chaos include rafted blocks of pre-existing terrain suspended in a matrix of smooth or hummocky material; low surface albedo; and structural control on chaos outline shape by pre-existing lineaments. All published models of chaos formation call on endogenic processes whereby chaos forms through thermal processes. Nonetheless, we note morphological similarities between terrestrial explosion craters and Europan chaos at a range of scales and consider whether some chaos may have formed by impact. We explore these similarities through geologic and morphologic mapping.

  1. A design protocol for tailoring ice-templated scaffold structure

    PubMed Central

    Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.

    2014-01-01

    In this paper, we show, for the first time, the key link between scaffold architecture and latent heat evolution during the production of porous biomedical collagen structures using freeze-drying. Collagen scaffolds are used widely in the biomedical industry for the repair and reconstruction of skeletal tissues and organs. Freeze-drying of collagen slurries is a standard industrial process, and, until now, the literature has sought to characterize the influence of set processing parameters including the freezing protocol and weight percentage of collagen. However, we are able to demonstrate, by monitoring the local thermal events within the slurry during solidification, that nucleation, growth and annealing processes can be controlled, and therefore we are able to control the resulting scaffold architecture. Based on our correlation of thermal profile measurements with scaffold architecture, we hypothesize that there is a link between the fundamental freezing of ice and the structure of scaffolds, which suggests that this concept is applicable not only for collagen but also for ceramics and pharmaceuticals. We present a design protocol of strategies for tailoring the ice-templated scaffold structure. PMID:24402916

  2. Investigation of Controls on Ice Dynamics in Northeast Greenland from Ice-Thickness Change Record Using Ice Sheet System Model (ISSM)

    NASA Astrophysics Data System (ADS)

    Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.

    2015-12-01

    We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during the last 40 years. Through the use of ISSM, we examine possible mechanism explaining the observed changes. The improved understanding gained through this research will contribute better projections of future ice loss from this most vulnerable region of the GrIS.

  3. Development of lysozyme-combined antibacterial system to reduce sulfur dioxide and to stabilize Italian Riesling ice wine during aging process

    PubMed Central

    Chen, Kai; Han, Shun-yu; Zhang, Bo; Li, Min; Sheng, Wen-jun

    2015-01-01

    For the purpose of SO2 reduction and stabilizing ice wine, a new antibacterial technique was developed and verified in order to reduce the content of sulfur dioxide (SO2) and simultaneously maintain protein stability during ice wine aging process. Hazardous bacterial strain (lactic acid bacteria, LAB) and protein stability of Italian Riesling ice wine were evaluated in terms of different amounts of lysozyme, SO2, polyphenols, and wine pH by single-factor experiments. Subsequently, a quadratic rotation-orthogonal composite design with four variables was conducted to establish the multiple linear regression model that demonstrated the influence of different treatments on synthesis score between LAB inhibition and protein stability of ice wine. The results showed that, synthesis score can be influenced by lysozyme and SO2 concentrations on an extremely significant level (P < 0.01). Furthermore, the lysozyme-combined antibacterial system, which is specially designed for ice wine aging, was optimized step by step by response surface methodology and ridge analysis. As a result, the optimal proportion should be control in ice wine as follows: 179.31 mg L−1 lysozyme, 177.14 mg L−1 SO2, 0.60 g L−1 polyphenols, and 4.01 ice wine pH. Based on this system, the normalized synthesis score between LAB inhibition and protein stability can reach the highest point 0.920. Finally, by the experiments of verification and comparison, it was indicated that lysozyme-combined antibacterial system, which was a practical and prospective method to reduce SO2 concentration and effectively prevent contamination from hazardous LAB, can be used to stabilize ice wine during aging process. PMID:26405531

  4. Monitoring ice break-up on the Mackenzie River using MODIS data

    NASA Astrophysics Data System (ADS)

    Muhammad, P.; Duguay, C.; Kang, K.-K.

    2016-03-01

    The aim of this study was to develop an approach for estimating ice break-up dates on the Mackenzie River (MR) using more than a decade of MODIS Level 3 500 m snow products (MOD/MYD10A1), complemented with 250 m Level 1B radiance products (MOD/MYD02QKM) from the Terra and Aqua satellite platforms. The analysis showed break-up began on average between days of year (DOYs) 115 and 125 and ended between DOYs 145 and 155 over 13 ice seasons (2001-2013), resulting in an average melt duration of ca. 30-40 days. Thermal processes were more important in driving ice break-up south of the MR confluence with the Liard River, while dynamically driven break-up was more important north of the Liard. A comparison of the timing of ice disappearance with snow disappearance from surrounding land areas of the MR with MODIS Level 3 snow products showed varying relationships along the river. Ice-off and snow-off timing were in sync north of the MR-Liard River confluence and over sections of the MR before it enters the Mackenzie Delta, but ice disappeared much later than snow on land in regions where thermal ice break-up processes dominated. MODIS observations revealed that channel morphology is a more important control of ice break-up patterns than previously believed with ice runs on the MR strongly influenced by channel morphology (islands and bars, confluences and channel constriction). Ice velocity estimates from feature tracking were able to be made in 2008 and 2010 and yielded 3-4-day average ice velocities of 1.21 and 1.84 m s-1 respectively, which is in agreement with estimates from previous studies. These preliminary results confirm the utility of daily MODIS data for monitoring ice break-up processes along the Mackenzie River. The addition of optical and synthetic aperture radar data from recent and upcoming satellite missions (e.g. Sentinel-1/2/3 and RADARSAT Constellation) would improve the monitoring of ice break-up in narrower sections of the MR.

  5. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.

    PubMed

    Goshima, Hiroshika; Do, Gabsoo; Nakagawa, Kyuya

    2016-06-01

    It has been known that the sublimation kinetics of a freeze-drying product is affected by its internal ice crystal microstructures. This article demonstrates the impact of the ice morphologies of a frozen formulation in a vial on the design space for the primary drying of a pharmaceutical freeze-drying process. Cross-sectional images of frozen sucrose-bovine serum albumin aqueous solutions were optically observed and digital pictures were acquired. Binary images were obtained from the optical data to extract the geometrical parameters (i.e., ice crystal size and tortuosity) that relate to the mass-transfer resistance of water vapor during the primary drying step. A mathematical model was used to simulate the primary drying kinetics and provided the design space for the process. The simulation results predicted that the geometrical parameters of frozen solutions significantly affect the design space, with large and less tortuous ice morphologies resulting in wide design spaces and vice versa. The optimal applicable drying conditions are influenced by the ice morphologies. Therefore, owing to the spatial distributions of the geometrical parameters of a product, the boundary curves of the design space are variable and could be tuned by controlling the ice morphologies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice

    NASA Astrophysics Data System (ADS)

    Weikusat, Ilka; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Kipfstuhl, Sepp; Drury, Martyn R.

    2017-09-01

    Ice has a very high plastic anisotropy with easy dislocation glide on basal planes, while glide on non-basal planes is much harder. Basal glide involves dislocations with the Burgers vector b = 〈a〉, while glide on non-basal planes can involve dislocations with b = 〈a〉, b = [c], and b = 〈c + a〉. During the natural ductile flow of polar ice sheets, most of the deformation is expected to occur by basal slip accommodated by other processes, including non-basal slip and grain boundary processes. However, the importance of different accommodating processes is controversial. The recent application of micro-diffraction analysis methods to ice, such as X-ray Laue diffraction and electron backscattered diffraction (EBSD), has demonstrated that subgrain boundaries indicative of non-basal slip are present in naturally deformed ice, although so far the available data sets are limited. In this study we present an analysis of a large number of subgrain boundaries in ice core samples from one depth level from two deep ice cores from Antarctica (EPICA-DML deep ice core at 656 m of depth) and Greenland (NEEM deep ice core at 719 m of depth). EBSD provides information for the characterization of subgrain boundary types and on the dislocations that are likely to be present along the boundary. EBSD analyses, in combination with light microscopy measurements, are presented and interpreted in terms of the dislocation slip systems. The most common subgrain boundaries are indicative of basal 〈a〉 slip with an almost equal occurrence of subgrain boundaries indicative of prism [c] or 〈c + a〉 slip on prism and/or pyramidal planes. A few subgrain boundaries are indicative of prism 〈a〉 slip or slip of 〈a〉 screw dislocations on the basal plane. In addition to these classical polygonization processes that involve the recovery of dislocations into boundaries, alternative mechanisms are discussed for the formation of subgrain boundaries that are not related to the crystallography of the host grain.The finding that subgrain boundaries indicative of non-basal slip are as frequent as those indicating basal slip is surprising. Our evidence of frequent non-basal slip in naturally deformed polar ice core samples has important implications for discussions on ice about plasticity descriptions, rate-controlling processes which accommodate basal glide, and anisotropic ice flow descriptions of large ice masses with the wider perspective of sea level evolution.

  7. Ultrasonic emissions during ice nucleation and propagation in plant xylem.

    PubMed

    Charrier, Guillaume; Pramsohler, Manuel; Charra-Vaskou, Katline; Saudreau, Marc; Améglio, Thierry; Neuner, Gilbert; Mayr, Stefan

    2015-08-01

    Ultrasonic acoustic emission analysis enables nondestructive monitoring of damage in dehydrating or freezing plant xylem. We studied acoustic emissions (AE) in freezing stems during ice nucleation and propagation, by combining acoustic and infrared thermography techniques and controlling the ice nucleation point. Ultrasonic activity in freezing samples of Picea abies showed two distinct phases: the first on ice nucleation and propagation (up to 50 AE s(-1) ; reversely proportional to the distance to ice nucleation point), and the second (up to 2.5 AE s(-1) ) after dissipation of the exothermal heat. Identical patterns were observed in other conifer and angiosperm species. The complex AE patterns are explained by the low water potential of ice at the ice-liquid interface, which induced numerous and strong signals. Ice propagation velocities were estimated via AE (during the first phase) and infrared thermography. Acoustic activity ceased before the second phase probably because the exothermal heating and the volume expansion of ice caused decreasing tensions. Results indicate cavitation events at the ice front leading to AE. Ultrasonic emission analysis enabled new insights into the complex process of xylem freezing and might be used to monitor ice propagation in natura. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Ice sheet climate modeling: past achievements, ongoing challenges, and future endeavors

    NASA Astrophysics Data System (ADS)

    Lenaerts, J.

    2017-12-01

    Fluctuations in surface mass balance (SMB) mask out a substantial portion of contemporary Greenland and Antarctic ice sheet mass loss. That implies that we need accurate, consistent, and long-term SMB time series to isolate the mass loss signal. This in turn requires understanding of the processes driving SMB, and how they interplay. The primary controls on present-day ice sheet SMB are snowfall, which is regulated by large-scale atmospheric variability, and surface meltwater production at the ice sheet's edges, which is a complex result of atmosphere-surface interactions. Additionally, wind-driven snow redistribution and sublimation are large SMB contributors on the downslope areas of the ice sheets. Climate models provide an integrated framework to simulate all these individual ice sheet components. Recent developments in RACMO2, a regional climate model bound by atmospheric reanalyses, have focused on enhancing horizontal resolution, including blowing snow, snow albedo, and meltwater processes. Including these physics not only enhanced our understanding of the ice sheet climate system, but also enabled to obtain increasingly accurate estimates of ice sheet SMB. However, regional models are not suitable to capture the mutual interactions between ice sheet and the remainder of the global climate system in transient climates. To take that next step, global climate models are essential. In this talk, I will highlight our present work on improving ice sheet climate in the Community Earth System Model (CESM). In particular, we focus on an improved representation of polar firn, ice sheet clouds, and precipitation. For this exercise, we extensively use field observations, remote sensing data, as well as RACMO2. Next, I will highlight how CESM is used to enhance our understanding of ice sheet SMB, its drivers, and past and present changes.

  9. Using Antifreeze Proteins to understand ice microstructure evolution

    NASA Astrophysics Data System (ADS)

    Bayer-Giraldi, Maddalena; Azuma, Nobuhiko; Takata, Morimasa; Weikusat, Christian; Kondo, Hidemasa; Kipfstuhl, Sepp

    2017-04-01

    Polar ice sheets are considered a unique climate archive. The chemical analysis of its impurities and the development of its microstructure with depth give insight in past climate conditions as well as in the development of the ice sheet with time and deformation. Microstructural patterns like small grain size observed in specific depths are thought to be linked to the retarding effect of impurities on ice grain growth. Clear evidence of size or chemical composition of the impurities causing this effect is missing, but in this context a major role of nanoparticles has been suggested. In order to shed light on different mechanisms by which nanoparticles can control microstructure development we used antifreeze proteins (AFPs) as proxies for particles in ice. These proteins are small nanoparticles, approx. 5 nm in size, with the special characteristics of firmly binding to ice through several hydrogen bonds. We used AFPs from the sea-ice microalgae Fragilariopsis cylindrus (fcAFPs) in bubble-free, small-grained polycrystalline ice obtained by the phase-transition size refinement method. We explain how fcAFP bind to ice by presenting the 3-D-protein structure model inferred by X-ray structure analysis, and show the importance of the chemical interaction between particles and ice in controlling normal grain growth, comparing fcAFPs to other protein nanoparticles. We used modifications of fcAFPs for particle localization through fluorescence spectroscopy. Furthermore, the effect of fcAFPs on the driving factors for ice deformation during creep, i.e. on internal dislocations due to incorporation within the lattice and on the mobility of grain boundaries due to pinning, makes these proteins particularly interesting in studying the process of ice deformation.

  10. Synchrotron X-Ray Visualisation of Ice Formation in Insects during Lethal and Non-Lethal Freezing

    PubMed Central

    Sinclair, Brent J.; Gibbs, Allen G.; Lee, Wah-Keat; Rajamohan, Arun; Roberts, Stephen P.; Socha, John J.

    2009-01-01

    Although the biochemical correlates of freeze tolerance in insects are becoming well-known, the process of ice formation in vivo is subject to speculation. We used synchrotron x-rays to directly visualise real-time ice formation at 3.3 Hz in intact insects. We observed freezing in diapausing 3rd instar larvae of Chymomyza amoena (Diptera: Drosophilidae), which survive freezing if it occurs above −14°C, and non-diapausing 3rd instar larvae of C. amoena and Drosophila melanogaster (Diptera: Drosophilidae), neither of which survive freezing. Freezing was readily observed in all larvae, and on one occasion the gut was seen to freeze separately from the haemocoel. There were no apparent qualitative differences in ice formation between freeze tolerant and non-freeze tolerant larvae. The time to complete freezing was positively related to temperature of nucleation (supercooling point, SCP), and SCP declined with decreasing body size, although this relationship was less strong in diapausing C. amoena. Nucleation generally occurred at a contact point with the thermocouple or chamber wall in non-diapausing larvae, but at random in diapausing larvae, suggesting that the latter have some control over ice nucleation. There were no apparent differences between freeze tolerant and non-freeze tolerant larvae in tracheal displacement or distension of the body during freezing, although there was markedly more distension in D. melanogaster than in C. amoena regardless of diapause state. We conclude that although control of ice nucleation appears to be important in freeze tolerant individuals, the physical ice formation process itself does not differ among larvae that can and cannot survive freezing. This suggests that a focus on cellular and biochemical mechanisms is appropriate and may reveal the primary adaptations allowing freeze tolerance in insects. PMID:20011523

  11. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying.

    PubMed

    Patel, Sajal M; Bhugra, Chandan; Pikal, Michael J

    2009-01-01

    A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (-10 degrees C). The striking feature of the "Reduced Pressure Ice Fog Technique" is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.

  12. Oceanographic Controls on the Variability of Ice-Shelf Basal Melting and Circulation of Glacial Meltwater in the Amundsen Sea Embayment, Antarctica

    NASA Astrophysics Data System (ADS)

    Kimura, Satoshi; Jenkins, Adrian; Regan, Heather; Holland, Paul R.; Assmann, Karen M.; Whitt, Daniel B.; Van Wessem, Melchoir; van de Berg, Willem Jan; Reijmer, Carleen H.; Dutrieux, Pierre

    2017-12-01

    Ice shelves in the Amundsen Sea Embayment have thinned, accelerating the seaward flow of ice sheets upstream over recent decades. This imbalance is caused by an increase in the ocean-driven melting of the ice shelves. Observations and models show that the ocean heat content reaching the ice shelves is sensitive to the depth of thermocline, which separates the cool, fresh surface waters from warm, salty waters. Yet the processes controlling the variability of thermocline depth remain poorly constrained. Here we quantify the oceanic conditions and ocean-driven melting of Cosgrove, Pine Island Glacier (PIG), Thwaites, Crosson, and Dotson ice shelves in the Amundsen Sea Embayment from 1991 to 2014 using a general circulation model. Ice-shelf melting is coupled to variability in the wind field and the sea-ice motions over the continental shelf break and associated onshore advection of warm waters in deep troughs. The layer of warm, salty waters at the calving front of PIG and Thwaites is thicker in austral spring (June-October) than in austral summer (December-March), whereas the seasonal cycle at the calving front of Dotson is reversed. Furthermore, the ocean-driven melting in PIG is enhanced by an asymmetric response to changes in ocean heat transport anomalies at the continental shelf break: melting responds more rapidly to increases in ocean heat transport than to decreases. This asymmetry is caused by the inland deepening of bathymetry and the glacial meltwater circulation around the ice shelf.

  13. Implications of Grain Size Evolution for the Effective Stress Exponent in Ice

    NASA Astrophysics Data System (ADS)

    Behn, M. D.; Goldsby, D. L.; Hirth, G.

    2016-12-01

    Viscous flow in ice has typically been described by the Glen law—a non-Newtonian, power-law relationship between stress and strain-rate with a stress exponent n 3. The Glen law is attributed to grain-size-insensitive dislocation creep; however, laboratory and field studies demonstrate that deformation in ice is strongly dependent on grain size. This has led to the hypothesis that at sufficiently low stresses, ice flow is controlled by grain boundary sliding [1], which explicitly incorporates the grain-size dependence of ice rheology. Yet, neither dislocation creep (n 4), nor grain boundary sliding (n 1.8), have stress exponents that match the value of n 3 for the Glen law. Thus, although the Glen law provides an approximate description of ice flow in glaciers and ice sheets, its functional form cannot be explained by a single deformation mechanism. Here we seek to understand the origin of the n 3 dependence of the Glen law through a new model for grain-size evolution in ice. In our model, grain size evolves in response to the balance between dynamic recrystallization and grain growth. To simulate these processes we adapt the "wattmeter" [2], originally developed within the solid-Earth community to quantify grain size in crustal and mantle rocks. The wattmeter posits that grain size is controlled by a balance between the mechanical work required for grain growth and dynamic grain size reduction. The evolution of grain size in turn controls the relative contributions of dislocation creep and grain boundary sliding, and thus the effective stress exponent for ice flow. Using this approach, we first benchmark our grain size evolution model on experimental data and then calculate grain size in two end-member scenarios: (1) as a function of depth within an ice-sheet, and (2) across an ice-stream margin. We show that the calculated grain sizes match ice core observations for the interior of ice sheets. Furthermore, owing to the influence of grain size on strain rate, the variation in grain size with deformation conditions results in an effective stress exponent intermediate between grain boundary sliding and dislocation creep. [1] Goldsby & Kohlstedt, JGR, 2001; [2] Austin & Evans, Geology, 1997

  14. Airframe Icing Research Gaps: NASA Perspective

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  15. Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study

    DOE PAGES

    Kalesse, Heike; de Boer, Gijs; Solomon, Amy; ...

    2016-11-23

    Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less

  16. Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalesse, Heike; de Boer, Gijs; Solomon, Amy

    Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less

  17. In vitro uses of biological cryoprotectants.

    PubMed Central

    Lillford, Peter J; Holt, Chris B

    2002-01-01

    Ice can be anything from a highly destructive agent in agriculture to a useful building material. Established industries are based on the known rules of physics and chemistry which allow some control of amounts of ice or ice crystal geometry. However, organisms have much more subtle requirements to maintain their delicate internal structure if they are to survive freezing. As a result they have selected specific molecules for freezing-point depression, osmotic regulation, ice nucleation and crystal growth inhibition. All these active species may have potential commercial use once they are identified, understood and produced at economic scales. We examine the progress made so far in extending biological subtlety into commercial processes, and look for prospects for further innovation. PMID:12171658

  18. Bioinspired Materials for Controlling Ice Nucleation, Growth, and Recrystallization.

    PubMed

    He, Zhiyuan; Liu, Kai; Wang, Jianjun

    2018-05-15

    Ice formation, mainly consisting of ice nucleation, ice growth, and ice recrystallization, is ubiquitous and crucial in wide-ranging fields from cryobiology to atmospheric physics. Despite active research for more than a century, the mechanism of ice formation is still far from satisfactory. Meanwhile, nature has unique ways of controlling ice formation and can provide resourceful avenues to unravel the mechanism of ice formation. For instance, antifreeze proteins (AFPs) protect living organisms from freezing damage via controlling ice formation, for example, tuning ice nucleation, shaping ice crystals, and inhibiting ice growth and recrystallization. In addition, AFP mimics can have applications in cryopreservation of cells, tissues, and organs, food storage, and anti-icing materials. Therefore, continuous efforts have been made to understand the mechanism of AFPs and design AFP inspired materials. In this Account, we first review our recent research progress in understanding the mechanism of AFPs in controlling ice formation. A Janus effect of AFPs on ice nucleation was discovered, which was achieved via selectively tethering the ice-binding face (IBF) or the non-ice-binding face (NIBF) of AFPs to solid surfaces and investigating specifically the effect of the other face on ice nucleation. Through molecular dynamics (MD) simulation analysis, we observed ordered hexagonal ice-like water structure atop the IBF and disordered water structure atop the NIBF. Therefore, we conclude that the interfacial water plays a critical role in controlling ice formation. Next, we discuss the design and fabrication of AFP mimics with capabilities in tuning ice nucleation and controlling ice shape and growth, as well as inhibiting ice recrystallization. For example, we tuned ice nucleation via modifying solid surfaces with supercharged unfolded polypeptides (SUPs) and polyelectrolyte brushes (PBs) with different counterions. We found graphene oxide (GO) and oxidized quasi-carbon nitride quantum dots (OQCNs) had profound effects in controlling ice shape and inhibiting ice growth. We also studied the ion-specific effect on ice recrystallization inhibition (IRI) with a large variety of anions and cations. All functionalities are achieved by tuning the properties of interfacial water on these materials, which reinforces the importance of the interfacial water in controlling ice formation. Finally, we review the development of novel application-oriented materials emerging from our enhanced understanding of ice formation, for example, ultralow ice adhesion coatings with aqueous lubricating layer, cryopreservation of cells by inhibiting ice recrystallization, and two-dimensional (2D) and three-dimensional (3D) porous materials with tunable pore sizes through recrystallized ice crystal templates. This Account sheds new light on the molecular mechanism of ice formation and will inspire the design of unprecedented functional materials based on controlled ice formation.

  19. Parameterizing Aggregation Rates: Results of cold temperature ice-ash hydrometeor experiments

    NASA Astrophysics Data System (ADS)

    Courtland, L. M.; Dufek, J.; Mendez, J. S.; McAdams, J.

    2014-12-01

    Recent advances in the study of tephra aggregation have indicated that (i) far-field effects of tephra sedimentation are not adequately resolved without accounting for aggregation processes that preferentially remove the fine ash fraction of volcanic ejecta from the atmosphere as constituent pieces of larger particles, and (ii) the environmental conditions (e.g. humidity, temperature) prevalent in volcanic plumes may significantly alter the types of aggregation processes at work in different regions of the volcanic plume. The current research extends these findings to explore the role of ice-ash hydrometeor aggregation in various plume environments. Laboratory experiments utilizing an ice nucleation chamber allow us to parameterize tephra aggregation rates under the cold (0 to -50 C) conditions prevalent in the upper regions of volcanic plumes. We consider the interaction of ice-coated tephra of variable thickness grown in a controlled environment. The ice-ash hydrometers interact collisionally and the interaction is recorded by a number of instruments, including high speed video to determine if aggregation occurs. The electric charge on individual particles is examined before and after collision to examine the role of electrostatics in the aggregation process and to examine the charge exchange process. We are able to examine how sticking efficiency is related to both the relative abundance of ice on a particle as well as to the magnitude of the charge carried by the hydrometeor. We here present preliminary results of these experiments, the first to constrain aggregation efficiency of ice-ash hydrometeors, a parameter that will allow tephra dispersion models to use near-real-time meteorological data to better forecast particle residence time in the atmosphere.

  20. Discrete-element simulation of sea-ice mechanics: Contact mechanics and granular jamming

    NASA Astrophysics Data System (ADS)

    Damsgaard, A.; Adcroft, A.; Sergienko, O. V.; Stern, A. A.

    2017-12-01

    Lagrangian models of sea-ice dynamics offer several advantages to Eulerian continuum methods. Spatial discretization on the ice-floe scale is natural for Lagrangian models, which additionally offer the convenience of being able to handle arbitrary sea-ice concentrations. This is likely to improve model performance in ice-marginal zones with strong advection. Furthermore, phase transitions in granular rheology around the jamming limit, such as observed when sea ice moves through geometric confinements, includes sharp thresholds in effective viscosity which are typically ignored in Eulerian models. Granular jamming is a stochastic process dependent on having the right grains in the right place at the right time, and the jamming likelihood over time can be described by a probabilistic model. Difficult to parameterize in continuum formulations, jamming occurs naturally in dense granular systems simulated in a Lagrangian framework, and is a very relevant process controlling sea-ice transport through narrow straits. We construct a flexible discrete-element framework for simulating Lagrangian sea-ice dynamics at the ice-floe scale, forced by ocean and atmosphere velocity fields. Using this framework, we demonstrate that frictionless contact models based on compressive stiffness alone are unlikely to jam, and describe two different approaches based on friction and tensile strength which both result in increased bulk shear strength of the granular assemblage. The frictionless but cohesive contact model, with certain tensile strength values, can display jamming behavior which on the large scale is very similar to a more complex and realistic model with contact friction and ice-floe rotation.

  1. Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models.

    PubMed

    Hillier, John K; Kougioumtzoglou, Ioannis A; Stokes, Chris R; Smith, Michael J; Clark, Chris D; Spagnolo, Matteo S

    2016-01-01

    Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A 'stochastic instability' (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models.

  2. The Heat Flux through the Ice Shell on Europa, Constraints from Measurements in Terrestrial Conditions

    NASA Astrophysics Data System (ADS)

    Hruba, J.; Kletetschka, G.

    2017-12-01

    Heat transport across the ice shell of Europa controls the thermal evolution of its interior. Such process involves energy sources that drive ice resurfacing (1). More importantly, heat flux through the ice shell controls the thickness of the ice (2), that is poorly constrained between 1 km to 30+ km (3). Thin ice would allow ocean water to be affected by radiation from space. Thick ice would limit the heat ocean sources available to the rock-ocean interface at the ocean's bottom due to tidal dissipation and potential radioactive sources. The heat flux structures control the development of geometrical configurations on the Europa's surface like double ridges, ice diapirs, chaos regions because the rheology of ice is temperature dependent (4).Analysis of temperature record of growing ice cover over a pond and water below revealed the importance of solar radiation during the ice growth. If there is no snow cover, a sufficient amount of solar radiation can penetrate through the ice and heat the water below. Due to temperature gradient, there is a heat flux from the water to the ice (Qwi), which may reduce ice growth at the bottom. Details and variables that constrain the heat flux through the ice can be utilized to estimate the ice thickness. We show with this analog analysis provides the forth step towards measurement strategy on the surface of Europa. We identify three types of thermal profiles (5) and fourth with combination of all three mechanisms.References:(1) Barr, A. C., A. P. Showman, 2009, Heat transfer in Europa's icy shell, University of Arizona Press, p. 405-430.(2) Ruiz, J., J. A. Alvarez-Gómez, R. Tejero, and N. Sánchez, 2007, Heat flow and thickness of a convective ice shell on Europa for grain size-dependent rheologies: Icarus, v. 190, p. 145-154.(3) Billings, S. E., S. A. Kattenhorn, 2005, The great thickness debate: Ice shell thickness models for Europa and comparisons with estimates based on flexure at ridges: Icarus, v. 177, p. 397-412.(4) Quick, L. C., B. D. Marsh, 2016, Heat transfer of ascending cryomagma on Europa: Journal of Volcanology and Geothermal Research, v. 319, p. 66-77.(5) Mitri, G., A. P. Showman, 2005, Convective-conductive transitions and sensitivity of a convecting ice shell to perturbations in heat flux and tidal-heating rate: Implications for Europa: Icarus, v. 177, p. 447-460.

  3. Astronomical Ice: The Effects of Treating Ice as a Porous Media on the Dynamics and Evolution of Extraterrestrial Ice-Ocean Environments

    NASA Astrophysics Data System (ADS)

    Buffo, J.; Schmidt, B. E.

    2015-12-01

    With the prevalence of water and ice rich environments in the solar system, and likely the universe, becoming more apparent, understanding the evolutionary dynamics and physical processes of such locales is of great importance. Piqued interest arises from the understanding that the persistence of all known life depends on the presence of liquid water. As in situ investigation is currently infeasible, accurate numerical modeling is the best technique to demystify these environments. We will discuss an evolving model of ice-ocean interaction aimed at realistically describing the behavior of the ice-ocean interface by treating basal ice as a porous media, and its possible implications on the formation of astrobiological niches. Treating ice as a porous media drastically affects the thermodynamic properties it exhibits. Thus inclusion of this phenomenon is critical in accurately representing the dynamics and evolution of all ice-ocean environments. This model utilizes equations that describe the dynamics of sea ice when it is treated as a porous media (Hunke et. al. 2011), coupled with a basal melt and accretion model (Holland and Jenkins 1999). Combined, these two models produce the most accurate description of the processes occurring at the base of terrestrial sea ice and ice shelves, capable of resolving variations within the ice due to environmental pressures. While these models were designed for application to terrestrial environments, the physics occurring at any ice-water interface is identical, and these models can be used to represent the evolution of a variety of icy astronomical bodies. As terrestrial ice shelves provide a close analog to planetary ice-ocean environments, we truth test the models validity against observations of ice shelves. We apply this model to the ice-ocean interface of the icy Galilean moon Europa. We include profiles of temperature, salinity, solid fraction, and Darcy velocity, as well as temporally and spatially varying melt and accretion rates. A porous medium is an ideal place for the coalescence of nutrients and the formation of energy gradients, key controllers of biological activity. Understanding the physics that influence ice-ocean exchange is thus essential in assessing the habitability of Europa and its contemporaries.

  4. On the impact of ice-ocean interaction on Greenland glaciers versus calving speed.

    NASA Astrophysics Data System (ADS)

    Rignot, E. J.; Menemenlis, D.; Morlighem, M.; Wood, M.; Millan, R.; Mouginot, J.; An, L.

    2016-12-01

    Glacier retreat from frontal ablation is a delicate balance between subaqueous melt, calving processes and bed geometry. Here, we model subaqueous melt from a large number of Greenland tidewater glaciers using generalized 3D, high resolution simulations of ice melt from the MITgcm ocean model constrained by subglacial melt from RACMO2.3 and ISSM, ocean temperature from ECCO2-4km Arctic, and bed topography from OMG and MC for 1992-2015. The results are analyzed in combination with ice-front retreat and glacier speed from Landsat and imaging radar data since the 1990s. We find that subaqueous melt is 2-3 times greater in summer than in winter and doubled in magnitude since the 1990s because of enhanced ice sheet runoff and warmer ocean temperature. Glaciers that retreated rapidly are characterized by subaqueous melt rates comparable to their calving speed and favorable bed geometry. Glaciers dominated by calving processes are in contrast more resilient to thermal forcing from the ocean, especially in the presence of stabilizing geometry. The study highlights the fundamental importance of calving processes in controlling glacier retreat in Greenland.

  5. Frustules to fragments, diatoms to dust: How degradation of microfossil shape and microstructures can teach us how ice sheets work

    USGS Publications Warehouse

    Scherer, R.P.; Sjunneskog, C.M.; Iverson, M.R.; Hooyer, T.S.

    2005-01-01

    In a laboratory experiment we investigated micro- and nanoscale changes in fossil diatom valves and in the texture of diatomaceous sediments that result from ice sheet overburden and subglacial shearing. Our experiment included compression and shearing of Antarctic diatom-rich sediments in a ring shear device and comparison of experimental samples with natural glacial sediments from the Antarctic continental shelf. The purpose of the experiment is to establish objective criteria for analyzing subglacial processes and interpreting the origin of glacial-geologic features on the Antarctic continental shelf. We find distinct changes resulting from different glacial settings, with respect to whole diatom frustules, diatom micromorphology, and microtextural properties of sedimentary units. By providing constraints on subglacial shearing, these observations of genetically controlled micro- and nanoscale diatom structures and architecture are contributing to the understanding of large-scale glacial processes, aiding the development of models of modern ice sheet processes, and guiding interpretation of past ice sheet configurations. Copyright ?? 2005 American Scientific Publishers. All rights reserved.

  6. Physical modeling and monitoring of the process of thermal-erosion of an ice-wedge during a partially-controlled field experiment (Bylot Island, NU, Canada)

    NASA Astrophysics Data System (ADS)

    Godin, E.; Fortier, D.

    2013-12-01

    Syngenetic ice-wedges polygons are widespread periglacial features of the Arctic. On Bylot Island, Nunavut, Canada, numerous thermo-erosion gullies up to several 100's m in length developed in polygonal wetlands during the last decades. These gullies contributed to drainage of these wetlands and changed dramatically local ecological conditions. Concentrated and repeated snowmelt surface runoff infiltrated frost cracks, where convective heat transfer between flowing water and ice initiated piping in ice wedges leading to the rapid development of tunnels and gullies in the permafrost (Fortier D. et al., 2007). We conducted field experiments to quantify the convection process and speed of ice wedges ablation. The experiments were accomplished between the 23/06/2013 and the 05/07/2013 over A; an exposed sub-horizontal ice-wedge surface and B; a tunnel in an ice-wedge crack. The ice was instrumented with graduated sticks to calculate the ice ablation following the flow of a defined amount of water. A fixed quantity of water obtained from a nearby waterfall was diverted over the ice through a PVC pipe. Water temperature Wt (K), quantity Wq (L s-1 or m3 s-1), ice ablation rate Iar (m s-1) and convective heat transfer coefficient α (W m-2 K) were obtained during the 5 experiments. The objective of this paper is to quantify the heat transfer process from field measurements from an ice wedge under ablation and to compare with coefficients from previous researches and in the literature. For each experiment with the ice-surface scenario, water temperature varied between 280 K and 284 K. Discharge varied between 0.0001 and 0.0003 m3 s-1. Ablation rate varied between 1.8 * 10-5 and 0.0004 m s-1. Heat transfer coefficient varied between 706 and 11 655 W m-2 K and between 54 and 4802 W of heat was transferred to ice. For each experiment with the tunnel scenario, water temperature was 284 K × 1 K. Discharge was 0.0002 m3 s-1. Ablation rate varied between 0.0001 and 0.0003 m s-1. Heat transfer coefficient varied between 2644 and 7934 W m-2 K and between 1791 and 5374 W of heat was transferred to ice. Water temperature exiting the tunnel was less than 279 K. Both contexts of experimentation are occurring frequently during gully development. A small input of water over exposed massive-ice can erode significant volume of ice-wedges ice, thermally and mechanically. Empiric determination of the heat transfer coefficient using the parameters measured in the field will provide a better understanding of water temperature and discharge relative importance in the thermo-erosion of ice. Fortier, D., Allard, M., et al. (2007). "Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot island, Canadian Arctic Archipelago." Permafrost and Periglacial Processes 18(3): 229-243.

  7. Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    De Rydt, Jan; Hilmar Gudmundsson, G.; Nagler, Thomas; Wuite, Jan; King, Edward C.

    2018-02-01

    We report on the recent reactivation of a large rift in the Brunt Ice Shelf, East Antarctica, in December 2012 and the formation of a 50 km long new rift in October 2016. Observations from a suite of ground-based and remote sensing instruments between January 2000 and July 2017 were used to track progress of both rifts in unprecedented detail. Results reveal a steady accelerating trend in their width, in combination with alternating episodes of fast ( > 600 m day-1) and slow propagation of the rift tip, controlled by the heterogeneous structure of the ice shelf. A numerical ice flow model and a simple propagation algorithm based on the stress distribution in the ice shelf were successfully used to hindcast the observed trajectories and to simulate future rift progression under different assumptions. Results show a high likelihood of ice loss at the McDonald Ice Rumples, the only pinning point of the ice shelf. The nascent iceberg calving and associated reduction in pinning of the Brunt Ice Shelf may provide a uniquely monitored natural experiment of ice shelf variability and provoke a deeper understanding of similar processes elsewhere in Antarctica.

  8. Mechanical properties and failure behavior of unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-04-01

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  9. Mechanical properties and failure behavior of unidirectional porous ceramics.

    PubMed

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J

    2016-04-14

    We show that the honeycomb out-of-plane model derived by Gibson and Ashby can be applied to describe the compressive behavior of unidirectional porous materials. Ice-templating allowed us to process samples with accurate control over pore volume, size, and morphology. These samples allowed us to evaluate the effect of this microstructural variations on the compressive strength in a porosity range of 45-80%. The maximum strength of 286 MPa was achieved in the least porous ice-templated sample (P(%) = 49.9), with the smallest pore size (3 μm). We found that the out-of-plane model only holds when buckling is the dominant failure mode, as should be expected. Furthermore, we controlled total pore volume by adjusting solids loading and sintering temperature. This strategy allows us to independently control macroporosity and densification of walls, and the compressive strength of ice-templated materials is exclusively dependent on total pore volume.

  10. Overview of Sea-Ice Properties, Distribution and Temporal Variations, for Application to Ice-Atmosphere Chemical Processes.

    NASA Astrophysics Data System (ADS)

    Moritz, R. E.

    2005-12-01

    The properties, distribution and temporal variation of sea-ice are reviewed for application to problems of ice-atmosphere chemical processes. Typical vertical structure of sea-ice is presented for different ice types, including young ice, first-year ice and multi-year ice, emphasizing factors relevant to surface chemistry and gas exchange. Time average annual cycles of large scale variables are presented, including ice concentration, ice extent, ice thickness and ice age. Spatial and temporal variability of these large scale quantities is considered on time scales of 1-50 years, emphasizing recent and projected changes in the Arctic pack ice. The amount and time evolution of open water and thin ice are important factors that influence ocean-ice-atmosphere chemical processes. Observations and modeling of the sea-ice thickness distribution function are presented to characterize the range of variability in open water and thin ice.

  11. Modeling of subaqueous melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.

    2014-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.

  12. Grain dissection as a grain size reducing mechanism during ice microdynamics

    NASA Astrophysics Data System (ADS)

    Steinbach, Florian; Kuiper, Ernst N.; Eichler, Jan; Bons, Paul D.; Drury, Martin R.; Griera, Albert; Pennock, Gill M.; Weikusat, Ilka

    2017-04-01

    Ice sheets are valuable paleo-climate archives, but can lose their integrity by ice flow. An understanding of the microdynamic mechanisms controlling the flow of ice is essential when assessing climatic and environmental developments related to ice sheets and glaciers. For instance, the development of a consistent mechanistic grain size law would support larger scale ice flow models. Recent research made significant progress in numerically modelling deformation and recrystallisation mechanisms in the polycrystalline ice and ice-air aggregate (Llorens et al., 2016a,b; Steinbach et al., 2016). The numerical setup assumed grain size reduction is achieved by the progressive transformation of subgrain boundaries into new high angle grain boundaries splitting an existing grain. This mechanism is usually termed polygonisation. Analogue experiments suggested, that strain induced grain boundary migration can cause bulges to migrate through the whole of a grain separating one region of the grain from another (Jessell, 1986; Urai, 1987). This mechanism of grain dissection could provide an alternative grain size reducing mechanism, but has not yet been observed during ice microdynamics. In this contribution, we present results using an updated numerical approach allowing for grain dissection. The approach is based on coupling the full field theory crystal visco-plasticity code (VPFFT) of Lebensohn (2001) to the multi-process modelling platform Elle (Bons et al., 2008). VPFFT predicts the mechanical fields resulting from short strain increments, dynamic recrystallisation process are implemented in Elle. The novel approach includes improvements to allow for grain dissection, which was topologically impossible during earlier simulations. The simulations are supported by microstructural observations from NEEM (North Greenland Eemian Ice Drilling) ice core. Mappings of c-axis orientations using the automatic fabric analyser and full crystallographic orientations using electron backscatter diffraction (EBSD) are presented. Numerical simulations predict and resolve the microstructural evolution over strain and time. The occurrence of processes such as grain dissection can only be proven using such time resolved movies of microstructure evolution. We will present movies that show grain dissection as a common process during the simulations. Microstructures obtained from NEEM ice core support the observations and we provide evidence for grain dissection in natural ice. Grain dissection is observed to be most efficient relative to polygonisation, when the microstructure approaches steady state grain sizes. This is consistent with analogue experiments observing grain dissection by Jessell (1986) and Urai (1987). Our research suggests a novel grain size reducing mechanisms in ice microdynamics that should be considered when developing a consistent grain size law.

  13. Synthesis of functional ceramic supports by ice templating and atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Klotz, Michaela; Weber, Matthieu; Deville, Sylvain; Oison, Didier; Iatsunskyi, Igor; Coy, Emerson; Bechelany, Mikhael

    2018-05-01

    In this work, we report an innovative route for the manufacturing of functional ceramic supports, by combining ice templating of yttria stabilized zirconia (YSZ) and atomic layer deposition (ALD) of Al2O3 processes. Ceramic YSZ monoliths are prepared using the ice-templating process, which is based on the controlled crystallization of water following a thermal gradient. Sublimation of the ice and the sintering of the material reveal the straight micrometer sized pores shaped by the ice crystal growth. The high temperature sintering allows for the ceramic materials to present excellent mechanical strength and porosities of 67%. Next, the conformality benefit of ALD is used to deposit an alumina coating at the surface of the YSZ pores, in order to obtain a functional material. The Al2O3 thin films obtained by ALD are 100 nm thick and conformally deposited within the macroporous ceramic supports, as shown by SEM and EDS analysis. Mercury intrusion experiments revealed a reduction of the entrance pore diameter, in line with the growth per cycle of 2 Å of the ALD process. In addition to the manufacture of the innovative ceramic nanomaterials, this article also describes the fine characterization of the coatings obtained using mercury intrusion, SEM and XRD analysis.

  14. Groundwater flow with energy transport and water-ice phase change: Numerical simulations, benchmarks, and application to freezing in peat bogs

    USGS Publications Warehouse

    McKenzie, J.M.; Voss, C.I.; Siegel, D.I.

    2007-01-01

    In northern peatlands, subsurface ice formation is an important process that can control heat transport, groundwater flow, and biological activity. Temperature was measured over one and a half years in a vertical profile in the Red Lake Bog, Minnesota. To successfully simulate the transport of heat within the peat profile, the U.S. Geological Survey's SUTRA computer code was modified. The modified code simulates fully saturated, coupled porewater-energy transport, with freezing and melting porewater, and includes proportional heat capacity and thermal conductivity of water and ice, decreasing matrix permeability due to ice formation, and latent heat. The model is verified by correctly simulating the Lunardini analytical solution for ice formation in a porous medium with a mixed ice-water zone. The modified SUTRA model correctly simulates the temperature and ice distributions in the peat bog. Two possible benchmark problems for groundwater and energy transport with ice formation and melting are proposed that may be used by other researchers for code comparison. ?? 2006 Elsevier Ltd. All rights reserved.

  15. Ice formation and development in aged, wintertime cumulus over the UK : observations and modelling

    NASA Astrophysics Data System (ADS)

    Crawford, I.; Bower, K. N.; Choularton, T. W.; Dearden, C.; Crosier, J.; Westbrook, C.; Capes, G.; Coe, H.; Connolly, P.; Dorsey, J. R.; Gallagher, M. W.; Williams, P.; Trembath, J.; Cui, Z.; Blyth, A.

    2011-11-01

    In-situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of Radar and Lidar as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than ~-8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed near cloud top temperatures (~-7 °C). The role of biological particles, consistent with concentrations observed near the surface, acting as potential efficient high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L-1) could be produced by powerful secondary ice particle production emphasising the importance of understanding primary ice formation in slightly supercooled clouds. Aircraft penetrations at -3.5 °C, showed peak ice crystal concentrations of up to 100 L-1 which together with the characteristic ice crystal habits observed (generally rimed ice particles and columns) suggested secondary ice production had occurred. To investigate whether the Hallett-Mossop (HM) secondary ice production process could account for these observations, ice splinter production rates were calculated. These calculated rates and observations could only be reconciled provided the constraint that only droplets >24 μm in diameter could lead to splinter production, was relaxed slightly by 2 μm. Model simulations of the case study were also performed with the WRF (Weather, Research and Forecasting) model and ACPIM (Aerosol Cloud and Precipitation Interactions Model) to investigate the likely origins of the ice phase in these slightly supercooled clouds and to assess the role played by the HM process in this and in controlling precipitation formation under these conditions. WRF results showed that while HM does act to increase the mass and number concentration of ice particles produced in the model simulations, in the absence of HM, the ice number concentration arising from primary ice nucleation alone (several L-1) was apparently sufficient to sustain precipitation although the distribution of the precipitation was changed. Thus in the WRF model the HM process was shown to be non-critical for the formation of precipitation in this particular case. However, this result is seen to be subject to an important caveat concerning the simulation of the cloud macrostructure. The model was unable to capture a sharp temperature inversion seen in the radiosonde profiles at 2 km, and consequently the cloud top temperature in the model was able to reach lower values than observed in-situ or obtained from satellite data. ACPIM simulations confirmed the HM process to be a very powerful mechanism for producing the observed high ice concentrations, provided that primary nucleation occured to initiate the ice formation, and large droplets were present which then fell collecting the primary ice particles to form instant rimer particles. However, the time to generate the observed peak ice concentrations was found to be dependant on the number of primary IN present (decreasing with increasing IN number). This became realistic (around 20 min) only when the temperature input to the existing IN parameterisation was 6 °C lower than observed at cloud top, highlighting the requirement to improve basic knowledge of the number and type of IN active at these high temperatures. In simulations where cloud droplet numbers were realistic the precipitation rate was found to be unaffected by HM, with warm rain processes dominating precipitation development in this instance.

  16. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor

    NASA Astrophysics Data System (ADS)

    Andreassen, K.; Hubbard, A.; Winsborrow, M.; Patton, H.; Vadakkepuliyambatta, S.; Plaza-Faverola, A.; Gudlaugsson, E.; Serov, P.; Deryabin, A.; Mattingsdal, R.; Mienert, J.; Bünz, S.

    2017-06-01

    Widespread methane release from thawing Arctic gas hydrates is a major concern, yet the processes, sources, and fluxes involved remain unconstrained. We present geophysical data documenting a cluster of kilometer-wide craters and mounds from the Barents Sea floor associated with large-scale methane expulsion. Combined with ice sheet/gas hydrate modeling, our results indicate that during glaciation, natural gas migrated from underlying hydrocarbon reservoirs and was sequestered extensively as subglacial gas hydrates. Upon ice sheet retreat, methane from this hydrate reservoir concentrated in massive mounds before being abruptly released to form craters. We propose that these processes were likely widespread across past glaciated petroleum provinces and that they also provide an analog for the potential future destabilization of subglacial gas hydrate reservoirs beneath contemporary ice sheets.

  17. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each... carry out a snow and ice control plan in a manner authorized by the Administrator. (b) The snow and ice...

  18. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each... carry out a snow and ice control plan in a manner authorized by the Administrator. (b) The snow and ice...

  19. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each... carry out a snow and ice control plan in a manner authorized by the Administrator. (b) The snow and ice...

  20. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each... carry out a snow and ice control plan in a manner authorized by the Administrator. (b) The snow and ice...

  1. 14 CFR 139.313 - Snow and ice control.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Snow and ice control. 139.313 Section 139... AIRPORTS Operations § 139.313 Snow and ice control. (a) As determined by the Administrator, each... carry out a snow and ice control plan in a manner authorized by the Administrator. (b) The snow and ice...

  2. Degradation and stabilization of ice wedges: Implications for assessing risk of thermokarst in northern Alaska

    NASA Astrophysics Data System (ADS)

    Kanevskiy, Mikhail; Shur, Yuri; Jorgenson, Torre; Brown, Dana R. N.; Moskalenko, Nataliya; Brown, Jerry; Walker, Donald A.; Raynolds, Martha K.; Buchhorn, Marcel

    2017-11-01

    Widespread degradation of ice wedges has been observed during the last decades in numerous areas within the continuous permafrost zone of Eurasia and North America. To study ice-wedge degradation, we performed field investigations at Prudhoe Bay and Barrow in northern Alaska during 2011-2016. In each study area, a 250-m transect was established with plots representing different stages of ice-wedge degradation/stabilization. Field work included surveying ground- and water-surface elevations, thaw-depth measurements, permafrost coring, vegetation sampling, and ground-based LiDAR scanning. We described cryostratigraphy of frozen soils and stable isotope composition, analyzed environmental characteristics associated with ice-wedge degradation and stabilization, evaluated the vulnerability and resilience of ice wedges to climate change and disturbances, and developed new conceptual models of ice-wedge dynamics that identify the main factors affecting ice-wedge degradation and stabilization and the main stages of this quasi-cyclic process. We found significant differences in the patterns of ice-wedge degradation and stabilization between the two areas, and the patterns were more complex than those previously described because of the interactions of changing topography, water redistribution, and vegetation/soil responses that can interrupt or reinforce degradation. Degradation of ice wedges is usually triggered by an increase in the active-layer thickness during exceptionally warm and wet summers or as a result of flooding or disturbance. Vulnerability of ice wedges to thermokarst is controlled by the thickness of the intermediate layer of the upper permafrost, which overlies ice wedges and protects them from thawing. In the continuous permafrost zone, degradation of ice wedges rarely leads to their complete melting; and in most cases wedges eventually stabilize and can then resume growing, indicating a somewhat cyclic and reversible process. Stabilization of ice wedges after their partial degradation makes them better protected than before degradation because the intermediate layer is usually 2 to 3 times thicker on top of stabilized ice wedges than on top of initial ice wedges in undisturbed conditions. As a result, the likelihood of formation of large thaw lakes in the continuous permafrost zone triggered by ice-wedge degradation alone is very low.

  3. Laboratory measurements of ice tensile strength dependence on density and concentration of silicate and polymer impurities at low temperatures

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Beyeler, J. D.; Polito, P. J.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G. C.

    2009-12-01

    The tensile strength of ice bedrock on Titan should strongly influence the effectiveness of the erosional processes responsible for carving the extensive fluvial drainage networks and other surface features visible in images returned by the Cassini and Huygens probes. Recent measurements of the effect of temperature on the tensile strength of low-porosity, polycrystalline ice, without impurities, suggest that ice bedrock at the Titan surface temperature of 93 K may be as much as five times stronger than ice at terrestrial surface temperatures. However, ice bedrock on Titan and other outer solar system bodies may have significant porosity, and impurities such silicates or polymers are possible in such ices. In this laboratory investigation we are exploring the dependence of tensile strength on the density and concentration of impurities, for polycrystalline ice across a wide range of temperatures. We use the Brazilian tensile splitting test to measure strength, and control temperature with dry ice and liquid nitrogen. The 50 mm diameter ice cores are made from a log-normally distributed seed crystal mixture with a median size of 1.4 mm. To control ice density and porosity we vary the packing density of the seed grains in core molds and vary the degree of saturation of the matrix with added near-freezing distilled water. We also vary ice density by blending in a similarly-sized mixture of angular fragments of two types of impurities, a fine-grained volcanic rock and a polyethylene polymer. Because both types of impurities have greater tensile strength than ice at Earth surface temperatures, we expect higher concentrations of impurities to correlate with increased strength for ice-rock and ice-polymer mixtures. However, at the ultra-cold temperatures of the outer planets, we expect significant divergence in the temperature dependence of ice tensile strength for the various mixtures and resulting densities. These measurements will help constrain the range of possible ice tensile strengths that might occur on Titan and other solar system bodies.

  4. The ice nucleation temperature determines the primary drying rate of lyophilization for samples frozen on a temperature-controlled shelf.

    PubMed

    Searles, J A; Carpenter, J F; Randolph, T W

    2001-07-01

    The objective of this study was to determine the influence of ice nucleation temperature on the primary drying rate during lyophilization for samples in vials that were frozen on a lyophilizer shelf. Aqueous solutions of 10% (w/v) hydroxyethyl starch were frozen in vials with externally mounted thermocouples and then partially lyophilized to determine the primary drying rate. Low- and high-particulate-containing samples, ice-nucleating additives silver iodide and Pseudomonas syringae, and other methods were used to obtain a wide range of nucleation temperatures. In cases where the supercooling exceeded 5 degrees C, freezing took place in the following three steps: (1) primary nucleation, (2) secondary nucleation encompassing the entire liquid volume, and (3) final solidification. The primary drying rate was dependent on the ice nucleation temperature, which is stochastic in nature but is affected by particulate content and the presence of ice nucleators. Sample cooling rates of 0.05 to 1 degrees C/min had no effect on nucleation temperatures and drying rate. We found that the ice nucleation temperature is the primary determinant of the primary drying rate. However, the nucleation temperature is not under direct control, and its stochastic nature and sensitivity to difficult-to-control parameters result in drying rate heterogeneity. Nucleation temperature heterogeneity may also result in variation in other morphology-related parameters such as surface area and secondary drying rate. Overall, these results document that factors such as particulate content and vial condition, which influence ice nucleation temperature, must be carefully controlled to avoid, for example, lot-to-lot variability during cGMP production. In addition, if these factors are not controlled and/or are inadvertently changed during process development and scaleup, a lyophilization cycle that was successful on the research scale may fail during large-scale production.

  5. Insights into Spatial Sensitivities of Ice Mass Response to Environmental Change from the SeaRISE Ice Sheet Modeling Project I: Antarctica

    NASA Technical Reports Server (NTRS)

    Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako; Aschwanden, Andy; Bueler, Ed; Choi, Hyengu; Fastook, Jim; Granzow, Glen; Greve, Ralf; Gutowski, Gail; hide

    2013-01-01

    Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikov, Mikhail; Ackerman, Andrew; Avramov, Alex

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP) and potential cloud dissipation, in agreement with earlier studies. By comparing simulations with the same microphysics coupled to different dynamical cores as well as the same dynamics coupled to differentmore » microphysics schemes, it is found that the ice water path (IWP) is mainly controlled by ice microphysics, while the inter-model differences in LWP are largely driven by physics and numerics of the dynamical cores. In contrast to previous intercomparisons, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSD) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case.« less

  7. Aerogeophysical evidence for active volcanism beneath the West Antarctic Ice Sheet

    NASA Technical Reports Server (NTRS)

    Blankenship, Donald D.; Bell, Robin E.; Hodge, Steven M.; Brozena, John M.; Behrendt, John C.

    1993-01-01

    Although it is widely understood that the collapse of the West Antarctic Ice Sheet (WAIS) would cause a global sea-level rise of 6 m, there continues to be considerable debate about the response of this ice sheet to climate change. The stability of the WAIS, which is characterized by a bed grounded well below sea level, may depend on geologically controlled conditions at the base, which are independent of climate. Ice streams moving up to 750 m/yr disperse material from the interior through to the oceans. As these ice streams tend to buffer the reservoir of slow-moving inland ice from exposure to oceanic degradation, understanding the ice-streaming process is important for evaluating WAIS stability. There is strong evidence that ice streams slide on a lubricating layer of water-saturated till. Development of this basal layer requires both water and easily eroded sediments. Active lithospheric extension may elevate regional heat flux, increase basal melting, and trigger ice streaming. If a geologically defined boundary with a sharp contrast in geothermal flux exists beneath the WAIS, ice streams may only be capable of operating as a buffer over a restricted region. Should ocean waters penetrate beyond this boundary, the ice-stream buffer would disappear, possibly triggering a collapse of the inland ice reservoir. Aerogeophysical evidence for active volcanism and elevated heat flux beneath the WAIS near the critical region where ice streaming begins is presented.

  8. Influence of aeolian activities on the distribution of microbial abundance in glacier ice

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, X.-K.; Si, J.; Wu, G.-J.; Tian, L.-D.; Xiang, S.-R.

    2014-10-01

    Microorganisms are continuously blown onto the glacier snow, and thus the glacial depth profiles provide excellent archives of microbial communities and climatic and environmental changes. However, it is uncertain about how aeolian processes that cause climatic changes control the distribution of microorganisms in the glacier ice. In the present study, microbial density, stable isotopic ratios, 18O / 16O in the precipitation, and mineral particle concentrations along the glacial depth profiles were collected from ice cores from the Muztag Ata glacier and the Dunde ice cap. The ice core data showed that microbial abundance was often, but not always associated with high concentrations of particles. Results also revealed clear seasonal patterning with high microbial abundance occurring in both the cooling autumn and warming spring-summer seasons. Microbial comparisons among the neighbouring glaciers display a heterogeneous spatial pattern, with the highest microbial cell density in the glaciers lying adjacent to the central Asian deserts and lowest microbial density in the southwestern margin of the Tibetan Plateau. In conclusion, microbial data of the glaciers indicates the aeolian deposits of microorganisms in the glacier ice and that the spatial patterns of microorgansisms are related to differences in sources of microbial flux and intensity of aeolian activities in the current regions. The results strongly support our hypothesis of aeolian activities being the main agents controlling microbial load in the glacier ice.

  9. Ice cover, landscape setting, and geological framework of Lake Vostok, East Antarctica

    USGS Publications Warehouse

    Studinger, M.; Bell, R.E.; Karner, G.D.; Tikku, A.A.; Holt, J.W.; Morse, D.L.; David, L.; Richter, T.G.; Kempf, S.D.; Peters, M.E.; Blankenship, D.D.; Sweeney, R.E.; Rystrom, V.L.

    2003-01-01

    Lake Vostok, located beneath more than 4 km of ice in the middle of East Antarctica, is a unique subglacial habitat and may contain microorganisms with distinct adaptations to such an extreme environment. Melting and freezing at the base of the ice sheet, which slowly flows across the lake, controls the flux of water, biota and sediment particles through the lake. The influx of thermal energy, however, is limited to contributions from below. Thus the geological origin of Lake Vostok is a critical boundary condition for the subglacial ecosystem. We present the first comprehensive maps of ice surface, ice thickness and subglacial topography around Lake Vostok. The ice flow across the lake and the landscape setting are closely linked to the geological origin of Lake Vostok. Our data show that Lake Vostok is located along a major geological boundary. Magnetic and gravity data are distinct east and west of the lake, as is the roughness of the subglacial topography. The physiographic setting of the lake has important consequences for the ice flow and thus the melting and freezing pattern and the lake's circulation. Lake Vostok is a tectonically controlled subglacial lake. The tectonic processes provided the space for a unique habitat and recent minor tectonic activity could have the potential to introduce small, but significant amounts of thermal energy into the lake. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. PSL Icing Facility Upgrade Overview

    NASA Technical Reports Server (NTRS)

    Griffin, Thomas A.; Dicki, Dennis J.; Lizanich, Paul J.

    2014-01-01

    The NASA Glenn Research Center Propulsion Systems Lab (PSL) was recently upgraded to perform engine inlet ice crystal testing in an altitude environment. The system installed 10 spray bars in the inlet plenum for ice crystal generation using 222 spray nozzles. As an altitude test chamber, the PSL is capable of simulating icing events at altitude in a groundtest facility. The system was designed to operate at altitudes from 4,000 to 40,000 ft at Mach numbers up to 0.8M and inlet total temperatures from -60 to +15 degF. This paper and presentation will be part of a series of presentations on PSL Icing and will cover the development of the icing capability through design, developmental testing, installation, initial calibration, and validation engine testing. Information will be presented on the design criteria and process, spray bar developmental testing at Cox and Co., system capabilities, and initial calibration and engine validation test. The PSL icing system was designed to provide NASA and the icing community with a facility that could be used for research studies of engine icing by duplicating in-flight events in a controlled ground-test facility. With the system and the altitude chamber we can produce flight conditions and cloud environments to simulate those encountered in flight. The icing system can be controlled to set various cloud uniformities, droplet median volumetric diameter (MVD), and icing water content (IWC) through a wide variety of conditions. The PSL chamber can set altitudes, Mach numbers, and temperatures of interest to the icing community and also has the instrumentation capability of measuring engine performance during icing testing. PSL last year completed the calibration and initial engine validation of the facility utilizing a Honeywell ALF502-R5 engine and has duplicated in-flight roll back conditions experienced during flight testing. This paper will summarize the modifications and buildup of the facility to accomplish these tests.

  11. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  12. Bacterial ice crystal controlling proteins.

