Polarized micro Raman spectroscopy of bilayer graphene
NASA Astrophysics Data System (ADS)
Moon, Hyerim; Yoon, Duhee; Son, Young-Woo; Cheong, Hyeonsik
2009-03-01
The frequency of Raman 2D band of the graphite depends on the excitation laser energy. This phenomenon is explained with double resonance Raman process. In polarized micro-Raman spectroscopy of single layer graphene, Raman G band (˜1586 cm-1) is isotropic, and 2D band (˜2686 cm-1) strongly depends on relative polarizations of the incident and scattered photons. This strong polarization dependence originates from inhomogeneous optical absorption and emission mediated by resonant electron-phonon interaction. In bi-layer graphene, Raman 2D band can be decomposed into four Lorenztian peaks which can be interpreted in terms of the four transition paths in the double resonance Raman process. We investigated the polarization dependence of each Lorenztian peak in the Raman 2D band of bi-layer graphene for different excitation laser energies. Strong polarization dependence of the Raman 2D band, similar to the case of single layer graphene, is observed. The excitation energy dependence of the polarized Raman scattering is analyzed in terms of the band structure of bi-layer graphene.
Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles
NASA Astrophysics Data System (ADS)
Kshetri, Yuwaraj K.; Regmi, Chhabilal; Kim, Hak-Soo; Wohn Lee, Soo; Kim, Tae-Ho
2018-05-01
Yb3+ and Er3+ doped YVO4 (Yb3+/Er3+:YVO4) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb3+/Er3+:YVO4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2H11/2, 4S3/2 to 4I15/2 and 4F9/2 to 4I15/2 transitions of Er3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb3+. The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.
Microwave hydrothermal synthesis and upconversion properties of Yb3+/Er3+ doped YVO4 nanoparticles.
Kshetri, Yuwaraj K; Regmi, Chhabilal; Kim, Hak-Soo; Lee, Soo Wohn; Kim, Tae-Ho
2018-05-18
Yb 3+ and Er 3+ doped YVO 4 (Yb 3+ /Er 3+ :YVO 4 ) nanoparticles with highly efficient near-infrared to visible upconversion properties have been synthesized by microwave hydrothermal process. Uniform-sized Yb 3+ /Er 3+ :YVO 4 nanoparticles were synthesized within 1 h at 140 °C which is relatively faster than the conventional hydrothermal process. Under 980 nm laser excitation, strong green and less strong red emissions are observed which are attributed to 2 H 11/2 , 4 S 3/2 to 4 I 15/2 and 4 F 9/2 to 4 I 15/2 transitions of Er 3+ respectively. The emission intensity is found to depend strongly on the concentration of Yb 3+ . The quadratic dependence of upconversion intensity on the excitation power indicates that the upconversion process is governed by two-photon absorption process.
NASA Astrophysics Data System (ADS)
Telnov, Dmitry A.; Heslar, John T.; Chu, Shih-I.
2011-11-01
In the framework of the time-dependent density functional theory, we have performed 3D calculations of multiphoton ionization of Li and Be atoms by strong near-infrared laser fields. The results for the intensity-dependent probabilities of single and double ionization are presented. We make use of the time-dependent Krieger-Li-Iafrate exchange-correlation potential with self-interaction correction (TD-KLI-SIC). Such a potential possesses an integer discontinuity which improves description of the ionization process. However, we have found that the discontinuity of the TD-KLI-SIC potential is not sufficient to reproduce characteristic feature of double ionization.
Molecular alignment dependent electron interference in attosecond ultraviolet photoionization
Yuan, Kai-Jun; Bandrauk, André D.
2015-01-01
We present molecular photoionization processes by intense attosecond ultraviolet laser pulses from numerical solutions of time-dependent Schrödinger equations. Simulations preformed on a single electron diatomic H2+ show minima in molecular photoelectron energy spectra resulting from two center interference effects which depend strongly on molecular alignment. We attribute such sensitivity to the spatial orientation asymmetry of the photoionization process from the two nuclei. A similar influence on photoelectron kinetic energies is also presented. PMID:26798785
Density-dependent resistance of the gypsy moth, Lymantria dispar, to its nucleopolyhedrovirus
James R. Reilly; Ann E. Hajek
2007-01-01
The processes controlling disease resistance can strongly influence the population dynamics of insect outbreaks. Evidence that disease resistance is density-dependent is accumulating, but the exact form of this relationship is highly variable from species to species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toba Y.; Yagi, K.
1984-01-01
Drastic changes of (p,t) analyzing powers for the four Ni isotopes in ground-state transitions were observed. The changes are not explained by direct one-step processes but are interpreted by including strong two-step (p,d) (d,t) processes. Interference between the two processes of comparable intensities is essential. Marked incident-energy dependence of the analyzing powers is interpreted similarly.
Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding
Maass, Anne; Schütze, Hartmut; Speck, Oliver; Yonelinas, Andrew; Tempelmann, Claus; Heinze, Hans-Jochen; Berron, David; Cardenas-Blanco, Arturo; Brodersen, Kay H.; Enno Stephan, Klaas; Düzel, Emrah
2014-01-01
The ability to form long-term memories for novel events depends on information processing within the hippocampus (HC) and entorhinal cortex (EC). The HC–EC circuitry shows a quantitative segregation of anatomical directionality into different neuronal layers. Whereas superficial EC layers mainly project to dentate gyrus (DG), CA3 and apical CA1 layers, HC output is primarily sent from pyramidal CA1 layers and subiculum to deep EC layers. Here we utilize this directionality information by measuring encoding activity within HC/EC subregions with 7 T high resolution functional magnetic resonance imaging (fMRI). Multivariate Bayes decoding within HC/EC subregions shows that processing of novel information most strongly engages the input structures (superficial EC and DG/CA2–3), whereas subsequent memory is more dependent on activation of output regions (deep EC and pyramidal CA1). This suggests that while novelty processing is strongly related to HC–EC input pathways, the memory fate of a novel stimulus depends more on HC–EC output. PMID:25424131
Strong field QED in lepton colliders and electron/laser interactions
NASA Astrophysics Data System (ADS)
Hartin, Anthony
2018-05-01
The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.
Action history influences subsequent movement via two distinct processes
Poh, Eugene; de Rugy, Aymar
2017-01-01
The characteristics of goal-directed actions tend to resemble those of previously executed actions, but it is unclear whether such effects depend strictly on action history, or also reflect context-dependent processes related to predictive motor planning. Here we manipulated the time available to initiate movements after a target was specified, and studied the effects of predictable movement sequences, to systematically dissociate effects of the most recently executed movement from the movement required next. We found that directional biases due to recent movement history strongly depend upon movement preparation time, suggesting an important contribution from predictive planning. However predictive biases co-exist with an independent source of bias that depends only on recent movement history. The results indicate that past experience influences movement execution through a combination of temporally-stable processes that are strictly use-dependent, and dynamically-evolving and context-dependent processes that reflect prediction of future actions. PMID:29058670
Superheavy elements and r-process
NASA Astrophysics Data System (ADS)
Panov, I. V.; Korneev, I. Yu.; Thielemann, F.-K.
2009-06-01
The probability for the production of superheavy elements in the astrophysical r-process is discussed. The dependence of the estimated superheavy-element yields on input data is estimated. Preliminary calculations revealed that the superheavy-element yields at the instant of completion of the r-process may be commensurate with the uranium yield, but the former depend strongly on the models used to forecast the properties of beta-delayed, neutron-induced, and spontaneous fission. This study is dedicated to the 80th anniversary of V.S. Imshennik’s birth.
Processing of pitch and location in human auditory cortex during visual and auditory tasks.
Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu
2015-01-01
The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand.
Processing of pitch and location in human auditory cortex during visual and auditory tasks
Häkkinen, Suvi; Ovaska, Noora; Rinne, Teemu
2015-01-01
The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand. PMID:26594185
Oligomer formation in the troposphere: from experimental knowledge to 3-D modeling
NASA Astrophysics Data System (ADS)
Lemaire, V.; Coll, I.; Couvidat, F.; Mouchel-Vallon, C.; Seigneur, C.; Siour, G.
2015-10-01
The organic fraction of atmospheric aerosols has proven to be a critical element of air quality and climate issues. However, its composition and the aging processes it undergoes remain insufficiently understood. This work builds on laboratory knowledge to simulate the formation of oligomers from biogenic secondary organic aerosol (BSOA) in the troposphere at the continental scale. We compare the results of two different modeling approaches, a 1st-order kinetic process and a pH-dependent parameterization, both implemented in the CHIMERE air quality model (AQM), to simulate the spatial and temporal distribution of oligomerized SOA over western Europe. Our results show that there is a strong dependence of the results on the selected modeling approach: while the irreversible kinetic process leads to the oligomerization of about 50 % of the total BSOA mass, the pH-dependent approach shows a broader range of impacts, with a strong dependency on environmental parameters (pH and nature of aerosol) and the possibility for the process to be reversible. In parallel, we investigated the sensitivity of each modeling approach to the representation of SOA precursor solubility (Henry's law constant values). Finally, the pros and cons of each approach for the representation of SOA aging are discussed and recommendations are provided to improve current representations of oligomer formation in AQMs.
The effect of thermal processing on microstructure and mechanical properties in a nickel-iron alloy
NASA Astrophysics Data System (ADS)
Yang, Ling
The correlation between processing conditions, resulted microstructure and mechanical properties is of interest in the field of metallurgy for centuries. In this work, we investigated the effect of thermal processing parameters on microstructure, and key mechanical properties to turbine rotor design: tensile yield strength and crack growth resistance, for a nickel-iron based superalloy Inconel 706. The first step of the designing of experiments is to find parameter ranges for thermal processing. Physical metallurgy on superalloys was combined with finite element analysis to estimate variations in thermal histories for a large Alloy 706 forging, and the results were adopted for designing of experiments. Through the systematic study, correlation was found between the processing parameters and the microstructure. Five different types of grain boundaries were identified by optical metallography, fractography, and transmission electron microscopy, and they were found to be associated with eta precipitation at the grain boundaries. Proportions of types of boundaries, eta size, spacing and angle respect to the grain boundary were found to be dependent on processing parameters. Differences in grain interior precipitates were also identified, and correlated with processing conditions. Further, a strong correlation between microstructure and mechanical properties was identified. The grain boundary precipitates affect the time dependent crack propagation resistance, and different types of boundaries have different levels of resistance. Grain interior precipitates were correlated with tensile yield strength. It was also found that there is a strong environmental effect on time dependent crack propagation resistance, and the sensitivity to environmental damage is microstructure dependent. The microstructure with eta decorated on grain boundaries by controlled processing parameters is more resistant to environmental damage through oxygen embrittlement than material without eta phase on grain boundaries. Effort was made to explore the mechanisms of improving the time dependent crack propagation resistance through thermal processing, several mechanisms were identified in both environment dependent and environment independent category, and they were ranked based on their contributions in affecting crack propagation.
Lutz, James A; Larson, Andrew J; Furniss, Tucker J; Donato, Daniel C; Freund, James A; Swanson, Mark E; Bible, Kenneth J; Chen, Jiquan; Franklin, Jerry F
2014-08-01
Mortality processes in old-growth forests are generally assumed to be driven by gap-scale disturbance, with only a limited role ascribed to density-dependent mortality, but these assumptions are rarely tested with data sets incorporating repeated measurements. Using a 12-ha spatially explicit plot censused 13 years apart in an approximately 500-year-old Pseudotsuga-Tsuga forest, we demonstrate significant density-dependent mortality and spatially aggregated tree recruitment. However, the combined effect of these strongly nonrandom demographic processes was to maintain tree patterns in a state of dynamic equilibrium. Density-dependent mortality was most pronounced for the dominant late-successional species, Tsuga heterophylla. The long-lived, early-seral Pseudotsuga menziesii experienced an annual stem mortality rate of 0.84% and no new recruitment. Late-seral species Tsuga and Abies amabilis had nearly balanced demographic rates of ingrowth and mortality. The 2.34% mortality rate for Taxus brevifolia was higher than expected, notably less than ingrowth, and strongly affected by proximity to Tsuga. Large-diameter Tsuga structured both the regenerating conspecific and heterospecific cohorts with recruitment of Tsuga and Abies unlikely in neighborhoods crowded with large-diameter competitors (P < 0.001). Density-dependent competitive interactions strongly shape forest communities even five centuries after stand initiation, underscoring the dynamic nature of even equilibrial old-growth forests.
van Harreveld, Frenk; Wagenmakers, Eric-Jan; van der Maas, Han L J
2007-09-01
The ability to play chess is generally assumed to depend on two types of processes: slow processes such as search, and fast processes such as pattern recognition. It has been argued that an increase in time pressure during a game selectively hinders the ability to engage in slow processes. Here we study the effect of time pressure on expert chess performance in order to test the hypothesis that compared to weak players, strong players depend relatively heavily on fast processes. In the first study we examine the performance of players of various strengths at an online chess server, for games played under different time controls. In a second study we examine the effect of time controls on performance in world championship matches. Both studies consistently show that skill differences between players become less predictive of the game outcome as the time controls are tightened. This result indicates that slow processes are at least as important for strong players as they are for weak players. Our findings pose a challenge for current theorizing in the field of expertise and chess.
Geophysical and atmospheric evolution of habitable planets.
Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J
2010-01-01
The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.
Jones, Jeanne; Kalkan, Erol; Stephens, Christopher
2017-02-23
A continually increasing number of high-quality digital strong-motion records from stations of the National Strong-Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the United States, call for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. In combination with the Advanced National Seismic System Quake Monitoring System (AQMS), PRISM automates the processing of strong-motion records. When used without AQMS, PRISM provides batch-processing capabilities. The PRISM version 1.0.0 is platform independent (coded in Java), open source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine and a review tool that has a graphical user interface (GUI) to manually review, edit, and process records. To facilitate use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and review tool) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X, and Windows. PRISM was designed to be flexible and extensible in order to accommodate new processing techniques. This report provides a thorough description and examples of the record processing features supported by PRISM. All the computing features of PRISM have been thoroughly tested.
Thermalization and confinement in strongly coupled gauge theories
NASA Astrophysics Data System (ADS)
Ishii, Takaaki; Kiritsis, Elias; Rosen, Christopher
2016-11-01
Quantum field theories of strongly interacting matter sometimes have a useful holographic description in terms of the variables of a gravitational theory in higher dimensions. This duality maps time dependent physics in the gauge theory to time dependent solutions of the Einstein equations in the gravity theory. In order to better understand the process by which "real world" theories such as QCD behave out of thermodynamic equilibrium, we study time dependent perturbations to states in a model of a confining, strongly coupled gauge theory via holography. Operationally, this involves solving a set of non-linear Einstein equations supplemented with specific time dependent boundary conditions. The resulting solutions allow one to comment on the timescale by which the perturbed states thermalize, as well as to quantify the properties of the final state as a function of the perturbation parameters. We comment on the influence of the dual gauge theory's confinement scale on these results, as well as the appearance of a previously anticipated universal scaling regime in the "abrupt quench" limit.
Ajay, Jayanth S; Komarova, Ksenia G; Remacle, Francoise; Levine, R D
2018-06-05
Isotopic fractionation in the photodissociation of N 2 could explain the considerable variation in the 14 N/ 15 N ratio in different regions of our galaxy. We previously proposed that such an isotope effect is due to coupling of photoexcited bound valence and Rydberg electronic states in the frequency range where there is strong state mixing. We here identify features of the role of the mass in the dynamics through a time-dependent quantum-mechanical simulation. The photoexcitation of N 2 is by an ultrashort pulse so that the process has a sharply defined origin in time and so that we can monitor the isolated molecule dynamics in time. An ultrafast pulse is necessarily broad in frequency and spans several excited electronic states. Each excited molecule is therefore not in a given electronic state but in a superposition state. A short time after excitation, there is a fairly sharp onset of a mass-dependent large population transfer when wave packets on two different electronic states in the same molecule overlap. This coherent overlap of the wave packets on different electronic states in the region of strong coupling allows an effective transfer of population that is very mass dependent. The extent of the transfer depends on the product of the populations on the two different electronic states and on their relative phase. It is as if two molecules collide but the process occurs within one molecule, a molecule that is simultaneously in both states. An analytical toy model recovers the (strong) mass and energy dependence.
Process depending morphology and resulting physical properties of TPU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frick, Achim, E-mail: achim.frick@hs-aalen.de; Spadaro, Marcel, E-mail: marcel.spadaro@hs-aalen.de
2015-12-17
Thermoplastic polyurethane (TPU) is a rubber like material with outstanding properties, e.g. for seal applications. TPU basically provides high strength, low frictional behavior and excellent wear resistance. Though, due to segmented structure of TPU, which is composed of hard segments (HSs) and soft segments (SSs), physical properties depend strongly on the morphological arrangement of the phase separated HSs at a certain ratio of HSs to SSs. It is obvious that the TPU deforms differently depending on its bulk morphology. Basically, the morphology can either consist of HSs segregated into small domains, which are well dispersed in the SS matrix ormore » of few strongly phase separated large size HS domains embedded in the SS matrix. The morphology development is hardly ruled by the melt processing conditions of the TPU. Depending on the morphology, TPU provides quite different physical properties with respect to strength, deformation behavior, thermal stability, creep resistance and tribological performance. The paper deals with the influence of important melt processing parameters, such as temperature, pressure and shear conditions, on the resulting physical properties tested by tensile and relaxation experiments. Furthermore the morphology is studied employing differential scanning calorimeter (DSC), transmission light microscopy (TLM), scanning electron beam microscopy (SEM) and transmission electron beam microscopy (TEM) investigations. Correlations between processing conditions and resulting TPU material properties are elaborated. Flow and shear simulations contribute to the understanding of thermal and flow induced morphology development.« less
Physical processes in the strong magnetic fields of accreting neutron stars
NASA Technical Reports Server (NTRS)
Meszaros, P.
1984-01-01
Analytical formulae are fitted to observational data on physical processes occurring in strong magnetic fields surrounding accreting neutron stars. The propagation of normal modes in the presence of a quantizing magnetic field is discussed in terms of a wave equation in Fourier space, quantum electrodynamic effects, polarization and mode ellipticity. The results are applied to calculating the Thomson scattering, bremsstrahlung and Compton scattering cross-sections, which are a function of the frequency, angle and polarization of the magnetic field. Numerical procedures are explored for solving the radiative transfer equations. When applied to modeling X ray pulsars, a problem arises in the necessity to couple the magnetic angle and frequency dependence of the cross-sections with the hydrodynamic equations. The use of time-dependent averaging and approximation techniques is indicated.
Controllability of control and mixture weakly dependent siphons in S3PR
NASA Astrophysics Data System (ADS)
Hong, Liang; Chao, Daniel Y.
2013-08-01
Deadlocks in a flexible manufacturing system modelled by Petri nets arise from insufficiently marked siphons. Monitors are added to control these siphons to avoid deadlocks rendering the system too complicated since the total number of monitors grows exponentially. Li and Zhou propose to add monitors only to elementary siphons while controlling the other (strongly or weakly) dependent siphons by adjusting control depth variables. To avoid generating new siphons, the control arcs are ended at source transitions of process nets. This disturbs the original model more and hence loses more live states. Negative terms in the controllability make the control policy for weakly dependent siphons rather conservative. We studied earlier on the controllability of strongly dependent siphons and proposed to add monitors in the order of basic, compound, control, partial mixture and full mixture (strongly dependent) siphons to reduce the number of mixed integer programming iterations and redundant monitors. This article further investigates the controllability of siphons derived from weakly 2-compound siphons. We discover that the controllability for weakly and strongly compound siphons is similar. It no longer holds for control and mixture siphons. Some control and mixture siphons, derived from strongly 2-compound siphons are not redundant - no longer so for those derived from weakly 2-compound siphons; that is all control and mixture siphons are redundant. They do not need to be the conservative one as proposed by Li and Zhou. Thus, we can adopt the maximally permissive control policy even though new siphons are generated.
Electronic transport properties of intermediately coupled superconductors: PdTe2 and Cu0.04PdTe2
NASA Astrophysics Data System (ADS)
Hooda, M. K.; Yadav, C. S.
2018-01-01
We have investigated the electrical resistivity (1.8-480 K), Seebeck coefficient (2.5-300 K) and thermal conductivity (2.5-300 K) of PdTe2 and 4% Cu intercalated PdTe2 compounds. The electrical resistivity for the compounds shows a Bloch-Gruneisen-type linear temperature (T) dependence for 100 \\text{K}, and Fermi liquid behavior (ρ (T) \\propto T2) for T<50 \\text{K} . Seebeck coefficient data exhibit a strong competition between Normal (N) and Umklapp (U) scattering processes at low T. The low-T, thermal conductivity (κ) of the compounds is strongly dominated by the electronic contribution, and exhibits a rare linear T-dependence below 10 K. However, high-T, κ (T) shows the usual 1/T -dependence, dominated by the U-scattering process. The electron-phonon coupling parameters, estimated from the low-T, specific-heat data and first-principle electronic structure calculations suggest that PdTe2 and Cu0.04PdTe2 are intermediately coupled superconductors.
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sissay, Adonay; Abanador, Paul; Mauger, François
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less
Interactions between attention, context and learning in primary visual cortex.
Gilbert, C; Ito, M; Kapadia, M; Westheimer, G
2000-01-01
Attention in early visual processing engages the higher order, context dependent properties of neurons. Even at the earliest stages of visual cortical processing neurons play a role in intermediate level vision - contour integration and surface segmentation. The contextual influences mediating this process may be derived from long range connections within primary visual cortex (V1). These influences are subject to perceptual learning, and are strongly modulated by visuospatial attention, which is itself a learning dependent process. The attentional influences may involve interactions between feedback and horizontal connections in V1. V1 is therefore a dynamic and active processor, subject to top-down influences.
Chiaramello, M; Amiranoff, F; Riconda, C; Weber, S
2016-12-02
A detailed analysis is presented of the various stages of strong coupling Brillouin plasma amplification, emphasizing the importance of the chirp which can be of threefold origin: the intrinsic one driven by the amplification process, the one originating from the chirped-pulse-generated laser pulses, and the one associated with the plasma profile. Control of the overall chirp can optimize or quench the energy transfer. The time-dependent phase relation explains the energy flow direction during amplification and is characteristic for this strong coupling process. The study is also of potential importance to understand and maybe control cross-beam-energy transfer in inertial confinement fusion.
Donor-bridge-acceptor energetics determine the distance dependence of electron tunneling in DNA
NASA Astrophysics Data System (ADS)
Lewis, Frederick D.; Liu, Jianqin; Weigel, Wilfried; Rettig, Wolfgang; Kurnikov, Igor V.; Beratan, David N.
2002-10-01
Electron transfer (ET) processes in DNA are of current interest because of their involvement in oxidative strand cleavage reactions and their relevance to the development of molecular electronics. Two mechanisms have been identified for ET in DNA, a single-step tunneling process and a multistep charge-hopping process. The dynamics of tunneling reactions depend on both the distance between the electron donor and acceptor and the nature of the molecular bridge separating the donor and acceptor. In the case of protein and alkane bridges, the distance dependence is not strongly dependent on the properties of the donor and acceptor. In contrast, we show here that the distance decay of DNA ET rates varies markedly with the energetics of the donor and acceptor relative to the bridge. Specifically, we find that an increase in the energy of the bridge states by 0.25 eV (1 eV = 1.602 × 1019 J) relative to the donor and acceptor energies for photochemical oxidation of nucleotides, without changing the reaction free energy, results in an increase in the characteristic exponential distance decay constant for the ET rates from 0.71 to 1.1 Å1. These results show that, in the small tunneling energy gap regime of DNA ET, the distance dependence is not universal; it varies strongly with the tunneling energy gap. These DNA ET reactions fill a "missing link" or transition regime between the large barrier (rapidly decaying) tunneling regime and the (slowly decaying) hopping regime in the general theory of bridge-mediated ET processes.
Time-dependent nonequilibrium soft x-ray response during a spin crossover
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Veenendaal, Michel
The rapid development of high-brilliance pulsed X-ray sources with femtosecond time resolution has created a need for a better theoretical understanding of the time-dependent soft-X-ray response of dissipative many-body quantum systems. It is demonstrated how soft-X-ray spectroscopies, such as X-ray absorption and resonant inelastic X-ray scattering at transition-metal L-edges, can provide insight into intersystem crossings, such as a spin crossover. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogues is used as an example to demonstrate how the X-ray response is affected by the dissipative nonequilibrium dynamics. The time-dependent soft-X-ray spectra provide a wealth of information thatmore » reflect the changes in the nonequilibrium initial state via continuously changing spectral lineshapes that cannot be decomposed into initial photoexcited and final metastable spectra, strong broadenings, a collapse of clear selection rules during the intersystem crossing, strong fluctuations in the isotropic branching ratio in X-ray absorption, and crystal-field collapse/oscillations and strongly time-dependent anti-Stokes processes in RIXS.« less
Phonon Confinement Effect in TiO2 Nanoparticles as Thermosensor Materials
2018-01-24
TiO2 or ZnO nanoparticles (NPs) have a very strong finite-size dependency in their Raman spectra or photoluminescence (PL) spectra due to the phonon...spectrometers were used to establish the particle size versus the Raman/PL peak position master curves. Systematic isothermal and temperature- dependent heat...Thermosensor Materials", Workshop on Time- Dependent Temperature Measurements in Energy Release Processes, Chicago, IL, 2012. 11 3) Ashish Kumar Mishra
Managing complexity in simulations of land surface and near-surface processes
Coon, Ethan T.; Moulton, J. David; Painter, Scott L.
2016-01-12
Increasing computing power and the growing role of simulation in Earth systems science have led to an increase in the number and complexity of processes in modern simulators. We present a multiphysics framework that specifies interfaces for coupled processes and automates weak and strong coupling strategies to manage this complexity. Process management is enabled by viewing the system of equations as a tree, where individual equations are associated with leaf nodes and coupling strategies with internal nodes. A dynamically generated dependency graph connects a variable to its dependencies, streamlining and automating model evaluation, easing model development, and ensuring models aremore » modular and flexible. Additionally, the dependency graph is used to ensure that data requirements are consistent between all processes in a given simulation. Here we discuss the design and implementation of these concepts within the Arcos framework, and demonstrate their use for verification testing and hypothesis evaluation in numerical experiments.« less
Stabilization and Structure of wave packets in Rydberg atoms ionized by a strong light field.
Fedorov, M; Fedorov, S
1998-09-28
New features of the phenomenon of interference stabilization of Rydberg atoms are found to exist. The main of them are: (i) dynamical stabilization, which means that in case of pulses with a smooth envelope the time-dependent residual probability for an atom to survive in bound states remains almost constant in the middle part of a pulse (at the strongest fields); (ii) existence of the strong-field stabilization of the after-pulse residual probability in case of pulses longer than the classical Kepler period; and (iii) pulsation of the time-dependent Rydberg wave packet formed in the process of photoionization.
PRISM, Processing and Review Interface for Strong Motion Data Software
NASA Astrophysics Data System (ADS)
Kalkan, E.; Jones, J. M.; Stephens, C. D.; Ng, P.
2016-12-01
A continually increasing number of high-quality digital strong-motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the U.S., calls for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. PRISM automates the processing of strong-motion records by providing batch-processing capabilities. The PRISM software is platform-independent (coded in Java), open-source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a graphical user interface (GUI) for manual review and processing. To facilitate the use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and GUI components) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X and Windows. PRISM was designed to be flexible and extensible in order to accommodate implementation of new processing techniques. Input to PRISM currently is limited to data files in the Consortium of Organizations for Strong-Motion Observation Systems (COSMOS) V0 format, so that all retrieved acceleration time series need to be converted to this format. Output products include COSMOS V1, V2 and V3 files as: (i) raw acceleration time series in physical units with mean removed (V1), (ii) baseline-corrected and filtered acceleration, velocity, and displacement time series (V2), and (iii) response spectra, Fourier amplitude spectra and common earthquake-engineering intensity measures (V3). A thorough description of the record processing features supported by PRISM is presented with examples and validation results. All computing features have been thoroughly tested.
NASA Astrophysics Data System (ADS)
Lucas, A.; Sengupta, D.; D'Asaro, E. A.; Nash, J. D.; Shroyer, E.; Mahadevan, A.; Tandon, A.; MacKinnon, J. A.; Pinkel, R.
2016-02-01
The exchange of heat between the atmosphere and ocean depends sensitively on the structure and extent of the oceanic boundary layer. Heat fluxes into and out of the ocean in turn influence atmospheric processes, and, in the northern Indian Ocean, impact the dominant regional weather pattern (the southwest Monsoon). In late 2015, measurements of the physical structure of the oceanic boundary layer were collected from a pair of research vessels and an array of autonomous assets in the Bay of Bengal as part of an India-U.S. scientific collaboration. Repeated CTD casts by a specialized shipboard system to 200m with a repeat rate of <3 min and a lateral spacing of < 200m, as well as near-surface sampling acoustic current profilers, showed how on the edge of an oceanic mesoscale eddy, the interaction of the mesoscale strain field, Ekman dynamics, and nonlinear submesoscale processes acted to subduct relative saline water under a very thin layer of fresher water derived from riverine sources. Our detailed surveys of the front between the overriding thin, fresh layer, and subducting adjacent more saline water demonstrated the important of small-scale physical dynamics to frontal slumping and the resulting re-stratification processes. These processes were strongly 3-dimensional and time-dependent. Such dynamics ultimately influence air-sea interactions by creating strongly stratified and very thin oceanic boundary layers in the Bay of Bengal, and allow the development of strong, persistent subsurface temperature maxima.
A new phenomenological /τ-/α interaction
NASA Astrophysics Data System (ADS)
Heiberg-Andersen, H.; Mackintosh, R. S.; Vaagen, J. S.
2003-01-01
We present a potential model, with distinctive features, reproducing angular distributions and analyzing power data for τ- α scattering from 20 to 30 MeV τ energy with regular variation of the parameters. The distinctive features are: (1) a spin-orbit term which incorporates the influence of central depression in the α nucleus, and, (2) central terms which are strongly parity dependent. The parity dependence of the real central term is such that the odd-parity component has both a greater rms radius and greater volume integral than the even-parity component. These parity dependence characteristics had been predicted by the inversion of the RGM S-matrix. Our result supports a considerable contribution from three-nucleon exchange processes. The predicted 1/2 - level of 7Be is shifted 3 MeV relative to a previous one-level R-matrix formula fit, and depends strongly on the geometry of the spin-orbit potential.
Molecular dynamics of oligofluorenes: A dielectric spectroscopy investigation
NASA Astrophysics Data System (ADS)
Papadopoulos, P.; Floudas, G.; Chi, C.; Wegner, G.
2004-02-01
The molecular dynamics were investigated in a series of "defect-free" oligofluorenes up to the polymer by dielectric spectroscopy (DS). The method is very sensitive to the presence of keto "defects" that when incorporated on the backbone give rise to poor optical and electronic properties. Two dielectrically active processes were found (β and α process). The latter process (α) displays strongly temperature dependent relaxation times and temperature- and molecular weight-dependent spectral broadening associated with intramolecular correlations. The glass temperature (Tg) obeys the Fox-Flory equation and the polymer Tg is obtained by DS at 332 K. The effective dipole moment associated with the α process is 0.27±0.03 D.
Meinhardt, Günter; Kurbel, David; Meinhardt-Injac, Bozana; Persike, Malte
2018-03-22
Some years ago an asymmetry was reported for the inversion effect for horizontal (H) and vertical (V) relational face manipulations (Goffaux & Rossion, 2007). Subsequent research examined whether a specific disruption of long-range relations underlies the H/V inversion asymmetry (Sekunova & Barton, 2008). Here, we tested how detection of changes in interocular distance (H) and eye height (V) depends on cardinal internal features and external feature surround. Results replicated the H/V inversion asymmetry. Moreover, we found very different face cue dependencies for both change types. Performance and inversion effects did not depend on the presence of other face cues for detecting H changes. In contrast, accuracy for detecting V changes strongly depended on internal and external features, showing cumulative improvement when more cues were added. Inversion effects were generally large, and larger with external feature surround. The cue independence in detecting H relational changes indicates specialized local processing tightly tuned to the eyes region, while the strong cue dependency in detecting V relational changes indicates a global mechanism of cue integration across different face regions. These findings suggest that the H/V asymmetry of the inversion effect rests on an H/V anisotropy of face cue dependency, since only the global V mechanism suffers from disruption of cue integration as the major effect of face inversion. Copyright © 2018. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, S. S., E-mail: sspan@issp.ac.cn, E-mail: ghli@issp.ac.cn; Li, F. D.; Liu, Q. W.
2015-05-07
SnO{sub 2} quantum dots (QDs) are potential materials for deep ultraviolet (DUV) light emitting devices. In this study, we report the temperature and excitation power-dependent exciton luminescence from SnO{sub 2} QDs. The exciton emission exhibits anomalous blue shift, accompanied with band width reduction with increasing temperature and excitation power above 300 K. The anomalous temperature dependences of the peak energy and band width are well interpreted by the strongly localized carrier thermal hopping process and Gaussian shape of band tails states, respectively. The localized wells and band tails at conduction minimum are considered to be induced by the surface oxygen defectsmore » and local potential fluctuation in SnO{sub 2} QDs.« less
NASA Astrophysics Data System (ADS)
Tsukanov, Alexey A.; Psakhie, Sergey G.
2016-08-01
Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.
Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings
NASA Astrophysics Data System (ADS)
Singer, F.
Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.
Dynamics and control of state-dependent networks for probing genomic organization
Rajapakse, Indika; Groudine, Mark; Mesbahi, Mehran
2011-01-01
A state-dependent dynamic network is a collection of elements that interact through a network, whose geometry evolves as the state of the elements changes over time. The genome is an intriguing example of a state-dependent network, where chromosomal geometry directly relates to genomic activity, which in turn strongly correlates with geometry. Here we examine various aspects of a genomic state-dependent dynamic network. In particular, we elaborate on one of the important ramifications of viewing genomic networks as being state-dependent, namely, their controllability during processes of genomic reorganization such as in cell differentiation. PMID:21911407
Giehr, Pascal; Kyriakopoulos, Charalampos; Ficz, Gabriella; Wolf, Verena; Walter, Jörn
2016-05-01
DNA methylation and demethylation are opposing processes that when in balance create stable patterns of epigenetic memory. The control of DNA methylation pattern formation by replication dependent and independent demethylation processes has been suggested to be influenced by Tet mediated oxidation of 5mC. Several alternative mechanisms have been proposed suggesting that 5hmC influences either replication dependent maintenance of DNA methylation or replication independent processes of active demethylation. Using high resolution hairpin oxidative bisulfite sequencing data, we precisely determine the amount of 5mC and 5hmC and model the contribution of 5hmC to processes of demethylation in mouse ESCs. We develop an extended hidden Markov model capable of accurately describing the regional contribution of 5hmC to demethylation dynamics. Our analysis shows that 5hmC has a strong impact on replication dependent demethylation, mainly by impairing methylation maintenance.
Oligomer formation in the troposphere: from experimental knowledge to 3-D modeling
NASA Astrophysics Data System (ADS)
Lemaire, Vincent; Coll, Isabelle; Couvidat, Florian; Mouchel-Vallon, Camille; Seigneur, Christian; Siour, Guillaume
2016-04-01
The organic fraction of atmospheric aerosols has proven to be a critical element of air quality and climate issues. However, its composition and the aging processes it undergoes remain insufficiently understood. This work builds on laboratory knowledge to simulate the formation of oligomers from biogenic secondary organic aerosol (BSOA) in the troposphere at the continental scale. We compare the results of two different modeling approaches, a first-order kinetic process and a pH-dependent parameterization, both implemented in the CHIMERE air quality model (AQM) (www.lmd.polytechnique.fr/chimere), to simulate the spatial and temporal distribution of oligomerized secondary organic aerosol (SOA) over western Europe. We also included a comparison of organic carbon (OC) concentrations at two EMEP (European Monitoring and Evaluation Programme) stations. Our results show that there is a strong dependence of the results on the selected modeling approach: while the irreversible kinetic process leads to the oligomerization of about 50 % of the total BSOA mass, the pH-dependent approach shows a broader range of impacts, with a strong dependency on environmental parameters (pH and nature of aerosol) and the possibility for the process to be reversible. In parallel, we investigated the sensitivity of each modeling approach to the representation of SOA precursor solubility (Henry's law constant values). Finally, the pros and cons of each approach for the representation of SOA aging are discussed and recommendations are provided to improve current representations of oligomer formation in AQMs.
Using NIAM to capture time dependencies in a domain of discourse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, S.D.
1994-07-01
This paper addresses the issues surrounding the use of NIAM to capture time dependencies in a domain of discourse. The NIAM concepts that support capturing time dependencies are in the event and process portions of the NIAM metamodel, which are the portions most poorly supported by a well-established methodology. This lack of methodological support is a potentially serious handicap in any attempt to apply NIAM to a domain of discourse in which time dependencies are a central issue. However, the capability that NIAM provides for validating and verifying the elementary facts in the domain may reduce the magnitude of themore » event/process-specification task to a level at which it could be effectively handled even without strong methodological support.« less
Wavelength dependence in radio-wave scattering and specular-point theory
NASA Technical Reports Server (NTRS)
Tyler, G. L.
1976-01-01
Radio-wave scattering from natural surfaces contains a strong quasispecular component that at fixed wavelengths is consistent with specular-point theory, but often has a strong wavelength dependence that is not predicted by physical optics calculations under the usual limitations of specular-point models. Wavelength dependence can be introduced by a physical approximation that preserves the specular-point assumptions with respect to the radii of curvature of a fictitious, effective scattering surface obtained by smoothing the actual surface. A uniform low-pass filter model of the scattering process yields explicit results for the effective surface roughness versus wavelength. Interpretation of experimental results from planetary surfaces indicates that the asymptotic surface height spectral densities fall at least as fast as an inverse cube of spatial frequency. Asymptotic spectral densities for Mars and portions of the lunar surface evidently decrease more rapidly.
Casagrande, Mirelle A; Haubrich, Josué; Pedraza, Lizeth K; Popik, Bruno; Quillfeldt, Jorge A; de Oliveira Alvares, Lucas
2018-04-01
Memories are not instantly created in the brain, requiring a gradual stabilization process called consolidation to be stored and persist in a long-lasting manner. However, little is known whether this time-dependent process is dynamic or static, and the factors that might modulate it. Here, we hypothesized that the time-course of consolidation could be affected by specific learning parameters, changing the time window where memory is susceptible to retroactive interference. In the rodent contextual fear conditioning paradigm, we compared weak and strong training protocols and found that in the latter memory is susceptible to post-training hippocampal inactivation for a shorter period of time. The accelerated consolidation process triggered by the strong training was mediated by glucocorticoids, since this effect was blocked by pre-training administration of metyrapone. In addition, we found that pre-exposure to the training context also accelerates fear memory consolidation. Hence, our results demonstrate that the time window in which memory is susceptible to post-training interferences varies depending on fear conditioning intensity and contextual familiarity. We propose that the time-course of memory consolidation is dynamic, being directly affected by attributes of the learning experiences. Copyright © 2018 Elsevier Inc. All rights reserved.
The role of the human hippocampus in familiarity-based and recollection-based recognition memory
Wixted, John T.; Squire, Larry R.
2010-01-01
The ability to recognize a previously encountered stimulus is dependent on the structures of the medial temporal lobe and is thought to be supported by two processes, recollection and familiarity. A focus of research in recent years concerns the extent to which these two processes depend on the hippocampus and on the other structures of the medial temporal lobe. One view holds that the hippocampus is important for both processes, whereas a different view holds that the hippocampus supports only the recollection process and the perirhinal cortex supports the familiarity process. One approach has been to study patients with hippocampal lesions and to contrast old/new recognition (which can be supported by familiarity) to free recall (which is supported by recollection). Despite some early case studies suggesting otherwise, several group studies have now shown that hippocampal patients exhibit comparable impairments on old/new recognition and free recall. These findings suggest that the hippocampus is important for both recollection and familiarity. Neuroimaging studies and Receiver Operating Characteristic analyses also initially suggested that the hippocampus was specialized for recollection, but these studies involved a strength confound (strong memories have been compared to weak memories). When steps are taken to compare strong recollection-based memories with strong familiarity-based memories, or otherwise control for memory strength, evidence for a familiarity signal (as well as a recollection signal) is evident in the hippocampus. These findings suggest that the functional organization of the medial temporal lobe is probably best understood in terms unrelated to the distinction between recollection and familiarity. PMID:20412819
Size and Temperature Dependence of Electron Transfer between CdSe Quantum Dots and a TiO 2 Nanobelt
Tafen, De Nyago; Prezhdo, Oleg V.
2015-02-24
Understanding charge transfer reactions between quantum dots (QD) and metal oxides is fundamental for improving photocatalytic, photovoltaic and electronic devices. The complexity of these processes makes it difficult to find an optimum QD size with rapid charge injection and low recombination. We combine time-domain density functional theory with nonadiabatic molecular dynamics to investigate the size and temperature dependence of the experimentally studied electron transfer and charge recombination at CdSe QD-TiO 2 nanobelt (NB) interfaces. The electron injection rate shows strong dependence on the QD size, increasing for small QDs. The rate exhibits Arrhenius temperature dependence, with the activation energy ofmore » the order of millielectronvolts. The charge recombination process occurs due to coupling of the electronic subsystem to vibrational modes of the TiO 2 NB. Inelastic electron-phonon scattering happens on a picosecond time scale, with strong dependence on the QD size. Our simulations demonstrate that the electron-hole recombination rate decreases significantly as the QD size increases, in excellent agreement with experiments. The temperature dependence of the charge recombination rates can be successfully modeled within the framework of the Marcus theory through optimization of the electronic coupling and the reorganization energy. Our simulations indicate that by varying the QD size, one can modulate the photoinduced charge separation and charge recombination, fundamental aspects of the design principles for high efficiency devices.« less
Evolutionary games on cycles with strong selection
NASA Astrophysics Data System (ADS)
Altrock, P. M.; Traulsen, A.; Nowak, M. A.
2017-02-01
Evolutionary games on graphs describe how strategic interactions and population structure determine evolutionary success, quantified by the probability that a single mutant takes over a population. Graph structures, compared to the well-mixed case, can act as amplifiers or suppressors of selection by increasing or decreasing the fixation probability of a beneficial mutant. Properties of the associated mean fixation times can be more intricate, especially when selection is strong. The intuition is that fixation of a beneficial mutant happens fast in a dominance game, that fixation takes very long in a coexistence game, and that strong selection eliminates demographic noise. Here we show that these intuitions can be misleading in structured populations. We analyze mean fixation times on the cycle graph under strong frequency-dependent selection for two different microscopic evolutionary update rules (death-birth and birth-death). We establish exact analytical results for fixation times under strong selection and show that there are coexistence games in which fixation occurs in time polynomial in population size. Depending on the underlying game, we observe inherence of demographic noise even under strong selection if the process is driven by random death before selection for birth of an offspring (death-birth update). In contrast, if selection for an offspring occurs before random removal (birth-death update), then strong selection can remove demographic noise almost entirely.
Gamma time-dependency in Blaxter's compartmental model.
NASA Technical Reports Server (NTRS)
Matis, J. H.
1972-01-01
A new two-compartment model for the passage of particles through the gastro-intestinal tract of ruminants is proposed. In this model, a gamma distribution of lifetimes is introduced in the first compartment; thereby, passage from that compartment becomes time-dependent. This modification is strongly suggested by the physical alteration which certain substances, e.g. hay particles, undergo in the digestive process. The proposed model is applied to experimental data.
Multinational Experiment 7. Space: Dependencies, Vulnerabilities and Threats
2012-01-01
service, a simple traffic light system is used to indicate the level of dependency that exists on space within the overall process of successful service...debris release during operations; minimise the potential for spacecraft and rocket body break-up; limit the probability of accidental collision on orbit...Strong winds Flooding Accidents at industrial installations e.g. nuclear power stations Volcanic activity Chemical spills (sea/on land
Time-resolved electric force microscopy of charge trapping in polycrystalline pentacene.
Jaquith, Michael; Muller, Erik M; Marohn, John A
2007-07-12
Here we introduce time-resolved electric force microscopy measurements to directly and locally probe the kinetics of charge trap formation in a polycrystalline pentacene thin-film transistor. We find that the trapping rate depends strongly on the initial concentration of free holes and that trapped charge is highly localized. The observed dependence of trapping rate on the hole chemical potential suggests that the trapping process should not be viewed as a filling of midgap energy levels, but instead as a process in which the very creation of trapped states requires the presence of free holes.
Affine Equivalence and Constructions of Cryptographically Strong Boolean Functions
2013-09-01
manner is crucial for today’s global citizen. We want our financial transactions over the Internet to get processed without error. Cyber warfare between...encryption and decryption processes . An asymmetric cipher uses different keys to encrypt and decrypt a message, and the connection between the encryption and...Depending on how a symmetric cipher processes a message before encryption or de- cryption, a symmetric cipher can be further classified into a block or
The Role of Memory Processes in Repetition Blindness
NASA Technical Reports Server (NTRS)
Johnston, James C.; Hochhaus, Larry; Null, Cynthia H. (Technical Monitor)
1995-01-01
We investigated whether Repetition Blindness (RB) in processing RSVP strings depends critically on memory demands. When all items in the sequence had to be reported, strong RB was found. When only the 2 critical items (cued by color) had to be reported, no RB was found. Preliminary results show that imposing a separate memory load, while reporting only the critical items, also produces little RB. Implications for the processing locus of RB will be discussed.
Scale dependence of deuteron electrodisintegration
NASA Astrophysics Data System (ADS)
More, S. N.; Bogner, S. K.; Furnstahl, R. J.
2017-11-01
Background: Isolating nuclear structure properties from knock-out reactions in a process-independent manner requires a controlled factorization, which is always to some degree scale and scheme dependent. Understanding this dependence is important for robust extractions from experiment, to correctly use the structure information in other processes, and to understand the impact of approximations for both. Purpose: We seek insight into scale dependence by exploring a model calculation of deuteron electrodisintegration, which provides a simple and clean theoretical laboratory. Methods: By considering various kinematic regions of the longitudinal structure function, we can examine how the components—the initial deuteron wave function, the current operator, and the final-state interactions (FSIs)—combine at different scales. We use the similarity renormalization group to evolve each component. Results: When evolved to different resolutions, the ingredients are all modified, but how they combine depends strongly on the kinematic region. In some regions, for example, the FSIs are largely unaffected by evolution, while elsewhere FSIs are greatly reduced. For certain kinematics, the impulse approximation at a high renormalization group resolution gives an intuitive picture in terms of a one-body current breaking up a short-range correlated neutron-proton pair, although FSIs distort this simple picture. With evolution to low resolution, however, the cross section is unchanged but a very different and arguably simpler intuitive picture emerges, with the evolved current efficiently represented at low momentum through derivative expansions or low-rank singular value decompositions. Conclusions: The underlying physics of deuteron electrodisintegration is scale dependent and not just kinematics dependent. As a result, intuition about physics such as the role of short-range correlations or D -state mixing in particular kinematic regimes can be strongly scale dependent. Understanding this dependence is crucial in making use of extracted properties.
Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.
Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R
2017-08-21
Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.
NASA Astrophysics Data System (ADS)
Azatyan, V. V.; Bolod'yan, I. A.; Kopylov, N. P.; Kopylov, S. N.; Prokopenko, V. M.; Shebeko, Yu. N.
2018-05-01
It is shown that the strong dependence of the rate of gas-phase combustion reactions on temperature is determined by the high values of the reaction rate constants of free atoms and radicals. It is established that with a branched chain mechanism, a special role in the reaction rate temperature dependence is played by positive feedback between the concentrations of active intermediate species and the rate of their change. The role of the chemical mechanism in the temperature dependence of the process rate with and without inhibitors is considered.
NASA Astrophysics Data System (ADS)
Cammeraat, L. H.
2009-04-01
Geomorphological processes including soil erosion are active in specific spatio-temporal domains and lead eventually to various emerging soil properties and landscape structures which are evidently also scale dependent. In this study the scale and threshold dependency of landscapes will be compared involving three different landscapes from the temperate, Mediterranean and semi-arid Sahelian geo-ecosystems, especially with regard to the connectivity of water and sediment redistribution. The dominant processes and feed-backs interwoven with soil erosion processes will be discussed from a hierarchical theory type of approach. However, current processes are almost always affected by the presence of inherited soil and landscape properties that might be formed under very different climatological conditions than those that are dominant today. Another important factor in these processes is the role of animals and plants. It will be shown that in all discussed geo-ecosystems plants and animals can be seen as geo-ecosystem engineers and are also important at broader scales with respect to runoff generation and sediment transport. For the temperate zone a case study from the cuesta landscape of the Paris Basin will be discussed, showing that fine scale, soil physico-chemical processes, soil animal and vegetation related processes lead to the emergence of partial areas and also play an important role in the formation of the cuestas itself. For the Mediterranean a case study is discussed where vegetation pattern heterogeneity determines water and sediment distribution from the patch to the sub-catchment scale leading to the emergence of either sheetwash generated slopes (pediments) or concentrated flow generated slopes (gullies), but where inherited landscape elements such as pediments with calcretes strongly affect runoff generation and the availability of sediments and hence have a strong impact on the sediment redistribution and measured erosion rates that strongly vary with the scale at which they are measured. Finally a case study from a semi-arid Sahelian ecosystem is discussed where runoff generation and sediment sources are strongly related to the semi-natural upper landscape zones with a strong interplay between vegetation and surface conditions, and where land use in the lower landscape units is an important sink area for both sediment and water. Landscape heterogeneity and the distribution of source and sinks of water and sediment is often strongly disconnected and shows clear physical thresholds that can be either of natural origin (e.g. vegetation clumps and patterns) or man-made (e.g. terraces). These physical thresholds are also important as temporary sediment sinks, that may convert to sediment sources during high magnitude events. The connectivity of sediment flow and hence sediment delivery to lower landscape units or larger channels is therefore highly variable and strongly dependent on both finer scale landscape elements and their specific position in the landscape, and the frequency-magnitude relationships of rainfall. It can be concluded that aspects of hydrological connectivity, temporary sinks of water and sediment in combination with biophysical and anthropogenic thresholds as well as storm characteristics should be included when scaling landscape processes to understand erosion and sediment yields. Furthermore the role and importance of biotic components in erosion studies is still underrated, despite the fact that vegetation is more and more applied to reduce erosion.
Flow and diffusion of high-stakes test scores.
Marder, M; Bansal, D
2009-10-13
We apply visualization and modeling methods for convective and diffusive flows to public school mathematics test scores from Texas. We obtain plots that show the most likely future and past scores of students, the effects of random processes such as guessing, and the rate at which students appear in and disappear from schools. We show that student outcomes depend strongly upon economic class, and identify the grade levels where flows of different groups diverge most strongly. Changing the effectiveness of instruction in one grade naturally leads to strongly nonlinear effects on student outcomes in subsequent grades.
Large-scale evidence of dependency length minimization in 37 languages
Futrell, Richard; Mahowald, Kyle; Gibson, Edward
2015-01-01
Explaining the variation between human languages and the constraints on that variation is a core goal of linguistics. In the last 20 y, it has been claimed that many striking universals of cross-linguistic variation follow from a hypothetical principle that dependency length—the distance between syntactically related words in a sentence—is minimized. Various models of human sentence production and comprehension predict that long dependencies are difficult or inefficient to process; minimizing dependency length thus enables effective communication without incurring processing difficulty. However, despite widespread application of this idea in theoretical, empirical, and practical work, there is not yet large-scale evidence that dependency length is actually minimized in real utterances across many languages; previous work has focused either on a small number of languages or on limited kinds of data about each language. Here, using parsed corpora of 37 diverse languages, we show that overall dependency lengths for all languages are shorter than conservative random baselines. The results strongly suggest that dependency length minimization is a universal quantitative property of human languages and support explanations of linguistic variation in terms of general properties of human information processing. PMID:26240370
Infrared Thermography For Welding
NASA Technical Reports Server (NTRS)
Gilbert, Jeffrey L.; Lucky, Brian D.; Spiegel, Lyle B.; Hudyma, Russell M.
1992-01-01
Infrared imaging and image-data-processing system shows temperatures of joint during welding and provides data from which rates of heating and cooling determined. Information used to control welding parameters to ensure reliable joints, in materials which microstructures and associated metallurgical and mechanical properties depend strongly on rates of heating and cooling. Applicable to variety of processes, including tungsten/inert-gas welding; plasma, laser, and resistance welding; cutting; and brazing.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Saikat; Bansal, Dipanshu; Delaire, Olivier; Perrodin, Didier; Bourret-Courchesne, Edith; Singh, David J.; Lindsay, Lucas
2017-09-01
Strongly anharmonic phonon properties of CuCl are investigated with inelastic neutron-scattering measurements and first-principles simulations. An unusual quasiparticle spectral peak emerges in the phonon density of states with increasing temperature, in both simulations and measurements, emanating from exceptionally strong coupling between conventional phonon modes. Associated with this strong anharmonicity, the lattice thermal conductivity of CuCl is extremely low and exhibits anomalous, nonmonotonic pressure dependence. We show how this behavior arises from the structure of the phonon dispersions augmenting the phase space available for anharmonic three-phonon scattering processes, and contrast this mechanism with common arguments based on negative Grüneisen parameters. These results demonstrate the importance of considering intrinsic phonon-dispersion structure toward understanding scattering processes and designing new ultralow thermal conductivity materials.
Direct approach for bioprocess optimization in a continuous flat-bed photobioreactor system.
Kwon, Jong-Hee; Rögner, Matthias; Rexroth, Sascha
2012-11-30
Application of photosynthetic micro-organisms, such as cyanobacteria and green algae, for the carbon neutral energy production raises the need for cost-efficient photobiological processes. Optimization of these processes requires permanent control of many independent and mutably dependent parameters, for which a continuous cultivation approach has significant advantages. As central factors like the cell density can be kept constant by turbidostatic control, light intensity and iron content with its strong impact on productivity can be optimized. Both are key parameters due to their strong dependence on photosynthetic activity. Here we introduce an engineered low-cost 5 L flat-plate photobioreactor in combination with a simple and efficient optimization procedure for continuous photo-cultivation of microalgae. Based on direct determination of the growth rate at constant cell densities and the continuous measurement of O₂ evolution, stress conditions and their effect on the photosynthetic productivity can be directly observed. Copyright © 2012 Elsevier B.V. All rights reserved.
Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere
NASA Astrophysics Data System (ADS)
Cannon, P. D.; Honary, F.; Borisov, N.
2016-03-01
Experiments in the illumination of the F region of the ionosphere via radio frequency waves polarized in the ordinary mode (O-mode) have revealed that the magnitude of artificial heating-induced effects depends strongly on the inclination angle of the pump beam, with a greater modification to the plasma observed when the heating beam is directed close to or along the magnetic zenith direction. Numerical simulations performed using a recently developed finite-difference time-domain (FDTD) code are used to investigate the contribution of the O-mode to Z-mode conversion process to this effect. The aspect angle dependence and angular size of the radio window for which conversion of an O-mode pump wave to the Z-mode occurs is simulated for a variety of plasma density profiles including 2-D linear gradients representative of large-scale plasma depletions, density-depleted plasma ducts, and periodic field-aligned irregularities. The angular shape of the conversion window is found to be strongly influenced by the background plasma profile. If the Z-mode wave is reflected, it can propagate back toward the O-mode reflection region leading to resonant enhancement of the electric field in this region. Simulation results presented in this paper demonstrate that this process can make a significant contribution to the magnitude of electron density depletion and temperature enhancement around the resonance height and contributes to a strong dependence of the magnitude of plasma perturbation with the direction of the pump wave.
NASA Astrophysics Data System (ADS)
Pedretti, D.; Molinari, A.; Fallico, C.; Guzzi, S.
2016-10-01
A series of experimental tracer tests were performed to explore the implications of the change in the pressure status of a heterogeneous bimodal aquifer for scale-dependent dispersion and mass-transfer processes. The sandbox was filled with sands and gravel channels and patches to form an alluvial-like bimodal aquifer. We performed multiple injections of a conservative tracer from 26 different locations of the sandbox and interpreted the resulting depth-integrated breakthrough curves (BTCs) at the central pumping well to obtain a scale-dependent distribution of local and field-integrated apparent longitudinal dispersivity (respectively, αLloc and αLapp). We repeated the experiments under confined (CS) and unconfined (UNS) pressure status, keeping the same heterogeneous configuration. Results showed that αLloc(associated with transport through gravel zones) was poorly influenced by the change in aquifer pressure and the presence of channels. Instead, αLapp(i.e. macrodispersion) strongly increased when changing from CS to UNS. In specific, we found αLapp ≈ 0.03 r for the CS and αLapp ≈ 0.15 r for the UNS (being r the distance from the well). Second-to-fourth-order temporal moments showed strong spatial dependence in the UNS and no spatial dependence in the CS. These results seem consistent with a ;vadose-zone-driven; kinetic mass-transfer process occurring in the UNS but not in the CS. The vadose zone enhances vertical flow due to the presence of free surface and large contrasts in hydraulic conductivity triggered by the desaturation of gravel channels nearby the pumping well. The vadose zone enhances vertical mixing between gravel and sands and generates BTC tailing. In the CS vertical mixing is negligible and anomalous transport is not observed.
NASA Astrophysics Data System (ADS)
Eilam, A.; Shapiro, M.
2012-01-01
We present a fully quantum-mechanical theory of the mutual light-matter effects when two laser pulses interact with three discrete states coupled to a (quasi)continuum. Our formulation uses a single set of equations to describe the time dependence of the discrete and continuum populations, as well as pulse propagation in electromagnetically induced transparency (EIT) and stimulated Raman adiabatic passage (STIRAP) situations, for both weak and strong laser pulses. The theory gives a mechanistic picture of the “slowing down of light” and the state of spontaneously emitted photons during this process. Surprising features regarding the time dependence of material and radiative transients as well as limitations on quantum light storage and retrieval are unraveled.
Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.
Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H
2007-06-01
Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.
Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold
Cao, Xu; Ma, Linlin; Yang, Fan
2014-01-01
Transient receptor potential vanilloid type 1 (TRPV1) channel responds to a wide spectrum of physical and chemical stimuli. In doing so, it serves as a polymodal cellular sensor for temperature change and pain. Many chemicals are known to strongly potentiate TRPV1 activation, though how this is achieved remains unclear. In this study we investigated the molecular mechanism underlying the gating effects of divalent cations Mg2+ and Ba2+. Using a combination of fluorescence imaging and patch-clamp analysis, we found that these cations potentiate TRPV1 gating by most likely promoting the heat activation process. Mg2+ substantially lowers the activation threshold temperature; as a result, a significant fraction of channels are heat-activated at room temperature. Although Mg2+ also potentiates capsaicin- and voltage-dependent activation, these processes were found either to be not required (in the case of capsaicin) or insufficient (in the case of voltage) to mediate the activating effect. In support of a selective effect on heat activation, Mg2+ and Ba2+ cause a Ca2+-independent desensitization that specifically prevents heat-induced channel activation but does not prevent capsaicin-induced activation. These results can be satisfactorily explained within an allosteric gating framework in which divalent cations strongly promote the heat-dependent conformational change or its coupling to channel activation, which is further coupled to the voltage- and capsaicin-dependent processes. PMID:24344247
Strong diffusion formulation of Markov chain ensembles and its optimal weaker reductions
NASA Astrophysics Data System (ADS)
Güler, Marifi
2017-10-01
Two self-contained diffusion formulations, in the form of coupled stochastic differential equations, are developed for the temporal evolution of state densities over an ensemble of Markov chains evolving independently under a common transition rate matrix. Our first formulation derives from Kurtz's strong approximation theorem of density-dependent Markov jump processes [Stoch. Process. Their Appl. 6, 223 (1978), 10.1016/0304-4149(78)90020-0] and, therefore, strongly converges with an error bound of the order of lnN /N for ensemble size N . The second formulation eliminates some fluctuation variables, and correspondingly some noise terms, within the governing equations of the strong formulation, with the objective of achieving a simpler analytic formulation and a faster computation algorithm when the transition rates are constant or slowly varying. There, the reduction of the structural complexity is optimal in the sense that the elimination of any given set of variables takes place with the lowest attainable increase in the error bound. The resultant formulations are supported by numerical simulations.
NASA Astrophysics Data System (ADS)
O'Steen, M. L.; Fedler, F.; Hauenstein, R. J.
1999-10-01
Reflection high-energy electron diffraction (RHEED) and laterally spatially resolved high resolution x-ray diffraction (HRXRD) have been used to identify and characterize rf plasma-assisted molecular-beam epitaxial growth factors which strongly affect the efficiency of In incorporation into InxGa1-xN epitaxial materials. HRXRD results for InxGa1-xN/GaN superlattices reveal a particularly strong dependence of average alloy composition x¯ upon both substrate growth temperature and incident V/III flux ratio. For fixed flux ratio, results reveal a strong thermally activated behavior, with over an order-of-magnitude decrease in x¯ with increasing growth temperature within the narrow range 590-670 °C. Within this same range, a further strong dependence upon V/III flux ratio is observed. The decreased In incorporation at elevated substrate temperatures is tentatively attributed to In surface-segregation and desorption processes. RHEED observations support this segregation/desorption interpretation to account for In loss.
A Cross-State Analysis of Renewable Portfolio Standard Development
NASA Astrophysics Data System (ADS)
Marchand, Mariel
As of December 2016, thirty-seven states have a renewable portfolio standard (RPS). RPS require that utilities provide a certain percentage of electricity generated using renewable sources by a certain date. This thesis builds on diffusion of innovation literature to understand how factors within a state, such as its political climate and the strength of interest groups, appear to influence the adoption process and structure of the RPS in five states--Connecticut, New Jersey, Michigan, Colorado, and Washington. Each of these states has a strong RPS as measured by its renewable energy goal over its current renewable energy production, the time frame in which this goal must be met, and the percentage of the electric load that is included in the regulation. This thesis uses both within-case and cross-case analysis to understand which combinations of internal state factors potentially lead to the adoption of a strong RPS. It finds that there are a number of combinations of factors that appear to contribute to strong RPS, depending on the internal circumstances of each state. However, more important is that without the opportunity to tailor the policy to meet the needs of the state, it is likely that states with unfavorable internal factors may not choose to adopt a RPS at all, let alone a strong RPS. While the innovation factors identified through the RPS diffusion research often contribute to states adopting a strong RPS, this thesis finds that the influence of these factors depends on a combination of the internal state factors with the RPS adoption process in shaping the structure of the RPS.
Ultrafast magnon generation in an Fe film on Cu(100).
Schmidt, A B; Pickel, M; Donath, M; Buczek, P; Ernst, A; Zhukov, V P; Echenique, P M; Sandratskii, L M; Chulkov, E V; Weinelt, M
2010-11-05
We report on a combined experimental and theoretical study of the spin-dependent relaxation processes in the electron system of an iron film on Cu(100). Spin-, time-, energy- and angle-resolved two-photon photoemission shows a strong characteristic dependence of the lifetime of photoexcited electrons on their spin and energy. Ab initio calculations as well as a many-body treatment corroborate that the observed properties are determined by relaxation processes involving magnon emission. Thereby we demonstrate that magnon emission by hot electrons occurs on the femtosecond time scale and thus provides a significant source of ultrafast spin-flip processes. Furthermore, engineering of the magnon spectrum paves the way for tuning the dynamic properties of magnetic materials.
Using resistive readout to probe ultrafast dynamics of a plasmonic sensor
NASA Astrophysics Data System (ADS)
Cheney, Alec; Chen, Borui; Cartwright, Alexander; Thomay, Tim
2018-02-01
Surface plasmons in a DC current lead to an increase in scattering processes, resulting in a measurable increase in electrical resistance of a plasmonic nano-grating. This enables a purely electronic readout of plasmonically mediated optical absorption. We show that there is a time-dependence in these resistance changes on the order of 100ps that we attribute to electron-phonon and phonon-phonon scattering processes in the metal of the nano-gratings. Since plasmonic responses are strongly structurally dependent, an appropriately designed plasmoelectronic detector could potentially offer an extremely fast response at communication wavelengths in a fully CMOS compatible system.
Daurio, Dominick; Nagapudi, Karthik; Li, Lan; Quan, Peter; Nunez, Fernando-Alvarez
2014-01-01
The application of twin screw extrusion (TSE) in the scale-up of cocrystal production was investigated by using AMG 517-sorbic acid as a model system. Extrusion parameters that influenced conversion to the cocrystal such as temperature, feed rate and screw speed were investigated. Extent of conversion to the cocrystal was found to have a strong dependence on temperature and a moderate dependence on feed rate and screw speed. Cocrystals made by the TSE process were found to have superior mechanical properties than solution grown cocrystals. Additionally, moving to a TSE process eliminated the need for solvent.
Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia
ERIC Educational Resources Information Center
Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue
2011-01-01
Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…
USDA-ARS?s Scientific Manuscript database
Saturated packed column and micromodel transport studies wereconducted to gain insightonmechanismsof colloid retention and release under unfavorable attachment conditions. The initial deposition of colloids in porous media was found to be a strongly coupled process that depended on solution chemistr...
2016-01-01
Alcohol dependence is characterized by conflict between approach and avoidance motivational orientations for alcohol that operate in automatic and controlled processes. This article describes the first study to investigate the predictive validity of these motivational orientations for relapse to drinking after discharge from alcohol detoxification treatment in alcohol-dependent patients. One hundred twenty alcohol-dependent patients who were nearing the end of inpatient detoxification treatment completed measures of self-reported (Approach and Avoidance of Alcohol Questionnaire; AAAQ) and automatic (modified Stimulus-Response Compatibility task) approach and avoidance motivational orientations for alcohol. Their drinking behavior was assessed via telephone follow-ups at 2, 4, and 6 months after discharge from treatment. Results indicated that, after controlling for the severity of alcohol dependence, strong automatic avoidance tendencies for alcohol cues were predictive of higher percentage of heavy drinking days (PHDD) at 4-month (β = 0.22, 95% CI [0.07, 0.43]) and 6-month (β = 0.22, 95% CI [0.01, 0.42]) follow-ups. We failed to replicate previous demonstrations of the predictive validity of approach subscales of the AAAQ for relapse to drinking, and there were no significant predictors of PHDD at 2-month follow-up. In conclusion, strong automatic avoidance tendencies predicted relapse to drinking after inpatient detoxification treatment, but automatic approach tendencies and self-reported approach and avoidance tendencies were not predictive in this study. Our results extend previous findings and help to resolve ambiguities with earlier studies that investigated the roles of automatic and controlled cognitive processes in recovery from alcohol dependence. PMID:27935726
Stability versus neuronal specialization for STDP: long-tail weight distributions solve the dilemma.
Gilson, Matthieu; Fukai, Tomoki
2011-01-01
Spike-timing-dependent plasticity (STDP) modifies the weight (or strength) of synaptic connections between neurons and is considered to be crucial for generating network structure. It has been observed in physiology that, in addition to spike timing, the weight update also depends on the current value of the weight. The functional implications of this feature are still largely unclear. Additive STDP gives rise to strong competition among synapses, but due to the absence of weight dependence, it requires hard boundaries to secure the stability of weight dynamics. Multiplicative STDP with linear weight dependence for depression ensures stability, but it lacks sufficiently strong competition required to obtain a clear synaptic specialization. A solution to this stability-versus-function dilemma can be found with an intermediate parametrization between additive and multiplicative STDP. Here we propose a novel solution to the dilemma, named log-STDP, whose key feature is a sublinear weight dependence for depression. Due to its specific weight dependence, this new model can produce significantly broad weight distributions with no hard upper bound, similar to those recently observed in experiments. Log-STDP induces graded competition between synapses, such that synapses receiving stronger input correlations are pushed further in the tail of (very) large weights. Strong weights are functionally important to enhance the neuronal response to synchronous spike volleys. Depending on the input configuration, multiple groups of correlated synaptic inputs exhibit either winner-share-all or winner-take-all behavior. When the configuration of input correlations changes, individual synapses quickly and robustly readapt to represent the new configuration. We also demonstrate the advantages of log-STDP for generating a stable structure of strong weights in a recurrently connected network. These properties of log-STDP are compared with those of previous models. Through long-tail weight distributions, log-STDP achieves both stable dynamics for and robust competition of synapses, which are crucial for spike-based information processing.
Electron quantum dynamics in atom-ion interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzyan, H., E-mail: sabzyan@sci.ui.ac.ir; Jenabi, M. J.
2016-04-07
Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, whichmore » define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.« less
Baker, Timothy B.; Piper, Megan E.; Schlam, Tanya R.; Cook, Jessica W.; Smith, Stevens S.; Loh, Wei-Yin; Bolt, Daniel
2013-01-01
Measured tobacco dependence is typically only modestly related to tobacco withdrawal severity amongst regular smokers making a quit attempt. The weak association between dependence and withdrawal is notable because it conflicts with core theories of dependence and because both measures predict cessation outcomes, suggesting they both index a common dependence construct. This study used data from a smoking cessation comparative effectiveness trial (N = 1504) to characterize relations of tobacco dependence with craving and negative affect withdrawal symptoms using multiple dependence measures and analytic methods to detect both additive and interactive effects and to determine whether withdrawal meaningfully mediates the influence of dependence on smoking cessation. We conclude: (1) while univariate analyses suggest dependence and withdrawal measures are only modestly interrelated, more powerful analytic techniques show they are, in fact, meaningfully related and their shared variance is associated with cessation likelihood; (2) there are clear differences between craving and negative affective withdrawal symptoms, with the former more related to smoking heaviness and the latter related to trait measures of negative affect; moreover, craving more strongly mediates dependence effects on cessation; (3) both craving and negative affect withdrawal symptoms are strongly related to a pattern of regular smoking that is sensitive to the passage of time and powerfully affected by smoking cues. These findings support models that accord an important role for associative processes and withdrawal symptoms, especially craving, in drug dependence. The findings also support the use of withdrawal variables as criteria for the evaluation of dependence measures. PMID:22642839
Energy deposition of heavy ions in the regime of strong beam-plasma correlations.
Gericke, D O; Schlanges, M
2003-03-01
The energy loss of highly charged ions in dense plasmas is investigated. The applied model includes strong beam-plasma correlation via a quantum T-matrix treatment of the cross sections. Dynamic screening effects are modeled by using a Debye-like potential with a velocity dependent screening length that guarantees the known low and high beam velocity limits. It is shown that this phenomenological model is in good agreement with simulation data up to very high beam-plasma coupling. An analysis of the stopping process shows considerably longer ranges and a less localized energy deposition if strong coupling is treated properly.
NASA Astrophysics Data System (ADS)
Basharov, Askhat M.
1995-10-01
It is shown theoretically that additional illumination by a squeezed field of a thin layer of two-level atoms, which interact with a resonant coherent electromagnetic wave, results in bistable transmission/reflection of this wave. This bistability depends strongly on the difference between the phases of the coherent and squeezed fields.
Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries.
Fan, Frank Y; Carter, W Craig; Chiang, Yet-Ming
2015-09-16
The kinetics of Li2 S electrodeposition onto carbon in lithium-sulfur batteries are characterized. Electrodeposition is found to be dominated by a 2D nucleation and growth process with rate constants that depend strongly on the electrolyte solvent. Nucleation is found to require a greater overpotential than growth, which results in a morphology that is dependent on the discharge rate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Safdari, Hadiseh; Chechkin, Aleksei V.; Jafari, Gholamreza R.; Metzler, Ralf
2015-04-01
Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.
Evaluation of a multi-channel algorithm for reducing transient sounds.
Keshavarzi, Mahmoud; Baer, Thomas; Moore, Brian C J
2018-05-15
The objective was to evaluate and select appropriate parameters for a multi-channel transient reduction (MCTR) algorithm for detecting and attenuating transient sounds in speech. In each trial, the same sentence was played twice. A transient sound was presented in both sentences, but its level varied across the two depending on whether or not it had been processed by the MCTR and on the "strength" of the processing. The participant indicated their preference for which one was better and by how much in terms of the balance between the annoyance produced by the transient and the audibility of the transient (they were told that the transient should still be audible). Twenty English-speaking participants were tested, 10 with normal hearing and 10 with mild-to-moderate hearing-impairment. Frequency-dependent linear amplification was provided for the latter. The results for both participant groups indicated that sounds processed using the MCTR were preferred over the unprocessed sounds. For the hearing-impaired participants, the medium and strong settings of the MCTR were preferred over the weak setting. The medium and strong settings of the MCTR reduced the annoyance produced by the transients while maintaining their audibility.
Safdari, Hadiseh; Chechkin, Aleksei V; Jafari, Gholamreza R; Metzler, Ralf
2015-04-01
Scaled Brownian motion (SBM) is widely used to model anomalous diffusion of passive tracers in complex and biological systems. It is a highly nonstationary process governed by the Langevin equation for Brownian motion, however, with a power-law time dependence of the noise strength. Here we study the aging properties of SBM for both unconfined and confined motion. Specifically, we derive the ensemble and time averaged mean squared displacements and analyze their behavior in the regimes of weak, intermediate, and strong aging. A very rich behavior is revealed for confined aging SBM depending on different aging times and whether the process is sub- or superdiffusive. We demonstrate that the information on the aging factorizes with respect to the lag time and exhibits a functional form that is identical to the aging behavior of scale-free continuous time random walk processes. While SBM exhibits a disparity between ensemble and time averaged observables and is thus weakly nonergodic, strong aging is shown to effect a convergence of the ensemble and time averaged mean squared displacement. Finally, we derive the density of first passage times in the semi-infinite domain that features a crossover defined by the aging time.
Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.
Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing
2017-05-30
Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.
Ligand protons in a frozen solution of copper histidine relax via a T1e-driven three-spin mechanism
NASA Astrophysics Data System (ADS)
Stoll, S.; Epel, B.; Vega, S.; Goldfarb, D.
2007-10-01
Davies electron-nuclear double resonance spectra can exhibit strong asymmetries for long mixing times, short repetition times, and large thermal polarizations. These asymmetries can be used to determine nuclear relaxation rates in paramagnetic systems. Measurements of frozen solutions of copper(L-histidine)2 reveal a strong field dependence of the relaxation rates of the protons in the histidine ligand, increasing from low (g‖) to high (g⊥) field. It is shown that this can be attributed to a concentration-dependent T1e-driven relaxation process involving strongly mixed states of three spins: the histidine proton, the Cu(II) electron spin of the same complex, and another distant electron spin with a resonance frequency differing from the spectrometer frequency approximately by the proton Larmor frequency. The protons relax more efficiently in the g⊥ region, since the number of distant electrons able to participate in this relaxation mechanism is higher than in the g‖ region. Analytical expressions for the associated nuclear polarization decay rate Teen-1 are developed and Monte Carlo simulations are carried out, reproducing both the field and the concentration dependences of the nuclear relaxation.
Zhang, Meilin; Li, Yingfen; Long, Xinxian; Chong, Yunxiao; Yu, Guangwei; He, Zihao
2018-05-18
Owing to the high efficiency of converting nitrate to nitrogen gas with ferrous iron as the electron donor, the process of nitrate-dependent ferrous oxidation (NDFeO) has been considered suitable to treat wastewater that contains nitrate but lacks organic matter. Meanwhile, arsenic immobilization often has been found during the NDFeO reaction. Thus, it was strongly expected that nitrate and arsenic could be removed simultaneously in co-contaminated wastewater through the NDFeO process. However, in the current work, arsenic was not removed during the NDFeO process when the pH was high (above 8), though the nitrate reduction rate was over 90%. Meanwhile, the biosolid particles from the NDFeO process demonstrated strong adsorption ability for arsenic when the pH was below 6. Yet, the adsorption became weak when the pH was above 7. Fourier transform infrared (FTIR) spectroscopy analysis revealed that the main activated component for arsenic adsorption was iron oxide in these particles, which was easily crippled under high pH conditions. These results implied that co-removal of nitrate and arsenic in wastewater treatment using NDFeO was difficult to carry out under high pH conditions. Thus, a two-step approach in which nitrate was removed first by NDFeO followed by arsenic adsorption with NDFeO biosolids was more feasible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Word Reading Fluency as a Serial Naming Task
ERIC Educational Resources Information Center
Protopapas, Athanassios; Katopodi, Katerina; Altani, Angeliki; Georgiou, George K.
2018-01-01
Word list reading fluency is theoretically expected to depend on single word reading speed. Yet the correlation between the two diminishes with increasing fluency, while fluency remains strongly correlated to serial digit naming. We hypothesized that multi-element sequence processing is an important component of fluency. We used confirmatory…
Investigating Storage and Retrieval Processes of Directed Forgetting: A Model-Based Approach
ERIC Educational Resources Information Center
Rummel, Jan; Marevic, Ivan; Kuhlmann, Beatrice G.
2016-01-01
Intentional forgetting of previously learned information is an adaptive cognitive capability of humans but its cognitive underpinnings are not yet well understood. It has been argued that it strongly depends on the presentation method whether forgetting instructions alter storage or retrieval stages (Basden, Basden, & Gargano, 1993). In…
When being narrow minded is a good thing: locally biased people show stronger contextual cueing.
Bellaera, Lauren; von Mühlenen, Adrian; Watson, Derrick G
2014-01-01
Repeated contexts allow us to find relevant information more easily. Learning such contexts has been proposed to depend upon either global processing of the repeated contexts, or alternatively processing of the local region surrounding the target information. In this study, we measured the extent to which observers were by default biased to process towards a more global or local level. The findings showed that the ability to use context to help guide their search was strongly related to an observer's local/global processing bias. Locally biased people could use context to help improve their search better than globally biased people. The results suggest that the extent to which context can be used depends crucially on the observer's attentional bias and thus also to factors and influences that can change this bias.
Behavioral State Modulates the Activity of Brainstem Sensorimotor Neurons
McArthur, Kimberly L.
2011-01-01
Sensorimotor processing must be modulated according to the animal's behavioral state. A previous study demonstrated that motion responses were strongly state dependent in birds. Vestibular eye and head responses were significantly larger and more compensatory during simulated flight, and a flight-specific vestibular tail response was also characterized. In the current study, we investigated the neural substrates for these state-dependent vestibular behaviors by recording extracellularly from neurons in the vestibular nuclear complex and comparing their spontaneous activity and sensory responses during default and simulated flight states. We show that motion-sensitive neurons in the lateral vestibular nucleus are state dependent. Some neurons increased their spontaneous firing rates during flight, though their increased excitability was not reflected in higher sensory gains. However, other neurons exhibited state-dependent gating of sensory inputs, responding to rotational stimuli only during flight. These results demonstrate that vestibular processing in the brainstem is state dependent and lay the foundation for future studies to investigate the synaptic mechanisms responsible for these modifications. PMID:22090497
Rathje, T; Sayler, A M; Zeng, S; Wustelt, P; Figger, H; Esry, B D; Paulus, G G
2013-08-30
Measurements and calculations of the absolute carrier-envelope-phase (CEP) effects in the photodissociation of the simplest molecule, H2(+), with a 4.5-fs Ti:sapphire laser pulse at intensities up to (4±2)×10(14) W/cm2 are presented. Localization of the electron with respect to the two nuclei (during the dissociation process) is controlled via the CEP of the ultrashort laser pulses. In contrast to previous CEP-dependent experiments with neutral molecules, the dissociation of the molecular ions is not preceded by a photoionization process, which strongly influences the CEP dependence. Kinematically complete data are obtained by time- and position-resolved coincidence detection. The phase dependence is determined by a single-shot phase measurement correlated to the detection of the dissociation fragments. The experimental results show quantitative agreement with ab initio 3D time-dependent Schrödinger equation calculations that include nuclear vibration and rotation.
NASA Astrophysics Data System (ADS)
Sakamoto, Yuri; Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo
2018-04-01
We have succeeded in fabricating a hydrogen gas sensor based on palladium-modified graphene field-effect transistors (FETs). The negative-voltage shift in the transfer characteristics was observed with exposure to hydrogen gas, which was explained by the change in work function. The hydrogen concentration dependence of the voltage shift was investigated using graphene FETs with palladium deposited by three different evaporation processes. The results indicate that the hydrogen detection sensitivity of the palladium-modified graphene FETs is strongly dependent on the palladium configuration. Therefore, the palladium-modified graphene FET is a candidate for breath analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, K. A. P.; Shibata, K.; Nishizuka, N.
The solar optical telescope onboard Hinode with temporal resolution of less than 5 s and spatial resolution of 150 km has observed the lower solar atmosphere with an unprecedented detail. This has led to many important findings, one of them is the discovery of chromospheric anemone jets in the solar chromosphere. The chromospheric anemone jets are ubiquitous in solar chromosphere and statistical studies show that the typical length, life time and energy of the chromospheric anemone jets are much smaller than the coronal events (e.g., jets/flares/CMEs). Among various observational parameters, the apparent length and maximum velocity shows good correlation. Themore » velocity of chromospheric anemone jets is comparable to the local Alfven speed in the lower solar chromosphere. Since the discovery of chromospheric anemone jets by Hinode, several evidences of magnetic reconnection in chromospheric anemone jets have been found and these observations are summarized in this paper. These observations clearly suggest that reconnection occurs quite rapidly as well as intermittently in the solar chromosphere. In the solar corona ({lambda}{sub i} > {delta}{sub SP}), anomalous resistivity arises due to various collisionless processes. Previous MHD simulations show that reconnection becomes fast as well as strongly time-dependent due to anomalous resistivity. Such processes would not arise in the solar chromosphere which is fully collisional and partially-ionized. So, it is unclear how the rapid and strongly time-dependent reconnection would occur in the solar chromosphere. It is quite likely that the Hall and ambipolar diffusion are present in the solar chromosphere and they could play an important role in driving such rapid, strongly time-dependent reconnection in the solar chromosphere.« less
Processor-Based Strong Physical Unclonable Functions with Aging-Based Response Tuning (Preprint)
2013-01-01
NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON GARRET S. ROSE a. REPORT U b . ABSTRACT U c. THIS PAGE U 19b. TELEPHONE NUMBER (Include area code...generated by quad-tree process variation model [1]. The number in the right side of the figures means Z value of Gaussian distribution. B . Delay model To...and B are technology dependent constants. As shown in Equation 2, the Vth shift heavily depends on temperature (T ) and stress time (t). By applying
Water-sensitive positron trapping modes in nanoporous magnesium aluminate ceramics
NASA Astrophysics Data System (ADS)
Filipecki, J.; Ingram, A.; Klym, H.; Shpotyuk, O.; Vakiv, M.
2007-08-01
The water-sensitive positron trapping modes in nanoporous MgAl2O4 ceramics with a spinel structure are studied. It is shown that water-sorption processes in magnesium aluminate ceramics leads to corresponding increase in positron trapping rates of extended defects located near intergranual boundaries. This catalytic affect has reversible nature, being strongly dependent on sorption water fluxes in ceramics. The fixation of all water-dependent positron trapping inputs allow to refine the most significant changes in positron trapping rate of extended defects.
Lopez-Fagundo, Cristina; Mitchel, Jennifer A.; Ramchal, Talisha D.; Dingle, Yu-Ting L.; Hoffman-Kim, Diane
2013-01-01
The path created by aligned Schwann cells (SCs) after nerve injury underlies peripheral nerve regeneration. We developed geometric bioinspired substrates to extract key information needed for axon guidance by deconstructing the topographical cues presented by SCs. We have previously reported materials that directly replicate SC topography with micro- and nanoscale resolution, but a detailed explanation of the means of directed axon extension on SC topography has not yet been described. Here, using neurite tracing and time-lapse microscopy, we analyzed the SC features that influence axon guidance. Novel poly(dimethylsiloxane) materials, fabricated via photolithography, incorporated bioinspired topographical components with the shapes and sizes of aligned SCs, namely somas and processes, where the length of the processes were varied but the soma geometry and dimensions were kept constant. Rat dorsal root ganglia neurites aligned to all materials presenting bioinspired topography after a 5 days in culture and to bioinspired materials presenting soma and process features after only 17 hours in culture. Key findings of this study were: Neurite response to underlying bioinspired topographical features was time dependent, where at 5 days, neurites aligned most strongly to materials presenting combinations of soma and process features, with higher than average density of either process or soma features; but at 17 hours they aligned more strongly to materials presenting average densities of soma and process features and to materials presenting process features only. These studies elucidate the influence of SC topography on axon guidance in a time-dependent setting and have implications for the optimization of nerve regeneration strategies. PMID:23557939
Song, Gyuho; Kong, Tai; Dusoe, Keith J.; ...
2018-01-24
Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Gyuho; Kong, Tai; Dusoe, Keith J.
Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less
Pedraza, Lizeth K; Sierra, Rodrigo O; Boos, Flávia Z; Haubrich, Josué; Quillfeldt, Jorge A; Alvares, Lucas de Oliveira
2016-03-01
Memory fades over time, becoming more schematic or abstract. The loss of contextual detail in memory may reflect a time-dependent change in the brain structures supporting memory. It has been well established that contextual fear memory relies on the hippocampus for expression shortly after learning, but it becomes hippocampus-independent at a later time point, a process called systems consolidation. This time-dependent process correlates with the loss of memory precision. Here, we investigated whether training intensity predicts the gradual decay of hippocampal dependency to retrieve memory, and the quality of the contextual memory representation over time. We have found that training intensity modulates the progressive decay of hippocampal dependency and memory precision. Strong training intensity accelerates systems consolidation and memory generalization in a remarkable timeframe match. The mechanisms underpinning such process are triggered by glucocorticoid and noradrenaline released during training. These results suggest that the stress levels during emotional learning act as a switch, determining the fate of memory quality. Moderate stress will create a detailed memory, whereas a highly stressful training will develop a generic gist-like memory. © 2015 Wiley Periodicals, Inc.
Richardson, Hugh H; Hickman, Zackary N; Govorov, Alexander O; Thomas, Alyssa C; Zhang, Wei; Kordesch, Martin E
2006-04-01
We investigate the system of optically excited gold NPs in an ice matrix aiming to understand heat generation and melting processes at the nanoscale level. Along with the traditional fluorescence method, we introduce thermooptical spectroscopy based on phase transformation of a matrix. With this, we can not only measure optical response but also thermal response, that is, heat generation. After several recrystallization cycles, the nanoparticles are embedded into the ice film where the optical and thermal properties of the nanoparticles are probed. Spatial fluorescence mapping shows the locations of Au nanoparticles, whereas the time-resolved Raman signal of ice reveals the melting process. From the time-dependent Raman signals, we determine the critical light intensities at which the laser beam is able to melt ice around the nanoparticles. The melting intensity depends strongly on temperature and position. The position-dependence is especially strong and reflects a mesoscopic character of heat generation. We think that it comes from the fact that nanoparticles form small complexes of different geometry and each complex has a unique thermal response. Theoretical calculations and experimental data are combined to make a quantitative measure of the amount of heat generated by optically excited Au nanoparticles and agglomerates. The information obtained in this study can be used to design nanoscale heaters and actuators.
Semi-inclusive deep inelastic scattering at small- x
NASA Astrophysics Data System (ADS)
Marquet, Cyrille; Xiao, Bo-Wen; Yuan, Feng
2009-11-01
We study the semi-inclusive hadron production in deep inelastic scattering at small-x. A transverse-momentum-dependent factorization is found consistent with the results calculated in the small-x approaches, such as the color-dipole framework and the color glass condensate, in the appropriate kinematic region at the lowest order. The transverse-momentum-dependent quark distribution can be studied in this process as a probe for the small-x saturation physics. Especially, the ratio of quark distributions as a function of transverse momentum at different x demonstrates strong dependence on the saturation scale. The Q2 dependence of the same ratio is also studied by applying the Collins-Soper-Sterman resummation method.
Selective deposition for ''chamber clean-free'' processes using tailored voltage waveform plasmas
NASA Astrophysics Data System (ADS)
Wang, Junkang; v. Johnson, Erik
2016-09-01
Tailored Voltage Waveforms (TVWs) have been proven capable of creating plasma asymmetries in otherwise symmetric CCP reactors. Particularly, sawtooth TVWs (described as having strong slope-asymmetry due to different voltage rise/fall slope) can lead to different sheath dynamics, thus generating strongly asymmetric ionization near each electrode. To date, research concerning the slope-asymmetry has only focused on single-gas plasmas. Herein, we present a study looking at SiF4/H2/Ar mixtures to investigate silicon thin film deposition. The resulting surface process depends strongly on multiple precursors, and the deposition requires a specific balance between surface arrival rates of SiFx and H. For a certain gas flow ratio, we can obtain a deposition rate of 0.82Å/s on one electrode and an etching rate of 1.2Å/s on the other. Moreover, the deposition/etching balance can be controlled by H2 flow and waveform amplitude. This is uniquely possible due to the mixed-gas nature of the process and localized ionization generated by sawtooth TVWs. This encourages the prospect that one could choose process conditions to achieve a variety of desired depositions on one electrode, while leaving the other pristine.
Field, Matt; Di Lemma, Lisa; Christiansen, Paul; Dickson, Joanne
2017-03-01
Alcohol dependence is characterized by conflict between approach and avoidance motivational orientations for alcohol that operate in automatic and controlled processes. This article describes the first study to investigate the predictive validity of these motivational orientations for relapse to drinking after discharge from alcohol detoxification treatment in alcohol-dependent patients. One hundred twenty alcohol-dependent patients who were nearing the end of inpatient detoxification treatment completed measures of self-reported (Approach and Avoidance of Alcohol Questionnaire; AAAQ) and automatic (modified Stimulus-Response Compatibility task) approach and avoidance motivational orientations for alcohol. Their drinking behavior was assessed via telephone follow-ups at 2, 4, and 6 months after discharge from treatment. Results indicated that, after controlling for the severity of alcohol dependence, strong automatic avoidance tendencies for alcohol cues were predictive of higher percentage of heavy drinking days (PHDD) at 4-month (β = 0.22, 95% CI [0.07, 0.43]) and 6-month (β = 0.22, 95% CI [0.01, 0.42]) follow-ups. We failed to replicate previous demonstrations of the predictive validity of approach subscales of the AAAQ for relapse to drinking, and there were no significant predictors of PHDD at 2-month follow-up. In conclusion, strong automatic avoidance tendencies predicted relapse to drinking after inpatient detoxification treatment, but automatic approach tendencies and self-reported approach and avoidance tendencies were not predictive in this study. Our results extend previous findings and help to resolve ambiguities with earlier studies that investigated the roles of automatic and controlled cognitive processes in recovery from alcohol dependence. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Effects of Ionic Dependence of DNA Persistence Length on the DNA Condensation at Room Temperature
NASA Astrophysics Data System (ADS)
Mao, Wei; Liu, Yan-Hui; Hu, Lin; Xu, Hou-Qiang
2016-05-01
DNA persistence length is a key parameter for quantitative interpretation of the conformational properties of DNA and related to the bending rigidity of DNA. A series of experiments pointed out that, in the DNA condensation process by multivalent cations, the condensed DNA takes elongated coil or compact globule states and the population of the compact globule states increases with an increase in ionic concentration. At the same time, single molecule experiments carried out in solution with multivalent cations (such as spermidine, spermine) indicated that DNA persistence length strongly depends on the ionic concentration. In order to revolve the effects of ionic concentration dependence of persistence length on DNA condensation, a model including the ionic concentration dependence of persistence length and strong correlation of multivalent cation on DNA is provided. The autocorrelation function of the tangent vectors is found as an effective way to detect the ionic concentration dependence of toroidal conformations. With an increase in ion concentration, the first periodic oscillation contained in the autocorrelation function shifts, the number of segment contained in the first periodic oscillation decreases gradually. According to the experiments, the average long-axis length is defined to estimate the ionic concentration dependence of condensation process further. The relation between long-axis length and ionic concentration matches the experimental results qualitatively. Supported by National Natural Science Foundation of China under Grant Nos. 11047022, 11204045, 11464004 and 31360215; The Research Foundation from Ministry of Education of China (212152), Guizhou Provincial Tracking Key Program of Social Development (SY20123089, SZ20113069); The General Financial Grant from the China Postdoctoral Science Foundation (2014M562341); The Research Foundation for Young University Teachers from Guizhou University (201311); The West Light Foundation (2015) and College Innovation Talent Team of Guizhou Province, (2014) 32
Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R
2013-09-17
Cell adhesion and the adhesion of vesicles to the membranes of cells or organelles are pivotal for immune responses, tissue formation, and cell signaling. The adhesion processes depend sensitively on the binding constant of the membrane-anchored receptor and ligand proteins that mediate adhesion, but this constant is difficult to measure in experiments. We have investigated the binding of membrane-anchored receptor and ligand proteins with molecular dynamics simulations. We find that the binding constant of the anchored proteins strongly decreases with the membrane roughness caused by thermally excited membrane shape fluctuations on nanoscales. We present a theory that explains the roughness dependence of the binding constant for the anchored proteins from membrane confinement and that relates this constant to the binding constant of soluble proteins without membrane anchors. Because the binding constant of soluble proteins is readily accessible in experiments, our results provide a useful route to compute the binding constant of membrane-anchored receptor and ligand proteins.
Single and double multiphoton ionization of Li and Be atoms by strong laser fields
NASA Astrophysics Data System (ADS)
Telnov, Dmitry; Heslar, John; Chu, Shih-I.
2011-05-01
The time-dependent density functional theory with self-interaction correction and proper asymptotic long-range potential is extended for nonperturbative treatment of multiphoton single and double ionization of Li and Be atoms by strong 800 nm laser fields. We make use of the time-dependent Krieger-Li-Iafrate (TDKLI) exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. However, we have found that the discontinuity of the TDKLI potential is not sufficient to reproduce the characteristic feature of double ionization. This may happen because the discontinuity of the TDKLI potential is related to the spin particle numbers only and not to the total particle number. Introducing a discontinuity with respect to the total particle number to the exchange-correlation potential, we were able to obtain the knee structure in the intensity dependence of the double ionization probability of Be. This work was partially supported by DOE and NSF and by NSC-Taiwan.
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk
2016-01-01
The negatively charged nitrogen vacancy (NV−) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV− state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials. PMID:27035935
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A; Peterka, Darcy S; Boyden, Edward S; Owen, Jonathan S; Yuste, Rafael; Englund, Dirk
2016-04-12
The negatively charged nitrogen vacancy (NV(-)) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV(-) state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.
NASA Astrophysics Data System (ADS)
Karaveli, Sinan; Gaathon, Ophir; Wolcott, Abraham; Sakakibara, Reyu; Shemesh, Or A.; Peterka, Darcy S.; Boyden, Edward S.; Owen, Jonathan S.; Yuste, Rafael; Englund, Dirk
2016-04-01
The negatively charged nitrogen vacancy (NV-) center in diamond has attracted strong interest for a wide range of sensing and quantum information processing applications. To this end, recent work has focused on controlling the NV charge state, whose stability strongly depends on its electrostatic environment. Here, we demonstrate that the charge state and fluorescence dynamics of single NV centers in nanodiamonds with different surface terminations can be controlled by an externally applied potential difference in an electrochemical cell. The voltage dependence of the NV charge state can be used to stabilize the NV- state for spin-based sensing protocols and provides a method of charge state-dependent fluorescence sensing of electrochemical potentials. We detect clear NV fluorescence modulation for voltage changes down to 100 mV, with a single NV and down to 20 mV with multiple NV centers in a wide-field imaging mode. These results suggest that NV centers in nanodiamonds could enable parallel optical detection of biologically relevant electrochemical potentials.
The Alignment effect of brightest cluster galaxies in the SDSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, R. S. J.; Annis, J.; Strauss, M. A.
2001-10-01
One of the most vital observational clues for unraveling the origin of Brightest Cluster Galaxies (BCG) is the observed alignment of the BCGs with their host cluster and its surroundings. We have examined the BCG-cluster alignment effect, using clusters of galaxies detected from the Sloan Digital Sky Survey (SDSS). We find that the BCGs are preferentially aligned with the principal axis of their hosts, to a much higher redshift (z >~ 0.3) than probed by previous studies (z <~ 0.1). The alignment effect strongly depends on the magnitude difference of the BCG and the second and third brightest cluster members:more » we find a strong alignment effect for the dominant BCGs, while less dominant BCGs do not show any departure from random alignment with respect to the cluster. We therefore claim that the alignment process originates from the same process that makes the BCG grow dominant, be it direct mergers in the early stage of cluster formation, or a later process that resembles the galactic cannibalism scenario. We do not find strong evidence for (or against) redshift evolution between 0« less
Meier-Dinkel, Lisa; Gertheiss, Jan; Schnäckel, Wolfram; Mörlein, Daniel
2016-08-01
Characteristic off-flavours may occur in uncastrated male pigs depending on the accumulation of androstenone and skatole. Feasible processing of strongly tainted carcasses is challenging but gains in importance due to the European ban on piglet castration in 2018. This paper investigates consumers' acceptability of two sausage types: (a) emulsion-type (BOILED) and (b) smoked raw-fermented (FERM). Liking (9 point scales) and flavour perception (check-all-that-apply with both, typical and negatively connoted sensory terms) were evaluated by 120 consumers (within-subject design). Proportion of tainted boar meat (0, 50, 100%) affected overall liking of BOILED, F (2, 238)=23.22, P<.001, but not of FERM sausages, F (2, 238)=0.89, P=.414. Consumers described the flavour of BOILED-100 as strong and sweaty. In conclusion, FERM products seem promising for processing of tainted carcasses whereas formulations must be optimized for BOILED in order to eliminate perceptible off-flavours. Boar taint rejection thresholds may be higher for processed than those suggested for unprocessed meat cuts. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ma, Julie; Grogan-Kaylor, Andrew
2017-01-01
Neighborhood and parenting influences on early behavioral outcomes are strongly dependent upon a child's stage of development. However, little research has jointly considered the longitudinal associations of neighborhood and parenting processes with behavior problems in early childhood. To address this limitation, this study explores the…
Computer-Assisted Simulation Methods of Learning Process
ERIC Educational Resources Information Center
Mayer, Robert V.
2015-01-01
In this article we analyse: 1) one-component models of training; 2) the multi-component models considering transition of weak knowledge in strong and vice versa; and 3) the models considering change of working efficiency of the pupil during the day. The results of imitating modeling are presented, graphs of dependences of the pupil's knowledge on…
Mesofauna Influence on Humification Process of Vegetable Oddments with Participation Microarthropod
ERIC Educational Resources Information Center
Simonov, Yuriy V.; Svetkina, Irina A.; Kryuchkov, Konstantin V.
2016-01-01
Relevance of the studied problem is caused by the fact that stability of natural ecosystems strongly depends on functioning of their destructive block which closes a biological circulation. The organisms that ensure functioning of the destructive block are very different and numerous. All of them partly supplement, partly duplicate functions of…
Past, Present, Future: Stories of Identity in an Elementary Art Room
ERIC Educational Resources Information Center
Pellish, Jodie
2012-01-01
Students' knowledge, memories, and experience could be valuable sources for narrative artmaking and identity formation beginning in elementary school. The process of understanding the self is powered in part by each person's unique perception of the world, which strongly depends on "individual abilities as well as particular socio-cultural…
Models for ecological models: Ocean primary productivity
Wikle, Christopher K.; Leeds, William B.; Hooten, Mevin B.
2016-01-01
The ocean accounts for more than 70% of planet Earth's surface, and it processes are critically important to marine and terrestrial life. Ocean ecosystems are strongly dependent on the physical state of the ocean (e.g., transports, mixing, upwelling, runoff, and ice dynamics(. As an example, consider the Coastal Gulf of Alaska (CGOA) region.
Remaking Memories: Reconsolidation Updates Positively Motivated Spatial Memory in Rats
ERIC Educational Resources Information Center
Jones, Bethany; Bukoski, Elizabeth; Nadel, Lynn; Fellous, Jean-Marc
2012-01-01
There is strong evidence that reactivation of a memory returns it to a labile state, initiating a restabilization process termed reconsolidation, which allows for updating of the memory. In this study we investigated reactivation-dependent updating using a new positively motivated spatial task in rodents that was designed specifically to model a…
Nucleation speed limit on remote fluid induced earthquakes
Parsons, Thomas E.; Akinci, Aybige; Malignini, Luca
2017-01-01
Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.
Nucleation speed limit on remote fluid-induced earthquakes.
Parsons, Tom; Malagnini, Luca; Akinci, Aybige
2017-08-01
Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth's crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes.
Nucleation speed limit on remote fluid-induced earthquakes
Parsons, Tom; Malagnini, Luca; Akinci, Aybige
2017-01-01
Earthquakes triggered by other remote seismic events are explained as a response to long-traveling seismic waves that temporarily stress the crust. However, delays of hours or days after seismic waves pass through are reported by several studies, which are difficult to reconcile with the transient stresses imparted by seismic waves. We show that these delays are proportional to magnitude and that nucleation times are best fit to a fluid diffusion process if the governing rupture process involves unlocking a magnitude-dependent critical nucleation zone. It is well established that distant earthquakes can strongly affect the pressure and distribution of crustal pore fluids. Earth’s crust contains hydraulically isolated, pressurized compartments in which fluids are contained within low-permeability walls. We know that strong shaking induced by seismic waves from large earthquakes can change the permeability of rocks. Thus, the boundary of a pressurized compartment may see its permeability rise. Previously confined, overpressurized pore fluids may then diffuse away, infiltrate faults, decrease their strength, and induce earthquakes. Magnitude-dependent delays and critical nucleation zone conclusions can also be applied to human-induced earthquakes. PMID:28845448
NASA Astrophysics Data System (ADS)
Koh, Eunjung; Song, Ha Jeong; Kwon, Na Young; Kim, Gi Won; Lee, Kwang Ho; Jo, Soyeon; Park, Sujin; Park, Jihyun; Park, Eun Kyeong; Hwang, Seung Yong
2017-06-01
Real time PCR is a standard method for identification of species. One of limitations of the qPCR is that there would be false-positive result due to mismatched hybridization between target sequence and probe depending on the annealing temperature in the PCR condition. As an alternative, fluorescence melting curve analysis (FMCA) could be applied for species identification. FMCA is based on a dual-labeled probe. Even with subtle difference of target sequence, there are visible melting temperature (Tm) shift. One of FMCA applications is distinguishing organisms distributed and consumed globally as popular food ingredients. Their prices are set by species or country of origin. However, counterfeiting or distributing them without any verification procedure are becoming social problems and threatening food safety. Besides distinguishing them in naked eye is very difficult and almost impossible in any processed form. Therefore, it is necessary to identify species in molecular level. In this research three species of squids which have 1-2 base pair differences each are selected as samples since they have the same issue. We designed a probe which perfectly matches with one species and the others mismatches 2 and 1 base pair respectively and labeled with fluorophore and quencher. In an experiment with a single probe, we successfully distinguished them by Tm shift depending on the difference of base pair. By combining FMCA and qPCR chip, smaller-scale assay with higher sensitivity and resolution could be possible, andc furthermore, enabling results analysis with smart phone would realize point-of-care testing (POCT).
Cell-intrinsic mechanisms of temperature compensation in a grasshopper sensory receptor neuron
Roemschied, Frederic A; Eberhard, Monika JB; Schleimer, Jan-Hendrik; Ronacher, Bernhard; Schreiber, Susanne
2014-01-01
Changes in temperature affect biochemical reaction rates and, consequently, neural processing. The nervous systems of poikilothermic animals must have evolved mechanisms enabling them to retain their functionality under varying temperatures. Auditory receptor neurons of grasshoppers respond to sound in a surprisingly temperature-compensated manner: firing rates depend moderately on temperature, with average Q10 values around 1.5. Analysis of conductance-based neuron models reveals that temperature compensation of spike generation can be achieved solely relying on cell-intrinsic processes and despite a strong dependence of ion conductances on temperature. Remarkably, this type of temperature compensation need not come at an additional metabolic cost of spike generation. Firing rate-based information transfer is likely to increase with temperature and we derive predictions for an optimal temperature dependence of the tympanal transduction process fostering temperature compensation. The example of auditory receptor neurons demonstrates how neurons may exploit single-cell mechanisms to cope with multiple constraints in parallel. DOI: http://dx.doi.org/10.7554/eLife.02078.001 PMID:24843016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makongo, Julien P.A.; Zhou, Xiaoyuan; Misra, Dinesh K.
2013-05-01
Five bulk samples of n-type Zr₀.₂₅Hf₀.₇₅NiSn₀.₉₇₅Sb₀.₀₂₅ half-Heusler (HH) alloy were fabricated by reacting elemental powders via (1) high temperature solid state (SS) reaction and (2) mechanical alloying (MA), followed by densification using spark plasma sintering (SPS) and/or hot pressing (HP). A portion of the sample obtained by SS reaction was mechanically alloyed before consolidation by hot pressing (SS–MA–HP). X-ray powder diffraction and transmission electron microscopy studies revealed that all SS specimen (SS–SPS, SS–HP, SS–MA–HP) are single phase HH alloys, whereas the MA sample (MA–SPS) contains metallic nanoprecipitates. Electronic and thermal transport measurements showed that the embedded nanoprecipitates induce a drasticmore » increase in the carrier concentration (n), a large decrease in the Seebeck coefficient (S) and a marginal decrease in the lattice thermal conductivity (κ l) of the MA–SPS sample leading to lower ZT values when compared to the SS–HP samples. Constant values of S are observed for the SS series regardless of the processing method. However, a strong dependence of the carrier mobility (μ), electrical conductivity (σ) and κ l on the processing and consolidation method is observed. For instance, mechanical alloying introduces additional structural defects which enhance electron and phonon scattering leading to moderately low values of μ and large reduction in κ l. This results in a net 20% enhancement in the figure of merit (ZT=0.6 at 775 K). HH specimen of the same nominal composition with higher ZT is anticipated from a combination of SS reaction, MA and SPS (SS–MA–SPS). - Graphical abstract: In half-Heusler alloys, thermopower values are insensitive to processing method, whereas carrier mobility (μ), electrical conductivity (σ), and κ l strongly dependent on the microstructure which in turn is altered by the synthesis, processing and consolidation method. Highlights: • Phase composition of HH alloy strongly depends on the synthesis technique. • Mechanical alloying of elements yields bulk HH alloy with metallic impurity phases. • Thermopower, carrier density, and effective mass of HHs are insensitive to processing conditions. • Mechanical alloying decreases the carrier mobility and lattice thermal conductivity of bulk HH.« less
Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yi; Xu, Ben; Hu, Shenyang Y.
2015-09-25
The magnetization reversal process and hysteresis loops in a single crystal α-iron with nonmagnetic particles are simulated in this work based on the Landau-Lifshitz–Gilbert equation. The evolutions of the magnetic domain morphology are studied, and our analyses show that the magnetization reversal process is affected by the interaction between the moving domain wall and the existing nonmagnetic particles. This interaction strongly depends on the size of the particles, and it is found that particles with a particular size contribute the most to magnetic hardening.
Molecular mobility of nematic E7 confined to molecular sieves with a low filling degree.
Brás, A R; Frunza, S; Guerreiro, L; Fonseca, I M; Corma, A; Frunza, L; Dionísio, M; Schönhals, A
2010-06-14
The nematic liquid crystalline mixture E7 was confined with similar filling degrees to molecular sieves with constant composition but different pore diameters (from 2.8 to 6.8 nm). Fourier transform infrared analysis proved that the E7 molecules interact via the cyanogroup with the pore walls of the molecular sieves. The molecular dynamics of the system was investigated by broadband dielectric spectroscopy (10(-2)-10(9) Hz) covering a wide temperature range of approximately 200 K from temperatures well above the isotropic-nematic transition down to the glass transition of bulk E7. A variety of relaxation processes is observed including two modes that are located close to the bulk behavior in its temperature dependence. For all confined samples, two relaxation processes, at frequencies lower than the processes observed for the bulk, were detected. At lower temperatures, their relaxation rates have different temperature dependencies whereas at higher temperatures, they seem to collapse into one chart. The temperature dependence of the slowest process (S-process) obeys the Vogel-Fulcher-Tammann law indicating a glassy dynamics of the E7 molecules anchored to the pore surface. The pore size dependence of both the Vogel temperature and fragility revealed a steplike transition around 4 nm pore size, which indicates a transition from a strong to a fragile behavior. The process with a relaxation rate in between the bulklike and the S-process (I-process) shows no dependence on the pore size. The agreement of the I-process with the behavior of a 5CB surface layer adsorbed on nonporous silica leads to the assignment of E7 molecules anchored at the outer surface of the microcrystals of the molecular sieves.
Modeling of Inner Magnetosphere Coupling Processes
NASA Technical Reports Server (NTRS)
Khazanov, George V.
2011-01-01
The Ring Current (RC) is the biggest energy player in the inner magnetosphere. It is the source of free energy for Electromagnetic Ion Cyclotron (EMIC) wave excitation provided by a temperature anisotropy of RC ions, which develops naturally during inward E B convection from the plasmasheet. The cold plasmasphere, which is under the strong influence of the magnetospheric electric field, strongly mediates the RC-EMIC wave-particle-coupling process and ultimately becomes part of the particle and energy interplay. On the other hand, there is a strong influence of the RC on the inner magnetospheric electric and magnetic field configurations and these configurations, in turn, are important to RC dynamics. Therefore, one of the biggest needs for inner magnetospheric research is the continued progression toward a coupled, interconnected system with the inclusion of nonlinear feedback mechanisms between the plasma populations, the electric and magnetic fields, and plasma waves. As we clearly demonstrated in our studies, EMIC waves strongly interact with electrons and ions of energies ranging from approx.1 eV to approx.10 MeV, and that these waves strongly affect the dynamics of resonant RC ions, thermal electrons and ions, and the outer RB relativistic electrons. As we found, the rate of ion and electron scattering/heating in the Earth's magnetosphere is not only controlled by the wave intensity-spatial-temporal distribution but also strongly depends on the spectral distribution of the wave power. The latter is also a function of the plasmaspheric heavy ion content, and the plasma density and temperature distributions along the magnetic field lines. The above discussion places RC-EMIC wave coupling dynamics in context with inner magnetospheric coupling processes and, ultimately, relates RC studies with plasmaspheric and Superthermal Electrons formation processes as well as with outer RB physics.
NASA Astrophysics Data System (ADS)
Aidala, C. A.; Field, B.; Gamberg, L. P.; Rogers, T. C.
2014-05-01
In the QCD evolution of transverse momentum dependent parton distribution and fragmentation functions, the Collins-Soper evolution kernel includes both a perturbative short-distance contribution and a large-distance nonperturbative, but strongly universal, contribution. In the past, global fits, based mainly on larger Q Drell-Yan-like processes, have found substantial contributions from nonperturbative regions in the Collins-Soper evolution kernel. In this article, we investigate semi-inclusive deep inelastic scattering measurements in the region of relatively small Q, of the order of a few GeV, where sensitivity to nonperturbative transverse momentum dependence may become more important or even dominate the evolution. Using recently available deep inelastic scattering data from the COMPASS experiment, we provide estimates of the regions of coordinate space that dominate in transverse momentum dependent (TMD) processes when the hard scale is of the order of only a few GeV. We find that distance scales that are much larger than those commonly probed in large Q measurements become important, suggesting that the details of nonperturbative effects in TMD evolution are especially significant in the region of intermediate Q. We highlight the strongly universal nature of the nonperturbative component of evolution and its potential to be tightly constrained by fits from a wide variety of observables that include both large and moderate Q. On this basis, we recommend detailed treatments of the nonperturbative component of the Collins-Soper evolution kernel for future TMD studies.
NASA Astrophysics Data System (ADS)
Manna, S.; Aluguri, R.; Bar, R.; Das, S.; Prtljaga, N.; Pavesi, L.; Ray, S. K.
2015-01-01
Photo-physical processes in Er-doped silica glass matrix containing Ge nanocrystals prepared by the sol-gel method are presented in this article. Strong photoluminescence at 1.54 μm, important for fiber optics telecommunication systems, is observed from the different sol-gel derived glasses at room temperature. We demonstrate that Ge nanocrystals act as strong sensitizers for Er3+ ions emission and the effective Er excitation cross section increases by almost four orders of magnitude with respect to the one without Ge nanocrystals. Rate equations are considered to demonstrate the sensitization of erbium luminescence by Ge nanocrystals. Analyzing the erbium effective excitation cross section, extracted from the flux dependent rise and decay times, a Dexter type of short range energy transfer from a Ge nanocrystal to erbium ion is established.
Wan, Xia; Lu, Yungang; Chen, Xueqin; Xiong, Jian; Zhou, Yuanda; Li, Ping; Xia, Bingqing; Li, Min; Zhu, Michael X; Gao, Zhaobing
2014-07-01
Transient receptor potential A1 (TRPA1) is implicated in somatosensory processing and pathological pain sensation. Although not strictly voltage-gated, ionic currents of TRPA1 typically rectify outwardly, indicating channel activation at depolarized membrane potentials. However, some reports also showed TRPA1 inactivation at high positive potentials, implicating voltage-dependent inactivation. Here we report a conserved leucine residue, L906, in the putative pore helix, which strongly impacts the voltage dependency of TRPA1. Mutation of the leucine to cysteine (L906C) converted the channel from outward to inward rectification independent of divalent cations and irrespective to stimulation by allyl isothiocyanate. The mutant, but not the wild-type channel, displayed exclusively voltage-dependent inactivation at positive potentials. The L906C mutation also exhibited reduced sensitivity to inhibition by TRPA1 blockers, HC030031 and ruthenium red. Further mutagenesis of the leucine to all natural amino acids individually revealed that most substitutions at L906 (15/19) resulted in inward rectification, with exceptions of three amino acids that dramatically reduced channel activity and one, methionine, which mimicked the wild-type channel. Our data are plausibly explained by a bimodal gating model involving both voltage-dependent activation and inactivation of TRPA1. We propose that the key pore helix residue, L906, plays an essential role in responding to the voltage-dependent gating.
NASA Astrophysics Data System (ADS)
Delignières, Didier; Marmelat, Vivien
2014-01-01
In this paper, we analyze empirical data, accounting for coordination processes between complex systems (bimanual coordination, interpersonal coordination, and synchronization with a fractal metronome), by using a recently proposed method: detrended cross-correlation analysis (DCCA). This work is motivated by the strong anticipation hypothesis, which supposes that coordination between complex systems is not achieved on the basis of local adaptations (i.e., correction, predictions), but results from a more global matching of complexity properties. Indeed, recent experiments have evidenced a very close correlation between the scaling properties of the series produced by two coordinated systems, despite a quite weak local synchronization. We hypothesized that strong anticipation should result in the presence of long-range cross-correlations between the series produced by the two systems. Results allow a detailed analysis of the effects of coordination on the fluctuations of the series produced by the two systems. In the long term, series tend to present similar scaling properties, with clear evidence of long-range cross-correlation. Short-term results strongly depend on the nature of the task. Simulation studies allow disentangling the respective effects of noise and short-term coupling processes on DCCA results, and suggest that the matching of long-term fluctuations could be the result of short-term coupling processes.
Strong field control of the interatomic Coulombic decay process in quantum dots
NASA Astrophysics Data System (ADS)
Haller, Anika; Chiang, Ying-Chih; Menger, Maximilian; Aziz, Emad F.; Bande, Annika
2017-01-01
In recent years the laser-induced interatomic Coulombic decay (ICD) process in paired quantum dots has been predicted (Bande, 2013). In this work we target the enhancement of ICD by scanning over a range of strong-field laser intensities. The GaAs quantum dots are modeled by a one-dimensional double-well potential in which simulations are done with the space-resolved multi-configuration time-dependent Hartree method including antisymmetrization to account for the fermions. As a novelty a complementary state-resolved ansatz is developed to consolidate the interpretation of transient state populations, widths obtained for the ICD and the competing direct ionization channel, and Fano peak profiles in the photoelectron spectra. The major results are that multi-photon processes are unimportant even for the strongest fields. Further, below- π to π pulses display the highest ICD efficiency while the direct ionization becomes less dominant.
Effects of feedstock characteristics on microwave-assisted pyrolysis - A review.
Zhang, Yaning; Chen, Paul; Liu, Shiyu; Peng, Peng; Min, Min; Cheng, Yanling; Anderson, Erik; Zhou, Nan; Fan, Liangliang; Liu, Chenghui; Chen, Guo; Liu, Yuhuan; Lei, Hanwu; Li, Bingxi; Ruan, Roger
2017-04-01
Microwave-assisted pyrolysis is an important approach to obtain bio-oil from biomass. Similar to conventional electrical heating pyrolysis, microwave-assisted pyrolysis is significantly affected by feedstock characteristics. However, microwave heating has its unique features which strongly depend on the physical and chemical properties of biomass feedstock. In this review, the relationships among heating, bio-oil yield, and feedstock particle size, moisture content, inorganics, and organics in microwave-assisted pyrolysis are discussed and compared with those in conventional electrical heating pyrolysis. The quantitative analysis of data reported in the literature showed a strong contrast between the conventional processes and microwave based processes. Microwave-assisted pyrolysis is a relatively new process with limited research compared with conventional electrical heating pyrolysis. The lack of understanding of some observed results warrant more and in-depth fundamental research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J
2014-05-01
In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.
False recognition depends on depth of prior word processing: a magnetoencephalographic (MEG) study.
