Cerebellar tDCS Modulates Neural Circuits during Semantic Prediction: A Combined tDCS-fMRI Study.
D'Mello, Anila M; Turkeltaub, Peter E; Stoodley, Catherine J
2017-02-08
It has been proposed that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. In language, semantic prediction speeds speech production and comprehension. Right cerebellar lobules VI and VII (including Crus I/II) are engaged during a variety of language processes and are functionally connected with cerebral cortical language networks. Further, right posterolateral cerebellar neuromodulation modifies behavior during predictive language processing. These data are consistent with a role for the cerebellum in semantic processing and semantic prediction. We combined transcranial direct current stimulation (tDCS) and fMRI to assess the behavioral and neural consequences of cerebellar tDCS during a sentence completion task. Task-based and resting-state fMRI data were acquired in healthy human adults ( n = 32; μ = 23.1 years) both before and after 20 min of 1.5 mA anodal ( n = 18) or sham ( n = 14) tDCS applied to the right posterolateral cerebellum. In the sentence completion task, the first four words of the sentence modulated the predictability of the final target word. In some sentences, the preceding context strongly predicted the target word, whereas other sentences were nonpredictive. Completion of predictive sentences increased activation in right Crus I/II of the cerebellum. Relative to sham tDCS, anodal tDCS increased activation in right Crus I/II during semantic prediction and enhanced resting-state functional connectivity between hubs of the reading/language networks. These results are consistent with a role for the right posterolateral cerebellum beyond motor aspects of language, and suggest that cerebellar internal models of linguistic stimuli support semantic prediction. SIGNIFICANCE STATEMENT Cerebellar involvement in language tasks and language networks is now well established, yet the specific cerebellar contribution to language processing remains unclear. It is thought that the cerebellum acquires internal models of mental processes that enable prediction, allowing for the optimization of behavior. Here we combined neuroimaging and neuromodulation to provide evidence that the cerebellum is specifically involved in semantic prediction during sentence processing. We found that activation within right Crus I/II was enhanced when semantic predictions were made, and we show that modulation of this region with transcranial direct current stimulation alters both activation patterns and functional connectivity within whole-brain language networks. For the first time, these data show that cerebellar neuromodulation impacts activation patterns specifically during predictive language processing. Copyright © 2017 the authors 0270-6474/17/371604-10$15.00/0.
Parkin, Jason R; Beaujean, A Alexander
2012-02-01
This study used structural equation modeling to examine the effect of Stratum III (i.e., general intelligence) and Stratum II (i.e., Comprehension-Knowledge, Fluid Reasoning, Short-Term Memory, Processing Speed, and Visual Processing) factors of the Cattell-Horn-Carroll (CHC) cognitive abilities, as operationalized by the Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV; Wechsler, 2003a) subtests, on Quantitative Knowledge, as operationalized by the Wechsler Individual Achievement Test, Second Edition (WIAT-II; Wechsler, 2002) subtests. Participants came from the WISC-IV/WIAT-II linking sample (n=550). We compared models that predicted Quantitative Knowledge using only Stratum III factors, only Stratum II factors, and both Stratum III and Stratum II factors. Results indicated that the model with only the Stratum III factor predicting Quantitative Knowledge best fit the data. Copyright © 2011 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.
1994-01-01
Here, we describe the cloning and characterization of ScII, the second most abundant protein after topoisomerase II, of the chromosome scaffold fraction to be identified. ScII is structurally related to a protein, Smc1p, previously found to be required for accurate chromosome segregation in Saccharomyces cerevisiae. ScII and the other members of the emerging family of SMC1-like proteins are likely to be novel ATPases, with NTP-binding A and B sites separated by two lengthy regions predicted to form an alpha-helical coiled-coil. Analysis of the ScII B site predicted that ScII might use ATP by a mechanism similar to the bacterial recN DNA repair and recombination enzyme. ScII is a mitosis-specific scaffold protein that colocalizes with topoisomerase II in mitotic chromosomes. However, ScII appears not to be associated with the interphase nuclear matrix. ScII might thus play a role in mitotic processes such as chromosome condensation or sister chromatid disjunction, both of which have been previously shown to involve topoisomerase II. PMID:7929577
Inventory Uncertainty Quantification using TENDL Covariance Data in Fispact-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastwood, J.W.; Morgan, J.G.; Sublet, J.-Ch., E-mail: jean-christophe.sublet@ccfe.ac.uk
2015-01-15
The new inventory code Fispact-II provides predictions of inventory, radiological quantities and their uncertainties using nuclear data covariance information. Central to the method is a novel fast pathways search algorithm using directed graphs. The pathways output provides (1) an aid to identifying important reactions, (2) fast estimates of uncertainties, (3) reduced models that retain important nuclides and reactions for use in the code's Monte Carlo sensitivity analysis module. Described are the methods that are being implemented for improving uncertainty predictions, quantification and propagation using the covariance data that the recent nuclear data libraries contain. In the TENDL library, above themore » upper energy of the resolved resonance range, a Monte Carlo method in which the covariance data come from uncertainties of the nuclear model calculations is used. The nuclear data files are read directly by FISPACT-II without any further intermediate processing. Variance and covariance data are processed and used by FISPACT-II to compute uncertainties in collapsed cross sections, and these are in turn used to predict uncertainties in inventories and all derived radiological data.« less
Ge, Shufan; Tu, Yifan; Hu, Ming
2017-01-01
Glucuronidation is the most important phase II metabolic pathway which is responsible for the clearance of many endogenous and exogenous compounds. To better understand the elimination process for compounds undergoing glucuronidation and identify compounds with desirable in vivo pharmacokinetic properties, many efforts have been made to predict in vivo glucuronidation using in vitro data. In this article, we reviewed typical approaches used in previous predictions. The problems and challenges in prediction of glucuronidation were discussed. Besides that different incubation conditions can affect the prediction accuracy, other factors including efflux / uptake transporters, enterohepatic recycling, and deglucuronidation reactions also contribute to the disposition of glucuronides and make the prediction more difficult. PBPK modeling, which can describe more complicated process in vivo, is a promising prediction strategy which may greatly improve the prediction of glucuronidation and potential DDIs involving glucuronidation. Based on previous studies, we proposed a transport-glucuronidation classification system, which was built based on the kinetics of both glucuronidation and transport of the glucuronide. This system could be a very useful tool to achieve better in vivo predictions. PMID:28966903
Venkataraman, Ramesh; Gopichandran, Vijayaprasad; Ranganathan, Lakshmi; Rajagopal, Senthilkumar; Abraham, Babu K; Ramakrishnan, Nagarajan
2018-01-01
Background: Mortality prediction in the Intensive Care Unit (ICU) setting is complex, and there are several scoring systems utilized for this process. The Acute Physiology and Chronic Health Evaluation (APACHE) II has been the most widely used scoring system; although, the more recent APACHE IV is considered an updated and advanced prediction model. However, these two systems may not give similar mortality predictions. Objectives: The aim of this study is to compare the mortality prediction ability of APACHE II and APACHE IV scoring systems among patients admitted to a tertiary care ICU. Methods: In this prospective longitudinal observational study, APACHE II and APACHE IV scores of ICU patients were computed using an online calculator. The outcome of the ICU admissions for all the patients was collected as discharged or deceased. The data were analyzed to compare the discrimination and calibration of the mortality prediction ability of the two scores. Results: Out of the 1670 patients' data analyzed, the area under the receiver operating characteristic of APACHE II score was 0.906 (95% confidence interval [CI] – 0.890–0.992), and APACHE IV score was 0.881 (95% CI – 0.862–0.890). The mean predicted mortality rate of the study population as given by the APACHE II scoring system was 44.8 ± 26.7 and as given by APACHE IV scoring system was 29.1 ± 28.5. The observed mortality rate was 22.4%. Conclusions: The APACHE II and IV scoring systems have comparable discrimination ability, but the calibration of APACHE IV seems to be better than that of APACHE II. There is a need to recalibrate the scales with weights derived from the Indian population. PMID:29910542
Venkataraman, Ramesh; Gopichandran, Vijayaprasad; Ranganathan, Lakshmi; Rajagopal, Senthilkumar; Abraham, Babu K; Ramakrishnan, Nagarajan
2018-05-01
Mortality prediction in the Intensive Care Unit (ICU) setting is complex, and there are several scoring systems utilized for this process. The Acute Physiology and Chronic Health Evaluation (APACHE) II has been the most widely used scoring system; although, the more recent APACHE IV is considered an updated and advanced prediction model. However, these two systems may not give similar mortality predictions. The aim of this study is to compare the mortality prediction ability of APACHE II and APACHE IV scoring systems among patients admitted to a tertiary care ICU. In this prospective longitudinal observational study, APACHE II and APACHE IV scores of ICU patients were computed using an online calculator. The outcome of the ICU admissions for all the patients was collected as discharged or deceased. The data were analyzed to compare the discrimination and calibration of the mortality prediction ability of the two scores. Out of the 1670 patients' data analyzed, the area under the receiver operating characteristic of APACHE II score was 0.906 (95% confidence interval [CI] - 0.890-0.992), and APACHE IV score was 0.881 (95% CI - 0.862-0.890). The mean predicted mortality rate of the study population as given by the APACHE II scoring system was 44.8 ± 26.7 and as given by APACHE IV scoring system was 29.1 ± 28.5. The observed mortality rate was 22.4%. The APACHE II and IV scoring systems have comparable discrimination ability, but the calibration of APACHE IV seems to be better than that of APACHE II. There is a need to recalibrate the scales with weights derived from the Indian population.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bateman, K. J.; Capson, D. D.
2004-03-29
Argonne National Laboratory (ANL) has developed a process to immobilize waste salt containing fission products, uranium, and transuranic elements as chlorides in a glass-bonded ceramic waste form. This salt was generated in the electrorefining operation used in the electrometallurgical treatment of spent Experimental Breeder Reactor-II (EBR-II) fuel. The ceramic waste process culminates with an elevated temperature operation. The processing conditions used by the furnace, for demonstration scale and production scale operations, are to be developed at Argonne National Laboratory-West (ANL-West). To assist in selecting the processing conditions of the furnace and to reduce the number of costly experiments, a finitemore » difference model was developed to predict the consolidation of the ceramic waste. The model accurately predicted the heating as well as the bulk density of the ceramic waste form. The methodology used to develop the computer model and a comparison of the analysis to experimental data is presented.« less
USDA-ARS?s Scientific Manuscript database
A predictive mathematical model was developed to simulate heat transfer in a tomato undergoing double sided infrared (IR) heating in a dry-peeling process. The aims of this study were to validate the developed model using experimental data and to investigate different engineering parameters that mos...
RNA Polymerase II cluster dynamics predict mRNA output in living cells
Cho, Won-Ki; Jayanth, Namrata; English, Brian P; Inoue, Takuma; Andrews, J Owen; Conway, William; Grimm, Jonathan B; Spille, Jan-Hendrik; Lavis, Luke D; Lionnet, Timothée; Cisse, Ibrahim I
2016-01-01
Protein clustering is a hallmark of genome regulation in mammalian cells. However, the dynamic molecular processes involved make it difficult to correlate clustering with functional consequences in vivo. We developed a live-cell super-resolution approach to uncover the correlation between mRNA synthesis and the dynamics of RNA Polymerase II (Pol II) clusters at a gene locus. For endogenous β-actin genes in mouse embryonic fibroblasts, we observe that short-lived (~8 s) Pol II clusters correlate with basal mRNA output. During serum stimulation, a stereotyped increase in Pol II cluster lifetime correlates with a proportionate increase in the number of mRNAs synthesized. Our findings suggest that transient clustering of Pol II may constitute a pre-transcriptional regulatory event that predictably modulates nascent mRNA output. DOI: http://dx.doi.org/10.7554/eLife.13617.001 PMID:27138339
Right Lateral Cerebellum Represents Linguistic Predictability.
Lesage, Elise; Hansen, Peter C; Miall, R Chris
2017-06-28
Mounting evidence indicates that posterolateral portions of the cerebellum (right Crus I/II) contribute to language processing, but the nature of this role remains unclear. Based on a well-supported theory of cerebellar motor function, which ascribes to the cerebellum a role in short-term prediction through internal modeling, we hypothesize that right cerebellar Crus I/II supports prediction of upcoming sentence content. We tested this hypothesis using event-related fMRI in male and female human subjects by manipulating the predictability of written sentences. Our design controlled for motor planning and execution, as well as for linguistic features and working memory load; it also allowed separation of the prediction interval from the presentation of the final sentence item. In addition, three further fMRI tasks captured semantic, phonological, and orthographic processing to shed light on the nature of the information processed. As hypothesized, activity in right posterolateral cerebellum correlated with the predictability of the upcoming target word. This cerebellar region also responded to prediction error during the outcome of the trial. Further, this region was engaged in phonological, but not semantic or orthographic, processing. This is the first imaging study to demonstrate a right cerebellar contribution in language comprehension independently from motor, cognitive, and linguistic confounds. These results complement our work using other methodologies showing cerebellar engagement in linguistic prediction and suggest that internal modeling of phonological representations aids language production and comprehension. SIGNIFICANCE STATEMENT The cerebellum is traditionally seen as a motor structure that allows for smooth movement by predicting upcoming signals. However, the cerebellum is also consistently implicated in nonmotor functions such as language and working memory. Using fMRI, we identify a cerebellar area that is active when words are predicted and when these predictions are violated. This area is active in a separate task that requires phonological processing, but not in tasks that require semantic or visuospatial processing. Our results support the idea of prediction as a unifying cerebellar function in motor and nonmotor domains. We provide new insights by linking the cerebellar role in prediction to its role in verbal working memory, suggesting that these predictions involve phonological processing. Copyright © 2017 Lesage et al.
On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction
NASA Astrophysics Data System (ADS)
Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish
2016-04-01
A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.
Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform
Poucke, Sven Van; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; Deyne, Cathy De
2016-01-01
With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner’s Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research. PMID:26731286
Scalable Predictive Analysis in Critically Ill Patients Using a Visual Open Data Analysis Platform.