    PubMed

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  13. Climatic controls on the pace of glacier erosion

    NASA Astrophysics Data System (ADS)

    Koppes, Michele; Hallet, Bernard; Rignot, Eric; Mouginot, Jeremie; Wellner, Julia; Love, Katherine

    2016-04-01

    Mountain ranges worldwide have undergone large-scale modification due the erosive action of ice, yet the mechanisms that control the timing of this modification and the rate by which ice erodes remain poorly understood. Available data report a wide range of erosion rates from individual ice masses over varying timescales, suggesting that modern erosion rates exceed orogenic rates by 2-3 orders of magnitude. These modern rates are presumed to be due to dynamic acceleration of the ice masses during deglaciation and retreat. Recent numerical models have focused on replicating the processes that produce the geomorphic signatures of glacial landscapes. Central to these models is a simple quantitative index that relates erosion rate to ice dynamics and to climate. To provide such an index, we examined explicitly the factors controlling modern glacier erosion rates across climatic regimes. Holding tectonic history, bedrock lithology and glacier hypsometries relatively constant across a latitudinal transect from Patagonia to the Antarctic Peninsula, we find that modern, basin-averaged erosion rates vary by three orders of magnitude, from 1->10 mm yr-1 for temperate tidewater glaciers to 0.01-<0.1 mm yr-1 for polar outlet glaciers, largely as a function of temperature and basal thermal regime. Erosion rates also increase non-linearly with both the sliding speed and the ice flux through the ELA, in accord with theory. The general relationship between ice dynamics and erosion suggests that the erosion rate scales non-linearly with basal sliding speed, with an exponent n ≈ 2-2.62. Notably, erosion rates decrease by over two orders of magnitude between temperate and polar glaciers with similar ice discharge rates. The difference in erosion rates between temperate and colder glaciers of similar shape and size is primarily related to the abundance of meltwater accessing the bed. Since all glaciers worldwide have experienced colder than current climatic conditions, the 100-fold decrease in long-term relative to modern erosion rates may in part reflect the temporal averaging of warm and cold-based conditions over the lifecycle of these glaciers. Higher temperatures and precipitation rates at the end of glaciations favor the production of water from rainfall, surface melting and internal melting, which promotes sliding, erosion and sediment production and evacuation from under the ice. Hence, climatic variation, more than the extent of ice cover or ice volume, controls the pace at which glaciers shape mountains.

  14. Atmospheric precursors of and response to anomalous Arctic sea ice in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Kelleher, Michael; Screen, James

    2018-01-01

    This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere, and between Arctic sea ice and cold winter temperatures over Eurasia. We present normalized regressions of Arctic sea-ice area against several atmospheric variables at extended lead and lag times. Statistically significant regressions are found at leads and lags, suggesting both atmospheric precursors of, and responses to, low sea ice; but generally, the regressions are stronger when the atmosphere leads sea ice, including a weaker polar stratospheric vortex indicated by positive polar cap height anomalies. Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea ice. We argue that low sea ice and raised polar cap height are both a response to this enhanced midlatitude eddy heat flux. The so-called "warm Arctic, cold continents" anomaly pattern is present one to two months before low sea ice, but is absent in the months following low sea ice, suggesting that the Eurasian cooling and low sea ice are driven by similar processes. Lastly, our results suggest a dependence on the geographic region of low sea ice, with low Barents-Kara Sea ice correlated with a weakened polar stratospheric vortex, whilst low Sea of Okhotsk ice is correlated with a strengthened polar vortex. Overall, the results support a notion that the sea ice, polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.

  15. Controls on Arctic sea ice from first-year and multi-year ice survival rates

    NASA Astrophysics Data System (ADS)

    Armour, K.; Bitz, C. M.; Hunke, E. C.; Thompson, L.

    2009-12-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi-year (MY) ice. The transition to an Arctic that is populated by thinner first-year (FY) sea ice has important implications for future trends in area and volume. We develop a reduced model for Arctic sea ice with which we investigate how the survivability of FY and MY ice control various aspects of the sea-ice system. We demonstrate that Arctic sea-ice area and volume behave approximately as first-order autoregressive processes, which allows for a simple interpretation of September sea-ice in which its mean state, variability, and sensitivity to climate forcing can be described naturally in terms of the average survival rates of FY and MY ice. This model, used in concert with a sea-ice simulation that traces FY and MY ice areas to estimate the survival rates, reveals that small trends in the ice survival rates explain the decline in total Arctic ice area, and the relatively larger loss of MY ice area, over the period 1979-2006. Additionally, our model allows for a calculation of the persistence time scales of September area and volume anomalies. A relatively short memory time scale for ice area (~ 1 year) implies that Arctic ice area is nearly in equilibrium with long-term climate forcing at all times, and therefore observed trends in area are a clear indication of a changing climate. A longer memory time scale for ice volume (~ 5 years) suggests that volume can be out of equilibrium with climate forcing for long periods of time, and therefore trends in ice volume are difficult to distinguish from its natural variability. With our reduced model, we demonstrate the connection between memory time scale and sensitivity to climate forcing, and discuss the implications that a changing memory time scale has on the trajectory of ice area and volume in a warming climate. Our findings indicate that it is unlikely that a “tipping point” in September ice area and volume will be reached as the climate is further warmed. Finally, we suggest novel model validation techniques based upon comparing the characteristics of FY and MY ice within models to observations. We propose that keeping an account of FY and MY ice area within sea ice models offers a powerful new way to evaluate model projections of sea ice in a greenhouse warming climate.

  16. Exploring Explanations of Subglacial Bedform Sizes Using Statistical Models

    PubMed Central

    Kougioumtzoglou, Ioannis A.; Stokes, Chris R.; Smith, Michael J.; Clark, Chris D.; Spagnolo, Matteo S.

    2016-01-01

    Sediments beneath modern ice sheets exert a key control on their flow, but are largely inaccessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are accessible, and typically characterised by numerous bedforms. However, the interaction between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes might reflect ice flow conditions. To better understand this link we present a first exploration of a variety of statistical models to explain the size distribution of some common subglacial bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, constructed to reflect key aspects of the physical processes, it is possible to infer that the size distributions are most effectively explained when the dynamics of ice-water-sediment interaction associated with bedform growth is fundamentally random. A ‘stochastic instability’ (SI) model, which integrates random bedform growth and shrinking through time with exponential growth, is preferred and is consistent with other observations of palaeo-bedforms and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept demonstration that our statistical approach can bridge the gap between geomorphological observations and physical models, directly linking measurable size-frequency parameters to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing models as proposed allows quantitative predictions to be made about sizes, making the models testable; a first illustration of this is given for a hypothesised repeat geophysical survey of bedforms under active ice. Thus, we further demonstrate the potential of size-frequency distributions of subglacial bedforms to assist the elucidation of subglacial processes and better constrain ice sheet models. PMID:27458921

  17. Fragmentation and melting of the seasonal sea ice cover

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Bateson, A.; Schroeder, D.; Ridley, J. K.; Aksenov, Y.

    2017-12-01

    Recent years have seen a rapid reduction in the summer extent of Arctic sea ice. This trend has implications for navigation, oil exploration, wildlife, and local communities. Furthermore the Arctic sea ice cover impacts the exchange of heat and momentum between the ocean and atmosphere with significant teleconnections across the climate system, particularly mid to low latitudes in the Northern Hemisphere. The treatment of melting and break-up processes of the seasonal sea ice cover within climate models is currently limited. In particular floes are assumed to have a uniform size which does not evolve with time. Observations suggest however that floe sizes can be modelled as truncated power law distributions, with different exponents for smaller and larger floes. This study aims to examine factors controlling the floe size distribution in the seasonal and marginal ice zone. This includes lateral melting, wave induced break-up of floes, and the feedback between floe size and the mixed ocean layer. These results are then used to quantify the proximate mechanisms of seasonal sea ice reduction in a sea ice—ocean mixed layer model. Observations are used to assess and calibrate the model. The impacts of introducing these processes to the model will be discussed and the preliminary results of sensitivity and feedback studies will also be presented.

  18. Positive-Buoyancy Rover for Under Ice Mobility

    NASA Technical Reports Server (NTRS)

    Leichty, John M.; Klesh, Andrew T.; Berisford, Daniel F.; Matthews, Jaret B.; Hand, Kevin P.

    2013-01-01

    A buoyant rover has been developed to traverse the underside of ice-covered lakes and seas. The rover operates at the ice/water interface and permits direct observation and measurement of processes affecting freeze- over and thaw events in lake and marine environments. Operating along the 2- D ice-water interface simplifies many aspects of underwater exploration, especially when compared to submersibles, which have difficulty in station-keeping and precision mobility. The buoyant rover consists of an all aluminum body with two aluminum sawtooth wheels. The two independent body segments are sandwiched between four actuators that permit isolation of wheel movement from movement of the central tether spool. For normal operations, the wheels move while the tether spool feeds out line and the cameras on each segment maintain a user-controlled fixed position. Typically one camera targets the ice/water interface and one camera looks down to the lake floor to identify seep sources. Each wheel can be operated independently for precision turning and adjustments. The rover is controlled by a touch- tablet interface and wireless goggles enable real-time viewing of video streamed from the rover cameras. The buoyant rover was successfully deployed and tested during an October 2012 field campaign to investigate methane trapped in ice in lakes along the North Slope of Alaska.

  19. Sensitivity of simulated englacial isochrones to uncertain subglacial boundary conditions in central West Antarctica: Implications for detecting changes in ice dynamics

    NASA Astrophysics Data System (ADS)

    Muldoon, Gail; Jackson, Charles S.; Young, Duncan A.; Quartini, Enrica; Cavitte, Marie G. P.; Blankenship, Donald D.

    2017-04-01

    Information about the extent and dynamics of the West Antarctic Ice Sheet during past glaciations is preserved inside ice sheets themselves. Ice cores are capable of retrieving information about glacial history, but they are spatially sparse. Ice-penetrating radar, on the other hand, has been used to map large areas of the West Antarctic Ice Sheet and can be correlated to ice core chronologies. Englacial isochronous layers observed in ice-penetrating radar are the result of variations in ice composition, fabric, temperature and other factors. The shape of these isochronous surfaces is expected to encode information about past and present boundary conditions and ice dynamics. Dipping of englacial layers, for example, may reveal the presence of rapid ice flow through paleo ice streams or high geothermal heat flux. These layers therefore present a useful testbed for hypotheses about paleo ice sheet conditions. However, hypothesis testing requires careful consideration of the sensitivity of layer shape to the competing forces of ice sheet boundary conditions and ice dynamics over time. Controlled sensitivity tests are best completed using models, however ice sheet models generally do not have the capability of simulating layers in the presence of realistic boundary conditions. As such, modeling 3D englacial layers for comparison to observations is difficult and requires determination of a 3D ice velocity field. We present a method of post-processing simulated 3D ice sheet velocities into englacial isochronous layers using an advection scheme. We then test the sensitivity of layer geometry to uncertain boundary conditions, including heterogeneous subglacial geothermal flux and bedrock topography. By identifying areas of the ice sheet strongly influenced by boundary conditions, it may be possible to isolate the signature of paleo ice dynamics in the West Antarctic ice sheet.

  20. Seafloor Control on Sea Ice

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  1. Atmosphere-Ice-Ocean-Ecosystem Processes in a Thinner Arctic Sea Ice Regime: The Norwegian Young Sea ICE (N-ICE2015) Expedition

    NASA Astrophysics Data System (ADS)

    Granskog, Mats A.; Fer, Ilker; Rinke, Annette; Steen, Harald

    2018-03-01

    Arctic sea ice has been in rapid decline the last decade and the Norwegian young sea ICE (N-ICE2015) expedition sought to investigate key processes in a thin Arctic sea ice regime, with emphasis on atmosphere-snow-ice-ocean dynamics and sea ice associated ecosystem. The main findings from a half-year long campaign are collected into this special section spanning the Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Oceans, and Journal of Geophysical Research: Biogeosciences and provide a basis for a better understanding of processes in a thin sea ice regime in the high Arctic. All data from the campaign are made freely available to the research community.

  2. Distributed Processing Tools Definition. Volume 1. Hardware and Software Technologies for Tightly-Coupled Distributed Systems.

    DTIC Science & Technology

    1983-06-01

    LOSARDO Project Engineer APPROVED: .MARMCINIhI, Colonel. USAF Chief, Coaud and Control Division FOR THE CCOaIDKR: Acting Chief, Plea Off ice * **711...WORK UNIT NUMBERS General Dynamics Corporation 62702F Data Systems Division P 0 Box 748, Fort Worth TX 76101 55811829 I1. CONTROLLING OFFICE NAME AND...Processing System for 29 the Operation/Direction Center(s) 4-3 Distribution of Processing Control 30 for the Operation/Direction Center(s) 4-4 Generalized

  3. The Role of Sea Ice in 2 x CO2 Climate Model Sensitivity. Part 2; Hemispheric Dependencies

    NASA Technical Reports Server (NTRS)

    Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.

    1997-01-01

    How sensitive are doubled CO2 simulations to GCM control-run sea ice thickness and extent? This issue is examined in a series of 10 control-run simulations with different sea ice and corresponding doubled CO2 simulations. Results show that with increased control-run sea ice coverage in the Southern Hemisphere, temperature sensitivity with climate change is enhanced, while there is little effect on temperature sensitivity of (reasonable) variations in control-run sea ice thickness. In the Northern Hemisphere the situation is reversed: sea ice thickness is the key parameter, while (reasonable) variations in control-run sea ice coverage are of less importance. In both cases, the quantity of sea ice that can be removed in the warmer climate is the determining factor. Overall, the Southern Hemisphere sea ice coverage change had a larger impact on global temperature, because Northern Hemisphere sea ice was sufficiently thick to limit its response to doubled CO2, and sea ice changes generally occurred at higher latitudes, reducing the sea ice-albedo feedback. In both these experiments and earlier ones in which sea ice was not allowed to change, the model displayed a sensitivity of -0.02 C global warming per percent change in Southern Hemisphere sea ice coverage.

  4. Modeling Studying the Role of Bacteria on ice Nucleation Processes

    NASA Astrophysics Data System (ADS)

    Sun, J.

    2006-12-01

    Certain air-borne bacteria have been recognized as active ice nuclei at the temperatures warm than - 10°C. Ice nucleating bacteria commonly found in plants and ocean surface. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds and hailstones, and their importance in cloud formation process and precipitation, as well as causing diseases in plants and animal kingdom, have been considered for over two decades, but their significance in atmospheric processes are yet to be understood. A 1.5-D non-hydrostatic cumulus cloud model with bin-resolved microphysics is developed and is to used to examine the relative importance of sulphate aerosol concentrations on the evolution of cumulus cloud droplet spectra and ice multiplication process, as well as ice initiation process by ice nucleating bacteria in the growing stage of cumulus clouds and the key role of this process on the ice multiplication in the subsequent dissipating stage of cumulus clouds. In this paper, we will present some sensitivity test results of the evolution of cumulus cloud spectra, ice concentrations at various concentrations of sulfate aerosols, and at different ideal sounding profiles. We will discuss the implication of our results in understanding of ice nucleation processes.

  5. Effect of ice-quenching on the change in hardness of a Pd-Au-Zn alloy during porcelain firing simulation.

    PubMed

    Shin, Hye-Jeong; Kim, Min-Jung; Kim, Hyung-Il; Kwon, Yong Hoon; Seol, Hyo-Joung

    2017-03-31

    This study examined the effect of ice-quenching after degassing on the change in hardness of a Pd-Au-Zn alloy during porcelain firing simulations. By ice-quenching after degassing, the specimens were softened due to homogenization without the need for an additional softening heat treatment. The lowered hardness by ice-quenching after degassing was recovered greatly from the first stage of porcelain firing process by controlling the cooling rate. The increase in hardness during cooling after porcelain firing was attributed to the precipitation of the f.c.t. PdZn phase containing Au, which caused severe lattice strain in the interphase boundary between the precipitates and matrix of the f.c.c. structure. The final hardness was slightly higher in the ice-quenched specimen than in the specimen cooled at stage 0 (the most effective cooling rate for alloy hardening) after degassing. This was attributed to the more active grain interior precipitation during cooling in the ice-quenched specimen after degassing.

  6. Inferring unknow boundary conditions of the Greenland Ice Sheet by assimilating ICESat-1 and IceBridge altimetry intothe Ice Sheet System Model.

    NASA Astrophysics Data System (ADS)

    Larour, E. Y.; Khazendar, A.; Seroussi, H. L.; Schlegel, N.; Csatho, B. M.; Schenk, A. F.; Rignot, E. J.; Morlighem, M.

    2014-12-01

    Altimetry signals from missions such as ICESat-1, CryoSat, EnviSat, as well as altimeters onboard Operation IceBridge provide vital insights into processes such as surface mass balance, mass transport and ice-flow dynamics. Historically however, ice-flow models have been focused on assimilating surface velocities from satellite-based radar observations, to infer properties such as basal friction or the position of the bedrock. Here, we leverage a new methodology based on automatic differentation of the Ice Sheet System Model to assimilate surface altimetry data into a reconstruction of the past decade of ice flow on the North Greenland area. We infer corrections to boundary conditions such as basal friction and surface mass balance, as well as corrections to the ice hardness, to best-match the observed altimetry record. We compare these corrections between glaciers such as Petermann Glacier, 79 North and Zacchariae Isstrom. The altimetry signals exhibit very different patterns between East and West, which translate into very different signatures for the inverted boundary conditions. This study gives us greater insights into what differentiates different basins, both in terms of mass transport and ice-flow dynamics, and what could bethe controlling mechanisms behind the very different evolutions of these basins.

  7. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude magnetic anomalies, and deep bathymetry. The West Antarctic side displays high amplitude magnetic anomalies, lower densities and shallower water depths. The geologically-controlled bathymetry influences the access of water masses capable of basal melting into the ice shelf cavity with the deep troughs on the East Antarctic side facilitating melting.

  8. Effect of aging and ice structuring proteins on the morphology of frozen hydrated gluten networks.

    PubMed

    Kontogiorgos, Vassilis; Goff, H Douglas; Kasapis, Stefan

    2007-04-01

    The present investigation constitutes an attempt to rationalize the effect of aging and ice structuring proteins (ISPs) on the network morphology of frozen hydrated gluten. In doing so, it employs differential scanning calorimetry, time-domain NMR, dynamic oscillation on shear, creep testing, and electron microscopy. Experimentation and first principles modeling allows identification and description of the processes of ice formation and recrystallization in molecular terms. It is demonstrated that in the absence of a readily discernible glass transition temperature in gluten-ice composites, the approach of considering the melting point and aging at constant or fluctuating temperature conditions in the vicinity of this point can provide a valid index of functional quality. A theoretical framework supporting the concept of capillary confined frozen water in the gluten matrix was advanced, and it was found that ISPs were effective in controlling recrystallization both within these confines and within ice in the bulk.

  9. Modeling the relative contributions of secondary ice formation processes to ice crystal number concentrations within mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia; Hoose, Corinna; Nenes, Athanasios

    2016-04-01

    Measurements of in-cloud ice crystal number concentrations can be three or four orders of magnitude greater than the in-cloud ice nuclei number concentrations. This discrepancy can be explained by various secondary ice formation processes, which occur after initial ice nucleation, but the relative importance of these processes, and even the exact physics of each, is still unclear. A simple bin microphysics model (2IM) is constructed to investigate these knowledge gaps. 2IM extends the time-lag collision parameterization of Yano and Phillips, 2011 to include rime splintering, ice-ice aggregation, and droplet shattering and to incorporate the aspect ratio evolution as in Jensen and Harrington, 2015. The relative contribution of the secondary processes under various conditions are shown. In particular, temperature-dependent efficiencies are adjusted for ice-ice aggregation versus collision around -15°C, when rime splintering is no longer active, and the effect of aspect ratio on the process weighting is explored. The resulting simulations are intended to guide secondary ice formation parameterizations in larger-scale mixed-phase cloud schemes.

  10. Influence of hydrophobicity on ice accumulation process under sleet and wind conditions

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Hu, Jianlin; Shu, Lichun; Jiang, Xingliang; Huang, Zhengyong

    2018-03-01

    Glaze, the most dangerous ice type in natural environment, forms during sleet weather, which is usually accompanied with wind. The icing performance of hydrophobic coatings under the impact of wind needs further research. This paper studies the influence of hydrophobicity on ice accumulation process under sleet and wind conditions by computer simulations and icing tests. The results indicate that the heat dissipation process of droplets on samples with various hydrophobicity will be accelerated by wind significantly and that a higher hydrophobicity cannot reduce the cooling rate effectively. However, on different hydrophobic surfaces, the ice accumulation process has different characteristics. On a hydrophilic surface, the falling droplets form continuously water film, which will be cooled fast. On superhydrophobic surface, the frozen droplets form ice bulges, which can shield from wind and slow down the heat dissipation process. These ice accumulation characteristics lead to the difference in ice morphology and make a higher hydrophobic surface to have a lower ice mass growth rate in long period icing tests. As a conclusion, superhydrophobic coating remain icephobic under wind and sleet conditions.

  11. Ocean wave generation by collapsing ice shelves

    NASA Astrophysics Data System (ADS)

    Macayeal, D. R.; Bassis, J. N.; Okal, E. A.; Aster, R. C.; Cathles, L. M.

    2008-12-01

    The 28-29 February, 2008, break-up of the Wilkins Ice Shelf, Antarctica, exemplifies the now-familiar, yet largely unexplained pattern of explosive ice-shelf break-up. While environmental warming is a likely ultimate cause of explosive break-up, several key aspects of their short-term behavior need to be explained: (1) The abrupt, near-simultaneous onset of iceberg calving across long spans of the ice front margin; (2) High outward drift velocity (about 0.3 m/s) of a leading phalanx of tabular icebergs that originate from the seaward edge of the intact ice shelf prior to break-up; (3) Rapid coverage of the ocean surface in the wake of this leading phalanx by small, capsized and dismembered tabular icebergs; (4) Extremely large gravitational potential energy release rates, e.g., up to 3 × 1010 W; (5) Lack of proximal iceberg-calving triggers that control the timing of break-up onset and that maintain the high break-up calving rates through to the conclusion of the event. Motivated by seismic records obtained from icebergs and the Ross Ice Shelf that show hundreds of micro- tsunamis emanating from near the ice shelf front, we re-examine the basic dynamic features of ice- shelf/ocean-wave interaction and, in particular, examine the possibility that collapsing ice shelves themselves are a source of waves that stimulate the disintegration process. We propose that ice-shelf generated surface-gravity waves associated with initial calving at an arbitrary seed location produce stress perturbations capable of triggering the onset of calving on the entire ice front. Waves generated by parting detachment rifts, iceberg capsize and break-up act next to stimulate an inverted submarine landslide (ice- slide) process, where gravitational potential energy released by upward movement of buoyant ice is radiated as surface gravity waves in the wake of the advancing phalanx of tabular icebergs. We conclude by describing how field research and remote sensing can be used to test the various conjectures about ice- shelf/wave interaction that appear to be at play during ice-shelf disintegration.

  12. SEA-ICE INFLUENCE ON ARCTIC COASTAL RETREAT.

    USGS Publications Warehouse

    Reimnitz, Erk; Barnes, P.W.

    1987-01-01

    Recent studies document the effectiveness of sea ice in reshaping the seafloor of the inner shelf into sharp-relief features, including ice gouges with jagged flanking ridges, ice-wallow relief, and 2- to 6-m-deep strudel-scour craters. These ice-related relief forms are in disequilibrium with classic open-water hydraulic processes and thus are smoothed over by waves and currents in one to two years. Such alternate reworking of the shelf by ice and currents - two diverse types of processes, which in the case of ice wallow act in unison-contributes to sediment mobility and, thus, to sediment loss from the coast and inner shelf. The bulldozing action by ice results in coast-parallel sediment displacement. Additionally, suspension of sediment by frazil and anchor ice, followed by ice rafting, can move large amounts of bottom-derived materials. Our understanding of all these processes is insufficient to model Arctic coastal processes.

  13. Insights into Interactions of Water Ice with Regolith under Simulated Martian Conditions.

    NASA Astrophysics Data System (ADS)

    Chittenden, Julie; Chevrier, V.; Sears, D. W.; Roe, L. A.; Bryson, K.; Billingsly, L.; Hanley, J.

    2006-09-01

    In order to understand the diffusion process of water vapor through regolith, we have investigated the sublimation process of subsurface ice under varying depths of JSC Mars-1 soil simulant under martian conditions. Measurements were made at 0oC and 5.25 Torr in a CO2 atmosphere. We corrected for variations in temperature of the ice and the difference in gravity of Mars in relation to the Earth. Our results show that for depths up to 40 mm the process is mainly diffusion controlled and that for thicker regolith layers, desorption becomes the main process. After correction for the effect of desorption, we observed a decrease in sublimation rate from 0.625 ± 0.073 mm.h-1 at 5 mm of soil to 0.187 ± 0.093 mm.h-1 for 200 mm of soil. To characterize the diffusion process, we use the Farmer model (1976), which hypothesizes that the sublimation rate is equal to the diffusion coefficient divided by the soil depth. The derived diffusion coefficient from this data is 2.52 ± 0.55 mm2.h-1, or 7.0 ± 1.5 x 10-10 m2.s-1. Knowing the diffusion coefficient in the regolith, we can calculate the survival time, κ, of a layer of ice under a regolith layer which is given by τ = liceL/D, where lice is the thickness of the ice layer. Using this equation, we find that a 10 cm-thick layer of ice buried under 1 m of regolith would last for more than 4 years at 0oC. Therefore, our study indicates that the transport of water through a regolith layer is a complex multi-faceted process that is readily quantified by laboratory investigations. This is especially important in interpreting previous theoretical models and in understanding in situ observations to be performed by martian landers such as Phoenix. The W.M. Keck Foundation funded this research.

  14. Fine scale monitoring of ice ablation following convective heat transfer: case study based on ice-wedge thermo-erosion on Bylot Island (Canadian High Arctic) and laboratory observations

    NASA Astrophysics Data System (ADS)

    Godin, E.; Fortier, D.

    2011-12-01

    Thermo-erosion gullies often develop in ice-wedge polygons terrace and contribute to the dynamic evolution of the periglacial landscape. When snowmelt surface run-off concentrated into streams and water tracks infiltrate frost cracks, advective heat flow and convective thermal transfer from water to the ice-wedge ice enable the rapid development of tunnels and gullies in the permafrost (Fortier et al. 2007). Fine scale monitoring of the physical interaction between flowing water and ice rich permafrost had already been studied in a context of thermal erosion of a large river banks in Russia (Costard et al. 2003). Ice wedge polygons thermo-erosion process leading to gullying remains to be physically modelled and quantified. The present paper focus on the fine scale monitoring of thermo-erosion physical parameters both in the field and in laboratory. The physical model in laboratory was elaborated using a fixed block of ice monitored by a linear voltage differential transducer (LVDT) and temperature sensors connected to a logger. A water container with controlled discharge and temperature provided the fluid which flowed over the ice through a hose. Water discharge (Q), water temperature (Tw), ice melting temperature (Ti) and ice ablation rate (Ar) were measured. In laboratory, water at 281 Kelvin (K) flowing on the ice (Ti 273 K) made the ice melt at a rate Ar of 0.002 m min-1, under a continuous discharge of ≈ 8 x 10-7 m3 s-1. In the field, a small channel was dug between a stream and an exposed ice-wedge in a pre-existing active gully, where in 2010 large quantities of near zero snowmelt run-off water contributed to several meters of ice wedge ablation and gully development. Screws were fastened into the ice and a ruler was used to measure the ablation rate every minute. The surface temperature of the ice wedge was monitored with thermocouples connected to a logger to obtain the condition of the ice boundary layer. Discharge and water temperature were measured in the excavated channel just before the water got in contact with the ice surface. The field experiment where flowing water at Tw = 277 K, Ti = 273 K with a water discharge of 0.01 m3 s-1 resulted in a measured Ar of 0.01 to 0.02 m min-1. Water discharge and temperature difference between water and the melting ice were fundamental to ice ablation rate. The recent climate warming in the Canadian High Arctic will likely strongly contribute to the interaction and importance of the thermo-erosion and gullying processes in the High Arctic. Combined factors such as earlier or faster snowmelt, precipitation changes during the summer and positive feedback effects will probably increase the hydrological input to gullies and therefore enhance their development by thermo-erosion. Costard F. et al. 2003. Fluvial thermal erosion investigations along a rapidly eroding river bank: Application to the Lena River (central Siberia). Earth Surface Processes and Landforms 28: 1349-1359. Fortier D. et al. 2007. Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot island, Canadian Arctic Archipelago. Permafrost and Periglacial Processes 18: 229-243.

  15. Evolution of Titan's High-Pressure Ice layer

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Kalousova, K.

    2016-12-01

    Constraints on the present interior structure of Titan come from the gravity science experiment onboard the Cassini spacecraft and from the interpretation of the Extremely Low Frequency (ELF) wave observed by the Huygens probe [1, 2]. From the surface to the center, Titan would be composed of 4 layers: an icy crust, a global salty ocean, a layer of high-pressure ice (HP ice) and a core made of hydrated silicates [2, 3, 4]. The presence of a large amount of 40Ar in Titan's atmosphere argues for a geologically recent exchange process between the silicate core, where 40Ar is produced by the decay of 40K, and the atmosphere. Argon must then be able to be transported from the silicate core to the surface. This study investigates how volatiles can be transported through the HP ice layer.Recent numerical simulations [5] have demonstrated that the dynamics of the HP ice layer is controlled by convection processes in a two-phase material (water and high-pressure ice). The silicate / HP ice interface is maintained at the melting temperature, which might allow for the incorporation of volatiles such as 40Ar into the convecting HP ice. Above the hot thermal boundary layer, the temperature of the convecting HP ice is below the melting temperature, except for the upwelling plumes when they approach the cold thermal boundary layer. The upper part of the HP ice layer is at the melting point and permeable for water transport, providing a path for the transfer of volatiles trapped in the ice towards the ocean.Scaling laws are inferred from the numerical simulations [5]. They are then used to model the evolution of the HP ice layer. Specifically, we look at the effect of (i) ice viscosity, (ii) heat flux at the silicate/HP ice interface, and (iii) presence of anti-freeze compounds in the ocean, on the thickness of the HP ice layer. In addition, our results provide insights on possible resurfacing processes that could explain the geologically young age of Titan's surface. This work has been performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. [1] Iess et al. (2012) Science, 337, 457-461. [2] Beghin et al. (2012) Icarus, 1028-1042. [3] Mitri et al. (2014) Icarus, 236, 169-177. [4] Castillo and Lunine (2010) Geophys. Res. Lett., 37, L20205. [5] Kalousova et al. (2015) Fall AGU, P31C-2078.

  16. Non-equilibrium freezing of water-ice in sandy basaltic regoliths and implications for fluidized debris flows on Mars

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1987-01-01

    Many geomorphic features on Mars were attributed to Earth-analogous, cold-climate processes involving movement of water or ice lubricated debris. Clearly, knowledge of the behavior of water in regolith materials under Martian conditions is essential to understanding the postulated geomorphic processes. Experiments were performed with sand-sized samples of natural basaltic regoliths in order to further elucidate how water/regolith interactions depend upon grain size and mineralogy. The data reveal important contrasts with data for clay-mineral substrates and suggest that the microphysics of water/mineral interactions might affect Martian geomorphic processes in ways that are not fully appreciated. Sand and silt sized fractions of two soils from the summit of Mauna Kea were used as Mars-analogous regolith materials. Temperatures were measured for water/ice phase transitions as wet slurries of individual soil fractions which were cooled or heated at controlled rates under a carbon dioxide atmosphere. Freezing and melting of ice was studied as a function of water/soil mass ratio, soil particle size, and thermal-cycle rate. Comparison tests were done under the same conditions with U.S. Geological Survey standard rock powders.

  17. Development of Automated Tracking System with Active Cameras for Figure Skating

    NASA Astrophysics Data System (ADS)

    Haraguchi, Tomohiko; Taki, Tsuyoshi; Hasegawa, Junichi

    This paper presents a system based on the control of PTZ cameras for automated real-time tracking of individual figure skaters moving on an ice rink. In the video images of figure skating, irregular trajectories, various postures, rapid movements, and various costume colors are included. Therefore, it is difficult to determine some features useful for image tracking. On the other hand, an ice rink has a limited area and uniform high intensity, and skating is always performed on ice. In the proposed system, an ice rink region is first extracted from a video image by the region growing method, and then, a skater region is extracted using the rink shape information. In the camera control process, each camera is automatically panned and/or tilted so that the skater region is as close to the center of the image as possible; further, the camera is zoomed to maintain the skater image at an appropriate scale. The results of experiments performed for 10 training scenes show that the skater extraction rate is approximately 98%. Thus, it was concluded that tracking with camera control was successful for almost all the cases considered in the study.

  18. Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Narducci, Robert; Orr, Stanley; Kreeger, Richard E.

    2012-01-01

    An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes.

  19. Evaluating sago as a functional ingredient in dietetic mango ice cream.

    PubMed

    Patel, Ashish S; Jana, Atanu H; Aparnathi, Kishore D; Pinto, Suneeta V

    2010-10-01

    A low fat mango ice cream (2.4% milk fat) was prepared in a mechanized 'ice and salt' type freezer using powdered sago at 2.5% as a natural bulking agent along with sodium alginate at 0.025% as adjunct. The low fat mango ice cream was compared with control mango ice cream having 10% milk fat and 0.15% sodium alginate as stabilizer. Both control as well as experimental ice creams contained 20% mango pulp solids. To impart richness to low fat mango ice cream, flavour enhancers like Cream Plus and Butter Buds were used at levels of 0.2% and 0.05%, respectively. The dietetic low fat ice creams compared well in sensory colour and appearance, flavour, body and texture, and melting quality to that of control ice cream. Incorporation of 2.5% powdered sago and 0.2% Cream Plus as flavour adjunct is recommended in the manufacture of 'low-fat' mango ice cream. The energy values for control and dietetic mango ice cream was 202.8 and 142.9 kcal/100 g, respectively, which represents about 30% reduction in calorie. The cost of ice cream per liter was Rs 39.9, Rs 37.6 and Rs 49.7 for experimental ice creams containing Cream Plus and Butter Bud, and control, respectively.

  20. Numerical simualtions and implications of air inclusions on the microdynamics of ice and firn

    NASA Astrophysics Data System (ADS)

    Steinbach, Florian; Weikusat, Ilka; Bons, Paul; Griera, Albert; Kerch, Johanna; Kuiper, Ernst-Jan; Llorens-Verde, Maria-Gema

    2016-04-01

    Although ice sheets are valuable paleo-climate archives, they can loose their integrity by ice flow (Faria et al. 2010). Consequently, understanding the dynamic processes that control the flow of ice is essential when investigating the past and future climate. While recent research successfully modelled the microdynamics of pure ice (e.g. Montagnat et al., 2014; Llorens et al., 2015), work taking into account second phases is scarce. Only a few studies also show the microstructural influence of air inclusions (Azuma et al., 2012, Roessiger et al., 2014). Therefore, modelling was performed focussing on the implications of the presence of bubbles on the microdynamical mechanisms and microstructure evolution. The full-field theory crystal plasticity code (FFT) of Lebensohn (2001), was coupled to the 2D multi-process modelling platform Elle (Bons et al., 2008), following the approach by Griera et al. (2013). FFT calculates the viscoplastic response of polycrystalline materials deforming by dislocation glide, taking into account mechanical anisotropy. The models further incorporate surface- and stored strain energy driven grain boundary migration (GBM) and intracrystalline recovery simulating annihilation and rearrangement of dislocations by reduction of internal misorientations. GBM was refined for polyphase materials following Becker et al. (2008) and Roessiger et al. (2014). Additionally, the formation of new high angle grain boundaries by nucleation and polygonisation based on critical internal misorientations has been implemented. Successively running the codes for different processes in very short numerical timesteps effectively enables multi-process modelling of deformation and concurrent recrystallisation. Results show how air inclusions control and increase strain localisation, leading to locally enhanced dynamic recrystallisation. This is in compliance with Faria et al. (2014), who theoretically predicted these localizations based on firn data from EPICA Dronning Maud Land (EDML) ice core. We propose that strain localisation has a strong control on the dominating recrystallisation mechanisms and can account for microstructural observations from alpine and polar ice cores. Our results confirm dynamic recrystallisation occurring in the uppermost levels of ice sheets as observed by Kipfstuhl et al. (2009) and Weikusat et al. (2009) in EDML core. References Azuma, N., et al. (2012) Journal of Structural Geology, 42, 184-193 Becker, J.K., et al. (2008) Computers & Geosciences, 34, 201-212 Bons, P.D., et al. (2008) Lecture Notes in Earth Sciences, 106 Faria, S.H., et al. (2010) Quaternary Science Reviews, 29, 338-351 Faria, S.H., et al. (2014) Journal of Structural Geology, 61, 21-49 Griera, A., et al. (2013) Tectonophysics, 587, 4-29 Kipfstuhl, S., et al. (2009) Journal of Geophysical Research, 114, B05204 Lebensohn, R.A. (2001) Acta Materialia, 49, 2723-2737 Llorens, M.G., et al. (2015) Journal of Glaciology, in press, doi:10.1017/jog.2016.28 Montagnat, M., et al. (2014) Journal of Structural Geology, 61, 78-108 Roessiger, J., et al. (2014) Journal of Structural Geology, 61, 123-132 Weikusat, I., et al. (2009) Journal of Glaciology, 55, 461-472

  1. Ice dynamics of Heinrich events: Insights and implications

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.

    2017-12-01

    Physical understanding of ice flow provides important constraints on Heinrich (H) events, which in turn provide lessons for ice dynamics and future sea-level change. Iceberg-rafted debris (IRD), the defining feature of H events, is a complex indicator; however, in cold climates with extensive marine-ending ice, increased IRD flux records ice-shelf loss. Ice shelves fed primarily by inflow from grounded ice experience net basal melting, giving sub-ice-sedimentation rather than open-ocean IRD. Ice-shelf loss has been observed recently in response to atmospheric warming increasing surface meltwater that wedged open crevasses (Larsen B), but also by break-off following thinning from warming of waters reaching the grounding line (Jakobshavn). The H events consistently occurred during cold times resulting from reduced North Atlantic overturning circulation ("conveyor"), but as argued by Marcott et al. (PNAS 2011), this was accompanied by delayed warming at grounding-line depths of the Hudson Strait ice stream, the source of the Heinrich layers, implicating oceanic control. As shown in a rich literature, additional considerations involving thermal state of the ice-stream bed, isostasy and probably other processes influenced why some reduced-conveyor events triggered H-events while others did not. Ice shelves, including the inferred Hudson Strait ice shelf, typically exist in high-salinity, cold waters produced by brine rejection from sea-ice formation, which are the coldest abundant waters in the world ocean. Thus, almost any change in air or ocean temperature, winds or currents can remove ice shelves, because "replacement" water masses are typically warmer. And, because ice shelves almost invariably slow flow of non-floating ice into the ocean, climatic perturbations to regions with ice shelves typically lead to sea-level rise, with important implications.

  2. Cold basal conditions during surges control flow of fringing Arctic ice caps in Greenland

    NASA Astrophysics Data System (ADS)

    Cook, Samuel; Christoffersen, Poul; Todd, Joe; Palmer, Steven

    2017-04-01

    Fringing ice caps separated from larger ice sheets are rarely studied, yet they are an important part of earth's cryosphere, which has become the largest source of global sea-level rise. Understanding marginal ice caps is crucial for being able to predict sea-level change as they are responsible for up to 20% of Greenland's mass loss for 2003-2008. Studies of fringing ice caps can furthermore provide useful insights into processes operating on glaciers that surge. Surging has been the focus of much recent glaciological work, especially with reference to thermal evolution of polythermal glaciers in High Mountain Asia and the High Arctic. This has shown that the classic divide between hydrologically-controlled surges ('hard-bed') in Alaska and thermally-regulated ('soft-bed') surges elsewhere is less stark than previously assumed. Studying marginal ice caps can therefore be valuable in several ways. The largest fringing ice cap in Greenland is Flade Isblink. Previous work has established that this ice cap is showing a range of dynamic behaviour, including subglacial lake drainage and varied patterns of mass-balance change. In particular, a substantial surge, assumed to be caused by a version of the thermally-regulated mechanism, occurred between 1996 and 2000, making the ice cap a useful case study for investigating this process. Here we investigate the surge on Flade Isblink using the open-source, Full-Stokes model Elmer/Ice to invert for basal conditions and englacial temperatures using the adjoint method. We specifically study steady-state conditions representative of the active surge phase in 2000, and the subsequent quiescent phase, using patterns of surface velocity observed in 2000, 2005, 2008 and 2015. Under constant geometry, temperature and geothermal heat, it is shown that surging increases basal freezing rates by over 60% across an area that is twice as large as the area over which the bed freezes in the quiescent phase. The process responsible for this is the conductive heat loss, which increases faster than frictional heat is produced. When the bed becomes weaker, basal conditions become colder despite faster basal sliding, resulting in steep basal ice temperature gradients, which transfer heat effectively from the bed into the ice. In contrast, we find the increase in frictional heat to be insufficient, because weaker basal conditions offset the effect of faster basal sliding. Hence, frictional heat cannot provide enough extra melting to maintain surge conditions. We hypothesise that this heat transfer mechanism terminates surges on Flade Isblink, irrespective of any thinning that would also occur. The latter is not included in our model, but is required in the classic soft-bed surge model. In the quiescent phase, lower temperature gradients reduce the conductive heat loss, while a stronger bed produces more frictional heat, favouring basal melting and a warm bed, which ultimately create the weak basal conditions that result in yet another surge, regardless of any change in ice thickness. Our results indicate that soft-bed surges may occur even if the surge-related change in glacier geometry is modest, making surging glaciers of this type similar to ice streams that stagnate and reactivate periodically.

  3. Probing Individual Ice Nucleation Events with Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; China, Swarup; Knopf, Daniel; Gilles, Mary; Laskin, Alexander

    2016-04-01

    Heterogeneous ice nucleation is one of the processes of critical relevance to a range of topics in the fundamental and the applied science and technologies. Heterogeneous ice nucleation initiated by particles proceeds where microscopic properties of particle surfaces essentially control nucleation mechanisms. Ice nucleation in the atmosphere on particles governs the formation of ice and mixed phase clouds, which in turn influence the Earth's radiative budget and climate. Heterogeneous ice nucleation is still insufficiently understood and poses significant challenges in predictive understanding of climate change. We present a novel microscopy platform allowing observation of individual ice nucleation events at temperature range of 193-273 K and relative humidity relevant for ice formation in the atmospheric clouds. The approach utilizes a home built novel ice nucleation cell interfaced with Environmental Scanning Electron Microscope (IN-ESEM system). The IN-ESEM system is applied for direct observation of individual ice formation events, determining ice nucleation mechanisms, freezing temperatures, and relative humidity onsets. Reported microanalysis of the ice nucleating particles (INP) include elemental composition detected by the energy dispersed analysis of X-rays (EDX), and advanced speciation of the organic content in particles using scanning transmission x-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). The performance of the IN-ESEM system is validated through a set of experiments with kaolinite particles with known ice nucleation propensity. We demonstrate an application of the IN-ESEM system to identify and characterize individual INP within a complex mixture of ambient particles.

  4. Evidence for Holocene centennial variability in sea ice cover based on IP25 biomarker reconstruction in the southern Kara Sea (Arctic Ocean)

    NASA Astrophysics Data System (ADS)

    Hörner, Tanja; Stein, Rüdiger; Fahl, Kirsten

    2017-10-01

    The Holocene is characterized by the late Holocene cooling trend as well as by internal short-term centennial fluctuations. Because Arctic sea ice acts as a significant component (amplifier) within the climate system, investigating its past long- and short-term variability and controlling processes is beneficial for future climate predictions. This study presents the first biomarker-based (IP25 and PIP25) sea ice reconstruction from the Kara Sea (core BP00-07/7), covering the last 8 ka. These biomarker proxies reflect conspicuous short-term sea ice variability during the last 6.5 ka that is identified unprecedentedly in the source region of Arctic sea ice by means of a direct sea ice indicator. Prominent peaks of extensive sea ice cover occurred at 3, 2, 1.3 and 0.3 ka. Spectral analysis of the IP25 record revealed 400- and 950-year cycles. These periodicities may be related to the Arctic/North Atlantic Oscillation, but probably also to internal climate system fluctuations. This demonstrates that sea ice belongs to a complex system that more likely depends on multiple internal forcing.

  5. Under-ice ambient noise in Eastern Beaufort Sea, Canadian Arctic, and its relation to environmental forcing.

    PubMed

    Kinda, G Bazile; Simard, Yvan; Gervaise, Cédric; Mars, Jérome I; Fortier, Louis

    2013-07-01

    This paper analyzes an 8-month time series (November 2005 to June 2006) of underwater noise recorded at the mouth of the Amundsen Gulf in the marginal ice zone of the western Canadian Arctic when the area was >90% ice covered. The time-series of the ambient noise component was computed using an algorithm that filtered out transient acoustic events from 7-min hourly recordings of total ocean noise over a [0-4.1] kHz frequency band. Under-ice ambient noise did not respond to thermal changes, but showed consistent correlations with large-scale regional ice drift, wind speed, and measured currents in upper water column. The correlation of ambient noise with ice drift peaked for locations at ranges of ~300 km off the mouth of the Amundsen Gulf. These locations are within the multi-year ice plume that extends westerly along the coast in the Eastern Beaufort Sea due to the large Beaufort Gyre circulation. These results reveal that ambient noise in Eastern Beaufort Sea in winter is mainly controlled by the same meteorological and oceanographic forcing processes that drive the ice drift and the large-scale circulation in this part of the Arctic Ocean.

  6. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  7. Thermal evolution of a differentiated Ganymede and implications for surface features

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Stevenson, D. J.

    1987-01-01

    Thermodynamic models are developed for the processes which controlled the evolution of the surface Ganymede, an icy Jovian satellite assumed to have a rock-rich core surrounded by a water-ice mantle. Account is taken of a heat pulse which would have arisen from a Rayleigh-Taylor instability at a deep-seated liquid-solid water interface, rapid fracturing from global stresses imposed by warm ice diapiric upwelling, impacts by large meteorites, and resurfacing by ice flows (rather than core formation). Comparisons are made with existing models for the evolution of Callisto, and the difficulties in defining a mechanism which produced the groove terrain of Ganymede are discussed.

  8. Micro-Spectroscopic Chemical Imaging of Individual Identified Marine Biogenic and Ambient Organic Ice Nuclei (Invited)

    NASA Astrophysics Data System (ADS)

    Knopf, D. A.; Alpert, P. A.; Wang, B.; OBrien, R. E.; Moffet, R. C.; Aller, J. Y.; Laskin, A.; Gilles, M.

    2013-12-01

    Atmospheric ice formation represents one of the least understood atmospheric processes with important implications for the hydrological cycle and climate. Current freezing descriptions assume that ice active sites on the particle surface initiate ice nucleation, however, the nature of these sites remains elusive. Here, we present a new experimental method that allows us to relate physical and chemical properties of individual particles with observed water uptake and ice nucleation ability using a combination of micro-spectroscopic and optical single particle analytical techniques. We apply this method to field-collected particles and particles generated via bursting of bubbles produced by glass frit aeration and plunging water impingement jets in a mesocosm containing artificial sea water and bacteria and/or phytoplankton. The most efficient ice nuclei (IN) within a particle population are identified and characterized. Single particle characterization is achieved by computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy. A vapor controlled cooling-stage coupled to an optical microscope is used to determine the onsets of water uptake, immersion freezing, and deposition ice nucleation of the individual particles as a function of temperature (T) as low as 200 K and relative humidity (RH) up to water saturation. In addition, we perform CCSEM/EDX to obtain on a single particle level the elemental composition of the entire particle population. Thus, we can determine if the IN are exceptional in nature or belong to a major particle type class with respect to composition and size. We find that ambient and sea spray particles are coated by organic material and can induce ice formation under tropospheric relevant conditions. Micro-spectroscopic single particle analysis of the investigated particle samples invokes a potential paradigm shift: Individual ice nucleating particle composition indicates that IN are similar to the majority of particles in the population and not exceptional. This suggests that composition alone may not be a determinant for IN identification. Furthermore, the results suggest that particle abundance may be a crucial parameter for IN efficiency when predicting cloud glaciation processes. These findings would have important consequences for cloud modeling, laboratory ice nucleation experiments, and field measurements.

  9. The application of the hazard analysis and control points (HACCP) in an ice cream production plant.

    PubMed

    El-Tawila, M M

    1998-01-01

    The HACCP system is applied in the present study as a preventive food safety approach to control some hazards appearing in one of the ice cream production plants in Egypt. The problem comprised the presence of bacteriological and some chemical contamination in most of the company products. Before applying the HACCP system, the samples examination showed high total mesophilic plat count in 50% of the samples and high coliform count in all samples compared to the level recommended in the Egyptian standards. The highest staphylococcal count (negative for coagulase test) obtained was that of chocolate (1.3 x 10(4) CFU/g) followed by mango ice cream (l.0 x 10(4) CFU/g). Faecal coliform was only positive in mango ice cream. Additionally, the levels of lead, iron and copper have been determined. Copper was higher than the recommended level in all samples and ranged between 0.46 ppm in pistachio ice cream and 2.48 ppm in chocolate ice cream. Most of the CCPs in the ice cream production were mainly due to improper handling and practices throughout the processing steps and also related to the lack of food hygiene knowledge of the workers. The application of HACCP system has successfully reduced the bacteriological hazards in all samples. After applying the corrective actions, the highest total aerobic plate count (8.0 x 10(4)) was that of Swiss chocolate ice cream which corresponds to 50% of the recommended level by the Egyptian standards. Coliform count was less than 10 in all samples except mango ice cream (43 MPN). A significant decrease in staphylococcal count, faecal coliform and trace metal contamination was also recorded in all samples.

  10. Meteoric 10Be as a tracer of subglacial processes and interglacial surface exposure in Greenland

    NASA Astrophysics Data System (ADS)

    Graly, Joseph A.; Corbett, Lee B.; Bierman, Paul R.; Lini, Andrea; Neumann, Thomas A.

    2018-07-01

    In order to test whether sediment emerging from presently glaciated areas of Greenland was exposed near or at Earth's surface during previous interglacial periods, we measured the rare isotope 10Be contained in grain coatings of sediment collected at five ice marginal sites. Such grain coatings contain meteoric 10Be (10Bemet), which forms in the atmosphere and is deposited onto Earth's surface. Samples include sediment entrained in ice, glaciofluvial sediment collected at the ice margin, and subglacial sediment extracted during hot water drilling in the ablation zone. Due to burial by ice, contemporary subglacial sediment could only have acquired substantial 10Bemet concentrations during periods in the past when the Greenland Ice Sheet was less extensive than present. The highest measured 10Bemet concentrations are comparable to those found in well-developed, long-exposed soils, suggesting subglacial preservation and glacial transport of sediment exposed during preglacial or interglacial periods. Ice-bound sediment has significantly higher 10Bemet concentrations than glaciofluvial sediment, suggesting that glaciofluvial processes are sufficiently erosive to remove tracers of previous interglacial exposures. Northern Greenland sites where ice and sediment are supplied from the ice sheet's central main dome have significantly higher 10Bemet concentrations than sites in southern Greenland, indicating greater preglacial or interglacial landscape preservation in central Greenland than in the south. Because southern Greenland has more frequent and spatially extensive periods of glacial retreat but nevertheless has less evidence of past subaerial exposure, we suggest that 10Bemet measurements in glacial sediment are primarily controlled by erosional efficiency rather than interglacial exposure length.

  11. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices.

    PubMed

    Kofman, V; Witlox, M J A; Bouwman, J; Ten Kate, I L; Linnartz, H

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools-UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry-can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, n λ , of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  12. A multifunctional setup to record FTIR and UV-vis spectra of organic molecules and their photoproducts in astronomical ices

    NASA Astrophysics Data System (ADS)

    Kofman, V.; Witlox, M. J. A.; Bouwman, J.; ten Kate, I. L.; Linnartz, H.

    2018-05-01

    This article describes a new, multi-functional, high-vacuum ice setup that allows to record the in situ and real-time spectra of vacuum UV (VUV)-irradiated non-volatile molecules embedded in a low-temperature (10 K) amorphous solid water environment. Three complementary diagnostic tools—UV-visible (UV-vis) and Fourier Transform Infrared (FTIR) spectroscopy and temperature-programmed desorption quadrupole mass spectrometry—can be used to simultaneously study the physical and chemical behavior of the organic molecules in the ice upon VUV irradiation. The setup is equipped with a temperature-controlled sublimation oven that enables the controlled homogeneous deposition of solid species such as amino acids, nucleobases, and polycyclic aromatic hydrocarbons (PAHs) in ice mixtures prepared from precursor gases and/or liquids. The resulting ice is photo-processed with a microwave discharge hydrogen lamp, generating VUV radiation with a spectral energy distribution representative for the interstellar medium. The characteristics, performance, and future potential of the system are discussed by describing three different applications. First, a new method is introduced, which uses broadband interference transmission fringes recorded during ice deposition, to determine the wavelength-dependent refractive index, nλ, of amorphous solid water. This approach is also applicable to other solids, pure and mixed. Second, the UV-vis and FTIR spectroscopy of an VUV-irradiated triphenylene:water ice mixture is discussed, monitoring the ionization efficiency of PAHs in interstellar ice environments. The third and final example investigates the stability of solid glycine upon VUV irradiation by monitoring the formation of dissociation products in real time.

  13. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review

    NASA Astrophysics Data System (ADS)

    Vihma, T.; Pirazzini, R.; Fer, I.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Lüpkes, C.; Nygård, T.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.

    2014-09-01

    The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2009, significant advances have been made in understanding these processes. Here, these recent advances are reviewed, synthesized, and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal, and fjordic processes as well as in boundary layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of superimposed ice and snow ice, and the small-scale dynamics of sea ice. For the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, double-diffusive convection, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but the challenge is to understand their interactions with and impacts and feedbacks on other processes. Uncertainty in the parameterization of small-scale processes continues to be among the greatest challenges facing climate modelling, particularly in high latitudes. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.

  14. Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: a review

    NASA Astrophysics Data System (ADS)

    Vihma, T.; Pirazzini, R.; Renfrew, I. A.; Sedlar, J.; Tjernström, M.; Nygård, T.; Fer, I.; Lüpkes, C.; Notz, D.; Weiss, J.; Marsan, D.; Cheng, B.; Birnbaum, G.; Gerland, S.; Chechin, D.; Gascard, J. C.

    2013-12-01

    The Arctic climate system includes numerous highly interactive small-scale physical processes in the atmosphere, sea ice, and ocean. During and since the International Polar Year 2007-2008, significant advances have been made in understanding these processes. Here these advances are reviewed, synthesized and discussed. In atmospheric physics, the primary advances have been in cloud physics, radiative transfer, mesoscale cyclones, coastal and fjordic processes, as well as in boundary-layer processes and surface fluxes. In sea ice and its snow cover, advances have been made in understanding of the surface albedo and its relationships with snow properties, the internal structure of sea ice, the heat and salt transfer in ice, the formation of super-imposed ice and snow ice, and the small-scale dynamics of sea ice. In the ocean, significant advances have been related to exchange processes at the ice-ocean interface, diapycnal mixing, tidal currents and diurnal resonance. Despite this recent progress, some of these small-scale physical processes are still not sufficiently understood: these include wave-turbulence interactions in the atmosphere and ocean, the exchange of heat and salt at the ice-ocean interface, and the mechanical weakening of sea ice. Many other processes are reasonably well understood as stand-alone processes but challenge is to understand their interactions with, and impacts and feedbacks on, other processes. Uncertainty in the parameterization of small-scale processes continues to be among the largest challenges facing climate modeling, and nowhere is this more true than in the Arctic. Further improvements in parameterization require new year-round field campaigns on the Arctic sea ice, closely combined with satellite remote sensing studies and numerical model experiments.

  15. Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans.

    PubMed

    Langbehn, Tom J; Varpe, Øystein

    2017-12-01

    Light is a central driver of biological processes and systems. Receding sea ice changes the lightscape of high-latitude oceans and more light will penetrate into the sea. This affects bottom-up control through primary productivity and top-down control through vision-based foraging. We model effects of sea-ice shading on visual search to develop a mechanistic understanding of how climate-driven sea-ice retreat affects predator-prey interactions. We adapt a prey encounter model for ice-covered waters, where prey-detection performance of planktivorous fish depends on the light cycle. We use hindcast sea-ice concentrations (past 35 years) and compare with a future no-ice scenario to project visual range along two south-north transects with different sea-ice distributions and seasonality, one through the Bering Sea and one through the Barents Sea. The transect approach captures the transition from sub-Arctic to Arctic ecosystems and allows for comparison of latitudinal differences between longitudes. We find that past sea-ice retreat has increased visual search at a rate of 2.7% to 4.2% per decade from the long-term mean; and for high latitudes, we predict a 16-fold increase in clearance rate. Top-down control is therefore predicted to intensify. Ecological and evolutionary consequences for polar marine communities and energy flows would follow, possibly also as tipping points and regime shifts. We expect species distributions to track the receding ice-edge, and in particular expect species with large migratory capacity to make foraging forays into high-latitude oceans. However, the extreme seasonality in photoperiod of high-latitude oceans may counteract such shifts and rather act as a zoogeographical filter limiting poleward range expansion. The provided mechanistic insights are relevant for pelagic ecosystems globally, including lakes where shifted distributions are seldom possible but where predator-prey consequences would be much related. As part of the discussion on photoperiodic implications for high-latitude range shifts, we provide a short review of studies linking physical drivers to latitudinal extent. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  16. Climate in the absence of ocean heat transport

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2017-12-01

    The energy transported by the oceans to mid- and high latitudes is small compared to the atmosphere, yet exerts an outsized influence on climate. A key reason is the strong interaction between ocean heat transport (OHT) and sea ice extent. I quantify the absolute climatic impact of OHT using the state-of-the-art CESM simulations by comparing a realistic control climate against a slab ocean simulation in which OHT is disabled. The absence of OHT leads to a massive expansion of sea ice into the subtropics in both hemispheres, and a 24 K global cooling. Analysis of the transient simulation after setting the OHT to zero reveals a global cooling process fueled by a runaway sea ice albedo feedback. This process is eventually self-limiting in the cold climate due to a combination of subtropical cloud feedbacks and surface wind effects that are both connected to a massive spin-up of the atmospheric Hadley circulation. A parameter sensitivity study shows that the simulated climate is far more sensitive to small changes in ice surface albedo in the absence of OHT. I conclude that the oceans are responsible for an enormous global warming by mitigating an otherwise very potent sea ice albedo feedback, but that the magnitude of this effect is rather uncertain. These simulations provide a graphic illustration of how the intimate coupling between sea ice and ocean circulation governs the present-day climate, and by extension, highlight the importance of modeling ocean - sea ice interaction with high fidelity.

  17. ICE: A Scalable, Low-Cost FPGA-Based Telescope Signal Processing and Networking System

    NASA Astrophysics Data System (ADS)

    Bandura, K.; Bender, A. N.; Cliche, J. F.; de Haan, T.; Dobbs, M. A.; Gilbert, A. J.; Griffin, S.; Hsyu, G.; Ittah, D.; Parra, J. Mena; Montgomery, J.; Pinsonneault-Marotte, T.; Siegel, S.; Smecher, G.; Tang, Q. Y.; Vanderlinde, K.; Whitehorn, N.

    2016-03-01

    We present an overview of the ‘ICE’ hardware and software framework that implements large arrays of interconnected field-programmable gate array (FPGA)-based data acquisition, signal processing and networking nodes economically. The system was conceived for application to radio, millimeter and sub-millimeter telescope readout systems that have requirements beyond typical off-the-shelf processing systems, such as careful control of interference signals produced by the digital electronics, and clocking of all elements in the system from a single precise observatory-derived oscillator. A new generation of telescopes operating at these frequency bands and designed with a vastly increased emphasis on digital signal processing to support their detector multiplexing technology or high-bandwidth correlators — data rates exceeding a terabyte per second — are becoming common. The ICE system is built around a custom FPGA motherboard that makes use of an Xilinx Kintex-7 FPGA and ARM-based co-processor. The system is specialized for specific applications through software, firmware and custom mezzanine daughter boards that interface to the FPGA through the industry-standard FPGA mezzanine card (FMC) specifications. For high density applications, the motherboards are packaged in 16-slot crates with ICE backplanes that implement a low-cost passive full-mesh network between the motherboards in a crate, allow high bandwidth interconnection between crates and enable data offload to a computer cluster. A Python-based control software library automatically detects and operates the hardware in the array. Examples of specific telescope applications of the ICE framework are presented, namely the frequency-multiplexed bolometer readout systems used for the South Pole Telescope (SPT) and Simons Array and the digitizer, F-engine, and networking engine for the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) radio interferometers.

  18. Field Investigation of Surface-Lake Processes on Ice Shelves: Results of the 2015/16 Field Campaign on McMurdo Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    MacAyeal, Doug; Banwell, Alison; Willis, Ian; Macdonald, Grant

    2016-04-01

    Ice-shelf instability and breakup of the style exhibited by Larsen B Ice Shelf in 2002 remains the most difficult glaciological process of consequence to observe in detail. It is, however, vital to do so because ice-shelf breakup has the potential to influence the buttressing controls on inland ice discharge, and thus to affect sea level. Several mechanisms enabling Larsen B style breakup have been proposed, including the ability of surface lakes to introduce ice-shelf fractures when they fill and drain, thereby changing the surface loads the ice-shelf must adjust to. Our model suggest that these fractures resulted in a chain-reaction style drainage of >2750 surface lakes on the Larsen B in the days prior to its demise. To validate this and other models, we began a field project on the McMurdo Ice Shelf (MIS) during the 2015/16 austral summer. Advantages of the MIS study site are: there is considerable surface melting during 3-6 weeks of the summer season, the ice is sufficiently thin (< 30 m in places) to allow observable viscoelastic responses to relatively small loads, and it is close to a center of logistical support (McMurdo Station). Here we show initial results from the field campaign, including GPS and water-depth observations of a lake that has filled and drained over multiple week timescales in previous austral summers. We also report on the analysis of high-resolution WorldView satellite imagery from several summers that reveals the complexity of surface meltwater movement in channels and subsurface void spaces. Initial reconnaissance of the largest surface-lake features reveal that they have a central circular depression surrounded by an uplifted ring, which supports one of the central tenets of our ice-shelf flexure theory. A second field season is anticipated for the 2016/17 austral summer.