Walla, P; Hufnagl, B; Lindinger, G; Deecke, L; Imhof, H; Lang, W
2001-04-01
Brain activity was measured with a whole head magnetoencephalograph (MEG) during the test phases of word recognition experiments. Healthy young subjects had to discriminate between previously presented and new words. During prior study phases two different levels of word processing were provided according to two different kinds of instructions (shallow and deep encoding). Event-related fields (ERFs) associated with falsely recognized words (false alarms) were found to depend on the depth of processing during the prior study phase. False alarms elicited higher brain activity (as reflected by dipole strength) in case of prior deep encoding as compared to shallow encoding between 300 and 500 ms after stimulus onset at temporal brain areas. Between 500 and 700 ms we found evidence for differences in the involvement of neural structures related to both conditions of false alarms. Furthermore, the number of false alarms was found to depend on depth of processing. Shallow encoding led to a higher number of false alarms than deep encoding. All data are discussed as strong support for the ideas that a certain level of word processing is performed by a distinct set of neural systems and that the same neural systems which encode information are reactivated during the retrieval.
Weiss, Julia; Ros-Chumillas, Maria; Peña, Leandro; Egea-Cortines, Marcos
2007-01-30
Recombinant DNA technology is an important tool in the development of plant varieties with new favourable features. There is strong opposition towards this technology due to the potential risk of horizontal gene transfer between genetically modified plant material and food-associated bacteria, especially if genes for antibiotic resistance are involved. Since horizontal transfer efficiency depends on size and length of homologous sequences, we investigated the effect of conditions required for orange juice processing on the stability of DNA from three different origins: plasmid DNA, yeast genomic DNA and endogenous genomic DNA from transgenic sweet orange (C. sinensis L. Osb.). Acidic orange juice matrix had a strong degrading effect on plasmid DNA which becomes apparent in a conformation change from supercoiled structure to nicked, linear structure within 5h of storage at 4 degrees C. Genomic yeast DNA was degraded during exposure to acidic orange juice matrix within 4 days, and also the genomic DNA of C. sinensis suffered degradation within 2 days of storage as indicated by amplification results from transgene markers. Standard pasteurization procedures affected DNA integrity depending on the method and time used. Our data show that the current standard industrial procedures to pasteurize orange juice as well as its acidic nature causes a strong degradation of both yeast and endogenous genomic DNA below sizes reported to be suitable for horizontal gene transfer.
Size-dependent surface phase change of lithium iron phosphate during carbon coating
NASA Astrophysics Data System (ADS)
Wang, Jiajun; Yang, Jinli; Tang, Yongji; Liu, Jian; Zhang, Yong; Liang, Guoxian; Gauthier, Michel; Karen Chen-Wiegart, Yu-Chen; Norouzi Banis, Mohammad; Li, Xifei; Li, Ruying; Wang, Jun; Sham, T. K.; Sun, Xueliang
2014-03-01
Carbon coating is a simple, effective and common technique for improving the conductivity of active materials in lithium ion batteries. However, carbon coating provides a strong reducing atmosphere and many factors remain unclear concerning the interface nature and underlying interaction mechanism that occurs between carbon and the active materials. Here, we present a size-dependent surface phase change occurring in lithium iron phosphate during the carbon coating process. Intriguingly, nanoscale particles exhibit an extremely high stability during the carbon coating process, whereas microscale particles display a direct visualization of surface phase changes occurring at the interface at elevated temperatures. Our findings provide a comprehensive understanding of the effect of particle size during carbon coating and the interface interaction that occurs on carbon-coated battery material—allowing for further improvement in materials synthesis and manufacturing processes for advanced battery materials.
NASA Astrophysics Data System (ADS)
Boventer, Isabella; Pfirrmann, Marco; Krause, Julius; Schön, Yannick; Kläui, Mathias; Weides, Martin
2018-05-01
Hybridized magnonic-photonic systems are key components for future information processing technologies such as storage, manipulation, or conversion of data both in the classical (mostly at room temperature) and quantum (cryogenic) regime. In this work, we investigate a yttrium-iron-garnet sphere coupled strongly to a microwave cavity over the full temperature range from 290 K to 30 mK . The cavity-magnon polaritons are studied from the classical to the quantum regimes where the thermal energy is less than one resonant microwave quanta, i.e., at temperatures below 1 K . We compare the temperature dependence of the coupling strength geff(T ) , describing the strength of coherent energy exchange between spin ensemble and cavity photon, to the temperature behavior of the saturation magnetization evolution Ms(T ) and find strong deviations at low temperatures. The temperature dependence of magnonic disspation is governed at intermediate temperatures by rare-earth impurity scattering leading to a strong peak at 40 K . The linewidth κm decreases to 1.2 MHz at 30 mK , making this system suitable as a building block for quantum electrodynamics experiments. We achieve an electromagnonic cooperativity in excess of 20 over the entire temperature range, with values beyond 100 in the millikelvin regime as well as at room temperature. With our measurements, spectroscopy on strongly coupled magnon-photon systems is demonstrated as versatile tool for spin material studies over large temperature ranges. Key parameters are provided in a single measurement, thus simplifying investigations significantly.
NASA Astrophysics Data System (ADS)
Imai, T.; Martin, I.; Iha, K.
A Hurricane Modification Process with application of a new clean technology attested for seeding warm clouds with collector pure water droplets of controlled size to produce artificial rains in warm clouds is proposed to modify the hurricanes in order to avoid their formation or to modify the trajectory or to weaken hurricanes in action The Process is based on the time-dependent effects of cloud droplets microphysical processes for the formation and growth of the natural water droplets inside the clouds releasing large volumes of Aeolian energy to form the strong rotative upside air movements A new Paradigm proposed explain the strong and rotative winds created with the water droplets formation and grow process releasing the rotative Aeolian Energy in Tornados and Hurricanes This theory receive the Gold Medal Award of the Water Science in the 7th International Water Symposium 2005 in France Artificial seeding in the Process studies condensing a specified percentage of the water vapor to liquid water droplets where we observe the release of larges intensity of the Aeolian energy creates the hurricanes producing appreciable perturbations With they rotating strong wind created by the water droplets releasing Aeolian energy The Amplitudes of these winds are comparable to natural disasters Once this natural thermal process is completely understood artificial process to modify the hurricanes become scientifically possible to avoid them to happen or to deviate their trajectory or to weaken the already formed hurricanes In this work
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolinina, E.S.; Parfenyuk, E.V., E-mail: terrakott37@mail.ru
2014-01-15
Adsorption kinetics of molsidomine on mesoporous silica material (UMS), the phenyl- (PhMS) and mercaptopropyl-functionalized (MMS) derivatives from solution with different pH and 298 K was studied. The adsorption kinetics was found to follow the pseudo-second-order kinetic model for all studied silica materials and pH. Effects of surface functional groups and pH on adsorption efficiency and kinetic adsorption parameters were investigated. At all studied pH, the highest molsidomine amount is adsorbed on PhMS due to π–π interactions and hydrogen bonding between surface groups of PhMS and molsidomine molecules. An increase of pH results in a decrease of the amounts of adsorbedmore » molsidomine onto the silica materials. Furthermore, the highest adsorption rate kinetically evaluated using a pseudo-second-order model, is observed onto UMS and it strongly depends on pH. The mechanism of the adsorption process was determined from the intraparticle diffusion and Boyd kinetic film–diffusion models. The results showed that the molsidomine adsorption on the silica materials is controlled by film diffusion. Effect of pH on the diffusion parameters is discussed. - Graphical abstract: The kinetic study showed that the k{sub 2} value, the rate constant of pseudo-second order kinetic model, is the highest for molsidomine adsorption on UMS and strongly depends on pH because it is determined by availability and accessibility of the reaction sites of the adsorbents molsidomine binding. Display Omitted - Highlights: • The adsorption capacities of UMS, PhMS and MMS were dependent on the pH. • At all studied pH, the highest molsidomine amount is adsorbed on PhMS. • The highest adsorption rate, k{sub 2}, is observed onto UMS and strongly depends on pH. • Film diffusion was the likely rate-limiting step in the adsorption process.« less
Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J
2016-06-14
Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dissipation processes in the insulating skyrmion compound Cu2OSeO3
NASA Astrophysics Data System (ADS)
Levatić, I.; Šurija, V.; Berger, H.; Živković, I.
2014-12-01
We present a detailed study of the phase diagram surrounding the skyrmion lattice (SkL) phase of Cu2OSe2O3 using high-precision magnetic ac susceptibility measurements. An extensive investigation of transition dynamics around the SkL phase using the imaginary component of the susceptibility revealed that at the conical-to-SkL transition a broad dissipation region exists with a complex frequency dependence. The analysis of the observed behavior within the SkL phase indicates a distribution of relaxation times intrinsically related to SkL. At the SkL-to-paramagnet transition a narrow first-order peak is found that exhibits a strong frequency and magnetic field dependence. Surprisingly, very similar dependence has been discovered for the first-order transition below the SkL phase, i.e., where the system enters the helical and conical state(s), indicating similar processes across the order-disorder transition.
Temporal processing and adaptation in the songbird auditory forebrain.
Nagel, Katherine I; Doupe, Allison J
2006-09-21
Songbird auditory neurons must encode the dynamics of natural sounds at many volumes. We investigated how neural coding depends on the distribution of stimulus intensities. Using reverse-correlation, we modeled responses to amplitude-modulated sounds as the output of a linear filter and a nonlinear gain function, then asked how filters and nonlinearities depend on the stimulus mean and variance. Filter shape depended strongly on mean amplitude (volume): at low mean, most neurons integrated sound over many milliseconds, while at high mean, neurons responded more to local changes in amplitude. Increasing the variance (contrast) of amplitude modulations had less effect on filter shape but decreased the gain of firing in most cells. Both filter and gain changes occurred rapidly after a change in statistics, suggesting that they represent nonlinearities in processing. These changes may permit neurons to signal effectively over a wider dynamic range and are reminiscent of findings in other sensory systems.
Leirs, H.; Stenseth, N.C.; Nichols, J.D.; Hines, J.E.; Verhagen, R.; Verheyen, W.
1997-01-01
Ecology has long been troubled by the controversy over how populations are regulated. Some ecologists focus on the role of environmental effects, whereas others argue that density-dependent feedback mechanisms are central. The relative importance of both processes is still hotly debated, but clear examples of both processes acting in the same population are rare. Keyfactor analysis (regression of population changes on possible causal factors) and time-series analysis are often used to investigate the presence of density dependence, but such approaches may be biased and provide no information on actual demographic rates. Here we report on both density-dependent and density-independent effects in a murid rodent pest species, the multimammate rat Mastomys natalensis (Smith, 1834), using statistical capture-recapture models. Both effects occur simultaneously, but we also demonstrate that they do not affect all demographic rates in the same way. We have incorporated the obtained estimates of demographic rates in a population dynamics model and show that the observed dynamics are affected by stabilizing nonlinear density-dependent components coupled with strong deterministic and stochastic seasonal components.
Different coding strategies for the perception of stable and changeable facial attributes.
Taubert, Jessica; Alais, David; Burr, David
2016-09-01
Perceptual systems face competing requirements: improving signal-to-noise ratios of noisy images, by integration; and maximising sensitivity to change, by differentiation. Both processes occur in human vision, under different circumstances: they have been termed priming, or serial dependencies, leading to positive sequential effects; and adaptation or habituation, which leads to negative sequential effects. We reasoned that for stable attributes, such as the identity and gender of faces, the system should integrate: while for changeable attributes like facial expression, it should also engage contrast mechanisms to maximise sensitivity to change. Subjects viewed a sequence of images varying simultaneously in gender and expression, and scored each as male or female, and happy or sad. We found strong and consistent positive serial dependencies for gender, and negative dependency for expression, showing that both processes can operate at the same time, on the same stimuli, depending on the attribute being judged. The results point to highly sophisticated mechanisms for optimizing use of past information, either by integration or differentiation, depending on the permanence of that attribute.
The Evolution of Holistic Processing of Faces
Burke, Darren; Sulikowski, Danielle
2013-01-01
In this paper we examine the holistic processing of faces from an evolutionary perspective, clarifying what such an approach entails, and evaluating the extent to which the evidence currently available permits any strong conclusions. While it seems clear that the holistic processing of faces depends on mechanisms evolved to perform that task, our review of the comparative literature reveals that there is currently insufficient evidence (or sometimes insufficiently compelling evidence) to decide when in our evolutionary past such processing may have arisen. It is also difficult to assess what kinds of selection pressures may have led to evolution of such a mechanism, or even what kinds of information holistic processing may have originally evolved to extract, given that many sources of socially relevant face-based information other than identity depend on integrating information across different regions of the face – judgments of expression, behavioral intent, attractiveness, sex, age, etc. We suggest some directions for future research that would help to answer these important questions. PMID:23382721
Xiong, Wenjuan; Du, Lili; Lo, Kin Cheung; Shi, Haiting; Takaya, Tomohisa; Iwata, Koichi; Chan, Wai Kin; Phillips, David Lee
2018-06-25
Conjugated polymers incorporated with cycloplatinated complexes (P1-Pt and P2-Pt) were used as dispersants for single walled carbon nanotubes (SWCNTs). Significant changes in the UV-vis absorption spectra were observed after the formation of the polymer/SWCNT hybrids. Molecular dynamics (MD) simulations revealed the presence of a strong interaction between the cycloplatinated complex moieties and the SWCNT surface. The photoinduced electron transfer processes in these hybrids were strongly dependent on the type of the comonomer unit. Upon photoexcitation, the excited P1-Pt donates electrons to the SWCNT, while P2-Pt accepts electrons from the photoexcited SWCNT. These observations were supported by results from Raman and femtosecond time-resolved transient absorption spectroscopy experiments. The strong electronic interaction between the Pt complexes and the SWCNT gives rise to a new hybrid system that has a controllable photo-induced electron transfer flow, which are important in regulating the charge transport processes SWCNT-based optoelectronic devices.
NASA Technical Reports Server (NTRS)
Rees, D.; Fuller-Rowell, T.; Quegan, S.; Moffett, R.
1986-01-01
It has recently been demonstrated that the dramatic effects of plasma precipitation and convection on the composition and dynamics of the polar thermosphere and ionosphere include a number of strong interactive, or feedback, processes. To aid the evaluation of these feedback processes, a joint three dimensional time dependent global model of the Earth's thermosphere and ionosphere was developed in a collaboration between University College London and Sheffield University. This model includes self consistent coupling between the thermosphere and the ionosphere in the polar regions. Some of the major features in the polar ionosphere, which the initial simulations indicate are due to the strong coupling of ions and neutrals in the presence of strong electric fields and energetic electron precipitation are reviewed. The model is also able to simulate seasonal and Universal time variations in the polar thermosphere and ionospheric regions which are due to the variations of solar photoionization in specific geomagnetic regions such as the cusp and polar cap.
Spared unconscious influences of spatial memory in diencephalic amnesia
Antonides, Rémy; Wester, Arie J.; Kessels, Roy P. C.
2008-01-01
Spatial memory is crucial to our daily lives and in part strongly depends on automatic, implicit memory processes. This study investigates the neurocognitive basis of conscious and unconscious influences of object–location memory in amnesic patients with Korsakoff’s syndrome (N = 23) and healthy controls (N = 18) using a process-dissociation procedure in a computerized spatial memory task. As expected, the patients performed substantially worse on the conscious memory measures but showed even slightly stronger effects of unconscious influences than the controls. Moreover, a delayed test administered after 1 week revealed a strong decline in conscious influences in the patients, while unconscious influences were not affected. The presented results suggest that conscious and unconscious influences of spatial memory can be clearly dissociated in Korsakoff’s syndrome. PMID:18560813
Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation
Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert
2010-01-01
Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102
The effect of processing on autohesive strength development in thermoplastic resins and composites
NASA Technical Reports Server (NTRS)
Howes, Jeremy C.; Loos, Alfred C.; Hinkley, Jeffrey A.
1989-01-01
In the present investigation of processing effects on the autohesive bond strength of neat polysulfone resin and graphite-reinforced polysulfone-matrix composites measured resin bond strength development in precracked compact tension specimens 'healed' by heating over a contact period at a given temperature. The critical strain energy release rate of refractured composite specimens did not exhibit the strong time or temperature dependence of the neat resin tests; only 80-90 percent of the undamaged fracture energy is recoverable.
NASA Astrophysics Data System (ADS)
Kim, S. I.; Gurevich, A.; Song, X.; Li, X.; Zhang, W.; Kodenkandath, T.; Rupich, M. W.; Holesinger, T. G.; Larbalestier, D. C.
2006-09-01
We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and normal state resistivity curve ρ(T) measured after successive ion milling of ~1 µm thick high-Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTSTM). In contrast to many recent data, mostly on in situ pulsed laser deposition (PLD) films, which show strong depression of Jc with increasing film thickness t, our films exhibit only a weak dependence of Jc on t. The two better textured samples had full cross-section average Jc,avg (77 K, 0 T) ~4 MA cm-2 near the buffer layer interface and ~3 MA cm-2 at full thickness, despite significant current blocking due to ~30% porosity in the film. Taking account of the thickness dependence of the porosity, we estimate that the local, vortex-pinning current density is essentially independent of thickness, while accounting for the additional current-blocking effects of grain boundaries leads to local, vortex-pinning Jc values well above 5 MA cm-2. Such high local Jc values are produced by strong three-dimensional vortex pinning which subdivides vortex lines into weakly coupled segments much shorter than the film thickness.
Observation and quantification of the quantum dynamics of a strong-field excited multi-level system.
Liu, Zuoye; Wang, Quanjun; Ding, Jingjie; Cavaletto, Stefano M; Pfeifer, Thomas; Hu, Bitao
2017-01-04
The quantum dynamics of a V-type three-level system, whose two resonances are first excited by a weak probe pulse and subsequently modified by another strong one, is studied. The quantum dynamics of the multi-level system is closely related to the absorption spectrum of the transmitted probe pulse and its modification manifests itself as a modulation of the absorption line shape. Applying the dipole-control model, the modulation induced by the second strong pulse to the system's dynamics is quantified by eight intensity-dependent parameters, describing the self and inter-state contributions. The present study opens the route to control the quantum dynamics of multi-level systems and to quantify the quantum-control process.
Diversity of neuropsin (KLK8)-dependent synaptic associativity in the hippocampal pyramidal neuron
Ishikawa, Yasuyuki; Tamura, Hideki; Shiosaka, Sadao
2011-01-01
Abstract Hippocampal early (E-) long-term potentiation (LTP) and long-term depression (LTD) elicited by a weak stimulus normally fades within 90 min. Late (L-) LTP and LTD elicited by strong stimuli continue for >180 min and require new protein synthesis to persist. If a strong tetanus is applied once to synaptic inputs, even a weak tetanus applied to another synaptic input can evoke persistent LTP. A synaptic tag is hypothesized to enable the capture of newly synthesized synaptic molecules. This process, referred to as synaptic tagging, is found between not only the same processes (i.e. E- and L-LTP; E- and L-LTD) but also between different processes (i.e. E-LTP and L-LTD; E-LTD and L-LTP) induced at two independent synaptic inputs (cross-tagging). However, the mechanisms of synaptic tag setting remain unclear. In our previous study, we found that synaptic associativity in the hippocampal Schaffer collateral pathway depended on neuropsin (kallikrein-related peptidase 8 or KLK8), a plasticity-related extracellular protease. In the present study, we investigated how neuropsin participates in synaptic tagging and cross-tagging. We report that neuropsin is involved in synaptic tagging during LTP at basal and apical dendritic inputs. Moreover, neuropsin is involved in synaptic tagging and cross-tagging during LTP at apical dendritic inputs via integrin β1 and calcium/calmodulin-dependent protein kinase II signalling. Thus, neuropsin is a candidate molecule for the LTP-specific tag setting and regulates the transformation of E- to L-LTP during both synaptic tagging and cross-tagging. PMID:21646406
Consistency of GPS and strong-motion records: case study of the Mw9.0 Tohoku-Oki 2011 earthquake
NASA Astrophysics Data System (ADS)
Psimoulis, Panos; Houlié, Nicolas; Michel, Clotaire; Meindl, Michael; Rothacher, Markus
2014-05-01
High-rate GPS data are today commonly used to supplement seismic data for the Earth surface motions focusing on earthquake characterisation and rupture modelling. Processing of GPS records using Precise Point Positioning (PPP) can provide real-time information of seismic wave propagation, tsunami early-warning and seismic rupture. Most studies have shown differences between the GPS and seismic systems at very long periods (e.g. >100sec) and static displacements. The aim of this study is the assessment of the consistency of GPS and strong-motion records by comparing their respective displacement waveforms for several frequency bands. For this purpose, the records of the GPS (GEONET) and the strong-motion (KiK-net and K-NET) networks corresponding to the Mw9.0 Tohoku 2011 earthquake were analysed. The comparison of the displacement waveforms of collocated (distance<100m) GPS and strong-motion sites show that the consistency between the two datasets depends on the frequency of the excitation. Differences are mainly due to the GPS noise at relatively short-periods (<3-4 s) and the saturation of the strong-motion sensors for relatively long-periods (40-80 s). Furthermore the agreement between the GPS and strong-motion records also depends on the direction of the excitation signal and the distance from the epicentre. In conclusion, velocities and displacements recovered from GPS and strong-motion records are consistent for long-periods (3-100 s), proving that GPS networks can contribute to the real-time estimation of the long-period ground motion map of an earthquake.
Wieberger, Florian; Kolb, Tristan; Neuber, Christian; Ober, Christopher K; Schmidt, Hans-Werner
2013-04-08
In this article we present several developed and improved combinatorial techniques to optimize processing conditions and material properties of organic thin films. The combinatorial approach allows investigations of multi-variable dependencies and is the perfect tool to investigate organic thin films regarding their high performance purposes. In this context we develop and establish the reliable preparation of gradients of material composition, temperature, exposure, and immersion time. Furthermore we demonstrate the smart application of combinations of composition and processing gradients to create combinatorial libraries. First a binary combinatorial library is created by applying two gradients perpendicular to each other. A third gradient is carried out in very small areas and arranged matrix-like over the entire binary combinatorial library resulting in a ternary combinatorial library. Ternary combinatorial libraries allow identifying precise trends for the optimization of multi-variable dependent processes which is demonstrated on the lithographic patterning process. Here we verify conclusively the strong interaction and thus the interdependency of variables in the preparation and properties of complex organic thin film systems. The established gradient preparation techniques are not limited to lithographic patterning. It is possible to utilize and transfer the reported combinatorial techniques to other multi-variable dependent processes and to investigate and optimize thin film layers and devices for optical, electro-optical, and electronic applications.
Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi
2018-04-01
Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.
Kershaw, Stephen V; Kalytchuk, Sergii; Zhovtiuk, Olga; Shen, Qing; Oshima, Takuya; Yindeesuk, Witoon; Toyoda, Taro; Rogach, Andrey L
2014-12-21
A number of different composition CdxHg1-xTe alloy quantum dots have been synthesized using a modified aqueous synthesis and ion exchange method. The benefits of good stoichiometric control and high emission quantum yield were retained whilst also ensuring that the tendency to form gel-like clusters and adsorb excess cations in the stabilizing ligand shells was mitigated using a sequestering method to remove excess ionic material during and after the synthesis. This was highly desirable for ultrafast carrier dynamics measurements, avoiding strong photocharging effects which may mask fundamental carrier signals. Transient grating measurements revealed a composition dependent carrier multiplication process which competes with phonon mediated carrier cooling to deplete the initial hot carrier population. The interplay between these two mechanisms is strongly dependent on the electron effective mass which in these alloys has a marked composition dependence and may be considerably lower than the hole effective mass. For a composition x = 0.52 we measured a maximum carrier multiplication quantum yield of 199 ± 19% with pump photon energy 3 times the bandgap energy, Eg, whilst the threshold energy is calculated to be just 2.15Eg. There is some evidence to suggest an impact ionization process analogous to the inverse Auger S mechanism seen in bulk CdxHg1-xTe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metzler, Dominik; Li, Chen; Engelmann, Sebastian
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching (ALE) processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO 2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C 4F 8 and CHF 3), and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J Vac Sci Technol A 32,more » 020603 (2014), and D. Metzler et al., J Vac Sci Technol A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO 2 and Si, but is limited with regard to control over material etching selectivity. Ion energy over the 20 to 30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF 3 has a lower FC deposition yield for both SiO 2 and Si, and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F 8. The thickness of deposited FC layers using CHF 3 is found to be greater for Si than for SiO 2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.« less
NASA Astrophysics Data System (ADS)
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; Bruce, Robert L.; Joseph, Eric A.; Oehrlein, Gottlieb S.
2017-02-01
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C4F8 and CHF3) and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J. Vac. Sci. Technol., A 32, 020603 (2014) and D. Metzler et al., J. Vac. Sci. Technol., A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO2 and Si but is limited with regard to control over material etching selectivity. Ion energy over the 20-30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF3 has a lower FC deposition yield for both SiO2 and Si and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F8. The thickness of deposited FC layers using CHF3 is found to be greater for Si than for SiO2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.
NASA Astrophysics Data System (ADS)
Keudell, A. V.
2000-10-01
The quantification of elementary plasma surface processes in glow discharges used for thin film deposition, is mandatory for a complete description of these low temperature plasmas. Since the surface to volume ratio in these discharge systems is often large, all particle densities in the discharge can be strongly influenced by any surface reactions. The identification and quantification of these surface processes will be illustrated for the plasma deposition of amorphous hydrogenated carbon films. A variety of experiments will be discussed ranging from plasma experiments using the cavity technique or ionization threshold mass spectrometry as well as a new class of experiments using quantified radical beams to quantify surface reactions in terms of sticking coefficients directly. It is shown that the reactivity of the hydrocarbon radicals depends strongly on the state of hybridization of the hydrocarbon growth precursor, and that the sticking coefficients for various hydrocarbon radicals are strongly influenced by the simultaneous interaction of several reactive species with the film surface. With the knowledge of these interaction mechanisms and the quantification of the corresponding cross sections, a better understanding of growth processes has become possible, ranging from the deposition of polycrystalline diamond in microwave discharges to the formation of re-deposited layers in fusion experiments.
Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure
2017-01-01
Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality.
Angular trapping of anisometric nano-objects in a fluid.
Celebrano, Michele; Rosman, Christina; Sönnichsen, Carsten; Krishnan, Madhavi
2012-11-14
We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.
Two-Photon Absorption and Two-Photon-Induced Gain in Perovskite Quantum Dots.
Nagamine, Gabriel; Rocha, Jaqueline O; Bonato, Luiz G; Nogueira, Ana F; Zaharieva, Zhanet; Watt, Andrew A R; de Brito Cruz, Carlos H; Padilha, Lazaro A
2018-06-21
Perovskite quantum dots (PQDs) emerged as a promising class of material for applications in lighting devices, including light emitting diodes and lasers. In this work, we explore nonlinear absorption properties of PQDs showing the spectral signatures and the size dependence of their two-photon absorption (2PA) cross-section, which can reach values higher than 10 6 GM. The large 2PA cross section allows for low threshold two-photon induced amplified spontaneous emission (ASE), which can be as low as 1.6 mJ/cm 2 . We also show that the ASE properties are strongly dependent on the nanomaterial size, and that the ASE threshold, in terms of the average number of excitons, decreases for smaller PQDs. Investigating the PQDs biexciton binding energy, we observe strong correlation between the increasing on the biexciton binding energy and the decreasing on the ASE threshold, suggesting that ASE in PQDs is a biexciton-assisted process.
Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit
2015-01-01
Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (PIntr) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a 14C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site −3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils. PMID:26468285
Kurašin, Mihhail; Kuusk, Silja; Kuusk, Piret; Sørlie, Morten; Väljamäe, Priit
2015-11-27
Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Proton cooling in ultracold low-density electron gas
NASA Astrophysics Data System (ADS)
Bobrov, A. A.; Bronin, S. Y.; Manykin, E. A.; Zelener, B. B.; Zelener, B. V.; Khikhlukha, D. R.
2015-11-01
A sole proton energy loss processes in an electron gas and the dependence of these processes on temperature and magnetic field are studied using molecular dynamics techniques in present work. It appears that for electron temperatures less than 100 K many body collisions affect the proton energy loss and these collisions must be taken into account. The influence of a strong magnetic field on the relaxation processes is also considered in this work. Calculations were performed for electron densities 10 cm-3, magnetic field 1-3 Tesla, electron temperatures 10-50 K, initial proton energies 100-10000 K.
Context-dependent catalepsy intensification is due to classical conditioning and sensitization.
Amtage, J; Schmidt, W J
2003-11-01
Haloperidol-induced catalepsy represents a model of neuroleptic-induced Parkinsonism. Daily administration of haloperidol, followed by testing for catalepsy on a bar and grid, results in a day-to-day increase in catalepsy that is completely context dependent, resulting in a strong placebo effect and in a failure of expression after a change in context. The aim of this study was to analyse the associative learning process that underlies context dependency. Catalepsy intensification was induced by a daily threshold dose of 0.25 mg/kg haloperidol. Extinction training and retesting under haloperidol revealed that sensitization was composed of two components: a context-conditioning component, which can be extinguished, and a context-dependent sensitization component, which cannot be extinguished. Context dependency of catalepsy thus follows precisely the same rules as context dependency of psychostimulant-induced sensitization. Catalepsy sensitization is therefore due to conditioning and sensitization.
Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber
Guo, Zhanjing; Liu, Xiongmin; Huang, Hongmiao
2015-01-01
The kinetics and thermodynamics of the adsorption process of reserpine adsorbed onto the strong acidic cationic exchange fiber (SACEF) were studied by batch adsorption experiments. The adsorption capacity strongly depended on pH values, and the optimum reserpine adsorption onto the SACEF occurred at pH = 5 of reserpine solution. With the increase of temperature and initial concentration, the adsorption capacity increased. The equilibrium was attained within 20 mins. The adsorption process could be better described by the pseudo-second-order model and the Freundlich isotherm model. The calculated activation energy Ea was 4.35 kJ/mol. And the thermodynamic parameters were: 4.97<ΔH<7.44 kJ/mol, -15.29<ΔG<-11.87 kJ/mol and 41.97<ΔS<47.35 J/mol·K. The thermodynamic parameters demonstrated that the adsorption was an endothermic, spontaneous and feasible process of physisorption within the temperature range between 283 K and 323 K and the initial concentration range between 100 mg/L and 300 mg/L. All the results showed that the SACEF had a good adsorption performance for the adsorption of reserpine from alcoholic solution. PMID:26422265
De novo isolation of antibodies with pH-dependent binding properties.
Bonvin, Pauline; Venet, Sophie; Fontaine, Gaëlle; Ravn, Ulla; Gueneau, Franck; Kosco-Vilbois, Marie; Proudfoot, Amanda Ei; Fischer, Nicolas
2015-01-01
pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies.
NASA Astrophysics Data System (ADS)
Wieder, W. R.; Bradford, M.; Koven, C.; Talbot, J. M.; Wood, S.; Chadwick, O.
2016-12-01
High uncertainty and low confidence in terrestrial carbon (C) cycle projections reflect the incomplete understanding of how best to represent biologically-driven C cycle processes at global scales. Ecosystem theories, and consequently biogeochemical models, are based on the assumption that different belowground communities function similarly and interact with the abiotic environment in consistent ways. This assumption of "Scale Invariance" posits that environmental conditions will change the rate of ecosystem processes, but the biotic response will be consistent across sites. Indeed, cross-site comparisons and global-scale analyses suggest that climate strongly controls rates of litter mass loss and soil organic matter turnover. Alternatively, activities of belowground communities are shaped by particular local environmental conditions, such as climate and edaphic conditions. Under this assumption of "Scale Dependence", relationships generated by evolutionary trade-offs in acquiring resources and withstanding environmental stress dictate the activities of belowground communities and their functional response to environmental change. Similarly, local edaphic conditions (e.g. permafrost soils or reactive minerals that physicochemically stabilize soil organic matter on mineral surfaces) may strongly constrain the availability of substrates that biota decompose—altering the trajectory of soil biogeochemical response to perturbations. Identifying when scale invariant assumptions hold vs. where local variation in biotic communities or edaphic conditions must be considered is critical to advancing our understanding and representation of belowground processes in the face of environmental change. Here we introduce data sets that support assumptions of scale invariance and scale dependent processes and discuss their application in global-scale biogeochemical models. We identify particular domains over which assumptions of scale invariance may be appropriate and potential thresholds where shifts in ecosystem function may be expected. Finally, we discuss the mechanistic insight that can be applied in process-based models and datasets that can evaluate models across spatial and temporal scales.
NASA Technical Reports Server (NTRS)
Nicolaescu, I. I.
1974-01-01
Using echo pulse and resonance rod methods, internal friction in pure aluminum was studied as a function of frequency, hardening temperature, time (internal friction relaxation) and impurity content. These studies led to the conclusion that internal friction in these materials depends strongly on dislocation structure and on elastic interactions between structure defects. It was found experimentally that internal friction relaxation depends on the cooling rate and on the impurity content. Some parameters of the dislocation structure and of the diffusion process were determined. It is shown that the dislocated dependence of internal friction can be used as a method of nondestructive testing of the impurity content of high-purity materials.
Burlingham, William J.; Love, Robert B.; Jankowska-Gan, Ewa; Haynes, Lynn D.; Xu, Qingyong; Bobadilla, Joseph L.; Meyer, Keith C.; Hayney, Mary S.; Braun, Ruedi K.; Greenspan, Daniel S.; Gopalakrishnan, Bagavathi; Cai, Junchao; Brand, David D.; Yoshida, Shigetoshi; Cummings, Oscar W.; Wilkes, David S.
2007-01-01
Bronchiolitis obliterans syndrome (BOS), a process of fibro-obliterative occlusion of the small airways in the transplanted lung, is the most common cause of lung transplant failure. We tested the role of cell-mediated immunity to collagen type V [col(V)] in this process. PBMC responses to col(II) and col(V) were monitored prospectively over a 7-year period. PBMCs from lung transplant recipients, but not from healthy controls or col(IV)-reactive Goodpasture’s syndrome patients after renal transplant, were frequently col(V) reactive. Col(V)-specific responses were dependent on both CD4+ T cells and monocytes and required both IL-17 and the monokines TNF-α and IL-1β. Strong col(V)-specific responses were associated with substantially increased incidence and severity of BOS. Incidences of acute rejection, HLA-DR mismatched transplants, and induction of HLA-specific antibodies in the transplant recipient were not as strongly associated with a risk of BOS. These data suggest that while alloimmunity initiates lung transplant rejection, de novo autoimmunity mediated by col(V)-specific Th17 cells and monocyte/macrophage accessory cells ultimately causes progressive airway obliteration. PMID:17965778
Incorporation of Eu(III) into Calcite under Recrystallization conditions.
Hellebrandt, S E; Hofmann, S; Jordan, N; Barkleit, A; Schmidt, M
2016-09-13
The interaction of calcite with trivalent europium under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). We conducted batch studies with a reaction time from seven days up to three years with three calcite powders, which differed in their specific surface area, recrystallization rates and impurities content. With increase of the recrystallization rate incorporation of Eu(3+) occurs faster and its speciation comes to be dominated by one species with its excitation maximum at 578.8 nm, so far not identified during previous investigations of this process under growth and phase transformation conditions. A long lifetime of 3750 μs demonstrates complete loss of hydration, consequently Eu must have been incorporated into the bulk crystal. The results show a strong dependence of the incorporation kinetics on the recrystallization rate of the different calcites. Furthermore the investigation of the effect of different background electrolytes (NaCl and KCl) demonstrate that the incorporation process under recrystallization conditions strongly depends on the availability of Na(+). These findings emphasize the different retention potential of calcite as a primary and secondary mineral e.g. in a nuclear waste disposal site.
Incorporation of Eu(III) into Calcite under Recrystallization conditions
Hellebrandt, S. E.; Hofmann, S.; Jordan, N.; Barkleit, A.; Schmidt, M.
2016-01-01
The interaction of calcite with trivalent europium under recrystallization conditions was studied on the molecular level using site-selective time-resolved laser fluorescence spectroscopy (TRLFS). We conducted batch studies with a reaction time from seven days up to three years with three calcite powders, which differed in their specific surface area, recrystallization rates and impurities content. With increase of the recrystallization rate incorporation of Eu3+ occurs faster and its speciation comes to be dominated by one species with its excitation maximum at 578.8 nm, so far not identified during previous investigations of this process under growth and phase transformation conditions. A long lifetime of 3750 μs demonstrates complete loss of hydration, consequently Eu must have been incorporated into the bulk crystal. The results show a strong dependence of the incorporation kinetics on the recrystallization rate of the different calcites. Furthermore the investigation of the effect of different background electrolytes (NaCl and KCl) demonstrate that the incorporation process under recrystallization conditions strongly depends on the availability of Na+. These findings emphasize the different retention potential of calcite as a primary and secondary mineral e.g. in a nuclear waste disposal site. PMID:27618958
Disconnecting structure and dynamics in glassy thin films
Sussman, Daniel M.; Cubuk, Ekin D.; Liu, Andrea J.
2017-01-01
Nanometrically thin glassy films depart strikingly from the behavior of their bulk counterparts. We investigate whether the dynamical differences between a bulk and thin film polymeric glass former can be understood by differences in local microscopic structure. Machine learning methods have shown that local structure can serve as the foundation for successful, predictive models of particle rearrangement dynamics in bulk systems. By contrast, in thin glassy films, we find that particles at the center of the film and those near the surface are structurally indistinguishable despite exhibiting very different dynamics. Next, we show that structure-independent processes, already present in bulk systems and demonstrably different from simple facilitated dynamics, are crucial for understanding glassy dynamics in thin films. Our analysis suggests a picture of glassy dynamics in which two dynamical processes coexist, with relative strengths that depend on the distance from an interface. One of these processes depends on local structure and is unchanged throughout most of the film, while the other is purely Arrhenius, does not depend on local structure, and is strongly enhanced near the free surface of a film. PMID:28928147
The effects of anandamide and oleamide on cognition depend on diurnal variations.
Rueda-Orozco, Pavel E; Montes-Rodriguez, Corinne J; Ruiz-Contreras, Alejandra E; Mendez-Diaz, Monica; Prospero-Garcia, Oscar
2017-10-01
Cannabinergic receptor 1 (CB1r) is highly expressed in almost the entire brain; hence, its activation affects diverse functions, including cognitive processes such as learning and memory. On the other hand, it has been demonstrated that CB1r expression fluctuates along the light-dark cycle. In this context, the objective of this work was to characterize the cannabinergic influence over cognitive processes and its relationship with the light-dark cycle. To this aim we studied the effects of two endogenous cannabinoids, anandamide (AEA) and oleamide (ODA), on the consolidation of memory and event-related potentials (ERPs) depending on the light-dark cycle. Our results indicate that AEA and ODA impair the consolidation of spatial and emotional memories and reduce the amplitude of several components of the ERP complex, depending on the phase of the light-dark cycle. This study further supports the notion that endocannabinoids participate in the regulation of cognitive processes with strong influence of environmental variables such as the light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Strain, Jacob; Rathnayake, Hemali; Liu, Jinjun
2017-06-01
Semiconducting polymer nanostructures featuring bulk heterojunction (BHJ) architecture are promising light harvesters in photovoltaic (PV) devices because they allow control of individual domain sizes, internal structure and ordering, as well as well-defined contact between the electron donor and acceptor. Power conversion efficiency (PCE) of PV devices strongly depends on photoinduced dynamics. Understanding and optimizing photoinduced charge transfer processes in BHJ's hence help improve the performance of PV devices and increase their PCE in particular. We have investigated the photoinduced dynamics of a block polymer containing moieties of poly-3-hexylthiophene (P3HT) and polyanthracene (PANT) in solution and in solid state with femtosecond transient absorption (TA) spectroscopy. The dynamics of the polymer PANT alone are also studied as a control. The TA spectra of PANT includes a strong excited state absorption centered at 610 (nm) along with a stimulated emission signal stretching past the detection limit into the UV region which is absent in the monomer's spectra in the detection window. The block polymer's TA spectra strongly resembles that of P3HT but a noticeable positive pull on P3HT's stimulated emission signal residing at 575-620 (nm) is indicative of the excited state absorption of PANT in the adjacent spectral region. The doubling of the lifetime exciton delocalization on the block polymer versus P3HT alone have alluded that the lifetime of P3HT is extended by the covalent addition of PANT. The current spectroscopic investigation represents an interesting example of photoinduced processes in systems with complex energy level structure. Studies of dependence of change generation and separation on composition, dimension, and morphology of the heterojunctions are in process.
Model calculations of kinetic and fluid dynamic processes in diode pumped alkali lasers
NASA Astrophysics Data System (ADS)
Barmashenko, Boris D.; Rosenwaks, Salman; Waichman, Karol
2013-10-01
Kinetic and fluid dynamic processes in diode pumped alkali lasers (DPALs) are analyzed in detail using a semianalytical model, applicable to both static and flowing-gas devices. The model takes into account effects of temperature rise, excitation of neutral alkali atoms to high lying electronic states and their losses due to ionization and chemical reactions, resulting in a decrease of the pump absorption, slope efficiency and lasing power. Effects of natural convection in static DPALs are also taken into account. The model is applied to Cs DPALs and the results are in good agreement with measurements in a static [B.V. Zhdanov, J. Sell and R.J. Knize, Electron. Lett. 44, 582 (2008)] and 1-kW flowing-gas [A.V. Bogachev et al., Quantum Electron. 42, 95 (2012)] DPALs. It predicts the dependence of power on the flow velocity in flowing-gas DPALs and on the buffer gas composition. The maximum values of the laser power can be substantially increased by optimization of the flowing-gas DPAL parameters. In particular for the aforementioned 1 kW DPAL, 6 kW maximum power is achievable just by increasing the pump power and the temperature of the wall and the gas at the flow inlet (resulting in increase of the alkali saturated vapor density). Dependence of the lasing power on the pump power is non-monotonic: the power first increases, achieves its maximum and then decreases. The decrease of the lasing power with increasing pump power at large values of the latter is due to the rise of the aforementioned losses of the alkali atoms as a result of ionization. Work in progress applying two-dimensional computational fluid dynamics modeling of flowing-gas DPALs is also reported.
Cyclin-dependent Kinase 9 Links RNA Polymerase II Transcription to Processing of Ribosomal RNA*
Burger, Kaspar; Mühl, Bastian; Rohrmoser, Michaela; Coordes, Britta; Heidemann, Martin; Kellner, Markus; Gruber-Eber, Anita; Heissmeyer, Vigo; Strässer, Katja; Eick, Dirk
2013-01-01
Ribosome biogenesis is a process required for cellular growth and proliferation. Processing of ribosomal RNA (rRNA) is highly sensitive to flavopiridol, a specific inhibitor of cyclin-dependent kinase 9 (Cdk9). Cdk9 has been characterized as the catalytic subunit of the positive transcription elongation factor b (P-TEFb) of RNA polymerase II (RNAPII). Here we studied the connection between RNAPII transcription and rRNA processing. We show that inhibition of RNAPII activity by α-amanitin specifically blocks processing of rRNA. The block is characterized by accumulation of 3′ extended unprocessed 47 S rRNAs and the entire inhibition of other 47 S rRNA-specific processing steps. The transcription rate of rRNA is moderately reduced after inhibition of Cdk9, suggesting that defective 3′ processing of rRNA negatively feeds back on RNAPI transcription. Knockdown of Cdk9 caused a strong reduction of the levels of RNAPII-transcribed U8 small nucleolar RNA, which is essential for 3′ rRNA processing in mammalian cells. Our data demonstrate a pivotal role of Cdk9 activity for coupling of RNAPII transcription with small nucleolar RNA production and rRNA processing. PMID:23744076
NASA Astrophysics Data System (ADS)
Tosi, N.; Samuel, H.
2017-12-01
Many rocky planetary bodies currently exhibit solid-state convection, or have experienced this process during their histories.Such a style of convection is characterized by the negligible influence of inertia, and a rheology known to be strongly temperature-dependent. Convective motion within such planetary envelopes determine their ability to preserve or to homogenize compositional heterogeneities.Therefore, understanding the efficiency of convective stirring is key to the interpretation of petrological, geochemical, and cosmochemical data originating on the Earth from sampled erupted lava, or inferred from meteorite analysis (e.g., Mars). In order to study this problem we have conducted series of numerical experiments in 2D and 3D Cartesian domains heated from below and cooled from above. We varied systematically the Rayleigh number and the activation energy using a strongly temperature-dependent viscosity based on the Arrhenius law for diffusion creep. Given the large values of activation energy considered, all our experiments fall into the stagnant lid regime. Stirring efficiency is determined by computing the finite-time Lyapunov exponents, which provide a measure of the Lagrangian deformation.This systematic exploration allows the degree of heterogeneity and its spatial variability to be quantified, and yields mixing times for both 2D and 3D geometries.Our results indicate significant differences between geometries: 2D cases lead more frequently to steady solutions, for which stirring efficiency is spatially heterogeneous and mostly weak. On the other hand, 3D cases show more time dependence of the velocity field and generally yield more efficient convective stirring, even for cases with a weak time-dependence of the flow. Scaling laws for stirring efficiencies are derived, and will serve as a basis to discuss the application to planetary mantles.
Strong-Field Control of Laser Filamentation Mechanisms
NASA Astrophysics Data System (ADS)
Levis, Robert; Romanov, Dmitri; Filin, Aleskey; Compton, Ryan
2008-05-01
The propagation of short strong-file laser pulses in gas and solution phases often result in formation of filaments. This phenomenon involves many nonlinear processes including Kerr lensing, group velocity dispersion, multi-photon ionization, plasma defocusing, intensity clamping, and self-steepening. Of these, formation and dynamics of pencil-shape plasma areas plays a crucial role. The fundamental understanding of these laser-induced plasmas requires additional effort, because the process is highly nonlinear and complex. We studied the ultrafast laser-generated plasma dynamics both experimentally and theoretically. Ultrafast plasma dynamics was probed using Coherent Anti-Stokes Raman Scattering. The measurements were made in a room temperature gas maintained at 1 atm in a flowing cell. The time dependent scattering was measured by delaying the CARS probe with respect to the intense laser excitation pulse. A general trend is observed between the spacing of the ground state and the first allowed excited state with the rise time for the noble gas series and the molecular gases. This trend is consistent with our theoretical model, which considers the ultrafast dynamics of the strong field generated plasma as a three-step process; (i) strong-field ionization followed by the electron gaining considerable kinetic energy during the pulse; (ii) immediate post-pulse dynamics: fast thermalization, impact-ionization-driven electron multiplication and cooling; (iii) ensuing relaxation: evolution to electron-ion equilibrium and eventual recombination.
Nicolas, Philippe; Lecourieux, David; Kappel, Christian; Cluzet, Stéphanie; Cramer, Grant; Delrot, Serge; Lecourieux, Fatma
2014-01-01
In grape (Vitis vinifera), abscisic acid (ABA) accumulates during fruit ripening and is thought to play a pivotal role in this process, but the molecular basis of this control is poorly understood. This work characterizes ABSCISIC ACID RESPONSE ELEMENT-BINDING FACTOR2 (VvABF2), a grape basic leucine zipper transcription factor belonging to a phylogenetic subgroup previously shown to be involved in ABA and abiotic stress signaling in other plant species. VvABF2 transcripts mainly accumulated in the berry, from the onset of ripening to the harvesting stage, and were up-regulated by ABA. Microarray analysis of transgenic grape cells overexpressing VvABF2 showed that this transcription factor up-regulates and/or modifies existing networks related to ABA responses. In addition, grape cells overexpressing VvABF2 exhibited enhanced responses to ABA treatment compared with control cells. Among the VvABF2-mediated responses highlighted in this study, the synthesis of phenolic compounds and cell wall softening were the most strongly affected. VvABF2 overexpression strongly increased the accumulation of stilbenes that play a role in plant defense and human health (resveratrol and piceid). In addition, the firmness of fruits from tomato (Solanum lycopersicum) plants overexpressing VvABF2 was strongly reduced. These data indicate that VvABF2 is an important transcriptional regulator of ABA-dependent grape berry ripening. PMID:24276949
Haupt, Erhard T K; Wontorra, Claudia; Rehder, Dieter; Müller, Achim
2005-08-21
Insight into basic principles of cation transport through "molecular channels", and especially details of the related fundamental H2O vehicle function, could be obtained via7Li NMR studies of the Li+ uptake/release processes by the unique porous nanocapsule [{(MoVI)MoVI5O21(H2O)6}12{MoV2O4(SO4)}30]72- which behaves as a semi-permeable inorganic membrane open for H2O and small cations; channel traffic as well as internal cavity distribution processes show a strong dependence on "environmental" effects such as exerted by solvent properties, the amount of water present, and competing complexing ligands, and end up in a complex equilibrium situation as in biological leak channels.
Probing electron delays in above-threshold ionization
Zipp, Lucas J.; Natan, Adi; Bucksbaum, Philip H.
2014-11-21
Recent experiments have revealed attosecond delays in the emission of electrons from atoms ionized by extreme UV light, offering a glimpse into the ultrafast nature of light-induced electron dynamics. In this work, we extend these measurements to the strong-field above-threshold ionization (ATI) regime, by measuring delays in the photoemission of electrons from argon in the presence of an intense laser field. We probe the ATI process with a weak coherent reference, at half the laser frequency. The interfering ionization signal reveals the relative spectral phase of adjacent ATI channels, with an equivalent resolution of a few attoseconds. These relative delaysmore » depend on the strong field, and approach zero at higher intensity. Our phase measurements of ATI electrons show how strong fields alter ionization dynamics in atoms.« less
Domínguez-Tello, A; Arias-Borrego, A; García-Barrera, Tamara; Gómez-Ariza, J L
2015-11-01
This paper comparatively shows the influence of four water treatment processes on the formation of trihalomethanes (THMs) in a water distribution system. The study was performed from February 2005 to January 2012 with analytical data of 600 samples taken in Aljaraque water treatment plant (WTP) and 16 locations along the water distribution system (WDS) in the region of Andévalo and the coast of Huelva (southwest Spain), a region with significant seasonal and population changes. The comparison of results in the four different processes studied indicated a clear link of the treatment process with the formation of THM along the WDS. The most effective treatment process is preozonation and activated carbon filtration (P3), which is also the most stable under summer temperatures. Experiments also show low levels of THMs with the conventional process of preoxidation with potassium permanganate (P4), delaying the chlorination to the end of the WTP; however, this simple and economical treatment process is less effective and less stable than P3. In this study, strong seasonal variations were obtained (increase of THM from winter to summer of 1.17 to 1.85 times) and a strong spatial variation (1.1 to 1.7 times from WTP to end points of WDS) which largely depends on the treatment process applied. There was also a strong correlation between THM levels and water temperature, contact time and pH. On the other hand, it was found that THM formation is not proportional to the applied chlorine dose in the treatment process, but there is a direct relationship with the accumulated dose of chlorine. Finally, predictive models based on multiple linear regressions are proposed for each treatment process.
[Treatment of substance dependence by a bio-cognitive model based on behavioral pharmacology].
Hori, Toru; Komiyama, Tokutaro; Harada, Seiichi; Matsumoto, Takenori
2005-01-01
We have introduced cognitive behavior therapy (CBT) into the treatment of substance dependence patients, which involves disease education and focused group therapy to obtain insight into the taking behavior and to establish concrete countermeasures to prevent relapse. We have created a bio-cognitive model based on biological aspects to explain the pathology of substance dependence. 'Dependence' is a term in behavioral pharmacology defined as reinforced drug seeking and taking behavior. Changes in taking behavior are thought to occur due to the repetition of the reinforcement action of psychoactive substances in the reward system of the brain. Therefore, when intake desire is strong, it is hard for patients to control themselves, and there is a feature of difficulties considering the process of thinking in CBT. In other words, when craving becomes strong, a chain of behavior happens spontaneously, without schema, involving automatic thoughts. We think that the improvement of protracted withdrawal syndrome (PWS) and entire frontal lobe function are important in learning to discern distortion of cognition. When PWS is improved, a conflict is easy to bring about in the process of drug seeking and taking behavior. And, it is easy to execute avoidance plans (coping skills) which are established to cope with craving in advance. We think that a goal for treatment is to discern drug seeking and taking behavior with natural emotion. The recovery of PWS and frontal lobe dysfunction takes a long time with a serious dependence, so we must perform repetition of CBT. As the treatment introduction of involuntary admission cases is adequate or cases of 1 to 3 months of admission treatment based on voluntary admission are hard to treat, treatment to obtain insights into patients while carrying out repeated CBT using a bio-cognitive model and to improve PWS could be a possibility as one treatment for the pathology of diversified substance dependence.
Intensity and temperature-dependent photoluminescence of tris (8-hydroxyquinoline) aluminum films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajward, A. M.; Wang, X.; Wagner, H. P.
2013-12-04
We investigate the recombination of excitons in tris (8-hydroxyquinoline) aluminum films by intensity and temperature dependent time-resolved photoluminescence (PL). At low temperature (15 K) and elevated excitation intensity the radiative emission is quenched by singlet-singlet annihilation processes. With rising temperature the PL quenching is strongly reduced resulting in a PL efficiency maximum at ∼170 K. The reduced exciton annihilation is attributed to thermally activated occupation of non-quenchable trapped exciton states. Above 170 K the PL efficiency decreases due to thermal de-trapping of radiative states and subsequent migration to non-radiative centers.
Grayness-dependent emission of dispersive waves from dark solitons in optical fibers.
Marest, T; Arabí, C Mas; Conforti, M; Mussot, A; Milián, C; Skryabin, D V; Kudlinski, A
2018-04-01
We report the experimental observation of dispersive wave emission from gray solitons propagating in the normal dispersion region of an optical fiber. Besides observing for the first time, to the best of our knowledge, the emission of a dispersive wave from an isolated dark soliton, we show that the dispersive wave frequency and amplitude strongly depend on soliton grayness. This process can be explained by the higher-order dispersion contribution into the phase-matching condition and the grayness of the soliton. Numerical simulations and theoretical predictions are in good agreement with the experiments.
Arizpe, Joseph; Kravitz, Dwight J.; Yovel, Galit; Baker, Chris I.
2012-01-01
Fixation patterns are thought to reflect cognitive processing and, thus, index the most informative stimulus features for task performance. During face recognition, initial fixations to the center of the nose have been taken to indicate this location is optimal for information extraction. However, the use of fixations as a marker for information use rests on the assumption that fixation patterns are predominantly determined by stimulus and task, despite the fact that fixations are also influenced by visuo-motor factors. Here, we tested the effect of starting position on fixation patterns during a face recognition task with upright and inverted faces. While we observed differences in fixations between upright and inverted faces, likely reflecting differences in cognitive processing, there was also a strong effect of start position. Over the first five saccades, fixation patterns across start positions were only coarsely similar, with most fixations around the eyes. Importantly, however, the precise fixation pattern was highly dependent on start position with a strong tendency toward facial features furthest from the start position. For example, the often-reported tendency toward the left over right eye was reversed for the left starting position. Further, delayed initial saccades for central versus peripheral start positions suggest greater information processing prior to the initial saccade, highlighting the experimental bias introduced by the commonly used center start position. Finally, the precise effect of face inversion on fixation patterns was also dependent on start position. These results demonstrate the importance of a non-stimulus, non-task factor in determining fixation patterns. The patterns observed likely reflect a complex combination of visuo-motor effects and simple sampling strategies as well as cognitive factors. These different factors are very difficult to tease apart and therefore great caution must be applied when interpreting absolute fixation locations as indicative of information use, particularly at a fine spatial scale. PMID:22319606
NASA Astrophysics Data System (ADS)
Zupančič, B.; Emri, I.
2009-11-01
This is the second paper in the series addressing the constitutive modeling of dynamically loaded elastomeric products such as power transmission belts. During the normal operation of such belts certain segments of the belt structure are loaded via tooth-like cyclical loading. When the time-dependent properties of the elastomeric material “match” the time-scale of the dynamic loading a strain accumulation (incrementation) process occurs. It was shown that the location of a critical rotation speed strongly depends on the distribution (shape) of the retardation spectrum, whereas the magnitude of the accumulated strain is governed by the strength of the corresponding spectrum lines. These interrelations are extremely non-linear. The strain accumulation process is most intensive at the beginning of the drive belt operation, and is less intensive for longer belts. The strain accumulation process is governed by the spectrum lines that are positioned within a certain region, which we call the Strain Accumulation Window (SAW). An SAW is always located to the right of the spectrum line, L i , at log ( ω λ i )=0, where ω is the operational angular velocity. The width of the SAW depends on the width of the material spectrum. Based on the following analysis a new designing criterion is proposed for use in engineering applications for selecting a proper material for general drive-belt operations.
The effect of mineral reactions and microstructure on long-term experimental fault zone weakening
NASA Astrophysics Data System (ADS)
Niemeijer, Andre R.
2017-04-01
The frictional properties of fault rocks and, in particular, the velocity dependence of friction and associated rate-and-state parameters, are thought to exert an important control on earthquake nucleation and propagation. Experimental results obtained from natural fault gouges typically show that the velocity dependence of friction is a function of both temperature and sliding velocity, indicating that thermally activated time-dependent processes are fundamentally responsible for causing velocity-weakening behavior in silicate-bearing gouges at earthquake "nucleation velocities" (˜ 1 μm/s) and temperatures around 150-300 ˚ C. In addition, slow experiments at velocities of 10s of nm/s using three different fault gouge types all exhibit major weakening with ongoing displacement at constant velocity. Microstructural and microanalytical analyses demonstrate that the development of a weak through-going foliation as well as the (shear-enhanced) formation of new, weak minerals such as talc or muscovite occurred, which both presumably contributed to the observed weakening. Importantly, the slow deformation rates allow for time-dependent viscous deformation (e.g. pressure solution) to occur at low shear stress within the hard, frictionally strong minerals such as quartz. The results highlight the importance of the chemical effects of fluids and microstructural development on long-term fault weakening under slow loading conditions. The resultant frictionally weak fault gouges allow strain to remain localized, yield a strong permeability anisotropy and provide a barrier for rupture propagation. Along-fault variations in the chemical conditions thus have the potential to produce strong contrasts in frictional properties, which can have a large effect on potential earthquake rupture size and style.
Environmental Effects on the Photophysics of Organic-Inorganic Halide Perovskites.
Galisteo-López, Juan F; Anaya, M; Calvo, M E; Míguez, H
2015-06-18
The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials.
Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites
2015-01-01
The photophysical properties of films of organic–inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials. PMID:26266592
Breakdown Conditioning Chacteristics of Precision-Surface-Treatment-Electrode in Vacuum
NASA Astrophysics Data System (ADS)
Kato, Kastumi; Fukuoka, Yuji; Inagawa, Yukihiko; Saitoh, Hitoshi; Sakaki, Masayuki; Okubo, Hitoshi
Breakdown (BD) characteristics in vacuum are strongly dependent on the electrode surface condition, like the surface roughness etc. Therefore, in order to develop a high voltage vacuum circuit breaker, it is important to optimize the surface treatment process. This paper discusses about the effect of precision-surface-treatment of the electrode on breakdown conditioning characteristics under non-uniform electric field in vacuum. Experimental results reveal that the electrode surface treatment affects the conditioning process, especially the BD voltage and the BD field strength at the initial stage of the conditioning.
Tan, Huibing; Rosen, Laura G; Ng, Garye A; Rushlow, Walter J; Laviolette, Steven R
2014-12-01
N-Methyl-D-aspartate (NMDA) receptors in the medial prefrontal cortex (mPFC) are involved in opiate reward processing and modulate sub-cortical dopamine (DA) activity. NMDA receptor blockade in the prelimbic (PLC) division of the mPFC strongly potentiates the rewarding behavioural properties of normally sub-reward threshold doses of opiates. However, the possible functional interactions between cortical NMDA and sub-cortical DAergic motivational neural pathways underlying these effects are not understood. This study examines how NMDA receptor modulation in the PLC influences opiate reward processing via interactions with sub-cortical DAergic transmission. We further examined whether direct intra-PLC NMDA receptor modulation may activate DA-dependent opiate reward signaling via interactions with the ventral tegmental area (VTA). Using an unbiased place conditioning procedure (CPP) in rats, we performed bilateral intra-PLC microinfusions of the competitive NMDA receptor antagonist, (2R)-amino-5-phosphonovaleric acid (AP-5), prior to behavioural morphine place conditioning and challenged the rewarding effects of morphine with DA receptor blockade. We next examined the effects of intra-PLC NMDA receptor blockade on the spontaneous activity patterns of presumptive VTA DA or GABAergic neurons, using single-unit, extracellular in vivo neuronal recordings. We show that intra-PLC NMDA receptor blockade strongly activates sub-cortical DA neurons within the VTA while inhibiting presumptive non-DA GABAergic neurons. Behaviourally, NMDA receptor blockade activates a DA-dependent opiate reward system, as pharmacological blockade of DA transmission blocked morphine reward only in the presence of intra-PLC NMDA receptor antagonism. These findings demonstrate a cortical NMDA-mediated mechanism controlling mesolimbic DAergic modulation of opiate reward processing.
Signals of strong electronic correlation in ion scattering processes
NASA Astrophysics Data System (ADS)
Bonetto, F.; Gonzalez, C.; Goldberg, E. C.
2016-05-01
Previous measurements of neutral atom fractions for S r+ scattered by gold polycrystalline surfaces show a singular dependence with the target temperature. There is still not a theoretical model that can properly describe the magnitude and the temperature dependence of the neutralization probabilities found. Here, we applied a first-principles quantum-mechanical theoretical formalism to describe the time-dependent scattering process. Three different electronic correlation approaches consistent with the system analyzed are used: (i) the spinless approach, where two charge channels are considered (S r0 and S r+ ) and the spin degeneration is neglected; (ii) the infinite-U approach, with the same charge channels (S r0 and S r+ ) but considering the spin degeneration; and (iii) the finite-U approach, where the first ionization and second ionization energy levels are considered very, but finitely, separated. Neutral fraction magnitudes and temperature dependence are better described by the finite-U approach, indicating that e -correlation plays a significant role in charge-transfer processes. However, none of them is able to explain the nonmonotonous temperature dependence experimentally obtained. Here, we suggest that small changes in the surface work function introduced by the target heating, and possibly not detected by experimental standard methods, could be responsible for that singular behavior. Additionally, we apply the same theoretical model using the infinite-U approximation for the Mg-Au system, obtaining an excellent description of the experimental neutral fractions measured.
Enviromental Effects on Internal Color Gradients of Early-Type Galaxies
NASA Astrophysics Data System (ADS)
La Barbera, F.; de Carvalho, R. R.; Gal, R. R.; Busarello, G.; Haines, C. P.; Mercurio, A.; Merluzzi, P.; Capaccioli, M.; Djorgovski, S. G.
2007-05-01
One of the most debated issues of observational and theoretical cosmology is that of how the environment affects the formation and evolution of galaxies. To gain new insight into this subject, we have derived surface photometry for a sample of 3,000 early-type galaxies belonging to 163 clusters with different richness, spanning a redshift range of 0.05 to 0.25. This large data-set is used to analyze how the color distribution inside galaxies depends on several parameters, such as cluster richness, local galaxy density, galaxy luminosity and redshift. We find that the internal color profile of galaxies strongly depends on the environment where galaxies reside. Galaxies in poor and rich clusters are found to follow two distinct trends in the color gradient vs. redshift diagram, with color gradients beeing less steep in rich rather than in poor clusters. No dependence of color gradients on galaxy luminosity is detected both for poor and rich clusters. We find that color gradients strongly depend on local galaxy density, with more shallow gradients in high density regions. Interestingly, this result holds only for low richness clusters, with color gradients of galaxies in rich clusters showing no dependence on local galaxy density. Our results support a reasonable picture whereby young early-type galaxies form in a dissipative collapse process, and then undergo increased (either major or minor) merging activity in richer rather than in poor clusters.
Runge, Kristin K; Chung, Jennifer H; Su, Leona Yi-Fan; Brossard, Dominique; Scheufele, Dietram A
2018-09-01
In March 2012 ABC World News Report aired a series of reports on lean finely textured beef (LFTB) that resulted in a 10-year low for beef prices and the bankruptcy of a major firm that produced LFTB. Using a random sample survey, we tested the effects of the media frame "pink slime" and industry frame "lean finely textured beef," alongside media use, food-related knowledge, trust in food-related institutions and preference for local, fresh, organic and GMO-free foods on perceptions of risk related to ground beef containing pink slime/LFTB, processed foods and red meat. The "pink slime" frame was strongly and positively associated with risk related to ground beef, but not risk related to red meat or processed foods. Attention to news stories about pink slime/LFTB was strongly associated with risk related to ground beef and processed foods, but not red meat. We found varying effects of food values, knowledge and trust on all three dependent variables. Implications are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tracy, J I; Pinsk, M; Helverson, J; Urban, G; Dietz, T; Smith, D J
2001-08-01
The link between automatic and effortful processing and nonanalytic and analytic category learning was evaluated in a sample of 29 college undergraduates using declarative memory, semantic category search, and pseudoword categorization tasks. Automatic and effortful processing measures were hypothesized to be associated with nonanalytic and analytic categorization, respectively. Results suggested that contrary to prediction strong criterion-attribute (analytic) responding on the pseudoword categorization task was associated with strong automatic, implicit memory encoding of frequency-of-occurrence information. Data are discussed in terms of the possibility that criterion-attribute category knowledge, once established, may be expressed with few attentional resources. The data indicate that attention resource requirements, even for the same stimuli and task, vary depending on the category rule system utilized. Also, the automaticity emerging from familiarity with analytic category exemplars is very different from the automaticity arising from extensive practice on a semantic category search task. The data do not support any simple mapping of analytic and nonanalytic forms of category learning onto the automatic and effortful processing dichotomy and challenge simple models of brain asymmetries for such procedures. Copyright 2001 Academic Press.
Imaging first impressions: distinct neural processing of verbal and nonverbal social information.
Kuzmanovic, Bojana; Bente, Gary; von Cramon, D Yves; Schilbach, Leonhard; Tittgemeyer, Marc; Vogeley, Kai
2012-03-01
First impressions profoundly influence our attitudes and behavior toward others. However, little is known about whether and to what degree the cognitive processes that underlie impression formation depend on the domain of the available information about the target person. To investigate the neural bases of the influence of verbal as compared to nonverbal information on interpersonal judgments, we identified brain regions where the BOLD signal parametrically increased with increasing strength of evaluation based on either short text vignettes or mimic and gestural behavior. While for verbal stimuli the increasing strength of subjective evaluation was correlated with increased neural activation of precuneus and posterior cingulate cortex (PC/PCC), a similar effect was observed for nonverbal stimuli in the amygdala. These findings support the assumption that qualitatively different cognitive operations underlie person evaluation depending upon the stimulus domain: while the processing of nonverbal person information may be more strongly associated with affective processing as indexed by recruitment of the amygdala, verbal person information engaged the PC/PCC that has been related to social inferential processing. Copyright © 2011 Elsevier Inc. All rights reserved.
Mechanochemical Preparation of Organic Nitro Compounds
selectivity were found to depend on the ratios of the reactants and the catalyst. A parametric study addressed the effects of milling time, temperature ...Aromatic compounds such as toluene are commercially nitrated using a combination of nitric acid with other strong acids. This process relies on the...was synthesized by milling toluene with sodium nitrate and molybdenum trioxide as a catalyst. Several parameters affecting the desired product yield and
Mechanisms for kappa reduction and color removal by xylanases
Thomas W. Jeffries; Mark Davis; Brian Rosin; Larry L. Landucci
1998-01-01
Xylanases reduce kappa and release UV- and visibly absorptive materials from kraft pulps. The extents of these actions depend on the origin and processing of the pulp, access of enzymes to the substrate, and the natures of the enzymes. Hexeneuronic acid (HexA) is a component of kraft pulp xylans that accounts for a fraction of the kappa content. It absorbs strongly in...
Iron-mediated anaerobic oxidation of methane in brackish coastal sediments.
Egger, Matthias; Rasigraf, Olivia; Sapart, Célia J; Jilbert, Tom; Jetten, Mike S M; Röckmann, Thomas; van der Veen, Carina; Bândă, Narcisa; Kartal, Boran; Ettwig, Katharina F; Slomp, Caroline P
2015-01-06
Methane is a powerful greenhouse gas and its biological conversion in marine sediments, largely controlled by anaerobic oxidation of methane (AOM), is a crucial part of the global carbon cycle. However, little is known about the role of iron oxides as an oxidant for AOM. Here we provide the first field evidence for iron-dependent AOM in brackish coastal surface sediments and show that methane produced in Bothnian Sea sediments is oxidized in distinct zones of iron- and sulfate-dependent AOM. At our study site, anthropogenic eutrophication over recent decades has led to an upward migration of the sulfate/methane transition zone in the sediment. Abundant iron oxides and high dissolved ferrous iron indicate iron reduction in the methanogenic sediments below the newly established sulfate/methane transition. Laboratory incubation studies of these sediments strongly suggest that the in situ microbial community is capable of linking methane oxidation to iron oxide reduction. Eutrophication of coastal environments may therefore create geochemical conditions favorable for iron-mediated AOM and thus increase the relevance of iron-dependent methane oxidation in the future. Besides its role in mitigating methane emissions, iron-dependent AOM strongly impacts sedimentary iron cycling and related biogeochemical processes through the reduction of large quantities of iron oxides.
Enzymatic mechanisms of biological magnetic sensitivity.
Letuta, Ulyana G; Berdinskiy, Vitaly L; Udagawa, Chikako; Tanimoto, Yoshifumi
2017-10-01
Primary biological magnetoreceptors in living organisms is one of the main research problems in magnetobiology. Intracellular enzymatic reactions accompanied by electron transfer have been shown to be receptors of magnetic fields, and spin-dependent ion-radical processes can be a universal mechanism of biological magnetosensitivity. Magnetic interactions in intermediate ion-radical pairs, such as Zeeman and hyperfine (HFI) interactions, in accordance with proposed strict quantum mechanical theory, can determine magnetic-field dependencies of reactions that produce biologically important molecules needed for cell growth. Hyperfine interactions of electrons with nuclear magnetic moments of magnetic isotopes can explain the most important part of biomagnetic sensitivities in a weak magnetic field comparable to the Earth's magnetic field. The theoretical results mean that magnetic-field dependencies of enzymatic reaction rates in a weak magnetic field that can be independent of HFI constant a, if H < a, and are determined by the rate constant of chemical transformations in the enzyme active site. Both Zeeman and HFI interactions predict strong magnetic-field dependence in weak magnetic fields and magnetic-field independence of enzymatic reaction rate constants in strong magnetic fields. The theoretical results can explain the magnetic sensitivity of E. coli cell and demonstrate that intracellular enzymatic reactions are primary magnetoreceptors in living organisms. Bioelectromagnetics. 38:511-521, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Dijkstra, Arie; Ballast, Karien
2012-02-01
In most computer-tailored interventions, the recipient's name is used to personalize the information. This is done to increase the process of persuasion but few empirical data exist that support this notion. An experimental laboratory study was conducted to test the effects of mentioning the participants name and to study whether it was related to the depth of processing in a 2 (personalization/standard) × 2 (weak/strong arguments) design. Over 120 student smokers were randomly assigned to one of the four experimental conditions in which they read smoking cessation messages offering (pre-tested) strong or weak arguments. Personalization was applied by mentioning the recipient's first name three times in the text. The intention to quit smoking was the dependent variable. Personalization increased persuasion when perceived personal relevance was high, but it decreased persuasion when perceived personal relevance was low. The effects on persuasion were only present in the case of strong arguments. Personalization is not always effective, and it may even lead to less persuasion. Therefore, this often used way to tailor messages must be applied with care. ©2011 The British Psychological Society.
The BBX subfamily IV: additional cogs and sprockets to fine-tune light-dependent development.
Sarmiento, Felipe
2013-04-01
Plants depend on light during all phases of its life cycle, and have evolved a complex signaling network to constantly monitor its surroundings. Photomorphogenesis, a process during which the plant reprograms itself in order to dwell life in presence of light is one of the most studied phenomena in plants. Recent mutant analyses using model plant Arabidopsis thaliana and protein interaction assays have unraveled a new set of players, an 8-member subfamily of B-box proteins, known as BBX subfamily IV. For the members of this subfamily, positive (BBX21, BBX22) as well as negative (BBX24) functions have been described for its members, showing a strong association to two major players of the photomorphogenic cascade, HY5 and COP1. The roles of these new BBX regulators are not restricted to photomorphogenesis, but also have functions in other facets of light-dependent development. Therefore this newly identified set of regulators has opened up new insights into the understanding of the fine-tuning of this complex process.
Zhang, Chen; Zhao, Kuaile; Bu, Wenbo; Ni, Dalong; Liu, Yanyan; Feng, Jingwei; Shi, Jianlin
2015-02-02
Strong oxygen dependence and limited penetration depth are the two major challenges facing the clinical application of photodynamic therapy (PDT). In contrast, ionizing radiation is too penetrative and often leads to inefficient radiotherapy (RT) in the clinic because of the lack of effective energy accumulation in the tumor region. Inspired by the complementary advantages of PDT and RT, we present herein the integration of a scintillator and a semiconductor as an ionizing-radiation-induced PDT agent, achieving synchronous radiotherapy and depth-insensitive PDT with diminished oxygen dependence. In the core-shell Ce(III)-doped LiYF4@SiO2@ZnO structure, the downconverted ultraviolet fluorescence from the Ce(III)-doped LiYF4 nanoscintillator under ionizing irradiation enables the generation of electron-hole (e(-)-h(+)) pairs in ZnO nanoparticles, giving rise to the formation of biotoxic hydroxyl radicals. This process is analogous to a type I PDT process for enhanced antitumor therapeutic efficacy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry; Chu, Shih-I.
2012-06-01
We present a self-interaction-free (SIC) time-dependent density-functional theory (TDDFT) for the treatment of double ionization processes of many-electron systems. The method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed 3D calculations of double ionization of He and Be atoms by strong near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. We found that proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the spin particle numbers (SPN) only. The results for the intensity-dependent probabilities of single and double ionization are presented and reproduce the famous ``knee'' structure.
Processing of complex N-glycans in IgG Fc-region is affected by core fucosylation
Castilho, Alexandra; Gruber, Clemens; Thader, Andreas; Oostenbrink, Chris; Pechlaner, Maria; Steinkellner, Herta; Altmann, Friedrich
2015-01-01
We investigated N-glycan processing of immunoglobulin G1 using the monoclonal antibody cetuximab (CxMab), which has a glycosite in the Fab domain in addition to the conserved Fc glycosylation, as a reporter. Three GlcNAc (Gn) terminating bi-antennary glycoforms of CxMab differing in core fucosylation (α1,3- and α1,6-linkage) were generated in a plant-based expression platform. These GnGn, GnGnF3, and GnGnF6 CxMab variants were subjected in vivo to further processing toward sialylation and GlcNAc diversification (bisected and branching structures). Mass spectrometry-based glycan analyses revealed efficient processing of Fab glycans toward envisaged structures. By contrast, Fc glycan processing largely depend on the presence of core fucose. A particularly strong support of glycan processing in the presence of plant-specific core α1,3-fucose was observed. Consistently, molecular modeling suggests changes in the interactions of the Fc carbohydrate chain depending on the presence of core fucose, possibly changing the accessibility. Here, we provide data that reveal molecular mechanisms of glycan processing of IgG antibodies, which may have implications for the generation of glycan-engineered therapeutic antibodies with improved efficacies. PMID:26067753
Hartzell, S.; Iida, M.
1990-01-01
Strong motion records for the Whittier Narrows earthquake are inverted to obtain the history of slip. Both constant rupture velocity models and variable rupture velocity models are considered. The results show a complex rupture process within a relatively small source volume, with at least four separate concentrations of slip. Two sources are associated with the hypocenter, the larger having a slip of 55-90 cm, depending on the rupture model. These sources have a radius of approximately 2-3 km and are ringed by a region of reduced slip. The aftershocks fall within this low slip annulus. Other sources with slips from 40 to 70 cm each ring the central source region and the aftershock pattern. All the sources are predominantly thrust, although some minor right-lateral strike-slip motion is seen. The overall dimensions of the Whittier earthquake from the strong motion inversions is 10 km long (along the strike) and 6 km wide (down the dip). The preferred dip is 30?? and the preferred average rupture velocity is 2.5 km/s. Moment estimates range from 7.4 to 10.0 ?? 1024 dyn cm, depending on the rupture model. -Authors
Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F
2015-09-01
Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.
Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.
2015-01-01
Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508
NASA Astrophysics Data System (ADS)
Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.
2015-09-01
Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.
Anodized aluminum coatings for thermal control. I - Coating process and stresses
NASA Technical Reports Server (NTRS)
Alwitt, R. S.; Mcclung, R. C.; Jacobs, S.
1992-01-01
Anodized aluminum is a candidate material for use as a thermal radiator surface on Space Station Freedom. Here, results of measurements of coating stress at room temperature are presented. The effects of coating process conditions and also subsequent exposure to different humidities, from above ambient to vacuum, are reported. The most important observation with regard to space applications is that the coating stress is very dependent on humidity, changing from compressive at ambient humidity to strongly tensile in 10 exp -6 torr vacuum. The increase in stress is accompanied by loss of water from the coating, and the process is reversible.
Search for ionisation density effects in the radiation absorption stage in LiF:Mg,Ti.
Nail, I; Horowitz, Y S; Oster, L; Brandan, M E; Rodríguez-Villafuerte, M; Buenfil, A E; Ruiz-Trejo, C; Gamboa-Debuen, I; Avila, O; Tovar, V M; Olko, P; Ipe, N
2006-01-01
Optical absorption (OA) dose-response of LiF:Mg,Ti (TLD-100) is studied as a function of electron energy (ionisation density) and irradiation dose. Contrary to the situation in thermoluminescence dose-response where the supralinearity is strongly energy-dependent, no dependence of the OA dose filling constants on energy is observed. This result is interpreted as indicating a lack of competitive process in the radiation absorption stage. The lack of an energy dependence of the dose filling constant also suggests that the charge carrier migration distances are sufficiently large to smear out the differences in the non-uniform distribution of ionisation events created by the impinging gamma/electron radiation of various energies.
Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells.
O'Hara, M B; Hageman, J H
1990-08-01
Bacterial cells degrade intracellular proteins at elevated rates during starvation and can selectively degrade proteins by energy-dependent processes. Sporulating bacteria can degrade protein with apparent first-order rate constants of over 0.20 h-1. We have shown, with an optimized [14C]leucine-labeling and chasing procedure, in a chemically defined sporulation medium, that intracellular protein degradation in sporulating cells of Bacillus subtilis 168 (trpC2) is apparently energy dependent. Sodium arsenate, sodium azide, carbonyl cyanide m-chlorophenylhydrozone, and N,N'-dicyclohexylcarbodiimide, at levels which did not induce appreciable lysis (less than or equal to 10%) over 10-h periods of sporulation, inhibited intracellular proteolysis by 13 to 93%. Exponentially growing cells acquired arsenate resistance. In contrast to earlier reports, we found that chloramphenicol (100 micrograms/ml) strongly inhibited proteolysis (68%) even when added 6 h into the sporulation process. Restricting the calcium ion concentration (less than 2 microM) in the medium had no effect on rates or extent of vegetative growth, strongly inhibited sporulation (98%), and inhibited rates of proteolysis by 60% or more. Inhibitors of energy metabolism, at the same levels which inhibited proteolysis, did not affect the rate or degree of uptake of Ca2+ by cells, which suggested that the Ca2+ and metabolic energy requirements of proteolysis were independent. Restricting the Ca2+ concentration in the medium reduced by threefold the specific activity in cells of the major intracellular serine proteinase after 12 h of sporulation. Finally, cells of a mutant of B. subtilis bearing an insertionally inactivated gene for the Ca2(+)-dependent intracellular proteinase-1 degraded protein in chemically defined sporulation medium at a rate indistinguishable from that of the wild-type cells for periods of 8 h.
NASA Astrophysics Data System (ADS)
Hobbs, S. W.; Paull, D. J.; Clarke, J. D. A.; Roach, Ian C.
2016-03-01
Comparison of the similarities and differences between terrestrial and Martian hillside gullies promotes understanding of how surface processes operate on both planets. Here we tested the viability of subsurface flow of water as a process affecting gully evolution. We compared gullies within the Monaro Volcanic Province near Cooma, New South Wales, Australia, to gullies possessing strong structural control near Gasa Crater, Terra Cimmeria, Mars. Although cursory examination of the Monaro gullies initially suggested strong evidence for aquifer erosion, detailed field surveys showed the evidence to be ambiguous. Instead a complex regime of erosion dependent on multiple conditions and processes such as local geology, surface runoff, dry mass wasting, and animal activity emerged. We found the morphology of gullies near Gasa Crater to be consistent with erosion caused by liquid water, while also being heavily influenced by the local environment, including slope and geology. Additionally, erosion at the Martian site was not consistent with evidence of subsequent, smaller scale erosion and channel modification by dry mass wasting. Local conditions thus play an important role in gully evolution, further highlighting that processes forming Martian gullies may be more diverse than initially thought.
NASA Technical Reports Server (NTRS)
Sepehry-Fard, F.; Coulthard, Maurice H.
1995-01-01
The objective of this publication is to introduce the enhancement methods for the overall reliability and maintainability methods of assessment on the International Space Station. It is essential that the process to predict the values of the maintenance time dependent variable parameters such as mean time between failure (MTBF) over time do not in themselves generate uncontrolled deviation in the results of the ILS analysis such as life cycle costs, spares calculation, etc. Furthermore, the very acute problems of micrometeorite, Cosmic rays, flares, atomic oxygen, ionization effects, orbital plumes and all the other factors that differentiate maintainable space operations from non-maintainable space operations and/or ground operations must be accounted for. Therefore, these parameters need be subjected to a special and complex process. Since reliability and maintainability strongly depend on the operating conditions that are encountered during the entire life of the International Space Station, it is important that such conditions are accurately identified at the beginning of the logistics support requirements process. Environmental conditions which exert a strong influence on International Space Station will be discussed in this report. Concurrent (combined) space environments may be more detrimental to the reliability and maintainability of the International Space Station than the effects of a single environment. In characterizing the logistics support requirements process, the developed design/test criteria must consider both the single and/or combined environments in anticipation of providing hardware capability to withstand the hazards of the International Space Station profile. The effects of the combined environments (typical) in a matrix relationship on the International Space Station will be shown. The combinations of the environments where the total effect is more damaging than the cumulative effects of the environments acting singly, may include a combination such as temperature, humidity, altitude, shock, and vibration while an item is being transported. The item's acceptance to its end-of-life sequence must be examined for these effects.
THE EFFECT OF IONIZING RADIATIONS ON ONTOGENESIS IN BIRDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinu, M.
1963-01-01
The effect of strong doses of ionizing radiations on the ontogenetic development of birds and formation of mutations was studied. The data obtained show that ionizing radiations have a different effect on the biological substratum, depending on their nature and relationship to physiological limits. Gamma radiations have a negative action on the biochemical process altering ths substratum and upsetting the entity of heredity. It was found that x rays produce a temporary stimulating effect on metabolic processes influencing the vitality, ontogenetic development, resistance, the appearance of sexual instinct, and the fertility. Ionizing radiations affect functioning of endocrinic glands and consequentlymore » the ratio of sexes in the offspring. From the results obtained it cand be stated that strong doses of ionizing radiations may be used to obtain variation of mutations, and that in general they are a factor in the evolution of the living organism. (OTS)« less
Grammatical constraints on phonological encoding in speech production.
Heller, Jordana R; Goldrick, Matthew
2014-12-01
To better understand the influence of grammatical encoding on the retrieval and encoding of phonological word-form information during speech production, we examine how grammatical class constraints influence the activation of phonological neighbors (words phonologically related to the target--e.g., MOON, TWO for target TUNE). Specifically, we compare how neighbors that share a target's grammatical category (here, nouns) influence its planning and retrieval, assessed by picture naming latencies, and phonetic encoding, assessed by word productions in picture names, when grammatical constraints are strong (in sentence contexts) versus weak (bare naming). Within-category (noun) neighbors influenced planning time and phonetic encoding more strongly in sentence contexts. This suggests that grammatical encoding constrains phonological processing; the influence of phonological neighbors is grammatically dependent. Moreover, effects on planning times could not fully account for phonetic effects, suggesting that phonological interaction affects articulation after speech onset. These results support production theories integrating grammatical, phonological, and phonetic processes.
MAVEN Observations of Energy-Time Dispersed Electron Signatures in Martian Crustal Magnetic Fields
NASA Technical Reports Server (NTRS)
Harada, Y.; Mitchell, D. L.; Halekas, J. S.; McFadden, J. P.; Mazelle, C.; Connerney, J. E. P.; Espley, J.; Brain, D. A.; Larson, D. E.; Lillis, R. J.;
2016-01-01
Energy-time dispersed electron signatures are observed by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission in the vicinity of strong Martian crustal magnetic fields. Analysis of pitch angle distributions indicates that these dispersed electrons are typically trapped on closed field lines formed above strong crustal magnetic sources. Most of the dispersed electron signatures are characterized by peak energies decreasing with time rather than increasing peak energies. These properties can be explained by impulsive and local injection of hot electrons into closed field lines and subsequent dispersion by magnetic drift of the trapped electrons. In addition, the dispersed flux enhancements are often bursty and sometimes exhibit clear periodicity, suggesting that the injection and trapping processes are intrinsically time dependent and dynamic. These MAVEN observations demonstrate that common physical processes can operate in both global intrinsic magnetospheres and local crustal magnetic fields.
NASA Technical Reports Server (NTRS)
Wu, M. K.; Higgins, C. A.; Leong, P. T.; Chou, H.; Loo, B. H.; Curreri, P. A.; Peters, P. N.; Sisk, R. C.; Huang, C. Y.; Shapira, Y.
1989-01-01
Magnetic suspension effect was first observed in samples of YBa2Cu3O7/AgO(Y-123/AgO) composites. Magnetization measurements of these samples show a much larger hysteresis which corresponds to a large critical current density. In addition to the Y-123AgO composites, recently similar suspension effects in other RE-123/AgO, where RE stands for rare-Earth elements, were also observed. Some samples exhibit even stronger flux pinning than that of the Y-123/AgO sample. An interesting observation was that in order to form the composite which exhibits strong flux trapping effect the sintering temperature depends on the particular RE-123 compound used. The paper presents the detailed processing conditions for the formation of these RE-123/AgO composites, as well as the magnetization and critical field data.
NASA Astrophysics Data System (ADS)
Liao, Wenlin; Dai, Yi-Fan; Nie, Xutao; Nie, Xuqing; Xu, Mingjin
2017-12-01
Ion beam sputtering (IBS) possesses strong surface nanostructuring behaviors, where dual microscopic phenomenon can be aroused to induce the formation of ultrasmooth surfaces or regular nanostructures. Low-energy IBS of fused silica surfaces is investigated to discuss the formation mechanism and the regulation of the IBS-induced nanostructures. The research results indicate that these microscopic phenomena can be attributed to the interaction of the IBS-induced surface roughening and smoothing effects, and the interaction process strongly depends on the sputtering conditions. Alternatively, ultrasmooth surface or regular nanostructure can be selectively generated through the regulation of the nanostructuring process, and the features of the generated nanostructures, such as amplitude and period, also can be regulated. Consequently, two different technology aims of nanofabrication, including nanometer-scale and nanometer-precision fabrication, can be realized, respectively. These dual microscopic mechanisms distinguish IBS as a promising nanometer manufacturing technology for the optical surfaces.
On the Asymptotic Regimes and the Strongly Stratified Limit of Rotating Boussinesq Equations
NASA Technical Reports Server (NTRS)
Babin, A.; Mahalov, A.; Nicolaenko, B.; Zhou, Y.
1997-01-01
Asymptotic regimes of geophysical dynamics are described for different Burger number limits. Rotating Boussinesq equations are analyzed in the asymptotic limit, of strong stratification in the Burger number of order one situation as well as in the asymptotic regime of strong stratification and weak rotation. It is shown that in both regimes horizontally averaged buoyancy variable is an adiabatic invariant for the full Boussinesq system. Spectral phase shift corrections to the buoyancy time scale associated with vertical shearing of this invariant are deduced. Statistical dephasing effects induced by turbulent processes on inertial-gravity waves are evidenced. The 'split' of the energy transfer of the vortical and the wave components is established in the Craya-Herring cyclic basis. As the Burger number increases from zero to infinity, we demonstrate gradual unfreezing of energy cascades for ageostrophic dynamics. The energy spectrum and the anisotropic spectral eddy viscosity are deduced with an explicit dependence on the anisotropic rotation/stratification time scale which depends on the vertical aspect ratio parameter. Intermediate asymptotic regime corresponding to strong stratification and weak rotation is analyzed where the effects of weak rotation are accounted for by an asymptotic expansion with full control (saturation) of vertical shearing. The regularizing effect of weak rotation differs from regularizations based on vertical viscosity. Two scalar prognostic equations for ageostrophic components (divergent velocity potential and geostrophic departure ) are obtained.
PRISM Software: Processing and Review Interface for Strong‐Motion Data
Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter
2017-01-01
A continually increasing number of high‐quality digital strong‐motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey, as well as data from regional seismic networks within the United States, calls for automated processing of strong‐motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. In combination with the Advanced National Seismic System Quake Monitoring System (AQMS), PRISM automates the processing of strong‐motion records. When used without AQMS, PRISM provides batch‐processing capabilities. The PRISM software is platform independent (coded in Java), open source, and does not depend on any closed‐source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a review tool, which is a graphical user interface for manual review, edit, and processing. To facilitate use by non‐NSMP earthquake engineers and scientists, PRISM (both its processing engine and review tool) is easy to install and run as a stand‐alone system on common operating systems such as Linux, OS X, and Windows. PRISM was designed to be flexible and extensible to accommodate implementation of new processing techniques. All the computing features have been thoroughly tested.
Metzler, Dominik; Li, Chen; Engelmann, Sebastian; ...
2016-09-08
With the increasing interest in establishing directional etching methods capable of atomic scale resolution for fabricating highly scaled electronic devices, the need for development and characterization of atomic layer etching (ALE) processes, or generally etch processes with atomic layer precision, is growing. In this work, a flux-controlled cyclic plasma process is used for etching of SiO 2 and Si at the Angstrom-level. This is based on steady-state Ar plasma, with periodic, precise injection of a fluorocarbon (FC) precursor (C 4F 8 and CHF 3), and synchronized, plasma-based Ar+ ion bombardment [D. Metzler et al., J Vac Sci Technol A 32,more » 020603 (2014), and D. Metzler et al., J Vac Sci Technol A 34, 01B101 (2016)]. For low energy Ar+ ion bombardment conditions, physical sputter rates are minimized, whereas material can be etched when FC reactants are present at the surface. This cyclic approach offers a large parameter space for process optimization. Etch depth per cycle, removal rates, and self-limitation of removal, along with material dependence of these aspects, were examined as a function of FC surface coverage, ion energy, and etch step length using in situ real time ellipsometry. The deposited FC thickness per cycle is found to have a strong impact on etch depth per cycle of SiO 2 and Si, but is limited with regard to control over material etching selectivity. Ion energy over the 20 to 30 eV range strongly impacts material selectivity. The choice of precursor can have a significant impact on the surface chemistry and chemically enhanced etching. CHF 3 has a lower FC deposition yield for both SiO 2 and Si, and also exhibits a strong substrate dependence of FC deposition yield, in contrast to C4F 8. The thickness of deposited FC layers using CHF 3 is found to be greater for Si than for SiO 2. X-ray photoelectron spectroscopy was used to study surface chemistry. When thicker FC films of 11 Å are employed, strong changes of FC film chemistry during a cycle are seen whereas the chemical state of the substrate varies much less. On the other hand, for FC film deposition of 5 Å for each cycle, strong substrate surface chemical changes are seen during an etching cycle. The nature of this cyclic etching with periodic deposition of thin FC films differs significantly from conventional etching with steady-state FC layers since surface conditions change strongly throughout each cycle.« less
Two sides of gender: ERP evidence for the presence of two routes during gender agreement processing.
Caffarra, Sendy; Janssen, Niels; Barber, Horacio A
2014-10-01
The present ERP study aimed at providing evidence for the existence of two routes in the brain for the processing of morphosyntactic features during language comprehension; a lexical route which retrieves grammatical properties stored in the lexicon without reliance on formal cues, and a form-based route that takes advantage of sub-lexical units strongly related to a specific grammatical class. In the experiment, we investigated grammatical gender agreement processing in Spanish article-noun word pairs using a grammaticality judgment task. Article-noun pairs either agreed or did not agree in gender. Noun transparency was manipulated such that the ending could be strongly associated with a specific gender class (i.e., transparent nouns) or not (i.e., opaque nouns). A visual half-field method was employed and ERPs were recorded in response to the target nouns in order to disentangle the initial hemisphere-specific computations of gender processing. ERP results showed that, while both hemispheres compute agreement dependencies, the left hemisphere is sensitive to the presence of formal gender cues at an early stage (i.e., 350-500 ms) indicating the presence of a form-based route. The right hemisphere showed an ERP effect of transparency, but later than the left hemisphere (i.e., 500-750 ms). These findings confirm the presence of two routes to gender, which can be differently used depending on the availability of transparent endings. In addition, the results showed hemispheric differences in the time course of the form-based route. Copyright © 2014 Elsevier Ltd. All rights reserved.
Termites promote resistance of decomposition to spatiotemporal variability in rainfall.
Veldhuis, Michiel P; Laso, Francisco J; Olff, Han; Berg, Matty P
2017-02-01
The ecological impact of rapid environmental change will depend on the resistance of key ecosystems processes, which may be promoted by species that exert strong control over local environmental conditions. Recent theoretical work suggests that macrodetritivores increase the resistance of African savanna ecosystems to changing climatic conditions, but experimental evidence is lacking. We examined the effect of large fungus-growing termites and other non-fungus-growing macrodetritivores on decomposition rates empirically with strong spatiotemporal variability in rainfall and temperature. Non-fungus-growing larger macrodetritivores (earthworms, woodlice, millipedes) promoted decomposition rates relative to microbes and small soil fauna (+34%) but both groups reduced their activities with decreasing rainfall. However, fungus-growing termites increased decomposition rates strongest (+123%) under the most water-limited conditions, making overall decomposition rates mostly independent from rainfall. We conclude that fungus-growing termites are of special importance in decoupling decomposition rates from spatiotemporal variability in rainfall due to the buffered environment they create within their extended phenotype (mounds), that allows decomposition to continue when abiotic conditions outside are less favorable. This points at a wider class of possibly important ecological processes, where soil-plant-animal interactions decouple ecosystem processes from large-scale climatic gradients. This may strongly alter predictions from current climate change models. © 2016 by the Ecological Society of America.
Bayesian Analysis of Non-Gaussian Long-Range Dependent Processes
NASA Astrophysics Data System (ADS)
Graves, T.; Franzke, C.; Gramacy, R. B.; Watkins, N. W.
2012-12-01
Recent studies have strongly suggested that surface temperatures exhibit long-range dependence (LRD). The presence of LRD would hamper the identification of deterministic trends and the quantification of their significance. It is well established that LRD processes exhibit stochastic trends over rather long periods of time. Thus, accurate methods for discriminating between physical processes that possess long memory and those that do not are an important adjunct to climate modeling. We have used Markov Chain Monte Carlo algorithms to perform a Bayesian analysis of Auto-Regressive Fractionally-Integrated Moving-Average (ARFIMA) processes, which are capable of modeling LRD. Our principal aim is to obtain inference about the long memory parameter, d,with secondary interest in the scale and location parameters. We have developed a reversible-jump method enabling us to integrate over different model forms for the short memory component. We initially assume Gaussianity, and have tested the method on both synthetic and physical time series such as the Central England Temperature. Many physical processes, for example the Faraday time series from Antarctica, are highly non-Gaussian. We have therefore extended this work by weakening the Gaussianity assumption. Specifically, we assume a symmetric α -stable distribution for the innovations. Such processes provide good, flexible, initial models for non-Gaussian processes with long memory. We will present a study of the dependence of the posterior variance σ d of the memory parameter d on the length of the time series considered. This will be compared with equivalent error diagnostics for other measures of d.
Characterization of few-layered graphene grown by carbon implantation
NASA Astrophysics Data System (ADS)
Lee, Kin Kiong; McCallum, Jeffrey C.; Jamieson, David N.
2014-02-01
Graphene is considered to be a very promising material for applications in nanotechnology. The properties of graphene are strongly dependent on defects that occur during growth and processing. These defects can be either detrimental or beneficial to device performance depending on defect type, location and device application. Here we present experimental results on formation of few-layered graphene by carbon ion implantation into nickel films and characteristics of graphene devices formed by graphene transfer and lithographic patterning. Micro-Raman spectroscopy was used to determine the number of graphene layers formed and identify defects arising from the device processing. The graphene films were cleaned by annealing in vacuum. Transport properties of cleaned graphene films were investigated by fabrication of back-gated field-effect transistors, which exhibited high hole and electron mobility of 1935 and 1905 cm2/Vs, respectively.
Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F
2010-03-29
Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.
Strong self-limitation promotes the persistence of rare species.
Yenni, Glenda; Adler, Peter B; Ernest, S K Morgan
2012-03-01
Theory has recognized a combination of niche and neutral processes each contributing, with varying importance, to species coexistence. However, long-term persistence of rare species has been difficult to produce in trait-based models of coexistence that incorporate stochastic dynamics, raising questions about how rare species persist despite such variability. Following recent evidence that rare species may experience significantly different population dynamics than dominant species, we use a plant community model to simulate the effect of disproportionately strong negative frequency dependence on the long-term persistence of the rare species in a simulated community. This strong self-limitation produces long persistence times for the rare competitors, which otherwise succumb quickly to stochastic extinction. The results suggest that the mechanism causing species to be rare in this case is the same mechanism allowing those species to persist.
Uchida, Shusaku; Teubner, Brett J W; Hevi, Charles; Hara, Kumiko; Kobayashi, Ayumi; Dave, Rutu M; Shintaku, Tatsushi; Jaikhan, Pattaporn; Yamagata, Hirotaka; Suzuki, Takayoshi; Watanabe, Yoshifumi; Zakharenko, Stanislav S; Shumyatsky, Gleb P
2017-01-10
Memory is formed by synapse-to-nucleus communication that leads to regulation of gene transcription, but the identity and organizational logic of signaling pathways involved in this communication remain unclear. Here we find that the transcription cofactor CRTC1 is a critical determinant of sustained gene transcription and memory strength in the hippocampus. Following associative learning, synaptically localized CRTC1 is translocated to the nucleus and regulates Fgf1b transcription in an activity-dependent manner. After both weak and strong training, the HDAC3-N-CoR corepressor complex leaves the Fgf1b promoter and a complex involving the translocated CRTC1, phosphorylated CREB, and histone acetyltransferase CBP induces transient transcription. Strong training later substitutes KAT5 for CBP, a process that is dependent on CRTC1, but not on CREB phosphorylation. This in turn leads to long-lasting Fgf1b transcription and memory enhancement. Thus, memory strength relies on activity-dependent changes in chromatin and temporal regulation of gene transcription on specific CREB/CRTC1 gene targets. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
A Model of Anode Sheath Potential Evolution in a Transverse Magnetic Field
NASA Astrophysics Data System (ADS)
Foster, John E.; Gallimore, Alec D.
1996-11-01
It has been conjectured that the growth in the magnitude of the anode fall voltage with changing transverse magnetic field is a function of the ratio of available transverse current to the discharge current. It has been postulated that at small values of this ratio, the anode fall voltage and thus the near-anode electric field increases in order to assure that the prescribed discharge is maintained.footnote H. Hugel, IEEE Tran. Plas. Sci., PS-8,4, 1980 In this present work, a model is presented which predicts the behavior of the anode fall voltage as a function of transverse magnetic field. The model attempts to explain why the anode fall voltage depends so strongly on this ratio. In addition, it is further shown that because of the current ratio's strong dependence on local electron number density, ultimately it is the changes in near-anode ionization processes with varying transverse magnetic field that control the anode fall voltage.
NASA Astrophysics Data System (ADS)
Boustanji, Hela; Jaziri, Sihem
2018-02-01
GaSb/GaAs type-II quantum-dot solar cells (QD SCs) have attracted attention as highly efficient intermediate band SCs due to their infrared absorption. Type-II QDs exhibited a staggered confinement potential, where only holes are strongly confined within the dots. Long wavelength light absorption of the QDSCs is enhanced through the improved carriers number in the IB. The absorption of dots depends on their shape, material quality, and composition. Therefore, the optical properties of the GaSbGaAs QDs before and after thermal treatment are studied. Our intraband studies have shown an extended absorption into the long wavelength region 1.77 μ {m}. The annealed QDs have shown significantly more infrared response of 7.2 μ {m} compared to as-grown sample. The photon absorption and hole extraction depend strongly on the thermal annealing process. In this context, emission of holes from localized states in GaSb QDs has been studied using conductance-voltage ( G- V ) characteristics.
[Physiotherapeutic care marketing research: current state-of-the art].
Babaskin, D V
2011-01-01
Successful introduction of modern technologies into the national health care systems strongly depends on the current pharmaceutical market situation. The present article is focused on the peculiarities of marketing research with special reference to physiotherapeutic services and commodities. Analysis of the structure and sequence of marketing research processes is described along with the methods applied for the purpose including their support by the use of Internet resources and technologies.
NASA Technical Reports Server (NTRS)
Siscoe, G. L.; Ness, N. F.; Yeates, C. M.
1974-01-01
Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there.
Photodissociation Studies of Polyatomic Free Radicals
1993-08-01
photofragment, that varies with vibrational level, and appears to have a strong J dependence. We are currently in the process of modelling these effects, as well...have also begun to study the photodissociation dynamics of thionyl halides, The photodissociation of thionyl chloride (C12SO) is of interest as a model ...concerted three-body fragmentation mechanism as the primary dissociation channel. A Franck- Condon/golden rule model elucidates the geometry prior to
Alvarez, Simone; Schultz, Jobst-Hendrik
2017-11-01
Almost all medical faculties in Germany actively employ peer tutors. However, little is known about the roles these tutors play from a faculty point of view. Also, there are only few descriptions of the tutor recruitment and selection processes. 32 of the medical faculties in Germany, where tutors are used in the training of medical students, were asked to provide information on the role and recruitment of tutors by means of a partially standardized questionnaire. At the surveyed faculties (return rate 28%), tutors are mostly employed for the purpose of teaching staff support. Even though desired in individual cases, tutors rarely play an active role in curriculum- or faculty development. The way tutor recruitment is handled strongly depends on the capabilities of the individual faculties and the way tutors are utilized. In many cases this process is structured, consisting of written and oral application phases, in other cases recruitment takes place without formal application procedures. The selection criteria, however, were found to be very similar at most faculties. The role of tutors from the faculties' point of view depends strongly on the respective nature of the tutorials, which are just as diverse as the approaches to tutor recruitment. Copyright © 2017. Published by Elsevier GmbH.
Groux, Raphaël; Vincenzetti, Vincent
2017-01-01
In non-motile fungi, sexual reproduction relies on strong morphogenetic changes in response to pheromone signaling. We report here on a systematic screen for morphological abnormalities of the mating process in fission yeast Schizosaccharomyces pombe. We derived a homothallic (self-fertile) collection of viable deletions, which, upon visual screening, revealed a plethora of phenotypes affecting all stages of the mating process, including cell polarization, cell fusion and sporulation. Cell fusion relies on the formation of the fusion focus, an aster-like F-actin structure that is marked by strong local accumulation of the myosin V Myo52, which concentrates secretion at the fusion site. A secondary screen for fusion-defective mutants identified the myosin V Myo51-associated coiled-coil proteins Rng8 and Rng9 as critical for the coalescence of the fusion focus. Indeed, rng8Δ and rng9Δ mutant cells exhibit multiple stable dots at the cell-cell contact site, instead of the single focus observed in wildtype. Rng8 and Rng9 accumulate on the fusion focus, dependent on Myo51 and tropomyosin Cdc8. A tropomyosin mutant allele, which compromises Rng8/9 localization but not actin binding, similarly leads to multiple stable dots instead of a single focus. By contrast, myo51 deletion does not strongly affect fusion focus coalescence. We propose that focusing of the actin filaments in the fusion aster primarily relies on Rng8/9-dependent cross-linking of tropomyosin-actin filaments. PMID:28410370
Egidi, Giovanna; Caramazza, Alfonso
2014-12-01
According to recent research on language comprehension, the semantic features of a text are not the only determinants of whether incoming information is understood as consistent. Listeners' pre-existing affective states play a crucial role as well. The current fMRI experiment examines the effects of happy and sad moods during comprehension of consistent and inconsistent story endings, focusing on brain regions previously linked to two integration processes: inconsistency detection, evident in stronger responses to inconsistent endings, and fluent processing (accumulation), evident in stronger responses to consistent endings. The analysis evaluated whether differences in the BOLD response for consistent and inconsistent story endings correlated with self-reported mood scores after a mood induction procedure. Mood strongly affected regions previously associated with inconsistency detection. Happy mood increased sensitivity to inconsistency in regions specific for inconsistency detection (e.g., left IFG, left STS), whereas sad mood increased sensitivity to inconsistency in regions less specific for language processing (e.g., right med FG, right SFG). Mood affected more weakly regions involved in accumulation of information. These results show that mood can influence activity in areas mediating well-defined language processes, and highlight that integration is the result of context-dependent mechanisms. The finding that language comprehension can involve different networks depending on people's mood highlights the brain's ability to reorganize its functions. Copyright © 2014 Elsevier Inc. All rights reserved.
Fregapane, Giuseppe; Salvador, M Desamparados
2017-08-03
The evolution of the main phenolic secoiridoid compounds throughout the different stages of the virgin olive oil making process-crushing, malaxation and liquid-solid separation-is studied here, with the goal of making possible the prediction of the partition and transformation that take place in the different steps of the process. The concentration of hydroxytyrosol secoiridoids produced under the different crushing conditions studied are reasonably proportional to the intensity of the milling stage, and strongly depend on the olive variety processed. During malaxation, the content of the main phenolic secoiridoids is reduced, especially in the case of the hydroxytyrosol derivatives, in which a variety-dependent behaviour is observed. The prediction of the concentration of phenolic secoiridoids finally transferred from the kneaded paste to the virgin olive oil is also feasible, and depends on the phenolic content and amount of water in the olive paste. The determination of the phenolic compounds in the olive fruit, olive paste and olive oil has been carried out by LC-MS (Liquid-Chromatography Mass-Spectrometry). This improved knowledge could help in the use of more adequate processing conditions for the production of virgin olive oil with desired properties; for example, higher or lower phenolic content, as the amount of these minor components is directly related to its sensory, antioxidant and healthy properties.
The role of transporters in supplying energy to plant plastids.
Flügge, Ulf-Ingo; Häusler, Rainer E; Ludewig, Frank; Gierth, Markus
2011-04-01
The energy status of plant cells strongly depends on the energy metabolism in chloroplasts and mitochondria, which are capable of generating ATP either by photosynthetic or oxidative phosphorylation, respectively. Another energy-rich metabolite inside plastids is the glycolytic intermediate phosphoenolpyruvate (PEP). However, chloroplasts and most non-green plastids lack the ability to generate PEP via a complete glycolytic pathway. Hence, PEP import mediated by the plastidic PEP/phosphate translocator or PEP provided by the plastidic enolase are vital for plant growth and development. In contrast to chloroplasts, metabolism in non-green plastids (amyloplasts) of starch-storing tissues strongly depends on both the import of ATP mediated by the plastidic nucleotide transporter NTT and of carbon (glucose 6-phosphate, Glc6P) mediated by the plastidic Glc6P/phosphate translocator (GPT). Both transporters have been shown to co-limit starch biosynthesis in potato plants. In addition, non-photosynthetic plastids as well as chloroplasts during the night rely on the import of energy in the form of ATP via the NTT. During energy starvation such as prolonged darkness, chloroplasts strongly depend on the supply of ATP which can be provided by lipid respiration, a process involving chloroplasts, peroxisomes, and mitochondria and the transport of intermediates, i.e. fatty acids, ATP, citrate, and oxaloacetate across their membranes. The role of transporters involved in the provision of energy-rich metabolites and in pathways supplying plastids with metabolic energy is summarized here.
Terashima, Mia; Yama, Ayano; Sato, Megumi; Yumoto, Isao; Kamagata, Yoichi; Kato, Souichiro
2016-12-23
The oxidation ditch process is one of the most economical approaches currently used to simultaneously remove organic carbon, nitrogen, and also phosphorus (P) from wastewater. However, limited information is available on biological P removal in this process. In the present study, microorganisms contributing to P removal in a full-scale oxidation ditch reactor were investigated using culture-dependent and -independent approaches. A microbial community analysis based on 16S rRNA gene sequencing revealed that a phylotype closely related to Dechloromonas spp. in the family Rhodocyclaceae dominated in the oxidation ditch reactor. This dominant Dechloromonas sp. was successfully isolated and subjected to fluorescent staining for polyphosphate, followed by microscopic observations and a spectrofluorometric analysis, which clearly demonstrated that the Dechloromonas isolate exhibited a strong ability to accumulate polyphosphate within its cells. These results indicate the potential key role of Dechloromonas spp. in efficient P removal in the oxidation ditch wastewater treatment process.
Terashima, Mia; Yama, Ayano; Sato, Megumi; Yumoto, Isao; Kamagata, Yoichi; Kato, Souichiro
2016-01-01
The oxidation ditch process is one of the most economical approaches currently used to simultaneously remove organic carbon, nitrogen, and also phosphorus (P) from wastewater. However, limited information is available on biological P removal in this process. In the present study, microorganisms contributing to P removal in a full-scale oxidation ditch reactor were investigated using culture-dependent and -independent approaches. A microbial community analysis based on 16S rRNA gene sequencing revealed that a phylotype closely related to Dechloromonas spp. in the family Rhodocyclaceae dominated in the oxidation ditch reactor. This dominant Dechloromonas sp. was successfully isolated and subjected to fluorescent staining for polyphosphate, followed by microscopic observations and a spectrofluorometric analysis, which clearly demonstrated that the Dechloromonas isolate exhibited a strong ability to accumulate polyphosphate within its cells. These results indicate the potential key role of Dechloromonas spp. in efficient P removal in the oxidation ditch wastewater treatment process. PMID:27867159
Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.; ...
2016-12-01
Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Donald William; Okuniewski, Maria A.; Sisneros, Thomas A.
Here, Al clad U-10Mo fuel plates are being considered for conversion of several research reactors from high-enriched to low-enriched U fuel. Neutron diffraction measurements of the textures, residual phase stresses, and dislocation densities in the individual phases of the mini-foils throughout several processing steps and following hot-isostatic pressing to the Al cladding, have been completed. Recovery and recrystallization of the bare U-10Mo fuel foil, as indicated by the dislocation density and texture, are observed depending on the state of the material prior to annealing and the duration and temperature of the annealing process. In general, the cladding procedure significantly reducesmore » the dislocation density, but the final state of the clad plate, both texture and dislocation density, depends strongly on the final processing step of the fuel foil. In contrast, the residual stress state of the final plate is dominated by the thermal expansion mismatch of the constituent materials.« less
Nanopatterning of optical surfaces during low-energy ion beam sputtering
NASA Astrophysics Data System (ADS)
Liao, Wenlin; Dai, Yifan; Xie, Xuhui
2014-06-01
Ion beam figuring (IBF) provides a highly deterministic method for high-precision optical surface fabrication, whereas ion-induced microscopic morphology evolution would occur on surfaces. Consequently, the fabrication specification for surface smoothness must be seriously considered during the IBF process. In this work, low-energy ion nanopatterning of our frequently used optical material surfaces is investigated to discuss the manufacturability of an ultrasmooth surface. The research results indicate that ion beam sputtering (IBS) can directly smooth some amorphous or amorphizable material surfaces, such as fused silica, Si, and ULE under appropriate processing conditions. However, for IBS of a Zerodur surface, preferential sputtering together with curvature-dependent sputtering overcome ion-induced smoothing mechanisms, leading to the granular nanopatterns' formation and the coarsening of the surface. Furthermore, the material property difference at microscopic scales and the continuous impurity incorporation would affect the ion beam smoothing of optical surfaces. Overall, IBS can be used as a promising technique for ultrasmooth surface fabrication, which strongly depends on processing conditions and material characters.
Dependence on collision energy of the stereodynamical properties of the 18O + 32O2 exchange reaction
NASA Astrophysics Data System (ADS)
Privat, E.; Guillon, G.; Honvault, P.
2018-06-01
We report a quantum stereodynamical study of the 18O + 16O16O(v = 0, j = 1) → 18O16O(v‧ = 0, j‧) + 16O oxygen exchange reaction at four different collision energies. We calculated the polarisation moments and generated stereodynamical portraits related to the key vectors involved in this collision process. Ozone complex-forming approaches of reactants are then deduced. The results indicate that different approaches are possible but strongly depend on the collision energy and other parameters of the collision. We also conclude that the reaction globally tends to favour a perpendicular approach with increasing energy.
NASA Astrophysics Data System (ADS)
Stevens, C. E.; Dey, P.; Paul, J.; Wang, Z.; Zhang, H.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.
2017-10-01
We investigate the excitonic dephasing of transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to understand the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with theoretical calculations of the phonon spectra, reveal the important role electron-phonon interactions plat in dephasing process. The temperature dependence of the electronic band gap and the excitonic linewidth combined with 'ab initio' calculations of the phonon energies and the phonon density of state reveal strong interaction with the E‧ and E″ phonon modes.
NASA Astrophysics Data System (ADS)
Stevens, C. E.; Dey, P.; Paul, J.; Wang, Z.; Zhang, H.; Romero, A. H.; Shan, J.; Hilton, D. J.; Karaiskaj, D.
2017-06-01
We investigate the excitonic dephasing of transition metal dichalcogenides, namely MoS2, MoSe2 and WSe2 atomic monolayer thick and bulk crystals, in order to understand the factors that determine the optical coherence in these materials. Coherent nonlinear optical spectroscopy, temperature dependent absorption combined with theoretical calculations of the phonon spectra, reveal the important role electron-phonon interactions plat in dephasing process. The temperature dependence of the electronic band gap and the excitonic linewidth combined with ‘ab initio’ calculations of the phonon energies and the phonon density of state reveal strong interaction with the E’ and E” phonon modes.
The time-dependent density matrix renormalisation group method
NASA Astrophysics Data System (ADS)
Ma, Haibo; Luo, Zhen; Yao, Yao
2018-04-01
Substantial progress of the time-dependent density matrix renormalisation group (t-DMRG) method in the recent 15 years is reviewed in this paper. By integrating the time evolution with the sweep procedures in density matrix renormalisation group (DMRG), t-DMRG provides an efficient tool for real-time simulations of the quantum dynamics for one-dimensional (1D) or quasi-1D strongly correlated systems with a large number of degrees of freedom. In the illustrative applications, the t-DMRG approach is applied to investigate the nonadiabatic processes in realistic chemical systems, including exciton dissociation and triplet fission in polymers and molecular aggregates as well as internal conversion in pyrazine molecule.
Glycerophosphate-dependent peroxide production by brown fat mitochondria from newborn rats.
Drahota, Z; Rauchova, H; Jesina, P; Vojtísková, A; Houstek, J
2003-03-01
Glycerophosphate (GP)-dependent, ferricyanide-induced hydrogen peroxide production was studied in brown adipose tissue mitochondria from newborn rats. Relations between the rate of hydrogen peroxide production and total amount of hydrogen peroxide produced at different GP and ferricyanide concentrations were determined. It was found that the rate of hydrogen peroxide production increases with increasing GP concentration and decreases with increasing ferricyanide concentration. Total amount of hydrogen peroxide produced increases with increasing ferricyanide concentration, however, not proportionally, and the efficiency of this process (oxygen/ferricyanide ratio) strongly declines. Data presented provide further information on the character and kinetics of hydrogen peroxide production by mammalian mitochondrial glycerophosphate dehydrogenase.
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H.; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D.; Väänänen, Veli-Matti
2016-01-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively “fast species” and governed by environmental variability) and diving (relatively “slow species” and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.
Pöysä, Hannu; Rintala, Jukka; Johnson, Douglas H; Kauppinen, Jukka; Lammi, Esa; Nudds, Thomas D; Väänänen, Veli-Matti
2016-10-01
Density dependence, population regulation, and variability in population size are fundamental population processes, the manifestation and interrelationships of which are affected by environmental variability. However, there are surprisingly few empirical studies that distinguish the effect of environmental variability from the effects of population processes. We took advantage of a unique system, in which populations of the same duck species or close ecological counterparts live in highly variable (north American prairies) and in stable (north European lakes) environments, to distinguish the relative contributions of environmental variability (measured as between-year fluctuations in wetland numbers) and intraspecific interactions (density dependence) in driving population dynamics. We tested whether populations living in stable environments (in northern Europe) were more strongly governed by density dependence than populations living in variable environments (in North America). We also addressed whether relative population dynamical responses to environmental variability versus density corresponded to differences in life history strategies between dabbling (relatively "fast species" and governed by environmental variability) and diving (relatively "slow species" and governed by density) ducks. As expected, the variance component of population fluctuations caused by changes in breeding environments was greater in North America than in Europe. Contrary to expectations, however, populations in more stable environments were not less variable nor clearly more strongly density dependent than populations in highly variable environments. Also, contrary to expectations, populations of diving ducks were neither more stable nor stronger density dependent than populations of dabbling ducks, and the effect of environmental variability on population dynamics was greater in diving than in dabbling ducks. In general, irrespective of continent and species life history, environmental variability contributed more to variation in species abundances than did density. Our findings underscore the need for more studies on populations of the same species in different environments to verify the generality of current explanations about population dynamics and its association with species life history.
Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe2
NASA Astrophysics Data System (ADS)
Zhang, Minghua; Fu, Jiyong; Dias, A. C.; Qu, Fanyao
2018-07-01
We present a theory to address the photoluminescence (PL) intensity and valley polarization (VP) dynamics in monolayer WSe2, under the impact of excitonic dark states of both excitons and biexcitons. We find that the PL intensity of all excitonic channels including intravalley exciton (Xb), intravalley biexciton (XXk,k) and intervalley biexciton (XX) in particular for the XXk,k PL is enhanced by laser excitation fluence. In addition, our results indicate the anomalous temperature dependence of PL, i.e. increasing with temperature, as a result of favored phonon assisted dark-to-bright scatterings at high temperatures. Moreover, we observe that the PL is almost immune to intervalley scatterings, which trigger the exchange of excitonic states between the two valleys. As far as the valley polarization is concerned, we find that the VP of Xb shrinks as temperature increases, exhibiting opposite temperature response to PL, while the intravalley XXk,k VP is found almost independent of temperature. In contrast to both Xb and XXk,k, the intervalley XX VP identically vanishes, because of equal populations of excitons in the K and valleys bounded to form intervalley biexcitons. Notably, it is found that the Xb VP much more strongly depends on bright–dark scattering than that of XXk,k, making dark state act as a robust reservoir for valley polarization against intervalley scatterings for Xb at strong bright–dark scatterings, but not for XXk,k. Dark excitonic states enabled enhancement of VP benefits quantum technology for information processing based on the valley degree of freedom in valleytronic devices. Furthermore, the VP has strong dependence on intervalley scattering but maintains essentially constant with excitation fluence. Finally, the dependence of time evolution of PL and VP on temperature and excitation fluence is discussed.
Steinhauer, Karsten; Royle, Phaedra; Drury, John E; Fromont, Lauren A
2017-06-09
Which cognitive processes are reflected by the N400 in ERPs is still controversial. Various recent articles (Lau et al., 2008; Brouwer et al., 2012) have revived the idea that only lexical pre-activation processes (such as automatic spreading activation, ASA) are strongly supported, while post-lexical integrative processes are not. Challenging this view, the present ERP study replicates a behavioral study by McKoon and Ratcliff (1995) who demonstrated that a prime-target pair such as finger - hand shows stronger priming when a majority of other pairs in the list share the analogous semantic relationship (here: part-whole), even at short stimulus onset asynchronies (250ms). We created lists with four different types of semantic relationship (synonyms, part-whole, category-member, and opposites) and compared priming for pairs in a consistent list with those in an inconsistent list as well as unrelated items. Highly significant N400 reductions were found for both relatedness priming (unrelated vs. inconsistent) and relational priming (inconsistent vs. consistent). These data are taken as strong evidence that N400 priming effects are not exclusively carried by ASA-like mechanisms during lexical retrieval but also include post-lexical integration in working memory. We link the present findings to a neurocomputational model for relational reasoning (Knowlton et al., 2012) and to recent discussions of context-dependent conceptual activations (Yee and Thompson-Schill, 2016). Copyright © 2017 Elsevier B.V. All rights reserved.
Metasurface-Enabled Remote Quantum Interference.
Jha, Pankaj K; Ni, Xingjie; Wu, Chihhui; Wang, Yuan; Zhang, Xiang
2015-07-10
An anisotropic quantum vacuum (AQV) opens novel pathways for controlling light-matter interaction in quantum optics, condensed matter physics, etc. Here, we theoretically demonstrate a strong AQV over macroscopic distances enabled by a judiciously designed array of subwavelength-scale nanoantennas-a metasurface. We harness the phase-control ability and the polarization-dependent response of the metasurface to achieve strong anisotropy in the decay rate of a quantum emitter located over distances of hundreds of wavelengths. Such an AQV induces quantum interference among radiative decay channels in an atom with orthogonal transitions. Quantum vacuum engineering with metasurfaces holds promise for exploring new paradigms of long-range light-matter interaction for atom optics, solid-state quantum optics, quantum information processing, etc.
A new study of the kinetics of curd production in the process of cheese manufacture.
Muñoz, Susana Vargas; Torres, Maykel González; Guerrero, Francisco Quintanilla; Talavera, Rogelio Rodríguez
2017-11-01
We studied the role played by temperature and rennet concentration in the coagulation process for cheese manufacture and the evaluation of their kinetics. We concluded that temperature is the main factor that determines the kinetics. The rennet concentration was unimportant probably due to the fast action of the enzyme chymosin. The Dynamic light scattering technique allowed measuring the aggregate's size and their formation kinetics. The volume fraction of solids was determined from viscosity measurements, showing profiles that are in agreement with the size profiles. The results indicate that the formation of the aggregates for rennet cheese is strongly dependent on temperature and rennet concentration. The results revealed that at 35·5 °C the volume fraction of solids has the maximum slope, indicating that at this temperature the curd is formed rapidly. The optimal temperature throughout the process was established. Second-order kinetics were obtained for the process. We observed a quadratic dependence between the rennet volume and the volume fraction of solids (curd), thereby indicating that the kinetics of the curd production should be of order two.
NASA Astrophysics Data System (ADS)
Bandić, Z. Z.; Hauenstein, R. J.; O'Steen, M. L.; McGill, T. C.
1996-03-01
Microscopic growth processes associated with GaN/GaAs molecular beam epitaxy (MBE) are examined through the introduction of a first-order kinetic model. The model is applied to the electron cyclotron resonance microwave plasma-assisted MBE (ECR-MBE) growth of a set of δ-GaNyAs1-y/GaAs strained-layer superlattices that consist of nitrided GaAs monolayers separated by GaAs spacers, and that exhibit a strong decrease of y with increasing T over the range 540-580 °C. This y(T) dependence is quantitatively explained in terms of microscopic anion exchange, and thermally activated N surface-desorption and surface-segregation processes. N surface segregation is found to be significant during GaAs overgrowth of GaNyAs1-y layers at typical GaN ECR-MBE growth temperatures, with an estimated activation energy Es˜0.9 eV. The observed y(T) dependence is shown to result from a combination of N surface segregation/desorption processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marocico, Cristian A.; Zhang, Xia; Bradley, A. Louise, E-mail: bradlel@tcd.ie
We present in this contribution a comprehensive investigation of the effect of the size of gold nanospheres on the decay and energy transfer rates of quantum systems placed close to these nanospheres. These phenomena have been investigated before, theoretically and experimentally, but no comprehensive study of the influence of the nanoparticle size on important dependences of the decay and energy transfer rates, such as the dependence on the donor-acceptor spectral overlap and the relative positions of the donor, acceptor, and nanoparticle, exists. As such, different accounts of the energy transfer mechanism have been presented in the literature. We perform anmore » investigation of the energy transfer mechanisms between emitters and gold nanospheres and between donor-acceptor pairs in the presence of the gold nanospheres using a Green’s tensor formalism, experimentally verified in our lab. We find that the energy transfer rate to small nanospheres is greatly enhanced, leading to a strong quenching of the emission of the emitter. When the nanosphere size is increased, it acts as an antenna, increasing the emission of the emitter. We also investigate the emission wavelength and intrinsic quantum yield dependence of the energy transfer to the nanosphere. As evidenced from the literature, the energy transfer process between the quantum system and the nanosphere can have a complicated distance dependence, with a r{sup −6} regime, characteristic of the Förster energy transfer mechanism, but also exhibiting other distance dependences. In the case of a donor-acceptor pair of quantum systems in the presence of a gold nanosphere, when the donor couples strongly to the nanosphere, acting as an enhanced dipole; the donor-acceptor energy transfer rate then follows a Förster trend, with an increased Förster radius. The coupling of the acceptor to the nanosphere has a different distance dependence. The angular dependence of the energy transfer efficiency between donor and acceptor exhibits a strong focusing effect and the same enhanced donor-dipole character in different angular arrangements. The spectral overlap of the donor emission and acceptor absorption spectra shows that the energy transfer follows the near-field scattering efficiency, with a red-shift from the localized surface plasmon peak for small sphere sizes.« less
Arbex de Castro Vilas Boas, Alexandre; Page, David; Giovinazzo, Robert; Bertin, Nadia; Fanciullino, Anne-Laure
2017-01-01
Industry tomatoes are produced under a range of climatic conditions and practices which significantly impact on main quality traits of harvested fruits. However, the quality of tomato intended for processing is currently addressed on delivery through color and Brix only, whereas other traits are overlooked. Very few works provided an integrated view of the management of tomato puree quality throughout the chain. To gain insights into pre- and post-harvest interactions, four genotypes, two water regimes, three maturity stages, and two processes were investigated. Field and glasshouse experiments were conducted near Avignon, France, from May to August 2016. Two irrigation regimes were applied: control plants were irrigated in order to match 100% of evapotranspiration (ETP); water deficit (WD) plants were irrigated as control plants until anthesis of the first flowers, then irrigation was reduced to 60 and 50% ETP in field, and glasshouse respectively. Fruits were collected at three stages during ripening. Their color, fresh weight, dry matter content, and metabolite contents were determined before processing. Pericarp cell size was evaluated in glasshouse only. Two laboratory-scaled processing methods were applied before structural and biochemical analyses of the purees. Results outlined interactive effects between crop and process management. WD hardly reduced yield, but increased dry matter content in the field, in contrast to the glasshouse. The puree viscosity strongly depended on the genotype and the maturity stage, but it was disconnected from fruit dry matter content or Brix. The process impact on puree viscosity strongly depended on water supply during fruit production. Moreover, the lycopene content of fresh fruit may influence puree viscosity. This work opens new perspectives for managing puree quality in the field showing that it was possible to reduce water supply without affecting yield and to improve puree quality. PMID:29051767
Chess masters show a hallmark of face processing with chess.
Boggan, Amy L; Bartlett, James C; Krawczyk, Daniel C
2012-02-01
Face processing has several distinctive hallmarks that researchers have attributed either to face-specific mechanisms or to extensive experience distinguishing faces. Here, we examined the face-processing hallmark of selective attention failure--as indexed by the congruency effect in the composite paradigm--in a domain of extreme expertise: chess. Among 27 experts, we found that the congruency effect was equally strong with chessboards and faces. Further, comparing these experts with recreational players and novices, we observed a trade-off: Chess expertise was positively related to the congruency effect with chess yet negatively related to the congruency effect with faces. These and other findings reveal a case of expertise-dependent, facelike processing of objects of expertise and suggest that face and expert-chess recognition share common processes.
Interaction of an ion bunch with a plasma slab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.
2016-11-15
Charge neutralization of a short ion bunch passing through a plasma slab is studied by means of numerical simulation. It is shown that a fraction of plasma electrons are trapped by the bunch under the action of the collective charge separation field. The accelerated electrons generated in this process excite beam−plasma instability, thereby violating the trapping conditions. The process of electron trapping is also strongly affected by the high-frequency electric field caused by plasma oscillations at the slab boundaries. It is examined how the degree of charge neutralization depends on the parameters of the bunch and plasma slab.
Computational Models of Cognitive Control
O’Reilly, Randall C.; Herd, Seth A.; Pauli, Wolfgang M.
2010-01-01
Cognitive control refers to the ability to perform task-relevant processing in the face of other distractions or other forms of interference, in the absence of strong environmental support. It depends on the integrity of the prefrontal cortex and associated biological structures (e.g., the basal ganglia). Computational models have played an influential role in developing our understanding of this system, and we review current developments in three major areas: dynamic gating of prefrontal representations, hierarchies in the prefrontal cortex, and reward, motivation, and goal-related processing in prefrontal cortex. Models in these and other areas are advancing the field further forward. PMID:20185294
Gondrexon, N; Cheze, L; Jin, Y; Legay, M; Tissot, Q; Hengl, N; Baup, S; Boldo, P; Pignon, F; Talansier, E
2015-07-01
This paper aims to illustrate the interest of ultrasound technology as an efficient technique for both heat and mass transfer intensification. It is demonstrated that the use of ultrasound results in an increase of heat exchanger performances and in a possible fouling monitoring in heat exchangers. Mass transfer intensification was observed in the case of cross-flow ultrafiltration. It is shown that the enhancement of the membrane separation process strongly depends on the physico-chemical properties of the filtered suspensions. Copyright © 2014 Elsevier B.V. All rights reserved.
Electronic propensity rules in Li-H+ collisions involving initial and/or final oriented states
NASA Astrophysics Data System (ADS)
Salas, P. J.
2000-12-01
Electronic excitation and capture processes are studied in collisions involving systems with only one active electron such as the alkaline (Li)-proton in the medium-energy region (0.1-15 keV). Using the semiclassical impact parameter method, the probabilities and the orientation parameter are calculated for transitions between initial and/or final oriented states. The results show a strong asymmetry in the probabilities depending on the orientation of the initial and/or final states. An intuitive view of the processes, by means of the concepts of propensity and velocity matching rules, is provided.
Strong-field and attosecond physics in solids
Ghimire, Shambhu; Ndabashimiye, Georges; DiChiara, Anthony D.; ...
2014-10-08
We review the status of strong-field and attosecond processes in bulk transparent solids near the Keldysh tunneling limit. For high enough fields and low-frequency excitations, the optical and electronic properties of dielectrics can be transiently and reversibly modified within the applied pulse. In Ghimire et al (2011 Phys. Rev. Lett. 107 167407) non-parabolic band effects were seen in photon-assisted tunneling experiments in ZnO crystals in a strong mid-infrared field. Using the same ZnO crystals, Ghimire et al (2011 Nat. Phys. 7 138–41) reported the first observation of non-pertubative high harmonics, extending well above the bandgap into the vacuum ultraviolet. Recent experiments by Schubert et al (2014 Nat. Photonics 8 119–23) showed a carrier envelope phase dependence in the harmonic spectrum in strong-field 30 THz driven GaSe crystals which is the most direct evidence yet of the role of sub-cycle electron dynamics in solid-state harmonic generation. The harmonic generation mechanism is different from the gas phase owing to the high density and periodicity of the crystal. For example, this results in a linear dependence of the high-energy cutoff with the applied field in contrast to the quadratic dependence in the gas phase. Sub-100 attosecond pulses could become possible if the harmonic spectrum can be extended into the extreme ultraviolet (XUV). Here we report harmonics generated in bulk MgO crystals, extending tomore » $$\\sim 26$$ eV when driven by ~35 fs, 800 nm pulses focused to a ~1 VÅ$$^{-1}$$ peak field. The fundamental strong-field and attosecond response also leads to Wannier–Stark localization and reversible semimetallization as seen in the sub-optical cycle behavior of XUV absorption and photocurrent experiments on fused silica by Schiffrin et al (2013 Nature 493 70–4) and Schultze et al (2013 Nature 493 75–8). These studies are advancing our understanding of fundamental strong-field and attosecond physics in solids with potential applications for compact coherent short-wavelength sources and ultra-high speed optoelectronics.« less
NASA Astrophysics Data System (ADS)
Chadburn, Sarah E.; Krinner, Gerhard; Porada, Philipp; Bartsch, Annett; Beer, Christian; Belelli Marchesini, Luca; Boike, Julia; Ekici, Altug; Elberling, Bo; Friborg, Thomas; Hugelius, Gustaf; Johansson, Margareta; Kuhry, Peter; Kutzbach, Lars; Langer, Moritz; Lund, Magnus; Parmentier, Frans-Jan W.; Peng, Shushi; Van Huissteden, Ko; Wang, Tao; Westermann, Sebastian; Zhu, Dan; Burke, Eleanor J.
2017-11-01
It is important that climate models can accurately simulate the terrestrial carbon cycle in the Arctic due to the large and potentially labile carbon stocks found in permafrost-affected environments, which can lead to a positive climate feedback, along with the possibility of future carbon sinks from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which comprehensive, high-frequency datasets allow us to disentangle the importance of different processes. The models have improved physical permafrost processes and there is a reasonable correspondence between the simulated and measured physical variables, including soil temperature, soil moisture and snow. We show that if the models simulate the correct leaf area index (LAI), the standard C3 photosynthesis schemes produce the correct order of magnitude of carbon fluxes. Therefore, simulating the correct LAI is one of the first priorities. LAI depends quite strongly on climatic variables alone, as we see by the fact that the dynamic vegetation model can simulate most of the differences in LAI between sites, based almost entirely on climate inputs. However, we also identify an influence from nutrient limitation as the LAI becomes too large at some of the more nutrient-limited sites. We conclude that including moss as well as vascular plants is of primary importance to the carbon budget, as moss contributes a large fraction to the seasonal CO2 flux in nutrient-limited conditions. Moss photosynthetic activity can be strongly influenced by the moisture content of moss, and the carbon uptake can be significantly different from vascular plants with a similar LAI. The soil carbon stocks depend strongly on the rate of input of carbon from the vegetation to the soil, and our analysis suggests that an improved simulation of photosynthesis would also lead to an improved simulation of soil carbon stocks. However, the stocks are also influenced by soil carbon burial (e.g. through cryoturbation) and the rate of heterotrophic respiration, which depends on the soil physical state. More detailed below-ground measurements are needed to fully evaluate biological and physical soil processes. Furthermore, even if these processes are well modelled, the soil carbon profiles cannot resemble peat layers as peat accumulation processes are not represented in the models. Thus, we identify three priority areas for model development: (1) dynamic vegetation including (a) climate and (b) nutrient limitation effects; (2) adding moss as a plant functional type; and an (3) improved vertical profile of soil carbon including peat processes.
Soil-borne pathogens restrict the recruitment of a subtropical tree: a distance-dependent effect.
Xu, Meng; Wang, Yongfan; Liu, Yu; Zhang, Zhiming; Yu, Shixiao
2015-03-01
The Janzen-Connell hypothesis suggests that density- and/or distance-dependent juvenile mortality driven by host-specific natural enemies can explain high species diversity in tropical forests. However, such density and distance effects may not occur simultaneously and may not be driven by the same mechanism. Also, reports of attempts to identify and quantify the differences between these processes in tropical forests are scarce. In a primary subtropical forest in China, we (1) experimentally examined the relative influence of the distance to parent trees vs. conspecific seedling density on mortality patterns in Engelhardia fenzelii, (2) tested the role of soil-borne pathogens in driving density- or distance-dependent processes that cause seedling mortality, and (3) inspected the susceptibilities of different tree species to soil biota of E. fenzelii and the effects of soil biota from different tree species on E. fenzelii. The results from these field experiments showed that distance- rather than density-dependent processes driven by soil pathogens strongly affect the seedling survival of this species in its first year. We also observed increased survival of a fungicide treatment for E. fenzelii seedlings in the parent soil but not for the seedlings of the other three species in the E. fenzelii parent soil, or for E. fenzelii seedlings in the parent soil of three other species. This study illustrates how the distance-dependent pattern of seedling recruitment for this species is driven by soil pathogens, a mechanism that likely restricts the dominance of this abundant species.
Frequency-Dependent Rupture Processes for the 2011 Tohoku Earthquake
NASA Astrophysics Data System (ADS)
Miyake, H.
2012-12-01
The 2011 Tohoku earthquake is characterized by frequency-dependent rupture process [e.g., Ide et al., 2011; Wang and Mori, 2011; Yao et al., 2011]. For understanding rupture dynamics of this earthquake, it is extremely important to investigate wave-based source inversions for various frequency bands. The above frequency-dependent characteristics have been derived from teleseismic analyses. This study challenges to infer frequency-dependent rupture processes from strong motion waveforms of K-NET and KiK-net stations. The observations suggested three or more S-wave phases, and ground velocities at several near-source stations showed different arrivals of their long- and short-period components. We performed complex source spectral inversions with frequency-dependent phase weighting developed by Miyake et al. [2002]. The technique idealizes both the coherent and stochastic summation of waveforms using empirical Green's functions. Due to the limitation of signal-to-noise ratio of the empirical Green's functions, the analyzed frequency bands were set within 0.05-10 Hz. We assumed a fault plane with 480 km in length by 180 km in width with a single time window for rupture following Koketsu et al. [2011] and Asano and Iwata [2012]. The inversion revealed source ruptures expanding from the hypocenter, and generated sharp slip-velocity intensities at the down-dip edge. In addition to test the effects of empirical/hybrid Green's functions and with/without rupture front constraints on the inverted solutions, we will discuss distributions of slip-velocity intensity and a progression of wave generation with increasing frequency.
Magneto-optical properties of semi-parabolic plus semi-inverse squared quantum wells
NASA Astrophysics Data System (ADS)
Tung, Luong V.; Vinh, Pham T.; Phuc, Huynh V.
2018-06-01
We theoretically study the optical absorption in a quantum well with the semi-parabolic potential plus the semi-inverse squared potential (SPSIS) in the presence of a static magnetic field in which both one- and two-photon absorption processes have been taken into account. The expression of the magneto-optical absorption coefficient (MOAC) is expressed by the second-order golden rule approximation including the electron-LO phonon interaction. We also use the profile method to obtain the full width at half maximum (FWHM) of the absorption peaks. Our numerical results show that either MOAC or FWHM strongly depends on the confinement frequency, temperature, and magnetic field but their dependence on the parameter β is very weak. The temperature dependence of FWHM is consistent with the previous theoretical and experimental works.
NASA Technical Reports Server (NTRS)
Embleton, Tony F. W.; Daigle, Gilles A.
1991-01-01
Reviewed here is the current state of knowledge with respect to each basic mechanism of sound propagation in the atmosphere and how each mechanism changes the spectral or temporal characteristics of the sound received at a distance from the source. Some of the basic processes affecting sound wave propagation which are present in any situation are discussed. They are geometrical spreading, molecular absorption, and turbulent scattering. In geometrical spreading, sound levels decrease with increasing distance from the source; there is no frequency dependence. In molecular absorption, sound energy is converted into heat as the sound wave propagates through the air; there is a strong dependence on frequency. In turbulent scattering, local variations in wind velocity and temperature induce fluctuations in phase and amplitude of the sound waves as they propagate through an inhomogeneous medium; there is a moderate dependence on frequency.
Contextual signals in visual cortex.
Khan, Adil G; Hofer, Sonja B
2018-06-05
Vision is an active process. What we perceive strongly depends on our actions, intentions and expectations. During visual processing, these internal signals therefore need to be integrated with the visual information from the retina. The mechanisms of how this is achieved by the visual system are still poorly understood. Advances in recording and manipulating neuronal activity in specific cell types and axonal projections together with tools for circuit tracing are beginning to shed light on the neuronal circuit mechanisms of how internal, contextual signals shape sensory representations. Here we review recent work, primarily in mice, that has advanced our understanding of these processes, focusing on contextual signals related to locomotion, behavioural relevance and predictions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Paszko, Tadeusz; Jankowska, Monika
2018-06-18
Laboratory adsorption and degradation studies were carried out to determine the effect of time-dependent adsorption on propiconazole degradation rates in samples from three Polish Luvisols. Strong propiconazole adsorption (organic carbon normalized adsorption coefficients K oc in the range of 1217-7777 mL/g) was observed in batch experiments, with a typical biphasic mechanism with a fast initial step followed by the time-dependent step, which finished within 48 h in the majority of soils. The time-dependent step observed in incubation experiments was longer (duration from 5 to 23 d), and its contribution to total adsorption was from 20% to 34%. The half-lives obtained at 25 °C and 40% maximum water holding capacity of soil, were in the range of 34.7-112.9 d in the Ap horizon and in the range of 42.3-448.8 d for subsoils. The very strong correlations, between degradation rates in pore water and soil organic carbon and soil microbial activity, indicated that microbial degradation of propiconazole was most likely the only significant process responsible for the decay of this compound under aerobic conditions for the whole of the examined soil profiles. Modeling of the processes showed that only models coupling adsorption and degradation were able to correctly describe the experimental data. The analysis of the bioavailability factor values showed that degradation was not limited by the rate of propiconazole desorption from soil, but sorption affected the degradation rate by decreasing its availability for microorganisms. Copyright © 2018. Published by Elsevier Inc.
Crystallographic Analysis of a Japanese Sword by using Bragg Edge Transmission Spectroscopy
NASA Astrophysics Data System (ADS)
Shiota, Yoshinori; Hasemi, Hiroyuki; Kiyanagi, Yoshiaki
Neutron imaging using a pulsed neutron source can give crystallographic information over wide area of a sample by analysing position dependent transmission spectra. With the use of a Bragg edge imaging method we non-destructively obtained crystallographic information of a Japanese sword, signed by Bishu Osafune Norimitsu, in order to know position dependent crystallographic characteristics and to check usefulness of the method for the Japanese sword investigation. Strong texture appeared on the back side. On the other hand in the middle area almost isotropic feature appeared and edge side showed feature between them. Rather isotropic area in the centre area gradually reduced from the grip side to the tip side. The crystallite size was smaller near the edge and became larger towards the back side. The smaller crystallite size will be due to quenching around the edge and this trend disappeared in the grip (nakago) area. The larger crystallite size will be due to strong hammering. Coarse grains were also observed directly as transmission images with the use of a high spatial resolution detector. The spatial distribution of the grains was not uniform but the reason have not been understood. Furthermore, a white area around a tip area was proved to be a void by looking at the Brag edge transmission spectra. This void may be formed during forging process of two kinds of steel. It is suggested that consideration on differences in the texture and the crystallite size depending on position will give information to clarify the manufacturing process, and Bragg edge analysis will be a profitable tool for research of Japanese sword.
Anisotropic Optical-Response of Eu-doped Yttrium Orthosilicate
NASA Technical Reports Server (NTRS)
Liu, Huimin; Santiago, Miguel; Jia, Weiyi; Zhang, Shoudu
1998-01-01
Eu-doped yttrium orthosilicate (Eu(3+) : Y2SiO5) had been a subject being investigated for coherent time-domain optical memory and information processing applications since its ultraslow optical dephasing was discovered several years ago. In this crystal the weakly allowed (7)F0 - (5)D0 transition of europium ions exhibits a sufficient long dephasing time and no spectral difli.usion on a time scale of several hours at low temperature, thus an information pattern or data can be stored as a population grating in the ground state hyperfine levels. On the other hand, the study on photon-echo relaxation shows that the dephasing time T2 of Eu (3+) and other rare-earth ions doped YAG, YAlO3 strongly depends on the intensity of the excitation pulses. In Eu (3+) :YAlO3, an exponential decay of photon-echo with T2 = 53 microseconds if the excitation pulses are weak (5 vJ/pulse) was observed. However, when the excitation pulses are strong (80 pJ/pulse) they observed a much shortened T2 with a highly nonexponential decay pattern. The conclusion they derived is that the intensity-dependent dephasing rate effects are quite general, and it depends on how much the excitation intensity varies. In this paper we use transient grating formation technique showing that a temporal lattice distortion may only occur along crystal c axis, caused by EU (3+) excitation. At high excitation level the produced exciton in conduction band may also couple to the dynamical lattice relaxation process, giving rise to an apparently much shortened dephasing time.
Kail, Robert V.
2013-01-01
According to dual-process models that include analytic and heuristic modes of processing, analytic processing is often expected to become more common with development. Consistent with this view, on reasoning problems, adolescents are more likely than children to select alternatives that are backed by statistical evidence. It is shown here that this pattern depends on the quality of the statistical evidence and the quality of the testimonial that is the typical alternative to statistical evidence. In Experiment 1, 9- and 13-year-olds (N = 64) were presented with scenarios in which solid statistical evidence was contrasted with casual or expert testimonial evidence. When testimony was casual, children relied on it but adolescents did not; when testimony was expert, both children and adolescents relied on it. In Experiment 2, 9- and 13-year-olds (N = 83) were presented with scenarios in which casual testimonial evidence was contrasted with weak or strong statistical evidence. When statistical evidence was weak, children and adolescents relied on both testimonial and statistical evidence; when statistical evidence was strong, most children and adolescents relied on it. Results are discussed in terms of their implications for dual-process accounts of cognitive development. PMID:23735681
Passing faces: sequence-dependent variations in the perceptual processing of emotional faces.
Karl, Christian; Hewig, Johannes; Osinsky, Roman
2016-10-01
There is broad evidence that contextual factors influence the processing of emotional facial expressions. Yet temporal-dynamic aspects, inter alia how face processing is influenced by the specific order of neutral and emotional facial expressions, have been largely neglected. To shed light on this topic, we recorded electroencephalogram from 168 healthy participants while they performed a gender-discrimination task with angry and neutral faces. Our event-related potential (ERP) analyses revealed a strong emotional modulation of the N170 component, indicating that the basic visual encoding and emotional analysis of a facial stimulus happen, at least partially, in parallel. While the N170 and the late positive potential (LPP; 400-600 ms) were only modestly affected by the sequence of preceding faces, we observed a strong influence of face sequences on the early posterior negativity (EPN; 200-300 ms). Finally, the differing response patterns of the EPN and LPP indicate that these two ERPs represent distinct processes during face analysis: while the former seems to represent the integration of contextual information in the perception of a current face, the latter appears to represent the net emotional interpretation of a current face.
Carey, Daniel; Mercure, Evelyne; Pizzioli, Fabrizio; Aydelott, Jennifer
2014-12-01
The effects of ear of presentation and competing speech on N400s to spoken words in context were examined in a dichotic sentence priming paradigm. Auditory sentence contexts with a strong or weak semantic bias were presented in isolation to the right or left ear, or with a competing signal presented in the other ear at a SNR of -12 dB. Target words were congruent or incongruent with the sentence meaning. Competing speech attenuated N400s to both congruent and incongruent targets, suggesting that the demand imposed by a competing signal disrupts the engagement of semantic comprehension processes. Bias strength affected N400 amplitudes differentially depending upon ear of presentation: weak contexts presented to the le/RH produced a more negative N400 response to targets than strong contexts, whereas no significant effect of bias strength was observed for sentences presented to the re/LH. The results are consistent with a model of semantic processing in which the RH relies on integrative processing strategies in the interpretation of sentence-level meaning. Copyright © 2014 Elsevier Ltd. All rights reserved.
Real causes of apparent abnormal results in heavy ion reactions
NASA Astrophysics Data System (ADS)
Mandaglio, G.; Nasirov, A. K.; Anastasi, A.; Curciarello, F.; De Leo, V.; Fazio, G.; Giardina, G.
2015-06-01
We study the effect of the static characteristics of nuclei and dynamics of the nucleus-nucleus interaction in the capture stage of reaction, in the competition between quasifission and complete fusion processes, as well as the angular momentum dependence of the competition between fission and evaporation processes along the de-excitation cascade of the compound nucleus. The results calculated for the mass-asymmetric and less mass-asymmetric reactions in the entrance channel are analyzed in order to investigate the role of the dynamical effects on the yields of the evaporation residue nuclei. We also discuss about uncertainties at the extraction of such relevant physical quantities as Γn/Γtot ratio or also excitation functions from the experimental results due to the not always realistic assumptions in the treatment and analysis of the detected events. This procedure can lead to large ambiguity when the complete fusion process is strongly hindered or when the fast fission contribution is large. We emphasize that a refined multiparameter model of the reaction dynamics as well as a more detailed and checked data analysis are strongly needed in heavy-ion collisions.
Temperature Dependence of Dissociative Electron Attachment to Halogenated Hydrocarbons
NASA Astrophysics Data System (ADS)
Wang, Yicheng; Christophorou, Loucas G.
1996-10-01
Most of the gas mixtures currently in use for plasma processing of semiconductors involve halogenated hydrocarbons such as the strongly electronegative gases CCl4 and CFCl_3, the weakly electronegative gas CF_2Cl2 and the very weakly electronegative gases CHF3 and CF_4. Many dissociation processes are known to occur for these molecules. One of these dissociation reactions which is particularly effective for the strongly electronegative hydrocarbons is dissociative electron attachment. Even for weakly electron attaching gases, molecular dissociation via dissociative electron attachment at low energies can be an efficient dissociation process if the gas temperature is higher than ambient. Dissociative electron attachment is known to increase with increasing temperature above room temperature for many such compounds. In this paper, we report our measurements on the increases of the total electron attachment rate constant for CF_2Cl2 with increasing gas temperature from room temperature to about 600 K. -Research sponsored in part by the U.S. Air Force Wright Laboratory under contract F33615-96-C-2600 with the University of Tennessee. Also, Department of Physics, The University of Tennessee, Knoxville, TN.
Findeisen, Felix; Minor, Daniel L
2009-03-01
Two processes dominate voltage-gated calcium channel (Ca(V)) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The Ca(V)beta/Ca(V)alpha(1)-I-II loop and Ca(2+)/calmodulin (CaM)/Ca(V)alpha(1)-C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6-alpha-interaction domain (AID) linker provides a rigid connection between the pore and Ca(V)beta/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate Ca(V)1.2 (L-type) and Ca(V)2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt Ca(V)beta/I-II association sharply decelerate CDI and reduce a second Ca(2+)/CaM/Ca(V)alpha(1)-C-terminal-mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, Ca(V)beta and the IS6-AID linker, are essential for calcium-dependent modulation, and that both Ca(V)beta-dependent and CaM-dependent components couple to the pore by a common mechanism requiring Ca(V)beta and an intact IS6-AID linker.
Disruption of the IS6-AID Linker Affects Voltage-gated Calcium Channel Inactivation and Facilitation
Findeisen, Felix
2009-01-01
Two processes dominate voltage-gated calcium channel (CaV) inactivation: voltage-dependent inactivation (VDI) and calcium-dependent inactivation (CDI). The CaVβ/CaVα1-I-II loop and Ca2+/calmodulin (CaM)/CaVα1–C-terminal tail complexes have been shown to modulate each, respectively. Nevertheless, how each complex couples to the pore and whether each affects inactivation independently have remained unresolved. Here, we demonstrate that the IS6–α-interaction domain (AID) linker provides a rigid connection between the pore and CaVβ/I-II loop complex by showing that IS6-AID linker polyglycine mutations accelerate CaV1.2 (L-type) and CaV2.1 (P/Q-type) VDI. Remarkably, mutations that either break the rigid IS6-AID linker connection or disrupt CaVβ/I-II association sharply decelerate CDI and reduce a second Ca2+/CaM/CaVα1–C-terminal–mediated process known as calcium-dependent facilitation. Collectively, the data strongly suggest that components traditionally associated solely with VDI, CaVβ and the IS6-AID linker, are essential for calcium-dependent modulation, and that both CaVβ-dependent and CaM-dependent components couple to the pore by a common mechanism requiring CaVβ and an intact IS6-AID linker. PMID:19237593
NASA Astrophysics Data System (ADS)
Calleja, María Ll.; Duarte, Carlos M.; Navarro, Nuria; Agustí, Susana
2005-04-01
The air-sea CO2 gradient at the subtropical NE Atlantic was strongly dependent on the metabolism of the planktonic community within the top cms, but independent of that of the communities deeper in the water column. Gross primary production (GPP) and community respiration (R) of the planktonic community within the top cms exceeded those of the communities deeper in the water column by >10-fold and >7 fold, respectively. Net autotrophic metabolism (GPP > R) at the top cms of the water column in some stations drove CO2 uptake by creating a CO2 deficit at the ocean surface, while net heterotrophic metabolism (GPP < R) at the top cms of the water column in other stations resulted in strong CO2 supersaturation, driving CO2 emissions. These results suggest a strong control of the air-sea pCO2 anomaly by intense biological processes.
Correlated electron and nuclear dynamics in strong field photoionization of H(2)(+).
Silva, R E F; Catoire, F; Rivière, P; Bachau, H; Martín, F
2013-03-15
We present a theoretical study of H(2)(+) ionization under strong IR femtosecond pulses by using a method designed to extract correlated (2D) photoelectron and proton kinetic energy spectra. The results show two distinct ionization mechanisms-tunnel and multiphoton ionization-in which electrons and nuclei do not share the energy from the field in the same way. Electrons produced in multiphoton ionization share part of their energy with the nuclei, an effect that shows up in the 2D spectra in the form of energy-conservation fringes similar to those observed in weak-field ionization of diatomic molecules. In contrast, tunneling electrons lead to fringes whose position does not depend on the proton kinetic energy. At high intensity, the two processes coexist and the 2D plots show a very rich behavior, suggesting that the correlation between electron and nuclear dynamics in strong field ionization is more complex than one would have anticipated.
Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.
Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang
2013-07-12
We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.
Self-Assembly of Measles Virus Nucleocapsid-like Particles: Kinetics and RNA Sequence Dependence.
Milles, Sigrid; Jensen, Malene Ringkjøbing; Communie, Guillaume; Maurin, Damien; Schoehn, Guy; Ruigrok, Rob W H; Blackledge, Martin
2016-08-01
Measles virus RNA genomes are packaged into helical nucleocapsids (NCs), comprising thousands of nucleo-proteins (N) that bind the entire genome. N-RNA provides the template for replication and transcription by the viral polymerase and is a promising target for viral inhibition. Elucidation of mechanisms regulating this process has been severely hampered by the inability to controllably assemble NCs. Here, we demonstrate self-organization of N into NC-like particles in vitro upon addition of RNA, providing a simple and versatile tool for investigating assembly. Real-time NMR and fluorescence spectroscopy reveals biphasic assembly kinetics. Remarkably, assembly depends strongly on the RNA-sequence, with the genomic 5' end and poly-Adenine sequences assembling efficiently, while sequences such as poly-Uracil are incompetent for NC formation. This observation has important consequences for understanding the assembly process. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prinsloo, P. L.; Potgieter, M. S.; Strauss, R. D., E-mail: marius.potgieter@nwu.ac.za
Observations by the Voyager spacecraft in the outer heliosphere presented several challenges for the paradigm of diffusive shock acceleration (DSA) at the solar wind termination shock (TS). In this study, the viability of DSA as a re-acceleration mechanism for galactic electrons is investigated using a comprehensive cosmic-ray modulation model. The results demonstrate that the efficiency of DSA depends strongly on the shape of the electron spectra incident at the TS, which in turn depends on the features of the local interstellar spectrum. Modulation processes such as drifts therefore also influence the re-acceleration process. It is found that re-accelerated electrons makemore » appreciable contributions to intensities in the heliosphere and that increases caused by DSA at the TS are comparable to intensity enhancements observed by Voyager 1 ahead of the TS crossing. The modeling results are interpreted as support for DSA as a re-acceleration mechanism for galactic electrons at the TS.« less
Homogenization techniques for population dynamics in strongly heterogeneous landscapes.
Yurk, Brian P; Cobbold, Christina A
2018-12-01
An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.
Non-contact defect diagnostics in Cz-Si wafers using resonance ultrasonic vibrations
NASA Astrophysics Data System (ADS)
Belyaev, A.; Kochelap, V. A.; Tarasov, I.; Ostapenko, S.
2001-01-01
A new resonance effect of generation of sub-harmonic acoustic vibrations was applied to characterize defects in as-grown and processed Cz-Si wafers. Ultrasonic vibrations were generated into standard 8″ wafers using an external ultrasonic transducer and their amplitude recorded in a non-contact mode using a scanning acoustic probe. By tuning the frequency, f, of the transducer we observed generation of intense sub-harmonic acoustic mode ("whistle" or w-mode) with f/2 frequency. The characteristics of the w-mode-amplitude dependence, frequency scans, spatial distribution allow a clear distinction versus harmonic vibrations of the same wafer. The origin of sub-harmonic vibrations observed on 8″ Cz-Si wafers is attributed to a parametric resonance of flexural vibrations in thin silicon circular plates. We present evidence that "whistle" effect shows a strong dependence on the wafer's growth and processing history and can be used for quality assurance purposes.
NASA Astrophysics Data System (ADS)
Parodi, A.; von Hardenberg, J.; Provenzale, A.
2012-04-01
Intense precipitation events are often associated with strong convective phenomena in the atmosphere. A deeper understanding of how microphysics affects the spatial and temporal variability of convective processes is relevant for many hydro-meteorological applications, such as the estimation of rainfall using remote sensing techniques and the ability to predict severe precipitation processes. In this paper, high-resolution simulations (0.1-1 km) of an atmosphere in radiative-convective equilibrium are performed using the Weather Research and Forecasting (WRF) model by prescribing different microphysical parameterizations. The dependence of fine-scale spatio-temporal properties of convective structures on microphysical details are investigated and the simulation results are compared with the known properties of radar maps of precipitation fields. We analyze and discuss similarities and differences and, based also on previous results on the dependence of precipitation statistics on the raindrop terminal velocity, try to draw some general inferences.
On the physics of electron ejection from laser-irradiated overdense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thévenet, M.; Vincenti, H.; Faure, J.
2016-06-15
Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less
Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport
NASA Technical Reports Server (NTRS)
Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.
2004-01-01
The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.
Nonretinotopic visual processing in the brain.
Melcher, David; Morrone, Maria Concetta
2015-01-01
A basic principle in visual neuroscience is the retinotopic organization of neural receptive fields. Here, we review behavioral, neurophysiological, and neuroimaging evidence for nonretinotopic processing of visual stimuli. A number of behavioral studies have shown perception depending on object or external-space coordinate systems, in addition to retinal coordinates. Both single-cell neurophysiology and neuroimaging have provided evidence for the modulation of neural firing by gaze position and processing of visual information based on craniotopic or spatiotopic coordinates. Transient remapping of the spatial and temporal properties of neurons contingent on saccadic eye movements has been demonstrated in visual cortex, as well as frontal and parietal areas involved in saliency/priority maps, and is a good candidate to mediate some of the spatial invariance demonstrated by perception. Recent studies suggest that spatiotopic selectivity depends on a low spatial resolution system of maps that operates over a longer time frame than retinotopic processing and is strongly modulated by high-level cognitive factors such as attention. The interaction of an initial and rapid retinotopic processing stage, tied to new fixations, and a longer lasting but less precise nonretinotopic level of visual representation could underlie the perception of both a detailed and a stable visual world across saccadic eye movements.
Filters for Submillimeter Electromagnetic Waves
NASA Technical Reports Server (NTRS)
Berdahl, C. M.
1986-01-01
New manufacturing process produces filters strong, yet have small, precise dimensions and smooth surface finish essential for dichroic filtering at submillimeter wavelengths. Many filters, each one essentially wafer containing fine metal grid made at same time. Stacked square wires plated, fused, and etched to form arrays of holes. Grid of nickel and tin held in brass ring. Wall thickness, thickness of filter (hole depth) and lateral hole dimensions all depend upon operating frequency and filter characteristics.
POPE: Partial Order Preserving Encoding
2016-09-09
Alex X. Liu, Ann L. Wang, and Bezawada Bruhadeshwar. Fast range query processing with strong privacy protection for cloud computing . Proc. VLDB...States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article , or to allow others to do so...of these schemes the direc- tory in the persistent client storage depends on the full dataset. Thus 1We abuse notation and use OPE to refer to both
Spiliopoulos, Leonidas
2018-03-01
The investigation of response time and behavior has a long tradition in cognitive psychology, particularly for non-strategic decision-making. Recently, experimental economists have also studied response time in strategic interactions, but with an emphasis on either one-shot games or repeated social-dilemmas. I investigate the determinants of response time in a repeated (pure-conflict) game, admitting a unique mixed strategy Nash equilibrium, with fixed partner matching. Response times depend upon the interaction of two decision models embedded in a dual-process framework (Achtziger and Alós-Ferrer, 2014; Alós-Ferrer, 2016). The first decision model is the commonly used win-stay/lose-shift heuristic and the second the pattern-detecting reinforcement learning model in Spiliopoulos (2013b). The former is less complex and can be executed more quickly than the latter. As predicted, conflict between these two models (i.e., each one recommending a different course of action) led to longer response times than cases without conflict. The dual-process framework makes other qualitative response time predictions arising from the interaction between the existence (or not) of conflict and which one of the two decision models the chosen action is consistent with-these were broadly verified by the data. Other determinants of RT were hypothesized on the basis of existing theory and tested empirically. Response times were strongly dependent on the actions chosen by both players in the previous rounds and the resulting outcomes. Specifically, response time was shortest after a win in the previous round where the maximum possible payoff was obtained; response time after losses was significantly longer. Strongly auto-correlated behavior (regardless of its sign) was also associated with longer response times. I conclude that, similar to other tasks, there is a strong coupling in repeated games between behavior and RT, which can be exploited to further our understanding of decision making. Copyright © 2017 Elsevier B.V. All rights reserved.
Influence of incomplete fusion on complete fusion at energies above the Coulomb barrier
NASA Astrophysics Data System (ADS)
Shuaib, Mohd; Sharma, Vijay R.; Yadav, Abhishek; Sharma, Manoj Kumar; Singh, Pushpendra P.; Singh, Devendra P.; Kumar, R.; Singh, R. P.; Muralithar, S.; Singh, B. P.; Prasad, R.
2017-10-01
In the present work, excitation functions of several reaction residues in the system 19F+169Tm, populated via the complete and incomplete fusion processes, have been measured using off-line γ-ray spectroscopy. The analysis of excitation functions has been done within the framework of statistical model code pace4. The excitation functions of residues populated via xn and pxn channels are found to be in good agreement with those estimated by the theoretical model code, which confirms the production of these residues solely via complete fusion process. However, a significant enhancement has been observed in the cross-sections of residues involving α-emitting channels as compared to the theoretical predictions. The observed enhancement in the cross-sections has been attributed to the incomplete fusion processes. In order to have a better insight into the onset and strength of incomplete fusion, the incomplete fusion strength function has been deduced. At present, there is no theoretical model available which can satisfactorily explain the incomplete fusion reaction data at energies ≈4-6 MeV/nucleon. In the present work, the influence of incomplete fusion on complete fusion in the 19F+169Tm system has also been studied. The measured cross-section data may be important for the development of reactor technology as well. It has been found that the incomplete fusion strength function strongly depends on the α-Q value of the projectile, which is found to be in good agreement with the existing literature data. The analysis strongly supports the projectile-dependent mass-asymmetry systematics. In order to study the influence of Coulomb effect ({Z}{{P}}{Z}{{T}}) on incomplete fusion, the deduced strength function for the present work is compared with the nearby projectile-target combinations. The incomplete fusion strength function is found to increase linearly with {Z}{{P}}{Z}{{T}}, indicating a strong influence of Coulomb effect in the incomplete fusion reactions.
Using Serial and Discrete Digit Naming to Unravel Word Reading Processes
Altani, Angeliki; Protopapas, Athanassios; Georgiou, George K.
2018-01-01
During reading acquisition, word recognition is assumed to undergo a developmental shift from slow serial/sublexical processing of letter strings to fast parallel processing of whole word forms. This shift has been proposed to be detected by examining the size of the relationship between serial- and discrete-trial versions of word reading and rapid naming tasks. Specifically, a strong association between serial naming of symbols and single word reading suggests that words are processed serially, whereas a strong association between discrete naming of symbols and single word reading suggests that words are processed in parallel as wholes. In this study, 429 Grade 1, 3, and 5 English-speaking Canadian children were tested on serial and discrete digit naming and word reading. Across grades, single word reading was more strongly associated with discrete naming than with serial naming of digits, indicating that short high-frequency words are processed as whole units early in the development of reading ability in English. In contrast, serial naming was not a unique predictor of single word reading across grades, suggesting that within-word sequential processing was not required for the successful recognition for this set of words. Factor mixture analysis revealed that our participants could be clustered into two classes, namely beginning and more advanced readers. Serial naming uniquely predicted single word reading only among the first class of readers, indicating that novice readers rely on a serial strategy to decode words. Yet, a considerable proportion of Grade 1 students were assigned to the second class, evidently being able to process short high-frequency words as unitized symbols. We consider these findings together with those from previous studies to challenge the hypothesis of a binary distinction between serial/sublexical and parallel/lexical processing in word reading. We argue instead that sequential processing in word reading operates on a continuum, depending on the level of reading proficiency, the degree of orthographic transparency, and word-specific characteristics. PMID:29706918
Using Serial and Discrete Digit Naming to Unravel Word Reading Processes.
Altani, Angeliki; Protopapas, Athanassios; Georgiou, George K
2018-01-01
During reading acquisition, word recognition is assumed to undergo a developmental shift from slow serial/sublexical processing of letter strings to fast parallel processing of whole word forms. This shift has been proposed to be detected by examining the size of the relationship between serial- and discrete-trial versions of word reading and rapid naming tasks. Specifically, a strong association between serial naming of symbols and single word reading suggests that words are processed serially, whereas a strong association between discrete naming of symbols and single word reading suggests that words are processed in parallel as wholes. In this study, 429 Grade 1, 3, and 5 English-speaking Canadian children were tested on serial and discrete digit naming and word reading. Across grades, single word reading was more strongly associated with discrete naming than with serial naming of digits, indicating that short high-frequency words are processed as whole units early in the development of reading ability in English. In contrast, serial naming was not a unique predictor of single word reading across grades, suggesting that within-word sequential processing was not required for the successful recognition for this set of words. Factor mixture analysis revealed that our participants could be clustered into two classes, namely beginning and more advanced readers. Serial naming uniquely predicted single word reading only among the first class of readers, indicating that novice readers rely on a serial strategy to decode words. Yet, a considerable proportion of Grade 1 students were assigned to the second class, evidently being able to process short high-frequency words as unitized symbols. We consider these findings together with those from previous studies to challenge the hypothesis of a binary distinction between serial/sublexical and parallel/lexical processing in word reading. We argue instead that sequential processing in word reading operates on a continuum, depending on the level of reading proficiency, the degree of orthographic transparency, and word-specific characteristics.
Quantum dynamics in strong fluctuating fields
NASA Astrophysics Data System (ADS)
Goychuk, Igor; Hänggi, Peter
A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete state fluctuations531 2.3. Averaging the quantum propagator533 2.3.1. Kubo oscillator535 2.3.2. Averaged dynamics of two-level quantum systems exposed to two-state stochastic fields537 2.4. Projection operator method: a primer5403. Two-state quantum dynamics in periodic fields542 3.1. Coherent destruction of tunnelling542 3.2. Driving-induced tunnelling oscillations (DITO)5434. Dissipative quantum dynamics in strong time-dependent fields544 4.1. General formalism544 4.1.1. Weak-coupling approximation545 4.1.2. Markovian approximation: Generalised Redfield Equations5475. Application I: Quantum relaxation in driven, dissipative two-level systems548 5.1. Decoupling approximation for fast fluctuating energy levels550 5.1.1. Control of quantum rates551 5.1.2. Stochastic cooling and inversion of level populations552 5.1.3. Emergence of an effective energy bias553 5.2. Quantum relaxation in strong periodic fields554 5.3. Approximation of time-dependent rates554 5.4. Exact averaging for dichotomous Markovian fluctuations5556. Application II: Driven electron transfer within a spin-boson description557 6.1. Curve-crossing problems with dissipation558 6.2. Weak system-bath coupling559 6.3. Beyond weak-coupling theory: Strong system-bath coupling563 6.3.1. Fast fluctuating energy levels565 6.3.2. Exact averaging over dichotomous fluctuations of the energy levels566 6.3.3. Electron transfer in fast oscillating periodic fields567 6.3.4. Dichotomously fluctuating tunnelling barrier5687. Quantum transport in dissipative tight-binding models subjected tostrong external fields569 7.1. Noise-induced absolute negative mobility571 7.2. Dissipative quantum rectifiers573 7.3. Limit of vanishing dissipation575 7.4. Case of harmonic mixing drive5758. Summary576Acknowledgements578References579
Schlüter, Urte; Mascher, Martin; Colmsee, Christian; Scholz, Uwe; Bräutigam, Andrea; Fahnenstich, Holger; Sonnewald, Uwe
2012-11-01
Crop plant development is strongly dependent on the availability of nitrogen (N) in the soil and the efficiency of N utilization for biomass production and yield. However, knowledge about molecular responses to N deprivation derives mainly from the study of model species. In this article, the metabolic adaptation of source leaves to low N was analyzed in maize (Zea mays) seedlings by parallel measurements of transcriptome and metabolome profiling. Inbred lines A188 and B73 were cultivated under sufficient (15 mM) or limiting (0.15 mM) nitrate supply for up to 30 d. Limited availability of N caused strong shifts in the metabolite profile of leaves. The transcriptome was less affected by the N stress but showed strong genotype- and age-dependent patterns. N starvation initiated the selective down-regulation of processes involved in nitrate reduction and amino acid assimilation; ammonium assimilation-related transcripts, on the other hand, were not influenced. Carbon assimilation-related transcripts were characterized by high transcriptional coordination and general down-regulation under low-N conditions. N deprivation caused a slight accumulation of starch but also directed increased amounts of carbohydrates into the cell wall and secondary metabolites. The decrease in N availability also resulted in accumulation of phosphate and strong down-regulation of genes usually involved in phosphate starvation response, underlining the great importance of phosphate homeostasis control under stress conditions.
A microphysical pathway analysis to investigate aerosol effects on convective clouds
NASA Astrophysics Data System (ADS)
Heikenfeld, Max; White, Bethan; Labbouz, Laurent; Stier, Philip
2017-04-01
The impact of aerosols on ice- and mixed-phase processes in convective clouds remains highly uncertain, which has strong implications for estimates of the role of aerosol-cloud interactions in the climate system. The wide range of interacting microphysical processes are still poorly understood and generally not resolved in global climate models. To understand and visualise these processes and to conduct a detailed pathway analysis, we have added diagnostic output of all individual process rates for number and mass mixing ratios to two commonly-used cloud microphysics schemes (Thompson and Morrison) in WRF. This allows us to investigate the response of individual processes to changes in aerosol conditions and the propagation of perturbations throughout the development of convective clouds. Aerosol effects on cloud microphysics could strongly depend on the representation of these interactions in the model. We use different model complexities with regard to aerosol-cloud interactions ranging from simulations with different levels of fixed cloud droplet number concentration (CDNC) as a proxy for aerosol, to prognostic CDNC with fixed modal aerosol distributions. Furthermore, we have implemented the HAM aerosol model in WRF-chem to also perform simulations with a fully interactive aerosol scheme. We employ a hierarchy of simulation types to understand the evolution of cloud microphysical perturbations in atmospheric convection. Idealised supercell simulations are chosen to present and test the analysis methods for a strongly confined and well-studied case. We then extend the analysis to large case study simulations of tropical convection over the Amazon rainforest. For both cases we apply our analyses to individually tracked convective cells. Our results show the impact of model uncertainties on the understanding of aerosol-convection interactions and have implications for improving process representation in models.
NASA Astrophysics Data System (ADS)
Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine
2012-09-01
The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.
Heintges, Gaël H L; Leenaers, Pieter J; Janssen, René A J
2017-07-14
The effects of cold and hot processing on the performance of polymer-fullerene solar cells are investigated for diketopyrrolopyrrole (DPP) based polymers that were specifically designed and synthesized to exhibit a strong temperature-dependent aggregation in solution. The polymers, consisting of alternating DPP and oligothiophene units, are substituted with linear and second position branched alkyl side chains. For the polymer-fullerene blends that can be processed at room temperature, hot processing does not enhance the power conversion efficiencies compared to cold processing because the increased solubility at elevated temperatures results in the formation of wider polymer fibres that reduce charge generation. Instead, hot processing seems to be advantageous when cold processing is not possible due to a limited solubility at room temperature. The resulting morphologies are consistent with a nucleation-growth mechanism for polymer fibres during drying of the films.
Gorlick, Marissa A; Maddox, W Todd
2013-01-01
Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning.
Gorlick, Marissa A.; Maddox, W. Todd
2013-01-01
Arousal Biased Competition theory suggests that arousal enhances competitive attentional processes, but makes no strong claims about valence effects. Research suggests that the scope of enhanced attention depends on valence with negative arousal narrowing and positive arousal broadening attention. Attentional scope likely affects declarative-memory-mediated and perceptual-representation-mediated learning systems differently, with declarative-memory-mediated learning depending on narrow attention to develop targeted verbalizable rules, and perceptual-representation-mediated learning depending on broad attention to develop a perceptual representation. We hypothesize that negative arousal accentuates declarative-memory-mediated learning and attenuates perceptual-representation-mediated learning, while positive arousal reverses this pattern. Prototype learning provides an ideal test bed as dissociable declarative-memory and perceptual-representation systems mediate two-prototype (AB) and one-prototype (AN) prototype learning, respectively, and computational models are available that provide powerful insights on cognitive processing. As predicted, we found that negative arousal narrows attentional focus facilitating AB learning and impairing AN learning, while positive arousal broadens attentional focus facilitating AN learning and impairing AB learning. PMID:23646101
Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry
2010-01-01
Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. PMID:20580644
Busey, Thomas; Craig, James; Clark, Chris; Humes, Larry
2010-08-06
Five measures of temporal order judgments were obtained from 261 participants, including 146 elder, 44 middle aged, and 71 young participants. Strong age group differences were observed in all five measures, although the group differences were reduced when letter discriminability was matched for all participants. Significant relations were found between these measures of temporal processing and several cognitive and sensory assays, and structural equation modeling revealed the degree to which temporal order processing can be viewed as a latent factor that depends in part on contributions from sensory and cognitive capacities. The best-fitting model involved two different latent factors representing temporal order processing at same and different locations, and the sensory and cognitive factors were more successful predicting performance in the different location factor than the same-location factor. Processing speed, even measured using high-contrast symbols on a paper-and-pencil test, was a surprisingly strong predictor of variability in both latent factors. However, low-level sensory measures also made significant contributions to the latent factors. The results demonstrate the degree to which temporal order processing relates to other perceptual and cognitive capacities, and address the question of whether age-related declines in these capacities share a common cause. Copyright 2010 Elsevier Ltd. All rights reserved.
Nonlinear Brillouin amplification of finite-duration seeds in the strong coupling regime
NASA Astrophysics Data System (ADS)
Lehmann, G.; Spatschek, K. H.