Van Poucke, Sven; Zhang, Zhongheng; Schmitz, Martin; Vukicevic, Milan; Laenen, Margot Vander; Celi, Leo Anthony; De Deyne, Cathy
2016-01-01
With the accumulation of large amounts of health related data, predictive analytics could stimulate the transformation of reactive medicine towards Predictive, Preventive and Personalized (PPPM) Medicine, ultimately affecting both cost and quality of care. However, high-dimensionality and high-complexity of the data involved, prevents data-driven methods from easy translation into clinically relevant models. Additionally, the application of cutting edge predictive methods and data manipulation require substantial programming skills, limiting its direct exploitation by medical domain experts. This leaves a gap between potential and actual data usage. In this study, the authors address this problem by focusing on open, visual environments, suited to be applied by the medical community. Moreover, we review code free applications of big data technologies. As a showcase, a framework was developed for the meaningful use of data from critical care patients by integrating the MIMIC-II database in a data mining environment (RapidMiner) supporting scalable predictive analytics using visual tools (RapidMiner's Radoop extension). Guided by the CRoss-Industry Standard Process for Data Mining (CRISP-DM), the ETL process (Extract, Transform, Load) was initiated by retrieving data from the MIMIC-II tables of interest. As use case, correlation of platelet count and ICU survival was quantitatively assessed. Using visual tools for ETL on Hadoop and predictive modeling in RapidMiner, we developed robust processes for automatic building, parameter optimization and evaluation of various predictive models, under different feature selection schemes. Because these processes can be easily adopted in other projects, this environment is attractive for scalable predictive analytics in health research.
Convergent and Discriminant Validity of Psychopathy Factors Assessed Via Self-Report
Benning, Stephen D.; Patrick, Christopher J.; Salekin, Randall T.; Leistico, Anne-Marie R.
2008-01-01
Psychopathy has been conceptualized as a personality disorder with distinctive interpersonal-affective and behavioral deviance features. The authors examine correlates of the factors of the Psychopathic Personality Inventory (PPI), Self-Report Psychopathy–II (SRP-II) scale, and Antisocial Process Screening Device (APSD) to understand similarities and differences among the constructs embodied in these instruments. PPI Fearless Dominance and SRP-II Factor 1 were negatively related to most personality disorder symptoms and were both predicted by high Dominance and low Neuroticism. In addition, PPI Fearless Dominance correlated positively with antisocial personality features, although SRP-II Factor 1 did not. In contrast, PPI Impulsive Antisociality, SRP-II Factor 2, and both APSD factors correlated with antisocial personality features and symptoms of nearly all personality disorders, and were predicted by low Love. Results suggest ways in which the measurement of the constructs in each instrument may be improved. PMID:16123248
2012-05-01
30 Figure 5.0.1 Phase II Analysis Process ...panel study the panel selection process followed a review of the outer skin environment investigated during the HTV-3X program which was suitable as...Subsequently, Panel 1B was down-selected from the screening process as it was observed to be subjected to stronger thermal field contributions due to fuel
The Unexplored Domains of the s-Process
NASA Astrophysics Data System (ADS)
Roederer, Ian
2016-10-01
Understanding the origin of the elements is one of the major challenges of modern astrophysics. Abundance measurements in late-type stars are used to test nucleosynthesis models, and the models in turn reveal the nature of the progenitor star(s) that produced the metals observed today. Elements listed along the bottom two-thirds of the periodic table are produced by neutron-capture reactions, such as the r-process or s-process. Previous studies have expanded the chemical inventory of individual r-process-enhanced stars to >50 elements per star. Here, we propose to do the same for an s-process-enhanced star.We propose new high-resolution STIS/E230H observations (2024-2301 Angstroms) of the star HD 196944, the UV-brightest s-process-enhanced metal-poor star in the sky. Lines of Se I, Mo II, Cd I, Cd II, Sn I, Sb I, Te I, Yb II, W II, Re II, Os II, Pt I, Pb II, and Bi I should be detectable in these observations because of the high spectral resolution and S/N. No star offers the opportunity to simultaneously detect all of these elements, and several of them could be detected for the first time. We will combine these NUV detections with optical detections to test many specific predictions of the s-process nucleosynthesis models in a way that has not been possible until now. This is particularly timely, for example, because s-process models have recently been shown to be uncertain at the termination point around Pb-Bi.
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is transferred into the environmental enclosure in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Processing of the United Launch Alliance Delta II rocket that will loft SMAP into orbit is underway at the pad. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Huynh, Mioy T.; Mora, S. Jimena; Villalba, Matias; ...
2017-05-09
Nature employs a TyrZ-His pair as a redox relay that couples proton transfer to the redox process between P680 and the water oxidizing catalyst in photosystem II. Artificial redox relays composed of different benzimidazole–phenol dyads (benzimidazole models His and phenol models Tyr) with substituents designed to simulate the hydrogen bond network surrounding the TyrZ-His pair have been prepared. Furthermore, when the benzimidazole substituents are strong proton acceptors such as primary or tertiary amines, theory predicts that a concerted two proton transfer process associated with the electrochemical oxidation of the phenol will take place. Furthermore, theory predicts a decrease in themore » redox potential of the phenol by ~300 mV and a small kinetic isotope effect (KIE). Indeed, electrochemical, spectroelectrochemical, and KIE experimental data are consistent with these predictions. Our results were obtained by using theory to guide the rational design of artificial systems and have implications for managing proton activity to optimize efficiency at energy conversion sites involving water oxidation and reduction.« less
USDA-ARS?s Scientific Manuscript database
Predictions of seedling emergence timing for spring wheat are facilitated by process-based modeling of the microsite environment in the shallow seedling recruitment zone. Hourly temperature and water profiles within the recruitment zone for 60 days after planting were simulated from the process-base...
Scheiber, Caroline
2017-09-01
This study explored whether the Kaufman Assessment Battery for Children-Second Edition (KABC-II) predicted academic achievement outcomes of the Kaufman Test of Educational Achievement-Second Edition (KTEA-II) equally well across a representative sample of African American, Hispanic, and Caucasian school-aged children ( N = 2,001) in three grade groups (1-4, 5-8, 9-12). It was of interest to study possible prediction bias in the slope and intercept of the five underlying Cattell-Horn-Carroll (CHC) cognitive factors of the KABC-II-Sequential/Gsm (Short-Term Memory), Learning/Glr (Long-Term Storage and Retrieval), Simultaneous/Gv (Visual Processing), Planning/Gf (Fluid Reasoning), and Knowledge/Gc (Crystallized Ability)-in estimating reading, writing, and math. Structural equation modeling techniques demonstrated a lack of bias in the slopes; however, four of the five CHC indexes showed a persistent overprediction of the minority groups' achievement in the intercept. The overprediction is likely attributable to institutional or societal contributions, which limit the students' ability to achieve to their fullest potential.
Alcohol-seeking and relapse: A focus on incentive salience and contextual conditioning.
Valyear, Milan D; Villaruel, Franz R; Chaudhri, Nadia
2017-08-01
Environmental stimuli that reliably accompany alcohol intake can become associated with the pharmacological effects of alcohol through classical (Pavlovian) conditioning. Of growing interest to addiction researchers is whether or not this process results in the attribution of incentive salience to alcohol-predictive cues, which could motivate alcohol-seeking behavior and relapse. To evaluate this question, we present a review of rodent behavioral studies that examined the capacity of alcohol-predictive cues to (i) support sign-tracking behavior, (ii) serve as conditioned reinforcers, and (iii) produce Pavlovian-to-instrumental transfer. A second, emerging area of research is focused on delineating the role of context in alcohol-seeking behavior and relapse. Here, we review studies showing that alcohol-associated contexts (i) support conditioned place preference, (ii) renew extinguished alcohol-seeking behavior, and (iii) modulate alcohol-seeking responses elicited by discrete alcohol-predictive cues. These behavioral effects may be mediated by unique psychological processes, and have important implications for cue-reactivity studies and neurobiological research. Copyright © 2017 Elsevier B.V. All rights reserved.
Cerebellar contributions to biological motion perception in autism and typical development.
Jack, Allison; Keifer, Cara M; Pelphrey, Kevin A
2017-04-01
Growing evidence suggests that posterior cerebellar lobe contributes to social perception in healthy adults. However, they know little about how this process varies across age and with development. Using cross-sectional fMRI data, they examined cerebellar response to biological (BIO) versus scrambled (SCRAM) motion within typically developing (TD) and autism spectrum disorder (ASD) samples (age 4-30 years old), characterizing cerebellar response and BIO > SCRAM-selective effective connectivity, as well as associations with age and social ability. TD individuals recruited regions throughout cerebellar posterior lobe during BIO > SCRAM, especially bilateral lobule VI, and demonstrated connectivity with right posterior superior temporal sulcus (RpSTS) in left VI, Crus I/II, and VIIIb. ASD individuals showed BIO > SCRAM activity in left VI and left Crus I/II, and bilateral connectivity with RpSTS in Crus I/II and VIIIb/IX. No between-group differences emerged in well-matched subsamples. Among TD individuals, older age predicted greater BIO > SCRAM response in left VIIb and left VIIIa/b, but reduced connectivity between RpSTS and widespread regions of the right cerebellum. In ASD, older age predicted greater response in left Crus I and bilateral Crus II, but decreased effective connectivity with RpSTS in bilateral Crus I/II. In ASD, increased BIO > SCRAM signal in left VI/Crus I and right Crus II, VIIb, and dentate predicted lower social symptomaticity; increased effective connectivity with RpSTS in right Crus I/II and bilateral VI and I-V predicted greater symptomaticity. These data suggest that posterior cerebellum contributes to the neurodevelopment of social perception in both basic and clinical populations. Hum Brain Mapp 38:1914-1932, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Nonequilibrium Stagnation-Line Radiative Heating for Fire II
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.; Hollis, Brian R.; Sutton, Kenneth
2007-01-01
This paper presents a detailed analysis of the shock-layer radiative heating to the Fire II vehicle using a new air radiation model and a viscous shock-layer flowfield model. This new air radiation model contains the most up-to-date properties for modeling the atomic-line, atomic photoionization, molecular band, and non-Boltzmann processes. The applied viscous shock-layer flowfield analysis contains the same thermophysical properties and nonequilibrium models as the LAURA Navier-Stokes code. Radiation-flowfield coupling, or radiation cooling, is accounted for in detail in this study. It is shown to reduce the radiative heating by about 30% for the peak radiative heating points, while reducing the convective heating only slightly. A detailed review of past Fire II radiative heating studies is presented. It is observed that the scatter in the radiation predicted by these past studies is mostly a result of the different flowfield chemistry models and the treatment of the electronic state populations. The present predictions provide, on average throughout the trajectory, a better comparison with Fire II flight data than any previous study. The magnitude of the vacuum ultraviolet (VUV) contribution to the radiative flux is estimated from the calorimeter measurements. This is achieved using the radiometer measurements and the predicted convective heating. The VUV radiation predicted by the present model agrees well with the VUV contribution inferred from the Fire II calorimeter measurement, although only when radiation-flowfield coupling is accounted for. This agreement provides evidence that the present model accurately models the VUV radiation, which is shown to contribute significantly to the Fire II radiative heating.
Moreira, Gustavo M. S. G.; Conceição, Fabricio R.; McBride, Alan J. A.; Pinto, Luciano da S.
2013-01-01
Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and –II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins. PMID:24260572
Moreira, Gustavo M S G; Conceição, Fabricio R; McBride, Alan J A; Pinto, Luciano da S
2013-01-01
Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and -II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins.
Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wei, Xionghui; Shi, Xuedan; Ruan, Wenqian
2017-01-01
Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nZVI/rGO composites prepared were utilized for Cd(II) removal from aqueous solutions in batch mode at different initial Cd(II) concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA) were used for modeling the removal efficiency of Cd(II) and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II), the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. It was found that the Cd(II) adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II) removal with a good R2 value than the pseudo-first-order model. PMID:28772901
Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wei, Xionghui; Shi, Xuedan; Ruan, Wenqian
2017-05-17
Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized in the present study by chemical deposition method and were then characterized by various methods, such as Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The nZVI/rGO composites prepared were utilized for Cd(II) removal from aqueous solutions in batch mode at different initial Cd(II) concentrations, initial pH values, contact times, and operating temperatures. Response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA) were used for modeling the removal efficiency of Cd(II) and optimizing the four removal process variables. The average values of prediction errors for the RSM and ANN-GA models were 6.47% and 1.08%. Although both models were proven to be reliable in terms of predicting the removal efficiency of Cd(II), the ANN-GA model was found to be more accurate than the RSM model. In addition, experimental data were fitted to the Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherms. It was found that the Cd(II) adsorption was best fitted to the Langmuir isotherm. Examination on thermodynamic parameters revealed that the removal process was spontaneous and exothermic in nature. Furthermore, the pseudo-second-order model can better describe the kinetics of Cd(II) removal with a good R² value than the pseudo-first-order model.
2014-07-16
VANDENBERG AIR FORCE BASE, Calif. – The nozzle has been installed on the second stage of the United Launch Alliance Delta II rocket in the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II will be used to loft NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Predicting MHC-II binding affinity using multiple instance regression
EL-Manzalawy, Yasser; Dobbs, Drena; Honavar, Vasant
2011-01-01
Reliably predicting the ability of antigen peptides to bind to major histocompatibility complex class II (MHC-II) molecules is an essential step in developing new vaccines. Uncovering the amino acid sequence correlates of the binding affinity of MHC-II binding peptides is important for understanding pathogenesis and immune response. The task of predicting MHC-II binding peptides is complicated by the significant variability in their length. Most existing computational methods for predicting MHC-II binding peptides focus on identifying a nine amino acids core region in each binding peptide. We formulate the problems of qualitatively and quantitatively predicting flexible length MHC-II peptides as multiple instance learning and multiple instance regression problems, respectively. Based on this formulation, we introduce MHCMIR, a novel method for predicting MHC-II binding affinity using multiple instance regression. We present results of experiments using several benchmark datasets that show that MHCMIR is competitive with the state-of-the-art methods for predicting MHC-II binding peptides. An online web server that implements the MHCMIR method for MHC-II binding affinity prediction is freely accessible at http://ailab.cs.iastate.edu/mhcmir. PMID:20855923
Karri, Rama Rao; Sahu, J N
2018-01-15
Zn (II) is one the common pollutant among heavy metals found in industrial effluents. Removal of pollutant from industrial effluents can be accomplished by various techniques, out of which adsorption was found to be an efficient method. Applications of adsorption limits itself due to high cost of adsorbent. In this regard, a low cost adsorbent produced from palm oil kernel shell based agricultural waste is examined for its efficiency to remove Zn (II) from waste water and aqueous solution. The influence of independent process variables like initial concentration, pH, residence time, activated carbon (AC) dosage and process temperature on the removal of Zn (II) by palm kernel shell based AC from batch adsorption process are studied systematically. Based on the design of experimental matrix, 50 experimental runs are performed with each process variable in the experimental range. The optimal values of process variables to achieve maximum removal efficiency is studied using response surface methodology (RSM) and artificial neural network (ANN) approaches. A quadratic model, which consists of first order and second order degree regressive model is developed using the analysis of variance and RSM - CCD framework. The particle swarm optimization which is a meta-heuristic optimization is embedded on the ANN architecture to optimize the search space of neural network. The optimized trained neural network well depicts the testing data and validation data with R 2 equal to 0.9106 and 0.9279 respectively. The outcomes indicates that the superiority of ANN-PSO based model predictions over the quadratic model predictions provided by RSM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tenzer, S; Peters, B; Bulik, S; Schoor, O; Lemmel, C; Schatz, M M; Kloetzel, P-M; Rammensee, H-G; Schild, H; Holzhütter, H-G
2005-05-01
Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).