  19. Ice-sheet response to oceanic forcing.

    PubMed

    Joughin, Ian; Alley, Richard B; Holland, David M

    2012-11-30

    The ice sheets of Greenland and Antarctica are losing ice at accelerating rates, much of which is a response to oceanic forcing, especially of the floating ice shelves. Recent observations establish a clear correspondence between the increased delivery of oceanic heat to the ice-sheet margin and increased ice loss. In Antarctica, most of these processes are reasonably well understood but have not been rigorously quantified. In Greenland, an understanding of the processes by which warmer ocean temperatures drive the observed retreat remains elusive. Experiments designed to identify the relevant processes are confounded by the logistical difficulties of instrumenting ice-choked fjords with actively calving glaciers. For both ice sheets, multiple challenges remain before the fully coupled ice-ocean-atmosphere models needed for rigorous sea-level projection are available.

  20. Efficacy of dry-ice blasting in preventive maintenance of auto robotic assemblies

    NASA Astrophysics Data System (ADS)

    Baluch, Nazim; Mohtar, Shahimi; Abdullah, Che Sobry

    2016-08-01

    Welding robots are extensively applied in the automotive assemblies and `Spot Welding' is the most common welding application found in the auto stamping assembly manufacturing. Every manufacturing process is subject to variations - with resistance welding, these include; part fit up, part thickness variations, misaligned electrodes, variations in coating materials or thickness, sealers, weld force variations, shunting, machine tooling degradation; and slag and spatter damage. All welding gun tips undergo wear; an elemental part of the process. Though adaptive resistance welding control automatically compensates to keep production and quality up to the levels needed as gun tips undergo wear so that the welds remain reliable; the system cannot compensate for deterioration caused by the slag and spatter on the part holding fixtures, sensors, and gun tips. To cleanse welding robots of slag and spatter, dry-ice blasting has proven to be an effective remedy. This paper describes Spot welding process, analyses the slag and spatter formation during robotic welding of stamping assemblies, and concludes that the dry ice blasting process's utility in cleansing of welding robots in auto stamping plant operations is paramount and exigent.

  1. Toward a more physical representation of precipitation scavenging in global chemistry models: cloud overlap and ice physics and their impact on tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Neu, J. L.; Prather, M. J.

    2011-08-01

    Uptake and removal of soluble trace gases and aerosols by precipitation represents a major uncertainty in the processes that control the vertical distribution of atmospheric trace species. Model representations of precipitation scavenging vary greatly in their complexity, and most are divorced from the physics of precipitation formation and transformation. Here, we describe a new large-scale precipitation scavenging algorithm, developed for the UCI chemistry-transport model (UCI-CTM), that represents a step toward a more physical treatment of scavenging through improvements in the formulation of the removal in sub-gridscale cloudy and ambient environments and their overlap within the column as well as ice phase uptake of soluble species. The UCI algorithm doubles the lifetime of HNO3 in the upper troposphere relative to a scheme with commonly made assumptions about cloud overlap and ice uptake, and provides better agreement with HNO3 observations. We find that the process of ice phase scavenging of HNO3 is a critical component of the tropospheric O3 budget, but that differences in the formulation of ice phase removal, while generating large relative differences in HNO3 abundance, have little impact on NOx and O3. The O3 budget is much more sensitive to the lifetime of HNO4, highlighting the need for better understanding of its interactions with ice and for additional observational constraints.

  2. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  3. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the engines operating point to a region of lower risk through the modulation of available control actuators while maintaining the desired engine thrust output. Follow-on work will assess the feasibility and effectiveness of such control-based mitigation strategies.

  4. Influence of sea ice on Arctic coasts

    NASA Astrophysics Data System (ADS)

    Barnhart, K. R.; Kay, J. E.; Overeem, I.; Anderson, R. S.

    2017-12-01

    Coasts form the dynamic interface between the terrestrial and oceanic systems. In the Arctic, and in much of the world, the coast is a focal point for population, infrastructure, biodiversity, and ecosystem services. A key difference between Arctic and temperate coasts is the presence of sea ice. Changes in sea ice cover can influence the coast because (1) the length of the sea ice-free season controls the time over which nearshore water can interact with the land, and (2) the location of the sea ice edge controls the fetch over which storm winds can interact with open ocean water, which in turn governs nearshore water level and wave field. We first focus on the interaction of sea ice and ice-rich coasts. We combine satellite records of sea ice with a model for wind-driven storm surge and waves to estimate how changes in the sea ice-free season have impacted the nearshore hydrodynamic environment along Alaska's Beaufort Sea Coast for the period 1979-2012. This region has experienced some of the greatest changes in both sea ice cover and coastal erosion rates in the Arctic: the median length of the open-water season has expanded by 90 percent, while coastal erosion rates have more than doubled from 8.7 to 19 m yr-1. At Drew Point, NW winds increase shoreline water levels that control the incision of a submarine notch, the rate-limiting step of coastal retreat. The maximum water-level setup at Drew Point has increased consistently with increasing fetch. We extend our analysis to the entire Arctic using both satellite-based observations and global coupled climate model output from the Community Earth System Model Large Ensemble (CESM-LE) project. This 30-member ensemble employs a 1-degree version of the CESM-CAM5 historical forcing for the period 1920-2005, and RCP 8.5 forcing from 2005-2100. A control model run with constant pre-industrial (1850) forcing characterizes internal variability in a constant climate. Finally, we compare observations and model results to identify locations of both observed and expected rapid sea ice change. Based on satellite observations, the median length of the 2012 open-water season expanded by between 1.5 and 3-fold relative to 1979 over the Arctic Sea region. This results in open water during the stormy Arctic fall, with implications for not only coastal processes but for amplification of warming on land.

  5. Modeling the processing of interstellar ices by energetic particles

    NASA Astrophysics Data System (ADS)

    Kalvāns, J.; Shmeld, I.

    2013-06-01

    Context. Interstellar ice is the main form of metal species in dark molecular clouds. Experiments and observations have shown that the ice is significantly processed after the freeze-out of molecules onto grains. The processing is caused by cosmic-ray particles and cosmic-ray-induced UV photons. These transformations are included in current astrochemical models only to a very limited degree. Aims: We aim to establish a model of the "cold" chemistry in interstellar ices and to evaluate its general impact on the composition of interstellar ices. Methods: The ice was treated as consisting of two layers - the surface and the mantle (or subsurface) layer. Subsurface chemical processes are described with photodissociation of ice species and binary reactions on the surfaces of cavities inside the mantle. Hydrogen atoms and molecules can diffuse between the layers. We also included deuterium chemistry. Results: The modeling results show that the content of chemically bound H is reduced in subsurface molecules by about 30% on average. This promotes the formation of more hydrogen-poor species in the ice. The enrichment of ice molecules with deuterium is significantly reduced by the subsurface processes. On average, it follows the gas-phase atomic D/H abundance ratio, with a delay. The delay produced by the model is on the order of several Myr. Conclusions: The processing of ice may place new constraints on the production of deuterated species on grains. In a mantle with a two-layer structure the upper layer (CO) should be processed substantially more intensively than the lower layer (H2O). Chemical explosions in interstellar ice might not be an important process. They destroy the structure of the mantle, which forms over long timescales. Besides, ices may lack the high radical content needed for the explosions.

  6. Controls on the East Asian monsoon during the last glacial cycle, based on comparison between Hulu Cave and polar ice-core records

    NASA Astrophysics Data System (ADS)

    Rohling, E. J.; Liu, Q. S.; Roberts, A. P.; Stanford, J. D.; Rasmussen, S. O.; Langen, P. L.; Siddall, M.

    2009-12-01

    Previous studies have suggested a sound chronological correlation between the Hulu Cave record (East Asian monsoon) and Greenland ice-core records, which implies a dominant control of northern hemisphere climate processes on monsoon intensity. We present an objective, straightforward statistical evaluation that challenges this generally accepted paradigm for sub-orbital variability. We propose a more flexible, global interpretation, which takes into account a broad range of variability in the signal structures in the Hulu Cave and polar ice-core records, rather than a limited number of major transitions. Our analysis employs the layer-counted Greenland Ice-Core Chronology 2005 (GICC05), which was developed for Greenland records and has since been applied - via methane synchronisation - to the high-resolution δ 18O ice series from EPICA Dronning Maud Land (EDML). The GICC05 chronology allows these ice-core records to be compared to the U-Th dated Hulu Cave record within relatively narrow (˜3%) bounds of age uncertainty. Following previous suggestions, our proposed interpretation suggests that the East Asian monsoon is influenced by a combination of northern hemisphere 'pull' (which is more intense during boreal warm periods), and southern hemisphere 'push' (which is more intense monsoon during austral cold periods). Our analysis strongly suggests a dominant control on millennial-scale monsoon variability by southern hemisphere climate changes during glacial times when the monsoon is weak overall, and control by northern hemisphere climate changes during deglacial and interglacial times when the monsoon is strong. The deduced temporally variable relationship with southern hemisphere climate records offers a statistically more plausible reason for the apparent coincidence of major East Asian monsoon transitions with northern hemisphere (Dansgaard-Oeschger, DO) climate events during glacial times, than the traditional a priori interpretation of strict northern hemisphere control.

  7. Linking scales in sea ice mechanics

    NASA Astrophysics Data System (ADS)

    Weiss, Jérôme; Dansereau, Véronique

    2017-02-01

    Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue 'Microdynamics of ice'.

  8. CryoSat Ice Processor: High-Level Overview of Baseline-C Data and Quality-Control

    NASA Astrophysics Data System (ADS)

    Mannan, R.; Webb, E.; Hall, A.; Bouffard, J.; Femenias, P.; Parrinello, T.; Bouffard, J.; Brockley, D.; Baker, S.; Scagliola, M.; Urien, S.

    2016-08-01

    Since April 2015, the CryoSat ice products have been generated with the new Baseline-C Instrument Processing Facilities (IPFs). This represents a major upgrade to the CryoSat ice IPFs and is the baseline for the second CryoSat Reprocessing Campaign. Baseline- C introduces major evolutions with respect to Baseline- B, most notably the release of freeboard data within the L2 SAR products, following optimisation of the SAR retracker. Additional L2 improvements include a new Arctic Mean Sea Surface (MSS) in SAR; a new tuneable land ice retracker in LRM; and a new Digital Elevation Model (DEM) in SARIn. At L1B new attitude fields have been introduced and existing datation and range biases reduced. This paper provides a high level overview of the changes and evolutions implemented at Baseline-C in order to improve CryoSat L1B and L2 data characteristics and exploitation over polar regions. An overview of the main Quality Control (QC) activities performed on operational Baseline-C products is also presented.

  9. Wireless sensors for measuring sub-surface processes in firn

    NASA Astrophysics Data System (ADS)

    Bagshaw, Elizabeth; Karlsson, Nanna; Lishman, Ben; Bun Lok, Lai; Burrow, Stephen; Wadham, Jemma; Clare, Lindsay; Nicholls, Keith; Corr, Hugh; Brennan, Paul; Eisen, Olaf; Dahl-Jensson, Dorthe

    2017-04-01

    Subsurface processes exert controls on meltwater storage and densification within firn, which are, by their nature, challenging to measure. We present the results of proof-of-concept tests of wireless ETracer sensors with the East Greenland Ice Core Project (EGRIP) at the Northeast Greenland Ice Stream. ETracers equipped with temperature, pressure and electrical conductivity sensors were deployed in firn boreholes at the centre and the shear margins of the ice stream. Data were returned from a 60m deep test borehole, and continuously for 4 weeks from two 14m deep boreholes, to autonomous receivers at the surface. Two receivers were tested: a station using software radio and PC, and the BAS/UCL ApRES radar system. The sensors were used to track high resolution changes in temperature with depth, changes in densification rates in response to accumulation events and snow redistribution, and the presence of liquid water within the firn.

  10. Simulating the impact of glaciations on continental groundwater flow systems: 1. Relevant processes and model formulation

    NASA Astrophysics Data System (ADS)

    Lemieux, J.-M.; Sudicky, E. A.; Peltier, W. R.; Tarasov, L.

    2008-09-01

    In the recent literature, it has been shown that Pleistocene glaciations had a large impact on North American regional groundwater flow systems. Because of the myriad of complex processes and large spatial scales involved during periods of glaciation, numerical models have become powerful tools to examine how ice sheets control subsurface flow systems. In this paper, the key processes that must be represented in a continental-scale 3-D numerical model of groundwater flow during a glaciation are reviewed, including subglacial infiltration, density-dependent (i.e., high-salinity) groundwater flow, permafrost evolution, isostasy, sea level changes, and ice sheet loading. One-dimensional hydromechanical coupling associated with ice loading and brine generation were included in the numerical model HydroGeoSphere and tested against newly developed exact analytical solutions to verify their implementation. Other processes such as subglacial infiltration, permafrost evolution, and isostasy were explicitly added to HydroGeoSphere. A specified flux constrained by the ice sheet thickness was found to be the most appropriate boundary condition in the subglacial environment. For the permafrost, frozen and unfrozen elements can be selected at every time step with specified hydraulic conductivities. For the isostatic adjustment, the elevations of all the grid nodes in each vertical grid column below the ice sheet are adjusted uniformly to account for the Earth's crust depression and rebound. In a companion paper, the model is applied to the Wisconsinian glaciation over the Canadian landscape in order to illustrate the concepts developed in this paper and to better understand the impact of glaciation on 3-D continental groundwater flow systems.

  11. Reconstruction of sea-ice cover and primary production on the East Greenland Shelf (73°N) during the last 5200 years

    NASA Astrophysics Data System (ADS)

    Kolling, Henriette Marie; Stein, Rüdiger; Fahl, Kirsten; Perner, Kerstin; Moros, Matthias

    2016-04-01

    Over the last decades the extent and thickness of Arctic sea ice has changed dramatically and much more rapidly than predicted by climate models. Thus, high-resolution sea-ice reconstructions from pre-anthropogenic times are useful and needed in order to better understand the processes controlling the natural sea-ice variability. Here, we present the first high-resolution biomarker (IP25, sterols) approach over the last 5.2 ka from the East Greenland Shelf (for background about the biomarker approach see Belt et al., 2007; Müller et al., 2009, 2011). This area is highly sensitive to sea-ice changes, as it underlies the pathway of the East Greenland Current, the main exporter of Arctic freshwater and sea ice that affects the environmental conditions on the East Greenland Shelf and deep-water formation/ convection in the Northern North Atlantic. After rather stable sea-ice conditions in the mid-Holocene we found a strong increase in sea ice, cumulating around 1.5 ka and associated with the Neoglacial cooling. The general trend especially during the last 1ka is interrupted by several short-lived events such as the prominent Medieval Warm Period and Little Ice Age, characterized by minimum and maximum sea-ice extent, respectively. Using a spectral analysis, we could identify several cyclicites, e.g. a 45-year cyclicity for cold events. A comparison to similar records from the eastern Fram Strait revealed a slight time lag in the onset of the Neoglacial, but also suggesting the direct link of the East Greenland Shelf area to the Arctic sea-ice/freahwater outflow. A comparison of the biomarker data with a new foraminiferal record obtained from the same site (Perner et al., 2015) suggests that IP25 and foraminifera assemblages are probably controlled by rather different processes within the oceanographic systems, such as the sea-ice conditions and, for the foraminifera, water-mass changes and nutrient supply. References: Belt. S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry 38 (2007) 16-27 Müller, J., Massé, G., Stein, R., Belt, S.T., 2009. Variability of sea-ice conditons in the Fram Strait over the past 30,000 years. Nature Geoscience Vol 2 (2009), 772-776 Müller, J., Wagner, A., Fahl, K., Stein, R., Prange, M., Lohmann, G., 2011. Towards quantitative sea ice reconstructions in the northern North Atlantic: A combines biomarker and numerical modelling approach. East and Planetrary Science Letters 306 (2011) 137-148 Perner, K., Moros, M., Lloyd, J.M., Jansen, E., Stein, R., 2015. Mid to late Holocene strengthening of the East Greenland Current linked to warm subsurface Atlantic water. Quaternary Science Reviews 129 (2015) 296-307

  12. Multivariable Time Series Prediction for the Icing Process on Overhead Power Transmission Line

    PubMed Central

    Li, Peng; Zhao, Na; Zhou, Donghua; Cao, Min; Li, Jingjie; Shi, Xinling

    2014-01-01

    The design of monitoring and predictive alarm systems is necessary for successful overhead power transmission line icing. Given the characteristics of complexity, nonlinearity, and fitfulness in the line icing process, a model based on a multivariable time series is presented here to predict the icing load of a transmission line. In this model, the time effects of micrometeorology parameters for the icing process have been analyzed. The phase-space reconstruction theory and machine learning method were then applied to establish the prediction model, which fully utilized the history of multivariable time series data in local monitoring systems to represent the mapping relationship between icing load and micrometeorology factors. Relevant to the characteristic of fitfulness in line icing, the simulations were carried out during the same icing process or different process to test the model's prediction precision and robustness. According to the simulation results for the Tao-Luo-Xiong Transmission Line, this model demonstrates a good accuracy of prediction in different process, if the prediction length is less than two hours, and would be helpful for power grid departments when deciding to take action in advance to address potential icing disasters. PMID:25136653

  13. A new approach to driving and controlling precision lasers for cold-atom science

    NASA Astrophysics Data System (ADS)

    Luey, Ben; Shugrue, Jeremy; Anderson, Mike

    2014-05-01

    Vescent's Integrated Control Electronics (ICE) Platform is a new approach to controlling and driving lasers and other electoral devices in complex atomic and optical experiments. By employing low-noise, high-bandwidth analog electronics with digital control, ICE combines the performance of analog design with the convenience of the digital world. Utilizing a simple USB COM port interface, ICE can easily be controlled via LabView, Python, or an FPGA. High-speed TTL inputs enable precise external timing or triggering. ICE is capable of generating complex timing internally, enabling ICE to drive an entire experiment or it can be directed by an external control program. The system is capable of controlling up to 8 unique ICE slave boards providing flexibility to tailor an assortment of electronics hardware to the needs of a specific experiment. Examples of ICE slave boards are: a current controller and peak-lock laser servo, a four channel temperature controller, a current controller and offset phase lock servo. A single ensemble can drive, stabilize, and frequency lock 3 lasers in addition to powering an optical amplifier, while still leaving 2 remaining slots for further control needs. Staff Scientist

  14. Seasonal Changes of Arctic Sea Ice Physical Properties Observed During N-ICE2015: An Overview

    NASA Astrophysics Data System (ADS)

    Gerland, S.; Spreen, G.; Granskog, M. A.; Divine, D.; Ehn, J. K.; Eltoft, T.; Gallet, J. C.; Haapala, J. J.; Hudson, S. R.; Hughes, N. E.; Itkin, P.; King, J.; Krumpen, T.; Kustov, V. Y.; Liston, G. E.; Mundy, C. J.; Nicolaus, M.; Pavlov, A.; Polashenski, C.; Provost, C.; Richter-Menge, J.; Rösel, A.; Sennechael, N.; Shestov, A.; Taskjelle, T.; Wilkinson, J.; Steen, H.

    2015-12-01

    Arctic sea ice is changing, and for improving the understanding of the cryosphere, data is needed to describe the status and processes controlling current seasonal sea ice growth, change and decay. We present preliminary results from in-situ observations on sea ice in the Arctic Basin north of Svalbard from January to June 2015. Over that time, the Norwegian research vessel «Lance» was moored to in total four ice floes, drifting with the sea ice and allowing an international group of scientists to conduct detailed research. Each drift lasted until the ship reached the marginal ice zone and ice started to break up, before moving further north and starting the next drift. The ship stayed within the area approximately 80°-83° N and 5°-25° E. While the expedition covered measurements in the atmosphere, the snow and sea ice system, and in the ocean, as well as biological studies, in this presentation we focus on physics of snow and sea ice. Different ice types could be investigated: young ice in refrozen leads, first year ice, and old ice. Snow surveys included regular snow pits with standardized measurements of physical properties and sampling. Snow and ice thickness were measured at stake fields, along transects with electromagnetics, and in drillholes. For quantifying ice physical properties and texture, ice cores were obtained regularly and analyzed. Optical properties of snow and ice were measured both with fixed installed radiometers, and from mobile systems, a sledge and an ROV. For six weeks, the surface topography was scanned with a ground LIDAR system. Spatial scales of surveys ranged from spot measurements to regional surveys from helicopter (ice thickness, photography) during two months of the expedition, and by means of an array of autonomous buoys in the region. Other regional information was obtained from SAR satellite imagery and from satellite based radar altimetry. The analysis of the data collected has started, and first results will be presented.

  15. Current Methods for Modeling and Simulating Icing Effects on Aircraft Performance, Stability and Control

    NASA Technical Reports Server (NTRS)

    Ralvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2008-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability and control. Emphasis has been on wind tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flow field and ultimately the aerodynamics. This research has led to wind tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot in the loop simulations to be performed for pilot training, or engineering evaluation of system failure impacts or control system design.

  16. Current Methods Modeling and Simulating Icing Effects on Aircraft Performance, Stability, Control

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam

    2010-01-01

    Icing alters the shape and surface characteristics of aircraft components, which results in altered aerodynamic forces and moments caused by air flow over those iced components. The typical effects of icing are increased drag, reduced stall angle of attack, and reduced maximum lift. In addition to the performance changes, icing can also affect control surface effectiveness, hinge moments, and damping. These effects result in altered aircraft stability and control and flying qualities. Over the past 80 years, methods have been developed to understand how icing affects performance, stability, and control. Emphasis has been on wind-tunnel testing of two-dimensional subscale airfoils with various ice shapes to understand their effect on the flowfield and ultimately the aerodynamics. This research has led to wind-tunnel testing of subscale complete aircraft models to identify the integrated effects of icing on the aircraft system in terms of performance, stability, and control. Data sets of this nature enable pilot-in-the-loop simulations to be performed for pilot training or engineering evaluation of system failure impacts or control system design.

  17. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    PubMed

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Emerging trends in the sea state of the Beaufort and Chukchi seas

    NASA Astrophysics Data System (ADS)

    Thomson, Jim; Fan, Yalin; Stammerjohn, Sharon; Stopa, Justin; Rogers, W. Erick; Girard-Ardhuin, Fanny; Ardhuin, Fabrice; Shen, Hayley; Perrie, Will; Shen, Hui; Ackley, Steve; Babanin, Alex; Liu, Qingxiang; Guest, Peter; Maksym, Ted; Wadhams, Peter; Fairall, Chris; Persson, Ola; Doble, Martin; Graber, Hans; Lund, Bjoern; Squire, Vernon; Gemmrich, Johannes; Lehner, Susanne; Holt, Benjamin; Meylan, Mike; Brozena, John; Bidlot, Jean-Raymond

    2016-09-01

    The sea state of the Beaufort and Chukchi seas is controlled by the wind forcing and the amount of ice-free water available to generate surface waves. Clear trends in the annual duration of the open water season and in the extent of the seasonal sea ice minimum suggest that the sea state should be increasing, independent of changes in the wind forcing. Wave model hindcasts from four selected years spanning recent conditions are consistent with this expectation. In particular, larger waves are more common in years with less summer sea ice and/or a longer open water season, and peak wave periods are generally longer. The increase in wave energy may affect both the coastal zones and the remaining summer ice pack, as well as delay the autumn ice-edge advance. However, trends in the amount of wave energy impinging on the ice-edge are inconclusive, and the associated processes, especially in the autumn period of new ice formation, have yet to be well-described by in situ observations. There is an implicit trend and evidence for increasing wave energy along the coast of northern Alaska, and this coastal signal is corroborated by satellite altimeter estimates of wave energy.

  19. Albedo and its relationship with seasonal surface roughness using repeat UAV survey across the Kangerlussuaq sector of the Greenland Ice Sheet

    NASA Astrophysics Data System (ADS)

    Hubbard, A., II; Ryan, J.; Box, J. E.; Snooke, N.

    2015-12-01

    Surface albedo is a primary control on absorbed radiation and hence ice surface darkening is a powerful amplifier of melt across the margin of the Greenland ice sheet. To investigate the relationship between ice surface roughness and variations in albedo in space and time at ~dm resolution, a suite of Unmanned Aerial Vehicles (UAVs) were deployed from the margin of Russell Glacier between June and August, 2014. The UAVs were equipped with digital and multispectral cameras, GoPros, fast response broadband pyranometers and temperature and humidity sensors. The primary mission was regular repeat longitudinal transects attaining data from the margin to the equilibrium line 80 km into the ice sheet interior and which were complimented by selected watershed and catchment surveys. The pyranometers reliably measure bare ice surface albedo between 0.34 and 0.58 that correlate well against concurrent MODIS data (where available). Repeat digital photogrammetric analysis enables investigation of relationship between changing meso- and micro-scale albedo and melt processes modulated by ice surface roughness that, in turn, are related to the seasonally evolving surface energy balance recorded at three AWS on the flight path.

  20. A Novel Approach To Improve the Efficiency of Block Freeze Concentration Using Ice Nucleation Proteins with Altered Ice Morphology.

    PubMed

    Jin, Jue; Yurkow, Edward J; Adler, Derek; Lee, Tung-Ching

    2017-03-22

    Freeze concentration is a separation process with high success in product quality. The remaining challenge is to achieve high efficiency with low cost. This study aims to evaluate the potential of using ice nucleation proteins (INPs) as an effective method to improve the efficiency of block freeze concentration while also exploring the related mechanism of ice morphology. Our results show that INPs are able to significantly improve the efficiency of block freeze concentration in a desalination model. Using this experimental system, we estimate that approximately 50% of the energy cost can be saved by the inclusion of INPs in desalination cycles while still meeting the EPA standard of drinking water (<500 ppm). Our investigative tools for ice morphology include optical microscopy and X-ray computed tomography imaging analysis. Their use indicates that INPs promote the development of a lamellar structured ice matrix with larger hydraulic diameters, which facilitates brine drainage and contains less brine entrapment as compared to control samples. These results suggest great potential for applying INPs to develop an energy-saving freeze concentration method via the alteration of ice morphology.

  1. A ubiquitous ice size bias in simulations of tropical deep convection

    NASA Astrophysics Data System (ADS)

    Stanford, McKenna W.; Varble, Adam; Zipser, Ed; Strapp, J. Walter; Leroy, Delphine; Schwarzenboeck, Alfons; Potts, Rodney; Protat, Alain

    2017-08-01

    The High Altitude Ice Crystals - High Ice Water Content (HAIC-HIWC) joint field campaign produced aircraft retrievals of total condensed water content (TWC), hydrometeor particle size distributions (PSDs), and vertical velocity (w) in high ice water content regions of mature and decaying tropical mesoscale convective systems (MCSs). The resulting dataset is used here to explore causes of the commonly documented high bias in radar reflectivity within cloud-resolving simulations of deep convection. This bias has been linked to overly strong simulated convective updrafts lofting excessive condensate mass but is also modulated by parameterizations of hydrometeor size distributions, single particle properties, species separation, and microphysical processes. Observations are compared with three Weather Research and Forecasting model simulations of an observed MCS using different microphysics parameterizations while controlling for w, TWC, and temperature. Two popular bulk microphysics schemes (Thompson and Morrison) and one bin microphysics scheme (fast spectral bin microphysics) are compared. For temperatures between -10 and -40 °C and TWC > 1 g m-3, all microphysics schemes produce median mass diameters (MMDs) that are generally larger than observed, and the precipitating ice species that controls this size bias varies by scheme, temperature, and w. Despite a much greater number of samples, all simulations fail to reproduce observed high-TWC conditions ( > 2 g m-3) between -20 and -40 °C in which only a small fraction of condensate mass is found in relatively large particle sizes greater than 1 mm in diameter. Although more mass is distributed to large particle sizes relative to those observed across all schemes when controlling for temperature, w, and TWC, differences with observations are significantly variable between the schemes tested. As a result, this bias is hypothesized to partly result from errors in parameterized hydrometeor PSD and single particle properties, but because it is present in all schemes, it may also partly result from errors in parameterized microphysical processes present in all schemes. Because of these ubiquitous ice size biases, the frequently used microphysical parameterizations evaluated in this study inherently produce a high bias in convective reflectivity for a wide range of temperatures, vertical velocities, and TWCs.

  2. IceProd 2: A Next Generation Data Analysis Framework for the IceCube Neutrino Observatory

    NASA Astrophysics Data System (ADS)

    Schultz, D.

    2015-12-01

    We describe the overall structure and new features of the second generation of IceProd, a data processing and management framework. IceProd was developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations, detector data, and analysis levels. It runs as a separate layer on top of grid and batch systems. This is accomplished by a set of daemons which process job workflow, maintaining configuration and status information on the job before, during, and after processing. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. IceProd is designed to be very light-weight; it runs as a python application fully in user space and can be set up easily. For the initial completion of this second version of IceProd, improvements have been made to increase security, reliability, scalability, and ease of use.

  3. Synthesis of polycrystalline methane hydrate, and its phase stability and mechanical properties at elevated pressure

    USGS Publications Warehouse

    Stern, L.A.; Kirby, S.H.; Durham, W.B.

    1997-01-01

    Test specimens of methane hydrate were grown under static conditions by combining cold, pressurized CH4 gas with H2O ice grains, then warming the system to promote the reaction CH4 (g) + 6H2O (s???l) ??? CH4??6H2O. Hydrate formation evidently occurs at the nascent ice/liquid water interface, and complete reaction was achieved by warming the system above 271.5 K and up to 289 K, at 25-30 MPa, for approximately 8 hours. The resulting material is pure methane hydrate with controlled grain size and random texture. Fabrication conditions placed the H2O ice well above its melting temperature before reaction completed, yet samples and run records showed no evidence for bulk melting of the ice grains. Control experiments using Ne, a non-hydrate-forming gas, verified that under otherwise identical conditions, the pressure reduction and latent heat associated with ice melting is easily detectable in our fabrication apparatus. These results suggest that under hydrate-forming conditions, H2O ice can persist metastably at temperatures well above its melting point. Methane hydrate samples were then tested in constant-strain-rate deformation experiments at T= 140-200 K, Pc= 50-100 MPa, and ????= 10-4-10-6 s-1. Measurements in both the brittle and ductile fields showed that methane hydrate has measurably different strength than H2O ice, and work hardens to a higher degree compared to other ices as well as to most metals and ceramics at high homologous temperatures. This work hardening may be related to a changing stoichiometry under pressure during plastic deformation; x-ray analyses showed that methane hydrate undergoes a process of solid-state disproportionation or exsolution during deformation at conditions well within its conventional stability field.

  4. Physical and Sensory Properties of Ice Cream Containing Fermented Pepper Powder.

    PubMed

    Yeon, Su-Jung; Kim, Ji-Han; Hong, Go-Eun; Park, Woojoon; Kim, Soo-Ki; Seo, Han-Geuk; Lee, Chi-Ho

    2017-01-01

    This study was conducted to investigate the physical and sensory properties of ice cream containing fermented pepper powder. Three ice cream formulas were manufactured: 1, control; 2, supplemented with 0.1% fermented pepper powder; and 3, supplemented with 0.2% fermented pepper powder. Formulas 2 and 3 had significantly higher viscosity and lower overrun than formula 1 ( p <0.05). Additionally, ice creams supplemented with fermented pepper powder were harder and maintained their forms longer than the controls. 0.2% fermented pepper powder added ice cream had no pungency as much as that of control and overall sensory attribute was not significantly different from control. Therefore, ice cream containing fermented pepper powder maintained physical and sensory properties similar to the controls, and maintenance was better. It means fermented pepper powder ice cream can be utilized as the material of functional food (dessert).

  5. Physical and Sensory Properties of Ice Cream Containing Fermented Pepper Powder

    PubMed Central

    Kim, Soo-Ki; Seo, Han-Geuk

    2017-01-01

    This study was conducted to investigate the physical and sensory properties of ice cream containing fermented pepper powder. Three ice cream formulas were manufactured: 1, control; 2, supplemented with 0.1% fermented pepper powder; and 3, supplemented with 0.2% fermented pepper powder. Formulas 2 and 3 had significantly higher viscosity and lower overrun than formula 1 (p<0.05). Additionally, ice creams supplemented with fermented pepper powder were harder and maintained their forms longer than the controls. 0.2% fermented pepper powder added ice cream had no pungency as much as that of control and overall sensory attribute was not significantly different from control. Therefore, ice cream containing fermented pepper powder maintained physical and sensory properties similar to the controls, and maintenance was better. It means fermented pepper powder ice cream can be utilized as the material of functional food (dessert). PMID:28316469

  6. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    NASA Astrophysics Data System (ADS)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing to detect equipment failure and identify defective products at the assembly line. The research work in this thesis combines machine vision and image processing technology to build a digital imaging and processing system for monitoring and measuring lake ice thickness in real time. An ultra-compact USB camera is programmed to acquire and transmit high resolution imagery for processing with MATLAB Image Processing toolbox. The image acquisition and transmission process is fully automated; image analysis is semi-automated and requires limited user input. Potential design changes to the prototype and ideas on fully automating the imaging and processing procedure are presented to conclude this research work.

  7. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    NASA Astrophysics Data System (ADS)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat rates markedly increased after the YD and the ice sheet became limited to the Canadian Shield. This hard-bed substrate brought a change in the character of ice streaming, which became less frequent but generated much broader terrestrial ice streams. The final collapse of the ice sheet saw a series of small ephemeral ice streams that resulted from the rapidly changing ice sheet geometry in and around Hudson Bay. Our reconstruction indicates that the LIS underwent a transition from a topographically-controlled ice drainage network at the LGM to an ice drainage network characterised by less frequent, broad ice streams during the later stages of deglaciation. These deglacial ice streams are mostly interpreted as a reaction to localised ice-dynamical forcing (flotation and calving of the ice front in glacial lakes and transgressing sea; basal de-coupling due to large amount of meltwater reaching the bed, debuttressing due to rapid changes in ice sheet geometry) rather than as conveyors of excess mass from the accumulation area of the ice sheet. At an ice sheet scale, the ice stream drainage network became less widespread and less efficient with the decreasing size of the deglaciating ice sheet, the final elimination of which was mostly driven by surface melt.

  8. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    NASA Astrophysics Data System (ADS)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  9. Remote sensing of ocean color in the Arctic

    NASA Technical Reports Server (NTRS)

    Maynard, N. G.

    1988-01-01

    The main objectives of the research are: to increase the understanding of biological production (and carbon fluxes) along the ice edge, in frontal regions, and in open water areas of the Arctic and the physical factors controlling that production through the use of satellite and aircraft remote sensing techniques; and to develop relationships between measured radiances from the Multichannel Aircraft Radiometer System (MARS) and the bio-optical properties of the water in the Arctic and adjacent seas. Several recent Coastal Zone Color Scanner (CZCS) studies in the Arctic have shown that, despite constraints imposed by cloud cover, satellite ocean color is a useful means of studying mesoscale physical and biological oceanographic phenomena at high latitudes. The imagery has provided detailed information on ice edge and frontal processes such as spring breakup and retreat of the ice edge, influence of ice on ice effects of stratification on phytoplankton production, river sediment transport, effects of spring runoff, water mass boundaries, circulation patterns, and eddy formation in Icelandic waters and in the Greenland, Barents, Norwegian, and Bering Seas.

  10. The development of a stepped frequency microwave radiometer and its application to remote sensing of the Earth

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.

    1980-01-01

    The design, development, application, and capabilities of a variable frequency microwave radiometer are described. This radiometer demonstrated the versatility, accuracy, and stability required to provide contributions to the geophysical understanding of ocean and ice processes. A closed-loop feedback method was used, whereby noise pulses were added to the received electromagnetic radiation to achieve a null balance in a Dicke switched radiometer. Stability was achieved through the use of a constant temperature enclosure around the low loss microwave front end. The Dicke reference temperature was maintained to an absolute accuracy of 0.1 K using a closed-loop proportional temperature controller. A microprocessor based digital controller operates the radiometer and records the data on computer compatible tapes. This radiometer exhibits an absolute accuracy of better than 0.5 K when the sensitivity is 0.1 K. The sensitivity varies between 0.0125 K and 1.25 K depending upon the bandwidth and integration time selected by the digital controller. Remote sensing experiments were conducted from an aircraft platform and the first radiometeric mapping of an ocean polar front; exploratory experiments to measure the thickness of lake ice; first discrimination between first year and multiyear ice below 10 GHz; and the first known measurements of frequency sensitive characteristics of sea ice.

  11. High and Increasing Shoreline Erosion Rates of Thermokarst Lakes Set in Ice-Rich Permafrost Terrain of the Arctic Coastal Plain of Alaska

    NASA Astrophysics Data System (ADS)

    Bondurant, A. C.; Arp, C. D.; Jones, B. M.; Shur, Y.; Daanen, R. P.

    2017-12-01

    Thermokarst lakes are a dominant landform shaping landscapes and impacting permafrost on the Arctic Coastal Plain (ACP) of northern Alaska, a region of continuous permafrost. Here lakes cover greater than 20% of the landscape and drained lake basins cover an additional 50 to 60% of the landscape. The formation, expansion, and drainage of thaw lakes has been described by some researchers as part of a natural cycle that has reworked the ACP landscape during the Holocene. Yet the factors and processes controlling contemporary thermokarst lake expansion remain poorly described. This study focuses on the factors controlling expansion rates of thermokarst lakes in three ACP regions that vary in landscape history, ground-ice content, and lake morphology (i.e. size and depth), as well as evaluating changes through time. Through the use of historical aerial imagery, satellite imagery, and field observations, this study identifies the controlling factors at multiple spatial and temporal scales to better understand the processes relating to thermokarst lake expansion. Studies of 35 lakes across the ACP shows regional differences in expansion rate related to permafrost ice content ranging from an average expansion rate of 0.62 m/yr where ice content is highest ( 86%) to 0.16 m/yr where ice content is lowest (45%-71%). A subset of these lakes analyzed over multiple time periods show increasing rates of erosion, with average rates being 37% higher over the period 1979-2002 (0.73 m/yr) compared to 1948-1979 (0.53 m/yr). These increased rates of erosion have important implications for the regional hydrologic cycle and localized permafrost degradation. Predicting how thermokarst lakes will behave locally and on a landscape scale is increasingly important for managing habitat and water resources and informing models of land-climate interactions in the Arctic.

  12. Mechanisms controlling rock coast evolution in paraglacial landscapes - examples from Arctic, Antarctic and Scandinavian regions

    NASA Astrophysics Data System (ADS)

    Strzelecki, M. C.; Lim, M.; Kasprzek, M.; Swirad, Z. M.; Rachlewicz, G.; Migoń, P.; Pawlowski, L.; Jaskolski, M.

    2017-12-01

    This paper presents the results of an investigation into the processes controlling development of paraglacial rock coast systems in Hornsund, Svalbard, Admiralty Bay, South Shetland Islands and Gotland Island, Scandinavia. A suite of nested geomorphological and geophysical methods have been applied to characterize the functioning of rock cliffs, shore platforms and stacks influenced by lithological control and geomorphic processes driven by paraglacial coast environments - both in glaciated and deglaciated study sites. Rock hardness, quantified by Schmidt hammer rebound tests, demonstrate strong spatial control on the degree of rock weathering (rock strength) along studied rock coasts. Elevation controlled geomorphic zones are identified and linked to distinct processes and mechanisms, transitioning from peak hardness values at the icefoot/sea-ice through the wave and storm dominated scour zones to the lowest values on the cliff tops, where the effects of periglacial weathering dominate. Observations of rock surface change using a traversing micro-erosion meter (TMEM) indicate that significant changes in erosion rates occur at the junction between shore platform and the cliff toe, where rock erosion is facilitated by frequent wetting and drying and operation of nivation and sea ice processes (formation and melting of snow patches and icefoot complexes). Electrical resistivity tomography (ERT) surveys have been used to investigate frozen ground control on rock coast dynamics and reveal the strong interaction with marine processes in polar coastal settings. In Gotland, Scandinavia the morphology of rocky coastal landforms (rauks) bear traces of numerous environmental changes that occurred in Baltic region over the Holocene including salinity, temperature, ice-cover/storminess and relative sea-level. The results are synthesised to propose a new conceptual model of paraglacial rock coast systems, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of rock coasts in deglaciated regions. This is a contribution to National Science Centre projects: RAUK (2016/21/D/ST10/01976) and POROCO (UMO-2013/11/B/ST10/00283).

  13. Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice-ocean data assimilation system

    NASA Astrophysics Data System (ADS)

    Nakanowatari, Takuya; Inoue, Jun; Sato, Kazutoshi; Bertino, Laurent; Xie, Jiping; Matsueda, Mio; Yamagami, Akio; Sugimura, Takeshi; Yabuki, Hironori; Otsuka, Natsuhiko

    2018-06-01

    Accelerated retreat of Arctic Ocean summertime sea ice has focused attention on the potential use of the Northern Sea Route (NSR), for which sea ice thickness (SIT) information is crucial for safe maritime navigation. This study evaluated the medium-range (lead time below 10 days) forecast of SIT distribution in the East Siberian Sea (ESS) in early summer (June-July) based on the TOPAZ4 ice-ocean data assimilation system. A comparison of the operational model SIT data with reliable SIT estimates (hindcast, satellite and in situ data) showed that the TOPAZ4 reanalysis qualitatively reproduces the tongue-like distribution of SIT in ESS in early summer and the seasonal variations. Pattern correlation analysis of the SIT forecast data over 3 years (2014-2016) reveals that the early summer SIT distribution is accurately predicted for a lead time of up to 3 days, but that the prediction accuracy drops abruptly after the fourth day, which is related to a dynamical process controlled by synoptic-scale atmospheric fluctuations. For longer lead times ( > 4 days), the thermodynamic melting process takes over, which contributes to most of the remaining prediction accuracy. In July 2014, during which an ice-blocking incident occurred, relatively thick SIT ( ˜ 150 cm) was simulated over the ESS, which is consistent with the reduction in vessel speed. These results suggest that TOPAZ4 sea ice information has great potential for practical applications in summertime maritime navigation via the NSR.

  14. Interaction of ice sheets and climate during the past 800 000 years

    NASA Astrophysics Data System (ADS)

    Stap, L. B.; van de Wal, R. S. W.; de Boer, B.; Bintanja, R.; Lourens, L. J.

    2014-12-01

    During the Cenozoic, land ice and climate interacted on many different timescales. On long timescales, the effect of land ice on global climate and sea level is mainly set by large ice sheets in North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely determined by the meridional temperature profile resulting from radiation and greenhouse gas (GHG) forcing. As a response, the ice sheets cause an increase in albedo and surface elevation, which operates as a feedback in the climate system. To quantify the importance of these climate-land ice processes, a zonally averaged energy balance climate model is coupled to five one-dimensional ice sheet models, representing the major ice sheets. In this study, we focus on the transient simulation of the past 800 000 years, where a high-confidence CO2 record from ice core samples is used as input in combination with Milankovitch radiation changes. We obtain simulations of atmospheric temperature, ice volume and sea level that are in good agreement with recent proxy-data reconstructions. We examine long-term climate-ice-sheet interactions by a comparison of simulations with uncoupled and coupled ice sheets. We show that these interactions amplify global temperature anomalies by up to a factor of 2.6, and that they increase polar amplification by 94%. We demonstrate that, on these long timescales, the ice-albedo feedback has a larger and more global influence on the meridional atmospheric temperature profile than the surface-height-temperature feedback. Furthermore, we assess the influence of CO2 and insolation by performing runs with one or both of these variables held constant. We find that atmospheric temperature is controlled by a complex interaction of CO2 and insolation, and both variables serve as thresholds for northern hemispheric glaciation.

  15. Geodynamic Modeling of Planetary Ice-Oceans: Evolution of Ice-Shell Thickness in Convecting Two-Phase Systems

    NASA Astrophysics Data System (ADS)

    Allu Peddinti, D.; McNamara, A. K.

    2016-12-01

    Along with the newly unveiled icy surface of Pluto, several icy planetary bodies show indications of an active surface perhaps underlain by liquid oceans of some size. This augments the interest to explore the evolution of an ice-ocean system and its surface implications. The geologically young surface of the Jovian moon Europa lends much speculation to variations in ice-shell thickness over time. Along with the observed surface features, it suggests the possibility of episodic convection and conduction within the ice-shell as it evolved. What factors would control the growth of the ice-shell as it forms? If and how would those factors determine the thickness of the ice-shell and consequently the heat transfer? Would parameters such as tidal heating or initial temperature affect how the ice-shell grows and to what significance? We perform numerical experiments using geodynamical models of the two-phase ice-water system to study the evolution of planetary ice-oceans such as that of Europa. The models evolve self-consistently from an initial liquid ocean as it cools with time. The effects of presence, absence and magnitude of tidal heating on ice-shell thickness are studied in different models. The vigor of convection changes as the ice-shell continues to thicken. Initial modeling results track changes in the growth rate of the ice-shell as the vigor of the convection changes. The magnitude and temporal location of the rate change varies with different properties of tidal heating and values of initial temperature. A comparative study of models is presented to demonstrate how as the ice-shell is forming, its growth rate and convection are affected by processes such as tidal heating.

  16. Breaking Ice: Fracture Processes in Floating Ice on Earth and Elsewhere

    NASA Astrophysics Data System (ADS)

    Scambos, T. A.

    2016-12-01

    Rapid, intense fracturing events in the ice shelves of the Antarctic Peninsula reveal a set of processes that were not fully appreciated prior to the series of ice shelf break-ups observed in the late 1990s and early 2000s. A series of studies have uncovered a fascinating array of relationships between climate, ocean, and ice: intense widespread hydrofracture; repetitive hydrofracture induced by ice plate bending; the ability for sub-surface flooded firn to support hydrofracture; potential triggering by long-period wave action; accelerated fracturing by trapped tsunamic waves; iceberg disintegration, and a remarkable ice rebound process from lake drainage that resembles runaway nuclear fission. The events and subsequent studies have shown that rapid regional warming in ice shelf areas leads to catastrophic changes in a previously stable ice mass. More typical fracturing of thick ice plates is a natural consequence of ice flow in a complex geographic setting, i.e., it is induced by shear and divergence of spreading plate flow around obstacles. While these are not a result of climate or ocean change, weather and ocean processes may impact the exact timing of final separation of an iceberg from a shelf. Taking these terrestrial perspectives to other ice-covered ocean worlds, cautiously, provides an observational framework for interpreting features on Europa and Enceladus.

  17. Controls on Arctic sea ice from first-year and multi-year survival rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunke, Jes

    2009-01-01

    The recent decrease in Arctic sea ice cover has transpired with a significant loss of multi year ice. The transition to an Arctic that is populated by thinner first year sea ice has important implications for future trends in area and volume. Here we develop a reduced model for Arctic sea ice with which we investigate how the survivability of first year and multi year ice control the mean state, variability, and trends in ice area and volume.

  18. Impacts of Recent Warming on a Floating Ice Tongue in Northern Greenland

    NASA Astrophysics Data System (ADS)

    Cullen, N. J.; Huff, R.; Steffen, K.; Rignot, E.

    2004-12-01

    The recent collapse of ice shelves in West Antarctica and to the Ward Hunt Ice Shelf, Ellesmere Island, Canada, has been interpreted as evidence of accelerated climate change in the high latitudes. To improve our understanding of the stability of glaciers in northern Greenland a combination of field data, remote sensing observations and modeling is used to investigate both bottom and surface melt processes on the Petermann Gletscher (81 N, 60 W). The Petermann Gletscher is similar to other more well-known ice shelves because it has a large floating section, or ice tongue, that is 20-km wide by 70-km long. This purpose of this work is to describe in detail the surface climate of the Petermann Gletscher from automatic weather station (AWS) data. Emphasis in placed on describing surface energy exchanges that have controlled ablation over the 3 most recent summer seasons (2002-4). Projection of ablation over the entire surface of the ice tongue using a degree-day model shows that surface lowering of the ice tongue in 2002-3 is 50 percent higher than a 53-year proxy melt record established from AWS measurements at nearby Alert, Ellesmere Island. If this warming trend continues the increased thinning rate is likely to yield enhanced calving rates at the ice front of the Petermann Gletscher, which could ultimately weaken and fracture the floating ice tongue.

  19. Linking scales in sea ice mechanics

    PubMed Central

    Weiss, Jérôme; Dansereau, Véronique

    2017-01-01

    Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell–elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025300

  20. Experimental Study on Ice Forming Process of Cryogenic Liquid Releasing underwater

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Wu, Wanqing; Zhang, Xingdong; Zhang, Yi; Zhang, Chuanlin; Zhang, Haoran; Wang, Peng

    2017-11-01

    Cryogenic liquid releasing into water would be a process combines hyperactive boiling with ice forming. There are still few researches on the experimental study on the environmental conditions for deciding ice forming speed and liquid surviving state. In this paper, to advance our understanding of ice forming deciding factors in the process of LN2 releasing underwater, a visualization experimental system is built. The results show that the pressure difference significantly influences the ice forming speed and liquid surviving distance, which is observed by the experiment and theoretically analysed by Kelvin-Helmholtz instability. Adding nucleating agent is helpful to provide ice nucleus which can accelerate the ice forming speed. Water flowing has some effect on changing pressure difference, which can affect the ice forming speed and liquid surviving distance.

  1. Modeling of Cloud/Radiation Processes for Large-Scale Clouds and Tropical Anvils

    DTIC Science & Technology

    1994-05-31

    Bergeron- Findeisen process. The saturation vapor pressure over ice is less than 2.4. Radiative transfer parameterization that over water. As a result, ice...nucleation to generate ice dN ) ’- if T>- -20 0C crystals, depositional growth to simulate the T•’= 0j At (3.7) Bergeron- Findeisen process, sublimation...and (0 if T< - 200C. melting of ice crystals, and gravitational settling to deplete the ice crystals. The Bergeron- Findeisen Here, N, +,,, and N, are

  2. Spatial and temporal distributions of ice nucleating particles during the Atmospheric Radiation Measurement (ARM) Cloud Aerosol Precipitation Experiment (ACAPEX)

    NASA Astrophysics Data System (ADS)

    Levin, E. J.; DeMott, P. J.; Suski, K. J.; Boose, Y.; Hill, T. C. J.; McCluskey, C. S.; Schill, G. P.; Duncan, D.; Al-Mashat, H.; Prather, K. A.; Sedlacek, A. J., III; Tomlinson, J. M.; Mei, F.; Hubbe, J. M.; Pekour, M. S.; Leung, L. R.; Kreidenweis, S. M.

    2016-12-01

    California is currently under drought conditions and changes in precipitation due to future climate change scenarios are uncertain. Thus, understanding the controlling factors for precipitation in this region, and having the capability to accurately model these scenarios, is important. A crucial area in understanding precipitation is in the interplay between atmospheric moisture and aerosols. Specifically, ice nucleation in clouds is an important process controlling precipitation formation. A major component of CA's yearly precipitation comes from wintertime atmospheric river (AR) events which were the focus of the 2015 Atmospheric Radiation Measurement (ARM) Cloud Aerosol Precipitation Experiment (ACAPEX) and CalWater 2 campaigns. These two campaigns provided sampling platforms on four aircraft, including the ARM Aerial Facility G-1, as well as the NOAA Ron Brown research vessel and at a ground station at Bodega Bay, CA. Measurements of ice nucleating particles (INPs) were made with the Colorado State University (CSU) Continuous Flow Diffusion Chamber (CFDC) aboard the G-1 and at Bodega Bay, and using aerosol filter collections on these platforms as well as the Ron Brown for post-processing via immersion freezing in the CSU Ice Spectrometer. Aerosol composition was measured aboard the G-1 with the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS). Both the CFDC and ATOFMS sampled off of an isokinetic inlet when flying in clear air and a counter-flow virtual impactor in clouds to capture ice crystal and cloud droplet residuals. In this presentation we present ice nucleating particle concentrations before, during and after an AR event from air, ground and ocean-based measurements. We also examine INP concentration variability in orographic clouds and in clear air at altitude along the Sierra Nevada range, in the marine boundary layer and through the Central Valley, and relate these INP measurements to other aerosol physical and chemical properties.

  3. Constraining calving front processes on W Greenland outlet glaciers using inertial-corrected laser scanning & swath-bathymetry

    NASA Astrophysics Data System (ADS)

    Bates, R.; Hubbard, A.; Neale, M.; Woodward, J.; Box, J. E.; Nick, F.

    2010-12-01

    Calving and submarine melt account for the majority of loss from the Antarctic and over 50% of that from the Greenland Ice Sheet. These ice-ocean processes are highly efficient mass-loss mechanisms, providing a rapid link between terrestrial ice (storage) and the oceanic sink (sea level/freshwater flux) which renders the ocean-outlet-ice sheet system potentially highly non-linear. Despite this, the controls on tidewater processes are poorly understood and a process based description of them is lacking from the present generation of coupled ice sheet models. We present details from an innovative study where two survey techniques are integrated to enable the construction of accurate, ~m resolution 3d digital terrain models (DTMs) of the aerial and submarine ice front of calving outlet glaciers. A 2km range terrestrial laser scanner was combined with a 416KHz swath-interferometric system and corrected via an inertial motion unit stabilized by RTK GPS and gyro-compass data. The system was mounted aboard a heavy displacement (20,000kg) yacht in addition to a light displacement (100kg) semi-autonomous boat and used to image the aerial and submarine calving fronts of two large outlet glaciers in W Greenland. Six daily surveys, each 2.5km long were repeated across Lille Glacier during which significant ice flow, melt and calving events were observed and captured from on-ice GPS stations and time-lapse sequences. A curtain of CTD and velocity casts were also conducted to constrain the fresh and oceanic mass and energy fluxes within the fjord. The residual of successive DTMs yield the spatial pattern of frontal change enabling the processes of aerial and submarine calving and melt to be quantified and constrained in unprecedented detail. These observed frontal changes are tentatively related to local dynamic, atmospheric and oceanographic processes that drive them. A partial survey of Store Glacier (~7km calving front & W Greenland 2nd largest outlet after Jakobshavn Isbrae) was conducted, indicating that the technique is successful up to ~500m from the ice front and to a similar water depth. These data sets show that it is possible to integrate and build 3d DTMs at the metre-scale both above and below the water surface. The successful acquisition from our semi-autonomous vessel supervised up to 2km away greatly eases repeat surveys and reduces the exposure of equipment and personnel to the risks posed by large, active calving glaciers. Lille Glacier and s/v Gambo surveyed & photographed from the semi-autonomous vessel. Mock-up of Lille Glacier calving front and fore-bay submarine topography imaged by interferometric swath-bathymetry.

  4. Multiphase Reactive Transport and Platelet Ice Accretion in the Sea Ice of McMurdo Sound, Antarctica

    NASA Astrophysics Data System (ADS)

    Buffo, J. J.; Schmidt, B. E.; Huber, C.

    2018-01-01

    Sea ice seasonally to interannually forms a thermal, chemical, and physical boundary between the atmosphere and hydrosphere over tens of millions of square kilometers of ocean. Its presence affects both local and global climate and ocean dynamics, ice shelf processes, and biological communities. Accurate incorporation of sea ice growth and decay, and its associated thermal and physiochemical processes, is underrepresented in large-scale models due to the complex physics that dictate oceanic ice formation and evolution. Two phenomena complicate sea ice simulation, particularly in the Antarctic: the multiphase physics of reactive transport brought about by the inhomogeneous solidification of seawater, and the buoyancy driven accretion of platelet ice formed by supercooled ice shelf water onto the basal surface of the overlying ice. Here a one-dimensional finite difference model capable of simulating both processes is developed and tested against ice core data. Temperature, salinity, liquid fraction, fluid velocity, total salt content, and ice structure are computed during model runs. The model results agree well with empirical observations and simulations highlight the effect platelet ice accretion has on overall ice thickness and characteristics. Results from sensitivity studies emphasize the need to further constrain sea ice microstructure and the associated physics, particularly permeability-porosity relationships, if a complete model of sea ice evolution is to be obtained. Additionally, implications for terrestrial ice shelves and icy moons in the solar system are discussed.

  5. 78 FR 39407 - Self-Regulatory Organizations; New York Stock Exchange LLC; Notice of Filing of Proposed Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ..., from having voting control over ICE Group shares entitling the holder thereof to cast more than 10% of..., the ICE Group Bylaws would provide that, so long as ICE Group directly or indirectly controls any U.S... directly or indirectly controls any U.S. Regulated Subsidiary, the books, records and premises of ICE Group...

  6. 78 FR 39369 - Self-Regulatory Organizations; NYSE MKT LLC; Notice of Filing of Proposed Rule Change Relating to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... person, either alone or together with its related persons, from having voting control over ICE Group... as ICE Group directly or indirectly controls any U.S. Regulated Subsidiary, the directors, officers... ICE Group Bylaws would provide that for so long as ICE Group directly or indirectly controls any U.S...

  7. Coastal retreat and shoreface profile variations in the Canadian Beaufort Sea

    USGS Publications Warehouse

    Hequette, A.; Barnes, P.W.

    1990-01-01

    The coastline of the southern Canadian Beaufort Sea consists primarily of unconsolidated bluffs. Although the sea is ice-free for 3 months of the year and wave energy is restricted by pack ice, the coast is undergoing regional retreat with erosion rates as high as 10 m a-1 in some locations. Simple and multiple regression analyses were carried out to determine the degree of correlation between the mean retreat rate measured at various locations and the different parameters that may control shoreline recession. Sediment texture, ground-ice content, cliff height, wave energy and shoreface gradient revealed medium to poor correlation with erosion rates, showing that the recessive evolution of the coastline can not be explained solely by wave-induced and subaerial processes. The comparison of nearshore echo-sounding records from 1987 with bathymetry from 1971 showed substantial erosion (up to 1 m) of the submarine profile between 12 and 15 m of water. There is strong evidence that this erosion has been caused by sea ice gouging on the seafloor. From depths of 5 to 9 m, accretion has taken place, possibly induced by ice-push processes, and inshore of the 5 m isobath wave and current erosion of the shoreface has occurred. These results suggest that the erosion of the inner shelf by ice gouging drives the erosion observed inshore on the coastal bluffs and nearshore zone as the shoreface profile strives for a state of dynamic equilibrium. ?? 1990.

  8. Linking scales in sea ice mechanics.

    PubMed

    Weiss, Jérôme; Dansereau, Véronique

    2017-02-13

    Mechanics plays a key role in the evolution of the sea ice cover through its control on drift, on momentum and thermal energy exchanges between the polar oceans and the atmosphere along cracks and faults, and on ice thickness distribution through opening and ridging processes. At the local scale, a significant variability of the mechanical strength is associated with the microstructural heterogeneity of saline ice, however characterized by a small correlation length, below the ice thickness scale. Conversely, the sea ice mechanical fields (velocity, strain and stress) are characterized by long-ranged (more than 1000 km) and long-lasting (approx. few months) correlations. The associated space and time scaling laws are the signature of the brittle character of sea ice mechanics, with deformation resulting from a multi-scale accumulation of episodic fracturing and faulting events. To translate the short-range-correlated disorder on strength into long-range-correlated mechanical fields, several key ingredients are identified: long-ranged elastic interactions, slow driving conditions, a slow viscous-like relaxation of elastic stresses and a restoring/healing mechanism. These ingredients constrained the development of a new continuum mechanics modelling framework for the sea ice cover, called Maxwell-elasto-brittle. Idealized simulations without advection demonstrate that this rheological framework reproduces the main characteristics of sea ice mechanics, including anisotropy, spatial localization and intermittency, as well as the associated scaling laws.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  9. Arctic Research NASA's Cryospheric Sciences Program

    NASA Technical Reports Server (NTRS)

    Waleed, Abdalati; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Much of NASA's Arctic Research is run through its Cryospheric Sciences Program. Arctic research efforts to date have focused primarily on investigations of the mass balance of the largest Arctic land-ice masses and the mechanisms that control it, interactions among sea ice, polar oceans, and the polar atmosphere, atmospheric processes in the polar regions, energy exchanges in the Arctic. All of these efforts have been focused on characterizing, understanding, and predicting, changes in the Arctic. NASA's unique vantage from space provides an important perspective for the study of these large scale processes, while detailed process information is obtained through targeted in situ field and airborne campaigns and models. An overview of NASA investigations in the Arctic will be presented demonstrating how the synthesis of space-based technology, and these complementary components have advanced our understanding of physical processes in the Arctic.

  10. EBSD in Antarctic and Greenland Ice

    NASA Astrophysics Data System (ADS)

    Weikusat, Ilka; Kuiper, Ernst-Jan; Pennock, Gill; Sepp, Kipfstuhl; Drury, Martyn

    2017-04-01

    Ice, particularly the extensive amounts found in the polar ice sheets, impacts directly on the global climate by changing the albedo and indirectly by supplying an enormous water reservoir that affects sea level change. The discharge of material into the oceans is partly controlled by the melt excess over snow accumulation, partly by the dynamic flow of ice. In addition to sliding over bedrock, an ice body deforms gravitationally under its own weight. In order to improve our description of this flow, ice microstructure studies are needed that elucidate the dominant deformation and recrystallization mechanisms involved. Deformation of hexagonal ice is highly anisotropic: ice is easily sheared in the basal plane and is about two orders of magnitude harder parallel to the c-axis. As dislocation creep is the dominant deformation mechanism in polar ice this strong anisotropy needs to be understood in terms of dislocation activity. The high anisotropy of the ice crystal is usually ascribed to a particular behaviour of dislocations in ice, namely the extension of dislocations into partials on the basal plane. Analysis of EBSD data can help our understanding of dislocation activity by characterizing subgrain boundary types thus providing a tool for comprehensive dislocation characterization in polar ice. Cryo-EBSD microstructure in combination with light microscopy measurements from ice core material from Antarctica (EPICA-DML deep ice core) and Greenland (NEEM deep ice core) are presented and interpreted regarding substructure identification and characterization. We examined one depth for each ice core (EDML: 656 m, NEEM: 719 m) to obtain the first comparison of slip system activity from the two ice sheets. The subgrain boundary to grain boundary threshold misorientation was taken to be 3-5° (Weikusat et al. 2011). EBSD analyses suggest that a large portion of edge dislocations with slip systems basal gliding on the basal plane were indeed involved in forming subgrain boundaries. However, an almost equal number of tilt subgrain boundaries were measured, involving dislocations gliding on non-basal planes (prism or prism slip). A few subgrain boundaries involving prism edge dislocation glide, as well as boundaries involving basal twist dislocation slip, were also identified. The finding that subgrain boundaries built up by dislocations gliding on non-basal planes are as frequent as those originating from basal plane slip is surprising and has impact on the discussion on rate-controlling processes for the ice flow descriptions of large ice masses with respect to sea-level evolution. Weikusat, I.; Miyamoto, A.; Faria, S. H.; Kipfstuhl, S.; Azuma, N. & Hondoh, T.: Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction J. Glaciol., 2011, 57, 85-94

  11. Ice shelf breaking and increase velocity of glacier: the view from analogue experiment

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Iandelli, Irene

    2013-04-01

    Collapse of the Larsen II platform during the late 90s has generated an increase in velocity if ice sheet discharge, highlighting that these processes may strongly destabilize large ice masses speeding up the plateau discharge toward the sea. Parameters such as ice thickness, valley width and slope, ice pack dimensions may contribute to modulate the effect of increase in ice flow velocity following the removal of ice. We analyze this process through scale analogue models, aimed at reproducing the flow of ice from a plateau into the sea through a narrow valley. The ice is reproduced with a transparent silicone (Polydimethisiloxane), flowing at velocities of a few centimeters per hour and simulating natural velocities in the range of a few meters per year. Having almost the same density of the ice, PDMS floats on water and simulate the ice-shelf formation. Results of preliminary experimental series support that this methodology is able to reasonably reproduce the process and support a significant increase in velocity discharge following the removal of ice pack. Additional tests are designed to verify the influence of the above-mentioned parameters on the increase in ice velocity.