2013-07-01
Parametric plasma processes received renewed interest in the context of generating ultra-intense and ultra-short laser pulses up to the exawatt-zetawatt regime. Both Raman as well as Brillouin amplifications of seed pulses were proposed. Here, we investigate Brillouin processes in the one-dimensional (1D) backscattering geometry with the help of numerical simulations. For optimal seed amplification, Brillouin scattering is considered in the so called strong coupling (sc) regime. Special emphasis lies on the dependence of the amplification process on the finite duration of the initial seed pulses. First, the standard plane-wave instability predictions are generalized to pulse models, and the changes of initial seed pulse forms due to parametric instabilities are investigated. Three-wave-interaction results are compared to predictions by a new (kinetic) Vlasov code. The calculations are then extended to the nonlinear region with pump depletion. Generation of different seed layers is interpreted by self-similar solutions of the three-wave interaction model. Similar to Raman amplification, shadowing of the rear layers by the leading layers of the seed occurs. The shadowing is more pronounced for initially broad seed pulses. The effect is quantified for Brillouin amplification. Kinetic Vlasov simulations agree with the three-wave interaction predictions and thereby affirm the universal validity of self-similar layer formation during Brillouin seed amplification in the strong coupling regime.
High-mobility capacitively-induced two-dimensional electrons in a lateral superlattice potential
Lu, Tzu -Ming; Laroche, Dominique; Huang, S. -H.; ...
2016-01-01
In the presence of a lateral periodic potential modulation, two-dimensional electrons may exhibit interesting phenomena, such as a graphene-like energy-momentum dispersion, Bloch oscillations, or the Hofstadter butterfly band structure. To create a sufficiently strong potential modulation using conventional semiconductor heterostructures, aggressive device processing is often required, unfortunately resulting in strong disorder that masks the sought-after effects. Here, we report a novel fabrication process flow for imposing a strong lateral potential modulation onto a capacitively induced two-dimensional electron system, while preserving the host material quality. Using this process flow, the electron density in a patterned Si/SiGe heterostructure can be tuned overmore » a wide range, from 4.4 × 10 10 cm –2 to 1.8 × 10 11 cm –2, with a peak mobility of 6.4 × 10 5 cm 2/V·s. The wide density tunability and high electron mobility allow us to observe sequential emergence of commensurability oscillations as the density, the mobility, and in turn the mean free path, increase. Magnetic-field-periodic quantum oscillations associated with various closed orbits also emerge sequentially with increasing density. We show that, from the density dependence of the quantum oscillations, one can directly extract the steepness of the imposed superlattice potential. Lastly, this result is then compared to a conventional lateral superlattice model potential.« less
Schmutzler, Karolin; Kupitz, Katharina; Schmid, Andreas; Buehler, Katja
2017-07-01
The attachment strength of biofilm microbes is responsible for the adherence of the cells to surfaces and thus is a critical parameter in biofilm processes. In tubular microreactors, aqueous-air segmented flow ensures an optimal oxygen supply and prevents excessive biofilm growth. However, organisms growing in these systems depend on an adaptation phase of several days, before mature and strong biofilms can develop. This is due to strong interfacial forces. In this study, a hyperadherent mutant of Pseudomonas taiwanensis VLB120ΔCeGFP possessing an engineered cyclic diguanylate metabolism, was applied to a continuous biofilm process for the production of (S)-styrene oxide. Cells of the mutant P. taiwanensis VLB120ΔCeGFP Δ04710, showing the same specific activity as the wild type, adhered substantially stronger to the substratum. Adaptation to the high interfacial forces was not necessary in these cases. Thereby, 40% higher final product concentrations were achieved and the maximal volumetric productivity of the parent strain was significantly surpassed by P. taiwanensis VLB120ΔCeGFP Δ04710. Applying mutants with strong adhesion in biofilm-based catalysis opens the door to biological process control in future applications of catalytic biofilms using other industrially relevant strains. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
2017-01-01
The evolution of the main phenolic secoiridoid compounds throughout the different stages of the virgin olive oil making process—crushing, malaxation and liquid-solid separation—is studied here, with the goal of making possible the prediction of the partition and transformation that take place in the different steps of the process. The concentration of hydroxytyrosol secoiridoids produced under the different crushing conditions studied are reasonably proportional to the intensity of the milling stage, and strongly depend on the olive variety processed. During malaxation, the content of the main phenolic secoiridoids is reduced, especially in the case of the hydroxytyrosol derivatives, in which a variety-dependent behaviour is observed. The prediction of the concentration of phenolic secoiridoids finally transferred from the kneaded paste to the virgin olive oil is also feasible, and depends on the phenolic content and amount of water in the olive paste. The determination of the phenolic compounds in the olive fruit, olive paste and olive oil has been carried out by LC-MS (Liquid-Chromatography Mass-Spectrometry). This improved knowledge could help in the use of more adequate processing conditions for the production of virgin olive oil with desired properties; for example, higher or lower phenolic content, as the amount of these minor components is directly related to its sensory, antioxidant and healthy properties. PMID:28771173
Letcher, B.H.; Coombs, J.A.; Nislow, K.H.
2011-01-01
Phenotypic variation in body size can result from within-cohort variation in birth dates, among-individual growth variation and size-selective processes. We explore the relative effects of these processes on the maintenance of wide observed body size variation in stream-dwelling brook trout (Salvelinus fontinalis). Based on the analyses of multiple recaptures of individual fish, it appears that size distributions are largely determined by the maintenance of early size variation. We found no evidence for size-dependent compensatory growth (which would reduce size variation) and found no indication that size-dependent survival substantially influenced body size distributions. Depensatory growth (faster growth by larger individuals) reinforced early size variation, but was relatively strong only during the first sampling interval (age-0, fall). Maternal decisions on the timing and location of spawning could have a major influence on early, and as our results suggest, later (>age-0) size distributions. If this is the case, our estimates of heritability of body size (body length=0.25) will be dominated by processes that generate and maintain early size differences. As a result, evolutionary responses to environmental change that are mediated by body size may be largely expressed via changes in the timing and location of reproduction. Published 2011. This article is a US Government work and is in the public domain in the USA.
Selfsimilar time dependent shock structures
NASA Astrophysics Data System (ADS)
Beck, R.; Drury, L. O.
1985-08-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
Selfsimilar time dependent shock structures
NASA Technical Reports Server (NTRS)
Beck, R.; Drury, L. O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
NASA Astrophysics Data System (ADS)
Sudibyo, Aji, B. B.; Sumardi, S.; Mufakir, F. R.; Junaidi, A.; Nurjaman, F.; Karna, Aziza, Aulia
2017-01-01
Gold amalgamation process was widely used to treat gold ore. This process produces the tailing or amalgamation solid waste, which still contains gold at 8-9 ppm. Froth flotation is one of the promising methods to beneficiate gold from this tailing. However, this process requires optimal conditions which depends on the type of raw material. In this study, Taguchi method was used to optimize the optimum conditions of the froth flotation process. The Taguchi optimization shows that the gold recovery was strongly influenced by the particle size which is the best particle size at 150 mesh followed by the Potassium amyl xanthate concentration, pH and pine oil concentration at 1133.98, 4535.92 and 68.04 gr/ton amalgamation tailing, respectively.
Fernbrant, Cecilia; Agardh, Anette; Emmelin, Maria
2017-01-01
Due to increasing globalization and Internet communication, the number of international marriages has increased. In Sweden, 75% of the Thai population are women, among whom 80% are partnered with Swedish or other Scandinavian men. Previous studies have indicated that lack of autonomy, social isolation, and stigma are important risk factors for poor mental health for foreign-born women as well as for women in international marriages. To explore what characterizes the processes, choices, challenges and relational conditions that Thai women, partnered with Swedish or Danish men, experience during their first years in Sweden. A qualitative study using a Constructivist Grounded Theory approach based on fourteen individual interviews with Thai women partnered with Swedish or Danish men and residing in Sweden. The core category 'possibilities to maintain a strong self in Sweden' is linked to five categories characterizing the process that the women go through over time. The subcategories illustrate different paths taken even if there were possibilities to change paths along the way. The women had, for different reasons, reached a turning point that made them leave Thailand. In Sweden, they started in dependency and struggled in different ways to adjust to relational norms and handle prejudice. Toward the end of the timeline, differing ways of recognizing life choices depended on access to social networks and partners' attitudes. Our study showed the crucial role of economical, emotional and social support from partners and networks for Thai women's possibilities to maintain a strong self and good health after migration. This implies a need for supporting Thai women to be more independent by providing access to language education, employment and community involvement. The current requirement for becoming a permanent resident should also be reviewed not to jeopardize women international marriages possibilities' to leave unhealthy relationships.
From viscous fingers to wormholes - interactions between structures emerging in unstable growth
NASA Astrophysics Data System (ADS)
Budek, Agnieszka; Kwiatkowski, Kamil; Szymczak, Piotr
2017-04-01
Dissolution of porous and fractured rock can lead to instabilities, where long finger-like channels or „wormholes" are spontaneously formed, focusing the majority of the flow. Formation of those structures leads to a significant increase in permeability of the system, and is thus important in many engineering applications, e.g. in acidization during oil and gas recovery stimulation. In this communication, we analyse this process using two different numerical models (a network model and a Darcy scale one). We show that wormhole patterns depend strongly on the amount of soluble material in the system, as quantified by the permeability contrast κ between the dissolved and undissolved medium. For small and intermediate values of κ, a large number of relatively thin and strongly interacting channels are formed. The longer channels attract shorter ones, with loops being formed as a result. However, for large values of κ the pattern gets sparse with individual wormholes repelling each other. Interestingly, a similar succession of patterns can be observed in viscous fingering in a rectangular network of channels. In such a system, anisotropy of the network promotes the growth of long and thin fingers which behave similarly to wormholes. The attraction rate between growing fingers depends strongly on the viscosity ratio, I. The latter plays a role similar to that of permeability ratio for dissolution of porous material. To explain this behaviour, we have created a simple analytical model of interacting fingers, allowing us to quantify their mutual interaction as a function of finger lengths, distances between them and - most importantly - relative permeabilities. The theoretical predictions are in a good agreement with simulation data for both dissolution and viscous fingering processes.
Constitutive Models for Shape Memory Alloy Polycrystals
NASA Technical Reports Server (NTRS)
Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.
1996-01-01
Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.
NASA Astrophysics Data System (ADS)
Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae
2016-04-01
The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.
Localized Magnetic Moments with Tunable Spin Exchange in a Gas of Ultracold Fermions
NASA Astrophysics Data System (ADS)
Riegger, L.; Darkwah Oppong, N.; Höfer, M.; Fernandes, D. R.; Bloch, I.; Fölling, S.
2018-04-01
We report on the experimental realization of a state-dependent lattice for a two-orbital fermionic quantum gas with strong interorbital spin exchange. In our state-dependent lattice, the ground and metastable excited electronic states of 173Yb take the roles of itinerant and localized magnetic moments, respectively. Repulsive on-site interactions in conjunction with the tunnel mobility lead to spin exchange between mobile and localized particles, modeling the coupling term in the well-known Kondo Hamiltonian. In addition, we find that this exchange process can be tuned resonantly by varying the on-site confinement. We attribute this to a resonant coupling to center-of-mass excited bound states of one interorbital scattering channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaznatcheev, K.; Bertwistle, D.; Cheng, C.
We have explored the capabilities of synchronous ('lock-in') point detection techniques to enhance the x-ray magnetic circular dichroism (XMCD) contrast in scanning x-ray transmission microscopy (STXM) of magnetic thin-film microstructures. Local absorption contrast, measured synchronously with low-amplitude (<10 Oe) and low-frequency (<200 hz) longitudinal fields perturbing the near-remanent magnetization state, reveal a strong spatial dependence of the response, with a roll-off in frequency response above 200 Hz. In this context, synchronous measurement affords us a basis for imaging the relation between energy loss and the sweeping rate. We speculate that the lock-in approach will be uniquely suited for detailing stochasticmore » and deterministic frequency-dependent events in the process of magnetization reversal.« less
Drüschler, Marcel; Borisenko, Natalia; Wallauer, Jens; Winter, Christian; Huber, Benedikt; Endres, Frank; Roling, Bernhard
2012-04-21
Ionic liquids are of high interest for the development of safe electrolytes in modern electrochemical cells, such as batteries, supercapacitors and dye-sensitised solar cells. However, electrochemical applications of ionic liquids are still hindered by the limited understanding of the interface between electrode materials and ionic liquids. In this article, we first review the state of the art in both experiment and theory. Then we illustrate some general trends by taking the interface between the extremely pure ionic liquid 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate and an Au(111) electrode as an example. For the study of this interface, electrochemical impedance spectroscopy was combined with in situ STM and in situ AFM techniques. In addition, we present new results for the temperature dependence of the interfacial capacitance and dynamics. Since the interfacial dynamics are characterised by different processes taking place on different time scales, the temperature dependence of the dynamics can only be reliably studied by recording and carefully analysing broadband capacitance spectra. Single-frequency experiments may lead to artefacts in the temperature dependence of the interfacial capacitance. We demonstrate that the fast capacitive process exhibits a Vogel-Fulcher-Tamman temperature dependence, since its time scale is governed by the ionic conductivity of the ionic liquid. In contrast, the slower capacitive process appears to be Arrhenius activated. This suggests that the time scale of this process is determined by a temperature-independent barrier, which may be related to structural reorganisations of the Au surface and/or to charge redistributions in the strongly bound innermost ion layer. This journal is © the Owner Societies 2012
Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature.
Otzen, Daniel E
2002-01-01
The 101-residue monomeric protein S6 unfolds in the anionic detergent sodium dodecyl sulfate (SDS) above the critical micelle concentration, with unfolding rates varying according to two different modes. Our group has proposed that spherical micelles lead to saturation kinetics in unfolding (mode 1), while cylindrical micelles prevalent at higher SDS concentrations induce a power-law dependent increase in the unfolding rate (mode 2). Here I investigate in more detail how micellar properties affect protein unfolding. High NaCl concentrations, which induce cylindrical micelles, favor mode 2. This is consistent with our model, though other effects such as electrostatic screening cannot be discounted. Furthermore, unfolding does not occur in mode 2 in the cationic detergent LTAB, which is unable to form cylindrical micelles. A strong retardation of unfolding occurs at higher LTAB concentrations, possibly due to the formation of dead-end protein-detergent complexes. A similar, albeit much weaker, effect is seen in SDS in the absence of salt. Chymotrypsin inhibitor 2 exhibits the same modes of unfolding in SDS as S6, indicating that this type of protein unfolding is not specific for S6. The unfolding process in mode 1 has an activation barrier similar in magnitude to that in water, while the activation barrier in mode 2 is strongly concentration-dependent. The strong pH-dependence of unfolding in SDS and LTAB suggests that the rate of unfolding in anionic detergent is modulated by repulsion between detergent headgroups and anionic side chains, while cationic side chains modulate unfolding rates in cationic detergents. PMID:12324439
Shanks, Wayne C.; Bischoff, James L.; Rosenbauer, Robert J.
1981-01-01
Systematics of sulfur isotopes in the 250 and 350°C experiments indicate that isotopic equilibrium is reached, and can be modeled as a Rayleigh distillation process. Isotopic composition of hydrothermally produced H2S in natural systems is strongly dependent upon the seawater/basalt ratio in the geothermal system, which controls the relative sulfide contributions from the two important sulfur sources, seawater sulfate and sulfide phases in basalt. Anhydrite precipitation during geothermal heating severely limits sulfate ingress into high temperature interaction zones. Quantitative sulfate reduction can thus be accomplished without producing strongly oxidized rocks and resultant sulfide sulfur isotope values represent a mixture of seawater and basaltic sulfur.
Nonlinear dynamics and quantum entanglement in optomechanical systems.
Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2014-03-21
To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.
The electrostatics of parachutes
NASA Astrophysics Data System (ADS)
Yu, Li; Ming, Xiao
2007-12-01
In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loadings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equations were developed for describing parachute opening process, and an iterative coupling solving strategy incorporating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were carried out for canopy geometry, time-dependent pressure difference between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experiments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical predictions were found in good agreement with the experimental results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of significance to the understanding of the mechanics of parachute inflation process.
Glass transition dynamics of stacked thin polymer films
NASA Astrophysics Data System (ADS)
Fukao, Koji; Terasawa, Takehide; Oda, Yuto; Nakamura, Kenji; Tahara, Daisuke
2011-10-01
The glass transition dynamics of stacked thin films of polystyrene and poly(2-chlorostyrene) were investigated using differential scanning calorimetry and dielectric relaxation spectroscopy. The glass transition temperature Tg of as-stacked thin polystyrene films has a strong depression from that of the bulk samples. However, after annealing at high temperatures above Tg, the stacked thin films exhibit glass transition at a temperature almost equal to the Tg of the bulk system. The α-process dynamics of stacked thin films of poly(2-chlorostyrene) show a time evolution from single-thin-film-like dynamics to bulk-like dynamics during the isothermal annealing process. The relaxation rate of the α process becomes smaller with increase in the annealing time. The time scale for the evolution of the α dynamics during the annealing process is very long compared with that for the reptation dynamics. At the same time, the temperature dependence of the relaxation time for the α process changes from Arrhenius-like to Vogel-Fulcher-Tammann dependence with increase of the annealing time. The fragility index increases and the distribution of the α-relaxation times becomes smaller with increase in the annealing time for isothermal annealing. The observed change in the α process is discussed with respect to the interfacial interaction between the thin layers of stacked thin polymer films.
Subcritical crack growth and other time- and environment-dependent behavior in crustal rocks
NASA Technical Reports Server (NTRS)
Swanson, P. L.
1984-01-01
Stable crack growth strongly influences both the fracture strength of brittle rocks and some of the phenomena precursory to catastrophic failure. Quantification of the time and environment dependence of fracture propagation is attempted with the use of a fracture mechanics technique. Some of the difficulties encountered when applying techniques originally developed for simple synthetic materials to complex materials like rocks are examined. A picture of subcritical fracture propagation is developed that embraces the essential ingredients of the microstructure, a microcrack process zone, and the different roles that the environment plays. To do this, the results of (1) fracture mechanics experiments on five rock types, (2) optical and scanning electron microscopy, (3) studies of microstructural aspects of fracture in ceramics, and (4) exploratory tests examining the time-dependent response of rock to the application of water are examined.
NASA Astrophysics Data System (ADS)
Sun, Huarui; Bajo, Miguel Montes; Uren, Michael J.; Kuball, Martin
2015-01-01
Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage "hot spots" at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7-0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which is consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.
Huff, Mark J.; Bodner, Glen E.
2014-01-01
Whether encoding variability facilitates memory is shown to depend on whether item-specific and relational processing are both performed across study blocks, and whether study items are weakly versus strongly related. Variable-processing groups studied a word list once using an item-specific task and once using a relational task. Variable-task groups’ two different study tasks recruited the same type of processing each block. Repeated-task groups performed the same study task each block. Recall and recognition were greatest in the variable-processing group, but only with weakly related lists. A variable-processing benefit was also found when task-based processing and list-type processing were complementary (e.g., item-specific processing of a related list) rather than redundant (e.g., relational processing of a related list). That performing both item-specific and relational processing across trials, or within a trial, yields encoding-variability benefits may help reconcile decades of contradictory findings in this area. PMID:25018583
Time-dependent real space RG on the spin-1/2 XXZ chain
NASA Astrophysics Data System (ADS)
Mason, Peter; Zagoskin, Alexandre; Betouras, Joseph
In order to measure the spread of information in a system of interacting fermions with nearest-neighbour couplings and strong bond disorder, one could utilise a dynamical real space renormalisation group (RG) approach on the spin-1/2 XXZ chain. Under such a procedure, a many-body localised state is established as an infinite randomness fixed point and the entropy scales with time as log(log(t)). One interesting further question that results from such a study is the case when the Hamiltonian explicitly depends on time. Here we answer this question by considering a dynamical renormalisation group treatment on the strongly disordered random spin-1/2 XXZ chain where the couplings are time-dependent and chosen to reflect a (slow) evolution of the governing Hamiltonian. Under the condition that the renormalisation process occurs at fixed time, a set of coupled second order, nonlinear PDE's can be written down in terms of the random distributions of the bonds and fields. Solution of these flow equations at the relevant critical fixed points leads us to establish the dynamics of the flow as we sweep through the quantum critical point of the Hamiltonian. We will present these critical flows as well as discussing the issues of duality, entropy and many-body localisation.
1994-07-01
1993. "Analysis of the 1730-1732. Track - Before - Detect Approach to Target Detection using Pixel Statistics", to appear in IEEE Transactions Scholz, J...large surveillance arrays. One approach to combining energy in different spatial cells is track - before - detect . References to examples appear in the next... track - before - detect problem. The results obtained are not expected to depend strongly on model details. In particular, the structure of the tracking
Deep inelastic scattering of leptons from nuclear targets and the BFKL Pomeron
NASA Astrophysics Data System (ADS)
Bialas, Andrzej; Czyz, Wieslaw; Florkowski, Wojciech
1997-06-01
We calculate shadowing in the process of deep inelastic interactions of leptons with nuclei in the perturbative regime of QCD. We find appreciable shadowing for heavy nuclei (e.g., Pb) in the region of a small Bjorken scaling variable 10-5<=x<=10-3. This shadowing depends weakly on Q2, but it may be strongly influenced, especially at x>=10-3, by the existence of real parts of the forward scattering amplitudes.
Unique rheological behavior of chitosan-modified nanoclay at highly hydrated state.
Liang, Songmiao; Liu, Linshu; Huang, Qingrong; Yam, Kit L
2009-04-30
This work attempts to explore the dynamic and steady-state rheological properties of chitosan modified clay (CMCs) at highly hydrated state. CMCs with different initial chitosan/clay weight ratios (s) were prepared from pre-exfoliated clay via electrostatic adsorption process. Thermogravimetric analysis and optical microscopy were used to determine the adsorbed content of chitosan (m) in CMCs and the microstructure of CMCs at highly hydrated state, respectively. Dynamic rheological results indicate that both stress-strain behavior and moduli of CMCs exhibit strong dependence on m. Shear-thinning behavior for all of CMCs is observed and further confirmed by steady-state shear test. Interestingly, two unique transitions, denoted as a small peak region of the shear viscosity for CMCs with m > 2.1% and a sharp drop region of the shear viscosity for CMCs with m
Dual Gamma Rhythm Generators Control Interlaminar Synchrony in Auditory Cortex
Ainsworth, Matthew; Lee, Shane; Cunningham, Mark O.; Roopun, Anita K.; Traub, Roger D.; Kopell, Nancy J.; Whittington, Miles A.
2013-01-01
Rhythmic activity in populations of cortical neurons accompanies, and may underlie, many aspects of primary sensory processing and short-term memory. Activity in the gamma band (30 Hz up to > 100 Hz) is associated with such cognitive tasks and is thought to provide a substrate for temporal coupling of spatially separate regions of the brain. However, such coupling requires close matching of frequencies in co-active areas, and because the nominal gamma band is so spectrally broad, it may not constitute a single underlying process. Here we show that, for inhibition-based gamma rhythms in vitro in rat neocortical slices, mechanistically distinct local circuit generators exist in different laminae of rat primary auditory cortex. A persistent, 30 – 45 Hz, gap-junction-dependent gamma rhythm dominates rhythmic activity in supragranular layers 2/3, whereas a tonic depolarization-dependent, 50 – 80 Hz, pyramidal/interneuron gamma rhythm is expressed in granular layer 4 with strong glutamatergic excitation. As a consequence, altering the degree of excitation of the auditory cortex causes bifurcation in the gamma frequency spectrum and can effectively switch temporal control of layer 5 from supragranular to granular layers. Computational modeling predicts the pattern of interlaminar connections may help to stabilize this bifurcation. The data suggest that different strategies are used by primary auditory cortex to represent weak and strong inputs, with principal cell firing rate becoming increasingly important as excitation strength increases. PMID:22114273
JOVIAN EARLY BOMBARDMENT: PLANETESIMAL EROSION IN THE INNER ASTEROID BELT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turrini, D.; Coradini, A.; Magni, G., E-mail: diego.turrini@ifsi-roma.inaf.it
The asteroid belt is an open window on the history of the solar system, as it preserves records of both its formation process and its secular evolution. The progenitors of the present-day asteroids formed in the Solar Nebula almost contemporary to the giant planets. The actual process producing the first generation of asteroids is uncertain, strongly depending on the physical characteristics of the Solar Nebula, and the different scenarios produce very diverse initial size-frequency distributions (SFDs). In this work, we investigate the implications of the formation of Jupiter, plausibly the first giant planet to form, on the evolution of themore » primordial asteroid belt. The formation of Jupiter triggered a short but intense period of primordial bombardment, previously unaccounted for, which caused an early phase of enhanced collisional evolution in the asteroid belt. Our results indicate that this Jovian Early Bombardment caused the erosion or the disruption of bodies smaller than a threshold size, which strongly depends on the SFD of the primordial planetesimals. If the asteroid belt was dominated by planetesimals less than 100 km in diameter, the primordial bombardment would have caused the erosion of bodies smaller than 200 km in diameter. If the asteroid belt was instead dominated by larger planetesimals, the bombardment would have resulted in the destruction of bodies as big as 500 km.« less
Advances and Computational Tools towards Predictable Design in Biological Engineering
2014-01-01
The design process of complex systems in all the fields of engineering requires a set of quantitatively characterized components and a method to predict the output of systems composed by such elements. This strategy relies on the modularity of the used components or the prediction of their context-dependent behaviour, when parts functioning depends on the specific context. Mathematical models usually support the whole process by guiding the selection of parts and by predicting the output of interconnected systems. Such bottom-up design process cannot be trivially adopted for biological systems engineering, since parts function is hard to predict when components are reused in different contexts. This issue and the intrinsic complexity of living systems limit the capability of synthetic biologists to predict the quantitative behaviour of biological systems. The high potential of synthetic biology strongly depends on the capability of mastering this issue. This review discusses the predictability issues of basic biological parts (promoters, ribosome binding sites, coding sequences, transcriptional terminators, and plasmids) when used to engineer simple and complex gene expression systems in Escherichia coli. A comparison between bottom-up and trial-and-error approaches is performed for all the discussed elements and mathematical models supporting the prediction of parts behaviour are illustrated. PMID:25161694
Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martín, Guillermo; Martínez, Javier; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc
2017-02-20
We report mid-infrared LiNbO3 depressed-index microstructured cladding waveguides fabricated by three-dimensional laser writing showing low propagation losses (~1.5 dB/cm) at 3.68 µm wavelength for both the transverse electric and magnetic polarized modes, a feature previously unachieved due to the strong anisotropic properties of this type of laser microstructured waveguides and which is of fundamental importance for many photonic applications. Using a heuristic modeling-testing iteration design approach which takes into account cladding induced stress-optic index changes, the fabricated cladding microstructure provides low-loss single mode operation for the mid-IR for both orthogonal polarizations. The dependence of the localized refractive index changes within the cladding microstructure with post-fabrication thermal annealing processes was also investigated, revealing its complex dependence of the laser induced refractive index changes on laser fabrication conditions and thermal post-processing steps. The waveguide modes properties and their dependence on thermal post-processing were numerically modeled and fitted to the experimental values by systematically varying three fundamental parameters of this type of waveguides: depressed refractive index values at sub-micron laser-written tracks, track size changes, and piezo-optic induced refractive index changes.
Aggregation of flexible polyelectrolytes: Phase diagram and dynamics.
Tom, Anvy Moly; Rajesh, R; Vemparala, Satyavani
2017-10-14
Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.
Fingering dynamics on the adsorbed solute with influence of less viscous and strong sample solvent.
Rana, Chinar; Mishra, Manoranjan
2014-12-07
Viscous fingering is a hydrodynamic instability that sets in when a low viscous fluid displaces a high viscous fluid and creates complex patterns in porous media flows. Fundamental facets of the displacement process, such as the solute concentration distribution, spreading length, and the solute mixing, depend strongly on the type of pattern created by the unstable interface of the underlying fluids. In the present study, the frontal interface of the sample shows viscous fingering and the strong solvent causes the retention of the solute to depend on the solvent concentration. This work presents a computational investigation to explore the effect of the underlying physico-chemical phenomena, (i.e., the combined effects of solvent strength, retention, and viscous fingering) on the dynamics of the adsorbed solute. A linear adsorption isotherm has been assumed between the mobile and stationary phases of the solute. We carried out the numerical simulations by considering a rectangular Hele-Shaw cell as an analog to 2D-porous media containing a three component system (displacing fluid, sample solvent, solute) to map out the evolution of the solute concentration. We observed that viscous fingering at the frontal interface of the strong sample solvent intensifies the band broadening of the solute zone. Also notable increase in the spreading dynamics of the solute has been observed for less viscous and strong sample solvent as compared to the high viscous sample slices or in the pure dispersive case. On the contrary, the solute gets intensively mixed at early times for more viscous sample in comparison to less viscous one. The results of the simulations are in qualitative agreement with the behavior observed in the liquid chromatography column experiments.
Umar, Ahmad; Karunagaran, B; Kim, S H; Suh, E-K; Hahn, Y B
2008-05-19
Vertically aligned perfectly hexagonal-shaped ZnO nanoprisms have been grown on a Si(100) substrate via a noncatalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen gas. The as-grown nanoprisms consist of ultra smooth Zn-terminated (0001) facets bounded with the {0110} surfaces. The as-synthesized products are single-crystalline with the wurtzite hexagonal phase and grown along the [0001] direction, as confirmed from the detailed structural investigations. The presence of a sharp and strong nonpolar optical phonon high-E2 mode at 437 cm(-1) in the Raman scattering spectrum further confirms good crystallinity and wurtzite hexagonal phase for the as-grown products. The as-grown nanoprisms exhibit a strong near-band-edge emission with a very weak deep-level emission in the room-temperature and low-temperature photoluminescence measurements, confirming good optical properties for the deposited products. Moreover, systematic time-dependent experiments were also performed to determine the growth process of the grown vertically aligned nanoprisms.
Implications of intelligent, integrated microsystems for product design and development
DOE Office of Scientific and Technical Information (OSTI.GOV)
MYERS,DAVID R.; MCWHORTER,PAUL J.
2000-04-19
Intelligent, integrated microsystems combine some or all of the functions of sensing, processing information, actuation, and communication within a single integrated package, and preferably upon a single silicon chip. As the elements of these highly integrated solutions interact strongly with each other, the microsystem can be neither designed nor fabricated piecemeal, in contrast to the more familiar assembled products. Driven by technological imperatives, microsystems will best be developed by multi-disciplinary teams, most likely within the flatter, less hierarchical organizations. Standardization of design and process tools around a single, dominant technology will expedite economically viable operation under a common production infrastructure.more » The production base for intelligent, integrated microsystems has elements in common with the mathematical theory of chaos. Similar to chaos theory, the development of microsystems technology will be strongly dependent on, and optimized to, the initial product requirements that will drive standardization--thereby further rewarding early entrants to integrated microsystem technology.« less
Fullerene derivatives as electron donor for organic photovoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhuang, Taojun; Wang, Xiao-Feng, E-mail: xf-wang@yz.yamagata-u.ac.jp, E-mail: ziruo@yz.yamagata-u.ac.jp; Sano, Takeshi
2013-11-11
We demonstrated the performance of unconventional, all-fullerene-based, planar heterojunction (PHJ) organic photovoltaic (OPV) cells using fullerene derivatives indene-C{sub 60} bisadduct (ICBA) and phenyl C{sub 61}-butyric acid methyl ester as the electron donors with fullerene C{sub 70} as the electron acceptor. Two different charge generation processes, including charge generation in the fullerene bulk and exciton dissociation at the donor-acceptor interface, have been found to exist in such all-fullerene-based PHJ cells and the contribution to the total photocurrent from each process is strongly dependent on the thickness of fullerene donor. The optimized 5 nm ICBA/40 nm C{sub 70} PHJ cell gives clear external quantummore » efficiency responses for the long-wavelength photons corresponding to the dissociation of strongly bound Frenkel excitons, which is hardly observed in fullerene-based single layer reference devices. This approach using fullerene as a donor material provides further possibilities for developing high performance OPV cells.« less
Xi, Guangcheng; Ye, Jinhua
2010-03-01
A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.
Quinn, Thomas P; Cunningham, Curry J; Randall, Jessica; Hilborn, Ray
2014-10-01
It has long been recognized that, as populations increase in density, ecological processes affecting growth and survival reduce per capita recruitment in the next generation. In contrast to the evidence for such "compensatory" density dependence, the alternative "depensatory" process (reduced per capita recruitment at low density) has proven more difficult to demonstrate in the field. To test for such depensation, we measured the spawner-recruit relationship over five decades for a sockeye salmon (Oncorhynchus nerka) population in Alaska breeding in high-quality, unaltered habitat. Twenty-five years of detailed estimates of predation by brown bears, Ursus arctos, revealed strong density dependence in predation rate; the bears killed ca. 80% of the salmon in years of low salmon spawning abundance. Nevertheless, the reconstructed spawner-recruit relationship, adjusted to include salmon intercepted in the commercial fishery, provided no evidence of demographic depensation. That is, in years when few salmon returned and the great majority were killed by bears, the few that spawned were successful enough that the population remained highly productive, even when those killed by bears were included as potential spawners. We conclude that the high quality of breeding habitat at this site and the productive nature of semelparous Pacific salmon allowed this population to avoid the hypothesized depressed recruitment from depensatory processes expected at low density. The observed lack of demographic depensation is encouraging from a conservation standpoint because it implies that depleted populations may have the potential to rebound successfully given suitable spawning and rearing habitat, even in the presence of strong predation pressure.
NASA Astrophysics Data System (ADS)
Cruzeiro, E. Zambrini; Tiranov, A.; Usmani, I.; Laplane, C.; Lavoie, J.; Ferrier, A.; Goldner, P.; Gisin, N.; Afzelius, M.
2017-05-01
We present a detailed study of the lifetime of optical spectral holes due to population storage in Zeeman sublevels of Nd3 +:Y2SiO5 . The lifetime is measured as a function of magnetic field strength and orientation, temperature, and Nd3 + doping concentration. At the lowest temperature of 3 K we find a general trend where the lifetime is short at low field strengths, then increases to a maximum lifetime at a few hundred mT, and then finally decays rapidly for high field strengths. This behavior can be modeled with a relaxation rate dominated by Nd3 +-Nd3 + cross relaxation at low fields and spin lattice relaxation at high magnetic fields. The maximum lifetime depends strongly on both the field strength and orientation, due to the competition between these processes and their different angular dependencies. The cross relaxation limits the maximum lifetime for concentrations as low as 30 ppm of Nd3 + ions. By decreasing the concentration to less than 1 ppm we could completely eliminate the cross relaxation, reaching a lifetime of 3.8 s at 3 K. At higher temperatures the spectral hole lifetime is limited by the magnetic-field-independent Raman and Orbach processes. In addition we show that the cross relaxation rate can be strongly reduced by creating spectrally large holes of the order of the optical inhomogeneous broadening. Our results are important for the development and design of new rare-earth-ion doped crystals for quantum information processing and narrow-band spectral filtering for biological tissue imaging.
Paradox effects of binge drinking on response inhibition processes depending on mental workload.
Stock, Ann-Kathrin; Riegler, Lea; Chmielewski, Witold X; Beste, Christian
2016-06-01
Binge drinking is an increasing problem in Western societies, but we are still only beginning to unravel the effects of binge drinking on a cognitive level. While common sense suggests that all cognitive functions are compromised during high-dose ethanol intoxication, several studies suggest that the effects might instead be rather specific. Moreover, some results suggest that the degrees of automaticity and complexity of cognitive operations during response control modulate effects of binge drinking. However, this has not been tested in detail. In the current study, we therefore parametrically modulate cognitive/"mental" workload during response inhibition and examine the effects of high-dose ethanol intoxication (~1.1 ‰) in n = 18 male participants. The results suggest that detrimental effects of high-dose ethanol intoxication strongly depend on the complexity of processes involved in response inhibition. The results revealed strong effects (η (2) = .495) and are in line with findings showing that even high doses of ethanol have very specific effects on a cognitive level. Opposed to common sense, more complex cognitive operations seem to be less affected by a high-dose ethanol intoxication. Complementing this, high-dose ethanol intoxication is increasingly detrimental for action control, as stronger automated response tendencies are in charge and need to be controlled. Binge-like ethanol intoxication may take a heavier toll on cognitive control processes than on automated responses/response tendencies. Therefore, ethanol effects are more pronounced in supposedly "easier" control conditions because those facilitate the formation of automated response tendencies.
Intelligent Vision On The SM9O Mini-Computer Basis And Applications
NASA Astrophysics Data System (ADS)
Hawryszkiw, J.
1985-02-01
Distinction has to be made between image processing and vision Image processing finds its roots in the strong tradition of linear signal processing and promotes geometrical transform techniques, such as fi I tering , compression, and restoration. Its purpose is to transform an image for a human observer to easily extract from that image information significant for him. For example edges after a gradient operator, or a specific direction after a directional filtering operation. Image processing consists in fact in a set of local or global space-time transforms. The interpretation of the final image is done by the human observer. The purpose of vision is to extract the semantic content of the image. The machine can then understand that content, and run a process of decision, which turns into an action. Thus, intel I i gent vision depends on - Image processing - Pattern recognition - Artificial intel I igence
NASA Astrophysics Data System (ADS)
Rahmayetty, Sukirno, Prasetya, Bambang; Gozan, Misri
2017-02-01
Lactide is the monomer for the polymer polylactic acid (PLA) from lactic acid through polycondensation and depolymerization process. The properties of PLA strongly depend on the quality of the lactide monomer from which it is synthesized. Optical purity of lactide produced in depolymerization process confirmed to be L-lactide. The highest yield of crude lactide was 38.5% at temperature 210 °C with average molecular weight (Mn) of oligomer was 2389. Ring opening polymerization of lactide using Candida rugosa lipase as biocatalyst to PLLA synthesis has been achieved to generate useful biomedical materials free from heavy metal.
Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13
Breit, George N.
2016-01-01
Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.
Correlated sequential tunneling in Tomonaga-Luttinger liquid quantum dots
NASA Astrophysics Data System (ADS)
Thorwart, M.; Egger, R.; Grifoni, M.
2005-02-01
We investigate tunneling through a quantum dot formed by two strong impurites in a spinless Tomonaga-Luttinger liquid. Upon employing a Markovian master equation approach, we compute the linear conductance due to sequential tunneling processes. Besides the previously used lowest-order Golden Rule rates describing uncorrelated sequential tunneling (UST) processes, we systematically include higher-order correlated sequential tunneling (CST) diagrams within the standard Weisskopf-Wigner approximation. We provide estimates for the parameter regions where CST effects are shown to dominate over UST. Focusing mainly on the temperature dependence of the conductance maximum, we discuss the relation of our results to previous theoretical and experimental results.
Effect of multiparticle collisions on pion production in relativistic heavy-ion reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncalves, M.G.; Medeiros, E.L.; Duarte, S.B.
In the present work we discuss the effect of N-body processes on pion multiplicity in relativistic heavy-ion reactions. This effect is analyzed in the energy range from the pion threshold up to 2 GeV/nucleon, for several projectile-target systems. The analysis is carried out in the context of intranuclear cascade calculations. It is shown that the inclusion of multibaryonic collisions is a crucial element in the study of the pion production mechanisms, being strongly dependent on the adopted correlation range for the particles involved in the N-body processes. {copyright} {ital 1997} {ital The American Physical Society}
A use of regression analysis in acoustical diagnostics of gear drives
NASA Technical Reports Server (NTRS)
Balitskiy, F. Y.; Genkin, M. D.; Ivanova, M. A.; Kobrinskiy, A. A.; Sokolova, A. G.
1973-01-01
A study is presented of components of the vibration spectrum as the filtered first and second harmonics of the tooth frequency which permits information to be obtained on the physical characteristics of the vibration excitation process, and an approach to be made to comparison of models of the gearing. Regression analysis of two random processes has shown a strong dependence of the second harmonic on the first, and independence of the first from the second. The nature of change in the regression line, with change in loading moment, gives rise to the idea of a variable phase shift between the first and second harmonics.
Ripple-aware optical proximity correction fragmentation for back-end-of-line designs
NASA Astrophysics Data System (ADS)
Wang, Jingyu; Wilkinson, William
2018-01-01
Accurate characterization of image rippling is critical in early detection of back-end-of-line (BEOL) patterning weakpoints, as most defects are strongly associated with excessive rippling that does not get effectively compensated by optical proximity correction (OPC). We correlate image contour with design shapes to account for design geometry-dependent rippling signature, and explore the best practice of OPC fragmentation for BEOL geometries. Specifically, we predict the optimum contour as allowed by the lithographic process and illumination conditions and locate ripple peaks, valleys, and inflection points. This allows us to identify potential process weakpoints and segment the mask accordingly to achieve the best correction results.
Allen, Thomas J.; Sherman, Jeffrey W.; Conrey, Frederica R.; Stroessner, Steven J.
2009-01-01
In two experiments, we investigated the relationships among stereotype strength, processing capacity, and the allocation of attention to stereotype-consistent versus stereotype-inconsistent information describing a target person. The results of both experiments showed that, with full capacity, greater stereotype strength was associated with increased attention toward stereotype-consistent versus stereotype-inconsistent information. However, when capacity was diminished, greater stereotype strength was associated with increased attention toward inconsistent versus consistent information. Thus, strong stereotypes may act as self-confirming filters when processing capacity is plentiful, but as efficient information gathering devices that maximize the acquisition of novel (disconfirming) information when capacity is depleted. Implications for models of stereotyping and stereotype change are discussed. PMID:20161043
Diode laser welding of polypropylene: investigations of the microstructures in the welded seam
NASA Astrophysics Data System (ADS)
Abed, S.; Laurens, Patricia; Carretero, C.; Deschamps, J. R.; Duval, C.
2003-03-01
Laser welding of thermoplastic polymers is a non-contact process especially efficient for joining thermoplastic polymers. This innovative technology is already used for industrial series production in different sectors (automobile, packaging,...). The majority of the basic research concerns the weld strength depending on polymer nature, optical properties, butt design and process parameters. Nevertheless, a lack of knowledge concerning the influence of thermal history of the weld seam on morphology of semicrystalline polymer still exists, when this parameter strongly influences the strength of the weld. Actual results of diode laser transmission welding (LTW) experiments on polypropylene, a semicrystalline polymer widely used in industry, could contribute to a better understanding of the process itself and to success in practical applications.
Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma
Anoop, K. K.; Harilal, S. S.; Philip, Reji; ...
2016-11-14
The characteristic emission features of a laser-produced plasma strongly depend strongly on the laser fluence. We investigated the spatial and temporal dynamics of neutrals and ions in femtosecond laser (800 nm, ≈ 40 fs, Ti:Sapphire) induced copper plasma in vacuum using both optical emission spectroscopy (OES) and spectrally resolved two-dimensional (2D) imaging methods over a wide fluence range of 0.5 J/cm 2-77.5 J/cm 2. 2D fast gated monochromatic images showed distinct plume splitting between the neutral and ions especially at moderate to higher fluence ranges. OES studies at low to moderate laser fluence regime confirm intense neutral line emission overmore » the ion emission whereas this trend changes at higher laser fluence with dominance of the latter. This evidences a clear change in the physical processes involved in femtosecond laser matter interaction at high input laser intensity. The obtained ion dynamics resulting from the OES, and spectrally resolved 2D imaging are compared with charged particle measurement employing Faraday cup and Langmuir probe and results showed good correlation.« less
NASA Astrophysics Data System (ADS)
Loganathan, A.; Kumar, K.
2016-06-01
In the present work, pure and Sr2+ ions substituted Mg ferrite nanoparticles (NPs) had been prepared by co-precipitation method and their structural, optical, and magnetic properties at different calcination temperatures were studied. On this purpose, thermo gravimetric and differential thermal analysis (TG-DTA), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy, UV-Visible diffused reflectance spectroscopy, impedance spectroscopy, and vibrating sample magnetometer were carried out. The exo- and endothermic processes of synthesized precursors were investigated by TG-DTA measurements. The structural properties of the obtained products were examined by XRD analysis and show that the synthesized NPs are in the cubic spinel structure. The existence of two bands around 578-583 and 430-436 cm-1 in FT-IR spectrum also confirmed the formation of spinel-structured ferrite NPs. The lattice constants and particle size are estimated using XRD data and found to be strongly dependent on calcination temperatures. The optical, electrical, and magnetic properties of ferrite compositions also investigated and found to be strongly dependant on calcination temperatures.
Peer pressure is a double-edged sword in vaccination dynamics
NASA Astrophysics Data System (ADS)
Wu, Zhi-Xi; Zhang, Hai-Feng
2013-10-01
Whether or not to change behavior depends not only on the personal success of each individual, but also on the success and/or behavior of others. Using this as motivation, we incorporate the impact of peer pressure into a susceptible-vaccinated-infected-recovered (SVIR) epidemiological model, where the propensity to adopt a particular vaccination strategy depends both on individual success as well as on the strategies of neighbors. We show that plugging into the peer pressure is a double-edged sword, which, on the one hand, strongly promotes vaccination when its cost is below a critical value, but, on the other hand, it can also strongly impede it if the critical value is exceeded. We explain this by revealing a facilitated cluster formation process that is induced by the peer pressure. Due to this, the vaccinated individuals are inclined to cluster together and therefore become unable to efficiently inhibit the spread of the infectious disease if the vaccination is costly. If vaccination is cheap, however, they reinforce each other in using it. Our results are robust to variations of the SVIR dynamics on different population structures.
Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures
NASA Astrophysics Data System (ADS)
Gawełczyk, M.; Syperek, M.; Maryński, A.; Mrowiński, P.; Dusanowski, Ł.; Gawarecki, K.; Misiewicz, J.; Somers, A.; Reithmaier, J. P.; Höfling, S.; Sek, G.
2017-12-01
We present a theoretical and experimental investigation of exciton recombination dynamics and the related polarization of emission in highly in-plane asymmetric nanostructures. Considering general asymmetry- and size-driven effects, we illustrate them with a detailed analysis of InAs/AlGaInAs/InP elongated quantum dots. These offer widely varied confinement characteristics tuned by size and geometry that are tailored during the growth process, which leads to emission in the application-relevant spectral range of 1.25-1.65 μ m . By exploring the interplay of the very shallow hole confining potential and widely varying structural asymmetry, we show that a transition from the strong through intermediate to even weak confinement regime is possible in nanostructures of this kind. This has a significant impact on exciton recombination dynamics and the polarization of emission, which are shown to depend not only on the details of the calculated excitonic states but also on excitation conditions in the photoluminescence experiments. We estimate the impact of the latter and propose a way to determine the intrinsic polarization-dependent exciton light-matter coupling based on kinetic characteristics.
Co-occurrence statistics as a language-dependent cue for speech segmentation.
Saksida, Amanda; Langus, Alan; Nespor, Marina
2017-05-01
To what extent can language acquisition be explained in terms of different associative learning mechanisms? It has been hypothesized that distributional regularities in spoken languages are strong enough to elicit statistical learning about dependencies among speech units. Distributional regularities could be a useful cue for word learning even without rich language-specific knowledge. However, it is not clear how strong and reliable the distributional cues are that humans might use to segment speech. We investigate cross-linguistic viability of different statistical learning strategies by analyzing child-directed speech corpora from nine languages and by modeling possible statistics-based speech segmentations. We show that languages vary as to which statistical segmentation strategies are most successful. The variability of the results can be partially explained by systematic differences between languages, such as rhythmical differences. The results confirm previous findings that different statistical learning strategies are successful in different languages and suggest that infants may have to primarily rely on non-statistical cues when they begin their process of speech segmentation. © 2016 John Wiley & Sons Ltd.
Synthesis of Hexagonal Boron Nitride Mono layer: Control of Nucleation and Crystal Morphology
Stehle, Yijing Y.; Meyer, III, Harry M.; Unocic, Raymond R.; ...
2015-11-10
Mono layer hexagonal boron nitride (hBN) attracts significant attention due to the potential to be used as a complementary two-dimensional dielectric in fabrication of functional 2D heterostructures. Here we investigate the growth stages of the hBN single crystals and show that hBN crystals change their shape from triangular to truncated triangular and further to hexagonal depending on copper substrate distance from the precursor. We suggest that the observed hBN crystal shape variation is affected by the ratio of boron to nitrogen active species concentrations on the copper surface inside the CVD reactor. Strong temperature dependence reveals the activation energies formore » the hBN nucleation process of similar to 5 eV and crystal growth of similar to 3.5 eV. We also show that the resulting h-BN film morphology is strongly affected by the heating method of borazane precursor and the buffer gas. Elucidation of these details facilitated synthesis of high quality large area monolayer hexagonal boron nitride by atmospheric pressure chemical vapor deposition on copper using borazane as a precursor.« less
Hu, Huawei; Chow, Philip C Y; Zhang, Guangye; Ma, Tingxuan; Liu, Jing; Yang, Guofang; Yan, He
2017-10-17
Bulk heterojunction (BHJ) organic solar cells (OSCs) have attracted intensive research attention over the past two decades owing to their unique advantages including mechanical flexibility, light weight, large area, and low-cost fabrications. To date, OSC devices have achieved power conversion efficiencies (PCEs) exceeding 12%. Much of the progress was enabled by the development of high-performance donor polymers with favorable morphological, electronic, and optical properties. A key problem in morphology control of OSCs is the trade-off between achieving small domain size and high polymer crystallinity, which is especially important for the realization of efficient thick-film devices with high fill factors. For example, the thickness of OSC blends containing state-of-the-art PTB7 family donor polymers are restricted to ∼100 nm due to their relatively low hole mobility and impure polymer domains. To further improve the device performance and promote commercialization of OSCs, there is a strong demand for the design of new donor polymers that can achieve an optimal blend morphology containing highly crystalline yet reasonably small domains. In this Account, we highlight recent progress on a new family of conjugated polymers with strong temperature-dependent aggregation (TDA) property. These polymers are mostly disaggregated and can be easily dissolved in solution at high temperatures, yet they can strongly aggregate when the solution is cooled to room temperature. This unique aggregation property allows us to control the disorder-order transition of the polymer during solution processing. By preheating the solution to high temperature (∼100 °C), the polymer chains are mostly disaggregated before spin coating; as the temperature of the solution drops during the spin coating process, the polymer can strongly aggregate and form crystalline domains yet that are not excessivelylarge. The overall blend morphology can be optimized by various processing conditions (e.g., temperature, spin-rates, concentration, etc.). This well-controlled and near-optimal BHJ morphology produced over a dozen cases of efficient OSCs with an active layer nearly 300 nm thick that can still achieve high FFs (70-77%) and efficiencies (10-11.7%). By studying the structure-property relationships of the donor polymers, we show that the second position branched alkyl chains and the fluorination on the polymer backbone are two key structural features that enable the strong TDA property. Our comparative studies also show that the TDA polymer family can be used to match with non-fullerene acceptors yielding OSCs with low voltage losses. The key difference between the empirical matching rules for fullerene and non-fullerene OSCs is that TDA polymers with slightly reduced crystallinity appear to match better with small molecular acceptors and yield higher OSC performances.
NASA Astrophysics Data System (ADS)
Hellberg, Lars; Kasemo, Bengt
Some strongly exothermic and non-adiabatic surface adsorption events, especially those where electronegative molecules adsorb on very electropositive (low work function) surfaces, are accompanied by emission of (exo)electrons, photons, excited atoms and negative ions. The reaction of halogen molecules with halogen surfaces constitute an efficient model system for such studies. We have previously reported data for the emission of negative particles and photons in the zero coverage limit for a range of velocities of Cl2 molecules impinging on cold potassium surfaces as well as the mechanism behind these emission processes. In the present work, we focus on measurements of the kinetics, i.e. the exposure/coverage dependence, of these processes for the same system. Specifically, we present data for, (i) the separated contributions from electrons and Cl- ions of the emitted negative particles, (ii) the photon emission stemming both from excited Potassium atoms and from the equivalent process causing electron emission, (iii) the change of the work function during the initial exposure and, finally, (iv) the sticking coefficient for different Cl2 velocities and exposures.
Dynamics of molecular motors with finite processivity on heterogeneous tracks.
Kafri, Yariv; Lubensky, David K; Nelson, David R
2005-04-01
The dynamics of molecular motors which occasionally detach from a heterogeneous track like DNA or RNA is considered. Motivated by recent single-molecule experiments, we study a simple model for a motor moving along a disordered track using chemical energy while an external force opposes its motion. The motors also have finite processivity, i.e., they can leave the track with a position-dependent rate. We show that the response of the system to disorder in the hopping-off rate depends on the value of the external force. For most values of the external force, strong disorder causes the motors which survive for long times on the track to be localized at preferred positions. However, near the stall force, localization occurs for any amount of disorder. To obtain these results, we study the complex eigenvalue spectrum of the time evolution operator. Existence of localized states near the top of the band implies a stretched exponential contribution to the decay of the survival probability. A similar spectral analysis also provides a very efficient method for studying the dynamics of motors with infinite processivity.
History dependent crystallization of Zr41Ti14Cu12Ni10Be23 melts
NASA Astrophysics Data System (ADS)
Schroers, Jan; Johnson, William L.
2000-07-01
The crystallization of Zr41Ti14Cu12Ni10Be23 (Vit 1) melts during constant heating is investigated. (Vit 1) melts are cooled with different rates into the amorphous state and the crystallization temperature upon subsequent heating is studied. In addition, Vit 1 melts are cooled using a constant rate to different temperatures and subsequently heated from this temperature with a constant rate. We investigate the influence of the temperature to which the melt was cooled on the crystallization temperature measured upon heating. In both cases the onset temperature of crystallization shows strong history dependence. This can be explained by an accumulating process during cooling and heating. An attempt is made to consider this process in a simple model by steady state nucleation and subsequent growth of the nuclei which results in different crystallization kinetics during cooling or heating. Calculations show qualitative agreement with the experimental results. However, calculated and experimental results differ quantitatively. This difference can be explained by a decomposition process leading to a nonsteady nucleation rate which continuously increases with decreasing temperature.
Temperature dependence of the dynamics of zone boundary phonons in ZnO:Li
NASA Astrophysics Data System (ADS)
Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Katiyar, R. S.
2008-12-01
Investigations of zone boundary phonons in ZnO:Li system (Li concentration: 10%) and their dynamics with temperature are reported. Additional modes at 127, 157, and 194 cm-1 are observed and assigned to zone boundary phonons at critical point M in the Brillouin zone [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] due to breakdown of crystal translational symmetry with Li incorporation in ZnO. Anharmonicity in peak frequency and linewidth of the zone boundary phonons in a temperature range from 100 to 1000 K is also analyzed taking into account the decay of zone boundary phonons into three- and four-phonon modes (cubic and quadratic anharmonicities). The anharmonic behavior of peak frequency is found to be feebly dependent on three-phonon decay process but thermal expansion of lattice together with four-phonon decay process appropriately defines the temperature dependence. Linewidths, however, follow the simple four-phonon decay mechanism. E2(low) mode, on the other hand, shows a linear temperature dependency and therefore follows a three-phonon decay channel. The calculated values of phonon lifetimes at 100 K for the 127, 157, 194 cm-1, and E2(low) modes are 8.23, 6.54, 5.32, and 11.39 ps. Decay of the zone boundary phonon modes compared to E2(low) mode reveals that dopant induced disorder has a strong temperature dependency.
Sheh, A; Muthupalani, S; Bryant, EM; Puglisi, DA; Holcombe, H; Conaway, EA; Parry, NAP; Bakthavatchalu, V; Short, SP; Williams, CS; Wogan, GN; Tannenbaum, SR; Fox, JG; Horwitz, BH
2017-01-01
The risk of colon cancer is increased in patients with Crohn's disease and ulcerative colitis. Inflammation-induced DNA damage could be an important link between inflammation and cancer, although the pathways that link inflammation and DNA damage are incompletely defined. RAG2-deficient mice infected with Helicobacter hepaticus (Hh) develop colitis that progresses to lower bowel cancer. This process depends on nitric oxide (NO), a molecule with known mutagenic potential. We have previously hypothesized that production of NO by macrophages could be essential for Hh-driven carcinogenesis, however, whether Hh-infection induces DNA damage in this model and whether this depends on NO has not been determined. Here, we demonstrate that Hh infection of RAG2-deficient mice rapidly induces expression of iNOS and the development of DNA double-stranded breaks (DSBs) specifically in proliferating crypt epithelial cells. Generation of DSBs depended on iNOS activity, and further, induction of iNOS, the generation of DSBs, and the subsequent development of dysplasia were inhibited by depletion of the Hh-induced cytokine IL-22. These results demonstrate a strong association between Hh-induced DNA damage and the development of dysplasia, and further suggest that IL-22 dependent induction of iNOS within crypt epithelial cells rather than macrophages is a driving force in this process. PMID:28198364
Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate.
Lee, Gyuseok; Maeng, Inhee; Kang, Chul; Oh, Myoung-Kyu; Kee, Chul-Sik
2018-05-14
Optically tunable, strong polarization-dependent transmission of terahertz pulses through aligned Ag nanowires on a Si substrate is demonstrated. Terahertz pulses primarily pass through the Ag nanowires and the transmittance is weakly dependent on the angle between the direction of polarization of the terahertz pulse and the direction of nanowire alignment. However, the transmission of a terahertz pulse through optically excited materials strongly depends on the polarization direction. The extinction ratio increases as the power of the pumping laser increases. The enhanced polarization dependency is explained by the redistribution of photocarriers, which accelerates the sintering effect along the direction of alignment of the Ag nanowires. The photocarrier redistribution effect is examined by the enhancement of terahertz emission from the sample. Oblique metal nanowires on Si could be utilized for designing optically tunable terahertz polarization modulators.
Contact Dependence and Velocity Crossover in Friction between Microscopic Solid/Solid Contacts.
McGraw, Joshua D; Niguès, Antoine; Chennevière, Alexis; Siria, Alessandro
2017-10-11
Friction at the nanoscale differs markedly from that between surfaces of macroscopic extent. Characteristically, the velocity dependence of friction between apparent solid/solid contacts can strongly deviate from the classically assumed velocity independence. Here, we show that a nondestructive friction between solid tips with radius on the scale of hundreds of nanometers and solid hydrophobic self-assembled monolayers has a strong velocity dependence. Specifically, using laterally oscillating quartz tuning forks, we observe a linear scaling in the velocity at the lowest accessed velocities, typically hundreds of micrometers per second, crossing over into a logarithmic velocity dependence. This crossover is consistent with a general multicontact friction model that includes thermally activated breaking of the contacts at subnanometric elongation. We find as well a strong dependence of the friction on the dimensions of the frictional probe.
Dong, Q.; DeAngelis, D.L.