NASA Astrophysics Data System (ADS)
Sylvia, N.; Hakim, L.; Fardian, N.; Yunardi
2018-03-01
When the manganese is under the acceptable limit, then the removal of Fe (II) ion, the common metallic compound contained in groundwater, is one of the most important stages in the processing of groundwater to become potable water. This study was aimed at investigating the performance of a fixed-bed adsorption column filled, with activated carbon prepared from palm kernel shells, in the removal of Fe (II) ion from groundwater. The influence of important parameters such as bed depth and the flow rate was investigated. The bed depth adsorbent was varied at 7.5, 10 and 12 cm. At a different flow rate of 6, 10 and 14 L/minute. The Atomic Absorb Spectrophotometer was used to measure the Fe (II) ion concentration, thereafter the results were confirmed using a breakthrough curve showing that flow rate and bed depth affected the curve. The mathematical model that used to predict the result was the Thomas and Adams-Bohart model. This model is used to process design, in which predicting time and bed depth needed to meet the breakthrough. This study reveals that the Thomas model was the most appropriate one, including the use of Palm Kernel Shell for processing groundwater. According to the Thomas Model, the highest capacity of adsorption (66.189 mg/g) of 0.169-mg/L of groundwater was achieved with a flow rate of 6 L/minute, with the bed depth at 14 cm.
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket winds its way along the roads from Building 836 to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket arrives at the Horizontal Processing Facility near the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket arrives at Space Launch Complex 2 on Vandenberg Air Force Base in California where it will undergo preparations for launch in the Horizontal Processing Facility. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket is on its way from Building 836 on south Vandenberg Air Force Base in California to the Horizontal Processing Facility at Space Launch Complex 2. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket is towed along the roadway from Building 836 to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – A security detail accompanies the second stage, or upper stage, of a United Launch Alliance Delta II rocket on its move from Building 836 to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-16
VANDENBERG AIR FORCE BASE, Calif. – It takes teamwork to lift the nozzle for the second stage of a United Launch Alliance Delta II rocket from its work stand in the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. The Delta II will be used to loft NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket begins its journey from Building 836 on south Vandenberg Air Force Base in California to the Horizontal Processing Facility at Space Launch Complex 2. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
Nielsen, Morten; Lundegaard, Claus; Worning, Peder; Hvid, Christina Sylvester; Lamberth, Kasper; Buus, Søren; Brunak, Søren; Lund, Ole
2004-06-12
Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus, identifying the correct alignment is a crucial part of identifying the core of an MHC class II binding motif. In this context, we wish to describe a novel Gibbs motif sampler method ideally suited for recognizing such weak sequence motifs. The method is based on the Gibbs sampling method, and it incorporates novel features optimized for the task of recognizing the binding motif of MHC classes I and II. The method locates the binding motif in a set of sequences and characterizes the motif in terms of a weight-matrix. Subsequently, the weight-matrix can be applied to identifying effectively potential MHC binding peptides and to guiding the process of rational vaccine design. We apply the motif sampler method to the complex problem of MHC class II binding. The input to the method is amino acid peptide sequences extracted from the public databases of SYFPEITHI and MHCPEP and known to bind to the MHC class II complex HLA-DR4(B1*0401). Prior identification of information-rich (anchor) positions in the binding motif is shown to improve the predictive performance of the Gibbs sampler. Similarly, a consensus solution obtained from an ensemble average over suboptimal solutions is shown to outperform the use of a single optimal solution. In a large-scale benchmark calculation, the performance is quantified using relative operating characteristics curve (ROC) plots and we make a detailed comparison of the performance with that of both the TEPITOPE method and a weight-matrix derived using the conventional alignment algorithm of ClustalW. The calculation demonstrates that the predictive performance of the Gibbs sampler is higher than that of ClustalW and in most cases also higher than that of the TEPITOPE method.
Rocha, Luciana S; Lopes, I; Lopes, Cláudia B; Henriques, Bruno; Soares, Amadeu M V M; Duarte, Armando C; Pereira, Eduarda
2014-01-01
In the present work, the efficiency of rice husk to remove Hg(II) from river waters spiked with realistic environmental concentrations of this metal (μg L(-1) range) was evaluated. The residual levels of Hg(II) obtained after the remediation process were compared with the guideline values for effluents discharges and water for human consumption, and the ecotoxicological effects using organisms of different trophic levels were assessed. The rice husk sorbent proved to be useful in decreasing Hg(II) contamination in river waters, by reducing the levels of Hg(II) to values of ca. 8.0 and 34 μg L(-1), for an Hg(II) initial concentration of 50 and 500 μg L(-1), respectively. The remediation process with rice husk biowaste was extremely efficient in river waters spiked with lower levels of Hg(II), being able to eliminate the toxicity to the exposed organisms algae Pseudokirchneriella subcapitata and rotifer Brachionus calyciflorus and ensure the total survival of Daphnia magna species. For concentrations of Hg(II) tenfold higher (500 μg L(-1)), the remediation process was not adequate in the detoxification process, still, the rice husk material was able to reduce considerably the toxicity to the bacteria Vibrio fischeri, algae P. subcapitata and rotifer B. calyciflorus, whose responses where fully inhibited during its exposure to the non-remediated river water. The use of a battery of bioassays with organisms from different trophic levels and whose sensitivity revealed to be different and dependent on the levels of Hg(II) contamination proved to be much more accurate in predicting the ecotoxicological hazard assessment of the detoxification process by means of rice husk biowaste.
Automated image processing of Landsat II digital data for watershed runoff prediction
NASA Technical Reports Server (NTRS)
Sasso, R. R.; Jensen, J. R.; Estes, J. E.
1977-01-01
Digital image processing of Landsat data from a 230 sq km area was examined as a possible means of generating soil cover information for use in the watershed runoff prediction of Kern County, California. The soil cover information included data on brush, grass, pasture lands and forests. A classification accuracy of 94% for the Landsat-based soil cover survey suggested that the technique could be applied to the watershed runoff estimate. However, problems involving the survey of complex mountainous environments may require further attention
NASA Astrophysics Data System (ADS)
Li, Min; Meng, Xiaojing; Yuan, Jinhai; Deng, Wenwen; Liang, Xiuke
2018-01-01
In the present study, the adsorption behavior of cadmium (II) ion from aqueous solution onto multi-carboxylic-functionalized silica gel (SG-MCF) has been investigated in detail by means of batch and column experiments. Batch experiments were performed to evaluate the effects of various experimental parameters such as pH value, contact time and initial concentration on adsorption capacity of cadmium (II) ion. The kinetic data were analyzed on the basis of the pseudo-first-order kinetic and the pseudo-second-order kinetic models and consequently, the pseudo-second-order kinetic can better describe the adsorption process than the pseudo-first-order kinetic model. Equilibrium isotherms for the adsorption of cadmium (II) ion were analyzed by Freundlich and Langmuir isotherm models, the results indicate that Langmuir isotherm model was found to be credible to express the data for cadmium (II) ion from aqueous solution onto the SG-MCF. Various thermodynamics parameters of the adsorption process, including free energy of adsorption (ΔG0 ), the enthalpy of adsorption (ΔH0 ) and standard entropy changes (ΔS0 ), were calculated to predict the nature of adsorption. The positive value of the enthalpy change and the negative value of free energy change indicate that the process is endothermic and spontaneous process.
Use of APACHE II and SAPS II to predict mortality for hemorrhagic and ischemic stroke patients.
Moon, Byeong Hoo; Park, Sang Kyu; Jang, Dong Kyu; Jang, Kyoung Sool; Kim, Jong Tae; Han, Yong Min
2015-01-01
We studied the applicability of the Acute Physiology and Chronic Health Evaluation II (APACHE II) and Simplified Acute Physiology Score II (SAPS II) in patients admitted to the intensive care unit (ICU) with acute stroke and compared the results with the Glasgow Coma Scale (GCS) and National Institutes of Health Stroke Scale (NIHSS). We also conducted a comparative study of accuracy for predicting hemorrhagic and ischemic stroke mortality. Between January 2011 and December 2012, ischemic or hemorrhagic stroke patients admitted to the ICU were included in the study. APACHE II and SAPS II-predicted mortalities were compared using a calibration curve, the Hosmer-Lemeshow goodness-of-fit test, and the receiver operating characteristic (ROC) curve, and the results were compared with the GCS and NIHSS. Overall 498 patients were included in this study. The observed mortality was 26.3%, whereas APACHE II and SAPS II-predicted mortalities were 35.12% and 35.34%, respectively. The mean GCS and NIHSS scores were 9.43 and 21.63, respectively. The calibration curve was close to the line of perfect prediction. The ROC curve showed a slightly better prediction of mortality for APACHE II in hemorrhagic stroke patients and SAPS II in ischemic stroke patients. The GCS and NIHSS were inferior in predicting mortality in both patient groups. Although both the APACHE II and SAPS II systems can be used to measure performance in the neurosurgical ICU setting, the accuracy of APACHE II in hemorrhagic stroke patients and SAPS II in ischemic stroke patients was superior. Copyright © 2014 Elsevier Ltd. All rights reserved.
HART-II Acoustic Predictions using a Coupled CFD/CSD Method
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2009-01-01
This paper documents results to date from the Rotorcraft Acoustic Characterization and Mitigation activity under the NASA Subsonic Rotary Wing Project. The primary goal of this activity is to develop a NASA rotorcraft impulsive noise prediction capability which uses first principles fluid dynamics and structural dynamics. During this effort, elastic blade motion and co-processing capabilities have been included in a recent version of the computational fluid dynamics code (CFD). The CFD code is loosely coupled to computational structural dynamics (CSD) code using new interface codes. The CFD/CSD coupled solution is then used to compute impulsive noise on a plane under the rotor using the Ffowcs Williams-Hawkings solver. This code system is then applied to a range of cases from the Higher Harmonic Aeroacoustic Rotor Test II (HART-II) experiment. For all cases presented, the full experimental configuration (i.e., rotor and wind tunnel sting mount) are used in the coupled CFD/CSD solutions. Results show good correlation between measured and predicted loading and loading time derivative at the only measured radial station. A contributing factor for a typically seen loading mean-value offset between measured data and predictions data is examined. Impulsive noise predictions on the measured microphone plane under the rotor compare favorably with measured mid-frequency noise for all cases. Flow visualization of the BL and MN cases shows that vortex structures generated in the prediction method are consist with measurements. Future application of the prediction method is discussed.
Conlon, J M; Davis, M S; Falkmer, S; Thim, L
1987-11-02
The primary structures of three peptides from extracts from the pancreatic islets of the daddy sculpin (Cottus scorpius) and three analogous peptides from the islets of the flounder (Platichthys flesus), two species of teleostean fish, have been determined by automated Edman degradation. The structures of the flounder peptides were confirmed by fast-atom bombardment mass spectrometry. The peptides show strong homology to residues (49-60), (63-96) and (98-125) of the predicted sequence of preprosomatostatin II from the anglerfish (Lophius americanus). The amino acid sequences of the peptides suggest that, in the sculpin, prosomatostatin II is cleaved at a dibasic amino acid residue processing site (corresponding to Lys61-Arg62 in anglerfish preprosomatostatin II). The resulting fragments are further cleaved at monobasic residue processing sites (corresponding to Arg48 and Arg97 in anglerfish preprosomatostatin II). In the flounder the same dibasic residue processing site is utilised but cleavage at different monobasic sites takes place (corresponding to Arg50 and Arg97 in anglerfish preprosomatostatin II). A peptide identical to mammalian somatostatin-14 was also isolated from the islets of both species and is presumed to represent a cleavage product of prosomatostatin I.
Following the Part I paper that described an application of the U.S. EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system to the 1999 Southern Oxidants Study episode, this paper presents results from process analysis (PA) using the PA tool embedded in CMAQ and s...
Trabanino, Rene J.; Hall, Spencer E.; Vaidehi, Nagarajan; Floriano, Wely B.; Kam, Victor W. T.; Goddard, William A.
2004-01-01
G-protein-coupled receptors (GPCRs) are involved in cell communication processes and with mediating such senses as vision, smell, taste, and pain. They constitute a prominent superfamily of drug targets, but an atomic-level structure is available for only one GPCR, bovine rhodopsin, making it difficult to use structure-based methods to design receptor-specific drugs. We have developed the MembStruk first principles computational method for predicting the three-dimensional structure of GPCRs. In this article we validate the MembStruk procedure by comparing its predictions with the high-resolution crystal structure of bovine rhodopsin. The crystal structure of bovine rhodopsin has the second extracellular (EC-II) loop closed over the transmembrane regions by making a disulfide linkage between Cys-110 and Cys-187, but we speculate that opening this loop may play a role in the activation process of the receptor through the cysteine linkage with helix 3. Consequently we predicted two structures for bovine rhodopsin from the primary sequence (with no input from the crystal structure)—one with the EC-II loop closed as in the crystal structure, and the other with the EC-II loop open. The MembStruk-predicted structure of bovine rhodopsin with the closed EC-II loop deviates from the crystal by 2.84 Å coordinate root mean-square (CRMS) in the transmembrane region main-chain atoms. The predicted three-dimensional structures for other GPCRs can be validated only by predicting binding sites and energies for various ligands. For such predictions we developed the HierDock first principles computational method. We validate HierDock by predicting the binding site of 11-cis-retinal in the crystal structure of bovine rhodopsin. Scanning the whole protein without using any prior knowledge of the binding site, we find that the best scoring conformation in rhodopsin is 1.1 Å CRMS from the crystal structure for the ligand atoms. This predicted conformation has the carbonyl O only 2.82 Å from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 0.62 Å CRMS from the crystal structure. We also used HierDock to predict the binding site of 11-cis-retinal in the MembStruk-predicted structure of bovine rhodopsin (closed loop). Scanning the whole protein structure leads to a structure in which the carbonyl O is only 2.85 Å from the N of Lys-296. Making this Schiff base bond and minimizing leads to a final conformation only 2.92 Å CRMS from the crystal structure. The good agreement of the ab initio-predicted protein structures and ligand binding site with experiment validates the use of the MembStruk and HierDock first principles' methods. Since these methods are generic and applicable to any GPCR, they should be useful in predicting the structures of other GPCRs and the binding site of ligands to these proteins. PMID:15041637
D. M. Jimenez; B. W. Butler; J. Reardon
2003-01-01
Current methods for predicting fire-induced plant mortality in shrubs and trees are largely empirical. These methods are not readily linked to duff burning, soil heating, and surface fire behavior models. In response to the need for a physics-based model of this process, a detailed model for predicting the temperature distribution through a tree stem as a function of...