  12. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaponenko, I., E-mail: iaroslav.gaponenko@unige.ch; Gamperle, L.; Herberg, K.

    2016-06-15

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variationmore » of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.« less

  13. Toward Surface Mass Balance Modeling over Antarctic Peninsula with Improved Snow/Ice Physics within WRF

    NASA Astrophysics Data System (ADS)

    Villamil-Otero, G.; Zhang, J.; Yao, Y.

    2017-12-01

    The Antarctic Peninsula (AP) has long been the focus of climate change studies due to its rapid environmental changes such as significantly increased glacier melt and retreat, and ice-shelf break-up. Progress has been continuously made in the use of regional modeling to simulate surface mass changes over ice sheets. Most efforts, however, focus on the ice sheets of Greenland with considerable fewer studies in Antarctica. In this study the Weather Research and Forecasting (WRF) model, which has been applied to the Antarctic region for weather modeling, is adopted to capture the past and future surface mass balance changes over AP. In order to enhance the capabilities of WRF model simulating surface mass balance over the ice surface, we implement various ice and snow processes within the WRF and develop a new WRF suite (WRF-Ice). The WRF-Ice includes a thermodynamic ice sheet model that improves the representation of internal melting and refreezing processes and the thermodynamic effects over ice sheet. WRF-Ice also couples a thermodynamic sea ice model to improve the simulation of surface temperature and fluxes over sea ice. Lastly, complex snow processes are also taken into consideration including the implementation of a snowdrift model that takes into account the redistribution of blowing snow as well as the thermodynamic impact of drifting snow sublimation on the lower atmospheric boundary layer. Intensive testing of these ice and snow processes are performed to assess the capability of WRF-Ice in simulating the surface mass balance changes over AP.

  14. Critical Supersaturation for Ice Crystal Growth: Laboratory Measurements and Atmospheric Modeling Implications

    NASA Astrophysics Data System (ADS)

    Magee, N.; Moyle, A.; Lamb, D.

    2003-12-01

    An improved understanding of ice crystal growth, particularly at low temperatures, is much in demand for the advancement of numerical modeling of atmospheric processes. Cirrus models must contend with the complexity of ice crystals growing in cold temperatures, low pressures, low supersaturations, and with multiple nucleation mechanisms. Recent observations have allowed increasingly realistic parameterizations of cirrus ice crystal microphysics, but these observations need to be supplemented by a fundamental understanding of growth processes affecting low-temperature crystals. Several experimental studies have demonstrated that certain ice crystals require a minimum "critical" supersaturation before exhibiting detectable growth. These crystals are presumed to be essentially defect-free, preventing vicinal hillock growth at the site of crystal dislocations. In the case of crystal growth by spiral dislocation, advancement of faces begins as soon as supersaturation is present. The finding of conditional critical supersaturations have analogies in other materials (metals, semiconductors, potassium dihydrogen phosphate) and are thermodynamically predicted given a two-dimensional nucleation growth mechanism. Previous measurements have determined the critical supersaturation for ice as a function of temperature and crystallographic face from 0 to --15° C with extrapolation to --30° C. For both basal and prism faces, critical supersaturation is seen to increase with decreasing temperature, suggesting that low-temperature, low-supersaturation processes are most likely to be affected by this critical contingency. We present laboratory results to verify and extend prior critical supersaturation measurements using a novel approach for supersaturation generation, control, and measurement. The crystals are grown on the tip of a fine glass fiber ( ˜10 microns in diameter) under varying conditions of temperature, pressure, and saturation. Supersaturation is generated when a pre-saturated airflow passes over a coil of ice warmed by electrical resistance upstream from the growing crystal. Supersaturation is determined by a system of differential thermocouples calibrated to sulfuric acid drop size measurements. Measurements follow those made in earlier studies, but also extend to temperatures of --45° C, mimicking conditions found in some high altitude clouds.

  15. Ceres' Evolution Before and After Dawn: Where are We Now?

    NASA Astrophysics Data System (ADS)

    McCord, T. B.; Castillo, J. C.

    2016-12-01

    Observations of Ceres before Dawn indicated that it contains 25 wt% water, and thermodynamic modeling indicated Ceres probably had experienced the same process of differentiation due to melting of the original ice after accretion as experienced by large icy moons. Consistent with that was a surface of altered mineralogy like clays suggesting aqueous alteration of the original chondritic silicates. Dawn has revealed some concentration of mass toward the center, specific aqueously altered mineralogies, a stiff surface with weaker material beneath, and extrusions and protrusions suggesting recent subsurface activity, including exposures of water ice that must be very recent. This wealth of new information from Dawn enables selection of more specific evolution models that best match the vastly improved Dawn observations. In this new study we propose one possibility is that Ceres accreted as an ice and silicate mixture after short-lived radionuclides in CAIs had significantly decayed, i.e. nearer 5 my after CAIs, and thus differentiated less completely than for hotter models. On the other hand, the presence of heavily aqueously altered mineralogies, including probably salts, suggests extensive mixing of water and silicates, which might normally be associated with more complete differentiation. Geologically recent activity, perhaps even to the present time, seems evident from several young landforms, including protrusions consistent with diapirism and recent exposures of water ice. This suggests recent flexing of the subsurface and rising of less dense interior material, including salts and ice. The presence of ammoniated minerals and what appear to be salt deposits suggest a major lowering of subsurface water ice melting temperature, enhancing the duration of water-silicate contact, and perhaps accelerating the mineralization processes and slowing or halting differentiation of water and silicates. Thus, Ceres is becoming known as the first body outward from the Sun that has had its evolution controlled by water-driven processes. Investigations of its interior and geology enable by Dawn's observations will in turn help to better understand other ice-rich bodies.

  16. Ceres' evolution before and after Dawn: Where are we now?

    NASA Astrophysics Data System (ADS)

    McCord, Thomas B.; Castillo-Rogez, Julie C.

    2016-10-01

    Observations of Ceres before Dawn indicated that it contains ~25 wt% water, and thermodynamic modeling indicated Ceres probably had experienced the same process of differentiation due to melting of the original ice after accretion as experienced by large icy moons. Consistent with that was a surface of altered mineralogy like clays suggesting aqueous alteration of the original chondritic silicates. Dawn has revealed some concentration of mass toward the center, specific aqueously altered mineralogies, a stiff surface with weaker material beneath, and extrusions and protrusions suggesting recent subsurface activity, including exposures of water ice that must be very recent. This wealth of new information from Dawn enables selection of more specific evolution models that best match the vastly improved Dawn observations. In this new study we propose one possibility is that Ceres accreted as an ice and silicate mixture after short-lived radionuclides in CAIs had significantly decayed, i.e. nearer 5 my after CAIs, and thus differentiated less completely than for hotter models. On the other hand, the presence of heavily aqueously altered mineralogies, including probably salts, suggests extensive mixing of water and silicates, which might normally be associated with more complete differentiation. Geologically recent activity, perhaps even to the present time, seems evident from several young landforms, including protrusions consistent with diapirism and recent exposures of water ice. This suggests recent flexing of the subsurface and rising of less dense interior material, including salts and ice. The presence of ammoniated minerals and what appear to be salt deposits suggest a major lowering of subsurface water ice melting temperature, enhancing the duration of water-silicate contact, and perhaps accelerating the mineralization processes and slowing or halting differentiation of water and silicates. Thus, Ceres is becoming known as the first body outward from the Sun that has had its evolution controlled by water-driven processes. Investigations of its interior and geology enable by Dawn's observations will in turn help to better understand other ice-rich bodies.

  17. Diffusion model validation and interpretation of stable isotopes in river and lake ice

    USGS Publications Warehouse

    Ferrick, M.G.; Calkins, D.J.; Perron, N.M.; Cragin, J.H.; Kendall, C.

    2002-01-01

    The stable isotope stratigraphy of river- and lake-ice archives winter hydroclimatic conditions, and can potentially be used to identify changing water sources or to provide important insights into ice formation processes and growth rates. However, accurate interpretations rely on known isotopic fractionation during ice growth. A one-dimensional diffusion model of the liquid boundary layer adjacent to an advancing solid interface, originally developed to simulate solute rejection by growing crystals, has been used without verification to describe non-equilibrium fractionation during congelation ice growth. Results are not in agreement, suggesting the presence of important uncertainties. In this paper we seek validation of the diffusion model for this application using large-scale laboratory experiments with controlled freezing rates and frequent sampling. We obtained consistent, almost constant, isotopic boundary layer thicknesses over a representative range of ice growth rates on both quiescent and well-mixed water. With the 18O boundary layer thickness from the laboratory, the model successfully quantified reduced river-ice growth rates relative to those of a nearby lake. These results were more representative and easier to obtain than those of a conventional thermal ice-growth model. This diffusion model validation and boundary layer thickness determination provide a powerful tool for interpreting the stable isotope stratigraphy of floating ice. The laboratory experiment also replicated successive fractionation events in response to a freeze-thaw-refreeze cycle, providing a mechanism for apparent ice fractionation that exceeds equilibrium. Analysis of the composition of snow ice and frazil ice in river and lake cores indicated surprising similarities between these ice forms. Published in 2002 by John Wiley & Sons, Ltd.

  18. UAV applications for thermodynamic profiling: Emphasis on ice fog research

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Heymsfield, Andrew J.; Fernando, Harindra J. S.; Hoch, Sebastian W.; Ware, Randolph

    2016-04-01

    Ice fog occurs often over the Arctic, cold climatic, and mountainous regions for about 30% of time where temperature (T) can go down to -10°C or below. Ice Nucleation (IN) and cooling processes play an important role by the controlling the intensity of ice fog conditions that affect aviation application, transportation, and local climate. Ice fog can also occur at T above -10°C but close to 0°C it occurs due to freezing of supercooled droplets that include an IN. To better document ice fog conditions, observations from the ice fog events of the Indirect and Semi-Direct Aerosol effects on Climate (ISDAC) project, Barrow, Alaska, Fog Remote Sensing And Modeling (FRAM) project Yellowknife, Northwest Territories, and the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) project, Heber City, Utah, were analyzed.. Measurements difficulties of small ice fog particles at cold temperatures and low-level flying restrictions prevent observations from aircraft within the surface boundary layer. However, unmanned Aerial Vehicles (UAVs) can be operated safely to measure IN number concentration, Relative Humidity with respect to ice (RHi), T, horizontal wind speed (Uh) and direction, and ice crystal spectra less than about 500 micron. Thermodynamic profiling by a Radiometrics Profiling Microwave Radiometer (PMWR) and Vaisala CL51 ceilometer was used to describe ice fog conditions in the vertical and its time development. In this presentation, ice fog characteristics and its thermodynamic environment will be presented using both ground-based and airborne platforms such as a UAV with new sensors. Some examples of measurements from the UAV for future research, and challenges related to both ice fog measurements and visibility parameterization will also be presented.

  19. A meta-analysis of the mechanical properties of ice-templated ceramics and metals

    PubMed Central

    Deville, Sylvain; Meille, Sylvain; Seuba, Jordi

    2015-01-01

    Ice templating, also known as freeze casting, is a popular shaping route for macroporous materials. Over the past 15 years, it has been widely applied to various classes of materials, and in particular ceramics. Many formulation and process parameters, often interdependent, affect the outcome. It is thus difficult to understand the various relationships between these parameters from isolated studies where only a few of these parameters have been investigated. We report here the results of a meta analysis of the structural and mechanical properties of ice templated materials from an exhaustive collection of records. We use these results to identify which parameters are the most critical to control the structure and properties, and to derive guidelines for optimizing the mechanical response of ice templated materials. We hope these results will be a helpful guide to anyone interested in such materials. PMID:27877817

  20. A meta-analysis of the mechanical properties of ice-templated ceramics and metals

    NASA Astrophysics Data System (ADS)

    Deville, Sylvain; Meille, Sylvain; Seuba, Jordi

    2015-08-01

    Ice templating, also known as freeze casting, is a popular shaping route for macroporous materials. Over the past 15 years, it has been widely applied to various classes of materials, and in particular ceramics. Many formulation and process parameters, often interdependent, affect the outcome. It is thus difficult to understand the various relationships between these parameters from isolated studies where only a few of these parameters have been investigated. We report here the results of a meta analysis of the structural and mechanical properties of ice templated materials from an exhaustive collection of records. We use these results to identify which parameters are the most critical to control the structure and properties, and to derive guidelines for optimizing the mechanical response of ice templated materials. We hope these results will be a helpful guide to anyone interested in such materials.

  1. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow

    PubMed Central

    Kulessa, Bernd; Hubbard, Alun L.; Booth, Adam D.; Bougamont, Marion; Dow, Christine F.; Doyle, Samuel H.; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A. W.; Jones, Glenn A.

    2017-01-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms. PMID:28835915

  2. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow.

    PubMed

    Kulessa, Bernd; Hubbard, Alun L; Booth, Adam D; Bougamont, Marion; Dow, Christine F; Doyle, Samuel H; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A W; Jones, Glenn A

    2017-08-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms.

  3. GMP Cryopreservation of Large Volumes of Cells for Regenerative Medicine: Active Control of the Freezing Process

    PubMed Central

    Massie, Isobel; Selden, Clare; Hodgson, Humphrey; Gibbons, Stephanie; Morris, G. John

    2014-01-01

    Cryopreservation protocols are increasingly required in regenerative medicine applications but must deliver functional products at clinical scale and comply with Good Manufacturing Process (GMP). While GMP cryopreservation is achievable on a small scale using a Stirling cryocooler-based controlled rate freezer (CRF) (EF600), successful large-scale GMP cryopreservation is more challenging due to heat transfer issues and control of ice nucleation, both complex events that impact success. We have developed a large-scale cryocooler-based CRF (VIA Freeze) that can process larger volumes and have evaluated it using alginate-encapsulated liver cell (HepG2) spheroids (ELS). It is anticipated that ELS will comprise the cellular component of a bioartificial liver and will be required in volumes of ∼2 L for clinical use. Sample temperatures and Stirling cryocooler power consumption was recorded throughout cooling runs for both small (500 μL) and large (200 mL) volume samples. ELS recoveries were assessed using viability (FDA/PI staining with image analysis), cell number (nuclei count), and function (protein secretion), along with cryoscanning electron microscopy and freeze substitution techniques to identify possible injury mechanisms. Slow cooling profiles were successfully applied to samples in both the EF600 and the VIA Freeze, and a number of cooling and warming profiles were evaluated. An optimized cooling protocol with a nonlinear cooling profile from ice nucleation to −60°C was implemented in both the EF600 and VIA Freeze. In the VIA Freeze the nucleation of ice is detected by the control software, allowing both noninvasive detection of the nucleation event for quality control purposes and the potential to modify the cooling profile following ice nucleation in an active manner. When processing 200 mL of ELS in the VIA Freeze—viabilities at 93.4%±7.4%, viable cell numbers at 14.3±1.7 million nuclei/mL alginate, and protein secretion at 10.5±1.7 μg/mL/24 h were obtained which, compared well with control ELS (viability −98.1%±0.9%; viable cell numbers −18.3±1.0 million nuclei/mL alginate; and protein secretion −18.7±1.8 μg/mL/24 h). Large volume GMP cryopreservation of ELS is possible with good functional recovery using the VIA Freeze and may also be applied to other regenerative medicine applications. PMID:24410575

  4. Preparing and Analyzing Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.; Choo, Yung K.; Coroneos, Rula M.; Pennline, James A.; Hackenberg, Anthony W.; Schilling, Herbert W.; Slater, John W.; hide

    2004-01-01

    SmaggIce version 1.2 is a computer program for preparing and analyzing iced airfoils. It includes interactive tools for (1) measuring ice-shape characteristics, (2) controlled smoothing of ice shapes, (3) curve discretization, (4) generation of artificial ice shapes, and (5) detection and correction of input errors. Measurements of ice shapes are essential for establishing relationships between characteristics of ice and effects of ice on airfoil performance. The shape-smoothing tool helps prepare ice shapes for use with already available grid-generation and computational-fluid-dynamics software for studying the aerodynamic effects of smoothed ice on airfoils. The artificial ice-shape generation tool supports parametric studies since ice-shape parameters can easily be controlled with the artificial ice. In such studies, artificial shapes generated by this program can supplement simulated ice obtained from icing research tunnels and real ice obtained from flight test under icing weather condition. SmaggIce also automatically detects geometry errors such as tangles or duplicate points in the boundary which may be introduced by digitization and provides tools to correct these. By use of interactive tools included in SmaggIce version 1.2, one can easily characterize ice shapes and prepare iced airfoils for grid generation and flow simulations.

  5. Microphysical modeling of cirrus. 2: Sensitivity studies

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Toon, Owen B.; Westphal, Douglas L.; Kinne, Stefan; Heymsfield, Andrew J.

    1994-01-01

    The one-dimensional cirrus model described in part 1 of this issue has been used to study the sensitivity of simulated cirrus microphysical and radiative properties to poorly known model parameters, poorly understood physical processes, and environmental conditions. Model parameters and physical processes investigated include nucleation rate, mode of nucleation (e.g., homogeneous freezing of aerosols and liquid droplets or heterogeneous deposition), ice crystal shape, and coagulation. These studies suggest that the leading sources of uncertainty in the model are the phase change (liquid-solid) energy barrier and the ice-water surface energy which dominate the homogeneous freezing nucleation rate and the coagulation sticking efficiency at low temperatures which controls the production of large ice crystals (radii greater than 100 mcirons). Environmental conditions considered in sensitivity tests were CN size distribution, vertical wind speed, and cloud height. We found that (unlike stratus clouds) variations in the total number of condensation nuclei (NC) have little effect on cirrus microphysical and radiative properties, since nucleation occurs only on the largest CN at the tail of the size distribution. The total number of ice crystals which nucleate has little or no relationship to the number of CN present and depends primarily on the temperature and the cooling rate. Stronger updrafts (more rapid cooling) generate higher ice number densities, ice water content, cloud optical depth, and net radiative forcing. Increasing the height of the clouds in the model leads to an increase in ice number density, a decrease in effective radius, and a decrease in ice water content. The most prominent effect of increasing cloud height was a rapid increase in the net cloud radiative forcing which can be attributed to the change in cloud temperature as well as change in cloud ice size distributions. It has long been recognized that changes in cloud height or cloud area have the greatest potential for causing feedbacks on climate change. Our results suggest that variations in vertical velocity or cloud microphysical changes associatd with cloud height changes may also be important.

  6. The cloud-radiative processes and its modulation by sea-ice cover and stability as derived from a merged C3M Data product.

    NASA Astrophysics Data System (ADS)

    Nag, B.

    2016-12-01

    The polar regions of the world constitute an important sector in the global energy balance. Among other effects responsible for the change in the sea-ice cover like ocean circulation and ice-albedo feedback, the cloud-radiation feedback also plays a vital role in modulation of the Arctic environment. However the annual cycle of the clouds is very poorly represented in current global circulation models. This study aims to take advantage of a merged C3M data (CALIPSO, CloudSat, CERES, and MODIS) product from the NASA's A-Train Series to explore the sea-ice and atmospheric conditions in the Arctic on a spatial coverage spanning 70N to 80N. This study is aimed at the interactions or the feedbacks processes among sea-ice, clouds and the atmosphere. Using a composite approach based on a classification due to surface type, it is found that limitation of the water vapour influx from the surface due to change in phase at the surface featuring open oceans or marginal sea-ice cover to complete sea-ice cover is a major determinant in the modulation of the atmospheric moisture and its impacts. The impact of the cloud-radiative effects in the Arctic is found to vary with sea-ice cover and seasonally. The effect of the marginal sea-ice cover becomes more and more pronounced in the winter. The seasonal variation of the dependence of the atmospheric moisture on the surface and the subsequent feedback effects is controlled by the atmospheric stability measured as a difference between the potential temperature at the surface and the 700hPa level. It is found that a stronger stability cover in the winter is responsible for the longwave cloud radiative feedback in winter which is missing during the summer. A regional analysis of the same suggests that most of the depiction of the variations observed is contributed from the North Atlantic region.

  7. Observational Simulation of Icing in Extreme Weather Conditions

    NASA Astrophysics Data System (ADS)

    Gultepe, Ismail; Heymsfield, Andrew; Agelin-Chaab, Martin; Komar, John; Elfstrom, Garry; Baumgardner, Darrel

    2017-04-01

    Observations and prediction of icing in extreme weather conditions are important for aviation, transportation, and shipping applications, and icing adversely affects the economy. Icing environments can be studied either in the outdoor atmosphere or in the laboratory. There have been several aircraft based in-situ studies related to weather conditions affecting aviation operations, transportation, and marine shipping that includes icing, wind, and turbulence. However, studying severe weather conditions from aircraft observations are limited due to safety and sampling issues, instrumental uncertainties, and even the possibility of aircraft producing its own physical and dynamical effects. Remote sensing based techniques (e.g. retrieval techniques) for studying severe weather conditions represent usually a volume that cannot characterize the important scales and also represents indirect observations. Therefore, laboratory simulations of atmospheric processes can help us better understand the interactions among microphysical and dynamical processes. The Climatic Wind Tunnel (CWT) in ACE at the University of Ontario Institute of Technology (UOIT) has a large semi-open jet test chamber with flow area 7-13 m2 that can precisely control temperatures down to -40°C, and up to 250 km hr-1 wind speeds, for heavy or dry snow conditions with low visibility, similar to ones observed in the Arctic and cold climate regions, or at high altitude aeronautical conditions. In this study, the ACE CWT employed a spray nozzle array suspended in its settling chamber and fed by pressurized water, creating various particle sizes from a few microns up to mm size range. This array, together with cold temperature and high wind speed, enabled simulation of severe weather conditions, including icing, visibility, strong wind and turbulence, ice fog and frost, freezing fog, heavy snow and blizzard conditions. In this study, the test results will be summarized, and their application to aircraft icing will be provided in detail. Overall, based on these results, scientific challenges related to icing environments will be emphasized for Arctic and cold environments in future projects in the ACE CWT.

  8. Thermodynamic Derivation of the Activation Energy for Ice Nucleation

    NASA Technical Reports Server (NTRS)

    Barahona, D.

    2015-01-01

    Cirrus clouds play a key role in the radiative and hydrological balance of the upper troposphere. Their correct representation in atmospheric models requires an understanding of the microscopic processes leading to ice nucleation. A key parameter in the theoretical description of ice nucleation is the activation energy, which controls the flux of water molecules from the bulk of the liquid to the solid during the early stages of ice formation. In most studies it is estimated by direct association with the bulk properties of water, typically viscosity and self-diffusivity. As the environment in the ice-liquid interface may differ from that of the bulk, this approach may introduce bias in calculated nucleation rates. In this work a theoretical model is proposed to describe the transfer of water molecules across the ice-liquid interface. Within this framework the activation energy naturally emerges from the combination of the energy required to break hydrogen bonds in the liquid, i.e., the bulk diffusion process, and the work dissipated from the molecular rearrangement of water molecules within the ice-liquid interface. The new expression is introduced into a generalized form of classical nucleation theory. Even though no nucleation rate measurements are used to fit any of the parameters of the theory the predicted nucleation rate is in good agreement with experimental results, even at temperature as low as 190 K, where it tends to be underestimated by most models. It is shown that the activation energy has a strong dependency on temperature and a weak dependency on water activity. Such dependencies are masked by thermodynamic effects at temperatures typical of homogeneous freezing of cloud droplets; however, they may affect the formation of ice in haze aerosol particles. The new model provides an independent estimation of the activation energy and the homogeneous ice nucleation rate, and it may help to improve the interpretation of experimental results and the development of parameterizations for cloud formation.

  9. Quantifying climate feedbacks in polar regions.

    PubMed

    Goosse, Hugues; Kay, Jennifer E; Armour, Kyle C; Bodas-Salcedo, Alejandro; Chepfer, Helene; Docquier, David; Jonko, Alexandra; Kushner, Paul J; Lecomte, Olivier; Massonnet, François; Park, Hyo-Seok; Pithan, Felix; Svensson, Gunilla; Vancoppenolle, Martin

    2018-05-15

    The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range of feedbacks, offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.

  10. Rheology of the Ronne Ice Shelf, Antarctica, Inferred from Satellite Radar Interferometry Data using an Inverse Control Method

    NASA Technical Reports Server (NTRS)

    Larour, E.; Rignot, E.; Joughin, I.; Aubry, D.

    2005-01-01

    The Antarctic Ice Sheet is surrounded by large floating ice shelves that spread under their own weight into the ocean. Ice shelf rigidity depends on ice temperature and fabrics, and is influenced by ice flow and the delicate balance between bottom and surface accumulation. Here, we use an inverse control method to infer the rigidity of the Ronne Ice Shelf that best matches observations of ice velocity from satellite radar interferometry. Ice rigidity, or flow law parameter B, is shown to vary between 300 and 900 kPa a(sup 1/3). Ice is softer along the side margins due to frictional heating, and harder along the outflow of large glaciers, which advect cold continental ice. Melting at the bottom surface of the ice shelf increases its rigidity, while freezing decreases it. Accurate numerical modelling of ice shelf flow must account for this spatial variability in mechanical characteristics.

  11. IceProd 2 Usage Experience

    NASA Astrophysics Data System (ADS)

    Delventhal, D.; Schultz, D.; Diaz Velez, J. C.

    2017-10-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations, detector data, and data driven analysis. It runs as a separate layer on top of grid and batch systems. This is accomplished by a set of daemons which process job workflow, maintaining configuration and status information on the job before, during, and after processing. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. IceProd has recently been rewritten to increase its scaling capabilities, handle user analysis workflows together with simulation production, and facilitate the integration with 3rd party scheduling tools. IceProd 2, the second generation of IceProd, has been running in production for several months now. We share our experience setting up the system and things we’ve learned along the way.

  12. Radar Detection of Layering in Ice: Experiments on a Constructed Layered Ice Sheet

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Koenig, L.; Courville, Z.; Ghent, R. R.; Koutnik, M. R.

    2016-12-01

    The polar caps and glaciers of both Earth and Mars display internal layering that preserves a record of past climate. These layers are apparent both in optical datasets (high resolution images, core samples) and in ground penetrating radar (GPR) data. On Mars, the SHARAD (Shallow Radar) radar on the Mars Reconnaissance Orbiter shows fine layering that changes spatially and with depth across the polar caps. This internal layering has been attributed to changes in fractional dust contamination due to obliquity-induced climate variations, but there are other processes that can lead to internal layers visible in radar data. In particular, terrestrial sounding of ice sheets compared with core samples have revealed that ice density and composition differences account for the majority of the radar reflectors. The large cold rooms and ice laboratory facility at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) provide us a unique opportunity to construct experimental ice sheets in a controlled setting and measure them with radar. In a CRREL laboratory, we constructed a layered ice sheet that is 3-m deep with a various snow and ice layers with known dust concentrations (using JSC Mars-1 basaltic simulant) and density differences. These ice sheets were profiled using a commercial GPR, at frequencies of 200, 400 and 900 MHz, to determine how the radar profile changes due to systematic and known changes in snow and ice layers, including layers with sub-wavelength spacing. We will report results from these experiments and implications for interpreting radar-detected layering in ice on Earth and Mars.

  13. Successes and Challenges in Linking Observations and Modeling of Marine and Terrestrial Cryospheric Processes

    NASA Astrophysics Data System (ADS)

    Herzfeld, U. C.; Hunke, E. C.; Trantow, T.; Greve, R.; McDonald, B.; Wallin, B.

    2014-12-01

    Understanding of the state of the cryosphere and its relationship to other components of the Earth system requires both models of geophysical processes and observations of geophysical properties and processes, however linking observations and models is far from trivial. This paper looks at examples from sea ice and land ice model-observation linkages to examine some approaches, challenges and solutions. In a sea-ice example, ice deformation is analyzed as a key process that indicates fundamental changes in the Arctic sea ice cover. Simulation results from the Los Alamos Sea-Ice Model CICE, which is also the sea-ice component of the Community Earth System Model (CESM), are compared to parameters indicative of deformation as derived from mathematical analysis of remote sensing data. Data include altimeter, micro-ASAR and image data from manned and unmanned aircraft campaigns (NASA OIB and Characterization of Arctic Sea Ice Experiment, CASIE). The key problem to linking data and model results is the derivation of matching parameters on both the model and observation side.For terrestrial glaciology, we include an example of a surge process in a glacier system and and example of a dynamic ice sheet model for Greenland. To investigate the surge of the Bering Bagley Glacier System, we use numerical forward modeling experiments and, on the data analysis side, a connectionist approach to analyze crevasse provinces. In the Greenland ice sheet example, we look at the influence of ice surface and bed topography, as derived from remote sensing data, on on results from a dynamic ice sheet model.

  14. Coastal barium cycling at the West Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Pyle, K. M.; Hendry, K. R.; Sherrell, R. M.; Meredith, M. P.; Venables, H.; Lagerström, M.; Morte-Ródenas, A.

    2017-05-01

    Barium cycling in the ocean is associated with a number of processes, including the production and recycling of organic matter, freshwater fluxes, and phenomena that affect alkalinity. As a result, the biogeochemical cycle of barium offers insights into past and present oceanic conditions, with barium currently used in various forms as a palaeoproxy for components of organic and inorganic carbon storage, and as a quasi-conservative water mass tracer. However, the nature of the oceanic barium cycle is not fully understood, particularly in cases where multiple processes may be interacting simultaneously with the dissolved and particulate barium pools. This is particularly the case in coastal polar regions such as the West Antarctic Peninsula, where biological drawdown and remineralisation occur in tandem with sea ice formation and melting, glacial meltwater input, and potential fluxes from shelf sediments. Here, we use a high-precision dataset of dissolved barium (Bad) from a grid of stations adjacent to the West Antarctic Peninsula in conjunction with silicic acid (Si(OH)4), the oxygen isotope composition of water, and salinity measurements, to determine the relative control of various coastal processes on the barium cycle throughout the water column. There is a strong correlation between Bad and Si(OH)4 present in deeper samples, but nevertheless persists significantly in surface waters. This indicates that the link between biogenic opal and barium is not solely due to barite precipitation and dissolution at depth, but is supplemented by an association between Bad and diatom tests in surface waters, possibly due to barite formation within diatom-dominated phytodetritus present in the photic zone. Sea-ice meltwater appears to exert a significant secondary control on barium concentrations, likely due to non-conservative biotic or abiotic processes acting as a sink for Bad within the sea ice itself, or sea-ice meltwater stimulating non-siliceous productivity that acts as a Bad sink. Meteoric water input, conversely, exerts little or no control on local barium levels, indicating that glacial meltwater is not a significant coastal source of barium to the West Antarctic Peninsula shelf waters.

  15. Gas transport processes in sea ice: How convection and diffusion processes might affect biological imprints, a challenge for modellers

    NASA Astrophysics Data System (ADS)

    Tison, J.-L.; Zhou, J.; Thomas, D. N.; Rysgaard, S.; Eicken, H.; Crabeck, O.; Deleu, F.; Delille, B.

    2012-04-01

    Recent data from a year-round survey of landfast sea ice growth in Barrow (Alaska) have shown how O2/N2 and O2/Ar ratios could be used to pinpoint primary production in sea ice and derive net productivity rates from the temporal evolution of the oxygen concentration at a given depth within the sea ice cover. These rates were however obtained surmising that neither convection, nor diffusion had affected the gas concentration profiles in the ice between discrete ice core collections. This paper discusses examples from three different field surveys (the above-mentioned Barrow experiment, the INTERICE IV tank experiment in Hamburg and a short field survey close to the Kapisilit locality in the South-East Greenland fjords) where convection or diffusion processes have clearly affected the temporal evolution of the gas profiles in the ice, therefore potentially affecting biological signatures. The INTERICE IV and Barrow experiment show that the initial equilibrium dissolved gas entrapment within the skeletal layer basically governs most of the profiles higher up in the sea ice cover during the active sea ice growth. However, as the ice layers age and cool down under the temperature gradient, bubble nucleation occurs while the concentration in the ice goes well above the theoretical one, calculated from brine equilibrium under temperature and salinity changes and observed brine volumes. This phase change locks the gases within the sea ice structure, preventing "degassing" of the ice, as is observed for salts under the mushy layer brine convection process. In some cases, mainly in the early stages of the freezing process (first 10-20 cm) where temperature gradients are strong and the ice still permeable on its whole thickness, repeated convection and bubble nucleation can actually increase the gas concentration in the ice above the one initially acquired within the skeletal layer. Convective processes will also occur on ice decay, when ice permeability is restored and the Rayleigh number reaches a critical value. The Barrow data set shows that these events, can be strong enough to redistribute the gases within the sea ice cover, including in the gaseous form. Diffusive processes will become dominant once internal melting is strong enough to stratify the brine network within the ice. In the Kapisilit case, the regular decrease of an internal gas peak intensity due to external forcing during ice growth (change of water type) has allowed us to deduce gas diffusivities from the temporal evolution of the peak. The values fit to the few previous estimates from experimental work, and lie close to diffusivity values in water. Finally, at the end of the decay phase, when the temperature profile is isothermal, the whole ice cover returns to ice concentrations equivalent to those calculated using gas solubility in water and observed brine volumes, to the exception of the very surface layer, generally for textural reasons.

  16. A Coupled Ice-Atmosphere-Dust Model for a Neoproterozoic "Mudball Earth"

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.; Strom, D.

    2010-12-01

    The Neoproterozoic "Snowball Earth" glaciations remain a subject of intense debate. While many have used field data to argue for either a totally or partially ice-covered Earth, fewer efforts have been made to establish the basic physical climate state and internal dynamics of these alternatives. Description of feedbacks is especially important: how does a globally ice-covered Earth reinforce itself as a stable climate system, and/or sow the seeds for its own destruction? In previous work, we investigated the flow properties of thick floating global ice sheets, and found that flow from pole to equator tends to eliminate regions of thin ice in the tropics. We briefly mentioned that ice flow and sublimation could lead to a "lag deposit" of dust on top of the tropical ice. The consequences of this were explored in detail by Dorian Abbott and others, who found that the accumulation of dust atop tropical ice causes a strong warming effect, which strongly promotes deglaciation of a Snowball climate. However, Abbott et al specified a dust layer ab initio in their GCM simulations, leaving aside the processes which produce it. Here, we present the results of our efforts to add dust processes to an earlier coupled atmosphere/ocean/ice model originally developed by David Pollard and Jim Kasting. Their model includes energy balance equations for the atmosphere and an ice mechanics model for glacial flow. To this we have added variables tracking the fraction of dust incorporated into snow and ice; the transport and accumulation of this dust through ice flow; the effects of dust on albedo and penetration of sunlight into the ice; restriction of evaporation from dust-covered surfaces; and density and buoyancy effects of dusty ice. Dust is added to the surface globally at a fixed rate, and is removed by meltwater runoff. We find that ice in tropical regions of net evaporation quickly develops a surface dust layer which drastically lowers its albedo. This dust layer develops rapidly (1000-10,000 years), and remains relatively thin (mm to cm). Its albedo effect is not strong enough to cause deglaciation on its own, but does warm the planet to near the melting point: modest amounts of CO2 are enough to cause total deglaciation. Our results show that the "mudball Earth" is a remarkably stable climate system. Drastic changes in forcing, such as varying the rate of dust accumulation by a factor of 100, have little effect on the climate, due to a strong feedback control. With summertime temperatures just below melting, adding more dust to lower the planetary albedo warms the Earth, causing summertime melting which washes away the additional dust, maintaining status quo. Dust layer thickness is controlled by a related hydrological feedback: if the dust becomes thick enough to prevent evaporation in the tropics, then less snow falls at midlatitudes. Thus, midlatitude snow cover becomes dustier and darker, warming the planet, which again melts some ice to eliminate excess dust. Future work with this model will consider the patchiness of thin dust cover on an ice surface, and will also look at the consequences of large instantaneous dust sources such as asteroid/comet impacts or large volcanic eruptions.

  17. A Comprehensive Parameterization of Heterogeneous Ice Nucleation of Dust Surrogate: Laboratory Study with Hematite Particles and Its Application to Atmospheric Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiranuma, Naruki; Paukert, Marco; Steinke, Isabelle

    2014-12-10

    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 °C to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by n s, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RH ice) in the chamber. Our measurementsmore » showed several different pathways to nucleate ice depending on T and RH ice conditions. For instance, almost independent freezing was observed at -60 °C < T < -50 °C, where RH ice explicitly controlled ice nucleation efficiency, while both T and RH ice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T colder than -60 °C revealed that higher RHice was necessary to maintain constant n s, whereas T may have played a significant role in ice nucleation at T warmer than -50 °C. We implemented new n s parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.« less

  18. Cirrus Susceptibility to Changes in Ice Nuclei: Physical Processes, Model Uncertainties, and Measurement Needs

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2018-01-01

    One of the proposed concepts for mitigating the warming effect of increasing greenhouse gases is seeding cirrus cloud with ice nuclei (IN) in order to reduce the lifetime and coverage of cold cirrus that have a net warming impact on the earth's surface. Global model simulations of the net impact of changing upper tropospheric IN have given widely disparate results, partly as a result of poor understanding of ice nucleation processes in the current atmosphere, and partly as a result of poor representation of these processes in global models. Here, we present detailed process-model simulations of tropical tropopause layer (TTL) transport and cirrus formation with ice nuclei properties based on recent laboratory nucleation experiments and field measurements of aerosol composition. The model is used to assess the sensitivity of TTL cirrus occurrence frequency and microphysical properties to the abundance and efficacy of ice nuclei. The simulated cloud properties compared with recent high-altitude aircraft measurements of TTL cirrus and ice supersaturation. We find that abundant effective IN (either from glassy organic aerosols or crystalline ammonium sulfate with concentrations greater than about 100/L) prevent the occurrences of large ice concentration and large ice supersaturations, both of which are clearly indicated by the in situ observations. We find that concentrations of effective ice nuclei larger than about 50/L can drive significant changes in cirrus microphysical properties and occurrence frequency. However, the cloud occurrence frequency can either increase or decrease, depending on the efficacy and abundance of IN added to the TTL. We suggest that our lack of information about ice nuclei properties in the current atmosphere, as well as uncertainties in ice nucleation processes and their representations in global models, preclude meaningful estimates of climate impacts associated with addition of ice nuclei in the upper troposphere. We will briefly discuss the key field measurements needed to constrain ice nucleation processes.

  19. Laser vaporization of cirrus-like ice particles with secondary ice multiplication

    PubMed Central

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-01-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds. PMID:27386537

  20. Laser vaporization of cirrus-like ice particles with secondary ice multiplication.

    PubMed

    Matthews, Mary; Pomel, François; Wender, Christiane; Kiselev, Alexei; Duft, Denis; Kasparian, Jérôme; Wolf, Jean-Pierre; Leisner, Thomas

    2016-05-01

    We investigate the interaction of ultrashort laser filaments with individual 90-μm ice particles, representative of cirrus particles. The ice particles fragment under laser illumination. By monitoring the evolution of the corresponding ice/vapor system at up to 140,000 frames per second over 30 ms, we conclude that a shockwave vaporization supersaturates the neighboring region relative to ice, allowing the nucleation and growth of new ice particles, supported by laser-induced plasma photochemistry. This process constitutes the first direct observation of filament-induced secondary ice multiplication, a process that strongly modifies the particle size distribution and, thus, the albedo of typical cirrus clouds.

  1. Airborne and ground based measurements in McMurdo Sound, Antarctica, for the validation of satellite derived ice thickness

    NASA Astrophysics Data System (ADS)

    Rack, Wolfgang; Haas, Christian; Langhorne, Pat; Leonard, Greg; Price, Dan; Barnsdale, Kelvin; Soltanzadeh, Iman

    2014-05-01

    Melting and freezing processes in the ice shelf cavities of the Ross and McMurdo Ice Shelves significantly influence the sea ice formation in McMurdo Sound. Between 2009 and 2013 we used a helicopter-borne laser and electromagnetic induction sounder (EM bird) to measure thickness and freeboard profiles across the ice shelf and the landfast sea ice, which was accompanied by extensive field validation, and coordinated with satellite altimeter overpasses. Using freeboard and thickness, the bulk density of all ice types was calculated assuming hydrostatic equilibrium. Significant density steps were detected between first-year and multi-year sea ice, with higher values for the younger sea ice. Values are overestimated in areas with abundance of sub-ice platelets because of overestimation in both ice thickness and freeboard. On the ice shelf, bulk ice densities were sometimes higher than that of pure ice, which can be explained by both the accretion of marine ice and glacial sediments. For thin ice, the freeboard to thickness conversion critically depends on the knowledge of snow properties. Our measurements allow tuning and validation of snow cover simulations using the Weather Research Forecasting (WRF) model. The simulated snowcover is used to calculate ice thickness from satellite derived freeboard. The results of our measurements, which are supported by the New Zealand Antarctic programme, draw a picture of how oceanographic processes influence the ice shelf morphology and sea ice formation in McMurdo Sound, and how satellite derived freeboard of ICESat and CryoSat together with information on snow cover can potentially capture the signature of these processes.

  2. A comprehensive interpretation of the NEEM basal ice build-up using a multi-parametric approach

    NASA Astrophysics Data System (ADS)

    Goossens, Thomas; Sapart, Célia J.; Dahl-Jensen, Dorthe; Popp, Trevor; El Amri, Saïda; Tison, Jean-Louis

    2016-03-01

    Basal ice is a common expression to describe bottom ice layers of glaciers, ice caps and ice sheets in which the ice is primarily conditioned by processes operating at the bed. It is chemically and/or physically distinct from the ice above and can be characterized by a component of basally derived sediments. The study of basal ice properties provides a rare opportunity to improve our understanding of subglacial environments and processes and to refine ice sheet behaviour modelling. Here, we present and discuss the results of water stable isotopes (δ18O and δD), ice fabrics, debris weight/size distribution and gas content of the basal part of the NEEM (North Greenland Eemian Ice Drilling Project) ice core. Below a depth of 2533.85 m, almost 10 m of basal debris-rich material was retrieved from the borehole, and regular occurrence of frozen sediments with only interstitial ice lenses in the bottom 5 m suggest that the ice-bedrock interface was reached. The sequence is composed of an alternation of three visually contrasting types of ice: clear ice with specks (very small amounts) of particulate inclusions, stratified debris-rich layers and ice containing dispersed debris. The use of water stable isotope signatures (δ18O and δD), together with other parameters, allows discrimination between the different types of ice and to unravel the processes involved in their formation and transformation. The basal debris-rich material presents δ18O values [-39.9 ‰; -34.4 ‰] within the range of the above last 300 m of unaltered meteoric ice [-44.9 ‰; -30.6 ‰] spanning a glacial-interglacial range of values. This rules out the hypothesis of a basal ice layer originating from pre-ice sheet ice overridden by the growing ice sheet, as previously suggested e.g. in the case of GRIP (Greenland Ice Core Project). We show that clear basal ice with specks corresponds to altered meteoric glacial ice where some of the climatic signal could have been preserved. However, the stratified debris-rich layers and the ice containing dispersed debris layers respectively express an "open" or "closed" system melting/refreezing signature, somewhat blurred by mixing processes in the upper part of the sequence. Climatic reconstruction is therefore prohibited from these ice types. We propose a first interpretative framework for the build-up of the NEEM basal ice sequence, based on the origin of the various ice types.

  3. Help, I don’t know which sea ice algorithm to use?!: Developing an authoritative sea ice climate data record

    NASA Astrophysics Data System (ADS)

    Meier, W.; Stroeve, J.; Duerr, R. E.; Fetterer, F. M.

    2009-12-01

    The declining Arctic sea ice is one of the most dramatic indicators of climate change and is being recognized as a key factor in future climate impacts on biology, human activities, and global climate change. As such, the audience for sea ice data is expanding well beyond the sea ice community. The most comprehensive sea ice data are from a series of satellite-borne passive microwave sensors. They provide a near-complete daily timeseries of sea ice concentration and extent since late-1978. However, there are many complicating issues in using such data, particularly for novice users. First, there is not one single, definitive algorithm, but several. And even for a given algorithm, different processing and quality-control methods may be used, depending on the source. Second, for all algorithms, there are uncertainties in any retrieved value. In general, these limitations are well-known: low spatial-resolution results in an imprecise ice edge determination and lack of small-scale detail (e.g., lead detection) within the ice pack; surface melt depresses concentration values during summer; thin ice is underestimated in some algorithms; some algorithms are sensitive to physical surface temperature; other surface features (e.g., snow) can influence retrieved data. While general error estimates are available for concentration values, currently the products do not carry grid-cell level or even granule level data quality information. Finally, metadata and data provenance information are limited, both of which are essential for future reprocessing. Here we describe the progress to date toward development of sea ice concentration products and outline the future steps needed to complete a sea ice climate data record.

  4. The geomorphic signature of present ice-sheet flow in the radar-sounded subglacial record: Pine Island Glacier, West Antarctica

    NASA Astrophysics Data System (ADS)

    Bingham, R. G.; Davies, D.; King, E. C.; Vaughan, D. G.; Cornford, S. L.; Brisbourne, A.; Smith, A.; De Rydt, J.; Graham, A. G. C.; Spagnolo, M.

    2016-12-01

    Deglaciated landscapes and landforms are much used in the quest to reconstruct past ice-sheet behaviour, on the principle that aspects of landform shapes, sizes and relative associations "fossilise" palaeo-ice-sheet processes. Such techniques have been widely used around the margin of the marine West Antarctic Ice Sheet, taking advantage of bathymetric surveying techniques which have exposed a rich suite of landform assemblages across West Antarctica's continental shelf. Though these geomorphological interpretations are solidly grounded in glacial geological theory, there has, until now, been little ability to compare these deglaciated, and potentially postglacially-modified, landforms offshore with landforms currently situated (and potentially still evolving) beneath the contemporary ice sheet. This paper presents a widespread view of glacial landforms presently situated beneath 1-2 km of ice in multi-square-km "windows to the bed" distributed throughout the catchment of Pine Island Glacier, West Antarctica. Imaged over three field seasons between 2007 and 2013 by dedicated radar surveys designed specifically to capture landforms analogous to those surveyed offshore by bathymetric surveying, the results provide significant insights for the interpretation of palaeo-ice-stream landforms, and their use in modelling ice-ocean interactions around the fringes of marine ice sheets. We show that landform sizes, shapes and associations vary significantly around Pine Island Glacier's catchment. The key controls appear to be substrate composition, pre-existing tectonic structure, and longstanding spatial stability of the ice-stream's flow distribution. The findings offer crucial information for modelling ice coupling to the bed, which should feed through to wider efforts to reconstruct the past behaviour of this significant marine ice sheet using its palaeoglacial landforms.

  5. Infrared Spectroscopy of Ammonia - Hydrocarbon Ices Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Engel, P. A.; Kalogerakis, K. S.

    2005-12-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas.1,2 This discrepancy highlights an important gap in our understanding of ammonia and its spectral signatures in Jupiter's atmosphere. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning").2,3 We are performing laboratory experiments that investigate the above hypotheses. Thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light. These spectroscopic measurements aim to identify the photophysical and chemical processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. Our current results indicate a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hexane, cyclohexane, and benzene. Furthermore, strongest suppression is observed in the case of benzene, followed in magnitude by hexane and cyclohexane. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 is gratefully acknowledged. The participation of Patricia A. Engel was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  6. Impact crater morphology and the Central Pit/Dome of Occator: Ceres as an Ice-rich Body

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Marchi, S.; O'Brien, D. P.; Platz, T.; Bland, M. T.; Buczkowski, D.; Scully, J. E. C.; Ammannito, E.; Raymond, C. A.; Russell, C. T.

    2016-12-01

    Pristine crater morphologies on Ceres (at D <40 km) are astonishingly similar to those on midsize icy bodies (e.g., moons of Saturn) but very different from those on silicate-rich Vesta. All these bodies have similar gravity and broadly similar impact velocities, and these patterns reveal that the upper 10s of km of Ceres are much weaker than on silicate-rich Vesta. This stands in contrast to the lack of viscous relaxation (Bland et al., 2016), which implies an upper layer on Ceres capable of resisting flow despite the relatively high surface temperatures. This can be explained as distinct responses of an outer layer partially composed of weak ices and strong silicates that fail during high-strain impact processes (which are apparently controlled by the weak phase) but does not flow under low-strain creep (which is apparently controlled more by the strong phase). Furthermore, comparison with Martian craters indicates that, in contrast to Ceres, the amount of water ice in the crust of Mars results in hybrid morphologies only midway between silicate and ice worlds, indicating that the upper layers of Ceres must have more ice than does Mars. The presence of apparent impact melt deposits and central pits in larger craters (D>40 km and D>75 km, respectively) on Ceres implies either warmer conditions than at Saturn, or the presence of a deeper layer enriched in (weaker) ice at comparable depths, also consistent with partial relaxation in larger craters. The formation of a fractured dome 3-km-wide and 0.75-km-high within recently formed Occator crater may be due to refreezing of a water zone melted after impact, or mobilization of carbonates or ice in the crater center, possibly from such deeper layers.

  7. Detecting frontal ablation processes from direct observations of submarine terminus morphology

    NASA Astrophysics Data System (ADS)

    Fried, M.; Carroll, D.; Catania, G. A.; Sutherland, D. A.; Stearns, L. A.; Bartholomaus, T. C.; Shroyer, E.; Nash, J. D.

    2017-12-01

    Tidewater glacier termini couple glacier and ocean systems. Subglacial discharge emerging from the terminus produces buoyant plumes that modulate submarine melting, calving, fjord circulation and, in turn, changes in ice dynamics from back-stress perturbations. However, the absence of critical observational data at the ice-ocean interface limits plume and, by extension, melt models from incorporating realistic submarine terminus face morphologies and assessing their impact on terminus behavior at tidewater glaciers. Here we present a comprehensive inventory and characterization of submarine terminus face shapes from a side-looking, multibeam echo sounding campaign across Kangerdlugssuaq Sermerssua glacier, central-west Greenland. We combine these observations with in-situ measurements of ocean stratification and remotely sensed subglacial discharge, terminus positions, ice velocity, and ice surface datasets to infer the spectrum of processes sculpting the submarine terminus face. Subglacial discharge outlet locations are confirmed through observations of sediment plumes, localized melt-driven undercutting of the terminus face, and bathymetry of the adjacent seafloor. From our analysis, we differentiate terminus morphologies resulting from submarine melt and calving and assess the contribution of each process to the net frontal ablation budget. Finally, we constrain a plume model using direct observations of the submarine terminus face and conduit geometry. Plume model simulations demonstrate that the majority of discharge outlets are fed by small discharge fluxes, suggestive of a distributed subglacial hydrologic system. Outlets with the largest, concentrated discharge fluxes are morphologically unique and strongly control seasonal terminus position. At these locations, we show that the spatiotemporal pattern of terminus retreat is well correlated with time periods when local melt rate exceeds ice velocity.

  8. Molecular biology of freezing tolerance.

    PubMed

    Storey, Kenneth B; Storey, Janet M

    2013-07-01

    Winter survival for many kinds of animals involves freeze tolerance, the ability to endure the conversion of about 65% of total body water into extracellular ice and the consequences that freezing imposes including interruption of vital processes (e.g., heartbeat and breathing), cell shrinkage, elevated osmolality, anoxia/ischemia, and potential physical damage from ice. Freeze-tolerant animals include various terrestrially hibernating amphibians and reptiles, many species of insects, and numerous other invertebrates inhabiting both terrestrial and intertidal environments. Well-known strategies of freezing survival include accumulation of low molecular mass carbohydrate cryoprotectants (e.g., glycerol), use of ice nucleating agents/proteins for controlled triggering of ice growth and of antifreeze proteins that inhibit ice recrystallization, and good tolerance of anoxia and dehydration. The present article focuses on more recent advances in our knowledge of the genes and proteins that support freeze tolerance and the metabolic regulatory mechanisms involved. Important roles have been identified for aquaporins and transmembrane channels that move cryoprotectants, heat shock proteins and other chaperones, antioxidant defenses, and metabolic rate depression. Genome and proteome screening has revealed many new potential targets that respond to freezing, in particular implicating cytoskeleton remodeling as a necessary facet of low temperature and/or cell volume adaptation. Key regulatory mechanisms include reversible phosphorylation control of metabolic enzymes and microRNA control of gene transcript expression. These help to remodel metabolism to preserve core functions while suppressing energy expensive metabolic activities such as the cell cycle. All of these advances are providing a much more complete picture of life in the frozen state. © 2013 American Physiological Society.

  9. The control of ice crystal growth and effect on porous structure of konjac glucomannan-based aerogels.

    PubMed

    Ni, Xuewen; Ke, Fan; Xiao, Man; Wu, Kao; Kuang, Ying; Corke, Harold; Jiang, Fatang

    2016-11-01

    Konjac glucomannan (KGM)-based aerogels were prepared using a combination of sol-gel and freeze-drying methods. Preparation conditions were chosen to control ice crystal growth and aerogel structure formation. The ice crystals formed during pre-freezing were observed by low temperature polarizing microscopy, and images of aerogel pores were obtained by scanning electron microscopy. The size of ice crystals were calculated and size distribution maps were drawn, and similarly for aerogel pores. Results showed that ice crystal growth and aerogel pore sizes may be controlled by varying pre-freezing temperatures, KGM concentration and glyceryl monostearate concentration. The impact of pre-freezing temperatures on ice crystal growth was explained as combining ice crystal growth rate with nucleation rate, while the impacts of KGM and glyceryl monostearate concentration on ice crystal growth were interpreted based on their influences on sol network structure. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Toward a more physical representation of precipitation scavenging in global chemistry models: cloud overlap and ice physics and their impact on tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Neu, J. L.; Prather, M. J.

    2012-04-01

    Uptake and removal of soluble trace gases and aerosols by precipitation represents a major uncertainty in the processes that control the vertical distribution of atmospheric trace species. Model representations of precipitation scavenging vary greatly in their complexity, and most are divorced from the physics of precipitation formation and transformation. Here, we describe a new large-scale precipitation scavenging algorithm, developed for the UCI chemistry-transport model (UCI-CTM), that represents a step toward a more physical treatment of scavenging through improvements in the formulation of the removal in sub-gridscale cloudy and ambient environments and their overlap within the column as well as ice phase uptake of soluble species. The UCI algorithm doubles the lifetime of HNO3 in the upper troposphere relative to a scheme with commonly used fractional cloud cover assumptions and ice uptake determined by Henry's Law and provides better agreement with HNO3 observations. We find that the process of ice phase scavenging of HNO3 is a critical component of the tropospheric O3 budget, but that NOx and O3 mixing ratios are relatively insensitive to large differences in the removal rate. Ozone abundances are much more sensitive to the lifetime of HNO4, highlighting the need for better understanding of its interactions with ice and for additional observational constraints.

  11. Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices

    PubMed Central

    Kim, Byeongsoo; Gil, Hyung Bae; Min, Sang-Gi; Lee, Si-Kyung; Choi, Mi-Jung

    2014-01-01

    This study investigates the effects of the gelatin concentration (10-40%, w/v), freezing temperatures (from -20℃ to -50℃) and freezing methods on the structural and physical properties of gelatin matrices. To freeze gelatin, the pressure-shift freezing (PSF) is being applied at 0.1 (under atmospheric control), 50 and 100 MPa, respectively. The freezing point of gelatin solutions decrease with increasing gelatin concentrations, from -0.2℃ (10% gelatin) to -6.7℃ (40% gelatin), while the extent of supercooling did not show any specific trends. The rheological properties of the gelatin indicate that both the storage (G') and loss (G") moduli were steady in the strain amplitude range of 0.1-10%. To characterize gelatin matrices formed by the various freezing methods, the ice crystal sizes which were being determined by the scanning electron microscopy (SEM) are affected by the gelatin concentrations. The ice crystal sizes are affected by gelatin concentrations and freezing temperature, while the size distributions of ice crystals depend on the freezing methods. Smaller ice crystals are being formed with PSF rather than under the atmospheric control where the freezing temperature is above -40℃. Thus, the results of this study indicate that the PSF processing at a very low freezing temperature (-50℃) offers a potential advantage over commercial atmospheric freezing points for the formation of small ice crystals. PMID:26760743

  12. Site Scientist for the North Slope of Alaska Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verlinde, Johannes

    2016-03-11

    Under this grant our team contributed scientific support to the Department of Energy Atmospheric Radiation Program’s (DOE-ARM) Infrastructure team to maintain high quality research data at the DOE-ARM North Slope of Alaska with special emphasis on the radars. Under our guidance two major field campaigns focusing on mixed-phase Arctic clouds were conducted that greatly increased the community’s understanding of the many processes working together to control the evolution of single-layer cloud mixed-phase clouds. A series of modeling and observational studies revealed that the longevity of the radiatively important liquid phase is strongly dependent on how the ice phase develops inmore » mixed-phase clouds. A new ice microphysics parameterization was developed to capture better the natural evolution of ice particle growth in evolving environments. An ice particle scattering database was developed for all ARM radar frequencies. This database was used in a radar simulator (Doppler spectrum and polarimetric variables) to aid in the interpretation of the advanced ARM radars. At the conclusion of this project our team was poised to develop a complete radar simulator consistent with the new microphysical parameterization, taking advantage of parameterization’s advanced characterization of the ice shape and ice density.« less

  13. Texture analysis of radiometric signatures of new sea ice forming in Arctic leads

    NASA Technical Reports Server (NTRS)

    Eppler, Duane T.; Farmer, L. Dennis

    1991-01-01

    Analysis of 33.6-GHz, high-resolution, passive microwave images suggests that new sea ice accumulating in open leads is characterized by a unique textural signature which can be used to discriminate new ice forming in this environment from adjacent surfaces of similar radiometric temperature. Ten training areas were selected from the data set, three of which consisted entirely of first-year ice, four entirely of multilayer ice, and three of new ice in open leads in the process of freezing. A simple gradient operator was used to characterize the radiometric texture in each training region in terms of the degree to which radiometric gradients are oriented. New ice in leads has a sufficiently high proportion of well-oriented features to distinguish it uniquely from first-year ice and multiyear ice. The predominance of well-oriented features probably reflects physical processes by which new ice accumulates in open leads. Banded structures, which are evident in aerial photographs of new ice, apparently give rise to the radiometric signature observed, in which the trend of brightness temperature gradients is aligned parallel to lead trends. First-year ice and multiyear ice, which have been subjected to a more random growth and process history, lack this banded structure and therefore are characterized by signatures in which well-aligned elements are less dominant.

  14. Methods and applications of radio frequency geophysics in glaciology

    NASA Astrophysics Data System (ADS)

    Holschuh, Nicholas

    Simple radar systems of the past were used primarily for radar depth sounding, the process of using reflection travel times and electromagnetic velocities to determine the ice thickness. Modern radioglaciology uses both the travel times and reflection amplitudes to make inferences about the englacial and subglacial environments; however, non-uniqueness in geophysical data, combined with the large number of physical parameters that control reflection amplitude, have led to significant uncertainties in this type of analysis. In this set of studies, I improve on data collection, processing, and assimilation methods, with a focus on radar reflection amplitudes and internal layers. The first two studies are devoted to radar survey methods, in which I examine the impact of reflector geometry on amplitude (2), and investigate an independent measure of radar attenuation using variable-offset data, in an effort to eliminate the effects of ice chemistry and temperature on reflection amplitudes (3). These studies emphasize the fact that radar data are a product of both the physical system and the imaging process, and caution glaciologists from over-interpreting processing artifacts common in radar data collected in areas of complex glacial flow. In the following two chapters, I go on to provide glaciological applications of processed radar data, interpreting the record of complex flow left behind in englacial reflector slopes (4), and applying improved boundary conditions to better predict the maximum extent of West Antarctic collapse (5). These studies use geometric information from the bed reflector and englacial reflectors to describe the flow regime present in Antarctica today. Chapter 4 examines how boundary conditions that are difficult to observe directly (the geothermal heat flux, as well as the frictional and deformation characteristics of the ice-sheet substrate) manifest through internal layer deformation. Chapter 5 focuses on Marie Byrd Land (MBL), where historically sparse data coverage hindered our ability to project future ice-sheet behavior. I developed a new basal topography for the region, and modeled the collapse state of the West Antarctic Ice Sheet in an effort to determine how much ice can evacuate from the MBL highlands. These chapters motivate the need for more thorough interpretation of the existing radar data, with a focus on better data integration in ice sheet models.