1998-01-01
We used an individual-based modeling approach to study the consequences of cannibalism and competition for food in a freshwater fish population. We simulated the daily foraging, growth, and survival of the age-0 fish and older juvenile individuals of a sample population to reconstruct patterns of density dependence in the age-0 fish during the growth season. Cannibalism occurs as a part of the foraging process. For age-0 fish, older juvenile fish are both potential cannibals and competitors of food. We found that competition and cannibalism produced intraclass and interclass density dependence. Our modeling results suggested the following. (1) With low density of juvenile fish and weak interclass interactions, the age-0 fish recruitment shows a Beverton-Holt type of density dependence. (2) With high density of juvenile fish and strong interclass interactions, the age-0 fish recruitment shows a Ricker type of density dependence, and overcompensation occurs. (3) Interclass competition of food is responsible for much of the overcompensation. (4) Cannibalism intensifies the changes in the recruitment that are brought about by competition. Cannibalism can (a) generally reduce the recruitment, (b) particularly reduce the maximum level of recruitment, (c) cause overcompensation to occur at lower densities, and (d) produce a stronger overcompensation. (5) Growth is also a function of density. Cannibalism generally improves average growth of cannibals. (6) Variation in the lengths of age-0 fish increases with density and with a decreased average growth. These results imply that cannibalism and competition for food could strongly affect recruitment dynamics. Our model also showed that the rate of cannibalism either could be fairly even through the whole season or could vary dramatically. The individual-based modeling approach can help ecologists understand the mechanistic connection between daily behavioral and physiological processes operating at the level of individual organisms and seasonal patterns of population structure and dynamics. ?? Copyright by the American Fisheries Society 1998.
NASA Astrophysics Data System (ADS)
Aladool, A.; Aziz, M. M.; Wright, C. D.
2017-06-01
The crystallization dynamics in the phase-change material Ge2Sb2Te5 is modelled using the more detailed Master equation method over a wide range of heating rates commensurate with published ultrafast calorimetry experiments. Through the attachment and detachment of monomers, the Master rate equation naturally traces nucleation and growth of crystallites with temperature history to calculate the transient distribution of cluster sizes in the material. Both the attachment and detachment rates in this theory are strong functions of viscosity, and thus, the value of viscosity and its dependence on temperature significantly affect the crystallization process. In this paper, we use the physically realistic Mauro-Yue-Ellison-Gupta-Allan viscosity model in the Master equation approach to study the role of the viscosity model parameters on the crystallization dynamics in Ge2Sb2Te5 under ramped annealing conditions with heating rates up to 4 × 104 K/s. Furthermore, due to the relatively low computational cost of the Master equation method compared to atomistic level computations, an iterative numerical approach was developed to fit theoretical Kissinger plots simulated with the Master equation system to experimental Kissinger plots from ultrafast calorimetry measurements at increasing heating rates. This provided a more rigorous method (incorporating both nucleation and growth processes) to extract the viscosity model parameters from the analysis of experimental data. The simulations and analysis revealed the strong coupling between the glass transition temperature and fragility index in the viscosity and crystallization models and highlighted the role of the dependence of the glass transition temperature on the heating rate for the accurate estimation of the fragility index of phase-change materials from the analysis of experimental measurements.
Energy Dissipation and Nonthermal Diffusion on Interstellar Ice Grains
NASA Astrophysics Data System (ADS)
Fredon, A.; Lamberts, T.; Cuppen, H. M.
2017-11-01
Interstellar dust grains are known to facilitate chemical reactions by acting as a meeting place and adsorbing energy. This process strongly depends on the ability of the reactive species to effectively diffuse over the surface. The cold temperatures around 10 K strongly hamper this for species other than H and H2. However, complex organic molecules have been observed in the gas phase at these cold conditions, indicating that their formation, as well as their return to the gas phase, should be effective. Here, we show how the energy released following surface reactions can be employed to solve both problems by inducing desorption or diffusion. To this purpose, we have performed thousands of Molecular Dynamics simulations to quantify the outcome of an energy dissipation process. Admolecules on top of a crystalline water surface have been given translational energy between 0.5 and 5 eV. Three different surface species are considered (CO2, H2O, and CH4), spanning a range in binding energies, number of internal degrees of freedom, and molecular weights. The admolecules are found to be able to travel up to several hundreds of angstroms before coming to a stand still, allowing for follow-up reactions en route. The probability of travel beyond any particular radius, as determined by our simulations, shows the same r dependence for all three admolecule species. Furthermore, we have been able to quantify the desorption probability, which depends on the binding energy of the species and the translational excitation. We provide expressions that can be incorporated in astrochemical models to predict grain surface formation and return into the gas phase of these products.
The Rate of Beneficial Mutations Surfing on the Wave of a Range Expansion
Lehe, Rémi; Hallatschek, Oskar; Peliti, Luca
2012-01-01
Many theoretical and experimental studies suggest that range expansions can have severe consequences for the gene pool of the expanding population. Due to strongly enhanced genetic drift at the advancing frontier, neutral and weakly deleterious mutations can reach large frequencies in the newly colonized regions, as if they were surfing the front of the range expansion. These findings raise the question of how frequently beneficial mutations successfully surf at shifting range margins, thereby promoting adaptation towards a range-expansion phenotype. Here, we use individual-based simulations to study the surfing statistics of recurrent beneficial mutations on wave-like range expansions in linear habitats. We show that the rate of surfing depends on two strongly antagonistic factors, the probability of surfing given the spatial location of a novel mutation and the rate of occurrence of mutations at that location. The surfing probability strongly increases towards the tip of the wave. Novel mutations are unlikely to surf unless they enjoy a spatial head start compared to the bulk of the population. The needed head start is shown to be proportional to the inverse fitness of the mutant type, and only weakly dependent on the carrying capacity. The precise location dependence of surfing probabilities is derived from the non-extinction probability of a branching process within a moving field of growth rates. The second factor is the mutation occurrence which strongly decreases towards the tip of the wave. Thus, most successful mutations arise at an intermediate position in the front of the wave. We present an analytic theory for the tradeoff between these factors that allows to predict how frequently substitutions by beneficial mutations occur at invasion fronts. We find that small amounts of genetic drift increase the fixation rate of beneficial mutations at the advancing front, and thus could be important for adaptation during species invasions. PMID:22479175
Koons, David N; Colchero, Fernando; Hersey, Kent; Gimenez, Olivier
2015-06-01
Understanding the relative effects of climate, harvest, and density dependence on population dynamics is critical for guiding sound population management, especially for ungulates in arid and semiarid environments experiencing climate change. To address these issues for bison in southern Utah, USA, we applied a Bayesian state-space model to a 72-yr time series of abundance counts. While accounting for known harvest (as well as live removal) from the population, we found that the bison population in southern Utah exhibited a strong potential to grow from low density (β0 = 0.26; Bayesian credible interval based on 95% of the highest posterior density [BCI] = 0.19-0.33), and weak but statistically significant density dependence (β1 = -0.02, BCI = -0.04 to -0.004). Early spring temperatures also had strong positive effects on population growth (Pfat1 = 0.09, BCI = 0.04-0.14), much more so than precipitation and other temperature-related variables (model weight > three times more than that for other climate variables). Although we hypothesized that harvest is the primary driving force of bison population dynamics in southern Utah, our elasticity analysis indicated that changes in early spring temperature could have a greater relative effect on equilibrium abundance than either harvest or. the strength of density dependence. Our findings highlight the utility of incorporating elasticity analyses into state-space population models, and the need to include climatic processes in wildlife management policies and planning.
NASA Astrophysics Data System (ADS)
Kurokawa, A. K.; Miwa, T.; Okumura, S.; Uesugi, K.
2017-12-01
After ash-dominated Strombolian eruption, considerable amount of ash falls back to the volcanic conduit forming a dense near-surface region compacted by weights of its own and other fallback clasts (Patrick et al., 2007). Gas accumulation below this dense cap causes a substantial increase in pressure within the conduit, causing the volcanic activity to shift to the preliminary stages of a forthcoming eruption (Del Bello et al., 2015). Under such conditions, rheology of the fallback ash plays an important role because it controls whether the fallback ash can be the cap. However, little attention has been given to the point. We examined the rheology of ash collected at Stromboli volcano via intermittent compression experiments changing temperature and compression time/rate. The ash deformed at a constant rate during compression process, and then it was compressed without any deformation during rest process. The compression and rest processes repeated during each experiment to see rheological variations with progression of compaction. Viscoelastic changes during the experiment were estimated by Maxwell model. The results show that both elasticity and viscosity increases with decreasing porosity. On the other hand, the elasticity shows strong rate-dependence in the both compression and rest processes while the viscosity dominantly depends on the temperature, although the compression rate also affects the viscosity in the case of the compression process. Thus, the ash behaves either elastically or viscously depending on experimental process, temperature, and compression rate/time. The viscoelastic characteristics can be explained by magnitude relationships between the characteristic relaxation times and times for compression and rest processes. This indicates that the balance of the time scales is key to determining the rheological characteristics and whether the ash behaves elastically or viscously may control cyclic Strombolian eruptions.
On the dependence of response inhibition processes on sensory modality.
Bodmer, Benjamin; Beste, Christian
2017-04-01
The ability to inhibit responses is a central sensorimotor function but only recently the importance of sensory processes for motor inhibition mechanisms went more into the research focus. In this regard it is elusive, whether there are differences between sensory modalities to trigger response inhibition processes. Due to functional neuroanatomical considerations strong differences may exist, for example, between the visual and the tactile modality. In the current study we examine what neurophysiological mechanisms as well as functional neuroanatomical networks are modulated during response inhibition. Therefore, a Go/NoGo-paradigm employing a novel combination of visual, tactile, and visuotactile stimuli was used. The data show that the tactile modality is more powerful than the visual modality to trigger response inhibition processes. However, the tactile modality loses its efficacy to trigger response inhibition processes when being combined with the visual modality. This may be due to competitive mechanisms leading to a suppression of certain sensory stimuli and the response selection level. Variations in sensory modalities specifically affected conflict monitoring processes during response inhibition by modulating activity in a frontal parietal network including the right inferior frontal gyrus, anterior cingulate cortex and the temporoparietal junction. Attentional selection processes are not modulated. The results suggest that the functional neuroanatomical networks involved in response inhibition critically depends on the nature of the sensory input. Hum Brain Mapp 38:1941-1951, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Marocico, Cristian A; Zhang, Xia; Bradley, A Louise
2016-01-14
We present in this contribution a comprehensive investigation of the effect of the size of gold nanospheres on the decay and energy transfer rates of quantum systems placed close to these nanospheres. These phenomena have been investigated before, theoretically and experimentally, but no comprehensive study of the influence of the nanoparticle size on important dependences of the decay and energy transfer rates, such as the dependence on the donor-acceptor spectral overlap and the relative positions of the donor, acceptor, and nanoparticle, exists. As such, different accounts of the energy transfer mechanism have been presented in the literature. We perform an investigation of the energy transfer mechanisms between emitters and gold nanospheres and between donor-acceptor pairs in the presence of the gold nanospheres using a Green's tensor formalism, experimentally verified in our lab. We find that the energy transfer rate to small nanospheres is greatly enhanced, leading to a strong quenching of the emission of the emitter. When the nanosphere size is increased, it acts as an antenna, increasing the emission of the emitter. We also investigate the emission wavelength and intrinsic quantum yield dependence of the energy transfer to the nanosphere. As evidenced from the literature, the energy transfer process between the quantum system and the nanosphere can have a complicated distance dependence, with a r(-6) regime, characteristic of the Förster energy transfer mechanism, but also exhibiting other distance dependences. In the case of a donor-acceptor pair of quantum systems in the presence of a gold nanosphere, when the donor couples strongly to the nanosphere, acting as an enhanced dipole; the donor-acceptor energy transfer rate then follows a Förster trend, with an increased Förster radius. The coupling of the acceptor to the nanosphere has a different distance dependence. The angular dependence of the energy transfer efficiency between donor and acceptor exhibits a strong focusing effect and the same enhanced donor-dipole character in different angular arrangements. The spectral overlap of the donor emission and acceptor absorption spectra shows that the energy transfer follows the near-field scattering efficiency, with a red-shift from the localized surface plasmon peak for small sphere sizes.
Use Dependence of Heat Sensitivity of Vanilloid Receptor TRPV2
Liu, Beiying; Qin, Feng
2016-01-01
Thermal TRP channels mediate temperature transduction and pain sensation. The vanilloid receptor TRPV2 is involved in detection of noxious heat in a subpopulation of high-threshold nociceptors. It also plays a critical role in development of thermal hyperalgesia, but the underlying mechanism remains uncertain. Here we analyze the heat sensitivity of the TRPV2 channel. Heat activation of the channel exhibits strong use dependence. Prior heat activation can profoundly alter its subsequent temperature responsiveness, causing decreases in both temperature activation threshold and slope sensitivity of temperature dependence while accelerating activation time courses. Notably, heat and agonist activations differ in cross use-dependence. Prior heat stimulation can dramatically sensitize agonist responses, but not conversely. Quantitative analyses indicate that the use dependence in heat sensitivity is pertinent to the process of temperature sensing by the channel. The use dependence of TRPV2 reveals that the channel can have a dynamic temperature sensitivity. The temperature sensing structures within the channel have multiple conformations and the temperature activation pathway is separate from the agonist activation pathway. Physiologically, the use dependence of TRPV2 confers nociceptors with a hypersensitivity to heat and thus provides a mechanism for peripheral thermal hyperalgesia. PMID:27074678
Kail, Robert V
2013-11-01
According to dual-process models that include analytic and heuristic modes of processing, analytic processing is often expected to become more common with development. Consistent with this view, on reasoning problems, adolescents are more likely than children to select alternatives that are backed by statistical evidence. It is shown here that this pattern depends on the quality of the statistical evidence and the quality of the testimonial that is the typical alternative to statistical evidence. In Experiment 1, 9- and 13-year-olds (N=64) were presented with scenarios in which solid statistical evidence was contrasted with casual or expert testimonial evidence. When testimony was casual, children relied on it but adolescents did not; when testimony was expert, both children and adolescents relied on it. In Experiment 2, 9- and 13-year-olds (N=83) were presented with scenarios in which casual testimonial evidence was contrasted with weak or strong statistical evidence. When statistical evidence was weak, children and adolescents relied on both testimonial and statistical evidence; when statistical evidence was strong, most children and adolescents relied on it. Results are discussed in terms of their implications for dual-process accounts of cognitive development. Copyright © 2013 Elsevier Inc. All rights reserved.
Wang, Quanxin; Sporns, Olaf; Burkhalter, Andreas
2012-01-01
Much of the information used for visual perception and visually guided actions is processed in complex networks of connections within the cortex. To understand how this works in the normal brain and to determine the impact of disease, mice are promising models. In primate visual cortex, information is processed in a dorsal stream specialized for visuospatial processing and guided action and a ventral stream for object recognition. Here, we traced the outputs of 10 visual areas and used quantitative graph analytic tools of modern network science to determine, from the projection strengths in 39 cortical targets, the community structure of the network. We found a high density of the cortical graph that exceeded that previously shown in monkey. Each source area showed a unique distribution of projection weights across its targets (i.e. connectivity profile) that was well-fit by a lognormal function. Importantly, the community structure was strongly dependent on the location of the source area: outputs from medial/anterior extrastriate areas were more strongly linked to parietal, motor and limbic cortex, whereas lateral extrastriate areas were preferentially connected to temporal and parahippocampal cortex. These two subnetworks resemble dorsal and ventral cortical streams in primates, demonstrating that the basic layout of cortical networks is conserved across species. PMID:22457489
Subduction Orogeny and the Late Cenozoic Evolution of the Mediterranean Arcs
NASA Astrophysics Data System (ADS)
Royden, Leigh; Faccenna, Claudio
2018-05-01
The Late Cenozoic tectonic evolution of the Mediterranean region, which is sandwiched between the converging African and European continents, is dominated by the process of subduction orogeny. Subduction orogeny occurs where localized subduction, driven by negative slab buoyancy, is more rapid than the convergence rate of the bounding plates; it is commonly developed in zones of early or incomplete continental collision. Subduction orogens can be distinguished from collisional orogens on the basis of driving mechanism, tectonic setting, and geologic expression. Three distinct Late Cenozoic subduction orogens can be identified in the Mediterranean region, making up the Western Mediterranean (Apennine, external Betic, Maghebride, Rif), Central Mediterranean (Carpathian), and Eastern Mediterranean (southern Dinaride, external Hellenide, external Tauride) Arcs. The Late Cenozoic evolution of these orogens, described in this article, is best understood in light of the processes that govern subduction orogeny and depends strongly on the buoyancy of the locally subducting lithosphere; it is thus strongly related to paleogeography. Because the slow (4–10 mm/yr) convergence rate between Africa and Eurasia has preserved the early collisional environment, and associated tectonism, for tens of millions of years, the Mediterranean region provides an excellent opportunity to elucidate the dynamic and kinematic processes of subduction orogeny and to better understand how these processes operate in other orogenic systems.
Orthacker, A; Schmied, R; Chernev, B; Fröch, J E; Winkler, R; Hobisch, J; Trimmel, G; Plank, H
2014-01-28
Focused ion beam processing of low melting materials, such as polymers or biological samples, often leads to chemical and morphological instabilities which prevent the straight-forward application of this versatile direct-write structuring method. In this study the behaviour of different polymer classes under ion beam exposure is investigated using different patterning parameters and strategies with the aim of (i) correlating local temperatures with the polymers' chemistry and its morphological consequences; and (ii) finding a way of processing sensitive polymers with lowest chemical degradation while maintaining structuring times. It is found that during processing of polymers three temperature regimes can be observed: (1) at low temperatures all polymers investigated show stable chemical and morphological behaviour; (2) very high temperatures lead to strong chemical degradation which entails unpredictable morphologies; and (3) in the intermediate temperature regime the behaviour is found to be strongly material dependent. A detailed look reveals that polymers which rather cross-link in the proximity of the beam show stable morphologies in this intermediate regime, while polymers that rather undergo chain scission show tendencies to develop a creeping phase, where material follows the ion beam movement leading to instable and unpredictable morphologies. Finally a simple, alternative patterning strategy is suggested, which allows stable processing conditions with lowest chemical damage even for challenging polymers undergoing chain scission.
2011-01-01
Background Surgical removal of the lens from larval Xenopus laevis results in a rapid transdifferention of central corneal cells to form a new lens. The trigger for this process is understood to be an induction event arising from the unprecedented exposure of the cornea to the vitreous humour that occurs following lens removal. The molecular identity of this trigger is unknown. Results Here, we have used a functional transgenic approach to show that BMP signalling is required for lens regeneration and a microarray approach to identify genes that are upregulated specifically during this process. Analysis of the array data strongly implicates Wnt signalling and the Pitx family of transcription factors in the process of cornea to lens transdifferentiation. Our analysis also captured several genes associated with congenital cataract in humans. Pluripotency genes, in contrast, were not upregulated, supporting the idea that corneal cells transdifferentiate without returning to a stem cell state. Several genes from the array were expressed in the forming lens during embryogenesis. One of these, Nipsnap1, is a known direct target of BMP signalling. Conclusions Our results strongly implicate the developmental Wnt and BMP signalling pathways in the process of cornea to lens transdifferentiation (CLT) in Xenopus, and suggest direct transdifferentiation between these two anterior eye tissues. PMID:21896182
NASA Astrophysics Data System (ADS)
Elsaß, M.; Frommherz, M.; Oechsner, M.
2018-02-01
In this work, interdiffusion between two nickel-based superalloys and two MCrAlY bond coats is investigated. The MCrAlY bond coats were applied using two different spraying processes, high velocity oxygen fuel spraying (HVOF) and low-pressure plasma spraying. Of primary interest is the evolution of Kirkendall porosity, which can form at the interface between substrate and bond coat and depends largely on the chemical compositions of the coating and substrate. Experimental evidence further suggested that the formation of Kirkendall porosity depends on the coating deposition process. Formation of porosity at the interface causes a degradation of the bonding strength between substrate and coating. After coating deposition, the samples were annealed at 1050 °C for up to 2000 h. Microstructural and compositional analyses were performed to determine and evaluate the Kirkendall porosity. The results reveal a strong influence of both the coating deposition process and the chemical compositions. The amount of Kirkendall porosity formed, as well as the location of appearance, is largely influenced by the coating deposition process. In general, samples with bond coats applied by means of HVOF show accelerated element diffusion. It is hypothesized that recrystallization of the substrate material is a main root cause for these observations.
NASA Astrophysics Data System (ADS)
Leuning, Nora; Steentjes, Simon; Stöcker, Anett; Kawalla, Rudolf; Wei, Xuefei; Dierdorf, Jens; Hirt, Gerhard; Roggenbuck, Stefan; Korte-Kerzel, Sandra; Weiss, Hannes A.; Volk, Wolfram; Hameyer, Kay
2018-04-01
Thin laminations of non-grain oriented (NO) electrical steels form the magnetic core of rotating electrical machines. The magnetic properties of these laminations are therefore key elements for the efficiency of electric drives and need to be fully utilized. Ideally, high magnetization and low losses are realized over the entire polarization and frequency spectrum at reasonable production and processing costs. However, such an ideal material does not exist and thus, achievable magnetic properties need to be deduced from the respective application requirements. Parameters of the electrical steel such as lamination thickness, microstructure and texture affect the magnetic properties as well as their polarization and frequency dependence. These structural features represent possibilities to actively alter the magnetic properties, e.g., magnetization curve, magnetic loss or frequency dependence. This paper studies the influence of production and processing on the resulting magnetic properties of a 2.4 wt% Si electrical steel. Aim is to close the gap between production influence on the material properties and its resulting effect on the magnetization curves and losses at different frequencies with a strong focus on occurring interdependencies between production and mechanical processing. The material production is realized on an experimental processing route that comprises the steps of hot rolling, cold rolling, annealing and punching.
Diversidad de Sistemas Planetarios en Discos de Baja Masa
NASA Astrophysics Data System (ADS)
Ronco, M. P.; de Elía, G. C.
The accretion process that allows the formation of terrestrial planets is strongly dependent on the mass distribution in the system and the presence of gas giant planets. Several studies suggest that planetary systems formed only by terrestrial planets are the most common in the Universe. In this work we study the diversity of planetary systems that could form around solar-type stars in low mass disks in absence of gas giants planets and search wich ones are targets of particular interest. FULL TEXT IN SPANISH
Merging magnetic droplets by a magnetic field pulse
NASA Astrophysics Data System (ADS)
Wang, Chengjie; Xiao, Dun; Liu, Yaowen
2018-05-01
Reliable manipulation of magnetic droplets is of immense importance for their applications in spin torque oscillators. Using micromagnetic simulations, we find that the antiphase precession state, which originates in the dynamic dipolar interaction effect, is a favorable stable state for two magnetic droplets nucleated at two identical nano-contacts. A magnetic field pulse can be used to destroy their stability and merge them into a big droplet. The merging process strongly depends on the pulse width as well as the pulse strength.
Analysis of combustion instability in liquid fuel rocket motors. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Wong, K. W.
1979-01-01
The development of an analytical technique used in the solution of nonlinear velocity-sensitive combustion instability problems is presented. The Galerkin method was used and proved successful. The pressure wave forms exhibit a strong second harmonic distortion and a variety of behaviors are possible depending on the nature of the combustion process and the parametric values involved. A one dimensional model provides insight into the problem by allowing a comparison of Galerkin solutions with more exact finite difference computations.
Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses
NASA Astrophysics Data System (ADS)
Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.
2018-06-01
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Enhanced harmonic emission from a polar molecule medium driven by few-cycle laser pulses.
Zhang, Chaojin; Yao, Jinping; Ni, Jielei; Umran, Fadhil A
2012-11-19
We investigate theoretically the enhancement of the low-order harmonic emission from a polar molecular medium. The results show that, by using a control laser field, the intensity of the spectral signals near fourth-order harmonics will increase over 25 times as a result of the four-wave mixing process. Moreover, the enhancement effects depend strongly on the carrier-envelope phase of the initial laser fields, which cannot be found in a symmetric system.
Petersen, Sidsel R; Alkeskjold, Thomas T; Olausson, Christina B; Lægsgaard, Jesper
2014-08-15
The parametric gain range of a degenerate four-wave mixing process is determined in the undepleted pump regime. The gain range is considered with and without taking the mode field distributions of the four-wave mixing components into account. It is found that the mode field distributions have to be included to evaluate the parametric gain correctly in dispersion-tailored speciality fibers and that mode profile engineering can provide a way to increase the parametric gain range.
Dasari, Suvarna; Kölling, Ralf
2016-07-01
We studied presequence processing of the mitochondrial-matrix targeted acetohydroxyacid synthase (Ilv2). C-terminal 3HA-tagging altered the cleavage pattern from a single step to sequential two-step cleavage, giving rise to two Ilv2-3HA forms (A and B). Both cleavage events were dependent on the mitochondrial processing peptidase (MPP). We present evidence for the involvement of three AAA ATPases, m- and i-AAA proteases, and Mcx1, in Ilv2-3HA processing. Both, precursor to A-form and A-form to B-form cleavage were strongly affected in a ∆yme1 mutant. These defects could be suppressed by overexpression of MPP, suggesting that MPP activity is limiting in the ∆yme1 mutant. Our data suggest that for some substrates AAA ATPases could play an active role in the translocation of matrix-targeted proteins.
On Roesler and Arzt's new model of creep in dispersion strengthened alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlova, A.; Cadek, J.
1992-08-01
The model of creep in dispersion (noncoherent particle) strengthened alloys assuming thermally activated detachment of dislocations from particles to be the rate controlling process, recently presented by Roesler and Arzt (1990), is correlated with some available creep and structure data for aluminum alloys strengthened by Al4C3 and Al2O3 particles. It is shown that though the model requires applied stress dependent apparent activation energy of creep, the stress dependence of creep rate can be satisfactorily accounted for even when this activation energy is stress independent, admitting a strong stress dependence of the preexponential structure factor, i.e., of the mobile dislocation density.more » On the other hand, the model is not able to account for the temperature dependence of creep rate if it is significantly stronger than that of the coefficient of lattice diffusion, as is usually the case with alloys strengthened by noncoherent particles in which the attractive dislocation/particle interaction can be expected. 14 refs.« less
Galindo, Inmaculada; Cuesta-Geijo, Miguel Angel; Hlavova, Karolina; Muñoz-Moreno, Raquel; Barrado-Gil, Lucía; Dominguez, Javier; Alonso, Covadonga
2015-03-16
The main cellular target for African swine fever virus (ASFV) is the porcine macrophage. However, existing data about the early phases of infection were previously characterized in non-leukocyte cells such as Vero cells. Here, we report that ASFV enters the natural host cell using dynamin-dependent and clathrin-mediated endocytosis. This pathway is strongly pH-dependent during the first steps of infection in porcine macrophages. We investigated the effect of drugs inhibiting several endocytic pathways in macrophages and compared ASFV with vaccinia virus (VV), which apparently involves different entry pathways. The presence of cholesterol in cellular membranes was found to be essential for a productive ASFV infection while actin-dependent endocytosis and the participation of phosphoinositide-3-kinase (PI3K) activity were other cellular factors required in the process of viral entry. These findings improved our understanding of the ASFV interactions with macrophages that allow for successful viral replication. Copyright © 2015 Elsevier B.V. All rights reserved.
Improvement on `structure of weakly 2-dependent siphons'
NASA Astrophysics Data System (ADS)
Chao, Daniel Y.
2015-01-01
Li and Zhou propose simpler Petri net controllers based on the concept of elementary siphons (generally much smaller than the set of all strict minimum siphons (SMSs) in large Petri nets) to minimise the addition of control places. SMSs can be divided into two groups: elementary and dependant; characteristic T-vectors of the latter are linear combinations of that of the former. A T-vector η is associated with each siphon S such that η(i) is the number of tokens gained in or lost from S by firing transition ti once. A dependent siphon S0 strongly depends on elementary siphons S1, S2, … , Sk if η0 = a1η1 + a2η2 + ṡṡṡ + akηk with all ai (i = 1, 2, 3, … , k) positive. S0 is a weakly dependent siphon if some ai is negative. The T-vectors (resp. number) for elementary siphons are mutually independent (linear to the size of the net). In an earlier paper, we show that there exists a third siphon S3 such that ηβ = η1 + η2 - η3. This equation (called η relationship) plays an important role for optimal control of weakly dependent siphons. However, it assumes that all above S span between exactly two processes. For a well-known benchmark, however, most dependent siphons span more than two processes. This paper improves by removing this restriction and shows that ηβ = η1 + η2 - η3 holds as long as S1∩S2 is another emptiable siphon.
NASA Astrophysics Data System (ADS)
Ushakova, A.; Emelyanov, D.; Zatsepin, V.; Varfolomeev, M.
2018-05-01
The formation and decomposition of hydro-peroxides are the key stages of combustion. These stages strongly depend on the several factors accelerating or slowing this process. The aim of this work is to estimate experimentally which oil components act as inhibitors of initial stages of oxidation and which accelerate the process. The next aim is to explore the process of adsorption of oil components on the grain of rock, which turned to be also a key process in the low temperature oxidation. The work includes experimental part where differential scanning calorimeter (PDSC) experiments with pure saturates, mixtures of saturates and aromatic oil fractions and mixtures of saturates, aromatic fractions and rock samples are considered. Effects of inhibition and acceleration of the initial oxidation stages are explored.
Supercritical water gasification of biomass: Thermodynamic constraints.
Castello, Daniele; Fiori, Luca
2011-08-01
In the present work, the supercritical water gasification (SCWG) of biomass is analyzed with a view to outlining the possible thermodynamic constraints that must be taken into account to develop this new process. In particular, issues concerning the formation of solid carbon and the process heat duty are discussed. The analysis is conducted by means of a two-phase non-stoichiometric thermodynamic model, based on Gibbs free energy minimization. Results show that char formation at equilibrium only occurs at high biomass concentrations, with a strong dependence on biomass composition. As regards the process heat duty, SCWG is mostly endothermic when biomass concentration is low, although a very small amount of oxidizing agent is able to make the process exothermic, with only a small loss in the heating value of the syngas produced. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hofmeister, A. M.
2005-08-01
Locally diffusive, radiative heat transport inside the earth is represented by an effective thermal conductivity ( krad,dif), calculated from spectra. Previous geophysical models assumed that emissivity ( ξ) equals unity, which violates local radiative equilibrium in an internally heated, grainy medium. Our new formulation accounts for ξ depending on frequency, physical scattering depending on grain-size ( d), and for light lost through back-reflections at interfaces. Mantle values of krad,dif are estimated from recent visible spectra of olivine combined with new IR data. The following trends hold for krad,dif calculated from olivine spectra, and should be equally valid for pyroxene and spinel: (1) pressure is unimportant, (2) radiative thermal conductivity depends non-linearly on d, temperature ( T), and Fe 2+ content ( X), (3) maxima occur in krad,dif( d) when the grains are large enough to emit substantially, but not so large that light is strongly attenuated within a single-grain, (4) the dependence of krad,dif on Fe 2+ content parallels that with d because absorption is controlled by the product dX (Beer's law), and (5) a local minimum occurs in krad,dif near 2000 K for d > 2 mm because at that temperature the peak position of the blackbody curve coincides with that of the strongly absorbing Fe 2+ peak in the visible. Larger krad,dif exists at lower and higher temperatures because mean free paths are long in the transmitting near-IR and UV spectral regions. As integration smooths over spectral details, the above representation based on olivine becomes increasingly accurate for other phases as grain-size decreases. For conditions expected in the transition zone, ∂ krad,dif/∂ T is negative, which is destabilizing [Dubuffet, F., Yuen, D.A., Rainey, E.S.G., 2002. Controlling thermal chaos in the mantle by positive feedback from radiative thermal conductivity. Nonlinear Proc. Geophys. 9, 1-13]. In the lower mantle, photon transport dominates phonon, promoting stable, weak convection. That radiative transfer is linked to chemical composition and grain-size suggests that this process impacts planetary evolution through the non-linear feedback with rheology.
Huntsman, Brock M.; Petty, J. Todd
2014-01-01
Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3–60 km2 and long-term average densities ranging from 0.335–0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem. PMID:24618602
How color, regularity, and good Gestalt determine backward masking.
Sayim, Bilge; Manassi, Mauro; Herzog, Michael
2014-06-18
The strength of visual backward masking depends on the stimulus onset asynchrony (SOA) between target and mask. Recently, it was shown that the conjoint spatial layout of target and mask is as crucial as SOA. Particularly, masking strength depends on whether target and mask group with each other. The same is true in crowding where the global spatial layout of the flankers and target-flanker grouping determine crowding strength. Here, we presented a vernier target followed by different flanker configurations at varying SOAs. Similar to crowding, masking of a red vernier target was strongly reduced for arrays of 10 green compared with 10 red flanking lines. Unlike crowding, single green lines flanking the red vernier showed strong masking. Irregularly arranged flanking lines yielded stronger masking than did regularly arranged lines, again similar to crowding. While cuboid flankers reduced crowding compared with single lines, this was not the case in masking. We propose that, first, masking is reduced when the flankers are part of a larger spatial structure. Second, spatial factors counteract color differences between the target and the flankers. Third, complex Gestalts, such as cuboids, seem to need longer processing times to show ungrouping effects as observed in crowding. Strong parallels between masking and crowding suggest similar underlying mechanism; however, temporal factors in masking additionally modulate performance, acting as an additional grouping cue. © 2014 ARVO.
Computer simulation of viscous fingering in Sierpinski carpet
NASA Astrophysics Data System (ADS)
Ju-ping, Tian; Kai-lun, Yao
1998-09-01
A new method-mapping dilation method is proposed in this paper to construct Sierpinski carpet. Viscous fingering (VF) in Sierpinski carpet, based on the assumption that bond radii are beta distribution, is investigated by means of successive over-relaxation techniques. The topology and the geometry of the porous media have a strong effect on displacement processes. In the Sierpinski network, the VF pattern of porous media in the limit M → ∞ is found to be similar to the diffusion-limited-aggregation pattern. The fractal dimension for VF in fractal space is calculated and the fractal dimension D can be reasonably regarded as a useful parameter to evaluate the sweep efficiencies and oil recoveries. We have also found that the geometry of the porous medium also has strong effects on the displacement processes and the structure of the VF. Moreover, we find that the sweep efficiency of the displacement processes mainly depends upon the length of the network system and also on the viscosity ratio M. This shows that the current method can be used to solve VF problems in complex structures if the structures are self-similar, or they can be reduced to a self-similar structure.
Voltammetric Perspectives on the Acidity Scale and H+/H2 Process in Ionic Liquid Media.
Bentley, Cameron L; Bond, Alan M; Zhang, Jie
2018-03-19
Nonhaloaluminate ionic liquids (ILs) have received considerable attention as alternatives to molecular solvents in diverse applications spanning the fields of physical, chemical, and biological science. One important and often overlooked aspect of the implementation of these designer solvents is how the properties of the IL formulation affect (electro)chemical reactivity. This aspect is emphasized herein, where recent (voltammetric) studies on the energetics of proton (H + ) transfer and electrode reaction mechanisms of the H + H 2 process in IL media are highlighted and discussed. The energetics of proton transfer, quantified using the pK 3 a (minus logarithm of acidity equilibrium constant, K a ) formalism, is strongly governed by the constituent IL anion, and to a lesser extent, the IL cation. The H + /H 2 process, a model inner-sphere reaction, also displays electrochemical characteristics that are strongly IL-dependent. Overall, these studies highlight the need to carry out systematic investigations to resolve IL structure and function relationships in order to realize the potential of these diverse and versatile solvents. Expected final online publication date for the Annual Review of Analytical Chemistry Volume 11 is June 12, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Removal of PPCPs from the sludge supernatant in a one stage nitritation/anammox process.
Alvarino, T; Suarez, S; Katsou, E; Vazquez-Padin, J; Lema, J M; Omil, F
2015-01-01
Pharmaceutical and personal care products (PPCPs) are extensively used and can therefore find their way into surface, groundwater and municipal and industrial effluents. In this work, the occurrence, fate and removal mechanisms of 19 selected PPCPs was investigated in an 'ELiminación Autótrofa de Nitrógeno' (ELAN) reactor of 200 L. In this configuration, ammonium oxidation to nitrite and the anoxic ammonium oxidation (anammox)processes occur simultaneously in a single-stage reactor under oxygen limited conditions. The ELAN process achieved high removal (>80%) of the studied hormones, naproxen, ibuprofen, bisphenol A and celestolide, while it was not effective in the removal of carbamazepine (<7%), diazepam (<7%) and fluoxetine (<30%). Biodegradation was the dominant removal mechanism, while sorption was only observed for musk fragrances, fluoxetine and triclosan. The sorption was strongly dependent on the granule size, with smaller granules facilitating the sorption of the target compounds. Increased hydraulic retention time enhanced the intramolecular diffusion of the PPCPs into the granules, and thus increased the solid phase concentration. The increase of nitritation rate favored the removal of ibuprofen, bisphenol A and triclosan, while the removal of erythromycin was strongly correlated to the anammox reaction rate.
Strong size-dependent stress relaxation in electrospun polymer nanofibers
NASA Astrophysics Data System (ADS)
Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun; Cai, Shengqiang
2017-01-01
Electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with the dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.
Strong size-dependent stress relaxation in electrospun polymer nanofibers
Wingert, Matthew C.; Jiang, Zhang; Chen, Renkun; ...
2017-01-04
Here, electrospun polymer nanofibers have garnered significant interest due to their strong size-dependent material properties, such as tensile moduli, strength, toughness, and glass transition temperatures. These properties are closely correlated with polymer chain dynamics. In most applications, polymers usually exhibit viscoelastic behaviors such as stress relaxation and creep, which are also determined by the motion of polymer chains. However, the size-dependent viscoelasticity has not been studied previously in polymer nanofibers. Here, we report the first experimental evidence of significant size-dependent stress relaxation in electrospun Nylon-11 nanofibers as well as size-dependent viscosity of the confined amorphous regions. In conjunction with themore » dramatically increasing stiffness of nano-scaled fibers, this strong relaxation enables size-tunable properties which break the traditional damping-stiffness tradeoff, qualifying electrospun nanofibers as a promising set of size-tunable materials with an unusual and highly desirable combination of simultaneously high stiffness and large mechanical energy dissipation.« less
Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; ...
2015-09-08
In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill outmore » a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.« less
Context-dependent interactions and the regulation of species richness in freshwater fish.
MacDougall, Andrew S; Harvey, Eric; McCune, Jenny L; Nilsson, Karin A; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B; Kelly, Jocelyn; Tunney, Tyler D; McMeans, Bailey; Matsuzaki, Shin-Ichiro S; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S
2018-03-06
Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11 o latitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently 'scale-up' to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yujie; Gong, Sha; Wang, Zhen
The thermodynamic and kinetic parameters of an RNA base pair were obtained through a long-time molecular dynamics simulation of the opening-closing switch process of the base pair near its melting temperature. The thermodynamic parameters were in good agreement with the nearest-neighbor model. The opening rates showed strong temperature dependence, however, the closing rates showed only weak temperature dependence. The transition path time was weakly temperature dependent and was insensitive to the energy barrier. The diffusion constant exhibited super-Arrhenius behavior. The free energy barrier of breaking a single base stack results from the enthalpy increase, ΔH, caused by the disruption ofmore » hydrogen bonding and base-stacking interactions. The free energy barrier of base pair closing comes from the unfavorable entropy loss, ΔS, caused by the restriction of torsional angles. These results suggest that a one-dimensional free energy surface is sufficient to accurately describe the dynamics of base pair opening and closing, and the dynamics are Brownian.« less
Time-dependent nonequilibrium soft x-ray response during a spin crossover
NASA Astrophysics Data System (ADS)
van Veenendaal, Michel
2018-03-01
A theoretical framework is developed for better understanding the time-dependent soft-x-ray response of dissipative quantum many-body systems. It is shown how x-ray absorption and resonant inelastic x-ray scattering (RIXS) at transition-metal L edges can provide insight into ultrafast intersystem crossings of importance for energy conversion, ultrafast magnetism, and catalysis. The photoinduced doublet-to-quartet spin crossover on cobalt in Fe-Co Prussian blue analogs is used as a model system to demonstrate how the x-ray response is affected by the nonequilibrium dynamics on a femtosecond time scale. Changes in local spin and symmetry and the underlying mechanism are reflected in strong broadenings, a collapse of clear selection rules during the intersystem crossing, fluctuations in the isotropic branching ratio in x-ray absorption, crystal-field collapse and/or oscillations, and time-dependent anti-Stokes processes in RIXS.
Context-dependent interactions and the regulation of species richness in freshwater fish
MacDougall, Andrew S.; Harvey, Eric; McCune, Jenny L.; Nilsson, Karin A.; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B.; Kelly, Jocelyn; Tunney, Tyler D.; McMeans, Bailey; Matsuzaki, Shin-Ichiro S.; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S.
2018-01-01
Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11olatitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently ‘scale-up’ to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.
Autophagy regulates tissue overgrowth in a context-dependent manner.
Pérez, E; Das, G; Bergmann, A; Baehrecke, E H
2015-06-01
Autophagy is a catabolic process that has been implicated both as a tumor suppressor and in tumor progression. Here, we investigate this dichotomy in cancer biology by studying the influence of altered autophagy in Drosophila models of tissue overgrowth. We find that the impact of altered autophagy depends on both genotype and cell type. As previously observed in mammals, decreased autophagy suppresses Ras-induced eye epithelial overgrowth. In contrast, autophagy restricts epithelial overgrowth in a Notch-dependent eye model. Even though decreased autophagy did not influence Hippo pathway-triggered overgrowth, activation of autophagy strongly suppresses this eye epithelial overgrowth. Surprisingly, activation of autophagy enhanced Hippo pathway-driven overgrowth in glia cells. These results indicate that autophagy has different influences on tissue growth in distinct contexts, and highlight the importance of understanding the influence of autophagy on growth to augment a rationale therapeutic strategy.
Steringer, Julia P.; Bleicken, Stephanie; Andreas, Helena; Zacherl, Sonja; Laussmann, Mareike; Temmerman, Koen; Contreras, F. Xabier; Bharat, Tanmay A. M.; Lechner, Johannes; Müller, Hans-Michael; Briggs, John A. G.; García-Sáez, Ana J.; Nickel, Walter
2012-01-01
Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate. PMID:22730382
On dependency properties of the ISIs generated by a two-compartmental neuronal model.
Benedetto, Elisa; Sacerdote, Laura
2013-02-01
One-dimensional leaky integrate and fire neuronal models describe interspike intervals (ISIs) of a neuron as a renewal process and disregarding the neuron geometry. Many multi-compartment models account for the geometrical features of the neuron but are too complex for their mathematical tractability. Leaky integrate and fire two-compartment models seem a good compromise between mathematical tractability and an improved realism. They indeed allow to relax the renewal hypothesis, typical of one-dimensional models, without introducing too strong mathematical difficulties. Here, we pursue the analysis of the two-compartment model studied by Lansky and Rodriguez (Phys D 132:267-286, 1999), aiming of introducing some specific mathematical results used together with simulation techniques. With the aid of these methods, we investigate dependency properties of ISIs for different values of the model parameters. We show that an increase of the input increases the strength of the dependence between successive ISIs.
The correlation between elongation at break and thermal decomposition of aged EPDM cable polymer
NASA Astrophysics Data System (ADS)
Šarac, T.; Devaux, J.; Quiévy, N.; Gusarov, A.; Konstantinović, M. J.
2017-03-01
The effect of simultaneous thermal and gamma irradiation ageing on the mechanical and physicochemical properties of industrial EPDM was investigated. Accelerated ageing, covering a wide range of dose rates, doses and temperatures, was preformed in stagnant air on EPDM polymer samples extracted from the cables in use in the Belgian nuclear power plants. The mechanical properties, ultimate tensile stress and elongation at break, are found to exhibit the strong dependence on the dose, ageing temperature and dose rate. The thermal decomposition of aged polymer is observed to be the dose dependent when thermogravimetry test is performed under air atmosphere. No dose dependence is observed when thermal decomposition is performed under nitrogen atmosphere. The thermal decomposition rates are found to fully mimic the reduction of elongation at break for all dose rates and ageing temperatures. This effect is argued to be the result of thermal and radiation mediated oxidation degradation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Huarui, E-mail: huarui.sun@bristol.ac.uk; Bajo, Miguel Montes; Uren, Michael J.
2015-01-26
Gate leakage degradation of AlGaN/GaN high electron mobility transistors under OFF-state stress is investigated using a combination of electrical, optical, and surface morphology characterizations. The generation of leakage “hot spots” at the edge of the gate is found to be strongly temperature accelerated. The time for the formation of each failure site follows a Weibull distribution with a shape parameter in the range of 0.7–0.9 from room temperature up to 120 °C. The average leakage per failure site is only weakly temperature dependent. The stress-induced structural degradation at the leakage sites exhibits a temperature dependence in the surface morphology, which ismore » consistent with a surface defect generation process involving temperature-associated changes in the breakdown sites.« less
NASA Astrophysics Data System (ADS)
Miller, J. H., Jr.; Nawarathna, D.; Vajrala, V.; Gardner, J.; Widger, W. R.
2005-12-01
We report on measurements of harmonics generated by whole cells, mitochondria, and chloroplasts in response to applied sinusoidal electric fields. The frequency- and amplitude-dependence of the induced harmonics exhibit features that correlate with physiological processes. Budding yeast (S. cerevisiae) cells produce numerous harmonics, the amplitudes of which depend strongly on frequency. When the second or third harmonic amplitude is plotted vs. applied frequency, we observe two peaks, around 3 kHz and 12 kHz, which are suppressed by respiratory inhibitors. We observe similar peaks when measuring the harmonic response of B. indicas, a relative of the mitochondrial ancestor. In uncoupled mitochondria, in which most of the electron transport chain is active but the ATP-synthase molecular turbine is inactive, only one (lower frequency) of the two peaks is present. Finally, we find that harmonics generated by chloroplasts depend dramatically on incident light, and vanish in the absence of light.
Optically dark excitonic states mediated exciton and biexciton valley dynamics in monolayer WSe2.
Zhang, Minghua; Fu, Jiyong; Dias, A C; Qu, Fanyao
2018-05-18
We present a theory to address the photoluminescence (PL) intensity and valley polarization (VP) dynamics in monolayer WSe$_2$, under the impact of excitonic dark states of both excitons and biexcitons. We find that the PL intensity of all excitonic channels including intravalley exciton (X$_{\\rm b}$), intravalley biexciton (XX$_{\\rm k,k}$) and intervalley biexciton (XX$_{\\rm k,k^\\prime}$) in particular for the {XX$_{\\rm k,k}$} PL is enhanced by laser excitation fluence. In addition, our results indicate the anomalous temperature dependence of PL, i.e., increasing with temperature, as a result of favored phonon assisted dark-to-bright scatterings at high temperatures. Moreover, we observe that the PL is almost immune to intervalley scatterings, which trigger the exchange of excitonic states between the two valleys. As far as the valley polarization is concerned, we find that the VP of X$_{\\rm b}$ shrinks as temperature increases, exhibiting opposite temperature response to PL, while the intravalley XX$_{\\rm k,k}$ VP is found almost independent of temperature. In contrast to both X$_{\\rm b}$ and XX$_{\\rm k,k}$, the intervalley XX$_{\\rm k,k^\\prime}$ VP identically vanishes, because of equal populations of excitons in the $K$ and $K^\\prime$ valleys bounded to form intervalley biexcitons. Notably, it is found that the X$_{\\rm b}$ VP much more strongly depends on bright-dark scattering than that of {XX$_{\\rm k,k}$}, making dark state act as a robust reservoir for valley polarization against intervalley scatterings for X$_{\\rm b}$ at strong bright-dark scatterings, but not for XX$_{\\rm k,k}$. Dark excitonic states enabled enhancement of VP benefits quantum technology for information processing based on the valley degree of freedom in valleytronic devices. Furthermore, the VP has strong dependence on intervalley scattering but maintains essentially constant with excitation fluence. Finally, the time evolution of PL and VP, depending on temperature and excitation fluence, is discussed. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Douglas, M. M.; Bunn, S. E.; Davies, P. M.
2005-05-01
The tropical rivers of northern Australia are internationally recognised for their high ecological and cultural values. They have largely unmodified flow regimes and are comparatively free of the impacts associated with intensive land use. However, there is growing demand for agricultural development and existing pressures, such as weeds and feral animals, threaten their ecological integrity. Using the international literature to provide a conceptual framework and drawing on limited published and unpublished data on rivers in northern Australia, we have derived five general principles about food webs and related ecosystem processes that both characterise tropical rivers of northern Australia and have important implications for their management. These are: (1) Seasonal hydrology is a strong driver of ecosystem processes and food web structure; (2) Hydrological connectivity is largely intact and underpins important terrestrial-aquatic food web subsidies; (3) River and wetland food webs are strongly dependent on algal production; (4) A few common macroconsumers species have a strong influence on benthic food webs; (5) Omnivory is widespread and food chains are short. These principles have implications for the management and protection of tropical rivers and wetlands of northern Australia and provide a framework for the formation of testable hypotheses in future research programs.
Bagal, Manisha V; Gogate, Parag R
2014-01-01
Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. Copyright © 2013 Elsevier B.V. All rights reserved.
Host Star Evolution for Planet Habitability.
Gallet, Florian; Charbonnel, Corinne; Amard, Louis
2016-11-01
With about 2000 exoplanets discovered within a large range of different configurations of distance from the star, size, mass, and atmospheric conditions, the concept of habitability cannot rely only on the stellar effective temperature anymore. In addition to the natural evolution of habitability with the intrinsic stellar parameters, tidal, magnetic, and atmospheric interactions are believed to have strong impact on the relative position of the planets inside the so-called habitable zone. Moreover, the notion of habitability itself strongly depends on the definition we give to the term "habitable". The aim of this contribution is to provide a global and up-to-date overview of the work done during the last few years about the description and the modelling of the habitability, and to present the physical processes currently includes in this description.
Effects of Electrical and Mechanical Overstimulus on Spontaneous Oscillations in Hair Bundles
NASA Astrophysics Data System (ADS)
Kao, Albert; Strimbu, C. Elliott; Bozovic, Dolores
2011-11-01
Spontaneous oscillations constitute one of the manifestations of the active process operant in hair cells and provides a sensitive probe for their internal dynamics. The influx of ions into the stereocilia can be modulated by applying an electrical current across the epithelium and has been previously shown to strongly affect the oscillatory profiles. We applied strong transient stimuli and demonstrated that they can induce a transition from the oscillatory to the quiescent state, an effect that can last over several seconds post stimulus cessation. The dynamics of recovery to the oscillatory state was found to be dependent on the amplitude and the duration of the stimulus. Similar dynamics were observed after high-amplitude mechanical stimulus, which mimics the effects of loud sound on an individual bundle.
Transverse conductivity of a relativistic plasma in oblique electric and magnetic fields
NASA Technical Reports Server (NTRS)
Melia, Fulvio; Fatuzzo, Marco
1991-01-01
Resistive tearing in a primary candidate for flares occurring in stressed magnetic fields. Its possible application to the strongly magnetized environments (Hz about 10 to the 12th G) near the surface of neutron stars, particularly as a mechanism for generating the plasma heating and particle acceleration leading to gamma-ray bursts, has motivated a quantum treatment of this process, which requires knowledge of the electrical conductivity sigma of a relativistic gas in a new domain (i.e., that of a low-density n/e/) plasma in oblique electric and magnetic fields. This paper discusses the mathematical formalism for calculating sigma and present numerical results for a wide range of parameter values. The results indicate that sigma depends very strongly on both the applied electric and magnetic fields.
Effective potential kinetic theory for strongly coupled plasmas
NASA Astrophysics Data System (ADS)
Baalrud, Scott D.; Daligault, Jérôme
2016-11-01
The effective potential theory (EPT) is a recently proposed method for extending traditional plasma kinetic and transport theory into the strongly coupled regime. Validation from experiments and molecular dynamics simulations have shown it to be accurate up to the onset of liquid-like correlation parameters (corresponding to Γ ≃ 10-50 for the one-component plasma, depending on the process of interest). Here, this theory is briefly reviewed along with comparisons between the theory and molecular dynamics simulations for self-diffusivity and viscosity of the one-component plasma. A number of new results are also provided, including calculations of friction coefficients, energy exchange rates, stopping power, and mobility. The theory is also cast in the Landau and Fokker-Planck kinetic forms, which may prove useful for enabling efficient kinetic computations.
Laser based imaging of time depending microscopic scenes with strong light emission
NASA Astrophysics Data System (ADS)
Hahlweg, Cornelius; Wilhelm, Eugen; Rothe, Hendrik
2011-10-01
Investigating volume scatterometry methods based on short range LIDAR devices for non-static objects we achieved interesting results aside the intended micro-LIDAR: the high speed camera recording of the illuminated scene of an exploding wire -intended for Doppler LIDAR tests - delivered a very effective method of observing details of objects with extremely strong light emission. As a side effect a schlieren movie is gathered without any special effort. The fact that microscopic features of short time processes with high emission and material flow might be imaged without endangering valuable equipment makes this technique at least as interesting as the intended one. So we decided to present our results - including latest video and photo material - instead of a more theoretical paper on our progress concerning the primary goal.
Sensitivity of Hawking radiation to superluminal dispersion relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcelo, C.; Garay, L. J.; Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid
2009-01-15
We analyze the Hawking radiation process due to collapsing configurations in the presence of superluminal modifications of the dispersion relation. With such superluminal dispersion relations, the horizon effectively becomes a frequency-dependent concept. In particular, at every moment of the collapse, there is a critical frequency above which no horizon is experienced. We show that, as a consequence, the late-time radiation suffers strong modifications, both quantitative and qualitative, compared to the standard Hawking picture. Concretely, we show that the radiation spectrum becomes dependent on the measuring time, on the surface gravities associated with different frequencies, and on the critical frequency. Evenmore » if the critical frequency is well above the Planck scale, important modifications still show up.« less
Microcrack closure in rocks under stress - Direct observation
NASA Technical Reports Server (NTRS)
Batzle, M. L.; Simmons, G.; Siegfried, R. W.
1980-01-01
Direct observations of the closure of microcracks in rocks under increasing stress are reported. Uniaxial stresses up to 300 bars were applied to untreated and previously heated samples of Westerly granite and Frederick diabase by a small hydraulic press which fit entirely within a scanning electron microscope. Crack closure characteristics are found to depend on crack orientation, with cracks perpendicular to the applied stress closing and those parallel tending to open, as well as crack aspect ratio, crack intersection properties, stress concentrations and surface roughness. Uniaxial and hydrostatic stress measurements are found to be strongly dependent on fracture content as observed by SEM, and the observed hysteresis in strain measurements in the first stress cycles is also related to microscopic processes
NASA Astrophysics Data System (ADS)
Trocha, Piotr; Weymann, Ireneusz; Barnaś, Józef
2009-10-01
Spin-dependent transport through two coupled single-level quantum dots weakly connected to ferromagnetic leads with collinear magnetizations is considered theoretically. Transport characteristics, including the current, linear and nonlinear conductances, and tunnel magnetoresistance are calculated using the real-time diagrammatic technique in the parallel, serial, and intermediate geometries. The effects due to virtual tunneling processes between the two dots via the leads, associated with off-diagonal coupling matrix elements, are also considered. Negative differential conductance and negative tunnel magnetoresistance have been found in the case of serial and intermediate geometries, while no such behavior has been observed for double quantum dots coupled in parallel. It is also shown that transport characteristics strongly depend on the magnitude of the off-diagonal coupling matrix elements.
Dynamics of defect-induced dark solitons in an exciton-polariton condensate
NASA Astrophysics Data System (ADS)
Opala, Andrzej; Pieczarka, Maciej; Bobrovska, Nataliya; Matuszewski, Michał
2018-04-01
We study theoretically the emission of dark solitons induced by a moving defect in a nonresonantly pumped exciton-polariton condensate. The number of created dark solitons per unit of time is found to be strongly dependent on the pump power. We relate the observed dynamics of this process to the oscillations of the drag force experienced by the condensate. We investigate the stability of the polariton quantum fluid and present various types of dynamics depending on the condensate and moving obstacle parameters. Furthermore, we provide analytical expressions for dark soliton dynamics using the variational method adapted to the nonequilibrium polariton system. The determined dynamical equations are found to be in excellent agreement with the results of numerical simulations.
Monsoon-Enso Relationships: A New Paradigm
NASA Technical Reports Server (NTRS)
Lau, K. M.; Einaudi, Franco (Technical Monitor)
2000-01-01
This article is partly a review and partly a new research paper on monsoon-ENSO relationship. The paper begins with a discussion of the basic relationship between the Indian monsoon and ENSO dating back to the work of Sir Gilbert Walker up to research results in more recent years. Various factors that may affect the monsoon-ENSO, relationship, including regional coupled ocean-atmosphere processes, Eurasian snow cover, land-atmosphere hydrologic feedback, intraseasonal oscillation, biennial variability and inter-decadal variations, are discussed. The extreme complex and highly nonlinear nature of the monsoon-ENSO relationship is stressed. We find that for regional impacts on the monsoon, El Nino and La Nina are far from simply mirror images of each other. These two polarities of ENSO can have strong or no impacts on monsoon anomalies depending on the strength of the intraseasonal oscillations and the phases of the inter-decadal variations. For the Asian-Australian monsoon (AAM) as a whole, the ENSO impact is effected through a east-west shift in the Walker Circulation. For rainfall anomalies over specific monsoon areas, regional processes play important roles in addition to the shift in the Walker Circulation. One of the key regional processes identified for the boreal summer monsoon is the anomalous West Pacific Anticyclone (WPA). This regional feature has similar signatures in interannual and intraseasonal time scales and appears to determine whether the monsoon-ENSO relationship is strong or weak in a given year. Another important regional feature includes a rainfall and SST dipole across the Indian Ocean, which may have strong impact on the austral summer monsoon. Results are shown indicating that monsoon surface wind forcings may induce a strong biennial signal in ENSO and that strong monsoon-ENSO coupling may translate into pronounced biennial variability in ENSO. Finally, a new paradigm is proposed for the study of monsoon variability. This paradigm provides a unified framework in which monsoon predictability, the role of regional vs. basin-scale processes, its relationship with different climate subsystems, and causes of secular changes in monsoon-ENSO relationship can be investigated.
NASA Astrophysics Data System (ADS)
Daněk, J.; Klaiber, M.; Hatsagortsyan, K. Z.; Keitel, C. H.; Willenberg, B.; Maurer, J.; Mayer, B. W.; Phillips, C. R.; Gallmann, L.; Keller, U.