Monitoring and modeling of ultrasonic wave propagation in crystallizing mixtures
NASA Astrophysics Data System (ADS)
Marshall, T.; Challis, R. E.; Tebbutt, J. S.
2002-05-01
The utility of ultrasonic compression wave techniques for monitoring crystallization processes is investigated in a study of the seeded crystallization of copper II sulfate pentahydrate from aqueous solution. Simple models are applied to predict crystal yield, crystal size distribution and the changing nature of the continuous phase. A scattering model is used to predict the ultrasonic attenuation as crystallization proceeds. Experiments confirm that modeled attenuation is in agreement with measured results.
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket and the transporter to which it is attached are lifted out of a transportation trailer in the Building 836 hangar on south Vandenberg Air Force Base in California. The stage will be moved to the Horizontal Integration Facility at Space Launch Complex 2 for further processing. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phadnis, M.J.; Carmichael, G.R.; Ichikawa, Y.
1996-12-31
A comparison between transport models was done to study the acid deposition in east Asia. The two models in question were different in the way the treated the pollutant species and the way simulation was carried out. A single-layer, trajectory model with simple (developed by the Central Research Institute of Electric Power Industry (CRIEPI), Japan) was compared with a multi-layered, eulerian type model (Sulfur Transport Eulerian Model - II [STEM-II]) treating the chemical processes in detail. The acidic species used in the simulation were sulfur dioxide and sulfate. The comparison was done for two episodes: each a month long inmore » winter (February) and summer (August) of 1989. The predicted results from STEM-II were compared with the predicted results from the CRIEPI model as well as the observed data at twenty-one stations in Japan. The predicted values from STEM-II were similar to the ones from the CRIEPI results and the observed values in regards to the transport features. The average monthly values of SO{sub 2} in air, sulfate in air and sulfate in precipitation were in good agreement. Sensitivity studies were carried out under different scenarios of emissions, dry depositions velocities and mixing heights. The predicted values in these sensitivity studies showed a strong dependence on the mixing heights. The predicted wet deposition of sulfur for the two months is 0.7 gS/m2.mon, while the observed deposition is around 1.1 gS/m2.mon. It was also observed that the wet deposition on the Japan sea side of the islands is more than those on the Pacific side and the Okhotsk sea, mainly because of the continental outflow of pollutant air masses from mainland China and Korea. The effects of emissions from Russia and volcanoes were also evaluated.« less
Impact of modellers' decisions on hydrological a priori predictions
NASA Astrophysics Data System (ADS)
Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.
2014-06-01
In practice, the catchment hydrologist is often confronted with the task of predicting discharge without having the needed records for calibration. Here, we report the discharge predictions of 10 modellers - using the model of their choice - for the man-made Chicken Creek catchment (6 ha, northeast Germany, Gerwin et al., 2009b) and we analyse how well they improved their prediction in three steps based on adding information prior to each following step. The modellers predicted the catchment's hydrological response in its initial phase without having access to the observed records. They used conceptually different physically based models and their modelling experience differed largely. Hence, they encountered two problems: (i) to simulate discharge for an ungauged catchment and (ii) using models that were developed for catchments, which are not in a state of landscape transformation. The prediction exercise was organized in three steps: (1) for the first prediction the modellers received a basic data set describing the catchment to a degree somewhat more complete than usually available for a priori predictions of ungauged catchments; they did not obtain information on stream flow, soil moisture, nor groundwater response and had therefore to guess the initial conditions; (2) before the second prediction they inspected the catchment on-site and discussed their first prediction attempt; (3) for their third prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step (1). Here, we detail the modeller's assumptions and decisions in accounting for the various processes. We document the prediction progress as well as the learning process resulting from the availability of added information. For the second and third steps, the progress in prediction quality is evaluated in relation to individual modelling experience and costs of added information. In this qualitative analysis of a statistically small number of predictions we learned (i) that soft information such as the modeller's system understanding is as important as the model itself (hard information), (ii) that the sequence of modelling steps matters (field visit, interactions between differently experienced experts, choice of model, selection of available data, and methods for parameter guessing), and (iii) that added process understanding can be as efficient as adding data for improving parameters needed to satisfy model requirements.
Pietraszek-Grzywaczewska, Iwona; Bernas, Szymon; Łojko, Piotr; Piechota, Anna; Piechota, Mariusz
2016-01-01
Scoring systems in critical care patients are essential for predicting of the patient outcome and evaluating the therapy. In this study, we determined the value of the Acute Physiology and Chronic Health Evaluation II (APACHE II), Simplified Acute Physiology Score II (SAPS II), Sequential Organ Failure Assessment (SOFA) and Glasgow Coma Scale (GCS) scoring systems in the prediction of mortality in adult patients admitted to the intensive care unit (ICU) with severe purulent bacterial meningitis. We retrospectively analysed data from 98 adult patients with severe purulent bacterial meningitis who were admitted to the single ICU between March 2006 and September 2015. Univariate logistic regression identified the following risk factors of death in patients with severe purulent bacterial meningitis: APACHE II, SAPS II, SOFA, and GCS scores, and the lengths of ICU stay and hospital stay. The independent risk factors of patient death in multivariate analysis were the SAPS II score, the length of ICU stay and the length of hospital stay. In the prediction of mortality according to the area under the curve, the SAPS II score had the highest accuracy followed by the APACHE II, GCS and SOFA scores. For the prediction of mortality in a patient with severe purulent bacterial meningitis, SAPS II had the highest accuracy.
Bayesian neural adjustment of inhibitory control predicts emergence of problem stimulant use.
Harlé, Katia M; Stewart, Jennifer L; Zhang, Shunan; Tapert, Susan F; Yu, Angela J; Paulus, Martin P
2015-11-01
Bayesian ideal observer models quantify individuals' context- and experience-dependent beliefs and expectations about their environment, which provides a powerful approach (i) to link basic behavioural mechanisms to neural processing; and (ii) to generate clinical predictors for patient populations. Here, we focus on (ii) and determine whether individual differences in the neural representation of the need to stop in an inhibitory task can predict the development of problem use (i.e. abuse or dependence) in individuals experimenting with stimulants. One hundred and fifty-seven non-dependent occasional stimulant users, aged 18-24, completed a stop-signal task while undergoing functional magnetic resonance imaging. These individuals were prospectively followed for 3 years and evaluated for stimulant use and abuse/dependence symptoms. At follow-up, 38 occasional stimulant users met criteria for a stimulant use disorder (problem stimulant users), while 50 had discontinued use (desisted stimulant users). We found that those individuals who showed greater neural responses associated with Bayesian prediction errors, i.e. the difference between actual and expected need to stop on a given trial, in right medial prefrontal cortex/anterior cingulate cortex, caudate, anterior insula, and thalamus were more likely to exhibit problem use 3 years later. Importantly, these computationally based neural predictors outperformed clinical measures and non-model based neural variables in predicting clinical status. In conclusion, young adults who show exaggerated brain processing underlying whether to 'stop' or to 'go' are more likely to develop stimulant abuse. Thus, Bayesian cognitive models provide both a computational explanation and potential predictive biomarkers of belief processing deficits in individuals at risk for stimulant addiction. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The role of the default mode network in component processes underlying the wandering mind
Sormaz, Mladen; Wang, Hao-Ting; Margulies, Daniel; Jefferies, Elizabeth; Smallwood, Jonathan
2017-01-01
Abstract Experiences such as mind-wandering illustrate that cognition is not always tethered to events in the here-and-now. Although converging evidence emphasises the default mode network (DMN) in mind-wandering, its precise contribution remains unclear. The DMN comprises cortical regions that are maximally distant from primary sensory and motor cortex, a topological location that may support the stimulus-independence of mind-wandering. The DMN is functionally heterogeneous, comprising regions engaged by memory, social cognition and planning; processes relevant to mind-wandering content. Our study examined the relationships between: (i) individual differences in resting-state DMN connectivity, (ii) performance on memory, social and planning tasks and (iii) variability in spontaneous thought, to investigate whether the DMN is critical to mind-wandering because it supports stimulus-independent cognition, memory retrieval, or both. Individual variation in task performance modulated the functional organization of the DMN: poor external engagement was linked to stronger coupling between medial and dorsal subsystems, while decoupling of the core from the cerebellum predicted reports of detailed memory retrieval. Both patterns predicted off-task future thoughts. Consistent with predictions from component process accounts of mind-wandering, our study suggests a 2-fold involvement of the DMN: (i) it supports experiences that are unrelated to the environment through strong coupling between its sub-systems; (ii) it allows memory representations to form the basis of conscious experience. PMID:28402561
Reaction mechanism of Ru(II) piano-stool complexes: umbrella sampling QM/MM MD study.
Futera, Zdeněk; Burda, Jaroslav V
2014-07-15
Biologically relevant interactions of piano-stool ruthenium(II) complexes with ds-DNA are studied in this article by hybrid quantum mechanics-molecular mechanics (QM/MM) computational technique. The whole reaction mechanism is divided into three phases: (i) hydration of the [Ru(II) (η(6) -benzene)(en)Cl](+) complex, (ii) monoadduct formation between the resulting aqua-Ru(II) complex and N7 position of one of the guanines in the ds-DNA oligomer, and (iii) formation of the intrastrand Ru(II) bridge (cross-link) between two adjacent guanines. Free energy profiles of all the reactions are explored by QM/MM MD umbrella sampling approach where the Ru(II) complex and two guanines represent a quantum core, which is described by density functional theory methods. The combined QM/MM scheme is realized by our own software, which was developed to couple several quantum chemical programs (in this study Gaussian 09) and Amber 11 package. Calculated free energy barriers of the both ruthenium hydration and Ru(II)-N7(G) DNA binding process are in good agreement with experimentally measured rate constants. Then, this method was used to study the possibility of cross-link formation. One feasible pathway leading to Ru(II) guanine-guanine cross-link with synchronous releasing of the benzene ligand is predicted. The cross-linking is an exergonic process with the energy barrier lower than for the monoadduct reaction of Ru(II) complex with ds-DNA. Copyright © 2014 Wiley Periodicals, Inc.
2014-07-31
VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is lowered onto the flatbed of the truck that will transport it from the Building 836 hangar on south Vandenberg Air Force Base in California to the pad. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-31
VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, glides in a vertical position across the Building 836 hangar on south Vandenberg Air Force Base in California toward the truck that will transport it to the pad. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-31
VANDENBERG AIR FORCE BASE, Calif. – Workers secure the Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, onto the flatbed of the truck that will transport it to the pad from the Building 836 hangar on south Vandenberg Air Force Base in California. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The Delta II interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is ready to be lifted into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. A United Launch Alliance Delta II rocket will loft SMAP into orbit. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Michaud, Jean-Philippe; Moreau, Gaétan
2011-01-01
Using pig carcasses exposed over 3 years in rural fields during spring, summer, and fall, we studied the relationship between decomposition stages and degree-day accumulation (i) to verify the predictability of the decomposition stages used in forensic entomology to document carcass decomposition and (ii) to build a degree-day accumulation model applicable to various decomposition-related processes. Results indicate that the decomposition stages can be predicted with accuracy from temperature records and that a reliable degree-day index can be developed to study decomposition-related processes. The development of degree-day indices opens new doors for researchers and allows for the application of inferential tools unaffected by climatic variability, as well as for the inclusion of statistics in a science that is primarily descriptive and in need of validation methods in courtroom proceedings. © 2010 American Academy of Forensic Sciences.
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – The first stage of a United Launch Alliance Delta II rocket arrives at NASA hangar 836 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – The first stage of a United Launch Alliance Delta II rocket arrives at NASA hangar 836 on Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
Abundances in the Uranium-rich Star CS 31082-001
NASA Astrophysics Data System (ADS)
Qian, Y.-Z.; Wasserburg, G. J.
2001-05-01
The recent discovery by Cayrel et al. of U in CS 31082-001 along with Os and Ir at greatly enhanced abundances but with [Fe/H]=-2.9 strongly reinforces the argument that there are at least two kinds of Type II supernova (SN II) sources for r-nuclei. One source is the high-frequency H events responsible for heavy r-nuclei (A>135) but not Fe. The H-yields calculated from data on other ultra-metal-poor stars and the Sun provide a template for quantitatively predicting the abundances of all other r-elements. In CS 31082-001 these should show a significant deficiency at A<135 relative to the solar r-pattern. It is proposed that CS 31082-001 should have had a companion that exploded as an SN II H event. If the binary survived the explosion, this star should now have a compact companion, most likely a stellar-mass black hole. Comparison of abundance data with predicted values and a search for a compact companion should provide a stringent test of the proposed r-process model. The U-Th age determined by Cayrel et al. for CS 31082-001 is, to within substantial uncertainties, in accord with the r-process age determined from solar system data. The time gap between the big bang and the onset of normal star formation allows r-process chronometers to provide only a lower limit on the age of the universe.
Using LANDIS II to study the effects of global change in Siberia
Eric J. Gustafson; Brian R. Sturtevant; Anatoly Z. Shvidenko; Robert M. Scheller
2010-01-01
Landscape dynamics are characterized by complex interactions among multiple disturbance regimes, anthropogenic use and management, and the mosaic of diverse ecological conditions. LANDIS-IT is a landscape forest succession and disturbance model that independently simulates multiple ecological and disturbance processes, accounting for complex interactions to predict...