  15. Subglacial sedimentary basin characterization of Wilkes Land, East Antarctica via applied aerogeophysical inverse methods

    NASA Astrophysics Data System (ADS)

    Frederick, B. C.; Gooch, B. T.; Richter, T.; Young, D. A.; Blankenship, D. D.; Aitken, A.; Siegert, M. J.

    2013-12-01

    Topography, sediment distribution and heat flux are all key boundary conditions governing the stability of the East Antarctic ice sheet (EAIS). Recent scientific scrutiny has been focused on several large, deep, interior EAIS basins including the submarine basal topography characterizing the Aurora Subglacial Basin (ASB). Numerical ice sheet models require accurate deformable sediment distribution and lithologic character constraints to estimate overall flow velocities and potential instability. To date, such estimates across the ASB have been derived from low-resolution satellite data or historic aerogeophysical surveys conducted prior to the advent of GPS. These rough basal condition estimates have led to poorly-constrained ice sheet stability models for this remote 200,000 sq km expanse of the ASB. Here we present a significantly improved quantitative model characterizing the subglacial lithology and sediment in the ASB region. The product of comprehensive ICECAP (2008-2013) aerogeophysical data processing, this sedimentary basin model details the expanse and thickness of probable Wilkes Land subglacial sedimentary deposits and density contrast boundaries indicative of distinct subglacial lithologic units. As part of the process, BEDMAP2 subglacial topographic results were improved through the additional incorporation of ice-penetrating radar data collected during ICECAP field seasons 2010-2013. Detailed potential field data pre-processing was completed as well as a comprehensive evaluation of crustal density contrasts based on the gravity power spectrum, a subsequent high pass data filter was also applied to remove longer crustal wavelengths from the gravity dataset prior to inversion. Gridded BEDMAP2+ ice and bed radar surfaces were then utilized to establish bounding density models for the 3D gravity inversion process to yield probable sedimentary basin anomalies. Gravity inversion results were iteratively evaluated against radar along-track RMS deviation and gravity and magnetic depth to basement results. This geophysical data processing methodology provides a substantial improvement over prior Wilkes Land sedimentary basin estimates yielding a higher resolution model based upon iteration of several aerogeophysical datasets concurrently. This more detailed subglacial sedimentary basin model for Wilkes Land, East Antarctica will not only contribute to vast improvements on EAIS ice sheet model constraints, but will also provide significant quantifiable controls for subglacial hydrologic and geothermal flux estimates that are also sizable contributors to the cold-based, deep interior basal ice dynamics dominant in the Wilkes Land region.

  16. Microfluidic Cold-Finger Device for the Investigation of Ice-Binding Proteins.

    PubMed

    Haleva, Lotem; Celik, Yeliz; Bar-Dolev, Maya; Pertaya-Braun, Natalya; Kaner, Avigail; Davies, Peter L; Braslavsky, Ido

    2016-09-20

    Ice-binding proteins (IBPs) bind to ice crystals and control their structure, enlargement, and melting, thereby helping their host organisms to avoid injuries associated with ice growth. IBPs are useful in applications where ice growth control is necessary, such as cryopreservation, food storage, and anti-icing. The study of an IBP's mechanism of action is limited by the technological difficulties of in situ observations of molecules at the dynamic interface between ice and water. We describe herein a new, to our knowledge, apparatus designed to generate a controlled temperature gradient in a microfluidic chip, called a microfluidic cold finger (MCF). This device allows growth of a stable ice crystal that can be easily manipulated with or without IBPs in solution. Using the MCF, we show that the fluorescence signal of IBPs conjugated to green fluorescent protein is reduced upon freezing and recovers at melting. This finding strengthens the evidence for irreversible binding of IBPs to their ligand, ice. We also used the MCF to demonstrate the basal-plane affinity of several IBPs, including a recently described IBP from Rhagium inquisitor. Use of the MCF device, along with a temperature-controlled setup, provides a relatively simple and robust technique that can be widely used for further analysis of materials at the ice/water interface. Copyright © 2016. Published by Elsevier Inc.

  17. Gas permeability of ice-templated, unidirectional porous ceramics

    NASA Astrophysics Data System (ADS)

    Seuba, Jordi; Deville, Sylvain; Guizard, Christian; Stevenson, Adam J.

    2016-01-01

    We investigate the gas flow behavior of unidirectional porous ceramics processed by ice-templating. The pore volume ranged between 54% and 72% and pore size between 2.9 ?m and 19.1 ?m. The maximum permeability (?? m?) was measured in samples with the highest total pore volume (72%) and pore size (19.1 ?m). However, we demonstrate that it is possible to achieve a similar permeability (?? m?) at 54% pore volume by modification of the pore shape. These results were compared with those reported and measured for isotropic porous materials processed by conventional techniques. In unidirectional porous materials tortuosity (?) is mainly controlled by pore size, unlike in isotropic porous structures where ? is linked to pore volume. Furthermore, we assessed the applicability of Ergun and capillary model in the prediction of permeability and we found that the capillary model accurately describes the gas flow behavior of unidirectional porous materials. Finally, we combined the permeability data obtained here with strength data for these materials to establish links between strength and permeability of ice-templated materials.

  18. Dynamics of Ice/Water Confined in Nanoporous Alumina.

    PubMed

    Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George

    2015-11-19

    Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls.

  19. Changes in ice-margin processes and sediment routing during ice-sheet advance across a marginal moraine

    USGS Publications Warehouse

    Knight, P.G.; Jennings, C.E.; Waller, R.I.; Robinson, Z.P.

    2007-01-01

    Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice-marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice-proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris-rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations. ?? 2007 Swedish Society for Anthropology and Geography.

  20. What Controls the Limit of Supercooling and Superheating of Pinned Ice Surfaces?

    PubMed

    Naullage, Pavithra M; Qiu, Yuqing; Molinero, Valeria

    2018-04-05

    Cold-adapted organisms produce antifreeze proteins and glycoproteins to control the growth, melting and recrystallization of ice. It has been proposed that these molecules pin the crystal surface, creating a curvature that arrests the growth and melting of the crystal. Here we use thermodynamic modeling and molecular simulations to demonstrate that the curvature of the superheated or supercooled surface depends on the temperature and distances between ice-binding molecules, but not the details of their interactions with ice. We perform simulations of ice pinned with the antifreeze protein TmAFP, polyvinyl alcohol with different degrees of polymerization, and model ice-binding molecules to determine the thermal hystereses on melting and freezing, i.e. the maximum curvature that can be attained before, respectively, ice melts or grows irreversibly over the ice-binding molecules. We find that the thermal hysteresis is controlled by the bulkiness of the ice-binding molecules and their footprint at the ice surface. We elucidate the origin of the asymmetry between freezing and melting hysteresis found in experiments and propose guidelines to design synthetic antifreeze molecules with potent thermal hysteresis activity.

  1. Spatial Heterogeneity of Ice Cover Sediment and Thickness and Its Effects on Photosynthetically Active Radiation and Chlorophyll-a Distribution: Lake Bonney, Antarctica

    NASA Astrophysics Data System (ADS)

    Obryk, M.; Doran, P. T.; Priscu, J. C.; Morgan-Kiss, R. M.; Siebenaler, A. G.

    2012-12-01

    The perennially ice-covered lakes in the McMurdo Dry Valleys, Antarctica have been extensively studied under the Long Term Ecological Research project. But sampling has been spatially restricted due to the logistical difficulty of penetrating the 3-6 m of ice cover. The ice covers restrict wind-driven turbulence and its associated mixing of water, resulting in a unique thermal stratification and a strong vertical gradient of salinity. The permanent ice covers also shade the underlying water column, which, in turn, controls photosynthesis. Here, we present results of a three-dimensional record of lake processes obtained with an autonomous underwater vehicle (AUV). The AUV was deployed at West Lake Bonney, located in Taylor Valley, Dry Valleys, to further understand biogeochemical and physical properties of the Dry Valley lakes. The AUV was equipped with depth, conductivity, temperature, under water photosynthetically active radiation (PAR), turbidity, chlorophyll-and-DOM fluorescence, pH, and REDOX sensors. Measurements were taken over the course of two years in a 100 x 100 meter spaced horizontal sampling grid (and 0.2 m vertical resolution). In addition, the AUV measured ice thickness and collected 200 images looking up through the ice, which were used to quantify sediment distribution. Comparison with high-resolution satellite QuickBird imagery demonstrates a strong correlation between aerial sediment distribution and ice cover thickness. Our results are the first to show the spatial heterogeneity of lacustrine ecosystems in the McMurdo Dry Valleys, significantly improving our understanding of lake processes. Surface sediment is responsible for localized thinning of ice cover due to absorption of solar radiation, which in turn increases total available PAR in the water column. Higher PAR values are negatively correlated with chlorophyll-a, presenting a paradox; historically, long-term studies of PAR and chlorophyll-a have shown positive trends. We hypothesized that this paradox is a result of short-term photoadaptation of phytoplanktonic communities to spatial and temporal variations of PAR within the water column. To test this hypothesis, we established phytoplankton enrichment cultures from depths of maximum primary production (13 m) and tested whether dry valley lake phytoplankton respond to daily variations in controlled light environment. Laboratory-grown cultures exhibited a strong response at 12 hr:12 hr day:night cycle at the level of both photochemistry and chlorophyll biosynthesis, indicating that Lake Bonney possess the ability to quickly respond to changes in their light environment.

  2. Two-phase convection in Ganymede's high-pressure ice layer - Implications for its geological evolution

    NASA Astrophysics Data System (ADS)

    Kalousová, Klára; Sotin, Christophe; Choblet, Gaël; Tobie, Gabriel; Grasset, Olivier

    2018-01-01

    Ganymede, the largest moon in the solar system, has a fully differentiated interior with a layer of high-pressure (HP) ice between its deep ocean and silicate mantle. In this paper, we study the dynamics of this layer using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. While focusing on the generation of water at the silicate/HP ice interface and its upward migration towards the ocean, we investigate the effect of bottom heat flux, the layer thickness, and the HP ice viscosity and permeability. Our results suggest that melt can be generated at the silicate/HP ice interface for small layer thickness ( ≲ 200 km) and high values of heat flux ( ≳ 20 mW m-2) and viscosity ( ≳ 1015 Pa s). Once generated, the water is transported through the layer by the upwelling plumes. Depending on the vigor of convection, it stays liquid or it may freeze before melting again as the plume reaches the temperate (partially molten) layer at the boundary with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the permeability of the HP ice. This process constitutes a means of transporting volatiles and salts that might have dissolved into the melt present at the silicate/HP ice interface. As the moon cools down, the HP ice layer becomes less permeable because the heat flux from the silicates decreases and the HP ice layer thickens.

  3. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.

    PubMed

    Duman, John G

    2015-06-01

    Ice-binding proteins (IBPs) assist in subzero tolerance of multiple cold-tolerant organisms: animals, plants, fungi, bacteria etc. IBPs include: (1) antifreeze proteins (AFPs) with high thermal hysteresis antifreeze activity; (2) low thermal hysteresis IBPs; and (3) ice-nucleating proteins (INPs). Several structurally different IBPs have evolved, even within related taxa. Proteins that produce thermal hysteresis inhibit freezing by a non-colligative mechanism, whereby they adsorb onto ice crystals or ice-nucleating surfaces and prevent further growth. This lowers the so-called hysteretic freezing point below the normal equilibrium freezing/melting point, producing a difference between the two, termed thermal hysteresis. True AFPs with high thermal hysteresis are found in freeze-avoiding animals (those that must prevent freezing, as they die if frozen) especially marine fish, insects and other terrestrial arthropods where they function to prevent freezing at temperatures below those commonly experienced by the organism. Low thermal hysteresis IBPs are found in freeze-tolerant organisms (those able to survive extracellular freezing), and function to inhibit recrystallization - a potentially damaging process whereby larger ice crystals grow at the expense of smaller ones - and in some cases, prevent lethal propagation of extracellular ice into the cytoplasm. Ice-nucleator proteins inhibit supercooling and induce freezing in the extracellular fluid at high subzero temperatures in many freeze-tolerant species, thereby allowing them to control the location and temperature of ice nucleation, and the rate of ice growth. Numerous nuances to these functions have evolved. Antifreeze glycolipids with significant thermal hysteresis activity were recently identified in insects, frogs and plants. © 2015. Published by The Company of Biologists Ltd.

  4. Sea Ice Mass Balance Buoys (IMBs): First Results from a Data Processing Intercomparison Study

    NASA Astrophysics Data System (ADS)

    Hoppmann, Mario; Tiemann, Louisa; Itkin, Polona

    2017-04-01

    IMBs are autonomous instruments able to continuously monitor the growth and melt of sea ice and its snow cover at a single point on an ice floe. Complementing field expeditions, remote sensing observations and modelling studies, these in-situ data are crucial to assess the mass balance and seasonal evolution of sea ice and snow in the polar oceans. Established subtypes of IMBs combine coarse-resolution temperature profiles through air, snow, ice and ocean with ultrasonic pingers to detect snow accumulation and ice thermodynamic growth. Recent technological advancements enable the use of high-resolution temperature chains, which are also able to identify the surrounding medium through a „heating cycle". The temperature change during this heating cycle provides additional information on the internal properties and processes of the ice. However, a unified data processing technique to reliably and accurately determine sea ice thickness and snow depth from this kind of data is still missing, and an unambiguous interpretation remains a challenge. Following the need to improve techniques for remotely measuring sea ice mass balance, an international IMB working group has recently been established. The main goals are 1) to coordinate IMB deployments, 2) to enhance current IMB data processing and -interpretation techniques, and 3) to provide standardized IMB data products to a broader community. Here we present first results from two different data processing algorithms, applied to selected IMB datasets from the Arctic and Antarctic. Their performance with regard to sea ice thickness and snow depth retrieval is evaluated, and an uncertainty is determined. Although several challenges and caveats in IMB data processing and -interpretation are found, such datasets bear great potential and yield plenty of useful information about sea ice properties and processes. It is planned to include many more algorithms from contributors within the working group, and we explicitly invite other interested scientists to join this promising effort.

  5. Understanding Nearshore Processes Of a Large Arctic Delta Using Combined Seabed Mapping, In Situ Observations, Remote Sensing and Modeling

    NASA Astrophysics Data System (ADS)

    Solomon, S. M.; Couture, N. J.; Forbes, D. L.; Hoque, A.; Jenner, K. A.; Lintern, G.; Mulligan, R. P.; Perrie, W. A.; Stevens, C. W.; Toulany, B.; Whalen, D.

    2009-12-01

    The Mackenzie River Delta and the adjacent continental shelf in the southeastern Beaufort Sea are known to host significant quantities of hydrocarbons. Recent environmental reviews of proposed hydrocarbon development have highlighted the need for a better understanding of the processes that control sediment transport and coastal stability. Over the past several years field surveys have been undertaken in winter, spring and summer to acquire data on seabed morphology, sediment properties, sea ice, river-ocean interaction and nearshore oceanography. These data are being used to improve conceptual models of nearshore processes and to develop and validate numerical models of waves, circulation and sediment transport. The timing and location of sediment erosion, transport and deposition is complex, driven by a combination of open water season storms and spring floods. Unlike temperate counterparts, the interaction between the Mackenzie River and the Beaufort Sea during spring freshet is mediated by the presence of ice cover. Increasing discharge exceeds the under-ice flow capacity leading to flooding of the ice surface, followed by vortex drainage through the ice and scour of the seabed below (“strudel” drainage and scour). During winter months, nearshore circulation slows beneath a thickening ice canopy. Recent surveys have shown that the low gradient inner shelf is composed of extensive shoals where ice freezes to the seabed and intervening zones which are slightly deeper than the ice is thick. The duration of ice contact with the bed determines the thermal characteristics of the seabed. Analysis of cores shows that the silts comprising the shoals are up to 6 m thick. The predominantly well sorted and cross-laminated nature of the silts at the top of the cores suggests an active delta front environment. Measurements of waves, currents, conductivity, temperature and sediment concentration during spring and late summer have been acquired. During moderate August storm events, waves attenuate rapidly inshore of the 3 m isobath. Entrainment of fine material and rapid flocculation due to the presence of brackish water may induce the transient formation of high density suspensions near the seabed which contributes to this rapid attenuation. The relatively poor performance of shallow water wave models (e.g. SWAN) in very shallow depths during storm simulations appears to be related to inaccurate formulations for wave attenuation in this environment.

  6. The WAIS Melt Monitor: An automated ice core melting system for meltwater sample handling and the collection of high resolution microparticle size distribution data

    NASA Astrophysics Data System (ADS)

    Breton, D. J.; Koffman, B. G.; Kreutz, K. J.; Hamilton, G. S.

    2010-12-01

    Paleoclimate data are often extracted from ice cores by careful geochemical analysis of meltwater samples. The analysis of the microparticles found in ice cores can also yield unique clues about atmospheric dust loading and transport, dust provenance and past environmental conditions. Determination of microparticle concentration, size distribution and chemical makeup as a function of depth is especially difficult because the particle size measurement either consumes or contaminates the meltwater, preventing further geochemical analysis. Here we describe a microcontroller-based ice core melting system which allows the collection of separate microparticle and chemistry samples from the same depth intervals in the ice core, while logging and accurately depth-tagging real-time electrical conductivity and particle size distribution data. This system was designed specifically to support microparticle analysis of the WAIS Divide WDC06A deep ice core, but many of the subsystems are applicable to more general ice core melting operations. Major system components include: a rotary encoder to measure ice core melt displacement with 0.1 millimeter accuracy, a meltwater tracking system to assign core depths to conductivity, particle and sample vial data, an optical debubbler level control system to protect the Abakus laser particle counter from damage due to air bubbles, a Rabbit 3700 microcontroller which communicates with a host PC, collects encoder and optical sensor data and autonomously operates Gilson peristaltic pumps and fraction collectors to provide automatic sample handling, melt monitor control software operating on a standard PC allowing the user to control and view the status of the system, data logging software operating on the same PC to collect data from the melting, electrical conductivity and microparticle measurement systems. Because microparticle samples can easily be contaminated, we use optical air bubble sensors and high resolution ice core density profiles to guide the melting process. The combination of these data allow us to analyze melt head performance, minimize outer-to-inner fraction contamination and avoid melt head flooding. The WAIS Melt Monitor system allows the collection of real-time, sub-annual microparticle and electrical conductivity data while producing and storing enough sample for traditional Coulter-Counter particle measurements as well long term acid leaching of bioactive metals (e.g., Fe, Co, Cd, Cu, Zn) prior to chemical analysis.

  7. Exploring the mobility of cryoconite on High-Arctic glaciers

    NASA Astrophysics Data System (ADS)

    Irvine-Fynn, T. D.; Hodson, A. J.; Bridge, J. W.; Langford, H.; Anesio, A.; Ohlanders, N.; Newton, S.

    2010-12-01

    There has been a growing awareness of the significance of biologically active dust (cryoconite) on the energy balance of, and nutrient cycling at glacier surfaces. Moreover, researchers have estimated the mass of biological material released from glacier ice to downstream environments and ecosystems, including the melt-out of cells from emergent ice in the ablation area. However, the processes, rates and mechanisms of cryoconite mobility and transport have not been fully explored. For many smaller valley glaciers in the High-Arctic, the climate dictates only a thin (~ 1m) layer of ice at the glacier surface is at the melting point during the summer months. This surface ice is commonly characterized by an increased porosity in response to incident energy and hydraulic conditions, and has been termed the “weathering crust”. The presence of cryoconite, with its higher radiation absorption, exacerbates the weathering crust development. Thus, crucially, the transport of cryoconite is not confined to simply a ‘smooth’ ice surface, but rather also includes mobility in the near-surface ice matrix. Here, we present initial results from investigations of cryoconite transport at Midtre Lovénbreen and Longyearbreen, two north-facing valley glaciers in Svalbard (Norway). Using time-lapse imagery, we explore the transport rates of cryoconite on a glacier surface and consider the associations between mobility and meteorological conditions. Results suggest some disparity between micro-, local- and plot-scale observations of cryoconite transport: the differences imply controlling influences of cryoconite volume, ice surface topography and ice structure. While to examine the relative volumes of cryoconite exported from the glacier surface by supraglacial streams we employ flow cytometry, using SYBR-Green-II staining to identify the biological component of the suspended load. Preliminary comparisons between shallow (1m) ice cores and in-stream concentrations suggest cryoconite may be retained within the near-surface ice rather than being readily transported from the glacier by meltwater flows. We propose these processes lead to a reduced cell flux transported by meltwaters from the glacier to aquatic ecosystems, but an increase in the volume of cryoconite deposited in the forefield of a retreating glacier and made available for terrestrial ecosystem development.

  8. Long-term monitoring of glacier dynamics of Fleming Glacier after the disintegration of Wordie Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Friedl, Peter; Seehaus, Thorsten; Wendt, Anja; Braun, Matthias

    2017-04-01

    The Antarctic Peninsula is one of the world`s most affected regions by Climate Change. Dense and long time series of remote sensing data enable detailed studies of the rapid glaciological changes in this area. We present results of a study on Fleming Glacier, which was the major tributary glacier of former Wordie Ice Shelf, located at the south-western side of the Antarctic Peninsula. Since the ice shelf disintegrated in a series of events starting in the 1970s, only disconnected tidewater glaciers have remained today. As a reaction to the loss of the buttressing force of the ice shelf, Fleming Glacier accelerated and dynamically thinned. However, all previous studies conducted at Wordie Bay covered only relatively short investigation periods and ended in 2008 the latest. Hence it was not well known how long the process of adaption to the changing boundary conditions exactly lasts and how it is characterized in detail. We provide long time series (1994 - 2016) of glaciological parameters (i.e. ice extent, velocity, grounding line position, ice elevation) for Fleming Glacier obtained from multi-mission remote sensing data. For this purpose large datasets of previously active (e.g. ERS, Envisat, ALOS PALSAR, Radarsat-1) as well as currently recording SAR sensors (e.g. Sentinel-1, TerraSAR-X, TanDEM-X) were processed and combined with data from other sources (e.g. optical images, laser altimeter and ice thickness data). The high temporal resolution of our dataset enables us to present a detailed history of 22 years of glacial dynamics at Fleming Glacier after the disintegration of Wordie Ice Shelf. We found strong evidence for a rapid grounding line retreat of up to 13 km between 2008 and 2011, which led to a further amplification of dynamic ice thinning. Today Fleming Glacier seems to be far away from approaching a new equilibrium. Our data show that the current glacier dynamics of Fleming Glacier are not primarily controlled by the loss of the ice shelf anymore, but by other sources of external forcing, such as oceanic warming.

  9. In-flight detection and identification and accommodation of aircraft icing

    NASA Astrophysics Data System (ADS)

    Caliskan, Fikret; Hajiyev, Chingiz

    2012-11-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this paper, aircraft icing identification based on neural networks is investigated. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  10. Nonlinear threshold behavior during the loss of Arctic sea ice.

    PubMed

    Eisenman, I; Wettlaufer, J S

    2009-01-06

    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or "tipping point") beyond which the ice-albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice-albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice-albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely.

  11. Advances in heterogeneous ice nucleation research: Theoretical modeling and measurements

    NASA Astrophysics Data System (ADS)

    Beydoun, Hassan

    In the atmosphere, cloud droplets can remain in a supercooled liquid phase at temperatures as low as -40 °C. Above this temperature, cloud droplets freeze via heterogeneous ice nucleation whereby a rare and poorly understood subset of atmospheric particles catalyze the ice phase transition. As the phase state of clouds is critical in determining their radiative properties and lifetime, deficiencies in our understanding of heterogeneous ice nucleation poses a large uncertainty on our efforts to predict human induced global climate change. Experimental challenges in properly simulating particle-induced freezing processes under atmospherically relevant conditions have largely contributed to the absence of a well-established model and parameterizations that accurately predict heterogeneous ice nucleation. Conversely, the sparsity of reliable measurement techniques available struggle to be interpreted by a single consistent theoretical or empirical framework, which results in layers of uncertainty when attempting to extrapolate useful information regarding ice nucleation for use in atmospheric cloud models. In this dissertation a new framework for describing heterogeneous ice nucleation is developed. Starting from classical nucleation theory, the surface of an ice nucleating particle is treated as a continuum of heterogeneous ice nucleating activity and a particle specific distribution of this activity g is derived. It is hypothesized that an individual particle species exhibits a critical surface area. Above this critical area the ice nucleating activity of a particle species can be described by one g distribution, g, while below it g expresses itself expresses externally resulting in particle to particle variability in ice nucleating activity. The framework is supported by cold plate droplet freezing measurements for dust and biological particles in which the total surface area of particle material available is varied. Freezing spectra above a certain surface area are shown to be successfully fitted with g while a process of random sampling from g can predict the freezing behavior below the identified critical surface area threshold. The framework is then extended to account for droplets composed of multiple particle species and successfully applied to predict the freezing spectra of a mixed proxy for an atmospheric dust-biological particle system. The contact freezing mode of ice nucleation, whereby a particle induces freezing upon collision with a droplet, is thought to be more efficient than particle initiated immersion freezing from within the droplet bulk. However, it has been a decades' long challenge to accurately measure this ice nucleation mode, since it necessitates reliably measuring the rate at which particles hit a droplet surface combined with direct determination of freezing onset. In an effort to remedy this longstanding deficiency a temperature controlled chilled aerosol optical tweezers capable of stably isolating water droplets in air at subzero temperatures has been designed and implemented. The new temperature controlled system retains the powerful capabilities of traditional aerosol optical tweezers: retrieval of a cavity enhanced Raman spectrum which could be used to accurately determine the size and refractive index of a trapped droplet. With these capabilities, it is estimated that the design can achieve ice supersaturation conditions at the droplet surface. It was also found that a KCl aqueous droplet simultaneously cooling and evaporating exhibited a significantly higher measured refractive index at its surface than when it was held at a steady state temperature. This implies the potential of a "salting out" process. Sensitivity of the cavity enhanced Raman spectrum as well as the visual image of a trapped droplet to dust particle collisions is shown, an important step in measuring collision frequencies of dust particles with a trapped droplet. These results may pave the way for future experiments of the exceptionally poorly understood contact freezing mode of ice nucleation.

  12. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-04-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.

  13. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.

    2010-08-01

    The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.

  14. Progress on wave-ice interactions: satellite observations and model parameterizations

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Boutin, Guillaume; Dumont, Dany; Stopa, Justin; Girard-Ardhuin, Fanny; Accensi, Mickael

    2017-04-01

    In the open ocean, numerical wave models have their largest errors near sea ice, and, until recently, virtually no wave data was available in the sea ice to. Further, wave-ice interaction processes may play an important role in the Earth system. In particular, waves may break up an ice layer into floes, with significant impact on air-sea fluxes. With thinner Arctic ice, this process may contribut to the growing similarity between Arctic and Antarctic sea ice. In return, the ice has a strong damping impact on the waves that is highly variable and not understood. Here we report progress on parameterizations of waves interacting with a single ice layer, as implemented in the WAVEWATCH III model (WW3 Development Group, 2016), and based on few in situ observations, but extensive data derived from Synthetic Aperture Radars (SARs). Our parameterizations combine three processes. First a parameterization for the energy-conserving scattering of waves by ice floes (assuming isotropic back-scatter), which has very little effect on dominant waves of periods larger than 7 s, consistent with the observed narrow directional spectra and short travel times. Second, we implemented a basal friction below the ice layer (Stopa et al. The Cryosphere, 2016). Third, we use a secondary creep associated with ice flexure (Cole et al. 1998) adapted to random waves. These three processes (scattering, friction and creep) are strongly dependent on the maximum floe size. We have thus included an estimation of the potential floe size based on an ice flexure failure estimation adapted from Williams et al. (2013). This combination of dissipation and scattering is tested against measured patterns of wave height and directional spreading, and evidence of ice break-up, all obtained from SAR imagery (Ardhuin et al. 2017), and some in situ data (Collins et al. 2015). The combination of creep and friction is required to reproduce a strong reduction in wave attenuation in broken ice as observed by Collins et al. (2015). Ongoing developments include the coupling of WAVEWATCH III to the NEMO-LIM3 and NEMO-CICE models using the OASIS3-MCT communicator. This coupled system will provide a meaningful memory of the ice floe sizes, as the ice is advected. It will also make possible the investigation of feedback processes on the ice.

  15. Microwave ice accretion meter

    NASA Technical Reports Server (NTRS)

    Magenheim, Bertram (Inventor); Rocks, James K. (Inventor)

    1984-01-01

    A system for indicating ice thickness and rate of ice thickness growth on surfaces is disclosed. The region to be monitored for ice accretion is provided with a resonant surface waveguide which is mounted flush, below the surface being monitored. A controlled oscillator provides microwave energy via a feed point at a controllable frequency. A detector is coupled to the surface waveguide and is responsive to electrical energy. A measuring device indicates the frequency deviation of the controlled oscillator from a quiescent frequency. A control means is provided to control the frequency of oscillation of the controlled oscillator. In a first, open-loop embodiment, the control means is a shaft operated by an operator. In a second, closed-loop embodiment, the control means is a processor which effects automatic control.

  16. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    NASA Astrophysics Data System (ADS)

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-02-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection.

  17. Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides

    PubMed Central

    Dreischmeier, Katharina; Budke, Carsten; Wiehemeier, Lars; Kottke, Tilman; Koop, Thomas

    2017-01-01

    Ice nucleation and growth is an important and widespread environmental process. Accordingly, nature has developed means to either promote or inhibit ice crystal formation, for example ice-nucleating proteins in bacteria or ice-binding antifreeze proteins in polar fish. Recently, it was found that birch pollen release ice-nucleating macromolecules when suspended in water. Here we show that birch pollen washing water exhibits also ice-binding properties such as ice shaping and ice recrystallization inhibition, similar to antifreeze proteins. We present spectroscopic evidence that both the ice-nucleating as well as the ice-binding molecules are polysaccharides bearing carboxylate groups. The spectra suggest that both polysaccharides consist of very similar chemical moieties, but centrifugal filtration indicates differences in molecular size: ice nucleation occurs only in the supernatant of a 100 kDa filter, while ice shaping is strongly enhanced in the filtrate. This finding may suggest that the larger ice-nucleating polysaccharides consist of clusters of the smaller ice-binding polysaccharides, or that the latter are fragments of the ice-nucleating polysaccharides. Finally, similar polysaccharides released from pine and alder pollen also display both ice-nucleating as well as ice-binding ability, suggesting a common mechanism of interaction with ice among several boreal pollen with implications for atmospheric processes and antifreeze protection. PMID:28157236

  18. Laboratory Studies of Sea-Ice-Wave Interactions

    NASA Astrophysics Data System (ADS)

    Monty, J.; Meylan, M. H.; Babanin, A. V.; Toffoli, A.; Bennetts, L.

    2016-12-01

    A world-first facility for studying the Marginal Ice Zone has been constructed in the Michell Hydrodynamics Laboratory at the University of Melbourne. A 14m long wave tank (0.75m wide, 0.6m deep) resides in a freezer, where air temperature can be controlled down to -15C. This permits the freezing of the water surface. Large stainless steel ice-making trays (up to 4 m long) are also available to create ice of desired thickness and microstructure, which can be lowered onto the water surface. A computer controlled wave generator is capable of creating waves of any desired form. The temperature of the water in the tank can also be controlled between 2 and 30C. The tank frame is constructed of marine-treated wood and the entire tank is glass and acrylic, permitting the use of corrosive fluids, such as salt water. Here we present the first laboratory experiments of break-up of a controlled thickness, fresh water ice sheet impacted by regular and JONSWAP spectrum surface waves. The geometry of the resultant ice-floes is measured with high-resolution, time-resolved imaging, providing the crucial data of floe size distribution. Initial observations show that, in the case of high steepness waves, the primary mechanisms of ice break-up at the ice edge are overwash and rafting, both of which put weight on the ice interior to the ice-water interface. This additional weight (and impact in the case of rafting) breaks more ice, which allows overwash and rafting deeper into the ice sheet, breaking more ice and so on. For lower steepness waves, overwash and rafting are still present but far less significant. Finally, results of vertical ice movement using laser height gauges will be presented showing the attenuation of waves into an ice sheet and through a pack of ice floes. These results are compared with field data and theory available (e.g. Squire & Moore, Nature, 1980 and Kohout et al., Nature, 2014).

  19. Cryo-conditioned rocky coast systems: A case study from Wilczekodden, Svalbard.

    PubMed

    Strzelecki, M C; Kasprzak, M; Lim, M; Swirad, Z M; Jaskólski, M; Pawłowski, Ł; Modzel, P

    2017-12-31

    This paper presents the results of an investigation into the processes controlling development of a cryo-conditioned rock coast system in Hornsund, Svalbard. A suite of nested geomorphological and geophysical methods have been applied to characterise the functioning of rock cliffs and shore platforms influenced by lithological control and geomorphic processes driven by polar coast environments. Electrical resistivity tomography (ERT) surveys have been used to investigate permafrost control on rock coast dynamics and reveal the strong interaction with marine processes in High Arctic coastal settings. Schmidt hammer rock tests, demonstrated strong spatial control on the degree of rock weathering (rock strength) along High Arctic rock coasts. Elevation controlled geomorphic zones are identified and linked to distinct processes and mechanisms, transitioning from peak hardness values at the ice foot through the wave and storm dominated scour zones to the lowest values on the cliff tops, where the effects of periglacial weathering dominate. Observations of rock surface change using a traversing micro-erosion meter (TMEM) indicate that significant changes in erosion rates occur at the junction between the shore platform and the cliff toe, where rock erosion is facilitated by frequent wetting and drying and operation of nivation and sea ice processes (formation and melting of snow patches and icefoot complexes). The results are synthesised to propose a new conceptual model of High Arctic rock coast systems, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of polar rock coasts. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quantifying climate feedbacks in polar regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goosse, Hugues; Kay, Jennifer E.; Armour, Kyle C.

    The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range ofmore » feedbacks, thus offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.« less

  1. Quantifying climate feedbacks in polar regions

    DOE PAGES

    Goosse, Hugues; Kay, Jennifer E.; Armour, Kyle C.; ...

    2018-05-15

    The concept of feedback is key in assessing whether a perturbation to a system is amplified or damped by mechanisms internal to the system. In polar regions, climate dynamics are controlled by both radiative and non-radiative interactions between the atmosphere, ocean, sea ice, ice sheets and land surfaces. Precisely quantifying polar feedbacks is required for a process-oriented evaluation of climate models, a clear understanding of the processes responsible for polar climate changes, and a reduction in uncertainty associated with model projections. This quantification can be performed using a simple and consistent approach that is valid for a wide range ofmore » feedbacks, thus offering the opportunity for more systematic feedback analyses and a better understanding of polar climate changes.« less

  2. Using noble gas ratios to determine the origin of ground ice

    NASA Astrophysics Data System (ADS)

    Utting, Nicholas; Lauriol, Bernard; Lacelle, Denis; Clark, Ian

    2016-01-01

    Argon, krypton and xenon have different solubilities in water, meaning their ratios in water are different from those in atmospheric air. This characteristic is used in a novel method to distinguish between ice bodies which originate from the compaction of snow (i.e. buried snow banks, glacial ice) vs. ice which forms from the freezing of groundwater (i.e. pingo ice). Ice which forms from the compaction of snow has gas ratios similar to atmospheric air, while ice which forms from the freezing of liquid water is expected to have gas ratios similar to air-equilibrated water. This analysis has been conducted using a spike dilution noble gas line with gas extraction conducted on-line. Samples were mixed with an aliquot of rare noble gases while being melted, then extracted gases are purified and cryogenically separated. Samples have been analysed from glacial ice, buried snow bank ice, intrusive ice, wedge ice, cave ice and two unknown ice bodies. Ice bodies which have formed from different processes have different gas ratios relative to their formation processes.

  3. Subsonic Aircraft Safety Icing Study

    NASA Technical Reports Server (NTRS)

    Jones, Sharon Monica; Reveley, Mary S.; Evans, Joni K.; Barrientos, Francesca A.

    2008-01-01

    NASA's Integrated Resilient Aircraft Control (IRAC) Project is one of four projects within the agency s Aviation Safety Program (AvSafe) in the Aeronautics Research Mission Directorate (ARMD). The IRAC Project, which was redesigned in the first half of 2007, conducts research to advance the state of the art in aircraft control design tools and techniques. A "Key Decision Point" was established for fiscal year 2007 with the following expected outcomes: document the most currently available statistical/prognostic data associated with icing for subsonic transport, summarize reports by subject matter experts in icing research on current knowledge of icing effects on control parameters and establish future requirements for icing research for subsonic transports including the appropriate alignment. This study contains: (1) statistical analyses of accident and incident data conducted by NASA researchers for this "Key Decision Point", (2) an examination of icing in other recent statistically based studies, (3) a summary of aviation safety priority lists that have been developed by various subject-matter experts, including the significance of aircraft icing research in these lists and (4) suggested future requirements for NASA icing research. The review of several studies by subject-matter experts was summarized into four high-priority icing research areas. Based on the Integrated Resilient Aircraft Control (IRAC) Project goals and objectives, the IRAC project was encouraged to conduct work in all of the high-priority icing research areas that were identified, with the exception of the developing of methods to sense and document actual icing conditions.

  4. Heterogeneous ice nucleation of α-pinene SOA particles before and after ice cloud processing

    NASA Astrophysics Data System (ADS)

    Wagner, Robert; Höhler, Kristina; Huang, Wei; Kiselev, Alexei; Möhler, Ottmar; Mohr, Claudia; Pajunoja, Aki; Saathoff, Harald; Schiebel, Thea; Shen, Xiaoli; Virtanen, Annele

    2017-05-01

    The ice nucleation ability of α-pinene secondary organic aerosol (SOA) particles was investigated at temperatures between 253 and 205 K in the Aerosol Interaction and Dynamics in the Atmosphere cloud simulation chamber. Pristine SOA particles were nucleated and grown from pure gas precursors and then subjected to repeated expansion cooling cycles to compare their intrinsic ice nucleation ability during the first nucleation event with that observed after ice cloud processing. The unprocessed α-pinene SOA particles were found to be inefficient ice-nucleating particles at cirrus temperatures, with nucleation onsets (for an activated fraction of 0.1%) as high as for the homogeneous freezing of aqueous solution droplets. Ice cloud processing at temperatures below 235 K only marginally improved the particles' ice nucleation ability and did not significantly alter their morphology. In contrast, the particles' morphology and ice nucleation ability was substantially modified upon ice cloud processing in a simulated convective cloud system, where the α-pinene SOA particles were first activated to supercooled cloud droplets and then froze homogeneously at about 235 K. As evidenced by electron microscopy, the α-pinene SOA particles adopted a highly porous morphology during such a freeze-drying cycle. When probing the freeze-dried particles in succeeding expansion cooling runs in the mixed-phase cloud regime up to 253 K, the increase in relative humidity led to a collapse of the porous structure. Heterogeneous ice formation was observed after the droplet activation of the collapsed, freeze-dried SOA particles, presumably caused by ice remnants in the highly viscous material or the larger surface area of the particles.

  5. Morphological evidence and direct estimates of rapid melting beneath Totten Glacier Ice Shelf, East Antarctica

    NASA Astrophysics Data System (ADS)

    Greenbaum, Jamin; Schroeder, Dustin; Grima, Cyril; Habbal, Feras; Dow, Christine; Roberts, Jason; Gwyther, David; van Ommen, Tas; Siegert, Martin; Blankenship, Donald

    2017-04-01

    Totten Glacier drains at least 3.5 meters of eustatic sea level potential from marine-based ice in the Aurora Subglacial Basin (ASB) in East Antarctica, more than the combined total of all glaciers in West Antarctica. Totten Glacier has been the most rapidly thinning glacier in East Antarctica since satellite altimetry time series began and the nature of the thinning suggests that it is driven by enhanced basal melting due to ocean processes. While grounded ice thinning rates have been steady, recent work has shown that Totten's floating ice shelf may not have the same thinning behavior; as a result, it is critical to observe ice shelf and cavity boundary conditions and basal processes to understand this apparent discrepancy. Warm Modified Circumpolar Deep Water (MCDW), which has been linked to glacier retreat in West Antarctica, has been observed in summer and winter on the nearby Sabrina Coast continental shelf and deep depressions in the seafloor provide access for MCDW to reach the ice shelf cavity. Given its northern latitude, numerical ice sheet modeling indicates that Totten Glacier may be prone to retreat caused by hydrofracture in a warming climate, so it is important to understand how intruding MCDW is affecting thinning of Totten Glacier's ice shelf. Here we use post-processed, focused airborne radar observations of the Totten Glacier Ice Shelf to delineate multi-km wide basal channels and flat basal terraces associated with high basal reflectivity and specularity (flatness) anomalies and correspondingly large ice surface depressions that indicate active basal melting. Using a simple temperature-attenuation model, and basal roughness corrections, we present basal melt rates associated with the radar reflection and specularity anomalies and compare them to those derived from numerical ocean circulation modeling and an ice flow divergence calculation. Sub-ice shelf ocean circulation modeling and under-ice robotic observations of Pine Island Glacier Ice Shelf in West Antarctica and the Petermann Glacier Ice Shelf in Greenland have shown that basal terraces associated with large basal channels are an indication of rapidly melting ice shelves. In this context, these new results identify an East Antarctic example of rapid basal melting processes and demonstrate that airborne radar can be used to identify basal characteristics and processes relevant to ice shelf stability.

  6. Past ice-sheet behaviour: retreat scenarios and changing controls in the Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Halberstadt, Anna Ruth W.; Simkins, Lauren M.; Greenwood, Sarah L.; Anderson, John B.

    2016-05-01

    Studying the history of ice-sheet behaviour in the Ross Sea, Antarctica's largest drainage basin can improve our understanding of patterns and controls on marine-based ice-sheet dynamics and provide constraints for numerical ice-sheet models. Newly collected high-resolution multibeam bathymetry data, combined with two decades of legacy multibeam and seismic data, are used to map glacial landforms and reconstruct palaeo ice-sheet drainage. During the Last Glacial Maximum, grounded ice reached the continental shelf edge in the eastern but not western Ross Sea. Recessional geomorphic features in the western Ross Sea indicate virtually continuous back-stepping of the ice-sheet grounding line. In the eastern Ross Sea, well-preserved linear features and a lack of small-scale recessional landforms signify rapid lift-off of grounded ice from the bed. Physiography exerted a first-order control on regional ice behaviour, while sea floor geology played an important subsidiary role. Previously published deglacial scenarios for Ross Sea are based on low-spatial-resolution marine data or terrestrial observations; however, this study uses high-resolution basin-wide geomorphology to constrain grounding-line retreat on the continental shelf. Our analysis of retreat patterns suggests that (1) retreat from the western Ross Sea was complex due to strong physiographic controls on ice-sheet drainage; (2) retreat was asynchronous across the Ross Sea and between troughs; (3) the eastern Ross Sea largely deglaciated prior to the western Ross Sea following the formation of a large grounding-line embayment over Whales Deep; and (4) our glacial geomorphic reconstruction converges with recent numerical models that call for significant and complex East Antarctic ice sheet and West Antarctic ice sheet contributions to the ice flow in the Ross Sea.

  7. Mutagen Sensitivity, Apoptosis, and Polymorphism in DNA Repair as Measures of Prostate Cancer Risk

    DTIC Science & Technology

    2005-02-01

    blood tubes are immediately refrigerated and delivered on ice within 6 hours to the GCRC core facility at Georgetown University for processing . Case...is CLIA certified. There is a centrally monitored storage facility with -80’C freezers. The established recruitment and optimized sample processing in...controls. We have established the recruitment procedures, sample collection, processing , repository, and data management. This is a substantial effort

  8. RTO Technical Publications: A Quarterly Listing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This is a listing of recent unclassified RTO technical publications processed by the NASA Center for AeroSpace Information from Jan 1, 2002 through Mar 31, 2002. Topics covered included information management, ice accretion, digital flight control systems, supercavitation flows, and tactical decision aids.

  9. Parameterization and scaling of Arctic ice conditions in the context of ice-atmosphere processes

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Heinrichs, J.; Steffen, K.; Maslanik, J. A.; Key, J.; Serreze, M. C.; Weaver, R. W.

    1994-01-01

    This report summarizes achievements during year three of our project to investigate the use of ERS-1 SAR data to study Arctic ice and ice/atmosphere processes. The project was granted a one year extension, and goals for the final year are outlined. The specific objects of the project are to determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space; determine whether SAR data might be used to calibrate ice concentration estimates from medium and low-rate bit sensors (AVHRR and DMSP-OLS) and the special sensor microwave imager (SSM/I); and investigate methods to integrate SAR data for turbulent heat flux parametrization at the atmosphere interface with other satellite data.

  10. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  11. Topographic Steering of Enhanced Ice Flow at the Bottleneck Between East and West Antarctica

    NASA Astrophysics Data System (ADS)

    Winter, Kate; Ross, Neil; Ferraccioli, Fausto; Jordan, Tom A.; Corr, Hugh F. J.; Forsberg, René; Matsuoka, Kenichi; Olesen, Arne V.; Casal, Tania G.

    2018-05-01

    Hypothesized drawdown of the East Antarctic Ice Sheet through the "bottleneck" zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could however drive ice divide migration and increase mass discharge from interior West Antarctica to the Southern Ocean.

  12. Subglacial Antarctic Lake Environment Research in the IPY

    NASA Astrophysics Data System (ADS)

    Kennicutt, M. C.; Priscu, J. C.

    2006-12-01

    Subglacial environments are continental-scale phenomena that occur under thick ice sheets. These environments differ in geologic setting, age, evolutionary history, and limnological conditions and may be connected by sub-ice hydrologic systems. Evidence suggests that subglacial lakes are linked to the onset of ice streams influencing the dynamics of overlying ice sheets. Outbursts of fresh water from subglacial environments have been invoked as an agent of landscape change in the past and there is speculation that subglacial freshwater discharges have influenced past climate. Subglacial environments rest at the intersection of continental ice sheets and the underlying lithosphere. The distribution of subglacial lakes is determined by the availability of water and basins for it to collect in. The distribution of water in subglacial environments is related to surface temperature, accumulation rates, ice thickness, ice velocities, and geothermal flux. The interconnectedness of these environments exerts a fundamental influence on subglacial physical, chemical, and ecological environments; the degree of isolation; and the evolution of life. Subglacial hydrology at a continental-scale must be mapped and modeled to evaluate past drainage events, map subglacial water, and quantify subglacial discharges. The geologic records of past hydrologic events will be reveal the impact of hydrological events on sediment distribution and landscape evolution. Subglacial environments are "natural" earth-bound macrocosms. In some instances these environments trace their origins to more than 35 million years before present when Antarctica became encased in ice. As opposed to other habitats on Earth, where solar energy is a primary influence, processes in subglacial environments are mediated by the flow of the overlying ice a glacial boundary condition and the flux of heat and possibly fluids from the underlying basin a tectonic control. Recent findings suggest that a third control on these environments is subglacial hydrology, which will influence water residence time and the delivery of water, materials, and heat to and through subglacial systems. Owing to the lack of solar energy, any microbiological metabolism in these systems must rely on energy and nutrition derived from glacial ice, the bedrock, and/or geothermal sources. For millions of years, many Antarctic subglacial environments have been insulated from weather, the seasons, and celestially controlled climatic changes that establish fundamental constraints on the structure and functioning of most other ecosystems. Subglacial environments provide an opportunity to advance understanding of how life, the environment, climate, and planetary history combine to produce the world as we know it today. Multi-national, interdisicplinary field campaigns during the IPY 2007-2008 will provide fundamental knowledge about the importance of subglacial environments during the history and evolution of Antarctica.

  13. Examination of Icing Induced Loss of Control and Its Mitigations

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Addy, Harold E., Jr.; Colantonio, Renato O.

    2010-01-01

    Factors external to the aircraft are often a significant causal factor in loss of control (LOC) accidents. In today s aviation world, very few accidents stem from a single cause and typically have a number of causal factors that culminate in a LOC accident. Very often the "trigger" that initiates an accident sequence is an external environment factor. In a recent NASA statistical analysis of LOC accidents, aircraft icing was shown to be the most common external environmental LOC causal factor for scheduled operations. When investigating LOC accident or incidents aircraft icing causal factors can be categorized into groups of 1) in-flight encounter with super-cooled liquid water clouds, 2) take-off with ice contamination, or 3) in-flight encounter with high concentrations of ice crystals. As with other flight hazards, icing induced LOC accidents can be prevented through avoidance, detection, and recovery mitigations. For icing hazards, avoidance can take the form of avoiding flight into icing conditions or avoiding the hazard of icing by making the aircraft tolerant to icing conditions. Icing detection mitigations can take the form of detecting icing conditions or detecting early performance degradation caused by icing. Recovery from icing induced LOC requires flight crew or automated systems capable of accounting for reduced aircraft performance and degraded control authority during the recovery maneuvers. In this report we review the icing induced LOC accident mitigations defined in a recent LOC study and for each mitigation describe a research topic required to enable or strengthen the mitigation. Many of these research topics are already included in ongoing or planned NASA icing research activities or are being addressed by members of the icing research community. These research activities are described and the status of the ongoing or planned research to address the technology needs is discussed

  14. Dynamics of coupled ice-ocean system in the marginal ice zone: Study of the mesoscale processes and of constitutive equations for sea ice

    NASA Technical Reports Server (NTRS)

    Hakkinen, S.

    1984-01-01

    This study is aimed at the modelling of mesoscale processed such as up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional coupled ice-ocean model is used for the study. The ice model is coupled to the reduced gravity ocean model (f-plane) through interfacial stresses. The constitutive equations of the sea ice are formulated on the basis of the Reiner-Rivlin theory. The internal ice stresses are important only at high ice concentrations (90-100%), otherwise the ice motion is essentially free drift, where the air-ice stress is balanced by the ice-water stress. The model was tested by studying the upwelling dynamics. Winds parallel to the ice edge with the ice on the right produce upwilling because the air-ice momentum flux is much greater that air-ocean momentum flux, and thus the Ekman transport is bigger under the ice than in the open water. The upwelling simulation was extended to include temporally varying forcing, which was chosen to vary sinusoidally with a 4 day period. This forcing resembles successive cyclone passings. In the model with a thin oceanic upper layer, ice bands were formed.

  15. The role of sediment supply in esker formation and ice tunnel evolution

    NASA Astrophysics Data System (ADS)

    Burke, Matthew J.; Brennand, Tracy A.; Sjogren, Darren B.

    2015-05-01

    Meltwater is an important part of the glacier system as it can directly influence ice sheet dynamics. Although it is important that ice sheet models incorporate accurate information about subglacial meltwater processes, the relative inaccessibility of contemporary ice sheet beds makes direct investigation challenging. Former ice sheet beds contain a wealth of meltwater landforms such as eskers that, if accurately interpreted, can provide detailed insight into the hydrology of former ice sheets. Eskers are the casts of ice-walled channels and are a common landform within the footprint of the last Laurentide and Cordilleran Ice Sheets. In south-western Alberta, esker distribution suggests that both water and sediment supply may have been important controls; the longest esker ridge segments are located within meltwater valleys partially filled by glaciofluvial sediments, whereas the shortest esker ridge segments are located in areas dominated by clast-poor till. Through detailed esker ridge planform and crest-type mapping, and near surface geophysics we reveal morpho-sedimentary relationships that suggest esker sedimentation was dynamic, but that esker distribution and architecture were primarily governed by sediment supply. Through comparison of these data with data from eskers elsewhere, we suggest three formative scenarios: 1) where sediment supply and flow powers were high, coarse sediment loads result in rapid deposition, and rates of thermo-mechanical ice tunnel growth is exceeded by the rate of ice tunnel closure due to sediment infilling. High sedimentation rates reduce ice tunnel cross-sectional area, cause an increase in meltwater flow velocity and force ice tunnel growth. Thus, ice tunnel growth is fastest where sedimentation rate is highest; this positive feedback results in a non-uniform ice tunnel geometry, and favours macroform development and non-uniform ridge geometry. 2) Where sediment supply is limited, but flow power high, the rate of sedimentation is less than the rate of thermo-mechanical ice tunnel growth. Here the ice tunnel enlarges faster than it fills with sediment and its evolution is independent of sedimentation, resulting in more uniform ice tunnel geometry. In these cases esker architecture is dominated by extensive vertical accretion of tabular units and ridge geometry is more uniform. 3) Where sediment is truly supply-limited the sedimentation rate is negligible regardless of water supply and, like scenario 2, ice tunnel growth is independent of sediment deposition, forming a relatively uniform ice tunnel (or eroding the bed). Because meltwater flows transport few gravel clasts the ice tunnel is not completely filled with gravel and, instead, saturated and pressurized diamicton or bedrock (if deformable) from beneath the surrounding ice is "squeezed" into the relatively low pressure ice tunnel during waning flow (or after ice tunnel shutdown), resulting in deformation of limited gravels deposited within the ice tunnel and a landform cored with diamicton or deformed bedrock, and with a relatively uniform ridge geometry. Our data demonstrate that an esker map is a minimum map of ice-walled channel location and that continued detailed investigation of morpho-sedimentary relationships is essential to gaining a complete picture of esker forming processes. Validating the morpho-sedimentary relationships identified in south-western Alberta (and other areas) with a larger data set may allow improved remote predictive esker mapping over larger areas and inferences to be made about spatial and temporal variations in esker depositional environments and ice tunnel evolution.

  16. Organic matter controls of iron incorporation in growing sea ice

    NASA Astrophysics Data System (ADS)

    Janssens, Julie; Meiners, Klaus M.; Townsend, Ashley T.; Lannuzel, Delphine

    2018-03-01

    This study presents the first laboratory-controlled sea-ice growth experiment conducted under trace metal clean conditions. The role played by organic matter, in the incorporation of iron (Fe) into sea ice was investigated by means of laboratory ice-growth experiments using a titanium cold-finger apparatus. Experiments were also conducted to understand the role of extracellular polymeric substances (EPS) in the enrichment of ammonium in sea ice. Sea ice was grown from several seawater solutions containing different quantities and qualities of particulate Fe (PFe), dissolved Fe (DFe) and organic matter. Sea ice and seawater were analyzed for particulate organic carbon and nitrogen, macro-nutrients, extracellular EPS, PFe and DFe, and particulate aluminium. The experiments showed that biogenic PFe is preferentially incorporated into sea ice compared to lithogenic PFe. Furthermore, sea ice grown from ultra-violet (UV) and non-UV treated seawaters exhibits contrasting incorporation rates of organic matter and Fe. Whereas the effects of UV-treatments were not always significant, we do find indications that the type or organic matter controls the enrichment of Fe in forming sea ice.. Specifically, we come to the conclusion that the incorporation of DFe is favored by the presence of organic ligands in the source solution.

  17. Numerical Modeling of River Ice Processes on the Lower Nelson River

    NASA Astrophysics Data System (ADS)

    Malenchak, Jarrod Joseph

    Water resource infrastructure in cold regions of the world can be significantly impacted by the existence of river ice. Major engineering concerns related to river ice include ice jam flooding, the design and operation of hydropower facilities and other hydraulic structures, water supplies, as well as ecological, environmental, and morphological effects. The use of numerical simulation models has been identified as one of the most efficient means by which river ice processes can be studied and the effects of river ice be evaluated. The continued advancement of these simulation models will help to develop new theories and evaluate potential mitigation alternatives for these ice issues. In this thesis, a literature review of existing river ice numerical models, of anchor ice formation and modeling studies, and of aufeis formation and modeling studies is conducted. A high level summary of the two-dimensional CRISSP numerical model is presented as well as the developed freeze-up model with a focus specifically on the anchor ice and aufeis growth processes. This model includes development in the detailed heat transfer calculations, an improved surface ice mass exchange model which includes the rapids entrainment process, and an improved dry bed treatment model along with the expanded anchor ice and aufeis growth model. The developed sub-models are tested in an ideal channel setting as somewhat of a model confirmation. A case study of significant anchor ice and aufeis growth on the Nelson River in northern Manitoba, Canada, will be the primary field test case for the anchor ice and aufeis model. A second case study on the same river will be used to evaluate the surface ice components of the model in a field setting. The results from these cases studies will be used to highlight the capabilities and deficiencies in the numerical model and to identify areas of further research and model development.

  18. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    PubMed

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades.

  19. 76 FR 7238 - Pipeline Safety: Dangers of Abnormal Snow and Ice Build-Up on Gas Distribution Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... been related to either the stress of snow and ice or the malfunction of pressure control equipment due... to have been related to either the stress of snow and ice or malfunction of pressure control... from the stresses imposed by the additional loading of the snow or ice. Damage to facilities may also...

  20. Implementation and Validation of 3-D Ice Accretion Measurement Methodology

    NASA Technical Reports Server (NTRS)

    Lee, Sam; Broeren, Andy P.; Kreeger, Richard E.; Potapczuk, Mark; Utt, Lloyd

    2014-01-01

    A research program has been implemented to develop and validate the use of a commercial 3-D laser scanning system to record ice accretion geometry in the NASA Icing Research Tunnel. A main component of the program was the geometric assessment of the 3- D laser scanning system on a 2-D (straight wing) and a 3-D (swept wing) airfoil geometries. This exercise consisted of comparison of scanned ice accretion to castings of the same ice accretion. The scan data were also used to create rapid prototype artificial ice shapes that were scanned and compared to the original ice accretion. The results from geometric comparisons on the straight wing showed that the ice shape models generated through the scan/rapid prototype process compared reasonably well with the cast shapes. Similar results were obtained with the geometric comparisons on the swept wing. It was difficult to precisely compare the scans of the cast shapes to the original ice accretion scans because the cast shapes appear to have shrunk during the mold/casting process by as much as 0.10-inch. However the comparison of the local ice-shape features were possible and produced better results. The rapid prototype manufacturing process was shown to reproduce the original ice accretion scan normally within 0.01-inch.

  1. Physicochemical control of bacterial and protist community composition and diversity in Antarctic sea ice.

    PubMed

    Torstensson, Anders; Dinasquet, Julie; Chierici, Melissa; Fransson, Agneta; Riemann, Lasse; Wulff, Angela

    2015-10-01

    Due to climate change, sea ice experiences changes in terms of extent and physical properties. In order to understand how sea ice microbial communities are affected by changes in physicochemical properties of the ice, we used 454-sequencing of 16S and 18S rRNA genes to examine environmental control of microbial diversity and composition in Antarctic sea ice. We observed a high diversity and richness of bacteria, which were strongly negatively correlated with temperature and positively with brine salinity. We suggest that bacterial diversity in sea ice is mainly controlled by physicochemical properties of the ice, such as temperature and salinity, and that sea ice bacterial communities are sensitive to seasonal and environmental changes. For the first time in Antarctic interior sea ice, we observed a strong eukaryotic dominance of the dinoflagellate phylotype SL163A10, comprising 63% of the total sequences. This phylotype is known to be kleptoplastic and could be a significant primary producer in sea ice. We conclude that mixotrophic flagellates may play a greater role in the sea ice microbial ecosystem than previously believed, and not only during the polar night but also during summer when potential food sources are abundant. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. The role of sea ice in 2 x CO2 climate model sensitivity. Part 1: The total influence of sea ice thickness and extent

    NASA Technical Reports Server (NTRS)

    Rind, D.; Healy, R.; Parkinson, C.; Martinson, D.

    1995-01-01

    As a first step in investigating the effects of sea ice changes on the climate sensitivity to doubled atmospheric CO2, the authors use a standard simple sea ice model while varying the sea ice distributions and thicknesses in the control run. Thinner ice amplifies the atmospheric temperature senstivity in these experiments by about 15% (to a warming of 4.8 C), because it is easier for the thinner ice to be removed as the climate warms. Thus, its impact on sensitivity is similar to that of greater sea ice extent in the control run, which provides more opportunity for sea ice reduction. An experiment with sea ice not allowed to change between the control and doubled CO2 simulations illustrates that the total effect of sea ice on surface air temperature changes, including cloud cover and water vapor feedbacks that arise in response to sea ice variations, amounts to 37% of the temperature sensitivity to the CO2 doubling, accounting for 1.56 C of the 4.17 C global warming. This is about four times larger than the sea ice impact when no feedbacks are allowed. The different experiments produce a range of results for southern high latitudes with the hydrologic budget over Antarctica implying sea level increases of varying magnitude or no change. These results highlight the importance of properly constraining the sea ice response to climate perturbations, necessitating the use of more realistic sea ice and ocean models.

  3. Satellite Data Analysis of Impact of Anthropogenic Air Pollution on Ice Clouds

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Liou, K. N.; Zhao, B.; Jiang, J. H.; Su, H.

    2017-12-01

    Despite numerous studies about the impact of aerosols on ice clouds, the role of anthropogenic aerosols in ice processes, especially over pollution regions, remains unclear and controversial, and has not been considered in a regional model. The objective of this study is to improve our understanding of the ice process associated with anthropogenic aerosols, and provide a comprehensive assessment of the contribution of anthropogenic aerosols to ice nucleation, ice cloud properties, and the consequent regional radiative forcing. As the first attempt, we evaluate the effects of different aerosol types (mineral dust, air pollution, polluted dust, and smoke) on ice cloud micro- and macro-physical properties using satellite data. We identify cases with collocated CloudSat, CALIPSO, and Aqua observations of vertically resolved aerosol and cloud properties, and process these observations into the same spatial resolution. The CALIPSO's aerosol classification algorithm determines aerosol layers as one of six defined aerosol types by taking into account the lidar depolarization ratio, integrated attenuated backscattering, surface type, and layer elevation. We categorize the cases identified above according to aerosol types, collect relevant aerosol and ice cloud variables, and determine the correlation between column/layer AOD and ice cloud properties for each aerosol type. Specifically, we investigate the correlation between aerosol loading (indicated by the column AOD and layer AOD) and ice cloud microphysical properties (ice water content, ice crystal number concentration, and ice crystal effective radius) and macro-physical properties (ice water path, ice cloud fraction, cloud top temperature, and cloud thickness). By comparing the responses of ice cloud properties to aerosol loadings for different aerosol types, we infer the role of different aerosol types in ice nucleation and the evolution of ice clouds. Our preliminary study shows that changes in the ice crystal effective radius with respect to AOD over Eastern Asia for the aerosol types of polluted continental and mineral dust look similar, implying that both air pollution and mineral dust could affect the microphysical properties of ice clouds.