2018-06-01
We study strong-field ionization and rescattering beyond the long-wavelength limit of the dipole approximation with elliptically polarized mid-IR laser pulses. Full three-dimensional photoelectron momentum distributions (PMDs) measured with velocity map imaging and tomographic reconstruction revealed an unexpected sharp ridge structure in the polarization plane (2018 Phys. Rev. A 97 013404). This thin line-shaped ridge structure for low-energy photoelectrons is correlated with the ellipticity-dependent asymmetry of the PMD along the beam propagation direction. The peak of the projection of the PMD onto the beam propagation axis is shifted from negative to positive values when the sharp ridge fades away with increasing ellipticity. With classical trajectory Monte Carlo simulations and analytical analysis, we study the underlying physics of this feature. The underlying physics is based on the interplay between the lateral drift of the ionized electron, the laser magnetic field induced drift in the laser propagation direction, and Coulomb focusing. To apply our observations to emerging techniques relying on strong-field ionization processes, including time-resolved holography and molecular imaging, we present a detailed classical trajectory-based analysis of our observations. The analysis leads to the explanation of the fine structure of the ridge and its non-dipole behavior upon rescattering while introducing restrictions on the ellipticity. These restrictions as well as the ionization and recollision phases provide additional observables to gain information on the timing of the ionization and recollision process and non-dipole properties of the ionization process.
HDAC3 and the Molecular Brake Pad Hypothesis
McQuown, Susan C.; Wood, Marcelo A.
2011-01-01
Successful transcription of specific genes required for long-term memory processes involves the orchestrated effort of not only transcription factors, but also very specific enzymatic protein complexes that modify chromatin structure. Chromatin modification has been identified as a pivotal molecular mechanism underlying certain forms of synaptic plasticity and memory. The best-studied form of chromatin modification in the learning and memory field is histone acetylation, which is regulated by histone acetyltransferases and histone deacetylases (HDACs). HDAC inhibitors have been shown to strongly enhance long-term memory processes, and recent work has aimed to identify contributions of individual HDACs. In this review, we focus on HDAC3 and discuss its recently defined role as a negative regulator of long-term memory formation. HDAC3 is part of a corepressor complex and has direct interactions with class II HDACs that may be important for its molecular and behavioral consequences. And last, we propose the “molecular brake pad” hypothesis of HDAC function. The HDACs and associated corepressor complexes may function in neurons, in part, as “molecular brake pads.” HDACs are localized to promoters of active genes and act as a persistent clamp that requires strong activity-dependent signaling to temporarily release these complexes (or brake pads) to activate gene expression required for long-term memory formation. Thus, HDAC inhibition removes the “molecular brake pads” constraining the processes necessary for long-term memory and results in strong, persistent memory formation. PMID:21521655
Wu, Wenzheng; Ye, Wenli; Wu, Zichao; Geng, Peng; Wang, Yulei; Zhao, Ji
2017-01-01
The success of the 3D-printing process depends upon the proper selection of process parameters. However, the majority of current related studies focus on the influence of process parameters on the mechanical properties of the parts. The influence of process parameters on the shape-memory effect has been little studied. This study used the orthogonal experimental design method to evaluate the influence of the layer thickness H, raster angle θ, deformation temperature Td and recovery temperature Tr on the shape-recovery ratio Rr and maximum shape-recovery rate Vm of 3D-printed polylactic acid (PLA). The order and contribution of every experimental factor on the target index were determined by range analysis and ANOVA, respectively. The experimental results indicated that the recovery temperature exerted the greatest effect with a variance ratio of 416.10, whereas the layer thickness exerted the smallest effect on the shape-recovery ratio with a variance ratio of 4.902. The recovery temperature exerted the most significant effect on the maximum shape-recovery rate with the highest variance ratio of 1049.50, whereas the raster angle exerted the minimum effect with a variance ratio of 27.163. The results showed that the shape-memory effect of 3D-printed PLA parts depended strongly on recovery temperature, and depended more weakly on the deformation temperature and 3D-printing parameters. PMID:28825617
A size-dependent constitutive model of bulk metallic glasses in the supercooled liquid region
Yao, Di; Deng, Lei; Zhang, Mao; Wang, Xinyun; Tang, Na; Li, Jianjun
2015-01-01
Size effect is of great importance in micro forming processes. In this paper, micro cylinder compression was conducted to investigate the deformation behavior of bulk metallic glasses (BMGs) in supercooled liquid region with different deformation variables including sample size, temperature and strain rate. It was found that the elastic and plastic behaviors of BMGs have a strong dependence on the sample size. The free volume and defect concentration were introduced to explain the size effect. In order to demonstrate the influence of deformation variables on steady stress, elastic modulus and overshoot phenomenon, four size-dependent factors were proposed to construct a size-dependent constitutive model based on the Maxwell-pulse type model previously presented by the authors according to viscosity theory and free volume model. The proposed constitutive model was then adopted in finite element method simulations, and validated by comparing the micro cylinder compression and micro double cup extrusion experimental data with the numerical results. Furthermore, the model provides a new approach to understanding the size-dependent plastic deformation behavior of BMGs. PMID:25626690
NASA Astrophysics Data System (ADS)
Song, Sisi
2018-04-01
This paper concerns the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and vacuum on Ω \\subset R^3. The domain Ω \\subset R^3 is a general connected smooth one, either bounded or unbounded. In particular, the initial density can have compact support when Ω is unbounded. First, we obtain the local existence and uniqueness of strong solution to the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations without any compatibility condition assumed on the initial data. Then, we also prove the continuous dependence of strong solution on the initial data under an additional compatibility condition.
Entanglement of two qubits coupled to an XY spin chain: Role of energy current
NASA Astrophysics Data System (ADS)
Liu, Ben-Qiong; Shao, Bin; Zou, Jian
2009-12-01
We investigate the entanglement dynamics of a two-qubit system which interacts with a Heisenberg XY spin chain constrained to carry an energy current. We show an explicit connection between the decoherence factor and entanglement, and numerically and analytically study the dynamical process of entanglement in both weak- and strong-coupling cases for two initial states, the general pure state and the mixed Werner state. We provide results that the entanglement evolution depends not only on the energy current, the anisotropy parameter and the system-environment couplings but also on the size of degrees of freedom of environment. In particular, our results imply that entanglement will be strongly suppressed by the introduction of energy current on the environmental spin chain in the weak-coupling region while it is not sensitive to the energy current in the strong-coupling region. We also observe the sudden death of entanglement in the system and show how the energy current affects the phenomenon.
Jochim, Bethany; Siemering, R; Zohrabi, M; Voznyuk, O; Mahowald, J B; Schmitz, D G; Betsch, K J; Berry, Ben; Severt, T; Kling, Nora G; Burwitz, T G; Carnes, K D; Kling, M F; Ben-Itzhak, I; Wells, E; de Vivie-Riedle, R
2017-06-30
Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C 2 D 2 , C 2 D 4 and C 2 D 6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.
Universal far-from-equilibrium dynamics of a holographic superconductor.
Sonner, Julian; Del Campo, Adolfo; Zurek, Wojciech H
2015-06-23
Symmetry-breaking phase transitions are an example of non-equilibrium processes that require real-time treatment, a major challenge in strongly coupled systems without long-lived quasiparticles. Holographic duality provides such an approach by mapping strongly coupled field theories in D dimensions into weakly coupled quantum gravity in D+1 anti-de Sitter spacetime. Here we use holographic duality to study the formation of topological defects-winding numbers-in the course of a superconducting transition in a strongly coupled theory in a 1D ring. When the system undergoes the transition on a given quench time, the condensate builds up with a delay that can be deduced using the Kibble-Zurek mechanism from the quench time and the universality class of the theory, as determined from the quasinormal mode spectrum of the dual model. Typical winding numbers deposited in the ring exhibit a universal fractional power law dependence on the quench time, also predicted by the Kibble-Zurek Mechanism.
Religious treatments for drug addiction: an exploratory study in Brazil.
van der Meer Sanchez, Zila; Nappo, Solange A
2008-08-01
The main objective of the present work is to understand the processes used in emerging Catholic and Protestant religious interventions for recovery from drug dependence, from the vantage point of individuals subjected to them. A qualitative method and an intentional sample selected by criteria were adopted for this investigation, which was conducted in São Paulo, Brazil. An in-depth semi-structured interview was conducted with 57 predominantly male former drug users who fit the criteria: they had been submitted to non-medical religious treatments to treat dependence and were abstinent for at least 6 months. Crisis was found to be the main reason leading interviewees to seek treatment; this includes, losing family, losing employment, and experiencing severe humiliation. Evangelicals most used religious resources exclusively as treatment, showing strong aversion to the role of doctors and to any type of pharmacological treatment. A common feature of Catholic and Protestant groups is the importance ascribed to praying and talking to God, described by subjects as strongly anxiolytic, and a means to control drug craving. Confession and forgiveness, through faith conversion or penitences, respectively, appeal strongly to the restructuring of life and increase of self-esteem. Religious interventions were considered effective by the individuals who underwent them and were seen as attractive for the humane, respectful treatment they delivered. The key aspects of this type of treatment are social support provided by the receiving group, equal treatment, and instant, judgment-free acceptance. The success of these actions, then, is not only due to some "supernatural" aspect, as might be assumed, but also more to the unconditional dedication of human beings to their peers. Given the difficulty in treating drug dependence, religious interventions could be used as a complementary treatment for conventional therapies.
Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F.
2014-01-01
Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. PMID:25451612
Czerniawski, Jennifer; Miyashita, Teiko; Lewandowski, Gail; Guzowski, John F
2015-02-01
Neuroinflammation is implicated in impairments in neuronal function and cognition that arise with aging, trauma, and/or disease. Therefore, understanding the underlying basis of the effect of immune system activation on neural function could lead to therapies for treating cognitive decline. Although neuroinflammation is widely thought to preferentially impair hippocampus-dependent memory, data on the effects of cytokines on cognition are mixed. One possible explanation for these inconsistent results is that cytokines may disrupt specific neural processes underlying some forms of memory but not others. In an earlier study, we tested the effect of systemic administration of bacterial lipopolysaccharide (LPS) on retrieval of hippocampus-dependent context memory and neural circuit function in CA3 and CA1 (Czerniawski and Guzowski, 2014). Paralleling impairment in context discrimination memory, we observed changes in neural circuit function consistent with disrupted pattern separation function. In the current study we tested the hypothesis that acute neuroinflammation selectively disrupts memory retrieval in tasks requiring hippocampal pattern separation processes. Male Sprague-Dawley rats given LPS systemically prior to testing exhibited intact performance in tasks that do not require hippocampal pattern separation processes: novel object recognition and spatial memory in the water maze. By contrast, memory retrieval in a task thought to require hippocampal pattern separation, context-object discrimination, was strongly impaired in LPS-treated rats in the absence of any gross effects on exploratory activity or motivation. These data show that LPS administration does not impair memory retrieval in all hippocampus-dependent tasks, and support the hypothesis that acute neuroinflammation impairs context discrimination memory via disruption of pattern separation processes in hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.
Relative frequencies of seismic main shocks after strong shocks in Italy
NASA Astrophysics Data System (ADS)
Gasperini, Paolo; Lolli, Barbara; Vannucci, Gianfranco
2016-10-01
We analysed a catalogue of Italian earthquakes, covering 55 yr of data from 1960 to 2014 with magnitudes homogeneously converted to Mw, to compute the time-dependent relative frequencies with which strong seismic shocks (4.0 ≤ Mw < 5.0), widely felt by the population, have been followed by main shocks (Mw ≥ 5.0) that threatened the health and the properties of the persons living in the epicentral area. Assuming the stationarity of the seismic release properties, such frequencies are estimates of the probabilities of potentially destructive shocks after the occurrence of future strong shocks. We compared them with the time-independent relative frequencies of random occurrence in terms of the frequency gain that is the ratio between the time-dependent and time-independent relative frequencies. The time-dependent relative frequencies vary from less than 1 per cent to about 20 per cent, depending on the magnitudes of the shocks and the time windows considered (ranging from minutes to years). They remain almost constant for a few hours after the strong shock and then decrease with time logarithmically. Strong earthquakes (with Mw ≥ 6.0) mainly occurred within two or three months of the strong shock. The frequency gains vary from about 10 000 for very short time intervals to less than 10 for a time interval of 2 yr. Only about 1/3 of main shocks were preceded by at least a strong shock in the previous day and about 1/2 in the previous month.
Influence of addition of calcium sulfate dihydrate on drying of autoclaved aerated concrete
NASA Astrophysics Data System (ADS)
Małaszkiewicz, Dorota; Chojnowski, Jacek
2017-11-01
The quality of the autoclaved aerated concrete (AAC) strongly depends on the chemical composition of the raw materials, as well as on the process of the hydrothermal reaction during autoclaving. Performance parameters depend on material structure: fine micron-scale matrix porosity generated by the packing of thin tobermorite plates and coarse aeration pores arising from the foaming of wet mix. In this study the binder varied in calcium sulfate dihydrate (CaSO4ṡ2H2O) content. Five series of AAC specimens were produced, with gypsum content 0; 0.55; 1.15; 2.3 and 3.5% of dry mass respectively. AAC units were produced in UNIPOL technology. The study presents experimental results of AAC moisture stabilization. The initial moisture content was determined directly after autoclaving. Slower drying process was observed for samples containing over 2% of gypsum. Whereas other performance parameters, compressive and tensile strength, as well as water absorption and capillary rise, were significantly better comparing to the reference AAC samples.
Effects of laser-magnetic blood irradiation in vivo
NASA Astrophysics Data System (ADS)
Zalesskaya, Galina; Ulaschik, Vladimir; Kuchinsky, Andrej; Galay, Olga
2007-06-01
Laser-magnetic field action on blood in vivo was studied within a range 440-650 nm. The primary mechanisms of laser-magnetic blood irradiation in vivo were studied at (1) laser and non-laser irradiation with light of various wavelengths, (2) autohemo-magnetic-therapy, (3) multicolored over-vein irradiation of the blood, (4) the laser-magnetic field actions. Hemoglobin is considered as primary photoacceptor of radiation. The dependence of effectiveness of laser action on light wavelength was compared with known action spectra for blood photostimulation. Magnetic field enhancement of the laser- induced reactions was discussed as result of magnetic field influence on ferromagnetic hem inclusions and on a structure of hemoglobin peptide chains. Hemoglobin oxygenation or deoxygenation processes were analyzed as a first stage of the therapeutic effects depending on a preceding hemoglobin oxygenation degree at pathological state. The laser- magnetic irradiation causes tendency to the normalization of these process. It is proposed that the secondary reactions are initiated by reversible structural changes of erythrocytes membrane caused the strong hemoglobin absorption.
Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways
NASA Astrophysics Data System (ADS)
Chung, Won-Suk; Clarke, Laura E.; Wang, Gordon X.; Stafford, Benjamin K.; Sher, Alexander; Chakraborty, Chandrani; Joung, Julia; Foo, Lynette C.; Thompson, Andrew; Chen, Chinfei; Smith, Stephen J.; Barres, Ben A.
2013-12-01
To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudman, K.; Dickerson, P.; Byler, Darrin David
The initial microstructure of an oxide fuel can play a key role in its performance. At low burn-ups, the diffusion of fission products can depend strongly on grain size and grain boundary (GB) characteristics, which in turn depend on processing conditions and oxygen stoichiometry. Serial sectioning techniques using Focused Ion Beam were developed to obtain Electron Backscatter Diffraction (EBSD) data for depleted UO2 pellets that were processed to obtain 3 different oxygen stoichiometries. The EBSD data were used to create 3D microstructure reconstructions and to gather statistical information on the grain and GB crystallography, with emphasis on identifying the charactermore » (twist, tilt, mixed) for GBs that meet the Coincident Site Lattice (CSL) criterion as well as GBs with the most common misorientation angles. Data on dihedral angles at triple points were also collected. The results were compared across different samples to understand effects of oxygen content on microstructure evolution.« less
NASA Astrophysics Data System (ADS)
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
Eaton, W W; Muntaner, C; Bovasso, G; Smith, C
2001-09-01
This paper assesses the hypothesis that depressive syndrome is associated with socioeconomic status, using longitudinal data from the Baltimore Epidemiologic Catchment Area Followup. Socioeconomic measures include those used in most studies of status attainment, as well as measures of financial dependence, non-job income, and work environment. Analyses include inter- and intra-generational mobility, and replicate the basic aspects of the status attainment process, as well as psychiatric epidemiologic findings regarding gender, family history of depression, life events, and depressive syndrome. But the involvement of depressive syndrome in the process of status attainment, either as cause or consequence, is small and not statistically significant. There are strong effects of financial dependence and work environment on depressive syndrome. The findings shed doubt on the utility of the causation/selection/drift model for depression, to the extent it is based on linear relationships and socioeconomic rank at the macro level, while lending credibility to social-psychologically oriented theories of work environment, poverty, and depression.
A Triadic Neurocognitive Approach to Addiction for Clinical Interventions
Noël, Xavier; Brevers, Damien; Bechara, Antoine
2013-01-01
According to the triadic neurocognitive model of addiction to drugs (e.g., cocaine) and non-drugs (e.g., gambling), weakened “willpower” associated with these behaviors is the product of an abnormal functioning in one or more of three key neural and cognitive systems: (1) an amygdala-striatum dependent system mediating automatic, habitual, and salient behaviors; (2) a prefrontal cortex dependent system important for self-regulation and forecasting the future consequences of a behavior; and (3) an insula dependent system for the reception of interoceptive signals and their translation into feeling states (such as urge and craving), which in turn plays a strong influential role in decision-making and impulse control processes related to uncertainty, risk, and reward. The described three-systems account for poor decision-making (i.e., prioritizing short-term consequences of a decisional option) and stimulus-driven actions, thus leading to a more elevated risk for relapse. Finally, this article elaborates on the need for “personalized” clinical model-based interventions targeting interactions between implicit processes, interoceptive signaling, and supervisory function aimed at helping individuals become less governed by immediate situations and automatic pre-potent responses, and more influenced by systems involved in the pursuit of future valued goals. PMID:24409155
Population density of North American elk: effects on plant diversity.
Stewart, Kelley M; Bowyer, R Terry; Kie, John G; Dick, Brian L; Ruess, Roger W
2009-08-01
Large, herbivorous mammals have profound effects on ecosystem structure and function and often act as keystone species in ecosystems they inhabit. Density-dependent processes associated with population structure of large mammals may interact with ecosystem functioning to increase or decrease biodiversity, depending on the relationship of herbivore populations relative to the carrying capacity (K) of the ecosystem. We tested for indirect effects of population density of large herbivores on plant species richness and diversity in a montane ecosystem, where increased net aboveground primary productivity (NAPP) in response to low levels of herbivory has been reported. We documented a positive, linear relationship between plant-species diversity and richness with NAPP. Structural equation modeling revealed significant indirect relationships between population density of herbivores, NAPP, and species diversity. We observed an indirect effect of density-dependent processes in large, herbivorous mammals and species diversity of plants through changes in NAPP in this montane ecosystem. Changes in species diversity of plants in response to herbivory may be more indirect in ecosystems with long histories of herbivory. Those subtle or indirect effects of herbivory may have strong effects on ecosystem functioning, but may be overlooked in plant communities that are relatively resilient to herbivory.
Process-independent strong running coupling
Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis; ...
2017-09-25
Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less
NMR (Nuclear Magnetic Resonance) and macromolecular migration in a melt or in concentrated solutions
NASA Technical Reports Server (NTRS)
Addad, J. P. C.
1983-01-01
The purpose of this paper is to analyze the migration process of long polymer molecules in a melt or in concentrated solutions as it may be observed from the dynamics of the transverse magnetization of nuclear spins linked to these chains. The low frequency viscoelastic relaxation of polymer systems is known to be mainly controlled by the mechanism of dissociation of topological constraints excited on chains and which are called entanglements. This mechanism exhibits a strong dependence upon the chain molecular weight. These topological constraints also govern the diffusion process of polymer chains. So, the accurate description of the diffusion motion of a chain may be a convenient way to characterize disentanglement processes necessarily involved in any model proposed to explain viscoelastic effects.
The numerical modelling of mixing phenomena of nanofluids in passive micromixers
NASA Astrophysics Data System (ADS)
Milotin, R.; Lelea, D.
2018-01-01
The paper deals with the rapid mixing phenomena in micro-mixing devices with four tangential injections and converging tube, considering nanoparticles and water as the base fluid. Several parameters like Reynolds number (Re = 6 - 284) or fluid temperature are considered in order to optimize the process and obtain fundamental insight in mixing phenomena. The set of partial differential equations is considered based on conservation of momentum and species. Commercial package software Ansys-Fluent is used for solution of differential equations, based on a finite volume method. The results reveal that mixing index and mixing process is strongly dependent both on Reynolds number and heat flux. Moreover there is a certain Reynolds number when flow instabilities are generated that intensify the mixing process due to the tangential injections of the fluids.
Intervalley double resonance processes in MoS2
NASA Astrophysics Data System (ADS)
Wang, Yuanxi; Carvalho, Bruno; Malard, Leandro; Fantini, Cristiano; Crespi, Vincent; Pimenta, Marcos
Intervalley scattering plays a significant role in electronic energy dissipation in semiconductors. We investigate the intervalley scattering of monolayer and few-layer MoS2, by combining density functional theory calculations and resonant Raman spectroscopy probed by up to 20 laser excitation energies. We observe that two Raman peaks within 420-460 cm-1 are dispersive over a small range of laser energy, a clear signature of second-order processes involving intervalley scattering. Both modes involve LA and TA phonons at or near the K point. A third Raman peak at 466 cm-1 shows a strong intensity dependence on the layer number and is assigned 2LA(M). Our results invalidate previous Raman peak assignment proposals and open up a better understanding of double resonance processes in transition metal dichalcogenides.
Process-independent strong running coupling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binosi, Daniele; Mezrag, Cedric; Papavassiliou, Joannis
Here, we unify two widely different approaches to understanding the infrared behavior of quantum chromodynamics (QCD), one essentially phenomenological, based on data, and the other computational, realized via quantum field equations in the continuum theory. Using the latter, we explain and calculate a process-independent running-coupling for QCD, a new type of effective charge that is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which provides one of the most basic constraints on our knowledge of nucleon spin structure. As a result, thismore » reveals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD's Gell-Mann–Low effective charge.« less
Sparrow, Joshua
2016-11-01
The infant mental health field can amplify its effects when it extends its purview beyond the dyad to the larger contexts in which infants and adult caregivers interact and develop over time. Within health, mental health, education, and other human service organizations, the quality of relationships is a critical variable in the individual-level outcomes that such organizations seek. The goals of this work and the means for accomplishing them are highly dependent on human qualities and interactions that are shaped by organizational processes. In communities, too, processes that shape relationships also strongly influence child-, family-, and community-level outcomes. The Touchpoints approach to reflective practice can guide relational processes among professionals, parents, and infants in organizations and communities that influence these outcomes. © 2016 Michigan Association for Infant Mental Health.
Coherent control of strong-field two-pulse ionization of Rydberg atoms.
Fedorov, M; Poluektov, N
2000-02-28
Strong-field ionization of Rydberg atoms is investigated in its dependence on phase features of the initial coherent population of Rydberg levels. In the case of a resonance between Rydberg levels and some lower-energy atomic level (V-type transitions), this dependence is shown to be very strong: by a proper choice of the initial population an atom can be made either completely or very little ionized by a strong laser pulse. It is shown that phase features of the initial coherent population of Rydberg levels and the ionization yield can be efficiently controlled in a scheme of ionization by two strong laser pulses with a varying delay time between them.
Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells
NASA Astrophysics Data System (ADS)
Gunawan, Oki; Todorov, Teodor K.; Mitzi, David B.
2010-12-01
We present a device characterization study for hydrazine-processed kesterite Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with a focus on pinpointing the main loss mechanisms limiting device efficiency. Temperature-dependent study and time-resolved photoluminescence spectroscopy on these cells, in comparison to analogous studies on a reference Cu(In,Ga)(Se,S)2 (CIGS) cell, reveal strong recombination loss at the CZTSSe/CdS interface, very low minority-carrier lifetimes, and high series resistance that diverges at low temperature. These findings help identify the key areas for improvement of these CZTSSe cells in the quest for a high-performance indium- and tellurium-free solar cell.
Liu, Jin; Dai, Qiao-Feng; Huang, Xu-Guang; Wu, Li-Jun; Guo, Qi; Hu, Wei; Yang, Xiang-Bo; Lan, Sheng; Gopal, Achanta Venu; Trofimov, Vyacheslav A
2008-11-15
We investigate the dynamics of optical matter creation and annihilation in a colloidal liquid that was employed to construct an all-optical switch. It is revealed that the switching-on process can be characterized by the Fermi-Dirac distribution function, while the switching-off process can be described by a steady state followed by a single exponential decay. The phase transition times exhibit a strong dependence on trapping power. With an increasing trapping power, while the switching-on time decreases rapidly, the switch-off time increases significantly, indicating the effects of optical binding and van der Waals force on the lifetime of the optical matter.
Degree Correlations Optimize Neuronal Network Sensitivity to Sub-Threshold Stimuli
Schmeltzer, Christian; Kihara, Alexandre Hiroaki; Sokolov, Igor Michailovitsch; Rüdiger, Sten
2015-01-01
Information processing in the brain crucially depends on the topology of the neuronal connections. We investigate how the topology influences the response of a population of leaky integrate-and-fire neurons to a stimulus. We devise a method to calculate firing rates from a self-consistent system of equations taking into account the degree distribution and degree correlations in the network. We show that assortative degree correlations strongly improve the sensitivity for weak stimuli and propose that such networks possess an advantage in signal processing. We moreover find that there exists an optimum in assortativity at an intermediate level leading to a maximum in input/output mutual information. PMID:26115374
Young, Steven L.
2013-01-01
Embryo attachment and implantation is critical to successful reproduction of all eutherian mammals, including humans; a better understanding of these processes could lead to improved infertility treatments and novel contraceptive methods. Experience with assisted reproduction, especially oocyte donation cycles, has established that despite the diverse set of hormones produced by the ovary in a cycle-dependent fashion, the sequential actions of only two of them, oestrogen and progesterone, are sufficient to prepare a highly receptive endometrium in humans. Further investigation on the endometrial actions of these two hormones is currently providing significant insight into the implantation process in women, strongly suggesting that an abnormal response to progesterone underlies infertility in some patients. PMID:23933037
Relativistic electron plasma oscillations in an inhomogeneous ion background
NASA Astrophysics Data System (ADS)
Karmakar, Mithun; Maity, Chandan; Chakrabarti, Nikhil
2018-06-01
The combined effect of relativistic electron mass variation and background ion inhomogeneity on the phase mixing process of large amplitude electron oscillations in cold plasmas have been analyzed by using Lagrangian coordinates. An inhomogeneity in the ion density is assumed to be time-independent but spatially periodic, and a periodic perturbation in the electron density is considered as well. An approximate space-time dependent solution is obtained in the weakly-relativistic limit by employing the Bogolyubov and Krylov method of averaging. It is shown that the phase mixing process of relativistically corrected electron oscillations is strongly influenced by the presence of a pre-existing ion density ripple in the plasma background.
NASA Technical Reports Server (NTRS)
Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.
2005-01-01
A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirakawa, Maho; Sekine, Shuichi; Tanaka, Ayaka
The risk of drug-induced liver injury (DILI) is of great concern to the pharmaceutical industry. It is well-known that metabolic activation of drugs to form toxic metabolites (TMs) is strongly associated with DILI onset. Drug-induced mitochondrial dysfunction is also strongly associated with increased risk of DILI. However, it is difficult to determine the target of TMs associated with exacerbation of DILI because of difficulties in identifying and purifying TMs. In this study, we propose a sequential in vitro assay system to assess TM formation and their ability to induce mitochondrial permeability transition (MPT) in a one-pot process. In this assaymore » system, freshly-isolated rat liver mitochondria were incubated with reaction solutions of 44 test drugs preincubated with liver microsomes in the presence or absence of NADPH; then, NADPH-dependent MPT pore opening was assessed as mitochondrial swelling. In this assay system, several hepatotoxic drugs, including benzbromarone (BBR), significantly induced MPT in a NADPH-dependent manner. We investigated the rationality of using BBR as a model drug, since it showed the most prominent MPT in our assay system. Both the production of a candidate toxic metabolite of BBR (1′,6-(OH){sub 2} BBR) and NADPH-dependent MPT were inhibited by several cytochrome P450 (CYP) inhibitors (clotrimazole and SKF-525A, 100 μM). In summary, this assay system can be used to evaluate comprehensive metabolite-dependent MPT without identification or purification of metabolites. - Highlights: • We constructed a sequential assay system for toxic metabolite induced MPT in one pot. • 14 drugs (e.g. benzbromarone (BBR)) induced toxic metabolite dependent MPT. • Both the production of toxic metabolite and MPT could be inhibited by CYP inhibitors. • This system could evaluate the comprehensive MPT without purification of metabolites.« less
Demographic responses to weather fluctuations are context dependent in a long-lived amphibian.
Cayuela, Hugo; Arsovski, Dragan; Thirion, Jean-Marc; Bonnaire, Eric; Pichenot, Julian; Boitaud, Sylvain; Miaud, Claude; Joly, Pierre; Besnard, Aurélien
2016-08-01
Weather fluctuations have been demonstrated to affect demographic traits in many species. In long-lived organisms, their impact on adult survival might be buffered by the evolution of traits that reduce variation in interannual adult survival. For example, skipping breeding is an effective behavioral mechanism that may limit yearly variation in adult survival when harsh weather conditions occur; however, this in turn would likely lead to strong variation in recruitment. Yet, only a few studies to date have examined the impact of weather variation on survival, recruitment and breeding probability simultaneously in different populations of the same species. To fill this gap, we studied the impact of spring temperatures and spring rainfall on survival, on reproductive skipping behavior and on recruitment in five populations of a long-lived amphibian, the yellow-bellied toad (Bombina variegata). Based on capture-recapture data, our findings demonstrate that survival depends on interactions between age, population and weather variation. Varying weather conditions in the spring result in strong variation in the survival of immature toads, whereas they have little effect on adult toads. Breeding probability depends on both the individual's previous reproductive status and on the weather conditions during the current breeding season, leading to high interannual variation in recruitment. Crucially, we found that the impact of weather variation on demographic traits is largely context dependent and may thus differ sharply between populations. Our results suggest that studies predicting the impact of climate change on population dynamics should be taken with caution when the relationship between climate and demographic traits is established using only one population or few populations. We therefore highly recommend further research that includes surveys replicated in a substantial number of populations to account for context-dependent variation in demographic processes. © 2016 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Jacques, Diederik; Gérard, Fréderic; Mayer, Uli; Simunek, Jirka; Leterme, Bertrand
2016-04-01
A large number of organic matter degradation, CO2 transport and dissolved organic matter models have been developed during the last decades. However, organic matter degradation models are in many cases strictly hard-coded in terms of organic pools, degradation kinetics and dependency on environmental variables. The scientific input of the model user is typically limited to the adjustment of input parameters. In addition, the coupling with geochemical soil processes including aqueous speciation, pH-dependent sorption and colloid-facilitated transport are not incorporated in many of these models, strongly limiting the scope of their application. Furthermore, the most comprehensive organic matter degradation models are combined with simplified representations of flow and transport processes in the soil system. We illustrate the capability of generic reactive transport codes to overcome these shortcomings. The formulations of reactive transport codes include a physics-based continuum representation of flow and transport processes, while biogeochemical reactions can be described as equilibrium processes constrained by thermodynamic principles and/or kinetic reaction networks. The flexibility of these type of codes allows for straight-forward extension of reaction networks, permits the inclusion of new model components (e.g.: organic matter pools, rate equations, parameter dependency on environmental conditions) and in such a way facilitates an application-tailored implementation of organic matter degradation models and related processes. A numerical benchmark involving two reactive transport codes (HPx and MIN3P) demonstrates how the process-based simulation of transient variably saturated water flow (Richards equation), solute transport (advection-dispersion equation), heat transfer and diffusion in the gas phase can be combined with a flexible implementation of a soil organic matter degradation model. The benchmark includes the production of leachable organic matter and inorganic carbon in the aqueous and gaseous phases, as well as different decomposition functions with first-order, linear dependence or nonlinear dependence on a biomass pool. In addition, we show how processes such as local bioturbation (bio-diffusion) can be included implicitly through a Fickian formulation of transport of soil organic matter. Coupling soil organic matter models with generic and flexible reactive transport codes offers a valuable tool to enhance insights into coupled physico-chemical processes at different scales within the scope of C-biogeochemical cycles, possibly linked with other chemical elements such as plant nutrients and pollutants.
NASA Astrophysics Data System (ADS)
Wu, Hong-Zhang; Zhong, Qing-Hua; Bandaru, Sateesh; Liu, Jin; Lau, Woon Ming; Li, Li-Li; Wang, Zhenling
2018-04-01
The optical properties and condensation degree (structure) of polymeric g-C3N4 depend strongly on the process temperature. For polymeric g-C3N4, its structure and condensation degree depend on the structure of molecular strand(s). Here, the formation and electronic structure properties of the g-C3N4 nanoribbon are investigated by studying the polymerization and crystallinity of molecular strand(s) employing first-principle density functional theory. The calculations show that the width of the molecular strand has a significant effect on the electronic structure of polymerized and crystallized g-C3N4 nanoribbons, a conclusion which would be indirect evidence that the electronic structure depends on the structure of g-C3N4. The edge shape also has a distinct effect on the electronic structure of the crystallized g-C3N4 nanoribbon. Furthermore, the conductive band minimum and valence band maximum of the polymeric g-C3N4 nanoribbon show a strong localization, which is in good agreement with the quasi-monomer characters. In addition, molecular strands prefer to grow along the planar direction on graphene. These results provide new insight on the properties of the g-C3N4 nanoribbon and the relationship between the structure and properties of g-C3N4.
Falciglia, Pietro P; Puccio, Valentina; Romano, Stefano; Vagliasindi, Federico G A
2015-05-01
This work focuses on the stabilisation/solidification (S/S) of radionuclide-polluted soils at different (232)Th levels using Portland cement alone and with barite aggregates. The potential of S/S was assessed applying a full testing protocol and calculating γ-radiation shielding (γRS) index, that included the measurement of soil radioactivity before and after the S/S as a function of the emission energy and soil contamination level. The results indicate that setting processes are strongly dependent on the contaminant concentration, and for contamination level higher than 5%, setting time values longer than 72 h. The addition of barite aggregates to the cement gout leads to a slight improvement of the S/S performance in terms of durability and contaminant leaching but reduces the mechanical resistance of the treated soils samples. Barite addition also causes an increase in the γ-rays shielding properties of the S/S treatment up to about 20%. Gamma-ray measurements show that γRS strongly depends on the energy, and that the radioactivity with the contamination level was governed by a linear trend, while, γRS index does not depend on the radionuclide concentration. Results allow the calculated γRS values and those available from other experiments to be applied to hazard radioactive soil contaminations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wu, Hong-Zhang; Zhong, Qing-Hua; Bandaru, Sateesh; Liu, Jin; Lau, Woon Ming; Li, Li-Li; Wang, Zhenling
2018-04-18
The optical properties and condensation degree (structure) of polymeric g-C 3 N 4 depend strongly on the process temperature. For polymeric g-C 3 N 4 , its structure and condensation degree depend on the structure of molecular strand(s). Here, the formation and electronic structure properties of the g-C 3 N 4 nanoribbon are investigated by studying the polymerization and crystallinity of molecular strand(s) employing first-principle density functional theory. The calculations show that the width of the molecular strand has a significant effect on the electronic structure of polymerized and crystallized g-C 3 N 4 nanoribbons, a conclusion which would be indirect evidence that the electronic structure depends on the structure of g-C 3 N 4 . The edge shape also has a distinct effect on the electronic structure of the crystallized g-C 3 N 4 nanoribbon. Furthermore, the conductive band minimum and valence band maximum of the polymeric g-C 3 N 4 nanoribbon show a strong localization, which is in good agreement with the quasi-monomer characters. In addition, molecular strands prefer to grow along the planar direction on graphene. These results provide new insight on the properties of the g-C 3 N 4 nanoribbon and the relationship between the structure and properties of g-C 3 N 4 .
Variability of CO2 concentrations and fluxes in and above an urban street canyon
NASA Astrophysics Data System (ADS)
Lietzke, Björn; Vogt, Roland
2013-08-01
The variability of CO2 concentrations and fluxes in dense urban environments is high due to the inherent heterogeneity of these complex areas and their spatio-temporally variable anthropogenic sources. With a focus on micro- to local-scale CO2-exchange processes, measurements were conducted in a street canyon in the city of Basel, Switzerland in 2010. CO2 fluxes were sampled at the top of the canyon (19 m) and at 39 m while vertical CO2 concentration profiles were measured in the center and at a wall of the canyon. CO2 concentration distributions in the street canyon and exchange processes with the layers above show, apart from expected general diurnal patterns due mixing layer heights, a strong dependence on wind direction relative to the canyon. As a consequence of the resulting corkscrew-like canyon vortex, accumulation of CO2 inside the canyon is modulated with distinct distribution patterns. The evaluation of diurnal traffic data provides good explanations for the vertical and horizontal differences in CO2-distribution inside the canyon. Diurnal flux characteristics at the top of the canyon can almost solely be explained with traffic density expressed by the strong linear dependence. Even the diurnal course of the flux at 39 m shows a remarkable relationship to traffic density for east wind conditions while, for west wind situations, a change toward source areas with lower emissions leads to a reduced flux.
Formation mechanism of monodispersed spherical core-shell ceria/polymer hybrid nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izu, Noriya, E-mail: n-izu@aist.go.jp; Uchida, Toshio; Matsubara, Ichiro
2011-08-15
Graphical abstract: The formation mechanism for core-shell nanoparticles is considered to be as follows: nucleation and particle growth occur simultaneously (left square); very slow particle growth occurs (middle square). Highlights: {yields} The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the PVP molecular weight. {yields} The size of the nanoparticles increased by a 2-step process as the reflux heating time increased. {yields} The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. -- Abstract: Very unique core-shell ceria (ceriummore » oxide)/polymer hybrid nanoparticles that have monodispersed spherical structures and are easily dispersed in water or alcohol without the need for a dispersant were reported recently. The formation mechanism of the unique nanoparticles, however, was not clear. In order to clarify the formation mechanism, these nanoparticles were prepared using a polyol method (reflux heating) under varied conditions of temperature, time, and concentration and molecular weight of added polymer (poly(vinylpyrrolidone)). The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the poly(vinylpyrrolidone) molecular weight. Furthermore, the size of the nanoparticles increased by a 2-step process as the reflux heating time increased. The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. From these results, the formation mechanism was discussed and proposed.« less
NASA Astrophysics Data System (ADS)
Hansen, Maximilian; Scholz, Denis; Froeschmann, Marie-Louise; Schöne, Bernd R.; Spötl, Christoph
2017-08-01
Speleothem stable carbon isotope (δ13C) records provide important paleoclimate and paleo-environmental information. However, the interpretation of these records in terms of past climate or environmental change remains challenging because of various processes affecting the δ13C signals. A process that has only been sparsely discussed so far is carbon isotope exchange between the gaseous CO2 of the cave atmosphere and the dissolved inorganic carbon (DIC) contained in the thin solution film on the speleothem, which may be particularly important for strongly ventilated caves. Here we present a novel, complete reaction diffusion model describing carbon isotope exchange between gaseous CO2 and the DIC in thin solution films. The model considers all parameters affecting carbon isotope exchange, such as diffusion into, out of and within the film, the chemical reactions occurring within the film as well as the dependence of diffusion and the reaction rates on isotopic mass and temperature. To verify the model, we conducted laboratory experiments under completely controlled, cave-analogue conditions at three different temperatures (10, 20, 30 °C). We exposed thin (≈0.1 mm) films of a NaHCO3 solution with four different concentrations (1, 2, 5 and 10 mmol/l, respectively) to a nitrogen atmosphere containing a specific amount of CO2 (1000 and 3000 ppmV). The experimentally observed temporal evolution of the pH and δ13C values of the DIC is in good agreement with the model predictions. The carbon isotope exchange times in our experiments range from ca. 200 to ca. 16,000 s and strongly depend on temperature, film thickness, atmospheric pCO2 and the concentration of DIC. For low pCO2 (between 500 and 1000 ppmV, as for strongly ventilated caves), our time constants are substantially lower than those derived in a previous study, suggesting a potentially stronger influence of carbon isotope exchange on speleothem δ13C values. However, this process should only have an influence in case of very long drip intervals and slow precipitation rates.
Amplification of a seed pumped by a chirped laser in the strong coupling Brillouin regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schluck, F.; Lehmann, G.; Spatschek, K. H.
Seed amplification via Brillouin backscattering of a long pump laser-pulse is considered. The interaction takes place in the so called strong coupling regime. Pump chirping is applied to mitigate spontaneous Raman backscattering of the pump before interacting with the seed. The strong coupling regime facilitates stronger exponential growth and narrower seeds compared to the so called weak coupling regime, although in the latter the scaling with pump amplitude is stronger. Strong coupling is achieved when the pump laser amplitude exceeds a certain threshold. It is shown how the chirp influences both the linear as well as the nonlinear amplification process.more » First, linear amplification as well as the seed profiles are determined in dependence of the chirping rate. In contrast to the weak coupling situation, the evolution is not symmetric with respect to the sign of the chirping rate. In the nonlinear stage of the amplification, we find an intrinsic chirp of the seed pulse even for an un-chirped pump. We show that chirping the pump may have a strong influence on the shape of the seed in the nonlinear amplification phase. Also, the influence of pump chirp on the efficiency of Brillouin seed amplification is discussed.« less
Longitudinal conductivity in strong magnetic field in perturbative QCD: Complete leading order
NASA Astrophysics Data System (ADS)
Hattori, Koichi; Li, Shiyong; Satow, Daisuke; Yee, Ho-Ung
2017-04-01
We compute the longitudinal electrical conductivity in the presence of a strong background magnetic field in complete leading order of perturbative QCD, based on the assumed hierarchy of scales αse B ≪(mq2,T2)≪e B . We formulate an effective kinetic theory of lowest Landau level quarks with the leading order QCD collision term arising from 1-to-2 processes that become possible due to 1 +1 dimensional Landau level kinematics. In the small mq/T ≪1 regime, the longitudinal conductivity behaves as σz z˜e2(e B )T /(αsmq2log (T /mq)) , where the quark mass dependence can be understood from the chiral anomaly with the axial charge relaxation provided by a finite quark mass mq. We also present parametric estimates for the longitudinal and transverse "color conductivities" in the presence of the strong magnetic field, by computing dominant damping rates for quarks and gluons that are responsible for color charge transportation. We observe that the longitudinal color conductivity is enhanced by the strong magnetic field, which implies that the sphaleron transition rate in perturbative QCD is suppressed by the strong magnetic field due to the enhanced Lenz's law in color field dynamics.
The rotational phase dependence of magnetar bursts
NASA Astrophysics Data System (ADS)
Elenbaas, C.; Watts, A. L.; Huppenkothen, D.
2018-05-01
The trigger for the short bursts observed in γ-rays from many magnetar sources remains unknown. One particular open question in this context is the localization of burst emission to a singular active region or a larger area across the neutron star. While several observational studies have attempted to investigate this question by looking at the phase dependence of burst properties, results have been mixed. At the same time, it is not obvious a priori that bursts from a localized active region would actually give rise to a detectable phase dependence, taking into account issues such as geometry, relativistic effects, and intrinsic burst properties such brightness and duration. In this paper, we build a simple theoretical model to investigate the circumstances under which the latter effects could affect detectability of dependence of burst emission on rotational phase. We find that even for strongly phase-dependent emission, inferred burst properties may not show a rotational phase dependence, depending on the geometry of the system and the observer. Furthermore, the observed properties of bursts with durations short as 10-20 per cent of the spin period can vary strongly depending on the rotational phase at which the burst was emitted. We also show that detectability of a rotational phase dependence depends strongly on the minimum number of bursts observed, and find that existing burst samples may simply be too small to rule out a phase dependence.
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.; ...
2016-04-07
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
Observation of quantum interferences via light-induced conical intersections in diatomic molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natan, Adi; Ware, Matthew R.; Prabhudesai, Vaibhav S.
We observe energy-dependent angle-resolved diffraction patterns in protons from strong-field dissociation of the molecular hydrogen ion H + 2. The interference is a characteristic of dissociation around a laser-induced conical intersection (LICI), which is a point of contact between two surfaces in the dressed 2-dimensional Born-Oppenheimer potential energy landscape of a diatomic molecule in a strong laser field. The interference magnitude and angular period depend strongly on the energy difference between the initial state and the LICI, consistent with coherent diffraction around a cone-shaped potential barrier whose width and thickness depend on the relative energy of the initial state andmore » the cone apex. As a result, these findings are supported by numerical solutions of the time-dependent Schrodinger equation for similar experimental conditions.« less
On the composition dependence of faceting behaviour of primary phases during solidification
NASA Astrophysics Data System (ADS)
Saroch, Mamta; Dubey, K. S.; Ramachandrarao, P.
1993-02-01
The entropy of solution of the primary aluminium-rich phase in the aluminium-tin melts has been evaluated as a function of temperature using available thermodynamic and phase equilibria data with a view to understand the faceting behaviour of this phase. It was noticed that the range of compositions in which alloys of aluminium and tin yield a faceted primary phase is correlated with the domain of compositions over which the entropy of solution shows a strong temperature dependence. It is demonstrated that both a high value of the entropy of solution and a strong temperature dependence of it are essential for providing faceting. A strong temperature dependence of the entropy of solution is in turn a consequence of negligible liquidus slope and existence of retrograde solubility. The AgBi and AgPb systems have similar features.
NASA Astrophysics Data System (ADS)
Gieseler, J.; Heber, B.; Herbst, K.
2017-11-01
On their way through the heliosphere, galactic cosmic rays (GCRs) are modulated by various effects before they can be detected at Earth. This process can be described by the Parker equation, which calculates the phase space distribution of GCRs depending on the main modulation processes: convection, drifts, diffusion, and adiabatic energy changes. A first-order approximation of this equation is the force field approach, reducing it to a one-parameter dependency, the solar modulation potential ϕ. Utilizing this approach, it is possible to reconstruct ϕ from ground-based and spacecraft measurements. However, it has been shown previously that ϕ depends not only on the local interstellar spectrum (LIS) but also on the energy range of interest. We have investigated this energy dependence further, using published proton intensity spectra obtained by PAMELA and heavier nuclei measurements from IMP-8 and ACE/CRIS. Our results show severe limitations at lower energies including a strong dependence on the solar magnetic epoch. Based on these findings, we will outline a new tool to describe GCR proton spectra in the energy range from a few hundred MeV to tens of GeV over the last solar cycles. In order to show the importance of our modification, we calculate the global production rates of the cosmogenic radionuclide 10Be which is a proxy for the solar activity ranging back thousands of years.
Soil Response to Global Change: Soil Process Domains and Pedogenic Thresholds (Invited)
NASA Astrophysics Data System (ADS)
Chadwick, O.; Kramer, M. G.; Chorover, J.
2013-12-01
The capacity of soil to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state. The dynamic interplay between stable, well buffered soil process domains and thresholds in soil state and function is a strong determinant of soil response to forcing from global change. In terrestrial ecosystems, edaphic responses are often mediated by availability of water and its flux into and through soils. Water influences soil processes in several ways: it supports biological production, hence proton-donor, electron-donor and complexing-ligand production; it determines the advective removal of dissolution products, and it can promote anoxia that leads microorganisms to utilize alternative electron acceptors. As a consequence climate patterns strongly influence global distribution of soil, although within region variability is governed by other factors such as landscape age, parent material and human land use. By contrast, soil properties can vary greatly among climate regions, variation which is guided by the functioning of a suite of chemical processes that tend to maintain chemical status quo. This soil 'buffering' involves acid-base reactions as minerals weather and oxidation-reduction reactions that are driven by microbial respiration. At the planetary scale, soil pH provides a reasonable indicator of process domains and varies from about 3.5 to10, globally, although most soils lie between about 4.5 and 8.5. Those that are above 7.5 are strongly buffered by the carbonate system, those that are characterized by neutral pH (7.5-6) are buffered by release of non-hydrolyzing cations from primary minerals and colloid surfaces, and those that are <6 are buffered by hydrolytic aluminum on colloidal surfaces. Alkali and alkaline (with the exception of limestone parent material) soils are usually associated with arid and semiarid conditions, neutral pH soils with young soils in both dry and wet environments and acid soils with wet environments. Furthermore acid soils often have lost much of their easily weatherable primary minerals and their soluble (plant nutrient) ions, and thus much of their ability to buffer against acidity introduced by biological respiration and its products. Acid soils are closer to thermodynamic equilibrium with their near-surface environment and are less vulnerable to change compared with soils that contain a substantial supply of weatherable minerals (young soils) or carbonate minerals (dry soils). The impact of changing seasonal and annual rainfall and evapotranspiration patterns associated with climate change depends on how current pedogenic thresholds manifest across the landscape. We expect that humid soils subjected to drying should undergo less change than arid or semi-arid soils subjected to wetter seasonal conditions. Land-use changes can drive differential responses depending on changing chemistry and porosity. Collectively these factors provide the framework from which to predict and map soil sensivity to global change and climate change in particular.
NASA Astrophysics Data System (ADS)
Thompson, Todd A.; ud-Doula, Asif
2018-06-01
Although initially thought to be promising for production of the r-process nuclei, standard models of neutrino-heated winds from proto-neutron stars (PNSs) do not reach the requisite neutron-to-seed ratio for production of the lanthanides and actinides. However, the abundance distribution created by the r-, rp-, or νp-processes in PNS winds depends sensitively on the entropy and dynamical expansion time-scale of the flow, which may be strongly affected by high magnetic fields. Here, we present results from magnetohydrodynamic simulations of non-rotating neutrino-heated PNS winds with strong dipole magnetic fields from 1014 to 1016 G, and assess their role in altering the conditions for nucleosynthesis. The strong field forms a closed zone and helmet streamer configuration at the equator, with episodic dynamical mass ejections in toroidal plasmoids. We find dramatically enhanced entropy in these regions and conditions favourable for third-peak r-process nucleosynthesis if the wind is neutron-rich. If instead the wind is proton-rich, the conditions will affect the abundances from the νp-process. We quantify the distribution of ejected matter in entropy and dynamical expansion time-scale, and the critical magnetic field strength required to affect the entropy. For B ≳1015 G, we find that ≳10-6 M⊙ and up to ˜10-5 M⊙ of high-entropy material is ejected per highly magnetized neutron star birth in the wind phase, providing a mechanism for prompt heavy element enrichment of the universe. Former binary companions identified within (magnetar-hosting) supernova remnants, the remnants themselves, and runaway stars may exhibit overabundances. We provide a comparison with a semi-analytic model of plasmoid eruption and discuss implications and extensions.
The Validity of Dependence as a Health Outcome Measure in Alzheimer’s Disease
Spackman, D. Eldon; Kadiyala, Srikanth; Neumann, Peter J.; Veenstra, David L.; Sullivan, Sean D.
2013-01-01
Background Relating to Alzheimer’s disease (AD), dependence has been defined as the increased need for assistance due to deterioration in cognition, physical functioning, and behavior. Our objective was to evaluate the association between dependence and measures of functional impairment. Methods Data were compiled by the National Alzheimer’s Coordinating Center. We used multinomial logistic regression to estimate the association between dependence and cognition, physical functioning, and behavior. Results The independent association with dependence was positive. Dependence was most strongly associated with physical functioning. A secondary analysis suggested a strong association of dependence with multiple impairments, as measured by the interaction terms, in more severe patients. Conclusions We find that dependence is simultaneously associated with physical functioning, cognition, and behavior, which support the construct validity of dependence. Dependence might be a more simple measure to explain the multifaceted disease progression of AD and convey the increasing need for care. PMID:23512996
The validity of dependence as a health outcome measure in Alzheimer's disease.
Spackman, D Eldon; Kadiyala, Srikanth; Neumann, Peter J; Veenstra, David L; Sullivan, Sean D
2013-05-01
Relating to Alzheimer's disease (AD), dependence has been defined as the increased need for assistance due to deterioration in cognition, physical functioning, and behavior. Our objective was to evaluate the association between dependence and measures of functional impairment. Data were compiled by the National Alzheimer's Coordinating Center. We used multinomial logistic regression to estimate the association between dependence and cognition, physical functioning, and behavior. The independent association with dependence was positive. Dependence was most strongly associated with physical functioning. A secondary analysis suggested a strong association of dependence with multiple impairments, as measured by the interaction terms, in more severe patients. We find that dependence is simultaneously associated with physical functioning, cognition, and behavior, which support the construct validity of dependence. Dependence might be a more simple measure to explain the multifaceted disease progression of AD and convey the increasing need for care.
The role of the atmospheric electric field in the dust-lifting process
NASA Astrophysics Data System (ADS)
Esposito, F.; Molinaro, R.; Popa, C. I.; Molfese, C.; Cozzolino, F.; Marty, L.; Taj-Eddine, K.; Di Achille, G.; Franzese, G.; Silvestro, S.; Ori, G. G.
2016-05-01
Mineral dust particles represent the most abundant component of atmospheric aerosol in terms of dry mass. They play a key role in climate and climate change, so the study of their emission processes is of utmost importance. Measurements of dust emission into the atmosphere are scarce, so that the dust load is generally estimated using models. It is known that the emission process can generate strong atmospheric electric fields. Starting from the data we acquired in the Sahara desert, here, we show for the first time that depending on the relative humidity conditions, electric fields contribute to increase up to a factor of 10 the amount of particles emitted into the atmosphere. This means that electrical forces and humidity are critical quantities in the dust emission process and should be taken into account in climate and circulation models to obtain more realistic estimations of the dust load in the atmosphere.
The fastest spreader in SIS epidemics on networks
NASA Astrophysics Data System (ADS)
He, Zhidong; Van Mieghem, Piet
2018-05-01
Identifying the fastest spreaders in epidemics on a network helps to ensure an efficient spreading. By ranking the average spreading time for different spreaders, we show that the fastest spreader may change with the effective infection rate of a SIS epidemic process, which means that the time-dependent influence of a node is usually strongly coupled to the dynamic process and the underlying network. With increasing effective infection rate, we illustrate that the fastest spreader changes from the node with the largest degree to the node with the shortest flooding time. (The flooding time is the minimum time needed to reach all other nodes if the process is reduced to a flooding process.) Furthermore, by taking the local topology around the spreader and the average flooding time into account, we propose the spreading efficiency as a metric to quantify the efficiency of a spreader and identify the fastest spreader, which is adaptive to different infection rates in general networks.
Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions.
Delaunay, Rudy; Gatchell, Michael; Rousseau, Patrick; Domaracka, Alicja; Maclot, Sylvain; Wang, Yang; Stockett, Mark H; Chen, Tao; Adoui, Lamri; Alcamí, Manuel; Martín, Fernando; Zettergren, Henning; Cederquist, Henrik; Huber, Bernd A
2015-05-07
The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturn's moon Titan.
Object shape and orientation do not routinely influence performance during language processing.
Rommers, Joost; Meyer, Antje S; Huettig, Falk
2013-11-01
The role of visual representations during language processing remains unclear: They could be activated as a necessary part of the comprehension process, or they could be less crucial and influence performance in a task-dependent manner. In the present experiments, participants read sentences about an object. The sentences implied that the object had a specific shape or orientation. They then either named a picture of that object (Experiments 1 and 3) or decided whether the object had been mentioned in the sentence (Experiment 2). Orientation information did not reliably influence performance in any of the experiments. Shape representations influenced performance most strongly when participants were asked to compare a sentence with a picture or when they were explicitly asked to use mental imagery while reading the sentences. Thus, in contrast to previous claims, implied visual information often does not contribute substantially to the comprehension process during normal reading.
A glimpse of gluons through deeply virtual compton scattering on the proton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Defurne, Maxime; Jimenez-Arguello, A. Marti; Ahmed, Z.
The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process,more » in which the final photon is emitted by the electron rather than the proton. Here, we report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.« less
A glimpse of gluons through deeply virtual compton scattering on the proton
Defurne, Maxime; Jimenez-Arguello, A. Marti; Ahmed, Z.; ...
2017-11-10
The proton is composed of quarks and gluons, bound by the most elusive mechanism of strong interaction called confinement. In this work, the dynamics of quarks and gluons are investigated using deeply virtual Compton scattering (DVCS): produced by a multi-GeV electron, a highly virtual photon scatters off the proton which subsequently radiates a high energy photon. Similarly to holography, measuring not only the magnitude but also the phase of the DVCS amplitude allows to perform 3D images of the internal structure of the proton. The phase is made accessible through the quantum-mechanical interference of DVCS with the Bethe-Heitler (BH) process,more » in which the final photon is emitted by the electron rather than the proton. Here, we report herein the first full determination of the BH-DVCS interference by exploiting the distinct energy dependences of the DVCS and BH amplitudes. In the high energy regime where the scattering process is expected to occur off a single quark in the proton, these accurate measurements show an intriguing sensitivity to gluons, the carriers of the strong interaction.« less
Large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} decay modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishima, Satoshi; Yoshikawa, Tadashi
2004-11-01
We discuss a possibility of large electroweak penguin contribution in B{yields}K{pi} and {pi}{pi} from recent experimental data. The experimental data may be suggesting that there are some discrepancies between the data and theoretical estimation in the branching ratios of them. In B{yields}K{pi} decays, to explain it, a large electroweak penguin contribution and large strong phase differences seem to be needed. The contributions should appear also in B{yields}{pi}{pi}. We show, as an example, a solution to solve the discrepancies in both B{yields}K{pi} and B{yields}{pi}{pi}. However the magnitude of the parameters and the strong phase estimated from experimental data are quite largemore » compared with the theoretical estimations. It may be suggesting some new physics effects are included in these processes. We will have to discuss about the dependence of the new physics. To explain both modes at once, we may need large electroweak penguin contribution with new weak phases and some SU(3) breaking effects by new physics in both QCD and electroweak penguin-type processes.« less
Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion.
Buntkowsky, G; Walaszek, B; Adamczyk, A; Xu, Y; Limbach, H-H; Chaudret, B
2006-04-28
In this paper a quantitative explanation for a diamagnetic ortho/para H2 conversion is given. The description is based on the quantum-mechanical density matrix formalism originally developed by Alexander and Binsch for studies of exchange processes in NMR spectra. Only the nuclear spin system is treated quantum-mechanically. Employing the model of a three spin system, the reactions of the hydrogen gas with the catalysts are treated as a phenomenological rate process, described by a rate constant. Numerical calculations reveal that for nearly all possible geometrical arrangements of the three spin system an efficient spin conversion is obtained. Only in the chemically improbable case of a linear group H-X-H no spin conversion is obtained. The efficiency of the spin conversion depends strongly on the lifetime of the H-X-H complex and on the presence of exchange interactions between the two hydrogens. Even moderate exchange couplings cause a quench of the spin conversion. Thus a sufficiently strong binding of the dihydrogen to the S spin is necessary to render the quenching by the exchange interaction ineffective.