Processes Understanding of Decadal Climate Variability
NASA Astrophysics Data System (ADS)
Prömmel, Kerstin; Cubasch, Ulrich
2016-04-01
The realistic representation of decadal climate variability in the models is essential for the quality of decadal climate predictions. Therefore, the understanding of those processes leading to decadal climate variability needs to be improved. Several of these processes are already included in climate models but their importance has not yet completely been clarified. The simulation of other processes requires sometimes a higher resolution of the model or an extension by additional subsystems. This is addressed within one module of the German research program "MiKlip II - Decadal Climate Predictions" (http://www.fona-miklip.de/en/) with a focus on the following processes. Stratospheric processes and their impact on the troposphere are analysed regarding the climate response to aerosol perturbations caused by volcanic eruptions and the stratospheric decadal variability due to solar forcing, climate change and ozone recovery. To account for the interaction between changing ozone concentrations and climate a computationally efficient ozone chemistry module is developed and implemented in the MiKlip prediction system. The ocean variability and air-sea interaction are analysed with a special focus on the reduction of the North Atlantic cold bias. In addition, the predictability of the oceanic carbon uptake with a special emphasis on the underlying mechanism is investigated. This addresses a combination of physical, biological and chemical processes.
Hu, Qinghai; Xiao, Zhongjin; Xiong, Xinmei; Zhou, Gongming; Guan, Xiaohong
2015-01-01
Although surface complexation models have been widely used to describe the adsorption of heavy metals, few studies have verified the feasibility of modeling the adsorption kinetics, edge, and isotherm data with one pH-independent parameter. A close inspection of the derivation process of Langmuir isotherm revealed that the equilibrium constant derived from the Langmuir kinetic model, KS-kinetic, is theoretically equivalent to the adsorption constant in Langmuir isotherm, KS-Langmuir. The modified Langmuir kinetic model (MLK model) and modified Langmuir isotherm model (MLI model) incorporating pH factor were developed. The MLK model was employed to simulate the adsorption kinetics of Cu(II), Co(II), Cd(II), Zn(II) and Ni(II) on MnO2 at pH3.2 or 3.3 to get the values of KS-kinetic. The adsorption edges of heavy metals could be modeled with the modified metal partitioning model (MMP model), and the values of KS-Langmuir were obtained. The values of KS-kinetic and KS-Langmuir are very close to each other, validating that the constants obtained by these two methods are basically the same. The MMP model with KS-kinetic constants could predict the adsorption edges of heavy metals on MnO2 very well at different adsorbent/adsorbate concentrations. Moreover, the adsorption isotherms of heavy metals on MnO2 at various pH levels could be predicted reasonably well by the MLI model with the KS-kinetic constants. Copyright © 2014. Published by Elsevier B.V.
FutureTox II: In vitro Data and In Silico Models for Predictive Toxicology
Knudsen, Thomas B.; Keller, Douglas A.; Sander, Miriam; Carney, Edward W.; Doerrer, Nancy G.; Eaton, David L.; Fitzpatrick, Suzanne Compton; Hastings, Kenneth L.; Mendrick, Donna L.; Tice, Raymond R.; Watkins, Paul B.; Whelan, Maurice
2015-01-01
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. PMID:25628403
A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs
Miao, Zhichao; Westhof, Eric
2015-01-01
Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179
Generalized role for the cerebellum in encoding internal models: evidence from semantic processing.
Moberget, Torgeir; Gullesen, Eva Hilland; Andersson, Stein; Ivry, Richard B; Endestad, Tor
2014-02-19
The striking homogeneity of cerebellar microanatomy is strongly suggestive of a corresponding uniformity of function. Consequently, theoretical models of the cerebellum's role in motor control should offer important clues regarding cerebellar contributions to cognition. One such influential theory holds that the cerebellum encodes internal models, neural representations of the context-specific dynamic properties of an object, to facilitate predictive control when manipulating the object. The present study examined whether this theoretical construct can shed light on the contribution of the cerebellum to language processing. We reasoned that the cerebellum might perform a similar coordinative function when the context provided by the initial part of a sentence can be highly predictive of the end of the sentence. Using functional MRI in humans we tested two predictions derived from this hypothesis, building on previous neuroimaging studies of internal models in motor control. First, focal cerebellar activation-reflecting the operation of acquired internal models-should be enhanced when the linguistic context leads terminal words to be predictable. Second, more widespread activation should be observed when such predictions are violated, reflecting the processing of error signals that can be used to update internal models. Both predictions were confirmed, with predictability and prediction violations associated with increased blood oxygenation level-dependent signal in the posterior cerebellum (Crus I/II). Our results provide further evidence for cerebellar involvement in predictive language processing and suggest that the notion of cerebellar internal models may be extended to the language domain.
Snyder, James; Prichard, Joy; Schrepferman, Lynn; Patrick, M Renee; Stoolmiller, Mike
2004-12-01
The conjoint influence of child impulsiveness-inattention (I/I) and peer relationships on growth trajectories of conduct problems was assessed in a community sample of 267 boys and girls. I/I reliably predicted teacher- and parent-reported conduct problems at kindergarten entry and growth in those problems over the next 2 years for boys and girls. The relation of boys' I/I to conduct problems was mediated, in part, by peer rejection and involvement in coercive exchanges with peers. The relation of girls' I/I to conduct problems was less clearly mediated by peer processes, but peer difficulties had additive effects. The impact of peer relationships on trajectories of conduct problems was apparent to parents as well as to teachers. Although I/I increments risk for early and persisting conduct problems in concert with poor peer relationships, it does so in complex and gender-specific ways.
Limitations and implications of stream classification
Juracek, K.E.; Fitzpatrick, F.A.
2003-01-01
Stream classifications that are based on channel form, such as the Rosgen Level II classification, are useful tools for the physical description and grouping of streams and for providing a means of communication for stream studies involving scientists and (or) managers with different backgrounds. The Level II classification also is used as a tool to assess stream stability, infer geomorphic processes, predict future geomorphic response, and guide stream restoration or rehabilitation activities. The use of the Level II classification for these additional purposes is evaluated in this paper. Several examples are described to illustrate the limitations and management implications of the Level II classification. Limitations include: (1) time dependence, (2) uncertain applicability across physical environments, (3) difficulty in identification of a true equilibrium condition, (4) potential for incorrect determination of bankfull elevation, and (5) uncertain process significance of classification criteria. Implications of using stream classifications based on channel form, such as Rosgen's, include: (1) acceptance of the limitations, (2) acceptance of the risk of classifying streams incorrectly, and (3) classification results may be used inappropriately. It is concluded that use of the Level II classification for purposes beyond description and communication is not appropriate. Research needs are identified that, if addressed, may help improve the usefulness of the Level II classification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ihme, Matthias; Driscoll, James
2015-08-31
The objective of this closely coordinated experimental and computational research effort is the development of simulation techniques for the prediction of combustion processes, relevant to the oxidation of syngas and high hydrogen content (HHC) fuels at gas-turbine relevant operating conditions. Specifically, the research goals are (i) the characterization of the sensitivity of syngas ignition processes to hydrodynamic processes and perturbations in temperature and mixture composition in rapid compression machines and ow-reactors and (ii) to conduct comprehensive experimental investigations in a swirl-stabilized gas turbine (GT) combustor under realistic high-pressure operating conditions in order (iii) to obtain fundamental understanding about mechanisms controllingmore » unstable flame regimes in HHC-combustion.« less
Barter, Laura M. C.; Durrant, James R.; Klug, David R.
2003-01-01
Light-induced charge separation is the primary photochemical event of photosynthesis. Efficient charge separation in photosynthetic reaction centers requires the balancing of electron and excitation energy transfer processes, and in Photosystem II (PSII), these processes are particularly closely entangled. Calculations that treat the cofactors of the PSII reaction center as a supermolecular complex allow energy and electron transfer reactions to be described in a unified way. This calculational approach is shown to be in good agreement with experimentally observed energy and electron transfer dynamics. This supermolecular view also correctly predicts the effect of changing the redox potentials of cofactors by site-directed mutagenesis, thus providing a unified and quantitative structure–function relationship for the PSII reaction center. PMID:12538865
Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl
2010-01-01
β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC = 0.50, Qtotal = 82.1%, sensitivity = 75.6%, PPV = 68.8% and AUC = 0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17 – 0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. Conclusion The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences. PMID:21152409
Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl
2010-11-30
β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.
Nielsen, Morten; Justesen, Sune; Lund, Ole; Lundegaard, Claus; Buus, Søren
2010-11-13
Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Predicting which peptides bind to an MHC-II molecule is therefore of pivotal importance for understanding the immune response and its effect on host-pathogen interactions. The experimental cost associated with characterizing the binding motif of an MHC-II molecule is significant and large efforts have therefore been placed in developing accurate computer methods capable of predicting this binding event. Prediction of peptide binding to MHC-II is complicated by the open binding cleft of the MHC-II molecule, allowing binding of peptides extending out of the binding groove. Moreover, the genes encoding the MHC molecules are immensely diverse leading to a large set of different MHC molecules each potentially binding a unique set of peptides. Characterizing each MHC-II molecule using peptide-screening binding assays is hence not a viable option. Here, we present an MHC-II binding prediction algorithm aiming at dealing with these challenges. The method is a pan-specific version of the earlier published allele-specific NN-align algorithm and does not require any pre-alignment of the input data. This allows the method to benefit also from information from alleles covered by limited binding data. The method is evaluated on a large and diverse set of benchmark data, and is shown to significantly out-perform state-of-the-art MHC-II prediction methods. In particular, the method is found to boost the performance for alleles characterized by limited binding data where conventional allele-specific methods tend to achieve poor prediction accuracy. The method thus shows great potential for efficient boosting the accuracy of MHC-II binding prediction, as accurate predictions can be obtained for novel alleles at highly reduced experimental costs. Pan-specific binding predictions can be obtained for all alleles with know protein sequence and the method can benefit by including data in the training from alleles even where only few binders are known. The method and benchmark data are available at http://www.cbs.dtu.dk/services/NetMHCIIpan-2.0.
NASA Astrophysics Data System (ADS)
Müller, M. F.; Thompson, S. E.
2016-02-01
The prediction of flow duration curves (FDCs) in ungauged basins remains an important task for hydrologists given the practical relevance of FDCs for water management and infrastructure design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or model parameters. This task is complicated if climate becomes non-stationary, as the prediction challenge now also requires extrapolation through time. In this context, process-based models for FDCs that mechanistically link the streamflow distribution to climate and landscape factors may have an advantage over purely statistical methods to predict FDCs. This study compares a stochastic (process-based) and statistical method for FDC prediction in both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary conditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80 in 75 % of the tested catchments. The main drivers of uncertainty differ between the models: parameter interpolation was the main source of error for the statistical model, while violations of the assumptions of the process-based model represented the main source of its error. The process-based approach performed better than the statistical approach in numerical simulations with non-stationary climate drivers. The predictions of the statistical method under non-stationary rainfall conditions were poor if (i) local runoff coefficients were not accurately determined from the gauge network, or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analysis shows that the streamflow regimes in catchments characterized by frequent wet-season runoff and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall statistics. In these cases, process-based prediction approaches are favored over statistical models.
Kumar, Surendra; Singh, Vineet; Tiwari, Meena
2007-07-01
Selective inhibition of ciliary process enzyme i.e. Carbonic Anhydrase-II is an excellent approach in reducing elevated intraocular pressure, thus treating glaucoma. Due to characteristic physicochemical properties of sulphonamide (Inhibition of Carbonic Anhydrase), they are clinically effective against glaucoma. But the non-specificity of sulphonamide derivatives to isozyme, leads to a range of side effects. Presently, the absence of comparative studies related to the binding of the sulphonamides as inhibitors to CA isozymes limits their use. In this paper we have represented "Three Dimensional Quantitative Structure Activity Relationship" study to characterize structural features of Sulfamide derivative [RR'NSO(2)NH(2)] as inhibitors, that are required for selective binding of carbonic anhydrase isozymes (CAI and CAII). In the analysis, stepwise multiple linear regression was performed using physiochemical parameters as independent variable and CA-I and CA-II inhibitory activity as dependent variable, respectively. The best multiparametric QSAR model obtained for CA-I inhibitory activity shows good statistical significance (r= 0.9714) and predictability (Q(2)=0.8921), involving the Electronic descriptors viz. Highest Occupied Molecular Orbital, Lowest Unoccupied Molecular Orbital and Steric descriptors viz. Principal moment of Inertia at X axis. Similarly, CA-II inhibitory activity also shows good statistical significance (r=0.9644) and predictability (Q(2)=0.8699) involving aforementioned descriptors. The predictive power of the model was successfully tested externally using a set of six compounds as test set for CA-I inhibitory activity and a set of seven compounds in case of CA-II inhibitory activity with good predictive squared correlation coefficient, r(2)(pred)=0.6016 and 0.7662, respectively. Overview of analysis favours substituents with high electronegativity and less bulk at R and R' positions of the parent nucleus, provides a basis to design new Sulfamide derivatives possessing potent and selective carbonic anhydrase-II inhibitory activity.
The role of the default mode network in component processes underlying the wandering mind.
Poerio, Giulia L; Sormaz, Mladen; Wang, Hao-Ting; Margulies, Daniel; Jefferies, Elizabeth; Smallwood, Jonathan
2017-07-01
Experiences such as mind-wandering illustrate that cognition is not always tethered to events in the here-and-now. Although converging evidence emphasises the default mode network (DMN) in mind-wandering, its precise contribution remains unclear. The DMN comprises cortical regions that are maximally distant from primary sensory and motor cortex, a topological location that may support the stimulus-independence of mind-wandering. The DMN is functionally heterogeneous, comprising regions engaged by memory, social cognition and planning; processes relevant to mind-wandering content. Our study examined the relationships between: (i) individual differences in resting-state DMN connectivity, (ii) performance on memory, social and planning tasks and (iii) variability in spontaneous thought, to investigate whether the DMN is critical to mind-wandering because it supports stimulus-independent cognition, memory retrieval, or both. Individual variation in task performance modulated the functional organization of the DMN: poor external engagement was linked to stronger coupling between medial and dorsal subsystems, while decoupling of the core from the cerebellum predicted reports of detailed memory retrieval. Both patterns predicted off-task future thoughts. Consistent with predictions from component process accounts of mind-wandering, our study suggests a 2-fold involvement of the DMN: (i) it supports experiences that are unrelated to the environment through strong coupling between its sub-systems; (ii) it allows memory representations to form the basis of conscious experience. © The Author (2017). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Ghosh, Arpita; Das, Papita; Sinha, Keka
2015-06-01
In the present work, spent tea leaves were modified with Ca(OH)2 and used as a new, non-conventional and low-cost biosorbent for the removal of Cu(II) from aqueous solution. Response surface methodology (RSM) and artificial neural network (ANN) were used to develop predictive models for simulation and optimization of the biosorption process. The influence of process parameters (pH, biosorbent dose and reaction time) on the biosorption efficiency was investigated through a two-level three-factor (23) full factorial central composite design with the help of Design Expert. The same design was also used to obtain a training set for ANN. Finally, both modeling methodologies were statistically compared by the root mean square error and absolute average deviation based on the validation data set. Results suggest that RSM has better prediction performance as compared to ANN. The biosorption followed Langmuir adsorption isotherm and it followed pseudo-second-order kinetic. The optimum removal efficiency of the adsorbent was found as 96.12 %.