  4. Sensitivity of open-water ice growth and ice concentration evolution in a coupled atmosphere-ocean-sea ice model

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoxu; Lohmann, Gerrit

    2017-09-01

    A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.

  5. Brief Communication: Mapping river ice using drones and structure from motion

    NASA Astrophysics Data System (ADS)

    Alfredsen, Knut; Haas, Christian; Tuhtan, Jeffrey A.; Zinke, Peggy

    2018-02-01

    In cold climate regions, the formation and break-up of river ice is important for river morphology, winter water supply, and riparian and instream ecology as well as for hydraulic engineering. Data on river ice is therefore significant, both to understand river ice processes directly and to assess ice effects on other systems. Ice measurement is complicated due to difficult site access, the inherent complexity of ice formations, and the potential danger involved in carrying out on-ice measurements. Remote sensing methods are therefore highly useful, and data from satellite-based sensors and, increasingly, aerial and terrestrial imagery are currently applied. Access to low cost drone systems with quality cameras and structure from motion software opens up a new possibility for mapping complex ice formations. Through this method, a georeferenced surface model can be built and data on ice thickness, spatial distribution, and volume can be extracted without accessing the ice, and with considerably fewer measurement efforts compared to traditional surveying methods. A methodology applied to ice mapping is outlined here, and examples are shown of how to successfully derive quantitative data on ice processes.

  6. Investigating ice shelf mass loss processes from continuous satellite altimetry

    NASA Astrophysics Data System (ADS)

    Fricker, H. A.

    2017-12-01

    The Antarctic Ice Sheet continually gains mass through snowfall over its large area and, to remain approximately in equilibrium, it sheds most of this excess mass through two processes, basal melting and iceberg calving, that both occur in the floating ice shelves surrounding the continent. Small amounts of mass are also lost by surface melting, which occurs on many ice shelves every summer to varying degrees, and has been linked to ice-shelf collapse via hydrofracture on ice shelves that have been pre-weakened. Ice shelves provide mechanical support to `buttress' seaward flow of grounded ice, so that ice-shelf thinning and retreat result in enhanced ice discharge to the ocean. Ice shelves are susceptible to changes in forcing from both the atmosphere and the ocean, which both change on a broad range of timescales to modify mass gains and losses at the surface and base, and from internal instabilities of the ice sheet itself. Mass loss from iceberg calving is episodic, with typical intervals between calving events on the order of decades. Since ice shelves are so vast, the only viable way to monitor them is with satellites. Here, we discuss results from satellite radar and laser altimeter data from one NASA satellite (ICESat), and four ESA satellites (ERS-1, ERS-2, Envisat, CryoSat-2) to obtain estimates of ice-shelf surface height since the early 1990s. The continuous time series show accelerated losses in total Antarctic ice-shelf volume from 1994 to 2017, and allow us to investigate the processes causing ice-shelf mass change. For Larsen C, much of the variability comes from changing atmospheric conditions affecting firn state. In the Amundsen Sea, the rapid thinning is a combination of accelerated ocean-driven thinning and ice dynamics. This long-term thinning signal is, however, is strongly modulated by ENSO-driven interannual variability. However, observations of ocean variability around Antarctica are sparse, since these regions are often covered in sea ice and difficult to access. Some innovative methods are being used to acquire these data, including airborne deployment of ALAMO profiling floats which we tested in the Ross Sea as part of the ROSETTA-Ice project. Combining these altimeter datasets and in situ ocean datasets will allow us to examine processes causing basal melting in the sub-ice-shelf cavities.

  7. Experimental investigations of interaction of an air-droplet-crystal flow with a solid body in the problem of a flyer icing

    NASA Astrophysics Data System (ADS)

    Kashevarov, Alexey V.; Miller, Alexey B.; Potapov, Yuriy F.; Stasenko, Albert L.; Zhbanov, Vladimir A.

    2018-05-01

    An experimental facility for modeling of icing processes in various conditions (supercooled droplets, ice crystals and mixed-phase) is described and experimental results are presented. Some methods of icing processes characterization with non-dimensional coefficients are suggested. Theoretical model of a liquid film dynamics, mass and heat transfer during its movement on the model surface is presented. The numerical calculations of liquid film freezing and run-back ice evolution on the surface are performed.

  8. SmaggIce User Guide. 1.0

    NASA Technical Reports Server (NTRS)

    Baez, Marivell; Vickerman, Mary; Choo, Yung

    2000-01-01

    SmaggIce (Surface Modeling And Grid Generation for Iced Airfoils) is one of NASNs aircraft icing research codes developed at the Glenn Research Center. It is a software toolkit used in the process of aerodynamic performance prediction of iced airfoils. It includes tools which complement the 2D grid-based Computational Fluid Dynamics (CFD) process: geometry probing; surface preparation for gridding: smoothing and re-discretization of geometry. Future releases will also include support for all aspects of gridding: domain decomposition; perimeter discretization; grid generation and modification.

  9. Satellite radar altimetry over ice. Volume 1: Processing and corrections of Seasat data over Greenland

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Brenner, Anita C.; Major, Judith A.; Martin, Thomas V.; Bindschadler, Robert A.

    1990-01-01

    The data-processing methods and ice data products derived from Seasat radar altimeter measurements over the Greenland ice sheet and surrounding sea ice are documented. The corrections derived and applied to the Seasat radar altimeter data over ice are described in detail, including the editing and retracking algorithm to correct for height errors caused by lags in the automatic range tracking circuit. The methods for radial adjustment of the orbits and estimation of the slope-induced errors are given.

  10. Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O'C.; Yang, Ping

    2008-01-01

    Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in nighttime cirrus clouds using a one-dimensional cloud model with bin microphysics and remote sensing measurements obtained at the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. We forced the model using both large-scale vertical ascent and, for the first time, mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where a classical theory heterogeneous scheme is compared with empirical representations. We evaluated model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities. Model sensitivity to the ice growth rate is also investigated. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Simulated ice crystal number concentrations (tens to hundreds particles per liter) are typically two orders of magnitude smaller than previously published results based on aircraft measurements in cirrus clouds, although higher concentrations are possible in isolated pockets within the nucleation zone.

  11. Microtopographic control on the ground thermal regime in ice wedge polygons

    NASA Astrophysics Data System (ADS)

    Abolt, Charles J.; Young, Michael H.; Atchley, Adam L.; Harp, Dylan R.

    2018-06-01

    The goal of this research is to constrain the influence of ice wedge polygon microtopography on near-surface ground temperatures. Ice wedge polygon microtopography is prone to rapid deformation in a changing climate, and cracking in the ice wedge depends on thermal conditions at the top of the permafrost; therefore, feedbacks between microtopography and ground temperature can shed light on the potential for future ice wedge cracking in the Arctic. We first report on a year of sub-daily ground temperature observations at 5 depths and 9 locations throughout a cluster of low-centered polygons near Prudhoe Bay, Alaska, and demonstrate that the rims become the coldest zone of the polygon during winter, due to thinner snowpack. We then calibrate a polygon-scale numerical model of coupled thermal and hydrologic processes against this dataset, achieving an RMSE of less than 1.1 °C between observed and simulated ground temperature. Finally, we conduct a sensitivity analysis of the model by systematically manipulating the height of the rims and the depth of the troughs and tracking the effects on ice wedge temperature. The results indicate that winter temperatures in the ice wedge are sensitive to both rim height and trough depth, but more sensitive to rim height. Rims act as preferential outlets of subsurface heat; increasing rim size decreases winter temperatures in the ice wedge. Deeper troughs lead to increased snow entrapment, promoting insulation of the ice wedge. The potential for ice wedge cracking is therefore reduced if rims are destroyed or if troughs subside, due to warmer conditions in the ice wedge. These findings can help explain the origins of secondary ice wedges in modern and ancient polygons. The findings also imply that the potential for re-establishing rims in modern thermokarst-affected terrain will be limited by reduced cracking activity in the ice wedges, even if regional air temperatures stabilize.

  12. Navier-Stokes Analysis of the Flowfield Characteristics of an Ice Contaminated Aircraft Wing

    NASA Technical Reports Server (NTRS)

    Chung, J.; Choo, Y.; Reehorst, A.; Potapczuk, M.; Slater, J.

    1999-01-01

    An analytical study was performed as part of the NASA Lewis support of a National Transportation Safety Board (NTSB) aircraft accident investigation. The study was focused on the performance degradation associated with ice contamination on the wing of a commercial turbo-prop-powered aircraft. Based upon the results of an earlier numerical study conducted by the authors, a prominent ridged-ice formation on the subject aircraft wing was selected for detailed flow analysis using 2-dimensional (2-D), as well as, 3-dimensional (3-D) Navier-Stokes computations. This configuration was selected because it caused the largest lift decrease and drag increase among all the ice shapes investigated in the earlier study. A grid sensitivity test was performed to find out the influence of grid spacing on the lift, drag, and associated angle-of-attack for the maximum lift (C(sub lmax)). This study showed that grid resolution is important and a sensitivity analysis is an essential element of the process in order to assure that the final solution is independent of the grid. The 2-D results suggested that a severe stability and control difficulty could have occurred at a slightly higher angle-of-attack (AOA) than the one recorded by the Flight Data Recorder (FDR). This stability and control problem was thought to have resulted from a decreased differential lift on the wings with respect to the normal loading for the configuration. The analysis also indicated that this stability and control problem could have occurred whether or not natural ice shedding took place. Numerical results using an assumed 3-D ice shape showed an increase of the angle at which this phenomena occurred of about 4 degrees. As it occurred with the 2-D case, the trailing edge separation was observed but started only when the AOA was very close to the angle at which the maximum lift occurred.

  13. Pluto followed its heart: reorientation and faulting of Pluto due to volatile loading in Sputnik Planum

    NASA Astrophysics Data System (ADS)

    Tuttle Keane, James; Matsuyama, Isamu; Kamata, Shunichi; Steckloff, Jordan

    2016-10-01

    The New Horizons flyby of Pluto revealed the dwarf planet to be a strikingly diverse, geologically active world. Perhaps the most intriguing feature on the New Horizons encounter hemisphere is Sputnik Planum—a 1000 km diameter, probable impact basin, filled with several kilometers of actively convecting volatile ices (N2, CH4, CO). One salient characteristic of Sputnik Planum is its curious alignment with the Pluto-Charon tidal axis. The alignment of large geologic features with principal axis of inertia (such as the tidal axis) is the hallmark of global reorientation, i.e. true polar wander. Here we show that the present location of Sputnik Planum is a natural consequence of loading of 1-2 km of volatile ices within the Sputnik Planum basin. Larger volatile ice thicknesses (like those inferred from studies of ice convection within Sputnik Planum) betray an underlying negative gravity anomaly associated with the basin. As Pluto reoriented in response to the loading of volatile ices within Sputnik Planum, stresses accumulated within the lithosphere (as each geographic location experiences a change in tidal/rotational potential). These reorientation stresses, coupled with loading stresses, and stresses from the freezing of a subsurface ocean resulted in the fracturing of Pluto's lithosphere in a characteristic, global pattern of extensional faults. Our predicted pattern of extensional faults due to this reorientation closely replicates the observed distribution of faults on Pluto (more so than global expansion, orbit migration, de-spinning, or loading alone). Sputnik Planum likely formed ~60° northwest of its present location, and was loaded with volatile ices over millions of years due to seasonal volatile transport cycles. This result places Pluto in a truly unique category of planetary bodies where volatiles are not only controlling surface geology and atmospheric processes, but they are also directly controlling the orientation of the entire dwarf planet. Pluto's past, present, and future orientation is controlled by complicated feedbacks between volatile transport, insolation, and interior structure.

  14. Developing a bubble number-density paleoclimatic indicator for glacier ice

    USGS Publications Warehouse

    Spencer, M.K.; Alley, R.B.; Fitzpatrick, J.J.

    2006-01-01

    Past accumulation rate can be estimated from the measured number-density of bubbles in an ice core and the reconstructed paleotemperature, using a new technique. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. An empirical model of these processes, optimized to fit published data on recently formed bubbles, reconstructs accumulation rates using recent temperatures with an uncertainty of 41% (P < 0.05). For modern sites considered here, no statistically significant trend exists between mean annual temperature and the ratio of bubble number-density to grain number-density at the time of pore close-off; optimum modeled accumulation-rate estimates require an eventual ???2.02 ?? 0.08 (P < 0.05) bubbles per close-off grain. Bubble number-density in the GRIP (Greenland) ice core is qualitatively consistent with independent estimates for a combined temperature decrease and accumulation-rate increase there during the last 5 kyr.

  15. Increased mature interleukin-1beta (IL-1beta) secretion from THP-1 cells induced by nigericin is a result of activation of p45 IL-1beta-converting enzyme processing.

    PubMed

    Cheneval, D; Ramage, P; Kastelic, T; Szelestenyi, T; Niggli, H; Hemmig, R; Bachmann, M; MacKenzie, A

    1998-07-10

    Perregaux and Gabel (Perregaux, D., and Gabel, C. A. (1994) J. Biol. Chem. 269, 15195-15203) reported that potassium depletion of lipopolysaccharide-stimulated mouse macrophages induced by the potassium ionophore, nigericin, leads to the rapid release of mature interleukin-1beta (IL-1beta). We have now shown a similar phenomenon in lipopolysaccharide-stimulated human monocytic leukemia THP-1 cells. Rapid secretion of mature, 17-kDa IL-1beta occurred, in the presence of nigericin (4-16 microM). No effects on the release of tumor necrosis factor-alpha, IL-6, or proIL-1beta were seen. Addition of the irreversible interleukin-1beta-converting enzyme (ICE) inhibitor, Z-Val-Ala-Asp-dichlorobenzoate, or a radicicol analog, inhibited nigericin-induced mature IL-1beta release and activation of p45 ICE precursor. The radicicol analog itself did not inhibit ICE, but markedly, and very rapidly depleted intracellular levels of 31-kDa proIL-1beta. By contrast, dexamethasone, cycloheximide, and the Na+/H+ antiporter inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, had no effect on nigericin-induced release of IL-1beta. We have therefore shown conclusively, for the first time, that nigericin-induced release of IL-1beta is dependent upon activation of p45 ICE processing. So far, the mechanism by which reduced intracellular potassium ion concentration triggers p45 ICE processing is not known, but further investigation in this area could lead to the discovery of novel molecular targets whereby control of IL-1beta production might be effected.

  16. Intercomparison of Large-Eddy Simulations of Arctic Mixed-Phase Clouds: Importance of Ice Size Distribution Assumptions

    NASA Technical Reports Server (NTRS)

    Ovchinnikov, Mikhail; Ackerman, Andrew S.; Avramov, Alexander; Cheng, Anning; Fan, Jiwen; Fridlind, Ann M.; Ghan, Steven; Harrington, Jerry; Hoose, Corinna; Korolev, Alexei; hide

    2014-01-01

    Large-eddy simulations of mixed-phase Arctic clouds by 11 different models are analyzed with the goal of improving understanding and model representation of processes controlling the evolution of these clouds. In a case based on observations from the Indirect and Semi-Direct Aerosol Campaign (ISDAC), it is found that ice number concentration, Ni, exerts significant influence on the cloud structure. Increasing Ni leads to a substantial reduction in liquid water path (LWP), in agreement with earlier studies. In contrast to previous intercomparison studies, all models here use the same ice particle properties (i.e., mass-size, mass-fall speed, and mass-capacitance relationships) and a common radiation parameterization. The constrained setup exposes the importance of ice particle size distributions (PSDs) in influencing cloud evolution. A clear separation in LWP and IWP predicted by models with bin and bulk microphysical treatments is documented and attributed primarily to the assumed shape of ice PSD used in bulk schemes. Compared to the bin schemes that explicitly predict the PSD, schemes assuming exponential ice PSD underestimate ice growth by vapor deposition and overestimate mass-weighted fall speed leading to an underprediction of IWP by a factor of two in the considered case. Sensitivity tests indicate LWP and IWP are much closer to the bin model simulations when a modified shape factor which is similar to that predicted by bin model simulation is used in bulk scheme. These results demonstrate the importance of representation of ice PSD in determining the partitioning of liquid and ice and the longevity of mixed-phase clouds.

  17. Seismicity within a propagating ice shelf rift: the relationship between icequake locations and ice shelf structure

    USGS Publications Warehouse

    Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

    2014-01-01

    Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important known process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice-shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the Austral summers of 2004-2007. We investigated seismicity associated with fracture propagation using a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show that seismicity is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of one to three hours. However, even during periods of quiescence, we find significant seismic deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (MW > -2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50 m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with propagating ice shelf rifts.

  18. Controlling rotary desiccant wheels for dehumidification and cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crooks, K.W.; Banks, N.J.

    With greater focus on indoor air quality (IAQ) and ventilation, humidity control within spaces such as office buildings, hotels, schools, ice-skating rinks, nursing homes, and operating rooms has become paramount during the past decade. Control of relative humidity (RH) has been linked to increased comfort and the improved health of building occupants. The desiccant wheel process can be utilized in these applications to provide increased dehumidification while introducing minimal additional control parameters, often at lower cost.

  19. Ice sintering timescales at the surface of Europa and implications for surface properties

    NASA Astrophysics Data System (ADS)

    Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.

    2017-12-01

    The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.

  20. Verification of a New NOAA/NSIDC Passive Microwave Sea-Ice Concentration Climate Record

    NASA Technical Reports Server (NTRS)

    Meier, Walter N.; Peng, Ge; Scott, Donna J.; Savoie, Matt H.

    2014-01-01

    A new satellite-based passive microwave sea-ice concentration product developed for the National Oceanic and Atmospheric Administration (NOAA)Climate Data Record (CDR) programme is evaluated via comparison with other passive microwave-derived estimates. The new product leverages two well-established concentration algorithms, known as the NASA Team and Bootstrap, both developed at and produced by the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC). The sea ice estimates compare well with similar GSFC products while also fulfilling all NOAA CDR initial operation capability (IOC) requirements, including (1) self describing file format, (2) ISO 19115-2 compliant collection-level metadata,(3) Climate and Forecast (CF) compliant file-level metadata, (4) grid-cell level metadata (data quality fields), (5) fully automated and reproducible processing and (6) open online access to full documentation with version control, including source code and an algorithm theoretical basic document. The primary limitations of the GSFC products are lack of metadata and use of untracked manual corrections to the output fields. Smaller differences occur from minor variations in processing methods by the National Snow and Ice Data Center (for the CDR fields) and NASA (for the GSFC fields). The CDR concentrations do have some differences from the constituent GSFC concentrations, but trends and variability are not substantially different.

  1. Analysis of a Hovering Rotor in Icing Conditions

    NASA Technical Reports Server (NTRS)

    Narducci, Robert; Kreeger, Richard E.

    2012-01-01

    A high fidelity analysis method is proposed to evaluate the ice accumulation and the ensuing rotor performance degradation for a helicopter flying through an icing cloud. The process uses computational fluid dynamics (CFD) coupled to a rotorcraft comprehensive code to establish the aerodynamic environment of a trimmed rotor prior to icing. Based on local aerodynamic conditions along the rotor span and accounting for the azimuthal variation, an ice accumulation analysis using NASA's Lewice3D code is made to establish the ice geometry. Degraded rotor performance is quantified by repeating the high fidelity rotor analysis with updates which account for ice shape and mass. The process is applied on a full-scale UH-1H helicopter in hover using data recorded during the Helicopter Icing Flight Test Program.

  2. Dynamic Impacts of Water Droplets onto Icephobic Soft Surfaces at High Weber Numbers

    NASA Astrophysics Data System (ADS)

    Ma, Liqun; Liu, Yang; Hu, Hui; Wang, Wei; Kota, Arun

    2017-11-01

    An experimental investigation was performed to examine the effects of the stiffness of icephobic soft PDMS materials on the impact dynamics of water drops at high weber numbers pertinent to aircraft icing phenomena. The experimental study was performed in the Icing Research Tunnel available at Iowa State University (ISU-IRT). During the experiments, both the shear modulus of the soft PDMS surface and the Weber numbers of the impinging water droplets are controlled for the comparative study. While the shear modulus of the soft PDMS surface was changed by tuning the recipes to make the PDMS materials, the Weber number of the impinging water droplets was altered by adjusting the airflow speed in the wind tunnel. A suite of advanced flow diagnostic techniques, which include high-speed photographic imaging, digital image projection (DIP), and infrared (IR) imaging thermometry, were used to quantify the transient behavior of water droplet impingement, unsteady heat transfer and dynamic ice accreting process over the icephobic soft airfoil surfaces. The findings derived from the icing physics studies can be used to improve current icing accretion models for more accurate prediction of ice formation and accretion on aircraft wings and to develop effective anti-/deicing strategies for safer and more efficient operation of aircraft in cold weather.

  3. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic

    PubMed Central

    Krembs, Christopher; Eicken, Hajo; Deming, Jody W.

    2011-01-01

    The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11–59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate. PMID:21368216

  4. Exopolymer alteration of physical properties of sea ice and implications for ice habitability and biogeochemistry in a warmer Arctic.

    PubMed

    Krembs, Christopher; Eicken, Hajo; Deming, Jody W

    2011-03-01

    The physical properties of Arctic sea ice determine its habitability. Whether ice-dwelling organisms can change those properties has rarely been addressed. Following discovery that sea ice contains an abundance of gelatinous extracellular polymeric substances (EPS), we examined the effects of algal EPS on the microstructure and salt retention of ice grown from saline solutions containing EPS from a culture of the sea-ice diatom, Melosira arctica. We also experimented with xanthan gum and with EPS from a culture of the cold-adapted bacterium Colwellia psychrerythraea strain 34H. Quantitative microscopic analyses of the artificial ice containing Melosira EPS revealed convoluted ice-pore morphologies of high fractal dimension, mimicking features found in EPS-rich coastal sea ice, whereas EPS-free (control) ice featured much simpler pore geometries. A heat-sensitive glycoprotein fraction of Melosira EPS accounted for complex pore morphologies. Although all tested forms of EPS increased bulk ice salinity (by 11-59%) above the controls, ice containing native Melosira EPS retained the most salt. EPS effects on ice and pore microstructure improve sea ice habitability, survivability, and potential for increased primary productivity, even as they may alter the persistence and biogeochemical imprint of sea ice on the surface ocean in a warming climate.

  5. Connecting the dots between bacterial biofilms and ice cream

    NASA Astrophysics Data System (ADS)

    Stanley-Wall, Nicola R.; MacPhee, Cait E.

    2015-12-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  6. Connecting the dots between bacterial biofilms and ice cream.

    PubMed

    Stanley-Wall, Nicola R; MacPhee, Cait E

    2015-12-18

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  7. Cryosphere and climate

    NASA Technical Reports Server (NTRS)

    Hibler, William D., III; Thorndike, Alan S.

    1992-01-01

    This chapter will discuss two main issues related to the cryosphere and climate. One is the effect of sea ice and salinity gradients on ocean circulation, and in particular the possible role of sea ice transport on the ocean conveyer belt. The other is the effect of the cryosphere on climate, and in particular in high-latitude warming under increased CO2. In understanding the role of the cryosphere in both cases, it is useful to elucidate two types of toy sea ice models. Neither of these represents reality, but both are useful for illustrating the archetypal features of sea ice that control much of its large-scale behavior. The first model is a simple slab thermodynamic sea ice model as presented by Thorndike. In this model there are no dynamical effects and the thickness of ice is determined by surface heat budget and oceanic heat flux considerations, with the thickness of the ice critically affecting the effective conductivity whereby heat is transferred from the bottom ice boundary to the upper ice boundary. In this model all of the sea ice characteristics are controlled by the vertical heat fluxes from the atmosphere and ocean into the ice. The thickness is controlled by the ice's becoming an effective insulator as it thickens, thus reducing conductive heat loss to the atmosphere. A second model emphasizes the effects of dynamics. It considers the ice pack to be a collection of floes moving in response to synoptic wind fields and ocean currents. These motions create semipermanent leads (open areas) over which ice can grow rapidly.

  8. How ice shelf morphology controls basal melting

    NASA Astrophysics Data System (ADS)

    Little, Christopher M.; Gnanadesikan, Anand; Oppenheimer, Michael

    2009-12-01

    The response of ice shelf basal melting to climate is a function of ocean temperature, circulation, and mixing in the open ocean and the coupling of this external forcing to the sub-ice shelf circulation. Because slope strongly influences the properties of buoyancy-driven flow near the ice shelf base, ice shelf morphology plays a critical role in linking external, subsurface heat sources to the ice. In this paper, the slope-driven dynamic control of local and area-integrated melting rates is examined under a wide range of ocean temperatures and ice shelf shapes, with an emphasis on smaller, steeper ice shelves. A 3-D numerical ocean model is used to simulate the circulation underneath five idealized ice shelves, forced with subsurface ocean temperatures ranging from -2.0°C to 1.5°C. In the sub-ice shelf mixed layer, three spatially distinct dynamic regimes are present. Entrainment of heat occurs predominately under deeper sections of the ice shelf; local and area-integrated melting rates are most sensitive to changes in slope in this "initiation" region. Some entrained heat is advected upslope and used to melt ice in the "maintenance" region; however, flow convergence in the "outflow" region limits heat loss in flatter portions of the ice shelf. Heat flux to the ice exhibits (1) a spatially nonuniform, superlinear dependence on slope and (2) a shape- and temperature-dependent, internally controlled efficiency. Because the efficiency of heat flux through the mixed layer decreases with increasing ocean temperature, numerical simulations diverge from a simple quadratic scaling law.

  9. Quantifying model uncertainty in seasonal Arctic sea-ice forecasts

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, Edward; Barthélemy, Antoine; Chevallier, Matthieu; Cullather, Richard; Fučkar, Neven; Massonnet, François; Posey, Pamela; Wang, Wanqiu; Zhang, Jinlun; Ardilouze, Constantin; Bitz, Cecilia; Vernieres, Guillaume; Wallcraft, Alan; Wang, Muyin

    2017-04-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or post-processing techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  10. Nonlinear threshold behavior during the loss of Arctic sea ice

    PubMed Central

    Eisenman, I.; Wettlaufer, J. S.

    2009-01-01

    In light of the rapid recent retreat of Arctic sea ice, a number of studies have discussed the possibility of a critical threshold (or “tipping point”) beyond which the ice–albedo feedback causes the ice cover to melt away in an irreversible process. The focus has typically been centered on the annual minimum (September) ice cover, which is often seen as particularly susceptible to destabilization by the ice–albedo feedback. Here, we examine the central physical processes associated with the transition from ice-covered to ice-free Arctic Ocean conditions. We show that although the ice–albedo feedback promotes the existence of multiple ice-cover states, the stabilizing thermodynamic effects of sea ice mitigate this when the Arctic Ocean is ice covered during a sufficiently large fraction of the year. These results suggest that critical threshold behavior is unlikely during the approach from current perennial sea-ice conditions to seasonally ice-free conditions. In a further warmed climate, however, we find that a critical threshold associated with the sudden loss of the remaining wintertime-only sea ice cover may be likely. PMID:19109440

  11. Potential Climatic Effects on the Greenland Ice Sheet

    NASA Technical Reports Server (NTRS)

    Bindschadler, R. A.

    1984-01-01

    The Greenland Ice Sheet covers an area of 1,720,000 sq. km and contains approximately 2,600,000 cu km of ice. Most of the ice sheet receives an excess of snow accumulation over the amount of ice lost to wind, meltwater run-off or other ablative processes. The majority of mass loss occurs at the margin of the ice sheet as either surface melt, which flows into the sea or calving of icebergs from the tongues of outlet glaciers. Many estimates of these processes were published. An average of five published estimates is summarized. If these estimates are correct, then the Greenland Ice Sheet is in approximate equilibrium and contributes 490 cu km/a of fresh water to the North Atlantic and Arctic Oceans. Climate effects, ice sheet flow, and application of remote sensing to tracking of the ice sheet are discussed.

  12. Regular network model for the sea ice-albedo feedback in the Arctic.

    PubMed

    Müller-Stoffels, Marc; Wackerbauer, Renate

    2011-03-01

    The Arctic Ocean and sea ice form a feedback system that plays an important role in the global climate. The complexity of highly parameterized global circulation (climate) models makes it very difficult to assess feedback processes in climate without the concurrent use of simple models where the physics is understood. We introduce a two-dimensional energy-based regular network model to investigate feedback processes in an Arctic ice-ocean layer. The model includes the nonlinear aspect of the ice-water phase transition, a nonlinear diffusive energy transport within a heterogeneous ice-ocean lattice, and spatiotemporal atmospheric and oceanic forcing at the surfaces. First results for a horizontally homogeneous ice-ocean layer show bistability and related hysteresis between perennial ice and perennial open water for varying atmospheric heat influx. Seasonal ice cover exists as a transient phenomenon. We also find that ocean heat fluxes are more efficient than atmospheric heat fluxes to melt Arctic sea ice.

  13. Representation of Ice Geometry by Parametric Functions: Construction of Approximating NURBS Curves and Quantification of Ice Roughness--Year 1: Approximating NURBS Curves

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Choo, Yung K. (Technical Monitor)

    2004-01-01

    Software was developed to construct approximating NURBS curves for iced airfoil geometries. Users specify a tolerance that determines the extent to which the approximating curve follows the rough ice. The user can therefore smooth the ice geometry in a controlled manner, thereby enabling the generation of grids suitable for numerical aerodynamic simulations. Ultimately, this ability to smooth the ice geometry will permit studies of the effects of smoothing upon the aerodynamics of iced airfoils. The software was applied to several different types of iced airfoil data collected in the Icing Research Tunnel at NASA Glenn Research Center, and in all cases was found to efficiently generate suitable approximating NURBS curves. This method is an improvement over the current "control point formulation" of Smaggice (v.1.2). In this report, we present the relevant theory of approximating NURBS curves and discuss typical results of the software.

  14. Ice flow in the Weddell Sea sector of West Antarctica as elucidated by radar-imaged internal layering

    NASA Astrophysics Data System (ADS)

    Bingham, R. G.; Rippin, D. M.; Karlsson, N. B.; Corr, H.; Ferraccioli, F.; Jordan, T. A.; Le Brocq, A.; Ross, N.; Wright, A.; Siegert, M. J.

    2012-12-01

    Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration has the potential to switch.

  15. Short-term sea ice forecasts with the RASM-ESRL coupled model: A testbed for improving simulations of ocean-ice-atmosphere interactions in the marginal ice zone

    NASA Astrophysics Data System (ADS)

    Solomon, A.; Cox, C. J.; Hughes, M.; Intrieri, J. M.; Persson, O. P. G.

    2015-12-01

    The dramatic decrease of Arctic sea-ice has led to a new Arctic sea-ice paradigm and to increased commercial activity in the Arctic Ocean. NOAA's mission to provide accurate and timely sea-ice forecasts, as explicitly outlined in the National Ocean Policy and the U.S. National Strategy for the Arctic Region, needs significant improvement across a range of time scales to improve safety for human activity. Unfortunately, the sea-ice evolution in the new Arctic involves the interaction of numerous physical processes in the atmosphere, ice, and ocean, some of which are not yet understood. These include atmospheric forcing of sea-ice movement through stress and stress deformation; atmospheric forcing of sea-ice melt and formation through energy fluxes; and ocean forcing of the atmosphere through new regions of seasonal heat release. Many of these interactions involve emerging complex processes that first need to be understood and then incorporated into forecast models in order to realize the goal of useful sea-ice forecasting. The underlying hypothesis for this study is that errors in simulations of "fast" atmospheric processes significantly impact the forecast of seasonal sea-ice retreat in summer and its advance in autumn in the marginal ice zone (MIZ). We therefore focus on short-term (0-20 day) ice-floe movement, the freeze-up and melt-back processes in the MIZ, and the role of storms in modulating stress and heat fluxes. This study uses a coupled ocean-atmosphere-seaice forecast model as a testbed to investigate; whether ocean-sea ice-atmosphere coupling improves forecasts on subseasonal time scales, where systematic biases develop due to inadequate parameterizations (focusing on mixed-phase clouds and surface fluxes), how increased atmospheric resolution of synoptic features improves the forecasts, and how initialization of sea ice area and thickness and snow depth impacts the skill of the forecasts. Simulations are validated with measurements at pan-Arctic land sites, satellite data, and recent ocean field campaigns.

  16. The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes

    NASA Astrophysics Data System (ADS)

    Huang, Y. C.; Wang, P. K.

    2017-12-01

    The role of ice particles in the microphysics and dynamics of deep convective storms in various latitudes Yi-Chih Huang and Pao K. Wang Ice particles contribute to the microphysics and dynamics of severe storms in various regions of the world to a degree that is not commonly recognized. This study is motivated by the need to understand the role of ice particles plays in the development of severe storms so that their impact on various aspects of the storm behavior can be properly assessed. In this study, we perform numerical simulations of thunderstorms using a cloud resolving model WISCDYMM that includes parameterized microphysical processes to understand the role played by ice processes. We simulate thunderstorms occurred over various regions of the world including tropics, substropics and midlatitudes. We then perform statistical analysis of the simulated results to show the formation of various categories of hydrometeors to reveal the importance of ice processes. We will show that ice hydrometeors (cloud ice, snow, graupel/hail) account for 80% of the total hydrometeor mass for the High Plains storms but 50% for the subtropical storms. In addition, the melting of large ice particles (graupel and hail) is the major production process of rain in tropical storms although the ratio of ice-phase mass is responsible for only 40% of the total hydrometeor mass. Furthermore, hydrometeors have their own special microphysical processes in development and depletion over various latitudes. Microphysical structures depend on atmospheric dynamical and thermodynamical conditions which determine the partitioning of hydrometeors. This knowledge would benefit the microphysics parameterization in cloud models and cumulus parameterization in global circulation models.

  17. Influence of damage and basal friction on the grounding line dynamics

    NASA Astrophysics Data System (ADS)

    Brondex, Julien; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Durand, Gael

    2016-04-01

    The understanding of grounding line dynamics is a major issue in the prediction of future sea level rise due to ice released from polar ice sheets into the ocean. This dynamics is complex and significantly affected by several physical processes not always adequately accounted for in current ice flow models. Among those processes, our study focuses on ice damage and evolving basal friction conditions. Softening of the ice due to damaging processes is known to have a strong impact on its rheology by reducing its viscosity and therefore promoting flow acceleration. Damage creates where shear stresses are high enough which is usually the case at shear margins and in the vicinity of pinning points in contact with ice-shelves. Those areas are known to have a buttressing effect on ice shelves contributing to stabilize the grounding line. We aim at evaluating the extent to which this stabilizing effect is hampered by damaging processes. Several friction laws have been proposed by various author to model the contact between grounded-ice and bedrock. Among them, Coulomb-type friction laws enable to account for reduced friction related to low effective pressure (the ice pressure minus the water pressure). Combining such a friction law to a parametrization of the effective pressure accounting for the fact that the area upstream the grounded line is connected to the ocean, is expected to have a significant impact on the grounding line dynamics. Using the finite-element code Elmer/Ice within which both the Coulomb-type friction law, the effective pressure parametrization and the damage model have been implemented, the goal of this study is to investigate the sensitivity of the grounding line dynamics to damage and to an evolving basal friction. The relative importance between those two processes on the grounding line dynamics is addressed as well.

  18. In Pursuit of Analogs for Europa's Dynamics & Potential Habitats

    NASA Astrophysics Data System (ADS)

    Schmidt, Britney E.; Blankenship, D. D.; Greenbaum, J. S.; Young, D. A.

    2010-10-01

    Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for imaging these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successfully deployed at Earth's Moon and Mars. It is a distinct possibility that water within or just below the ice on Europa has played a role in forming some of its dynamic terrain. Observations of rotated blocks and dark floor materials may suggest that brines existed in the near subsurface and enabled the formation of such features. The University of Texas High Capability Airborne Radar Sounder (HiCARS) developed to study Antarctic ice sheet dynamics has been configured to test observation scenarios for Europa. We discuss recent results from the 60 MHz HiCARS system over brine infiltrated Antarctic marine ice as an analog for processes affecting the formation of pits and chaos. Basal melt occurring below terrestrial marine ice is directly analogous to processes that may operate on Europa if the shell is "thin,” and will be similar to processes occurring instead within the ice sheet in the case of a thicker, multi-layer ice sheet where enriched brines may remain liquid within the shell. A key site for further investigation of conductive and "convective” ices is found in the polythermal glaciers in the Arctic, and the case for this exploration will be illuminated.

  19. Impact of the Bergeron-Findeisen process on the release of aerosol particles during the evolution of cloud ice

    NASA Astrophysics Data System (ADS)

    Schwarzenböck, A.; Mertes, S.; Heintzenberg, J.; Wobrock, W.; Laj, P.

    The paper focuses on the redistribution of aerosol particles (APs) during the artificial nucleation and subsequent growth of ice crystals in a supercooled cloud. A significant number of the supercooled cloud droplets during icing periods (seeding agents: C 3H 8, CO 2) did not freeze as was presumed prior to the experiment but instead evaporated. The net mass flux of water vapour from the evaporating droplets to the nucleating ice crystals (Bergeron-Findeisen mechanism) led to the release of residual particles that simultaneously appeared in the interstitial phase. The strong decrease of the droplet residuals confirms the nucleation of ice particles on seeding germs without natural aerosol particles serving as ice nuclei. As the number of residual particles during the seedings did not drop to zero, other processes such as heterogeneous ice nucleation, spontaneous freezing, entrainment of supercooled droplets and diffusion to the created particle-free ice germs must have contributed to the experimental findings. During the icing periods, residual mass concentrations in the condensed phase dropped by a factor of 1.1-6.7, as compared to the unperturbed supercooled cloud. As the Bergeron-Findeisen process also occurs without artificial seeding in the atmosphere, this study demonstrated that the hydrometeors in mixed-phase clouds might be much cleaner than anticipated for the simple freezing process of supercooled droplets in tropospheric mid latitude clouds.

  20. Enhancing the functional properties and nutritional quality of ice cream with processed amla (Indian gooseberry).

    PubMed

    Goraya, Rajpreet Kaur; Bajwa, Usha

    2015-12-01

    Amla (Indian gooseberry) and its processed products are rich source of vitamin C, phenols, dietary fibre and antioxidants. In contrast, ice cream is a poor source of these phytochemicals and antioxidants; therefore, the present investigation was undertaken to enhance the functional properties and nutritional quality of ice cream with the incorporation of processed amla. Ice cream was prepared using amla shreds, pulp, preserve and candy at 5 to 20 % and powder at 0.5 to 2.0 % levels in ice cream mix prior to freezing. Inclusion of amla products at augmented levels resulted in significant changes in physico-chemical properties and phytochemical content of ice cream. The total solids decreased on addition of shreds and pulp and increased with preserve, candy and powder in ice cream at increasing levels. The functional constituents i.e. fibre, total phenols, tannins, ascorbic acid and antioxidant activity increased with greater level of inclusion. Incorporation of processed amla raised the melting resistance of ice cream and decreased the overrun. The samples with 5 % shreds and pulp, 10 % preserve and candy and 0.5 % powder were found to have highest overall acceptability scores. Inclusion of amla in all the forms i.e. shreds, pulp, preserve, candy and powder enhanced the functional properties and nutritional value of ice cream.

  1. Bulk water freezing dynamics on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Chavan, S.; Carpenter, J.; Nallapaneni, M.; Chen, J. Y.; Miljkovic, N.

    2017-01-01

    In this study, we elucidate the mechanisms governing the heat-transfer mediated, non-thermodynamic limited, freezing delay on non-wetting surfaces for a variety of characteristic length scales, Lc (volume/surface area, 3 mm < Lc < 6 mm) using carefully designed freezing experiments in a temperature-controlled, zero-humidity environment on thin water slabs. To probe the effect of surface wettability, we investigated the total time for room temperature water to completely freeze into ice on superhydrophilic ( θaapp→ 0°), hydrophilic (0° < θa < 90°), hydrophobic (90° < θa < 125°), and superhydrophobic ( θaapp→ 180°) surfaces. Our results show that at macroscopic length scales, heat conduction through the bulk water/ice layer dominates the freezing process when compared to heat conduction through the functional coatings or nanoscale gaps at the superhydrophobic substrate-water/ice interface. In order to verify our findings, and to determine when the surface structure thermal resistance approaches the water/ice resistance, we fabricated and tested the additional substrates coated with commercial superhydrophobic spray coatings, showing a monotonic increase in freezing time with coating thickness. The added thermal resistance of thicker coatings was much larger than that of the nanoscale superhydrophobic features, which reduced the droplet heat transfer and increased the total freezing time. Transient finite element method heat transfer simulations of the water slab freezing process were performed to calculate the overall heat transfer coefficient at the substrate-water/ice interface during freezing, and shown to be in the range of 1-2.5 kW/m2K for these experiments. The results shown here suggest that in order to exploit the heat-transfer mediated freezing delay, thicker superhydrophobic coatings must be deposited on the surface, where the coating resistance is comparable to the bulk water/ice conduction resistance.

  2. Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Kalogerakis, Konstantinos S.; Oza, A. U.; Marschall, J.; Wong, M. H.

    2006-09-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning") [2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  3. Studies on Ammonia Spectral Signatures Relevant to Jupiter's Clouds

    NASA Astrophysics Data System (ADS)

    Oza, A. U.; Marschall, J.; Wong, M. H.; Kalogerakis, K. S.

    2006-12-01

    Observational evidence and thermochemical models indicate an abundance of ammonia ice clouds in Jupiter's atmosphere. However, spectrally identifiable ammonia ice clouds are found covering less than 1% of Jupiter's atmosphere, notably in turbulent areas [1,2]. Current literature suggests two possible explanations: coating by a hydrocarbon haze and/or photochemical processing ("tanning")[2,3]. We are pursuing a research program investigating the above hypotheses. In the experiments, thin films of ammonia ices are deposited in a cryogenic apparatus, coated with hydrocarbons, and characterized by infrared spectroscopy. The ice films can be irradiated by ultraviolet light to study their photochemistry. The spectroscopic measurements aim to identify the processes that control the optical properties of the ice mixtures and quantify their dependence on the identity of the coating, the temperature, and the ice composition. We have observed a consistent suppression of the ammonia absorption feature at 3 μm with coverage by thin layers of hydrocarbons. Modeling calculations of the multi-layer thin films assist in the interpretation of the experimental results and reveal the role of optical interference in masking the aforementioned ammonia spectral feature. The implications of these results for Jupiter's atmosphere will be discussed. Funding from the NSF Planetary Astronomy Program under grant AST-0206270 and from the NASA Outer Planets Research Program under grant NNG06GF37G is gratefully acknowledged. The participation of Anand Oza (Princeton University) was made possible by the NSF Research Experiences for Undergraduates Program under grant PHY-0353745. 1. S. K. Atreya, A.-S. Wong, K. H. Baines, M. H. Wong, T. C. Owen, Planet. Space Science 53, 498 (2005). 2. K. H. Baines, R. W. Carlson, and L. W. Kamp, Icarus 159, 74 (2002). 3. A.-S. Wong, Y. L. Yung, and A. J. Friedson, Geophys. Res. Lett. 30, 1447 (2003).

  4. Formulation and characterization of nanoencapsulated curcumin using sodium caseinate and its incorporation in ice cream.

    PubMed

    Kumar, Deep Diyuti; Mann, Bimlesh; Pothuraju, Ramesh; Sharma, Rajan; Bajaj, Rajesh; Minaxi

    2016-01-01

    In the present investigation, the preparation and characterization of a curcumin nanoemulsion with milk protein (sodium caseinate) and its incorporation into ice cream were undertaken. Among the different combinations, the most stable formulation was observed using milk fat (8%), medium chain triglycerides (2%), curcumin (0.24%) and sodium caseinate (6%) with a mean particle size of 333.8 ± 7.18 nm, a zeta potential of -44.1 ± 0.72 mV and an encapsulation efficiency of 96.9 ± 0.28%. The effect of different processing conditions (heating, pH and ionic strength) on the particle size distribution and zeta potential of the nanoemulsion was evaluated. During heat treatment, the particle size of the nanoemulsion was increased from 333.8 ± 7.18 to 351.1 ± 4.04 nm. The nanoemulsion was destabilized at pH 4.6 and the particle size increased above and below pH 5.0. However, there was a slight increase in the particle size with a change in the ionic concentration. The release kinetics data suggested that in simulated gastro-intestinal digestion, the nanoemulsion was stable against pepsin digestion (a 5.25% release of curcumin), while pancreatic action led to a 16.12% release of curcumin from the nanoemulsion. Finally, our formulation was successfully incorporated into ice cream and the sensory attributes were evaluated. No significant difference was observed in the scores of the sensory attributes between the control and ice cream prepared with a curcumin nanoemulsion. Moreover, the encapsulation efficiency of the curcumin incorporated into the ice cream was 93.7%, which indicates that it can withstand the processing conditions. The findings suggest that ice cream is a suitable dairy product for the delivery of lipophilic bioactive components (curcumin) which can be used for therapeutic purposes.

  5. Skin Temperature Processes in the Presence of Sea Ice

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Brown, S.; McGillis, W. R.; Loose, B.

    2013-12-01

    Monitoring the sea-ice margins of polar oceans and understanding the physical processes at play at the ice-ocean-air interface is essential in the perspective of a changing climate in which we face an accelerated decline of ice caps and sea ice. Remote sensing and in particular InfraRed (IR) imaging offer a unique opportunity not only to observe physical processes at sea-ice margins, but also to measure air-sea exchanges near ice. It permits monitoring ice and ocean temperature variability, and can be used for derivation of surface flow field allowing investigating turbulence and shearing at the ice-ocean interface as well as ocean-atmosphere gas transfer. Here we present experiments conducted with the aim of gaining an insight on how the presence of sea ice affects the momentum exchange between the atmosphere and ocean and investigate turbulence production in the interplay of ice-water shear, convection, waves and wind. A set of over 200 high resolution IR imagery records was taken at the US Army Cold Regions Research and Engineering Laboratory (CRREL, Hanover NH) under varying ice coverage, fan and pump settings. In situ instruments provided air and water temperature, salinity, subsurface currents and wave height. Air side profiling provided environmental parameters such as wind speed, humidity and heat fluxes. The study aims to investigate what can be gained from small-scale high-resolution IR imaging of the ice-ocean-air interface; in particular how sea ice modulates local physics and gas transfer. The relationship between water and ice temperatures with current and wind will be addressed looking at the ocean and ice temperature variance. Various skin temperature and gas transfer parameterizations will be evaluated at ice margins under varying environmental conditions. Furthermore the accuracy of various techniques used to determine surface flow will be assessed from which turbulence statistics will be determined. This will give an insight on how ice presence may affect the dissipation of turbulent kinetic energy.

  6. An Explorative Study to Use DBD Plasma Generation for Aircraft Icing Mitigation

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Zhou, Wenwu; Liu, Yang; Kolbakir, Cem

    2017-11-01

    An explorative investigation was performed to demonstrate the feasibility of utilizing thermal effect induced by Dielectric-Barrier-Discharge (DBD) plasma generation for aircraft icing mitigation. The experimental study was performed in an Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT). A NACA0012 airfoil/wing model embedded with DBD plasma actuators was installed in ISU-IRT under typical glaze icing conditions pertinent to aircraft inflight icing phenomena. While a high-speed imaging system was used to record the dynamic ice accretion process over the airfoil surface for the test cases with and without switching on the DBD plasma actuators, an infrared (IR) thermal imaging system was utilized to map the corresponding temperature distributions to quantify the unsteady heat transfer and phase changing process over the airfoil surface. The thermal effect induced by DBD plasma generation was demonstrated to be able to keep the airfoil surface staying free of ice during the entire ice accretion experiment. The measured quantitative surface temperature distributions were correlated with the acquired images of the dynamic ice accretion and water runback processes to elucidate the underlying physics. National Science Foundation CBET-1064196 and CBET-1435590.

  7. New insights into 3D calving investigations: use of Terrestrial LiDAR for monitoring the Perito Moreno glacier front (Southern Patagonian Ice Fields, Argentina)

    NASA Astrophysics Data System (ADS)

    Abellan, Antonio; Penna, Ivanna; Daicz, Sergio; Carrea, Dario; Derron, Marc-Henri; Guerin, Antoine; Jaboyedoff, Michel

    2015-04-01

    There exists a great incertitude concerning the processes that control and lead to glaciers' fronts disintegration, including the laws and the processes governing ice calving phenomena. The record of surface processes occurring at glacier's front has proven problematic due to the highly dynamic nature of the calving phenomenon, creating a great uncertainty concerning the processes and forms controlling and leading to the occurrence of discrete calving events. For instance, some common observational errors for quantifying the sudden occurrence of the calving phenomena include the insufficient spatial and/or temporal resolution of the conventional photogrammetric techniques and satellites missions. Furthermore, a lack of high quality four dimensional data of failures is currently affecting our ability to straightforward analyse and predict the glaciers' dynamics. In order to overcome these limitations, we used a terrestrial LiDAR sensor (Optech Ilris 3D-LR) for intensively monitoring the changes occurred at one of the most impressive calving glacier fronts: the Perito Moreno glacier, located in the Southern Patagonian Ice Fields (Argentina). Using this system, we were able to capture at an unprecedented level of detail the three-dimensional geometry of the glacier's front during five days (from 10th to 14th of March 2014). Each data collection, which was acquired at a mean interval of 20 minutes each, consisted in the automatic acquisition of several million points at a mean density between 100-200 points per square meter. The maximum attainable range for the utilized wavelength of the Ilris-LR system (1064 nm) was around 500 meters over massive ice (showing no-significant loss of information), being this distance considerably reduced on crystalline or wet ice short after the occurrence of calving events. By comparing successive three-dimensional datasets, we have investigated not only the magnitude and frequency of several ice failures at the glacier's terminus, but also the characteristic geometrical features of each failure. We were also able to investigate a growing strain rate on several areas of the glacier's front several days in advance of its final collapse. Furthermore, we carried out a structural analysis of the different sets of crevasses observed at the glacier front using the normal vector of each facet of the glacier front surface. When adapting well-known kinematic test that were originally developed for rock slopes to the investigation of gravity driven instabilities on glaciers' front, toppling emerged as the preferential failure mechanism at this part of the glacier front. This approach for monitoring glacier's fronts is original and innovative. Up to very recently, characterizing the discrete calving phenomenon and understanding the statistical laws governing the system have gained interest on the scientific community. Our proposed approach may shed light into both the possibility to identify the elusive existence of calving Magnitude-Frequency laws at specific regions and to capture the key spatio-temporal linkages between rates of ice calving, flow, surface lowering and frontal advance/retreat, with clear implications for modeling the global trend of ice mass balance.

  8. Flight test report of the NASA icing research airplane: Performance, stability, and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Jordan, J. L.; Platz, S. J.; Schinstock, W. C.

    1986-01-01

    Flight test results are presented documenting the effect of airframe icing on performance and stability and control of a NASA DHC-6 icing research aircraft. Kohlman System Research, Inc., provided the data acquisition system and data analysis under contract to NASA. Performance modeling methods and MMLE techniques were used to determine the effects of natural ice on the aircraft. Results showed that ice had a significant effect on the drag coefficient of the aircraft and a modest effect on the MMLE derived longitudinal stability coefficients (code version MMLE). Data is also presented on asymmetric power sign slip maneuvers showing rudder floating characteristics with and without ice on the vertical stabilizer.

  9. Airborne laser scanning based quantification of dead-ice melting in recently deglaciated terrain

    NASA Astrophysics Data System (ADS)

    Klug, C.; Sailer, R.; Schümberg, M.; Stötter, J.

    2012-04-01

    Dead-ice is explained as stagnant glacial ice, not influenced by glacier flow anymore. Whenever glaciers have negative mass balances and an accumulation of debris-cover on the surface, dead-ice may form. Although, there are numerous conceptual process-sediment-landform models for the melt-out of dead-ice bodies and areas of dead-ice environments at glacier margins are easily accessible, just a few quantitative studies of dead-ice melting have been carried out so far. Processes and rates of dead-ice melting are commonly believed to be controlled by climate and debris-cover properties, but there is still a lack of knowledge about this fact. This study has a focus on the quantification of process induced volumetric changes caused by dead-ice melting. The research for this project was conducted at Hintereisferner (Ötztal Alps, Austria), Gepatschferner (Ötztal Alps, Austria) and Schrankar (Stubai Alps, Austria), areas for which a good data basis of ALS (Airborne Laser Scanning) measurements is available. 'Hintereisferner' can be characterized as a typical high alpine environment in mid-latitudes, which ranges between approximately 2250 m and 3740 m a.s.l.. The Hintereisferner region has been investigated intensively since many decades. Two dead ice bodies at the orographic right side and one at the orographic left side of the Hintereisferner glacier terminus (approx. at 2500 m to 2550 m a.s.l.) were identified. Since 2001, ALS measurements have been carried out regularly at Hintereisferner resulting in a unique data record of 21 ALS flight campaigns, allowing long-term explorations of the two dead-ice areas. The second study area of 'Gepatschferner' in the Kaunertal ranges between 2060 m and 3520 m a.s.l. and is the second largest glacier of Austria. Near the glacier tongue at the orographic right side a significant dead ice body has formed. The ALS data used for quantification include a period of time of 4 years (2006 - 2010). 'Schrankar' is located in the Western Stubai Alps in a north to south aligned valley, with 12 rockglaciers of different activities between elevations of 2400 m and 2800 m a.s.l.. Beside the rockglaciers, a big dead ice body (approx. at 2800 m to 2850 m a.s.l.) next to the terminus of the southern Schrankarferner was identified. For the quantification of dead-ice melting, ALS data was used from 2006 - 2009. Additionally, a time series of digital elevation models (DEM) derived from aerial images of different periods (1953 -2003) were integrated in the analysis. In recent years, high-accuracy DEMs from ALS altimetry are emerging as an additional data source to existing field measurements. We present inter annual and annual trends of topographic changes caused by dead-ice melting. These trends are determined from multitemporal DEM differencing. The DEMs are generated from aerial images and ALS data. First results on the three dead-ice bodies of Hintereisferner show significant changes (-0.48 m and -2.24 m respectively per year). The derived melt rates are discussed, summarized and assessed in relation to climate parameters, like mean annual air temperature, mean summer air temperature, mean annual precipitation, mean summer precipitation, and annual sum of positive degree days.

  10. The hidden life of integrative and conjugative elements

    PubMed Central

    Delavat, François; Miyazaki, Ryo; Carraro, Nicolas; Pradervand, Nicolas

    2017-01-01

    Abstract Integrative and conjugative elements (ICEs) are widespread mobile DNA that transmit both vertically, in a host-integrated state, and horizontally, through excision and transfer to new recipients. Different families of ICEs have been discovered with more or less restricted host ranges, which operate by similar mechanisms but differ in regulatory networks, evolutionary origin and the types of variable genes they contribute to the host. Based on reviewing recent experimental data, we propose a general model of ICE life style that explains the transition between vertical and horizontal transmission as a result of a bistable decision in the ICE–host partnership. In the large majority of cells, the ICE remains silent and integrated, but hidden at low to very low frequencies in the population specialized host cells appear in which the ICE starts its process of horizontal transmission. This bistable process leads to host cell differentiation, ICE excision and transfer, when suitable recipients are present. The ratio of ICE bistability (i.e. ratio of horizontal to vertical transmission) is the outcome of a balance between fitness costs imposed by the ICE horizontal transmission process on the host cell, and selection for ICE distribution (i.e. ICE ‘fitness’). From this emerges a picture of ICEs as elements that have adapted to a mostly confined life style within their host, but with a very effective and dynamic transfer from a subpopulation of dedicated cells. PMID:28369623

  11. Functionality of kumquat (Fortunella margarita) in the production of fruity ice cream.

    PubMed

    Çakmakçı, Songül; Topdaş, Elif Feyza; Çakır, Yusuf; Kalın, Pınar

    2016-03-30

    The aim of this study was to investigate the effect of kumquat (Fortunella margarita) on the quality characteristics of ice cream. Kumquat paste (KP) was added to an ice cream mix at four concentrations, 0 (control), 5, 10 and 15% (w/w), for ice cream production. The increment of KP level caused an increase in acidity, vitamin C content, b* value and overrun value compared with the control ice cream. The apparent viscosity of samples decreased with the addition of KP at concentrations of 5 and 10% compared with the control. Results indicated that lyophilized water extract of KP (LKE) contained remarkable phenolic compounds. It was observed that LKE exhibited moderate in vitro antioxidant capacity. KP enhanced the color, flavor, vitamin C content and Mg and K contents of the ice cream. The addition of KP positively affected the sensory properties. KP may be used as a suitable source of natural color and flavor agent in ice cream production. KP enhanced the vitamin C content and Mg and K contents of ice cream and improved its sensory properties. © 2015 Society of Chemical Industry.

  12. Observing the seasonal cycle of the upper ocean in the Ross Sea, Antarctica, with autonomous profiling floats

    NASA Astrophysics Data System (ADS)

    Porter, D. F.; Springer, S. R.; Padman, L.; Fricker, H. A.; Bell, R. E.

    2017-12-01

    The upper layers of the Southern Ocean where it meets the Antarctic ice sheet undergoes a large seasonal cycle controlled by surface radiation and by freshwater fluxes, both of which are strongly influenced by sea ice. In regions where seasonal sea ice and icebergs limit use of ice-tethered profilers and conventional moorings, autonomous profiling floats can sample the upper ocean. The deployment of seven Apex floats (by sea) and six ALAMO floats (by air) provides unique upper ocean hydrographic data in the Ross Sea close to the Ross Ice Shelf front. A novel choice of mission parameters - setting parking depth deeper than the seabed - limits their drift, allowing us to deploy the floats close to the ice shelf front, while sea ice avoidance algorithms allow the floats to to sample through winter under sea ice. Hydrographic profiles show the detailed development of the seasonal mixed layer close to the Ross front, and interannual variability of the seasonal mixed layer and deeper water masses on the central Ross Sea continental shelf. After the sea ice breakup in spring, a warm and fresh surface mixed layer develops, further warming and deepening throughout the summer. The mixed layer deepens, with maximum temperatures exceeding 0ºC in mid-February. By March, the surface energy budget becomes negative and sea ice begins to form, creating a cold, saline and dense surface layer. Once these processes overcome the stable summer stratification, convection erodes the surface mixed layer, mixing some heat downwards to deeper layers. There is considerable interannual variability in the evolution and strength of the surface mixed layer: summers with shorter ice-free periods result in a cooler and shallower surface mixed layer, which accumulates less heat than the summers with longer ice-free periods. Early ice breakup occurred in all floats in 2016/17 summer, enhancing the absorbed solar flux leading to a warmer surface mixed layer. Together, these unique measurements from autonomous profilers provide insight into the hydrographic state of the Ross Sea at the start of the spring period of sea-ice breakup, and how ocean mixing and sea ice interact to initiate the summer open-water season.

  13. A~comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Paukert, M.; Steinke, I.; Zhang, K.; Kulkarni, G.; Hoose, C.; Schnaiter, M.; Saathoff, H.; Möhler, O.

    2014-06-01

    A new heterogeneous ice nucleation parameterization that covers a~wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is critical in order to accurately simulate the ice nucleation processes in cirrus clouds. The surface-scaled ice nucleation efficiencies of hematite particles, inferred by ns, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions that were realized by continuously changing temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T colder than -60 °C revealed that higher RHice was necessary to maintain constant ns, whereas T may have played a significant role in ice nucleation at T warmer than -50 °C. We implemented new ns parameterizations into two cloud models to investigate its sensitivity and compare with the existing ice nucleation schemes towards simulating cirrus cloud properties. Our results show that the new AIDA-based parameterizations lead to an order of magnitude higher ice crystal concentrations and inhibition of homogeneous nucleation in colder temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have stronger influence on cloud properties such as cloud longevity and initiation when compared to previous parameterizations.

  14. A comprehensive parameterization of heterogeneous ice nucleation of dust surrogate: laboratory study with hematite particles and its application to atmospheric models

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Paukert, M.; Steinke, I.; Zhang, K.; Kulkarni, G.; Hoose, C.; Schnaiter, M.; Saathoff, H.; Möhler, O.

    2014-12-01

    A new heterogeneous ice nucleation parameterization that covers a wide temperature range (-36 to -78 °C) is presented. Developing and testing such an ice nucleation parameterization, which is constrained through identical experimental conditions, is important to accurately simulate the ice nucleation processes in cirrus clouds. The ice nucleation active surface-site density (ns) of hematite particles, used as a proxy for atmospheric dust particles, were derived from AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud chamber measurements under water subsaturated conditions. These conditions were achieved by continuously changing the temperature (T) and relative humidity with respect to ice (RHice) in the chamber. Our measurements showed several different pathways to nucleate ice depending on T and RHice conditions. For instance, almost T-independent freezing was observed at -60 °C < T < -50 °C, where RHice explicitly controlled ice nucleation efficiency, while both T and RHice played roles in other two T regimes: -78 °C < T < -60 °C and -50 °C < T < -36 °C. More specifically, observations at T lower than -60 °C revealed that higher RHice was necessary to maintain a constant ns, whereas T may have played a significant role in ice nucleation at T higher than -50 °C. We implemented the new hematite-derived ns parameterization, which agrees well with previous AIDA measurements of desert dust, into two conceptual cloud models to investigate their sensitivity to the new parameterization in comparison to existing ice nucleation schemes for simulating cirrus cloud properties. Our results show that the new AIDA-based parameterization leads to an order of magnitude higher ice crystal concentrations and to an inhibition of homogeneous nucleation in lower-temperature regions. Our cloud simulation results suggest that atmospheric dust particles that form ice nuclei at lower temperatures, below -36 °C, can potentially have a stronger influence on cloud properties, such as cloud longevity and initiation, compared to previous parameterizations.