Berghmans, T; Paesmans, M; Sculier, J P
2004-04-01
To evaluate the effectiveness of a specific oncologic scoring system-the ICU Cancer Mortality model (ICM)-in predicting hospital mortality in comparison to two general severity scores-the Acute Physiology and Chronic Health Evaluation (APACHE II) and the Simplified Acute Physiology Score (SAPS II). All 247 patients admitted for a medical acute complication over an 18-month period in an oncological medical intensive care unit were prospectively registered. Their data, including type of complication, vital status at discharge and cancer characteristics as well as other variables necessary to calculate the three scoring systems were retrospectively assessed. Observed in-hospital mortality was 34%. The predicted in-hospital mortality rate for APACHE II was 32%; SAPS II, 24%; and ICM, 28%. The goodness of fit was inadequate except for the ICM score. Comparison of the area under the ROC curves revealed a better fit for ICM (area 0.79). The maximum correct classification rate was 72% for APACHE II, 74% for SAPS II and 77% for ICM. APACHE II and SAPS II were better at predicting outcome for survivors to hospital discharge, although ICM was better for non-survivors. Two variables were independently predicting the risk of death during hospitalisation: ICM (OR=2.31) and SAPS II (OR=1.05). Gravity scores were the single independent predictors for hospital mortality, and ICM was equivalent to APACHE II and SAPS II.
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The second stage, or upper stage, of a United Launch Alliance Delta II rocket arrives at the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Srinivasan, M; Shetty, N; Gadekari, S; Thunga, G; Rao, K; Kunhikatta, V
2017-07-01
Severity or mortality prediction of nosocomial pneumonia could aid in the effective triage of patients and assisting physicians. To compare various severity assessment scoring systems for predicting intensive care unit (ICU) mortality in nosocomial pneumonia patients. A prospective cohort study was conducted in a tertiary care university-affiliated hospital in Manipal, India. One hundred patients with nosocomial pneumonia, admitted in the ICUs who developed pneumonia after >48h of admission, were included. The Nosocomial Pneumonia Mortality Prediction (NPMP) model, developed in our hospital, was compared with Acute Physiology and Chronic Health Evaluation II (APACHE II), Mortality Probability Model II (MPM 72 II), Simplified Acute Physiology Score II (SAPS II), Multiple Organ Dysfunction Score (MODS), Sequential Organ Failure Assessment (SOFA), Clinical Pulmonary Infection Score (CPIS), Ventilator-Associated Pneumonia Predisposition, Insult, Response, Organ dysfunction (VAP-PIRO). Data and clinical variables were collected on the day of pneumonia diagnosis. The outcome for the study was ICU mortality. The sensitivity and specificity of the various scoring systems was analysed by plotting receiver operating characteristic (ROC) curves and computing the area under the curve for each of the mortality predicting tools. NPMP, APACHE II, SAPS II, MPM 72 II, SOFA, and VAP-PIRO were found to have similar and acceptable discrimination power as assessed by the area under the ROC curve. The AUC values for the above scores ranged from 0.735 to 0.762. CPIS and MODS showed least discrimination. NPMP is a specific tool to predict mortality in nosocomial pneumonia and is comparable to other standard scores. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
Fan, Mingyi; Hu, Jiwei; Cao, Rensheng; Xiong, Kangning; Wei, Xionghui
2017-12-21
Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) magnetic nanocomposites were prepared and then applied in the Cu(II) removal from aqueous solutions. Scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and superconduction quantum interference device magnetometer were performed to characterize the nZVI/rGO nanocomposites. In order to reduce the number of experiments and the economic cost, response surface methodology (RSM) combined with artificial intelligence (AI) techniques, such as artificial neural network (ANN), genetic algorithm (GA) and particle swarm optimization (PSO), has been utilized as a major tool that can model and optimize the removal processes, because a tremendous advance has recently been made on AI that may result in extensive applications. Based on RSM, ANN-GA and ANN-PSO were employed to model the Cu(II) removal process and optimize the operating parameters, e.g., operating temperature, initial pH, initial concentration and contact time. The ANN-PSO model was proven to be an effective tool for modeling and optimizing the Cu(II) removal with a low absolute error and a high removal efficiency. Furthermore, the isotherm, kinetic, thermodynamic studies and the XPS analysis were performed to explore the mechanisms of Cu(II) removal process.
Electronic Equipment Reliability Data,
1986-04-02
MTBF RELATIONSHIPS 2- 60 (INDEPENDENT OF PREDICTED MTBF) vii LIST OF FIGURES Page FIGURE 1: CONTROLS/DISPLAYS FIELD MTBF VERSUS PREDICTED MTBF 2-9 FIGURE...LJ LO C-.. c’J - - IL D LLLJ c c 1,P, 4-) CD ui on LU V)4-> LD 2 2- 60 field maintenance data (MTBMAFIELD) and observed field failure data (MTBFFIELD...w N w DLM I_, II II uh II |II II II II L II II it 00I II I-. m . LI I I I I I I I I I I I I- - - - - I I I I I I I Of m- I C II ~ 1 1 10 0 0 0 01 1 1
Functional brain imaging predicts public health campaign success
O’Donnell, Matthew Brook; Tompson, Steven; Gonzalez, Richard; Dal Cin, Sonya; Strecher, Victor; Cummings, Kenneth Michael; An, Lawrence
2016-01-01
Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard, though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems associated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a ‘self-localizer’ defined region of medial prefrontal cortex to predict the success of the same campaign messages at the population level (n = 400 000 emails). Results demonstrate that: (i) independently localized neural activity during health message exposure complements existing self-report data in predicting population-level campaign responses (model combined R2 up to 0.65) and (ii) this relationship depends on message content—self-related neural processing predicts outcomes in response to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of more effective media health campaigns. PMID:26400858
Type I and II β-turns prediction using NMR chemical shifts.
Wang, Ching-Cheng; Lai, Wen-Chung; Chuang, Woei-Jer
2014-07-01
A method for predicting type I and II β-turns using nuclear magnetic resonance (NMR) chemical shifts is proposed. Isolated β-turn chemical-shift data were collected from 1,798 protein chains. One-dimensional statistical analyses on chemical-shift data of three classes β-turn (type I, II, and VIII) showed different distributions at four positions, (i) to (i + 3). Considering the central two residues of type I β-turns, the mean values of Cο, Cα, H(N), and N(H) chemical shifts were generally (i + 1) > (i + 2). The mean values of Cβ and Hα chemical shifts were (i + 1) < (i + 2). The distributions of the central two residues in type II and VIII β-turns were also distinguishable by trends of chemical shift values. Two-dimensional cluster analyses on chemical-shift data show positional distributions more clearly. Based on these propensities of chemical shift classified as a function of position, rules were derived using scoring matrices for four consecutive residues to predict type I and II β-turns. The proposed method achieves an overall prediction accuracy of 83.2 and 84.2% with the Matthews correlation coefficient values of 0.317 and 0.632 for type I and II β-turns, indicating that its higher accuracy for type II turn prediction. The results show that it is feasible to use NMR chemical shifts to predict the β-turn types in proteins. The proposed method can be incorporated into other chemical-shift based protein secondary structure prediction methods.
Dobbin, Kevin K; Cesano, Alessandra; Alvarez, John; Hawtin, Rachael; Janetzki, Sylvia; Kirsch, Ilan; Masucci, Giuseppe V; Robbins, Paul B; Selvan, Senthamil R; Streicher, Howard Z; Zhang, Jenny; Butterfield, Lisa H; Thurin, Magdalena
2016-01-01
There is growing recognition that immunotherapy is likely to significantly improve health outcomes for cancer patients in the coming years. Currently, while a subset of patients experience substantial clinical benefit in response to different immunotherapeutic approaches, the majority of patients do not but are still exposed to the significant drug toxicities. Therefore, a growing need for the development and clinical use of predictive biomarkers exists in the field of cancer immunotherapy. Predictive cancer biomarkers can be used to identify the patients who are or who are not likely to derive benefit from specific therapeutic approaches. In order to be applicable in a clinical setting, predictive biomarkers must be carefully shepherded through a step-wise, highly regulated developmental process. Volume I of this two-volume document focused on the pre-analytical and analytical phases of the biomarker development process, by providing background, examples and "good practice" recommendations. In the current Volume II, the focus is on the clinical validation, validation of clinical utility and regulatory considerations for biomarker development. Together, this two volume series is meant to provide guidance on the entire biomarker development process, with a particular focus on the unique aspects of developing immune-based biomarkers. Specifically, knowledge about the challenges to clinical validation of predictive biomarkers, which has been gained from numerous successes and failures in other contexts, will be reviewed together with statistical methodological issues related to bias and overfitting. The different trial designs used for the clinical validation of biomarkers will also be discussed, as the selection of clinical metrics and endpoints becomes critical to establish the clinical utility of the biomarker during the clinical validation phase of the biomarker development. Finally, the regulatory aspects of submission of biomarker assays to the U.S. Food and Drug Administration as well as regulatory considerations in the European Union will be covered.
Southichak, B; Nakano, K; Nomura, M; Chiba, N; Nishimura, O
2008-01-01
Brown seaweed Sargassum horneri, a troublesome biomass scattered along the seashore, was utilized as a biosorbent for Pb(II) removal from aqueous solutions. The Pb(II) adsorption by brown seaweed was enhanced by pretreatment with CaCl(2), and the Langmuir adsorption isotherm equation showed a maximum capacity of a Q(max) of 0.696 mmol/g and a b value of 94.33 L/mmol. Results obtained from the mass-balance equation derived from the simulation model of the Langmuir adsorption isotherm suggested that the adsorption performance of brown seaweed biosorbent was sufficient to reduce the concentration of Pb(II) to meet the range of WHO guideline. The mechanism, as elucidated using pH monitoring, adsorption rate and ion exchange model, involved the rapid pH change of metal solutions that led to high reaction rate and Pb(II) uptake in the first 30 min of the biosorption process. The energy X-ray analysis's result confirmed the sharp reduction of calcium content in the biosorbent after Pb(II) adsorption. The amount of calcium ions released from the biosorbent was about 1.5 times the amount of Pb(II) adsorbed and proved the role of calcium in the ion exchange mechanism. These adsorption equilibrium and mechanistic studies provide useful information for system design and performance prediction of biosorption processes. (c) IWA Publishing 2008.
A cluster expansion model for predicting activation barrier of atomic processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rehman, Tafizur; Jaipal, M.; Chatterjee, Abhijit, E-mail: achatter@iitk.ac.in
2013-06-15
We introduce a procedure based on cluster expansion models for predicting the activation barrier of atomic processes encountered while studying the dynamics of a material system using the kinetic Monte Carlo (KMC) method. Starting with an interatomic potential description, a mathematical derivation is presented to show that the local environment dependence of the activation barrier can be captured using cluster interaction models. Next, we develop a systematic procedure for training the cluster interaction model on-the-fly, which involves: (i) obtaining activation barriers for handful local environments using nudged elastic band (NEB) calculations, (ii) identifying the local environment by analyzing the NEBmore » results, and (iii) estimating the cluster interaction model parameters from the activation barrier data. Once a cluster expansion model has been trained, it is used to predict activation barriers without requiring any additional NEB calculations. Numerical studies are performed to validate the cluster expansion model by studying hop processes in Ag/Ag(100). We show that the use of cluster expansion model with KMC enables efficient generation of an accurate process rate catalog.« less
NASA Astrophysics Data System (ADS)
Müller, M. F.; Thompson, S. E.
2015-09-01
The prediction of flow duration curves (FDCs) in ungauged basins remains an important task for hydrologists given the practical relevance of FDCs for water management and infrastructure design. Predicting FDCs in ungauged basins typically requires spatial interpolation of statistical or model parameters. This task is complicated if climate becomes non-stationary, as the prediction challenge now also requires extrapolation through time. In this context, process-based models for FDCs that mechanistically link the streamflow distribution to climate and landscape factors may have an advantage over purely statistical methods to predict FDCs. This study compares a stochastic (process-based) and statistical method for FDC prediction in both stationary and non-stationary contexts, using Nepal as a case study. Under contemporary conditions, both models perform well in predicting FDCs, with Nash-Sutcliffe coefficients above 0.80 in 75 % of the tested catchments. The main drives of uncertainty differ between the models: parameter interpolation was the main source of error for the statistical model, while violations of the assumptions of the process-based model represented the main source of its error. The process-based approach performed better than the statistical approach in numerical simulations with non-stationary climate drivers. The predictions of the statistical method under non-stationary rainfall conditions were poor if (i) local runoff coefficients were not accurately determined from the gauge network, or (ii) streamflow variability was strongly affected by changes in rainfall. A Monte Carlo analysis shows that the streamflow regimes in catchments characterized by a strong wet-season runoff and a rapid, strongly non-linear hydrologic response are particularly sensitive to changes in rainfall statistics. In these cases, process-based prediction approaches are strongly favored over statistical models.
AWIPS II in the University Community: Unidata's efforts and capabilities of the software
NASA Astrophysics Data System (ADS)
Ramamurthy, Mohan; James, Michael
2015-04-01
The Advanced Weather Interactive Processing System, version II (AWIPS II) is a weather forecasting, display and analysis tool that is used by the National Oceanic and Atmospheric Administration/National Weather Service (NOAA/NWS) and the National Centers for Environmental Prediction (NCEP) to ingest analyze and disseminate operational weather data. The AWIPS II software is built on a Service Oriented Architecture, takes advantage of open source software, and its design affords expandability, flexibility, and portability. Since many university meteorology programs are eager to use the same tools used by NWS forecasters, Unidata community interest in AWIPS II is high. The Unidata Program Center (UPC) has worked closely with NCEP staff during AWIPS II development in order to devise a way to make it available to the university. The Unidata AWIPS II software was released in beta form in 2014, and it incorporates a number of key changes to the baseline U. S. National Weather Service release to process and display additional data formats and run all components in a single-server standalone configuration. In addition to making available open-source instances of the software libraries that can be downloaded and run at any university, Unidata has also deployed the data-server side of AWIPS II, known as EDEX, in the Amazon Web Service and Microsoft Azure cloud environments. In this set up, universities receive all of the data from remote cloud instances, while they only have to run the AWIPS II client, known as CAVE, to analyze and visualize the data. In this presentation, we will describe Unidata's AWIPS II efforts, including the capabilities of the software in visualizing many different types of real-time meteorological data and its myriad uses in university and other settings.