  15. GCSS Cirrus Parcel Model Comparison Project

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David OC.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Cirrus Parcel Model Comparison Project, a project of GCSS Working Group on Cirrus Cloud Systems (WG2), involves the systematic comparison of current models of ice crystal nucleation and growth for specified, typical, cirrus cloud environments. The goal of this project is to document and understand the factors resulting in significant inter-model differences. The intent is to foment research leading to model improvement and validation. In Phase 1 of the project reported here, simulated cirrus cloud microphysical properties are compared for situations of "warm" (-40 C) and "cold" (-60 C) cirrus subject to updrafts of 4, 20 and 100 cm/s, respectively. Five models participated. These models employ explicit microphysical schemes wherein the size distribution of each class of particles (aerosols and ice crystals) is resolved into bins. Simulations are made including both homogeneous and heterogeneous ice nucleation mechanisms. A single initial aerosol population of sulfuric acid particles is prescribed for all simulations. To isolate the treatment of the homogeneous freezing (of haze drops) nucleation process, the heterogeneous nucleation mechanism is disabled for a second parallel set of simulations. Qualitative agreement is found for the homogeneous-nucleation-only simulations, e.g., the number density of nucleated ice crystals increases with the strength of the prescribed updraft. However, non-negligible quantitative differences are found. Detailed analysis reveals that the homogeneous nucleation formulation, aerosol size, ice crystal growth rate (particularly the deposition coefficient), and water vapor uptake rate are critical components that lead to differences in predicted microphysics. Systematic bias exists between results based on a modified classical theory approach and models using an effective freezing temperature approach to the treatment of nucleation. Each approach is constrained by critical freezing data from laboratory studies, but each includes assumptions that can only be justified by further laboratory data. Consequently, it is not yet clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (20-100 cm/s) at -60 C when the commonly invoked equilibrium assumption is lifted. The resulting difference in particle-size-dependent solution concentration of haze particles may significantly affect the ice nucleation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of ice number concentration and ice crystal diffusional growth rate, which is sensitive to the deposition coefficient when ice particles are small, partially controls the peak nucleation rate achieved in an air parcel and the duration of the active nucleation time period. The effects of heterogeneous nucleation are most pronounced in weak updraft situations. Vapor competition by the nucleated (heterogeneous) ice crystals limits the achieved ice supersaturation and thus suppresses the contribution of homogeneous nucleation. Correspondingly, ice crystal number density is markedly reduced. Definitive laboratory and atmospheric benchmark data are needed for the heterogeneous nucleation process. Inter-model differences are correspondingly greater than in the case of the homogeneous nucleation process acting alone.

  16. Radar-imaged internal layering in the Weddell Sea sector of West Antarctica

    NASA Astrophysics Data System (ADS)

    Bingham, Robert G.; Rippin, David M.; Karlsson, Nanna B.; Corr, Hugh F. J.; Ferraccioli, Fausto; Jordan, Tom A.; Le Brocq, Anne M.; Ross, Neil; Wright, Andrew P.; Siegert, Martin J.

    2013-04-01

    Radio-echo sounding (RES) across polar ice sheets reveals extensive, isochronous internal layers, whose stratigraphy, and especially their degree of continuity over multi-km distances, can inform us about both present ice flow and past ice-flow histories. Here, we bring together for the first time two recent advances in this field of cryospheric remote sensing to analyse ice flow into the Weddell Sea sector of West Antarctica. Firstly, we have developed a new quantitative routine for analysing the continuity of internal layers obtained over large areas of ice by airborne RES surveys - we term this routine the "Internal-Layering Continuity-Index (ILCI)". Secondly, in the austral season 2010-11 we acquired, by airborne RES survey, the first comprehensive dataset of deep internal layering across Institute and Möller Ice Streams, two of the more significant feeders of ice into the Filchner-Ronne Ice Shelf. Applying the ILCI to SAR-processed (migrated) RES profiles across Institute Ice Stream's catchment reveals two contrasting regions of internal-layering continuity behaviour. In the western portion of the catchment, where ice-stream tributaries incise deeply through the Ellsworth Subglacial Highlands, the continuity of internal layers is most disrupted across the present ice streams. We therefore interpret the ice-flow configuration in this western region as predominantly spatially stable over the lifetime of the ice. Further east, towards Möller Ice Stream, and towards the interior of the ice sheet, the ILCI does not closely match the present ice flow configuration, while across most of present-day Möller Ice Stream itself, the continuity of internal layers is generally low. We propose that the variation in continuity of internal layering across eastern Institute Ice Stream and the neighbouring Möller results primarily from two factors. Firstly, the noncorrespondence of some inland tributaries with internal-layering continuity acts as evidence for past spatial migration of those tributaries, with likely consequences for the relative positions of Institute and Möller Ice Streams over recent history. Secondly, the subglacial roughness, in part a function of the underlying geology across the region, imposes a strong influence on the continuity of the overlying deep internal layers, though whether it controls, or is a function of, ice flow, remains undetermined. We conclude that in the subglacially mountainous Ellsworth Subglacial Highlands sector, there is long-term stability in the spatial configuration of ice flow, but that elsewhere across Insitute and Möller Ice Streams, the ice-flow configuration is not stable.

  17. Biologically-Oriented Processes in the Coastal Sea Ice Zone of the White Sea

    NASA Astrophysics Data System (ADS)

    Melnikov, I. A.

    2002-12-01

    The annual advance and retreat of sea ice is a major physical determinant of spatial and temporal changes in the structure and function of marine coastal biological communities. Sea ice biological data obtained in the tidal zone of Kandalaksha Gulf (White Sea) during 1996-2001 period will be presented. Previous observations in this area were mainly conducted during the ice-free summer season. However, there is little information on the ice-covered winter season (6-7 months duration), and, especially, on the sea-ice biology in the coastal zone within tidal regimes. During the January-May period time-series observations were conducted on transects along shorelines with coastal and fast ice. Trends in the annual extent of sea ice showed significant impacts on ice-associated biological communities. Three types of sea ice impact on kelps, balanoides, littorinas and amphipods are distinguished: (i) positive, when sea ice protects these populations from grinding (ii) negative, when ice grinds both fauna and flora, and (iii) a combined effect, when fast ice protects, but anchored ice grinds plant and animals. To understand the full spectrum of ecological problems caused by pollution on the coastal zone, as well as the problems of sea ice melting caused by global warming, an integrated, long-term study of the physical, chemical, and biological processes is needed.

  18. Depth, ice thickness, and ice-out timing cause divergent hydrologic responses among Arctic lakes

    USGS Publications Warehouse

    Arp, Christopher D.; Jones, Benjamin M.; Liljedahl, Anna K.; Hinkel, Kenneth M.; Welker, Jeffery A.

    2015-01-01

    Lakes are prevalent in the Arctic and thus play a key role in regional hydrology. Since many Arctic lakes are shallow and ice grows thick (historically 2-m or greater), seasonal ice commonly freezes to the lake bed (bedfast ice) by winter's end. Bedfast ice fundamentally alters lake energy balance and melt-out processes compared to deeper lakes that exceed the maximum ice thickness (floating ice) and maintain perennial liquid water below floating ice. Our analysis of lakes in northern Alaska indicated that ice-out of bedfast ice lakes occurred on average 17 days earlier (22-June) than ice-out on adjacent floating ice lakes (9-July). Earlier ice-free conditions in bedfast ice lakes caused higher open-water evaporation, 28% on average, relative to floating ice lakes and this divergence increased in lakes closer to the coast and in cooler summers. Water isotopes (18O and 2H) indicated similar differences in evaporation between these lake types. Our analysis suggests that ice regimes created by the combination of lake depth relative to ice thickness and associated ice-out timing currently cause a strong hydrologic divergence among Arctic lakes. Thus understanding the distribution and dynamics of lakes by ice regime is essential for predicting regional hydrology. An observed regime shift in lakes to floating ice conditions due to thinner ice growth may initially offset lake drying because of lower evaporative loss from this lake type. This potential negative feedback caused by winter processes occurs in spite of an overall projected increase in evapotranspiration as the Arctic climate warms.

  19. Toward an Arctic Strategy

    DTIC Science & Technology

    2009-02-01

    Arctic Sea Ice Extent6 Reduced ice pack area translates to less reflected solar energy, which further accelerates the ongoing melting process . Light... process , creating a vicious cycle where melting ice causes the remaining ice to melt faster.7 Modelers previously agreed that the Arctic Ocean could be...freight ports stand to benefit by shipping through the Arctic region.10 For example, an ocean voyage from Yokohama, Japan, to Hamburg, Germany via the

  20. Fundamental Research on Heat Transfer Characteristics in Shell & Tube Type Ice Forming Cold Energy Storage

    NASA Astrophysics Data System (ADS)

    Saito, Akio; Utaka, Yoshio; Okawa, Seiji; Ishibashi, Hiroaki

    Investigation of heat transfer characteristics in an ice making cold energy storage using a set of horizontal cooling pipes was carried out experimentally. Cooling pipe arrangement, number of pipes used and initial water temperature were varied, and temperature distribution in the tank and the volume of ice formed around the pipe were measured. Natural convection was also observed visually. During the experiment, two kinds of layers were observed. One is the layer where ice forming is interfered by natural convection and its temperature decreases rapidly with an almost uniform temperature distribution, and the other is the layer where ice forms steadily under a stagnant water condition. The former was called that the layer is under a cooling process and the latter that the layer is under an ice forming process. The effect of the experimental parameters, such as the arrangement of the cooling pipes, the number of pipes, the initial water temperature and the flow rate of the cooling medium, on the cooling process and the ice forming process were discussed. Approximate analysis was also carried out and compared with the experimental results. Finally, the relationship between the ice packing factor, which is significant in preventing the blockade, and experimental parameters was discussed.

  1. Sea ice motion measurements from Seasat SAR images

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Raggam, J.; Elachi, C.; Campbell, W. J.

    1983-01-01

    Data from the Seasat synthetic aperture radar (SAR) experiment are analyzed in order to determine the accuracy of this information for mapping the distribution of sea ice and its motion. Data from observations of sea ice in the Beaufort Sea from seven sequential orbits of the satellite were selected to study the capabilities and limitations of spaceborne radar application to sea-ice mapping. Results show that there is no difficulty in identifying homologue ice features on sequential radar images and the accuracy is entirely controlled by the accuracy of the orbit data and the geometric calibration of the sensor. Conventional radargrammetric methods are found to serve well for satellite radar ice mapping, while ground control points can be used to calibrate the ice location and motion measurements in the cases where orbit data and sensor calibration are lacking. The ice motion was determined to be approximately 6.4 + or - 0.5 km/day. In addition, the accuracy of pixel location was found over land areas. The use of one control point in 10,000 sq km produced an accuracy of about + or 150 m, while with a higher density of control points (7 in 1000 sq km) the location accuracy improves to the image resolution of + or - 25 m. This is found to be applicable for both optical and digital data.

  2. A Bulk Microphysics Parameterization with Multiple Ice Precipitation Categories.

    NASA Astrophysics Data System (ADS)

    Straka, Jerry M.; Mansell, Edward R.

    2005-04-01

    A single-moment bulk microphysics scheme with multiple ice precipitation categories is described. It has 2 liquid hydrometeor categories (cloud droplets and rain) and 10 ice categories that are characterized by habit, size, and density—two ice crystal habits (column and plate), rimed cloud ice, snow (ice crystal aggregates), three categories of graupel with different densities and intercepts, frozen drops, small hail, and large hail. The concept of riming history is implemented for conversions among the graupel and frozen drops categories. The multiple precipitation ice categories allow a range of particle densities and fall velocities for simulating a variety of convective storms with minimal parameter tuning. The scheme is applied to two cases—an idealized continental multicell storm that demonstrates the ice precipitation process, and a small Florida maritime storm in which the warm rain process is important.

  3. Water generation and transport through the high-pressure ice layers of Titan and Ganymede

    NASA Astrophysics Data System (ADS)

    Kalousova, K.; Sotin, C.; Choblet, G.; Tobie, G.; Grasset, O.

    2017-09-01

    We investigate the generation and transport of water through the high-pressure (HP) ice layers of Ganymede and Titan using a numerical model of two-phase convection in 2D geometry. Our results suggest that water can be generated at the silicate/HP ice interface for small to intermediate values of Rayleigh number (Ra 1.e8-1.e10) while no melt is generated for the higher values (Ra 1.e11). If generated, water is transported through the layer by the upwelling plumes and, depending on the vigor of convection, it stays liquid (smaller Ra) or it may freeze (intermediate Ra) before melting again as the plume reaches the temperate layer at the interface with the ocean. The thickness of this layer as well as the amount of melt that is extracted from it is controlled by the HP ice permeability. This process may enable the transfer of volatiles and salts that might have been leached from silicates by the meltwater. Since the HP ice layer is much thinner on Titan than on Ganymede, it is probably more permeable for volatiles and salts leached from the silicate core.

  4. Surface crystallization of supercooled water in clouds

    PubMed Central

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.

    2002-01-01

    The process by which liquid cloud droplets homogeneously crystallize into ice is still not well understood. The ice nucleation process based on the standard and classical theory of homogeneous freezing initiates within the interior volume of a cloud droplet. Current experimental data on homogeneous freezing rates of ice in droplets of supercooled water, both in air and emulsion oil samples, show considerable scatter. For example, at −33°C, the reported volume-based freezing rates of ice in supercooled water vary by as many as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Here, we show that the process of ice nucleus formation at the air (or oil)-liquid water interface may help to explain why experimental results on ice nucleation rates yield different results in different ambient phases. Our results also suggest that surface crystallization of ice in cloud droplets can explain why low amounts of supercooled water have been observed in the atmosphere near −40°C. PMID:12456877

  5. Supraglacial channel inception: Modeling and processes

    NASA Astrophysics Data System (ADS)

    Mantelli, E.; Camporeale, C.; Ridolfi, L.

    2015-09-01

    Supraglacial drainage systems play a key role in glacial hydrology. Nevertheless, physical processes leading to spatial organization in supraglacial networks are still an open issue. In the present work we thus address from a quantitative point of view the question of what is the physics leading to widely observed patterns made up of evenly spaced channels. To this aim, we set up a novel mathematical model describing a condition antecedent channel formation, i.e., the down-glacier flow of a distributed meltwater film. We then perform a linear stability analysis to assess whether the ice-water interface undergoes a morphological instability compatible with observed patterns. The instability is detected, its features depending on glacier surface slope, ice friction factor, and water as well as ice thermal conditions. By contrast, in our model channel spacing is solely hydrodynamically driven and relies on the interplay between pressure perturbations, flow depth response, and Reynolds stresses. Geometrical features of the predicted pattern are quantitatively consistent with available field data. The hydrodynamic origin of supraglacial channel morphogenesis suggests that alluvial patterns might share the same physical controls.

  6. Transient Fluvial Response to Alpine Deglaciation, Mount Rainier, WA: Geomorphic Process Domains and Proglacial Flux Controls on Channel Evolution.

    NASA Astrophysics Data System (ADS)

    Beyeler, J. D.; Montgomery, D.; Kennard, P. M.

    2016-12-01

    Downwasting of all glaciers on the flanks of Mount Rainier, WA, in recent decades has debuttressed Little Ice Age glaciogenic sediments driving proglacial responses to regionally warming climate. Rivers draining the deglaciating edifice are responding to paraglacial sedimentation processes through transient storage of retreat-liberated sediments in aggrading (e.g., >5m) fluvial networks with widening channel corridors (i.e., 50-150%) post-LIA (ca., 1880-1910 locally). We hypothesize that the downstream transmission of proglacial fluxes (i.e., sediment and water) through deglaciating alpine terrain is a two-step geomorphic process. The ice-proximal portion of the proglacial system is dominated by the delivery of high sediment-to-water ratio flows (i.e., hyperconcentrated and debris slurries) and sediment retention by in-channel accumulation (e.g., confined debris fans within channel margins of valley segments) exacerbated by recruitment and accumulation of large wood (e.g., late seral stage conifers), whereas ice-distal fluvial reworking of transient sediment accumulations generates downstream aggradation. Historical Carbon River observations show restricted ice-proximal proglacial aggradation until a mainstem avulsion in 2009 initiated incision into sediment accumulations formed in recent decades, which is translating into aggradation farther down the network. Surficial morphology mapped with GPS, exposed subsurface sedimentology, and preliminary dating of buried trees suggest a transitional geomorphic process zone has persisted along the proglacial Carbon River through recent centuries and prior to the ultimate LIA glaciation. Structure-from-motion DEM differencing through the 2016 water year shows discrete zones of proglacial evolution through channel-spanning bed aggradation forced by interactions between large wood and sediment-rich flows that transition to fluvial process dominance as sediment is transported downstream. Long-term DEM differencing suggests these are persistent geomorphic processes as rivers respond to alpine deglaciation. This process-based study implies downstream river flooding in deglaciating alpine terrain globally is driven by glaciogenic sediment release and downstream channel aggradation irrespective of changes in discharge.

  7. Aircraft Icing Weather Data Reporting and Dissemination System

    NASA Technical Reports Server (NTRS)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  8. Sea ice in the Baltic Sea - revisiting BASIS ice, a historical data set covering the period 1960/1961-1978/1979

    NASA Astrophysics Data System (ADS)

    Löptien, U.; Dietze, H.

    2014-12-01

    The Baltic Sea is a seasonally ice-covered, marginal sea in central northern Europe. It is an essential waterway connecting highly industrialised countries. Because ship traffic is intermittently hindered by sea ice, the local weather services have been monitoring sea ice conditions for decades. In the present study we revisit a historical monitoring data set, covering the winters 1960/1961 to 1978/1979. This data set, dubbed Data Bank for Baltic Sea Ice and Sea Surface Temperatures (BASIS) ice, is based on hand-drawn maps that were collected and then digitised in 1981 in a joint project of the Finnish Institute of Marine Research (today the Finnish Meteorological Institute (FMI)) and the Swedish Meteorological and Hydrological Institute (SMHI). BASIS ice was designed for storage on punch cards and all ice information is encoded by five digits. This makes the data hard to access. Here we present a post-processed product based on the original five-digit code. Specifically, we convert to standard ice quantities (including information on ice types), which we distribute in the current and free Network Common Data Format (NetCDF). Our post-processed data set will help to assess numerical ice models and provide easy-to-access unique historical reference material for sea ice in the Baltic Sea. In addition we provide statistics showcasing the data quality. The website http://www.baltic-ocean.org hosts the post-processed data and the conversion code. The data are also archived at the Data Publisher for Earth & Environmental Science, PANGAEA (doi:10.1594/PANGAEA.832353).

  9. Mapping Ross Ice Shelf with ROSETTA-Ice airborne laser altimetry

    NASA Astrophysics Data System (ADS)

    Becker, M. K.; Fricker, H. A.; Padman, L.; Bell, R. E.; Siegfried, M. R.; Dieck, C. C. M.

    2017-12-01

    The Ross Ocean and ice Shelf Environment and Tectonic setting Through Aerogeophysical surveys and modeling (ROSETTA-Ice) project combines airborne glaciological, geological, and oceanographic observations to enhance our understanding of the history and dynamics of the large ( 500,000 square km) Ross Ice Shelf (RIS). Here, we focus on the Light Detection And Ranging (LiDAR) data collected in 2015 and 2016. This data set represents a significant advance in resolution: Whereas the last attempt to systematically map RIS (the surface-based RIGGS program in the 1970s) was at 55 km grid spacing, the ROSETTA-Ice grid has 10-20 km line spacing and much higher along-track resolution. We discuss two different strategies for processing the raw LiDAR data: one that requires proprietary software (Riegl's RiPROCESS package), and one that employs open-source programs and libraries. With the processed elevation data, we are able to resolve fine-scale ice-shelf features such as the "rampart-moat" ice-front morphology, which has previously been observed on and modeled for icebergs. This feature is also visible in the ROSETTA-Ice shallow-ice radar data; comparing the laser data with radargrams provides insight into the processes leading to their formation. Near-surface firn state and total firn air content can also be investigated through combined analysis of laser altimetry and radar data. By performing similar analyses with data from the radar altimeter aboard CryoSat-2, we demonstrate the utility of the ROSETTA-Ice LiDAR data set in satellite validation efforts. The incorporation of the LiDAR data from the third and final field season (December 2017) will allow us to construct a DEM and an ice thickness map of RIS for the austral summers of 2015-2017. These products will be used to validate and extend observations of height changes from satellite radar and laser altimetry, as well as to update regional models of ocean circulation and ice dynamics.

  10. Coastal sea-ice processes in Alaska and their relevance for sediment dynamics and coastal retreat (Invited)

    NASA Astrophysics Data System (ADS)

    Eicken, H.; Kapsch, M.; Johnson, M. A.; Weyapuk, W. U., Jr.

    2009-12-01

    Sea ice plays an important, complicated role in Arctic coastal sediment dynamics. It helps protect the shoreline from wave action and constrains coastal permafrost thaw; at the same time, sea ice is a highly effective sediment erosion and transport agent. For the coastline of (sub-)Arctic Alaska we have examined key processes that govern the role of sea ice as a geologic agent. Based on passive microwave satellite data for the time period 1979 to 2008 and augmented by field measurements and observations conducted by local sea-ice experts in coastal communities from 2006 onwards, we determined the onset of coastal ice spring break-up and fall freeze-up. These two events define the start and end of the open-water season during which the coast is rendered most vulnerable to thermal and dynamic processes promoting erosion. Satellite data show significant trends toward later fall freeze-up in many locations and moreover provide a picture of the statistical significance and variability of such trends in great spatio-temporal detail. Coastal ice observations suggest that important sea-ice processes (such as formation of ice berms) that precede freeze-up as detected by passive microwave data need to be taken into consideration in evaluating the vulnerability of the coastline and the specific threat of individual storms. Field observations, satellite data and local knowledge also highlight the substantial change in winter sea-ice regimes over the past two decades, with a much more mobile ice cover enhancing winter sediment transport. Ultimately, the shorter sea-ice season and the greater mobility and the lack of stability of winter coastal sea ice work in concert to increase the vulnerability of the coastline to erosion and flooding. At the same time, these changes provide a mechanism for effective redistribution and cross-shelf transport of sediments that prepares the stage for further erosive action in subsequent seasons.

  11. On the brine drainage and algal uptake controls of the nutrient supply to the sea ice interior

    NASA Astrophysics Data System (ADS)

    Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tison, J.-L.

    2009-04-01

    Sea ice ecosystems are important components of the biogeochemical cycles (including carbon) and hence have a potential impact on climate. They are characterized by large stocks of micro-algae. Those algae (mostly diatoms) live in liquid inclusions of saline brine, which are encased within the solid ice matrix and require sustained nutrient supply to grow. In this study, we investigate the interactions between nutrients, brine motion and algal growth, using a one-dimensional (1D) sea ice model. The model includes (i) a classical formulation for snow and ice thermodynamics with explicit, reformulated brine physics and (ii) an idealized sea ice biological component, characterized by one single nutrient, namely dissolved silica (DSi), which stocks are reduced by a prescribed primary production. DSi is considered as a passive tracer dissolved within brine following fluid motion. The brine flow regime (advective, diffusive or turbulent) is computed as a function of environmental ice conditions. In winter, a Rayleigh number proposed by Notz and Worster (2008) is used to differentiate diffusion and convection. Ice salinity and DSi concentrations within the ice are solutions of 1D advection-diffusion equations over the variable volume brine network domain. The model is configured for a typical year of seasonal Weddell Sea ice. The simulated vertical salinity and tracer profiles as well as ice-ocean salt fluxes realistically agree with observations. Complex bio-physical interactions are simulated by the model. Analysis highlights the role of convection in the lowermost 5-10 cm of ice (gravity drainage), mixing highly saline, nutrient-depleted brine with comparatively fresh, nutrient-rich seawater. Hence, gravity drainage rejects salt to the ocean and provides nutrients to the ice interior. In turn, primary production and brine convection act synergetically to form a nutrient pump, which enhances the net ocean-to-ice DSi flux by 20-115%, compared to an abiotic situation. The other important simulated processes are winter and spring surface flooding of seawater which supplies nutrients near the ice surface, and melt water percolation which - if present in reality - would tend to flush nutrients back to the ocean in summer. The physical background for sea ice tracers developed here is general and could be used to simulate other sea ice tracers (e.g., dissolved organic matter, isotopes, gases, radio-nuclides, ...), constituting an improved modelling strategy for sea ice brine and ecosystem dynamics.

  12. Analogue modelling of the influence of ice shelf collapse on the flow of ice sheets grounded below sea-level

    NASA Astrophysics Data System (ADS)

    Corti, Giacomo; Zeoli, Antonio

    2016-04-01

    The sudden breakup of ice shelves is expected to result in significant acceleration of inland glaciers, a process related to the removal of the buttressing effect exerted by the ice shelf on the tributary glaciers. This effect has been tested in previous analogue models, which however applied to ice sheets grounded above sea level (e.g., East Antarctic Ice Sheet; Antarctic Peninsula and the Larsen Ice Shelf). In this work we expand these previous results by performing small-scale laboratory models that analyse the influence of ice shelf collapse on the flow of ice streams draining an ice sheet grounded below sea level (e.g., the West Antarctic Ice Sheet). The analogue models, with dimensions (width, length, thickness) of 120x70x1.5cm were performed at the Tectonic Modelling Laboratory of CNR-IGG of Florence, Italy, by using Polydimethilsyloxane (PDMS) as analogue for the flowing ice. This transparent, Newtonian silicone has been shown to well approximate the rheology of natural ice. The silicone was allowed to flow into a water reservoir simulating natural conditions in which ice streams flow into the sea, terminating in extensive ice shelves which act as a buttress for their glaciers and slow their flow. The geometric scaling ratio was 10(-5), such that 1cm in the models simulated 1km in nature; velocity of PDMS (a few mm per hour) simulated natural velocities of 100-1000 m/year. Instability of glacier flow was induced by manually removing a basal silicone platform (floating on water) exerting backstresses to the flowing analogue glacier: the simple set-up adopted in the experiments isolates the effect of the removal of the buttressing effect that the floating platform exerts on the flowing glaciers, thus offering insights into the influence of this parameter on the flow perturbations resulting from a collapse event. The experimental results showed a significant increase in glacier velocity close to its outlet following ice shelf breakup, a process similar to what observed in previous models. This transient effect did not significantly propagate upstream towards the inner parts of ice sheet, and rapidly decayed with time. The process was also accompanied by significant ice thinning. Models results suggest that the ice sheet is almost unaffected by flow perturbations induced by ice shelf collapse, unless other processes (e.g., grounding line instability induced by warm water penetration) are involved.

  13. The Impact of Geothermal Heat on the Scandinavian Ice Sheet's LGM Extent

    NASA Astrophysics Data System (ADS)

    Szuman, Izabela; Ewertowski, Marek W.; Kalita, Jakub Z.

    2016-04-01

    The last Scandinavian ice sheet attained its most southern extent over Poland and Germany, protruding c. 200 km south of the main ice sheet mass. There are number of factors that may control ice sheet dynamics and extent. One of the less recognised is geothermal heat, which is heat that is supplied to the base of the ice sheet. A heat at the ice/bed interface plays a crucial role in controlling ice sheet stability, as well as impacting basal temperatures, melting, and ice flow velocities. However, the influence of geothermal heat is still virtually neglected in reconstructions and modelling of paleo-ice sheets behaviour. Only in a few papers is geothermal heat recalled though often in the context of past climatic conditions. Thus, the major question is if and how spatial differences in geothermal heat had influenced paleo-ice sheet dynamics and in consequence their extent. Here, we assumed that the configuration of the ice sheet along its southern margin was moderately to strongly correlated with geothermal heat for Poland and non or negatively correlated for Germany.

  14. A simple model for the evolution of melt pond coverage on permeable Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Popović, Predrag; Abbot, Dorian

    2017-05-01

    As the melt season progresses, sea ice in the Arctic often becomes permeable enough to allow for nearly complete drainage of meltwater that has collected on the ice surface. Melt ponds that remain after drainage are hydraulically connected to the ocean and correspond to regions of sea ice whose surface is below sea level. We present a simple model for the evolution of melt pond coverage on such permeable sea ice floes in which we allow for spatially varying ice melt rates and assume the whole floe is in hydrostatic balance. The model is represented by two simple ordinary differential equations, where the rate of change of pond coverage depends on the pond coverage. All the physical parameters of the system are summarized by four strengths that control the relative importance of the terms in the equations. The model both fits observations and allows us to understand the behavior of melt ponds in a way that is often not possible with more complex models. Examples of insights we can gain from the model are that (1) the pond growth rate is more sensitive to changes in bare sea ice albedo than changes in pond albedo, (2) ponds grow slower on smoother ice, and (3) ponds respond strongest to freeboard sinking on first-year ice and sidewall melting on multiyear ice. We also show that under a global warming scenario, pond coverage would increase, decreasing the overall ice albedo and leading to ice thinning that is likely comparable to thinning due to direct forcing. Since melt pond coverage is one of the key parameters controlling the albedo of sea ice, understanding the mechanisms that control the distribution of pond coverage will help improve large-scale model parameterizations and sea ice forecasts in a warming climate.

  15. Assessing the Extent of Influence Subglacial Hydrology Has on Dynamic Ice Sheet Behavior

    NASA Astrophysics Data System (ADS)

    Babonis, G. S.; Csatho, B. M.

    2012-12-01

    Numerous recent studies have done an excellent job capturing and quantifying the complex pattern of dynamic changes of the Greenland Ice Sheet (GrIS) over the past several decades. The timing of changes in ice velocities and mass balance indicate that the mechanisms controlling these behaviors, both external and internal, act over variable spatial and temporal regimes, can change in rapid and complex fashion, and have significant effect on ice sheet behavior as well as sea level rise. With roughly half of the estimated ice loss from the GrIS attributed to dynamic processes, these changes account for about 250 Gt/yr (2003-2008), equivalence to 0.6 mm/yr sea level rise. One of the primary influences of dynamic ice behavior is ice sheet hydrology, including the storage and transport of water from the supraglacial to subglacial environment, and the subsequent development of water transport pathways, thus demonstrating the need for further characterization of the subglacial environment. Enhanced dynamic flow of ice due to the influence of meltwater distribution on the subglacial environment has been reported, including In-SAR observations of large velocity increases over short periods of time, suggesting regions where dynamic changes are likely being caused by changes in hydrology. Additionally, building upon the 1993-2011 laser altimetry record, analyzed by our Surface Elevation Reconstruction And Change detection (SERAC) procedure, we have detected complex patterns of rapid thickening and thinning patterns over several outlet glaciers. This study presents a comprehensive investigation of hydrologic control on dynamic glacier behavior for several key sites in Greenland. We combine a high resolution surface digital elevation model (DEM) derived by fusing space- and airborne laser altimetry observations and SPIRIT SPOT DEMs, with a high resolution, hydrologically-corrected bedrock DEM derived from a combination of CResIS and Operation Icebridge ice penetrating radar data for generating potentiometric maps for each region of interest. Using these potentiometric maps, along with surficial DEMs, supra- and subglacial routing paths, as well as potential sites for discrete supraglacial hydrologic input sources are identified. Comparison of hydrologic drainage networks with the spatial distribution of recent rapid dynamic changes detected by altimetry allows for the assessment of the extent of influence that subglacial hydrology has on ice sheet behavior.

  16. Seasonal and interannual variability of fast ice extent in the southeastern Laptev Sea between 1999 and 2013

    NASA Astrophysics Data System (ADS)

    Selyuzhenok, V.; Krumpen, T.; Mahoney, A.; Janout, M.; Gerdes, R.

    2015-12-01

    Along with changes in sea ice extent, thickness, and drift speed, Arctic sea ice regime is characterized by a decrease of fast ice season and reduction of fast ice extent. The most extensive fast ice cover in the Arctic develops in the southeastern Laptev Sea. Using weekly operational sea ice charts produced by Arctic and Antarctic Research Institute (AARI, Russia) from 1999 to 2013, we identified five main key events that characterize the annual evolution of fast ice in the southeastern Laptev Sea. Linking the occurrence of the key events with the atmospheric forcing, bathymetry, freezeup, and melt onset, we examined the processes driving annual fast ice cycle. The analysis revealed that fast ice in the region is sensitive to thermodynamic processes throughout a season, while the wind has a strong influence only on the first stages of fast ice development. The maximal fast ice extent is closely linked to the bathymetry and local topography and is primarily defined by the location of shoals, where fast ice is likely grounded. The annual fast ice cycle shows significant changes over the period of investigation, with tendencies toward later fast ice formation and earlier breakup. These tendencies result in an overall decrease of the fast ice season by 2.8 d/yr, which is significantly higher than previously reported trends.

  17. Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Ghan, Steven; Ovchinnikov, Mikhail; Liu, Xiaohong; Rasch, Philip J.; Korolev, Alexei

    2011-01-01

    Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, regimes of cloud particle growth, including the Wegener-Bergeron-Findeisen (WBF) process, and the relationships among properties/processes in mixed-phase clouds are examined to gain insights for improving their representation in General Circulation Models (GCMs). The PDF of the simulated w is well represented by a Gaussian function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. The PDFs of liquid and ice water contents can be approximated by Gamma functions, and a Gaussian function can describe the total water distribution, but a fixed variance assumption should be avoided in both cases. The CRM results support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor near liquid saturation. Thus, ice continues to grow throughout the stratiform cloud but the WBF process occurs in about 50% of cloud volume where liquid and ice co-exist, predominantly in downdrafts. In updrafts, liquid and ice particles grow simultaneously. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The simplified size-independent capacitance of ice particles used in GCMs could lead to large deviations in ice depositional growth.

  18. Local Interactions of Hydrometeors by Diffusion in Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    Baumgartner, Manuel; Spichtinger, Peter

    2017-04-01

    Mixed-phase clouds, containing both ice particles and liquid droplets, are important for the Earth-Atmosphere system. They modulate the radiation budget by a combination of albedo effect and greenhouse effect. In contrast to liquid water clouds, the radiative impact of clouds containing ice particles is still uncertain. Scattering and absorption highly depends in microphysical properties of ice crystals, e.g. size and shape. In addition, most precipitation on Earth forms via the ice phase. Thus, better understanding of ice processes as well as their representation in models is required. A key process for determining shape and size of ice crystals is diffusional growth. Diffusion processes in mixed-phase clouds are highly uncertain; in addition they are usually highly simplified in cloud models, especially in bulk microphysics parameterizations. The direct interaction between cloud droplets and ice particles, due to spatial inhomogeneities, is ignored; the particles can only interact via their environmental conditions. Local effects as supply of supersaturation due to clusters of droplets around ice particles are usually not represented, although they form the physical basis of the Wegener-Bergeron-Findeisen process. We present direct numerical simulations of the interaction of single ice particles and droplets, especially their local competition for the available water vapor. In addition, we show an approach to parameterize local interactions by diffusion. The suggested parameterization uses local steady-state solutions of the diffusion equations for water vapor for an ice particle as well as a droplet. The individual solutions are coupled together to obtain the desired interaction. We show some results of the scheme as implemented in a parcel model.

  19. Active volcanism beneath the West Antarctic ice sheet and implications for ice-sheet stability

    USGS Publications Warehouse

    Blankenship, D.D.; Bell, R.E.; Hodge, S.M.; Brozena, J.M.; Behrendt, John C.; Finn, C.A.

    1993-01-01

    IT is widely understood that the collapse of the West Antarctic ice sheet (WAIS) would cause a global sea level rise of 6 m, yet there continues to be considerable debate about the detailed response of this ice sheet to climate change1-3. Because its bed is grounded well below sea level, the stability of the WAIS may depend on geologically controlled conditions at the base which are independent of climate. In particular, heat supplied to the base of the ice sheet could increase basal melting and thereby trigger ice streaming, by providing the water for a lubricating basal layer of till on which ice streams are thought to slide4,5. Ice streams act to protect the reservoir of slowly moving inland ice from exposure to oceanic degradation, thus enhancing ice-sheet stability. Here we present aerogeophysical evidence for active volcanism and associated elevated heat flow beneath the WAIS near the critical region where ice streaming begins. If this heat flow is indeed controlling ice-stream formation, then penetration of ocean waters inland of the thin hot crust of the active portion of the West Antarctic rift system could lead to the disappearance of ice streams, and possibly trigger a collapse of the inland ice reservoir.

  20. Fjord dynamics and glacio-marine interactions on Northern Ellesmere Island, Canada

    NASA Astrophysics Data System (ADS)

    Hamilton, A.; Mueller, D.; Laval, B.

    2012-12-01

    Despite the existence of ice shelves and glacier tongues along the northern coast of Ellesmere Island, Canada, for the majority of the past 4000 years (Evans and England, 1992; Antoniades et al., 2011) recent atmospheric warming has contributed to collapse of the remaining ice shelves and the loss of rare ice-shelf dammed lakes (epishelf lakes) (Mueller et al., 2003, 2008; Copland et al., 2007). These studies have primarily addressed surface processes as the causal factors for ice shelf breakup, but changes in ocean stratification and heat flux, meltwater input, and subglacial thermodynamics may strongly influence the integrity and fate of these systems. Despite the growing evidence of the importance of oceanic processes on tidewater glacier mass balance in Greenlandic fjords (Holland et al., 2008; Johnson et al., 2011; Straneo et al., 2011) these processes remain poorly studied on related systems in the Canadian Arctic Archipelago (CAA). In addition, the recent sharp increase in mass loss from the glaciers and ice caps of the CAA, primarily in the form of meltwater runoff (Gardner et al., 2011) suggest understanding the aquatic and oceanic factors contributing to ice shelf and glacier tongue integrity and epishelf lake formation is critical. We will present observations from the Milne Fjord ice shelf, epishelf lake, and glacier tongue system on the northern coast of Ellesmere Island, Canada (Fig. 1). Two years of field observations include a 15-month under-ice ocean mooring deployment, through-ice oceanographic CTD and current velocity profiles, and ice mass balance estimates from ablation stake and GPR surveys. We will present the first ever observations of the seasonal and episodic oceanographic variations of Milne Fjord, with particular focus on ocean-epishelf lake-ice shelf dynamics. We aim to understand how all ice and ocean components interact to determine the evolution and stability of the system, with the goal of understanding and perhaps predicting large ice calving events and epishelf lake drainage. Figure 1. Elevation schematic of Milne Fjord, Ellesmere Island showing the ice shelf-dammed freshwater lake overlying deeper saltwater between the floating ice shelf and glacier tongue. Processes shown include a hypothesized estuarine-like fjord circulation, supra- and sub-glacial runoff, basal ice melting, tides, and sub-ice shelf freshwater outflow.

  1. A New Unusual Ice-induced Sedimentary Structure: the Silt Mushroom

    PubMed Central

    Jianhua, Zhong; Liangtian, Ni; Ningliang, Sun; Chuang, Liu; Bing, Hao; Mengchun, Cao; xin, Chen; Ke, Luo; Shengxin, Liu; Leitong, Huang; Guanqun, Yang; Shaojie, Wang; Feifei, Su; Xuejing, He; Yanqiu, Xue

    2016-01-01

    Upon channel bars or point bars within the lows of the Yellow River, a new sedimentary structure, named ‘silt mushroom’, has been observed. The process of their formation is interpreted to be via the ice process. The name, the silt mushroom comes from their figurative form. This is because they look somewhat similar to mushroom’s in size and shape; being in the range of 1 to 10 cm in diameter, with the medium 3–5 cm, and on average 10 cm in height, occuring generally in groups, and occasionally in isolation in relatively soft silt. They develop in the transition from winter to spring, and are convincingly related to ice processes. Ice-induced silt mushrooms are best examined in association with the many other newly discovered ice-induced sedimentary structures (over 20 kinds). Clearly, up to now, ice processes have been significantly underestimated. With the substantial discovery of the ice-induced silt mushroom, it opens up new questions. This is because its structure mirrors the same sedimentary structures found in rocks, questioning their genesis, and sedimentary environment analysis. This achievement is significant not only in sedimentology, but also in palaeogeography, palaeoclimate, geological engineering, hydraulics and fluviology. PMID:27833155

  2. 'Scaling' analysis of the ice accretion process on aircraft surfaces

    NASA Technical Reports Server (NTRS)

    Keshock, E. G.; Tabrizi, A. H.; Missimer, J. R.

    1982-01-01

    A comprehensive set of scaling parameters is developed for the ice accretion process by analyzing the energy equations of the dynamic freezing zone and the already frozen ice layer, the continuity equation associated with supercooled liquid droplets entering into and impacting within the dynamic freezing zone, and energy equation of the ice layer. No initial arbitrary judgments are made regarding the relative magnitudes of each of the terms. The method of intrinsic reference variables in employed in order to develop the appropriate scaling parameters and their relative significance in rime icing conditions in an orderly process, rather than utilizing empiricism. The significance of these parameters is examined and the parameters are combined with scaling criteria related to droplet trajectory similitude.

  3. cm-scale variations of crystal orientation fabric in cold Alpine ice core from Colle Gnifetti

    NASA Astrophysics Data System (ADS)

    Kerch, Johanna; Weikusat, Ilka; Eisen, Olaf; Wagenbach, Dietmar; Erhardt, Tobias

    2015-04-01

    Analysis of the microstructural parameters of ice has been an important part of ice core analyses so far mainly in polar cores in order to obtain information about physical processes (e.g. deformation, recrystallisation) on the micro- and macro-scale within an ice body. More recently the influence of impurities and climatic conditions during snow accumulation on these processes has come into focus. A deeper understanding of how palaeoclimate proxies interact with physical properties of the ice matrix bears relevance for palaeoclimatic interpretations, improved geophysical measurement techniques and the furthering of ice dynamical modeling. Variations in microstructural parameters e.g. crystal orientation fabric or grain size can be observed on a scale of hundreds and tens of metres but also on a centimetre scale. The underlying processes are not necessarily the same on all scales. Especially for the short-scale variations many questions remain unanswered. We present results from a study that aims to investigate following hypotheses: 1. Variations in grain size and fabric, i.e. strong changes of the orientation of ice crystals with respect to the vertical, occur on a centimetre scale and can be observed in all depths of an ice core. 2. Palaeoclimate proxies like dust and impurities have an impact on the microstructural processes and thus are inducing the observed short-scale variations in grain size and fabric. 3. The interaction of proxies with the ice matrix leads to depth intervals that show correlating behaviour as well as ranges with anticorrelation between microstructural parameters and palaeoclimatic proxies. The respective processes need to be identified. Fabric Analyser measurements were conducted on more than 80 samples (total of 8 m) from different depth ranges of a cold Alpine ice core (72 m length) drilled in 2013 at Colle Gnifetti, Switzerland/Italy. Results were obtained by automatic image processing, providing estimates for grain size distributions and crystal orientation fabric, and comparison with data from continuous flow analysis of chemical impurities. A microstructural characterisation of the analysed core is presented with emphasis on the observed variations in crystal orientation fabric. The relevance of these results for palaeoclimate reconstruction and geophysical applications in ice are discussed.

  4. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.

    2017-08-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  5. Waves and mesoscale features in the marginal ice zone

    NASA Technical Reports Server (NTRS)

    Liu, Antony K.; Peng, Chih Y.

    1993-01-01

    Ocean-ice interaction processes in the Marginal Ice Zone (MIZ) by waves and mesoscale features, such as upwelling and eddies, are studied using ERS-1 Synthetic Aperture Radar (SAR) imagery and wave-ice interaction models. Satellite observations of mesoscale features can play a crucial role in ocean-ice interaction study.

  6. 14 CFR 125.221 - Icing conditions: Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplane that has frost, ice, or snow adhering to any propeller, windshield, stabilizing or control surface; to a powerplant installation; or to an airspeed, altimeter, rate of climb, flight attitude instrument... is a check to make sure the wings and control surfaces are free of frost, ice, or snow. (2) The...

  7. 14 CFR 125.221 - Icing conditions: Operating limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... airplane that has frost, ice, or snow adhering to any propeller, windshield, stabilizing or control surface; to a powerplant installation; or to an airspeed, altimeter, rate of climb, flight attitude instrument... is a check to make sure the wings and control surfaces are free of frost, ice, or snow. (2) The...

  8. 14 CFR 125.221 - Icing conditions: Operating limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplane that has frost, ice, or snow adhering to any propeller, windshield, stabilizing or control surface; to a powerplant installation; or to an airspeed, altimeter, rate of climb, flight attitude instrument... is a check to make sure the wings and control surfaces are free of frost, ice, or snow. (2) The...

  9. 14 CFR 125.221 - Icing conditions: Operating limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplane that has frost, ice, or snow adhering to any propeller, windshield, stabilizing or control surface; to a powerplant installation; or to an airspeed, altimeter, rate of climb, flight attitude instrument... is a check to make sure the wings and control surfaces are free of frost, ice, or snow. (2) The...

  10. Reynolds-averaged Navier-Stokes based ice accretion for aircraft wings

    NASA Astrophysics Data System (ADS)

    Lashkajani, Kazem Hasanzadeh

    This thesis addresses one of the current issues in flight safety towards increasing icing simulation capabilities for prediction of complex 2D and 3D glaze ice shapes over aircraft surfaces. During the 1980's and 1990's, the field of aero-icing was established to support design and certification of aircraft flying in icing conditions. The multidisciplinary technologies used in such codes were: aerodynamics (panel method), droplet trajectory calculations (Lagrangian framework), thermodynamic module (Messinger model) and geometry module (ice accretion). These are embedded in a quasi-steady module to simulate the time-dependent ice accretion process (multi-step procedure). The objectives of the present research are to upgrade the aerodynamic module from Laplace to Reynolds-Average Navier-Stokes equations solver. The advantages are many. First, the physical model allows accounting for viscous effects in the aerodynamic module. Second, the solution of the aero-icing module directly provides the means for characterizing the aerodynamic effects of icing, such as loss of lift and increased drag. Third, the use of a finite volume approach to solving the Partial Differential Equations allows rigorous mesh and time convergence analysis. Finally, the approaches developed in 2D can be easily transposed to 3D problems. The research was performed in three major steps, each providing insights into the overall numerical approaches. The most important realization comes from the need to develop specific mesh generation algorithms to ensure feasible solutions in very complex multi-step aero-icing calculations. The contributions are presented in chronological order of their realization. First, a new framework for RANS based two-dimensional ice accretion code, CANICE2D-NS, is developed. A multi-block RANS code from U. of Liverpool (named PMB) is providing the aerodynamic field using the Spalart-Allmaras turbulence model. The ICEM-CFD commercial tool is used for the iced airfoil remeshing and field smoothing. The new coupling is fully automated and capable of multi-step ice accretion simulations via a quasi-steady approach. In addition, the framework allows for flow analysis and aerodynamic performance prediction of the iced airfoils. The convergence of the quasi-steady algorithm is verified and identifies the need for an order of magnitude increase in the number of multi-time steps in icing simulations to achieve solver independent solutions. Second, a Multi-Block Navier-Stokes code, NSMB, is coupled with the CANICE2D icing framework. Attention is paid to the roughness implementation of the ONERA roughness model within the Spalart-Allmaras turbulence model, and to the convergence of the steady and quasi-steady iterative procedure. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases. The results of CANICE2D-NS show good agreement with experimental data both in terms of predicted ice shapes as well as aerodynamic analysis of predicted and experimental ice shapes. Third, an efficient single-block structured Navier-Stokes CFD code, NSCODE, is coupled with the CANICE2D-NS icing framework. Attention is paid to the roughness implementation of the Boeing model within the Spalart-Allmaras turbulence model, and to acceleration of the convergence of the steady and quasi-steady iterative procedures. Effects of uniform surface roughness in quasi-steady ice accretion simulation are analyzed through different validation test cases, including code to code comparisons with the same framework coupled with the NSMB Navier-Stokes solver. The efficiency of the J-multigrid approach to solve the flow equations on complex iced geometries is demonstrated. Since it was noted in all these calculations that the ICEM-CFD grid generation package produced a number of issues such as inefficient mesh quality and smoothing deficiencies (notably grid shocks), a fourth study proposes a new mesh generation algorithm. A PDE based multi-block structured grid generation code, NSGRID, is developed for this purpose. The study includes the developments of novel mesh generation algorithms over complex glaze ice shapes containing multi-curvature ice accretion geometries, such as single/double ice horns. The twofold approaches tackle surface geometry discretization as well as field mesh generation. An adaptive curvilinear curvature control algorithm is constructed solving a 1D elliptic PDE equation with periodic source terms. This method controls the arclength grid spacing so that high convex and concave curvature regions around ice horns are appropriately captured and is shown to effectively treat the grid shock problem. Then, a novel blended method is developed by defining combinations of source terms with 2D elliptic equations. The source terms include two common control functions, Sorenson and Spekreijse, and an additional third source term to improve orthogonality. This blended method is shown to be very effective for improving grid quality metrics for complex glaze ice meshes with RANS resolution. The performance in terms of residual reduction per non-linear iteration of several solution algorithms (Point-Jacobi, Gauss-Seidel, ADI, Point and Line SOR) are discussed within the context of a full Multi-grid operator. Details are given on the various formulations used in the linearization process. It is shown that the performance of the solution algorithm depends on the type of control function used. Finally, the algorithms are validated on standard complex experimental ice shapes, demonstrating the applicability of the methods. Finally, the automated framework of RANS based two-dimensional multi-step ice accretion, CANICE2D-NS is developed, coupled with a Multi-Block Navier-Stokes CFD code, NSCODE2D, a Multi-Block elliptic grid generation code, NSGRID2D, and a Multi-Block Eulerian droplet solver, NSDROP2D (developed at Polytechnique Montreal). The framework allows Lagrangian and Eulerian droplet computations within a chimera approach treating multi-elements geometries. The code was tested on public and confidential validation test cases including standard NATO cases. In addition, up to 10 times speedup is observed in the mesh generation procedure by using the implicit line SOR and ADI smoothers within a multigrid procedure. The results demonstrate the benefits and robustness of the new framework in predicting ice shapes and aerodynamic performance parameters.

  11. The East Antarctic Ice Sheet and the Gamburtsev Subglacial Mountains (Invited)

    NASA Astrophysics Data System (ADS)

    Bell, R. E.; Studinger, M.; Ferraccioli, F.; Damaske, D.; Finn, C.; Braaten, D. A.; Fahnestock, M. A.; Jordan, T. A.; Corr, H.; Elieff, S.; Frearson, N.; Block, A. E.; Rose, K.

    2009-12-01

    Models of the onset of glaciation in Antarctica routinely document the early growth of the ice sheet on the summit of the Gamburtsev Subglacial Mountains in the center of the East Antarctic Craton. While ice sheet models replicate the formation of the East Antarctic ice sheet 35 million years ago, the age, evolution and structure of the Gamburtsev Mountains remain completely unresolved. During the International Polar Year scientists from seven nations have launched a major collaborative program (AGAP) to explore the Gamburtsev Subglacial Mountains buried by the East Antarctic ice sheet and bounded by numerous subglacial lakes. The AGAP umbrella is a multi-national, multi-disciplinary effort and includes aerogeophysics, passive seismology, traverse programs and will be complimented by future ice core and bedrock drilling. A major new airborne data set including gravity; magnetics; ice thickness; SAR images of the ice-bed interface; near-surface and deep internal layers; and ice surface elevation is providing insights into a more dynamic East Antarctica. More than 120,000 km of aerogeophysical data have been acquired from two remote field camps during the 2008/09 field season. AGAP effort was designed to address several fundamental questions including: 1) What role does topography play in the nucleation of continental ice sheets? 2) How do tectonic processes control the formation, distribution, and stability of subglacial lakes? The preliminary analysis of this major new data set indicated these 3000m high mountains are deeply dissected by a dendritic system. The northern margin of the mountain range terminates against the inland extent of the Lambert Graben. Evidence of the onset of glaciation is preserved as cirques and U shaped valleys along the axis of the uplifted massifs. The geomorphology reflects the interaction between the ice sheet and the Gamburtsev Mountains. Bright reflectors in the radar data in the deep valleys indicate the presence of water that has the potential to influence ice sheet flow. Crevassing and disrupted internal layers are present in the deep ice found in the inland extent of the Lambert Graben. Preliminary analysis indicates both a more dynamic East Antarctic ice sheet and a more complex tectonic evolution for East Antarctica.

  12. Field and Satellite Observations of the Formation and Distribution of Arctic Atmospheric Bromine Above a Rejuvenated Sea Ice Cover

    NASA Technical Reports Server (NTRS)

    Nghiem, Son V.; Rigor, Ignatius G.; Richter, Andreas; Burrows, John P.; Shepson, Paul B.; Bottenheim, Jan; Barber, David G.; Steffen, Alexandra; Latonas, Jeff; Wang, Feiyue; hide

    2012-01-01

    Recent drastic reduction of the older perennial sea ice in the Arctic Ocean has resulted in a vast expansion of younger and saltier seasonal sea ice. This increase in the salinity of the overall ice cover could impact tropospheric chemical processes. Springtime perennial ice extent in 2008 and 2009 broke the half-century record minimum in 2007 by about one million km2. In both years seasonal ice was dominant across the Beaufort Sea extending to the Amundsen Gulf, where significant field and satellite observations of sea ice, temperature, and atmospheric chemicals have been made. Measurements at the site of the Canadian Coast Guard Ship Amundsen ice breaker in the Amundsen Gulf showed events of increased bromine monoxide (BrO), coupled with decreases of ozone (O3) and gaseous elemental mercury (GEM), during cold periods in March 2008. The timing of the main event of BrO, O3, and GEM changes was found to be consistent with BrO observed by satellites over an extensive area around the site. Furthermore, satellite sensors detected a doubling of atmospheric BrO in a vortex associated with a spiral rising air pattern. In spring 2009, excessive and widespread bromine explosions occurred in the same region while the regional air temperature was low and the extent of perennial ice was significantly reduced compared to the case in 2008. Using satellite observations together with a Rising-Air-Parcel model, we discover a topographic control on BrO distribution such that the Alaskan North Slope and the Canadian Shield region were exposed to elevated BrO, whereas the surrounding mountains isolated the Alaskan interior from bromine intrusion.

  13. Hydrogeologic Controls on Water Dynamics in a Discontinuous Permafrost, Lake-Rich Landscape

    NASA Astrophysics Data System (ADS)

    Walvoord, M. A.; Briggs, M. A.; Day-Lewis, F. D.; Jepsen, S. M.; Lane, J. W., Jr.; McKenzie, J. M.; Minsley, B. J.; Striegl, R. G.; Voss, C. I.; Wellman, T. P.

    2014-12-01

    Glacier sliding plays a central role in ice dynamics. A number of remote sensing and deep drilling initiatives have therefore focused on the ice-bed interface. Although these techniques have provided valuable insights into bed properties, they do not supply theorists with data of sufficient temporal and spatial resolution to rigorously test mathematical sliding laws. As an alternative, passive seismic techniques have gained popularity in glacier monitoring. Analysis of glacier-related seismic sources ('icequakes') has become a useful technique to study inaccessible regions of the cryosphere, including the ice-bed interface. Seismic monitoring networks on the polar ice sheets have shown that ice sliding is not only a smooth process involving viscous deformation and regelation of basal ice layers. Instead, ice streams exhibit sudden slip episodes over their beds and intermittent phases of partial or complete stagnation. Here we discuss new and recently published discoveries of basal seismic sources beneath various glacial bodies. We revisit basal seismicity of hard-bedded Alpine glaciers, which is not the result of pure stick-slip motion. Sudden changes in seismicity suggest that the local configuration of the subglacial drainage system undergoes changes on sub daily time scales. Accordingly, such observations place constraints on basal resistance and sliding of hard-bedded glaciers. In contrast, certain clusters of stick-slip dislocations associated with micro seismicity beneath the Greenland ice sheet undergo diurnal variations in magnitudes and inter event times. This is best explained with a soft till bed, which hosts the shear dislocations and whose strength varies in response to changes in subglacial water pressure. These results suggest that analysis of basal icequakes is well suited for characterizing glacier and ice sheet beds. Future studies should address the relative importance between "smooth" and seismogenic sliding in different glacial environments.

  14. Taxon interactions control the distributions of cryoconite bacteria colonizing a High Arctic ice cap.

    PubMed

    Gokul, Jarishma K; Hodson, Andrew J; Saetnan, Eli R; Irvine-Fynn, Tristram D L; Westall, Philippa J; Detheridge, Andrew P; Takeuchi, Nozomu; Bussell, Jennifer; Mur, Luis A J; Edwards, Arwyn

    2016-08-01

    Microbial colonization of glacial ice surfaces incurs feedbacks which affect the melting rate of the ice surface. Ecosystems formed as microbe-mineral aggregates termed cryoconite locally reduce ice surface albedo and represent foci of biodiversity and biogeochemical cycling. Consequently, greater understanding the ecological processes in the formation of functional cryoconite ecosystems upon glacier surfaces is sought. Here, we present the first bacterial biogeography of an ice cap, evaluating the respective roles of dispersal, environmental and biotic filtration occurring at local scales in the assembly of cryoconite microbiota. 16S rRNA gene amplicon semiconductor sequencing of cryoconite colonizing a Svalbard ice cap coupled with digital elevation modelling of physical parameters reveals the bacterial community is dominated by a ubiquitous core of generalist taxa, with evidence for a moderate pairwise distance-decay relationship. While geographic position and melt season duration are prominent among environmental predictors of community structure, the core population of taxa appears highly influential in structuring the bacterial community. Taxon co-occurrence network analysis reveals a highly modular community structured by positive interactions with bottleneck taxa, predominantly Actinobacteria affiliated to isolates from soil humus. In contrast, the filamentous cyanobacterial taxon (assigned to Leptolyngbya/Phormidesmis pristleyi) which dominates the community and binds together granular cryoconite are poorly connected to other taxa. While our study targeted one ice cap, the prominent role of generalist core taxa with close environmental relatives across the global cryosphere indicate discrete roles for cosmopolitan Actinobacteria and Cyanobacteria as respective keystone taxa and ecosystem engineers of cryoconite ecosystems colonizing ice caps. © 2016 John Wiley & Sons Ltd.

  15. Frozen waterfall (or ice cascade) growth and decay: a thermodynamic approach

    NASA Astrophysics Data System (ADS)

    Gauthier, Francis; Montagnat, Maurine; Weiss, Jérôme; Allard, Michel; Hétu, Bernard

    2013-04-01

    The ice volume evolution of an ice cascade was studied using a thermodynamic model. The model was developed from meteorological data collected in the vicinity of the waterfall and validated from ice volume measurements estimated from terrestrial LiDAR images. The ice cascade forms over a 45 m high rockwall located in northern Gaspésie, Québec, Canada. Two stages of formation were identified. During the first stage, the growth is mainly controlled by air convection around the flowing and freefalling water. The ice cascade growth rate increases with the decreasing air temperature below 0°C and when the water flow reaches its lowest level. During the second stage, the ice cascade covers the entire rockwall surface, water flow is isolated from the outside environment and ice volume increases asymptotically. Heat is evacuated from the water flow through the ice cover by conduction. The growth is mainly controlled by the radiation energy balance but more specifically by the longwave radiation emitted at the ice surface during the night. In spring, melting of the ice cascade is clearly dependant on the sensible heat carried by the increasing water flow and the diffuse solar radiation received at the ice surface during the day.

  16. Arctic continental shelf morphology related to sea-ice zonation, Beaufort Sea, Alaska

    USGS Publications Warehouse

    Reimnitz, E.; Toimil, L.; Barnes, P.

    1978-01-01

    Landsat-1 and NOAA satellite imagery for the winter 1972-1973, and a variety of ice and sea-floor data were used to study sea-ice zonation and dynamics and their relation to bottom morphology and geology on the Beaufort Sea continental shelf of arctic Alaska. In early winter the location of the boundary between undeformed fast ice and westward-drifting pack ice of the Pacific Gyre is controlled by major coastal promontories. Pronounced linear pressure- and shear-ridges, as well as hummock fields, form along this boundary and are stabilized by grounding, generally between the 10- and 20-m isobaths. Slippage along this boundary occurs intermittently at or seaward of the grounded ridges, forming new grounded ridges in a widening zone, the stamukhi zone, which by late winter extends out to the 40-m isobath. Between intermittent events along the stamukhi zone, pack-ice drift and slippage is continuous along the shelf edge, at average rates of 3-10 km/day. Whether slippage occurs along the stamukhi zone or along the shelf edge, it is restricted to a zone several hundred meters wide, and ice seaward of the slip face moves at uniform rates without discernible drag effects. A causal relationship is seen between the spatial distribution of major ice-ridge systems and offshore shoals downdrift of major coastal promontories. The shoals appear to have migrated shoreward under the influence of ice up to 400 m in the last 25 years. The sea floor seaward of these shoals within the stamukhi zone shows high ice-gouge density, large incision depths, and a high degree of disruption of internal sedimentary structures. The concentration of large ice ridges and our sea floor data in the stamukhi zone indicate that much of the available marine energy is expended here, while the inner shelf and coast, where the relatively undeformed fast ice grows, are sheltered. There is evidence that anomalies in the overall arctic shelf profile are related to sea-ice zonation, ice dynamics, and bottom processes. A proposed ice zonation, including zones of (1) bottom-fast ice, (2) floating fast ice, (3) stamukhi, and (4) seasonal pack ice, emphasizes ice interaction with the shelf surface and differs from previous zonation. Certain aspects of the results reported here are directly applicable to planned offshore developments in the Prudhoe Bay oil field. Properly placed artificial structures similar to offshore shoals should be able to withstand the forces of the ice, serve to modify the observed ice zonation, and might be used to make the environment less hostile to human activities. ?? 1978.