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The transportation trailer carrying the second stage, or upper stage, of a United Launch Alliance Delta II rocket backs into the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to lift the second stage, or upper stage, of a United Launch Alliance Delta II rocket from its transportation trailer in the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Bradfield, Laura A; McNally, Gavan P
2010-07-01
We studied the role of nucleus accumbens shell (AcbSh) in Pavlovian fear conditioning. Rats were trained to fear conditioned stimulus A (CSA) in Stage I, which was then presented in compound with a neutral stimulus and paired with shock in Stage II. AcbSh lesions had no effect on fear-learning to CSA in Stage I, but selectively prevented learning about the neutral conditioned stimulus (CS) in Stage II. These results add to a growing body of evidence indicating an important role for the ventral striatum in fear-learning. They suggest that the ventral striatum and AcbSh, in particular, directs learning toward or away from a CS as a consequence of how well that CS predicts the shock unconditioned stimulus (US). AcbSh is required to reduce the processing of established predictors, thereby permitting neutral or less predictive stimuli to be learned about.
2014-07-14
VANDENBERG AIR FORCE BASE, Calif. – The lid is removed from the transportation trailer containing the second stage, or upper stage, of a United Launch Alliance Delta II rocket in the Building 836 hangar on south Vandenberg Air Force Base in California. The Delta II rocket will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit from Vandenberg's Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Validation of CRIB II for prediction of mortality in premature babies.
Rastogi, Pallav Kumar; Sreenivas, V; Kumar, Nirmal
2010-02-01
Validation of Clinical Risk Index for Babies (CRIB II) score in predicting the neonatal mortality in preterm neonates < or = 32 weeks gestational age. Prospective cohort study. Tertiary care neonatal unit. 86 consecutively born preterm neonates with gestational age < or = 32 weeks. The five variables related to CRIB II were recorded within the first hour of admission for data analysis. The receiver operating characteristics (ROC) curve was used to check the accuracy of the mortality prediction. HL Goodness of fit test was used to see the discrepancy between observed and expected outcomes. A total of 86 neonates (males 59.6% mean birthweight: 1228 +/- 398 grams; mean gestational age: 28.3 +/- 2.4 weeks) were enrolled in the study, of which 17 (19.8%) left hospital against medical advice (LAMA) before reaching the study end point. Among 69 neonates completing the study, 24 (34.8%) had adverse outcome during hospital stay and 45 (65.2%) had favorable outcome. CRIB II correctly predicted adverse outcome in 90.3% (Hosmer Lemeshow goodness of fit test P=0.6). Area under curve (AUC) for CRIB II was 0.9032. In intention to treat analysis with LAMA cases included as survivors, the mortality prediction was 87%. If these were included as having died then mortality prediction was 83.1%. The CRIB II score was found to be a good predictive instrument for mortality in preterm infants < or = 32 weeks gestation.
An optimal design of wind turbine and ship structure based on neuro-response surface method
NASA Astrophysics Data System (ADS)
Lee, Jae-Chul; Shin, Sung-Chul; Kim, Soo-Young
2015-07-01
The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.
Cacioppo, Stephanie; Fontang, Frederic; Patel, Nisa; Decety, Jean; Monteleone, George; Cacioppo, John T.
2014-01-01
Studying the way athletes predict actions of their peers during fast-ball sports, such as a tennis, has proved to be a valuable tool for increasing our knowledge of intention understanding. The working model in this area is that the anticipatory representations of others' behaviors require internal predictive models of actions formed from pre-established and shared representations between the observer and the actor. This model also predicts that observers would not be able to read accurately the intentions of a competitor if the competitor were to perform the action without prior knowledge of their intention until moments before the action. To test this hypothesis, we recorded brain activity from 25 male tennis players while they performed a novel behavioral tennis intention inference task, which included two conditions: (i) one condition in which they viewed video clips of a tennis athlete who knew in advance where he was about to act/serve (initially intended serves) and (ii) one condition in which they viewed video clips of that same athlete when he did not know where he was to act/serve until the target was specified after he had tossed the ball into the air to complete his serve (non-initially intended serves). Our results demonstrated that (i) tennis expertise is related to the accuracy in predicting where another server intends to serve when that server knows where he intends to serve before (but not after) he tosses the ball in the air; and (ii) accurate predictions are characterized by the recruitment of both cortical areas within the human mirror neuron system (that is known to be involved in higher-order (top-down) processes of embodied cognition and shared representation) and subcortical areas within brain regions involved in procedural memory (caudate nucleus). Interestingly, inaccurate predictions instead recruit areas known to be involved in low-level (bottom-up) computational processes associated with the sense of agency and self-other distinction. PMID:25339886
Tsujimoto; Shigeyama; Yoshii
2000-03-01
We suggest that if the astrophysical site for r-process nucleosynthesis in the early Galaxy is confined to a narrow mass range of Type II supernova (SN II) progenitors, with a lower mass limit of Mms=20 M middle dot in circle, a unique feature in the observed distribution of [Ba/Mg] versus [Mg/H] for extremely metal-poor stars can be adequately reproduced. We associate this feature, a bifurcation of the observed elemental ratios into two branches in the Mg abundance interval -3.7=&sqbl0;Mg&solm0;H&sqbr0;=-2.3, with two distinct processes. The first branch, which we call the y-branch, is associated with the production of Ba and Mg from individual massive supernovae. The derived mass of Ba synthesized in SNe II is 8.5x10-6 M middle dot in circle for Mms=20 M middle dot in circle and 4.5x10-8 M middle dot in circle for Mms=25 M middle dot in circle. We conclude that SNe II with Mms approximately 20 M middle dot in circle are the dominant source of r-process nucleosynthesis in the early Galaxy. An SN-induced chemical evolution model with this Mms-dependent Ba yield creates the y-branch, reflecting the different nucleosynthesis yields of [Ba/Mg] for each SN II with Mms greater, similar20 M middle dot in circle. The second branch, which we call the i-branch, is associated with the elemental abundance ratios of stars which were formed in the dense shells of the interstellar medium swept up by SNe II with Mms<20 M middle dot in circle that do not synthesize r-process elements, and it applies to stars with observed Mg abundances in the range &sqbl0;Mg&solm0;H&sqbr0;<-2.7. The Ba abundances in these stars reflect those of the interstellar gas at the (later) time of their formation. The existence of a [Ba/Mg] i-branch strongly suggests that SNe II that are associated with stars of progenitor mass Mms=20 M middle dot in circle are infertile sources for the production of r-process elements. We predict the existence of this i-branch for other r-process elements, such as europium (Eu), to the extent that their production site is in common with Ba.
Theoretical modeling of the electronic structure and exchange interactions in Cu(II)Pc
NASA Astrophysics Data System (ADS)
Wu, Wei; Fisher, A. J.; Harrison, N. M.; Wang, Hai; Wu, Zhenlin; Gardener, Jules; Heutz, Sandrine; Jones, Tim; Aeppli, Gabriel
2012-12-01
We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine (Cu(II)Pc) crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green's function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α- and β-phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.
NASA Astrophysics Data System (ADS)
Wu, Wei; Fisher, A. J.; Harrison, N. M.
2011-07-01
We calculate the electronic structure and exchange interactions in a copper(II)phthalocyanine [Cu(II)Pc] crystal as a one-dimensional molecular chain using hybrid exchange density functional theory (DFT). In addition, the intermolecular exchange interactions are also calculated in a molecular dimer using Green’s function perturbation theory (GFPT) to illustrate the underlying physics. We find that the exchange interactions depend strongly on the stacking angle, but weakly on the sliding angle (defined in the text). The hybrid DFT calculations also provide an insight into the electronic structure of the Cu(II)Pc molecular chain and demonstrate that on-site electron correlations have a significant effect on the nature of the ground state, the band gap, and magnetic excitations. The exchange interactions predicted by our DFT calculations and GFPT calculations agree qualitatively with the recent experimental results on newly found η-Cu(II)Pc and the previous results for the α and β phases. This work provides a reliable theoretical basis for the further application of Cu(II)Pc to molecular spintronics and organic-based quantum information processing.
Kumar, Anil; Bora, Utpal
2014-12-01
DNA topoisomerase I (topo I) and II (topo II) are essential enzymes that solve the topological problems of DNA by allowing DNA strands or double helices to pass through each other during cellular processes such as replication, transcription, recombination, and chromatin remodeling. Their critical roles make topoisomerases an attractive drug target against cancer. The present molecular docking study provides insights into the inhibition of topo I and II by curcumin natural derivatives. The binding modes suggested that curcumin natural derivatives docked at the site of DNA cleavage parallel to the axis of DNA base pairing. Cyclocurcumin and curcumin sulphate were predicted to be the most potent inhibitors amongst all the curcumin natural derivatives docked. The binding modes of cyclocurcumin and curcumin sulphate were similar to known inhibitors of topo I and II. Residues like Arg364, Asn722 and base A113 (when docked to topo I-DNA complex) and residues Asp479, Gln778 and base T9 (when docked to topo II-DNA complex) seem to play important role in the binding of curcumin natural derivatives at the site of DNA cleavage.
Di Nardo, Francesco; Mengoni, Michele; Morettini, Micaela
2013-05-01
Present study provides a novel MATLAB-based parameter estimation procedure for individual assessment of hepatic insulin degradation (HID) process from standard frequently-sampled intravenous glucose tolerance test (FSIGTT) data. Direct access to the source code, offered by MATLAB, enabled us to design an optimization procedure based on the alternating use of Gauss-Newton's and Levenberg-Marquardt's algorithms, which assures the full convergence of the process and the containment of computational time. Reliability was tested by direct comparison with the application, in eighteen non-diabetic subjects, of well-known kinetic analysis software package SAAM II, and by application on different data. Agreement between MATLAB and SAAM II was warranted by intraclass correlation coefficients ≥0.73; no significant differences between corresponding mean parameter estimates and prediction of HID rate; and consistent residual analysis. Moreover, MATLAB optimization procedure resulted in a significant 51% reduction of CV% for the worst-estimated parameter by SAAM II and in maintaining all model-parameter CV% <20%. In conclusion, our MATLAB-based procedure was suggested as a suitable tool for the individual assessment of HID process. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements
NASA Astrophysics Data System (ADS)
Lucas, S. E.; Todd, J. F.
2015-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.
FORUM - FutureTox II: In vitro Data and In Silico Models for ...
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. This article reports on the outcome of FutureTox II1,2, the second in a series of Society of Toxicology (SOT) Contemporary Concepts in Toxicology (CCT) Workshops, which was attended by invitees and participants from governmental and regulatory agencies, research institutes, academ
NAPR: a Cloud-Based Framework for Neuroanatomical Age Prediction.
Pardoe, Heath R; Kuzniecky, Ruben
2018-01-01
The availability of cloud computing services has enabled the widespread adoption of the "software as a service" (SaaS) approach for software distribution, which utilizes network-based access to applications running on centralized servers. In this paper we apply the SaaS approach to neuroimaging-based age prediction. Our system, named "NAPR" (Neuroanatomical Age Prediction using R), provides access to predictive modeling software running on a persistent cloud-based Amazon Web Services (AWS) compute instance. The NAPR framework allows external users to estimate the age of individual subjects using cortical thickness maps derived from their own locally processed T1-weighted whole brain MRI scans. As a demonstration of the NAPR approach, we have developed two age prediction models that were trained using healthy control data from the ABIDE, CoRR, DLBS and NKI Rockland neuroimaging datasets (total N = 2367, age range 6-89 years). The provided age prediction models were trained using (i) relevance vector machines and (ii) Gaussian processes machine learning methods applied to cortical thickness surfaces obtained using Freesurfer v5.3. We believe that this transparent approach to out-of-sample evaluation and comparison of neuroimaging age prediction models will facilitate the development of improved age prediction models and allow for robust evaluation of the clinical utility of these methods.
Rathnakar, Surag Kajoor; Vishnu, Vikram Hubbanageri; Muniyappa, Shridhar; Prasath, Arun
2017-02-01
Acute Pancreatitis (AP) is one of the common conditions encountered in the emergency room. The course of the disease ranges from mild form to severe acute form. Most of these episodes are mild and spontaneously subsiding within 3 to 5 days. In contrast, Severe Acute Pancreatitis (SAP) occurring in around 15-20% of all cases, mortality can range between 10 to 85% across various centres and countries. In such a situation we need an indicator which can predict the outcome of an attack, as severe or mild, as early as possible and such an indicator should be sensitive and specific enough to trust upon. PANC-3 scoring is such a scoring system in predicting the outcome of an attack of AP. To assess the accuracy and predictability of PANC-3 scoring system over APACHE II in predicting severity in an attack of AP. This prospective study was conducted on 82 patients admitted with the diagnosis of pancreatitis. Investigations to evaluate PANC-3 and APACHE II were done on all the patients and the PANC-3 and APACHE II score was calculated. PANC-3 score has a sensitivity of 82.6% and specificity of 77.9%, the test had a Positive Predictive Value (PPV) of 0.59 and Negative Predictive Value (NPV) of 0.92. Sensitivity of APACHE II in predicting SAP was 91.3% and specificity was 96.6% with PPV of 0.91, NPV was 0.96. Our study shows that PANC-3 can be used to predict the severity of pancreatitis as efficiently as APACHE II. The interpretation of PANC-3 does not need expertise and can be applied at the time of admission which is an advantage when compared to classical scoring systems.