  17. Investigating and Modeling Ecosystem Response to an Experimental and a Natural Ice Storm

    NASA Astrophysics Data System (ADS)

    Fakhraei, H.; Driscoll, C. T.; Rustad, L.; Campbell, J. L.; Groffman, P.; Fahey, T.; Likens, G.; Swaminathan, R.

    2017-12-01

    Our understanding of ecosystem response to the extreme events is generally limited to rare observations from the natural historical events. However, investigating extreme events under controlled conditions can improve our understanding of these natural phenomena. A novel field experiment was conducted in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire in the northeastern United States to quantify the influence of ice storms on the ecological processes. During subfreezing conditions in the winters of 2016 and 2017, water from a nearby stream was pumped and sprayed on the canopy of eight experimental plots to accrete ice to a targeted thickness on the canopy. The experiment was conducted at three levels of icing thickness (0.25, 0.5, 0.75 in.) in 2016 comparable to the naturally occurring 1998 ice storm and a second 0.5 in. treatment 2017 which were compared with reference plots. The most notable response of the icing treatments was a marked increase in fine and course litter fall which increased exponentially with increases in the icing thickness. Post-treatment openings in the canopy caused short-term increases in soil temperature in the ice-treatment plots compared to the reference plots. No response from the ice storm treatments were detected for soil moisture, net N mineralization, net nitrification, or denitrification after both natural and experimental ice storm. In contrast to the marked increase in the stream water nitrate after the natural occurring 1998 ice storm, we have not observed any significant change in soil solution N concentrations in the experimental ice storm treatments. Inconsistency in the response between the natural and experimental ice storm is likely due to differences in geophysical characteristics of the study sites including slope and lateral uptake of nutrient by the trees outside the experimental plots. In order to evaluate the long-term impacts of ice storms on northern hardwood forests, we used the biogeochemical model, PnET-BGC. The model was calibrated to the study watersheds using observations from the natural and experimental ice storms. Future projections for ice storm events were estimated from an advanced climate model and applied to the calibrated PnET-BGC model to simulate future impacts of ice storms on the northern hardwood forests.

  18. Ultra-low rare earth element content in accreted ice from sub-glacial Lake Vostok, Antarctica

    NASA Astrophysics Data System (ADS)

    Gabrielli, Paolo; Planchon, Frederic; Barbante, Carlo; Boutron, Claude F.; Petit, Jean Robert; Bulat, Sergey; Hong, Sungmin; Cozzi, Giulio; Cescon, Paolo

    2009-10-01

    This paper reports the first rare earth element (REE) concentrations in accreted ice refrozen from sub-glacial Lake Vostok (East Antarctica). REE were determined in various sections of the Vostok ice core in order to geochemically characterize its impurities. Samples were obtained from accreted ice and, for comparison, from the upper glacier ice of atmospheric origin (undisturbed, disturbed and glacial flour ice). REE concentrations ranged between 0.8-56 pg g -1 for Ce and 0.0035-0.24 pg g -1 for Lu in glacier ice, and between <0.1-24 pg g -1 for Ce and <0.0004-0.02 pg g -1 for Lu in accreted ice. Interestingly, the REE concentrations in the upper accreted ice (AC 1; characterized by visible aggregates containing a mixture of very fine terrigenous particles) and in the deeper accreted ice (AC 2; characterized by transparent ice) are lower than those in fresh water and seawater, respectively. We suggest that such ultra-low concentrations are unlikely to be representative of the real REE content in Lake Vostok, but instead may reflect phase exclusion processes occurring at the ice/water interface during refreezing. In particular, the uneven spatial distribution (on the order of a few cm) and the large range of REE concentrations observed in AC 1 are consistent with the occurrence/absence of the aggregates in adjacent ice, and point to the presence of solid-phase concentration/exclusion processes occurring within separate pockets of frazil ice during AC 1 formation. Interestingly, if the LREE enrichment found in AC 1 was not produced by chemical fractionation occurring in Lake Vostok water, this may reflect a contribution of bedrock material, possibly in combination with aeolian dust released into the lake by melting of the glacier ice. Collectively, this valuable information provides new insight into the accreted ice formation processes, the bedrock geology of East Antarctica as well as the water chemistry and circulation of Lake Vostok.

  19. Ultra-low rare earth element content in accreted ice from sub-glacial Lake Vostok, Antarctica

    NASA Astrophysics Data System (ADS)

    Barbante, C.; Gabrielli, P.; Turetta, C.; Planchon, F.; Boutron, C.; Petit, J. R.; Bulat, S.; Hong, S.; Cozzi, G.; Cescon, P.

    2009-12-01

    We report the first rare earth element (REE) concentrations in accreted ice refrozen from sub-glacial Lake Vostok (East Antarctica). REE were determined in various sections of the Vostok ice core in order to geochemically characterize its impurities. Samples were obtained from accreted ice and, for comparison, from the upper glacier ice of atmospheric origin (undisturbed, disturbed and glacial flour ice). REE concentrations ranged between 0.8-56 pg g-1 for Ce and 0.0035- 0.24 pg g-1 for Lu in glacier ice, and between <0.1-24 pg g-1 for Ce and <0.0004-0.02 pg g-1 for Lu in accreted ice. Interestingly, the REE concentrations in the upper accreted ice (AC1;characterized by visible aggregates containing a mixture of very fine terrigenous particles) and in the deeper accreted ice (AC2; characterized by transparent ice) are lower than those in fresh water and seawater, respectively. We suggest that such ultra-low concentrations are unlikely to be representative of the real REE content in Lake Vostok, but instead may reflect phase exclusion processes occurring at the ice/water interface during refreezing. In particular, the uneven spatial distribution (on the order of a few cm) and the large range of REE concentrations observed in AC1 are consistent with the occurrence/absence of the aggregates in adjacent ice, and point to the presence of solid-phase concentration/exclusion processes occurring within separate pockets of frazil ice during AC1 formation. Interestingly, if the LREE enrichment found in AC1 was not produced by chemical fractionation occurring in Lake Vostok water, this may reflect a contribution of bedrock material, possibly in combination with aeolian dust released into the lake by melting of the glacier ice. Collectively, this valuable information provides new insight into the accreted ice formation processes, the bedrock geology of East Antarctica as well as the water chemistry and circulation of Lake Vostok.

  20. Do Europa's Mountains Have Roots? Erosion of Topography at the Ice-Water Interface via the "Ice Pump"

    NASA Astrophysics Data System (ADS)

    Goodman, J. C.

    2016-12-01

    Are topographic features on the surface of Europa and other icy worlds isostatically compensated by variations in shell thickness (Airy isostasy)? This is only possible if variations in shell thickness can remain stable over geologic time. Here we show that melting and freezing driven by the pressure dependence of the melting point of water - the "ice pump" - can rapidly erase topography at the ice/water interface. We consider ice pumps driven by both tidal action and buoyancy-driven flow. We first show that as tidal action drives the ocean up and down along a sloping interface, ice will be melted from areas where it's thickest and deposited where the ice is thinnest. We show that this process causes the ice interface topography to relax according to a simple "diffusion" linear partial differential equation. We estimate that a 10-km-wide topographic feature would be erased by the tidal ice pump in 3000 years if Europa's tidal current amplitude is 1 cm/s; however, this timescale is inversely proportional to the cube of the tidal velocity! Next, we consider an ice pump powered by ascent of meltwater along a sloping ice-water interface. We consider layer-averaged budgets for heat, mass, and momentum, along with turbulent mixing of the meltwater layer with underlying seawater via a Richardson number dependent entrainment process, and use these to estimate the thickness and mass flux of the meltwater layer. From this we estimate the rate of melting and freezing at the interface. These two ice pump processes combine with the glacial flow of warm basal ice to rapidly flatten out any variations in the height of the ice-water interface: Europa's ice/water interface may be perfectly flat! If so, topography at Europa's surface can only be supported by variations in density of the shell or the strength of the brittle surface ice.

  1. Ice Nucleation Efficiency of Hydroxylated Organic Surfaces Is Controlled by Their Structural Fluctuations and Mismatch to Ice.

    PubMed

    Qiu, Yuqing; Odendahl, Nathan; Hudait, Arpa; Mason, Ryan; Bertram, Allan K; Paesani, Francesco; DeMott, Paul J; Molinero, Valeria

    2017-03-01

    Heterogeneous nucleation of ice induced by organic materials is of fundamental importance for climate, biology, and industry. Among organic ice-nucleating surfaces, monolayers of long chain alcohols are particularly effective, while monolayers of fatty acids are significantly less so. As these monolayers expose to water hydroxyl groups with an order that resembles the one in the basal plane of ice, it was proposed that lattice matching between ice and the surface controls their ice-nucleating efficiency. Organic monolayers are soft materials and display significant fluctuations. It has been conjectured that these fluctuations assist in the nucleation of ice. Here we use molecular dynamic simulations and laboratory experiments to investigate the relationship between the structure and fluctuations of hydroxylated organic surfaces and the temperature at which they nucleate ice. We find that these surfaces order interfacial water to form domains with ice-like order that are the birthplace of ice. Both mismatch and fluctuations decrease the size of the preordered domains and monotonously decrease the ice freezing temperature. The simulations indicate that fluctuations depress the freezing efficiency of monolayers of alcohols or acids to half the value predicted from lattice mismatch alone. The model captures the experimental trend in freezing efficiencies as a function of chain length and predicts that alcohols have higher freezing efficiency than acids of the same chain length. These trends are mostly controlled by the modulation of the structural mismatch to ice. We use classical nucleation theory to show that the freezing efficiencies of the monolayers are directly related to their free energy of binding to ice. This study provides a general framework to relate the equilibrium thermodynamics of ice binding to a surface and the nonequilibrium ice freezing temperature and suggests that these could be predicted from the structure of interfacial water.

  2. Tracing Marine Cryptotephras in the North Atlantic during the Last Glacial Period

    NASA Astrophysics Data System (ADS)

    Abbott, Peter; Davies, Siwan; Griggs, Adam; Bourne, Anna

    2017-04-01

    Tephrochronology is a powerful technique that can be utilised for the independent correlation and synchronisation of disparate palaeoclimatic records from different depositional environments. There is a high potential to utilise this technique to integrate ice, marine and terrestrial records to study climatic phasing within the North Atlantic region due to the high eruptive frequency of Icelandic volcanic systems. However, until now North Atlantic marine records have been relatively understudied. Here we report on investigations to define a tephra framework integrating new studies of cryptotephra horizons within a wide network of North Atlantic marine cores with horizons identified in prior work. This framework has the potential to underpin the correlation of the marine records to the Greenland ice-core records and European terrestrial sequences. Tephrochronological investigations were conducted on 13 marine sequences from a range of locations and depositional settings using cryptotephra extraction techniques, including density and magnetic separation, to gain high resolution glass shard concentration profiles and rigorous single-shard major element geochemical analysis to characterise identified deposits. Cryptotephras with an Icelandic source were identified in many records and displayed diversity in shard concentration profiles and the geochemical homo/heterogeneity of shards within the deposits. These differences reflect spatial and temporal variability in the operation of a range of transport processes, e.g. airfall, sea-ice and iceberg rafting, and post-depositional processes, e.g. bioturbation and secondary redeposition. The operation of these processes within the marine environment can potentially impart a temporal delay on tephra deposition and hamper the placement of the isochron, therefore, it is crucial to assess their influence. To aid this assessment a range of deposit types with common transport and depositional histories have been defined. Spatial patterns in the occurrence of these deposit types have been detected, the dominant controls at different sites explored and key regions of the North Atlantic with a greater likelihood for preserving isochronous deposits identified. Overall, these investigations have allowed a framework of isochronous marine cryptotephras to be defined for the last glacial period. The most widespread deposit is the rhyolitic phase of North Atlantic Ash Zone II, identified in 9 of the marine sequences and providing a direct tie-line to the Greenland ice-cores records. The framework is dominated by horizons with a basaltic composition, predominantly sourced from the Icelandic Grímsvötn volcanic system but horizons with Katla, Hekla, Kverkfjöll, Veidivötn and Vestmannaeyjar like compositions have also been isolated. Correlations to horizons in the Greenland ice-core tephra framework are being explored, however, this is a challenging process due to the large number of horizons with similar geochemical signatures in the records and the difference in temporal resolution and stratigraphic control between the ice and marine sequences.

  3. Random and externally controlled occurrences of Dansgaard-Oeschger events

    NASA Astrophysics Data System (ADS)

    Lohmann, Johannes; Ditlevsen, Peter D.

    2018-05-01

    Dansgaard-Oeschger (DO) events constitute the most pronounced mode of centennial to millennial climate variability of the last glacial period. Since their discovery, many decades of research have been devoted to understand the origin and nature of these rapid climate shifts. In recent years, a number of studies have appeared that report emergence of DO-type variability in fully coupled general circulation models via different mechanisms. These mechanisms result in the occurrence of DO events at varying degrees of regularity, ranging from periodic to random. When examining the full sequence of DO events as captured in the North Greenland Ice Core Project (NGRIP) ice core record, one can observe high irregularity in the timing of individual events at any stage within the last glacial period. In addition to the prevailing irregularity, certain properties of the DO event sequence, such as the average event frequency or the relative distribution of cold versus warm periods, appear to be changing throughout the glacial. By using statistical hypothesis tests on simple event models, we investigate whether the observed event sequence may have been generated by stationary random processes or rather was strongly modulated by external factors. We find that the sequence of DO warming events is consistent with a stationary random process, whereas dividing the event sequence into warming and cooling events leads to inconsistency with two independent event processes. As we include external forcing, we find a particularly good fit to the observed DO sequence in a model where the average residence time in warm periods are controlled by global ice volume and cold periods by boreal summer insolation.

  4. CryoSat swath altimetry to measure ice cap and glacier surface elevation change

    NASA Astrophysics Data System (ADS)

    Tepes, P.; Gourmelen, N.; Escorihuela, M. J.; Wuite, J.; Nagler, T.; Foresta, L.; Brockley, D.; Baker, S.; Roca, M.; Shepherd, A.; Plummer, S.

    2016-12-01

    Satellite altimetry has been used extensively in the past few decades to observe changes affecting large and remote regions covered by land ice such as the Greenland and Antarctic ice sheets. Glaciers and ice caps have been studied less extensively due to limitation of altimetry over complex topography. However their role in current sea-level budgets is significant and is expected to continue over the next century and beyond (Gardner et al., 2011), particularly in the Arctic where mean annual surface temperatures have recently been increasing twice as fast as the global average (Screen and Simmonds, 2010). Radar altimetry is well suited to monitor elevation changes over land ice due to its all-weather year-round capability of observing ice surfaces. Since 2010, the Synthetic Interferometric Radar Altimeter (SIRAL) on board the European Space Agency (ESA) radar altimetry CryoSat (CS) mission has been collecting ice elevation measurements over glaciers and ice caps. Its Synthetic Aperture Radar Interferometric (SARIn) processing feature reduces the size of the footprint along-track and locates the across-track origin of a surface reflector in the presence of a slope. This offers new perspectives for the measurement of regions marked by complex topography. More recently, data from the CS-SARIn mode have been used to infer elevation beyond the point of closest approach (POCA) with a novel approach known as "swath processing" (Hawley et al., 2009; Gray et al., 2013; Christie et al., 2016; Smith et al., 2016). Together with a denser ground track interspacing of the CS mission, the swath processing technique provides unprecedented spatial coverage and resolution for space borne altimetry, enabling the study of key processes that underlie current changes of ice caps and glaciers. In this study, we use CS swath observations to generate maps of ice elevation change for selected ice caps and glaciers. We present a validation exercise and discuss the benefit of swath processing for assessing glaciers and ice caps changes and their contribution to changes in sea level.

  5. Advances in river ice hydrology 1999-2003

    NASA Astrophysics Data System (ADS)

    Morse, Brian; Hicks, Faye

    2005-01-01

    In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999-2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat.There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable agencies to intervene better at the time of ice-jam-induced floods; and (3) finalize ice-jam prevention methods on the St Lawrence River to safeguard its $2 billion commercial navigation industry. Copyright

  6. Ice sintering timescales at the surface of Europa and implications for surface properties

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie; Phillips, Cynthia B.; Meirion-Griffith, Gareth

    2017-10-01

    The planned exploration of Europa by NASA’s Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa’s landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a “neck” between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa’s subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts.Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa’s surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa’s surface age, suggesting that loose surface ice forms a weak and porous crust. Furthermore, our results suggest that existing models do not accurately quantify all stages of the sintering process for ice, emphasizing the need for more laboratory studies on this topic.

  7. Biomarker-based reconstruction of late Holocene sea-ice variability: East versus West Greenland continental shelf.

    NASA Astrophysics Data System (ADS)

    Kolling, H. M.; Stein, R. H.; Fahl, K.

    2016-12-01

    Sea is a critical component of the climate system and its role is not yet fully understood e.g. the recent rapid decrease in sea ice is not clearly reflected in climate models. This illustrates the need for high-resolution proxy-based sea-ice reconstructions going beyond the time scale of direct measurements in order to understand the processes controlling present and past natural variability of sea ice on short time scales. Here we present the first comparison of two high-resolution biomarker records from the East and West Greenland Shelf for the late Holocene. Both areas are highly sensitive to sea-ice changes as they are influenced by the East Greenland Current, the main exporter of Arctic freshwater and sea ice. On the East Greenland Shelf, we do not find any clear evidence for a long-term increase of sea ice during the late Holocene Neoglacial. This sea-ice record seems to be more sensitive to short-term climate events, such as the Roman Warm Period, the Dark Ages, the Medieval Warm Period and the Little Ice Age. In contrary, the West Greenland Shelf record shows a strong and gradual increase in sea ice concentration and a reduction in marine productivity markers starting near 1.6 ka. In general, the increase in sea ice seems to follow the decreasing solar insolation trend. Short-term events are not as clearly pronounced as on the East Greenland Shelf. A comparison to recently published foraminiferal records from the same cores (Perner et al., 2011, 2015) illuminates the differences of biomarker and micropaleontoligical proxies. It seems that the general trend is reflected in both proxies but the signal of small-scale events is preserved rather differently, pointing towards different environmental requirements of the species behind both proxies. References: Perner, K., et al., 2011. Quat. Sci. Revs. 30, 2815-2826 Perner, K., et al., 2015. Quat. Sci. Revs. 129, 296-307

  8. Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo

    NASA Astrophysics Data System (ADS)

    Cook, Joseph M.; Hodson, Andrew J.; Gardner, Alex S.; Flanner, Mark; Tedstone, Andrew J.; Williamson, Christopher; Irvine-Fynn, Tristram D. L.; Nilsson, Johan; Bryant, Robert; Tranter, Martyn

    2017-11-01

    The darkening effects of biological impurities on ice and snow have been recognised as a control on the surface energy balance of terrestrial snow, sea ice, glaciers and ice sheets. With a heightened interest in understanding the impacts of a changing climate on snow and ice processes, quantifying the impact of biological impurities on ice and snow albedo (bioalbedo) and its evolution through time is a rapidly growing field of research. However, rigorous quantification of bioalbedo has remained elusive because of difficulties in isolating the biological contribution to ice albedo from that of inorganic impurities and the variable optical properties of the ice itself. For this reason, isolation of the biological signature in reflectance data obtained from aerial/orbital platforms has not been achieved, even when ground-based biological measurements have been available. This paper provides the cell-specific optical properties that are required to model the spectral signatures and broadband darkening of ice. Applying radiative transfer theory, these properties provide the physical basis needed to link biological and glaciological ground measurements with remotely sensed reflectance data. Using these new capabilities we confirm that biological impurities can influence ice albedo, then we identify 10 challenges to the measurement of bioalbedo in the field with the aim of improving future experimental designs to better quantify bioalbedo feedbacks. These challenges are (1) ambiguity in terminology, (2) characterising snow or ice optical properties, (3) characterising solar irradiance, (4) determining optical properties of cells, (5) measuring biomass, (6) characterising vertical distribution of cells, (7) characterising abiotic impurities, (8) surface anisotropy, (9) measuring indirect albedo feedbacks, and (10) measurement and instrument configurations. This paper aims to provide a broad audience of glaciologists and biologists with an overview of radiative transfer and albedo that could support future experimental design.

  9. Parameterization and scaling of arctic ice conditions in the context of ice-atmospheric processes

    NASA Technical Reports Server (NTRS)

    Barry, R. G.; Steffen, K.; Heinrichs, J. F.; Key, J. R.; Maslanik, J. A.; Serreze, M. C.; Weaver, R. L.

    1995-01-01

    The goals of this project are to observe how the open water/thin ice fraction in a high-concentration ice pack responds to different short-period atmospheric forcings, and how this response is represented in different scales of observation. The objectives can be summarized as follows: determine the feasibility and accuracy of ice concentration and ice typing by ERS-1 SAR backscatter data, and whether SAR data might be used to calibrate concentration estimates from optical and massive-microwave sensors; investigate methods to integrate SAR data with other satellite data for turbulent heat flux parameterization at the ocean/atmosphere interface; determine how the development and evolution of open water/thin ice areas within the interior ice pack vary under different atmospheric synoptic regimes; compare how open-water/thin ice fractions estimated from large-area divergence measurements differ from fractions determined by summing localized openings in the pack; relate these questions of scale and process to methods of observation, modeling, and averaging over time and space.

  10. The effect of salt on the melting of ice: A molecular dynamics simulation study.

    PubMed

    Kim, Jun Soo; Yethiraj, Arun

    2008-09-28

    The effect of added salt (NaCl) on the melting of ice is studied using molecular dynamics simulations. The equilibrium freezing point depression observed in the simulations is in good agreement with experimental data. The kinetic aspects of melting are investigated in terms of the exchange of water molecules between ice and the liquid phase. The ice/liquid equilibrium is a highly dynamic process with frequent exchange of water molecules between ice and the liquid phase. The balance is disturbed when ice melts and the melting proceeds in two stages; the inhibition of the association of water molecules to the ice surface at short times, followed by the increased dissociation of water molecules from the ice surface at longer times. We also find that Cl(-) ions penetrate more deeply into the interfacial region than Na(+) ions during melting. This study provides an understanding of the kinetic aspects of melting that could be useful in other processes such as the inhibition of ice growth by antifreeze proteins.

  11. Magnetic control of heterogeneous ice nucleation with nanophase magnetite: Biophysical and agricultural implications.

    PubMed

    Kobayashi, Atsuko; Horikawa, Masamoto; Kirschvink, Joseph L; Golash, Harry N

    2018-05-22

    In supercooled water, ice nucleation is a stochastic process that requires ∼250-300 molecules to transiently achieve structural ordering before an embryonic seed crystal can nucleate. This happens most easily on crystalline surfaces, in a process termed heterogeneous nucleation; without such surfaces, water droplets will supercool to below -30 °C before eventually freezing homogeneously. A variety of fundamental processes depends on heterogeneous ice nucleation, ranging from desert-blown dust inducing precipitation in clouds to frost resistance in plants. Recent experiments have shown that crystals of nanophase magnetite (Fe 3 O 4 ) are powerful nucleation sites for this heterogeneous crystallization of ice, comparable to other materials like silver iodide and some cryobacterial peptides. In natural materials containing magnetite, its ferromagnetism offers the possibility that magneto-mechanical motion induced by external oscillating magnetic fields could act to disrupt the water-crystal interface, inhibiting the heterogeneous nucleation process in subfreezing water and promoting supercooling. For this to act, the magneto-mechanical rotation of the particles should be higher than the magnitude of Brownian motions. We report here that 10-Hz precessing magnetic fields, at strengths of 1 mT and above, on ∼50-nm magnetite crystals dispersed in ultrapure water, meet these criteria and do indeed produce highly significant supercooling. Using these rotating magnetic fields, we were able to elicit supercooling in two representative plant and animal tissues (celery and bovine muscle), both of which have detectable, natural levels of ferromagnetic material. Tailoring magnetic oscillations for the magnetite particle size distribution in different tissues could maximize this supercooling effect. Copyright © 2018 the Author(s). Published by PNAS.

  12. Cycloheximide and actinomycin D delay death and affect bcl-2, bax, and Ice gene expression in astrocytes under in vitro ischemia.

    PubMed

    Yu, Albert Cheung Hoi; Yung, Hon Wa; Hui, Michael Hung Kit; Lau, Lok Ting; Chen, Xiao Qian; Collins, Richard A

    2003-10-15

    An in vitro ischemia model was established and the effect of the metabolic inhibitors cycloheximide (CHX) and actinomycin D (ActD) on apoptosis in astrocytes under ischemia studied. CHX decreased by 75% the number of cells dying after 6 hr of ischemia compared with control cultures. TdT-mediated dUTP nick end labelling (TUNEL) staining of comparable cultures was reduced by 40%. ActD decreased cell death by 60% compared with controls. The number of TUNEL-positive cells was reduced by 38%. The nuclear shrinkage in TUNEL-positive astrocytes in control cultures did not occur in ActD-treated astrocytes, indicating that nuclear shrinkage and DNA fragmentation during apoptosis are two unrelated processes. Expression of bcl-2 (alpha and beta), bax, and Ice in astrocytes under similar ischemic conditions, as measured by quantitative reverse transcription-polymerase chain reaction, indicated that ischemia down-regulated bcl-2 (alpha and beta) and bax. Ice was initially down-regulated from 0 to 4 hr, before returning to control levels after 8 hr of ischemia. ActD decreased the expression of these genes. CHX reduced the expression of bcl-2 (alpha and beta) but increased bax and Ice expression. It is hypothesized that the balance of proapoptotic (Bad, Bax) and antiapoptotic (Bcl-2, Bcl-Xl) proteins determines apoptosis. The data suggest that the ratio of Bcl-2/Bad in astrocytes following ActD and CHX treatment does not decrease as much in untreated cells during ischemia. Our data indicate that it is the ratio of Bcl-2 family members that plays a critical role in determining ischemia-induced apoptosis. It is also important to note that ischemia-induced apoptosis involves the regulation of RNA and protein synthesis. Copyright 2003 Wiley-Liss, Inc.

  13. Cirrus Parcel Model Comparison Project. Phase 1; The Critical Components to Simulate Cirrus Initiation Explicitly

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David OC; DeMott, Paul J.; Cotton, Richard; Sassen, Kenneth; Jensen, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Cirrus Parcel Model Comparison Project, a project of the GCSS (GEWEX Cloud System Studies) Working Group on Cirrus Cloud Systems, involves the systematic comparison of current models of ice crystal nucleation and growth for specified, typical, cirrus cloud environments. In Phase I of the project reported here, simulated cirrus cloud microphysical properties are compared for situations of "warm" (40 C) and "cold" (-60 C) cirrus, both subject to updrafts of 4, 20 and 100 centimeters per second. Five models participated. The various models employ explicit microphysical schemes wherein the size distribution of each class of particles (aerosols and ice crystals) is resolved into bins or treated separately. Simulations are made including both the homogeneous and heterogeneous ice nucleation mechanisms. A single initial aerosol population of sulfuric acid particles is prescribed for all simulations. To isolate the treatment of the homogeneous freezing (of haze droplets) nucleation process, the heterogeneous nucleation mechanism is disabled for a second parallel set of simulations. Qualitative agreement is found for the homogeneous-nucleation- only simulations, e.g., the number density of nucleated ice crystals increases with the strength of the prescribed updraft. However, significant quantitative differences are found. Detailed analysis reveals that the homogeneous nucleation rate, haze particle solution concentration, and water vapor uptake rate by ice crystal growth (particularly as controlled by the deposition coefficient) are critical components that lead to differences in predicted microphysics. Systematic bias exists between results based on a modified classical theory approach and models using an effective freezing temperature approach to the treatment of nucleation. Each approach is constrained by critical freezing data from laboratory studies, but each includes assumptions that can only be justified by further laboratory research. Consequently, it is not yet clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (20-100 centimeters per second) at -60 C when the commonly invoked equilibrium assumption is lifted. The resulting difference in particle-size- dependent solution concentration of haze particles may significantly affect the ice particle formation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of particle number concentration and ice crystal diffusional growth rate, which is particularly sensitive to the deposition coefficient when ice particles are small, modulates the peak particle formation rate achieved in an air parcel and the duration of the active nucleation time period. The effects of heterogeneous nucleation are most pronounced in weak updraft situations. Vapor competition by the heterogeneously nucleated ice crystals may limit the achieved ice supersaturation and thus suppresses the contribution of homogeneous nucleation. Correspondingly, ice crystal number density is markedly reduced. Definitive laboratory and atmospheric benchmark data are needed for the heterogeneous nucleation process. Inter-model differences are correspondingly greater than in the case of the homogeneous nucleation process acting alone.

  14. Perennially ice-covered Lake Hoare, Antarctica: physical environment, biology and sedimentation

    NASA Technical Reports Server (NTRS)

    Wharton, R. A. Jr; Simmons, G. M. Jr; McKay, C. P.; Wharton RA, J. r. (Principal Investigator)

    1989-01-01

    Lake Hoare (77 degrees 38' S, 162 degrees 53' E) is a perennially ice-covered lake at the eastern end of Taylor Valley in southern Victoria Land, Antarctica. The environment of this lake is controlled by the relatively thick ice cover (3-5 m) which eliminates wind generated currents, restricts gas exchange and sediment deposition, and reduces light penetration. The ice cover is in turn largely controlled by the extreme seasonality of Antarctica and local climate. Lake Hoare and other dry valley lakes may be sensitive indicators of short term (< 100 yr) climatic and/or anthropogenic changes in the dry valleys since the onset of intensive exploration over 30 years ago. The time constants for turnover of the water column and lake ice are 50 and 10 years, respectively. The turnover time for atmospheric gases in the lake is 30-60 years. Therefore, the lake environment responds to changes on a 10-100 year timescale. Because the ice cover has a controlling influence on the lake (e.g. light penetration, gas content of water, and sediment deposition), it is probable that small changes in ice ablation, sediment loading on the ice cover, or glacial meltwater (or groundwater) inflow will affect ice cover dynamics and will have a major impact on the lake environment and biota.

  15. Iced Aircraft Flight Data for Flight Simulator Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  16. Interstellar Ice Chemistry: From Water to Complex Organics

    NASA Astrophysics Data System (ADS)

    Oberg, Karin I.; Fayolle, E.; Linnartz, H.; van Dishoeck, E.; Fillion, J.; Bertin, M.

    2013-06-01

    Molecular cloud cores, protostellar envelopes and protoplanetary disk midplanes are all characterized by freeze-out of atoms and molecules (other than H and H2) onto interstellar dust grains. On the grain surface, atom addition reactions, especially hydrogenation, are efficient and H2O forms readily from O, CH3OH from CO etc. The result is an icy mantle typically dominated by H2O, but also rich in CO2, CO, NH3, CH3OH and CH4. These ices are further processed through interactions with radiation, electrons and energetic particles. Because of the efficiency of the freeze-out process, and the complex chemistry that succeeds it, these icy grain mantles constitute a major reservoir of volatiles during star formation and are also the source of much of the chemical evolution observed in star forming regions. Laboratory experiments allow us to explore how molecules and radicals desorb, dissociate, diffuse and react in ices when exposed to different sources of energy. Changes in ice composition and structure is constrained using infrared spectroscopy and mass spectrometry. By comparing ice desorption, segregation, and chemistry efficiencies under different experimental conditions, we can characterize the basic ice processes, e.g. diffusion of different species, that underpin the observable changes in ice composition and structure. This information can then be used to predict the interstellar ice chemical evolution. I will review some of the key laboratory discoveries on ice chemistry during the past few years and how they have been used to predict and interpret astronomical observations of ice bands and gas-phase molecules associated with ice evaporation. These include measurements of thermal diffusion in and evaporation from ice mixtures, non-thermal diffusion efficiencies (including the recent results on frequency resolved UV photodesorption), and the expected temperature dependencies of the complex ice chemistry regulated by radical formation and diffusion. Based on these examples I will argue that the combination of laboratory experiments and observations is crucial to formulate and to test hypotheses on key processes that regulate the interstellar ice chemistry.

  17. Orographic Impacts on Liquid and Ice-Phase Precipitation Processes during OLYMPEX

    NASA Astrophysics Data System (ADS)

    Petersen, W. A.; Hunzinger, A.; Gatlin, P. N.; Wolff, D. B.

    2017-12-01

    The Global Precipitation Measurement (GPM) mission Olympic Mountains Experiment (OLYMPEX) focused on physical validation of GPM products in cold-season, mid-latitude frontal precipitation occurring over the Olympic Mountains of Washington State. Herein, we use data collected by the NASA S-band polarimetric radar (NPOL) to quantify and examine ice (IWP), liquid (LWP) and total water paths (TWP) relative to surface precipitation rates and column hydrometeor types for several cases occurring in different synoptic and/or Froude number regimes. These quantities are compared to coincident precipitation properties measured or estimated by GPM's Microwave Imager (GMI) and Dual-frequency Precipitation Radar (DPR). Because ice scattering is the dominant radiometric signature used by the GMI for estimating precipitation over land, and because the DPR is greatly affected by ground clutter in the lowest 1 - 2 km above ground, measurement limitations combined with orographic forcing may impact the degree to which DPR and/or GMI algorithms are able to adequately observe and estimate precipitation over and around orography.Preliminary case results suggest: 1) as expected, the Olympic Mountains force robust enhancements in the liquid and ice microphysical processes on windward slopes, especially in atmospheric river events; 2) localized orographic enhancements alter the balance of liquid and frozen precipitation contributions (IWP/TWP, LWP/TWP) to near surface rain rate, and for two cases examined thus far the balance seems to be sensitive to flow direction at specific intersections with the terrain orientation; and 3) GPM measurement limitations related to the depth of surface clutter impact for the DPR, and degree to which ice processes are coupled to the orographic rainfall process (DPR and GMI), especially along windward mountain slopes, may constrain the ability of retrieval algorithms to properly estimate near-surface precipitation quantities over complex terrain. Ongoing analysis of the OLMPEX dataset will better isolate controls on the orographic precipitation process, better define uncertainties in GPM measurements, and contribute to physically-based approaches for mitigating errors in estimation due to measurement and/or algorithm limitations over complex terrain.

  18. New particle dependant parameterizations of heterogeneous freezing processes.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Mitra, Subir K.

    2014-05-01

    For detailed investigations of cloud microphysical processes an adiabatic air parcel model with entrainment is used. It represents a spectral bin model which explicitly solves the microphysical equations. The initiation of the ice phase is parameterized and describes the effects of different types of ice nuclei (mineral dust, soot, biological particles) in immersion, contact, and deposition modes. As part of the research group INUIT (Ice Nuclei research UnIT), existing parameterizations have been modified for the present studies and new parameterizations have been developed mainly on the basis of the outcome of INUIT experiments. Deposition freezing in the model is dependant on the presence of dry particles and on ice supersaturation. The description of contact freezing combines the collision kernel of dry particles with the fraction of frozen drops as function of temperature and particle size. A new parameterization of immersion freezing has been coupled to the mass of insoluble particles contained in the drops using measured numbers of ice active sites per unit mass. Sensitivity studies have been performed with a convective temperature and dew point profile and with two dry aerosol particle number size distributions. Single and coupled freezing processes are studied with different types of ice nuclei (e.g., bacteria, illite, kaolinite, feldspar). The strength of convection is varied so that the simulated cloud reaches different levels of temperature. As a parameter to evaluate the results the ice water fraction is selected which is defined as the relation of the ice water content to the total water content. Ice water fractions between 0.1 and 0.9 represent mixed-phase clouds, larger than 0.9 ice clouds. The results indicate the sensitive parameters for the formation of mixed-phase and ice clouds are: 1. broad particle number size distribution with high number of small particles, 2. temperatures below -25°C, 3. specific mineral dust particles as ice nuclei such as illite or montmorillonite. Coupled cases of deposition and contact freezing show that they are hardly in competition because of differences in the preferred particle sizes. In the contact mode, small particles are less efficient for collisions as well as less efficient as ice nuclei so that these are available for deposition freezing. On the other hand, immersion freezing is the dominant process when it is coupled with deposition freezing. As it is initiated earlier the formed ice particles consume water vapor for growing. The competition of combined contact and immersion freezing leads to lower ice water contents because more ice particles are formed via the immersion mode. In general, ice clouds and mixed-phase clouds with high ice water fractions are not directly the result of primary ice formation but of secondary ice formation and growth of ice particles at the expense of liquid drops.

  19. An Aerodynamic Simulation Process for Iced Lifting Surfaces and Associated Issues

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.; Hackenberg, Anthony W.; Rigby, David L.

    2003-01-01

    This paper discusses technologies and software tools that are being implemented in a software toolkit currently under development at NASA Glenn Research Center. Its purpose is to help study the effects of icing on airfoil performance and assist with the aerodynamic simulation process which consists of characterization and modeling of ice geometry, application of block topology and grid generation, and flow simulation. Tools and technologies for each task have been carefully chosen based on their contribution to the overall process. For the geometry characterization and modeling, we have chosen an interactive rather than automatic process in order to handle numerous ice shapes. An Appendix presents features of a software toolkit developed to support the interactive process. Approaches taken for the generation of block topology and grids, and flow simulation, though not yet implemented in the software, are discussed with reasons for why particular methods are chosen. Some of the issues that need to be addressed and discussed by the icing community are also included.

  20. Ice growth from supercooled aqueous solutions of benzene, naphthalene, and phenanthrene.

    PubMed

    Liyana-Arachchi, Thilanga P; Valsaraj, Kalliat T; Hung, Francisco R

    2012-08-23

    Classical molecular dynamics (MD) were performed to investigate the growth of ice from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene. The main objective of this study is to explore the fate of those aromatic molecules after freezing of the supercooled aqueous solutions, i.e., if these molecules become trapped inside the ice lattice or if they are displaced to the QLL or to the interface with air. Ice growth from supercooled aqueous solutions of benzene, naphthalene, or phenanthrene result in the formation of quasi-liquid layers (QLLs) at the air/ice interface that are thicker than those observed when pure supercooled water freezes. Naphthalene and phenanthrene molecules in the supercooled aqueous solutions are displaced to the air/ice interface during the freezing process at both 270 and 260 K; no incorporation of these aromatics into the ice lattice is observed throughout the freezing process. Similar trends were observed during freezing of supercooled aqueous solutions of benzene at 270 K. In contrast, a fraction of the benzene molecules become trapped inside the ice lattice during the freezing process at 260 K, with the rest of the benzene molecules being displaced to the air/ice interface. These results suggest that the size of the aromatic molecule in the supercooled aqueous solution is an important parameter in determining whether these molecules become trapped inside the ice crystals. Finally, we also report potential of mean force (PMF) calculations aimed at studying the adsorption of gas-phase benzene and phenanthrene on atmospheric air/ice interfaces. Our PMF calculations indicate the presence of deep free energy minima for both benzene and phenanthrene at the air/ice interface, with these molecules adopting a flat orientation at the air/ice interface.

  1. Monitoring Subsurface Ice-Ocean Processes Using Underwater Acoustics in the Ross Sea

    NASA Astrophysics Data System (ADS)

    Haxel, J. H.; Dziak, R. P.; Matsumoto, H.; Lee, W. S.; Yun, S.

    2016-12-01

    The Ross Sea is a dynamic area of ice-ocean interaction, where a large component of the Southern Ocean's sea ice formation occurs within regional polynyas in addition to the destructive processes happening at the seaward boundary of the Ross Ice Shelf. Recent studies show the sea-ice season has been lengthening and the sea ice extent has been growing with more persistent and larger regional polynyas. These trends have important implications for the Ross Sea ecosystem with polynyas supporting high rates of primary productivity in the area. Monitoring trends in sea ice and ice shelf dynamics in the Southern Ocean has relied heavily on satellite imagery and remote sensing methods despite a significant portion of these physical processes occurring beneath the ocean surface. In January 2014, an ocean bottom hydrophone (OBH) was moored on the seafloor in the polynya area of Terra Nova Bay in the northwest region of the Ross Sea, north of the Drygalski Ice Tongue. The OBH recorded a year long record of the underwater low frequency acoustic spectrum up to 500 Hz from January 29 until it was recovered the following December 17, 2014. The acoustic records reveal a complex annual history of ice generated signals with over 50,000 detected events. These ice generated events related to collisions and cracking provide important insight for the timing and intensity of the ice-ocean dynamics happening below the sea surface as the polynya grows and expands and the nearby Drygalski ice tongue flows into Terra Nova Bay. Additionally, high concentrations of baleen whale vocalizations in frequencies ranging from 200-400 Hz from September - December suggest a strong seasonal presence of whales in this ecologically important polynya region.

  2. Proceedings of International Workshop on Atmospheric Icing of Structures (1st) Held at Hanover, New Hampshire on 1-3 June 1982.

    DTIC Science & Technology

    1983-06-01

    and flight activity in: ice protection systems, controls , nearly all general aviation icing instrumentation, experimental aircraft and helicopters can...34’ which approaches are also under evaluation for evolved from the simulated-ice-on-real- controlling galloping on bundle conduc- conductor experimental ...Resources and Electricity Board, State Power Systems, Middelthuns GT. 29, Oslo 3, Norway. 02-469800. Beatrice Felin, Group Leader - Meteorology, Hydro

  3. Dynamic-Type Ice Thermal Storage Systems

    NASA Astrophysics Data System (ADS)

    Ohira, Akiyoshi

    This paper deals with reviews for research and development of a dynamic-type ice thermal storage system. This system has three main features. First, the ice thermal storage tank and the ice generator are separate. Second, ice is transported to the tank from the ice generator by water or air. Third, the ice making and melting processes are operated at the same time. Outlet water temperature from the dynamic-type ice thermal storage tank remains low for a longer time. In this paper, dynamic-Type ice thermal storage systems are divided into three parts: the ice making part, the ice transport part, and the cold energy release part. Each part is reviewed separately.

  4. Seasonal thickness changes of Arctic sea ice north of Svalbard and implications for satellite remote sensing, ecosystem, and environmental management

    NASA Astrophysics Data System (ADS)

    Gerland, S.; Rösel, A.; King, J.; Spreen, G.; Divine, D.; Eltoft, T.; Gallet, J. C.; Hudson, S. R.; Itkin, P.; Krumpen, T.; Liston, G. E.; Merkouriadi, I.; Negrel, J.; Nicolaus, M.; Polashenski, C.; Assmy, P.; Barber, D. G.; Duarte, P.; Doulgeris, A. P.; Haas, C.; Hughes, N.; Johansson, M.; Meier, W.; Perovich, D. K.; Provost, C.; Richter-Menge, J.; Skourup, H.; Wagner, P.; Wilkinson, J.; Granskog, M. A.; Steen, H.

    2016-12-01

    Sea-ice thickness is a crucial parameter to consider when assessing the status of Arctic sea ice, whether for environmental management, monitoring projects, or regional or pan-arctic assessments. Modern satellite remote sensing techniques allow us to monitor ice extent and to estimate sea-ice thickness changes; but accurate quantifications of sea-ice thickness distribution rely on in situ and airborne surveys. From January to June 2015, an international expedition (N-ICE2015) took place in the Arctic Ocean north of Svalbard, with the Norwegian research vessel RV Lance frozen into drifting sea ice. In total, four drifts, with four different floes were made during that time. Sea-ice and snow thickness measurements were conducted on all main ice types present in the region, first year ice, multiyear ice, and young ice. Measurement methods included ground and helicopter based electromagnetic surveys, drillings, hot-wire installations, snow-sonde transects, snow stakes, and ice mass balance and snow buoys. Ice thickness distributions revealed modal thicknesses in spring between 1.6 and 1.7 m, which is lower than reported for the region from comparable studies in 2009 (2.4 m) and 2011 (1.8 m). Knowledge about the ice thickness distribution in a region is crucial to the understanding of climate processes, and also relevant to other disciplines. Sea-ice thickness data collected during N-ICE2015 can also give us insights into how ice and snow thicknesses affect ecosystem processes. In this presentation, we will explore the influence of snow cover and ocean properties on ice thickness, and the role of sea-ice thickness in air-ice-ocean interactions. We will also demonstrate how information about ice thickness aids classification of different sea ice types from SAR satellite remote sensing, which has real-world applications for shipping and ice forecasting, and how sea ice thickness data contributes to climate assessments.

  5. Summers with low Arctic sea ice linked to persistence of spring atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Kapsch, Marie-Luise; Skific, Natasa; Graversen, Rune G.; Tjernström, Michael; Francis, Jennifer A.

    2018-05-01

    The declining trend of Arctic September sea ice constitutes a significant change in the Arctic climate system. Large year-to-year variations are superimposed on this sea-ice trend, with the largest variability observed in the eastern Arctic Ocean. Knowledge of the processes important for this variability may lead to an improved understanding of seasonal and long-term changes. Previous studies suggest that transport of heat and moisture into the Arctic during spring enhances downward surface longwave radiation, thereby controlling the annual melt onset, setting the stage for the September ice minimum. In agreement with these studies, we find that years with a low September sea-ice concentration (SIC) are characterized by more persistent periods in spring with enhanced energy flux to the surface in forms of net longwave radiation plus turbulent fluxes, compared to years with a high SIC. Two main atmospheric circulation patterns related to these episodes are identified: one resembles the so-called Arctic dipole anomaly that promotes transport of heat and moisture from the North Pacific, whereas the other is characterized by negative geopotential height anomalies over the Arctic, favoring cyclonic flow from Siberia and the Kara Sea into the eastern Arctic Ocean. However, differences between years with low and high September SIC appear not to be due to different spring circulation patterns; instead it is the persistence and intensity of processes associated with these patterns that distinguish the two groups of anomalous years: Years with low September SIC feature episodes that are consistently stronger and more persistent than years with high SIC.

  6. Effects of elevated temperatures and rising sea level on Arctic Coast

    USGS Publications Warehouse

    Barnes, Peter W.

    1990-01-01

    Ice is a major agent on the inner shelf, gouging the bottom, increasing hydraulic scour, transporting sediment, and influencing river flood patterns. Rapid coastal retreat is common and low barrier islands and beaches are constantly changing due to the influence of permafrost, ice-push, waves, and currents. Coastal processes are presently a balance between the influence of ice and the action of waves and currents. Quantitative values for processes are poorly known, however our qualitative understanding is nearly complete. Climatic warming and rising sea levels would decrease the temporal and aerial extent of coastal ice thereby expanding the role of waves and currents. As a result, shoreline retreat rates would increase, producing a transgressive erosional surface on the low coastal plain. With increased wave activity, beaches and barrier islands presently nourished by ice push processes would decay and disappear. Increased sediment supply from a deeply thawed, active layer would release more sediments to rivers and coasts. Additional research should be focused on permafrost and sea ice processes active during freeze up and breakup; the two seasons of most vigorous activity and change.

  7. Monitoring of soil and air-rock temperatures in the Western Massif of the Picos de Europa (Spain)

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, Jesús; Vieira, Gonçalo; García, Cristina

    2013-04-01

    In this paper we study the ground thermal regime and air-rock interface in the Western Massif of the Picos de Europa (Cantabrian Range, Spain). This calcareous massif is highly affected by karstification processes. Quaternary glaciers, fluvio-torrential processes and present-day periglacial processes also contribute to explain the landforms present in this massif. Up to 9 dataloggers were installed during 6 years in different sites in terms of altitude, orientation, slope and geomorpolohical setting recording temperatures every two hours. The number of freeze-thaw cycles in the soil(between 0 and 16) was controlled by the depth of the snow cover. The temperatures in the interface rock-air showed between 30-60 cycles, reaching 119 and 130 during the year 2007-2008. Extreme minimum temperatures in the soil oscillate between 0.3 and -6.3, while in the rocky walls the loggers recorded temperatures between -7.3 and -14.3°C. Monitoring of soil temperatures around the ice patch - the only one in the massif today - resulted in slightly negative mean annual temperatures. These conditions may reveal the existence of sporadic permafrost on debris that cover the ice patch. Both the buried ice and the permafrost are in disequilibrium with the current environmental conditions of the massif.

  8. connecting the dots between Greenland ice sheet surface melting and ice flow dynamics (Invited)

    NASA Astrophysics Data System (ADS)

    Box, J. E.; Colgan, W. T.; Fettweis, X.; Phillips, T. P.; Stober, M.

    2013-12-01

    This presentation is of a 'unified theory' in glaciology that first identifies surface albedo as a key factor explaining total ice sheet mass balance and then surveys a mechanistic self-reinforcing interaction between melt water and ice flow dynamics. The theory is applied in a near-real time total Greenland mass balance retrieval based on surface albedo, a powerful integrator of the competing effects of accumulation and ablation. New snowfall reduces sunlight absorption and increases meltwater retention. Melting amplifies absorbed sunlight through thermal metamorphism and bare ice expansion in space and time. By ';following the melt'; we reveal mechanisms linking existing science into a unified theory. Increasing meltwater softens the ice sheet in three ways: 1.) sensible heating given the water temperature exceeds that of the ice sheet interior; 2.) Some infiltrating water refreezes, transferring latent heat to the ice; 3.) Friction from water turbulence heats the ice. It has been shown that for a point on the ice sheet, basal lubrication increases ice flow speed to a time when an efficient sub-glacial drainage network develops that reduces this effect. Yet, with an increasing melt duration the point where the ice sheet glides on a wet bed increases inland to a larger area. This effect draws down the ice surface elevation, contributing to the ';elevation feedback'. In a perpetual warming scenario, the elevation feedback ultimately leads to ice sheet loss reversible only through much slower ice sheet growth in an ice age environment. As the inland ice sheet accelerates, the horizontal extension pulls cracks and crevasses open, trapping more sunlight, amplifying the effect of melt accelerated ice. As the bare ice area increases, the direct sun-exposed crevassed and infiltration area increases further allowing the ice warming process to occur more broadly. Considering hydrofracture [a.k.a. hydrofracking]; surface meltwater fills cracks, attacking the ice integrity. Because water is 'heavier' than ice, water-filled cracks have unlimited capacity to hydraulically ';jack' open fractures, penetrating, fracturing and disaggregating a solid ice body. This process promotes iceberg calving at more than 150, 1km wide marine terminating Greenland glacier fronts. Resulting from a rising trend of surface melting and sea water temperature, meltwater ejection at the underwater front of marine glaciers drives a an increasing turbulent heat exchange between the glacier front and relatively warm sea water melting it faster. Underwater melting promotes an undercutting of the glacier front leading to ice berg calving. Calving through hydrofracture or marine undercutting provide a direct and immediate ice flow speed response mechanism for surface meltwater production. Ice flow speed reacts because calving reduces flow resistance. The above physical processes interact. Cooling shuts these processes down. Negative feedbacks dampen the warming impulse. Live 21 June, 2013 is a new Danish Web site1 that exploits total mass balance rate of decline as a function of albedo to predict GRACE mass rate of change with 80% explained variance. While surface mass balance explains the mass rate of change slightly higher, surface albedo is an observable quantity as is gravity change.

  9. Variability in Organic-Carbon Sources and Sea-Ice Coverage North of Iceland (Subarctic) During the Past 15,000 Years

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Zhao, M.; Knudsen, K. L.; Eiriksson, J.; Gudmundsdottir, E. R.; Jiang, H.; Guo, Z.

    2017-12-01

    Sea ice, prevailing in the polar region and characterized by distinct seasonal and interannual variability, plays a pivotal role in Earth's climate system (Thomas and Dieckmann, 2010). Studies of spatial and temporal changes in modern and past sea-ice occurrence may help to understand the processes controlling the recent decrease in Arctic sea-ice cover. Here, we determined the concentrations of sea-ice diatom-derived biomarker "IP25" (monoene highly-branched isoprenoid with 25 carbon atom; Belt et al., 2007), phytoplankton-derived biomarker brassicasterol and terrigenous biomarker long-chain n-alkanols in a sediment core from the North Icelandic shelf to reconstruct the high-resolution sea-ice variability and the organic-matter sources during the past 15,000 years. During the Bølling/Allerød, the North Icelandic shelf was characterized by extensive spring sea-ice cover linked to reduced flow of warm Atlantic Water and dominant Polar water influence; the input of terrestrial and sea-ice organic matters was high while the marine organic matter derived from phytoplankton productivity was low. Prolonged sea-ice cover with occasional occurrence of seasonal sea ice prevailed during the Younger Dryas interrupted by a brief interval of enhanced Irminger Current; the organic carbon input from sea-ice productivity, terrestrial matter and phytoplankton productivity all decreased. The seasonal sea ice decreased gradually from the Younger Dryas to the onset of the Holocene corresponding to increasing insolation. Therefore, the sea-ice productivity decreased but the phytoplankton productivity increased during this time interval. The biomarker records from this sediment core give insights into the variability in sea ice and organic-carbon sources in the Arctic marginal area during the last deglacial and Holocene. References Belt, S.T., Massé, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel chemical fossil of palaeo sea ice: IP25. Org. Geochem. 38, 16-27. Knudsen, K.L. and Eiriksson, J., 2002. Application of tephrochronology to the timing and correlation of palaeoceanographic events recorded in Holocene and Late Glacial shelf sediments off North Iceland. Marine Geology 191, 165-188. Thomas, D. N. and Dieckmann, G. S., 2010. Sea Ice, Blackwell Publ., Oxford, U. K.

  10. A fine resolution multifrequency polarimetric FM radar

    NASA Technical Reports Server (NTRS)

    Bredow, J.; Gogineni, S.; Leung, T.; Moore, R. K.

    1988-01-01

    A fine resolution polarimetric FM SAR was developed for optimization of polarimetric SARs and interpretation of SAR data via controlled experiments with surface-base sensors. The system is designed for collecting polarimetric data at 5.3 and 10 GHz over incidence angles from 0 to 60 deg. Features of the system include broad bandwidth to obtain fine range resolution, phase stabilization and linearization loop circuitry, and digital signal processing capability. The system is used in a research program to collect polarimetric backscatter data from artificial sea ice research and design trade-offs, laboratory and field evaluation, as well as results from experiments on artificial sea ice are presented.

  11. Realizing three-dimensional artificial spin ice by stacking planar nano-arrays

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei; Reichhardt, Charles; Nisoli, Cristiano

    2014-01-01

    Artificial spin ice is a frustrated magnetic two-dimensional nano-material, recently employed to study variety of tailor-designed unusual collective behaviours. Recently proposed extensions to three dimensions are based on self-assembly techniques and allow little control over geometry and disorder. We present a viable design for the realization of a three-dimensional artificial spin ice with the same level of precision and control allowed by lithographic nano-fabrication of the popular two-dimensional case. Our geometry is based on layering already available two-dimensional artificial spin ice and leads to an arrangement of ice-rule-frustrated units, which is topologically equivalent to that of the tetrahedra in a pyrochlore lattice. Consequently, we show, it exhibits a genuine ice phase and its excitations are, as in natural spin ice materials, magnetic monopoles interacting via Coulomb law.

  12. The Effect of Surface Ice and Topography on the Atmospheric Circulation and Distribution of Nitrogen Ice on Pluto

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Soto, Alejandro; Michaels, Timothy I.

    2016-10-01

    A newly developed general circulation model (GCM) for Pluto is used to investigate the impact of a heterogeneous distribution of nitrogen surface ice and large scale topography on Pluto's atmospheric circulation. The GCM is based on the GFDL Flexible Modeling System (FSM). Physics include a gray model radiative-conductive scheme, subsurface conduction, and a nitrogen volatile cycle. The radiative-conductive model takes into account the 2.3, 3.3 and 7.8 μm bands of CH4 and CO, including non-local thermodynamic equilibrium effects. including non-local thermodynamic equilibrium effects. The nitrogen volatile cycle is based on a vapor pressure equilibrium assumption between the atmosphere and surface. Prior to the arrival of the New Horizons spacecraft, the expectation was that the volatile ice distribution on the surface of Pluto would be strongly controlled by the latitudinal temperature gradient. If this were the case, then Pluto would have broad latitudinal bands of both ice covered surface and ice free surface, as dictated by the season. Further, the circulation, and the thus the transport of volatiles, was thought to be driven almost exclusively by sublimation and deposition flows associated with the volatile cycle. In contrast to expectations, images from New Horizon showed an extremely complex, heterogeneous distribution of surface ices draped over substantial and variable topography. To produce such an ice distribution, the atmospheric circulation and volatile transport must be more complex than previously envisioned. Simulations where topography, surface ice distributions, and volatile cycle physics are added individually and in various combinations are used to individually quantify the importance of the general circulation, topography, surface ice distributions, and condensation flows. It is shown that even regional patches of ice or large craters can have global impacts on the atmospheric circulation, the volatile cycle, and hence, the distribution of surface ices. The work demonstrates that explaining Pluto's volatile cycle and the expression of that cycle in the surface ice distributions requires consideration of atmospheric processes beyond simple vapor pressure equilibrium arguments.

  13. Effects of Intercellular Junction Protein Expression on Intracellular Ice Formation in Mouse Insulinoma Cells

    PubMed Central

    Higgins, Adam Z.; Karlsson, Jens O.M.

    2013-01-01

    The development of cryopreservation procedures for tissues has proven to be difficult in part because cells within tissue are more susceptible to intracellular ice formation (IIF) than are isolated cells. In particular, previous studies suggest that cell-cell interactions increase the likelihood of IIF by enabling propagation of ice between neighboring cells, a process thought to be mediated by gap junction channels. In this study, we investigated the effects of cell-cell interactions on IIF using three genetically modified strains of the mouse insulinoma cell line MIN6, each of which expressed key intercellular junction proteins (connexin-36, E-cadherin, and occludin) at different levels. High-speed video cryomicroscopy was used to visualize the freezing process in pairs of adherent cells, revealing that the initial IIF event in a given cell pair was correlated with a hitherto unrecognized precursor phenomenon: penetration of extracellular ice into paracellular spaces at the cell-cell interface. Such paracellular ice penetration occurred in the majority of cell pairs observed, and typically preceded and colocalized with the IIF initiation events. Paracellular ice penetration was generally not observed at temperatures >−5.65°C, which is consistent with a penetration mechanism via defects in tight-junction barriers at the cell-cell interface. Although the maximum temperature of paracellular penetration was similar for all four cell strains, genetically modified cells exhibited a significantly higher frequency of ice penetration and a higher mean IIF temperature than did wild-type cells. A four-state Markov chain model was used to quantify the rate constants of the paracellular ice penetration process, the penetration-associated IIF initiation process, and the intercellular ice propagation process. In the initial stages of freezing (>−15°C), junction protein expression appeared to only have a modest effect on the kinetics of propagative IIF, and even cell strains lacking the gap junction protein connexin-36 exhibited nonnegligible ice propagation rates. PMID:24209845

  14. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice.

    PubMed

    Lin, Chuanlong; Yong, Xue; Tse, John S; Smith, Jesse S; Sinogeikin, Stanislav V; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-29

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1  Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  15. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    NASA Astrophysics Data System (ADS)

    Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin

    2017-09-01

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.

  16. Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chuanlong; Yong, Xue; Tse, John S.

    We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transitionmore » to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.« less

  17. Toward an Efficient Icing CFD Process Using an Interactive Software Toolkit: Smagglce 2D

    NASA Technical Reports Server (NTRS)

    Vickerman, Mary B.; Choo, Yung K.; Schilling, Herbert W.; Baez, Marivell; Braun, Donald C.; Cotton, Barbara J.

    2001-01-01

    Two-dimensional CID analysis for iced airfoils can be a labor-intensive task. The software toolkit SmaggIce 2D is being developed to help streamline the CID process and provide the unique features needed for icing. When complete, it will include a combination of partially automated and fully interactive tools for all aspects of the tasks leading up to the flow analysis: geometry preparation, domain decomposition. block boundary demoralization. gridding, and linking with a flow solver. It also includes tools to perform ice shape characterization, an important aid in determining the relationship between ice characteristics and their effects on aerodynamic performance. Completed tools, work-in-progress, and planned features of the software toolkit are presented here.

  18. Sediment transport drives tidewater glacier periodicity.

    PubMed

    Brinkerhoff, Douglas; Truffer, Martin; Aschwanden, Andy

    2017-07-21

    Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

  19. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate.

    PubMed

    Konstantinidis, Alex K; Kuu, Wei; Otten, Lori; Nail, Steven L; Sever, Robert R

    2011-08-01

    A novel and scalable method has been developed to enable control of the ice nucleation step for the freezing process during lyophilization. This method manipulates the chamber pressure of the freeze dryer to simultaneously induce nucleation in all product vials at a desired temperature. The effects of controlled nucleation on the drying rate of various formulations including 5% (w/w) mannitol, 5% (w/w) sucrose, and a mixture of 3% (w/w) mannitol and 2% (w/w) sucrose were studied. For a 5% (w/w) mannitol, uncontrolled ice nucleation occurred randomly at product temperatures between -8.0°C and -15.9°C as the vials were cooled to -40°C. Controlled ice nucleation was achieved at product temperatures between -2.3°C and -3.7°C. The effect of nucleation control on the effective pore radius (r(e) ) of the cake was determined from the product temperature profiles using a pore diffusion model in combination with a nonlinear parameter estimation approach reported earlier. Results show that the value of r(e) for 5% (w/w) mannitol was enlarged from 13 to 27 μm by uniformly inducing nucleation at higher temperatures. Applying the resistance parameters obtained from the pore diffusion model for 5% (w/w) mannitol, optimized cycles were theoretically generated and experimentally tested, resulting in a 41% reduction in primary drying time. Copyright © 2011 Wiley-Liss, Inc.

  20. Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

    DTIC Science & Technology

    2015-09-30

    the northward retreat of the ice edge. Through the long-term measurement of the key oceanic, atmospheric, and sea ice processes that...began to move southward towards the Alaskan coast. In 2104 the anomalous areas of ice retreat were the region north of Alaska...and Siberia. (see figures below). This is not uncommon as these regions have seen the greatest retreat in sea ice. See http://nsidc.org

Top