Allyn, Jérôme; Ferdynus, Cyril; Bohrer, Michel; Dalban, Cécile; Valance, Dorothée; Allou, Nicolas
2016-01-01
End-of-life decision-making in Intensive care Units (ICUs) is difficult. The main problems encountered are the lack of a reliable prediction score for death and the fact that the opinion of patients is rarely taken into consideration. The Decision Curve Analysis (DCA) is a recent method developed to evaluate the prediction models and which takes into account the wishes of patients (or surrogates) to expose themselves to the risk of obtaining a false result. Our objective was to evaluate the clinical usefulness, with DCA, of the Simplified Acute Physiology Score II (SAPS II) to predict ICU mortality. We conducted a retrospective cohort study from January 2011 to September 2015, in a medical-surgical 23-bed ICU at University Hospital. Performances of the SAPS II, a modified SAPS II (without AGE), and age to predict ICU mortality, were measured by a Receiver Operating Characteristic (ROC) analysis and DCA. Among the 4.370 patients admitted, 23.3% died in the ICU. Mean (standard deviation) age was 56.8 (16.7) years, and median (first-third quartile) SAPS II was 48 (34-65). Areas under ROC curves were 0.828 (0.813-0.843) for SAPS II, 0.814 (0.798-0.829) for modified SAPS II and of 0.627 (0.608-0.646) for age. DCA showed a net benefit whatever the probability threshold, especially under 0.5. DCA shows the benefits of the SAPS II to predict ICU mortality, especially when the probability threshold is low. Complementary studies are needed to define the exact role that the SAPS II can play in end-of-life decision-making in ICUs.
Allyn, Jérôme; Ferdynus, Cyril; Bohrer, Michel; Dalban, Cécile; Valance, Dorothée; Allou, Nicolas
2016-01-01
Background End-of-life decision-making in Intensive care Units (ICUs) is difficult. The main problems encountered are the lack of a reliable prediction score for death and the fact that the opinion of patients is rarely taken into consideration. The Decision Curve Analysis (DCA) is a recent method developed to evaluate the prediction models and which takes into account the wishes of patients (or surrogates) to expose themselves to the risk of obtaining a false result. Our objective was to evaluate the clinical usefulness, with DCA, of the Simplified Acute Physiology Score II (SAPS II) to predict ICU mortality. Methods We conducted a retrospective cohort study from January 2011 to September 2015, in a medical-surgical 23-bed ICU at University Hospital. Performances of the SAPS II, a modified SAPS II (without AGE), and age to predict ICU mortality, were measured by a Receiver Operating Characteristic (ROC) analysis and DCA. Results Among the 4.370 patients admitted, 23.3% died in the ICU. Mean (standard deviation) age was 56.8 (16.7) years, and median (first-third quartile) SAPS II was 48 (34–65). Areas under ROC curves were 0.828 (0.813–0.843) for SAPS II, 0.814 (0.798–0.829) for modified SAPS II and of 0.627 (0.608–0.646) for age. DCA showed a net benefit whatever the probability threshold, especially under 0.5. Conclusion DCA shows the benefits of the SAPS II to predict ICU mortality, especially when the probability threshold is low. Complementary studies are needed to define the exact role that the SAPS II can play in end-of-life decision-making in ICUs. PMID:27741304
MHC2NNZ: A novel peptide binding prediction approach for HLA DQ molecules
NASA Astrophysics Data System (ADS)
Xie, Jiang; Zeng, Xu; Lu, Dongfang; Liu, Zhixiang; Wang, Jiao
2017-07-01
The major histocompatibility complex class II (MHC-II) molecule plays a crucial role in immunology. Computational prediction of MHC-II binding peptides can help researchers understand the mechanism of immune systems and design vaccines. Most of the prediction algorithms for MHC-II to date have made large efforts in human leukocyte antigen (HLA, the name of MHC in Human) molecules encoded in the DR locus. However, HLA DQ molecules are equally important and have only been made less progress because it is more difficult to handle them experimentally. In this study, we propose an artificial neural network-based approach called MHC2NNZ to predict peptides binding to HLA DQ molecules. Unlike previous artificial neural network-based methods, MHC2NNZ not only considers sequence similarity features but also captures the chemical and physical properties, and a novel method incorporating these properties is proposed to represent peptide flanking regions (PFR). Furthermore, MHC2NNZ improves the prediction accuracy by combining with amino acid preference at more specific positions of the peptides binding core. By evaluating on 3549 peptides binding to six most frequent HLA DQ molecules, MHC2NNZ is demonstrated to outperform other state-of-the-art MHC-II prediction methods.
Deterministic Wave Predictions from the WaMoS II
2014-10-23
Monitoring System WaMoS II as input to a wave pre- diction system . The utility of wave prediction is primarily ves- sel motion prediction. Specific...successful prediction. The envisioned prediction system may provide graphical output in the form of a decision support system (Fig. 1). Predictions are...quality and accuracy of WaMoS as input to a deterministic wave prediction system . In the context of this paper, the Time Now Forecast H e a v e Hindcast
NASA Astrophysics Data System (ADS)
Ji, Alexander P.; Frebel, Anna
2018-04-01
The ultra-faint dwarf galaxy Reticulum II was enriched by a rare and prolific r-process event, such as a neutron star merger (NSM). To investigate the nature of this event, we present high-resolution Magellan/MIKE spectroscopy of the brightest star in this galaxy. The high signal-to-noise allows us to determine the abundances of 41 elements, including the radioactive actinide element Th and first ever detections of third r-process peak elements (Os and Ir) in a star outside the Milky Way. The observed neutron-capture element abundances closely match the solar r-process component, except for the first r-process peak, which is significantly lower than solar but matches other r-process enhanced stars. The ratio of the first peak to heavier r-process elements implies that the r-process site produces roughly equal masses of high and low electron fraction ejecta, within a factor of 2. We compare the detailed abundance pattern to predictions from nucleosynthesis calculations of NSMs and magnetorotationally driven jet supernovae, finding that nuclear physics uncertainties dominate over astrophysical uncertainties. We measure {log}{{Th/Eu}}=-0.84+/- 0.06 ({stat})+/- 0.22 ({sys}), somewhat lower than all previous Th/Eu observations. The youngest age we derive from this ratio is 21.7 ± 2.8 (stat) ± 10.3 (sys) Gyr, indicating that current initial production ratios do not describe the r-process event in Reticulum II. The abundances of light elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. They may eventually provide a way to distinguish between NSMs and magnetorotationally driven jet supernovae, but this would require more detailed knowledge of the chemical evolution of Reticulum II. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.
Functional brain imaging predicts public health campaign success.
Falk, Emily B; O'Donnell, Matthew Brook; Tompson, Steven; Gonzalez, Richard; Dal Cin, Sonya; Strecher, Victor; Cummings, Kenneth Michael; An, Lawrence
2016-02-01
Mass media can powerfully affect health decision-making. Pre-testing through focus groups or surveys is a standard, though inconsistent, predictor of effectiveness. Converging evidence demonstrates that activity within brain systems associated with self-related processing can predict individual behavior in response to health messages. Preliminary evidence also suggests that neural activity in small groups can forecast population-level campaign outcomes. Less is known about the psychological processes that link neural activity and population-level outcomes, or how these predictions are affected by message content. We exposed 50 smokers to antismoking messages and used their aggregated neural activity within a 'self-localizer' defined region of medial prefrontal cortex to predict the success of the same campaign messages at the population level (n = 400,000 emails). Results demonstrate that: (i) independently localized neural activity during health message exposure complements existing self-report data in predicting population-level campaign responses (model combined R(2) up to 0.65) and (ii) this relationship depends on message content-self-related neural processing predicts outcomes in response to strong negative arguments against smoking and not in response to compositionally similar neutral images. These data advance understanding of the psychological link between brain and large-scale behavior and may aid the construction of more effective media health campaigns. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Song, Wei; Zhai, Lin-Feng; Cui, Yu-Zhi; Sun, Min; Jiang, Yuan
2013-06-06
Due to the high redox activity of Fe(II) and its abundance in natural waters, the electro-oxidation of Fe(II) can be found in many air-cathode fuel cell systems, such as acid mine drainage fuel cells and sediment microbial fuel cells. To deeply understand these iron-related systems, it is essential to elucidate the kinetics and mechanisms involved in the electro-oxidation of Fe(II). This work aims to develop a kinetic model that adequately describes the electro-oxidation process of Fe(II) in air-cathode fuel cells. The speciation of Fe(II) is incorporated into the model, and contributions of individual Fe(II) species to the overall Fe(II) oxidation rate are quantitatively evaluated. The results show that the kinetic model can accurately predict the electro-oxidation rate of Fe(II) in air-cathode fuel cells. FeCO3, Fe(OH)2, and Fe(CO3)2(2-) are the most important species determining the electro-oxidation kinetics of Fe(II). The Fe(II) oxidation rate is primarily controlled by the oxidation of FeCO3 species at low pH, whereas at high pH Fe(OH)2 and Fe(CO3)2(2-) are the dominant species. Solution pH, carbonate concentration, and solution salinity are able to influence the electro-oxidation kinetics of Fe(II) through changing both distribution and kinetic activity of Fe(II) species.
A Comparison of Metamodeling Techniques via Numerical Experiments
NASA Technical Reports Server (NTRS)
Crespo, Luis G.; Kenny, Sean P.; Giesy, Daniel P.
2016-01-01
This paper presents a comparative analysis of a few metamodeling techniques using numerical experiments for the single input-single output case. These experiments enable comparing the models' predictions with the phenomenon they are aiming to describe as more data is made available. These techniques include (i) prediction intervals associated with a least squares parameter estimate, (ii) Bayesian credible intervals, (iii) Gaussian process models, and (iv) interval predictor models. Aspects being compared are computational complexity, accuracy (i.e., the degree to which the resulting prediction conforms to the actual Data Generating Mechanism), reliability (i.e., the probability that new observations will fall inside the predicted interval), sensitivity to outliers, extrapolation properties, ease of use, and asymptotic behavior. The numerical experiments describe typical application scenarios that challenge the underlying assumptions supporting most metamodeling techniques.
Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wu, Qing; Wei, Xionghui; Li, Lingyun; Shi, Xuedan; Ruan, Wenqian
2016-01-01
Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were prepared by chemical deposition method and were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N2-sorption and X-ray photoelectron spectroscopy (XPS). Operating parameters for the removal process of Pb(II) ions, such as temperature (20–40 °C), pH (3–5), initial concentration (400–600 mg/L) and contact time (20–60 min), were optimized using a quadratic model. The coefficient of determination (R2 > 0.99) obtained for the mathematical model indicates a high correlation between the experimental and predicted values. The optimal temperature, pH, initial concentration and contact time for Pb(II) ions removal in the present experiment were 21.30 °C, 5.00, 400.00 mg/L and 60.00 min, respectively. In addition, the Pb(II) removal by nZVI/rGO composites was quantitatively evaluated by using adsorption isotherms, such as Langmuir and Freundlich isotherm models, of which Langmuir isotherm gave a better correlation, and the calculated maximum adsorption capacity was 910 mg/g. The removal process of Pb(II) ions could be completed within 50 min, which was well described by the pseudo-second order kinetic model. Therefore, the nZVI/rGO composites are suitable as efficient materials for the advanced treatment of Pb(II)-containing wastewater. PMID:28773813
Fan, Mingyi; Li, Tongjun; Hu, Jiwei; Cao, Rensheng; Wu, Qing; Wei, Xionghui; Li, Lingyun; Shi, Xuedan; Ruan, Wenqian
2016-08-12
Reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were prepared by chemical deposition method and were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N₂-sorption and X-ray photoelectron spectroscopy (XPS). Operating parameters for the removal process of Pb(II) ions, such as temperature (20-40 °C), pH (3-5), initial concentration (400-600 mg/L) and contact time (20-60 min), were optimized using a quadratic model. The coefficient of determination ( R ² > 0.99) obtained for the mathematical model indicates a high correlation between the experimental and predicted values. The optimal temperature, pH, initial concentration and contact time for Pb(II) ions removal in the present experiment were 21.30 °C, 5.00, 400.00 mg/L and 60.00 min, respectively. In addition, the Pb(II) removal by nZVI/rGO composites was quantitatively evaluated by using adsorption isotherms, such as Langmuir and Freundlich isotherm models, of which Langmuir isotherm gave a better correlation, and the calculated maximum adsorption capacity was 910 mg/g. The removal process of Pb(II) ions could be completed within 50 min, which was well described by the pseudo-second order kinetic model. Therefore, the nZVI/rGO composites are suitable as efficient materials for the advanced treatment of Pb(II)-containing wastewater.
SMAP Spacecraft Rotate & Placed on Fixture
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians rotate NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians have rotated NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
SMAP Spacecraft Rotate & Placed on Fixture
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians begin processing of NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians rotate NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
SMAP Spacecraft Rotate & Placed on Fixture
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians have rotated NASA's Soil Moisture Active Passive, or SMAP, spacecraft to begin processing. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
SMAP Spacecraft Rotate & Placed on Fixture
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, processing has begun on NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
Alterations in choice behavior by manipulations of world model.
Green, C S; Benson, C; Kersten, D; Schrater, P
2010-09-14
How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) "probability matching"-a consistent example of suboptimal choice behavior seen in humans-occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.
Alterations in choice behavior by manipulations of world model
Green, C. S.; Benson, C.; Kersten, D.; Schrater, P.
2010-01-01
How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) “probability matching”—a consistent example of suboptimal choice behavior seen in humans—occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning. PMID:20805507
NASA Astrophysics Data System (ADS)
Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu
2014-02-01
Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.
Aaltonen, T.
2015-03-17
Production of the Υ(1S) meson in association with a vector boson is a rare process in the standard model with a cross section predicted to be below the sensitivity of the Tevatron. Observation of this process could signify contributions not described by the standard model or reveal limitations with the current nonrelativistic quantum-chromodynamic models used to calculate the cross section. We perform a search for this process using the full Run II data set collected by the CDF II detector corresponding to an integrated luminosity of 9.4 fb -1. Our search considers the Υ→μμ decay and the decay of themore » W and Z bosons into muons and electrons. Furthermore, in these purely leptonic decay channels, we observe one ΥW candidate with an expected background of 1.2±0.5 events, and one ΥZcandidate with an expected background of 0.1±0.1 events. Both observations are consistent with the predicted background contributions. The resulting upper limits on the cross section for Υ+W/Zproduction are the most sensitive reported from a single experiment and place restrictions on potential contributions from non-standard-model physics.« less
Biological Superoxide In Manganese Oxide Formation
NASA Astrophysics Data System (ADS)
Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.
2011-12-01
Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.
FutureTox II: in vitro data and in silico models for predictive toxicology.
Knudsen, Thomas B; Keller, Douglas A; Sander, Miriam; Carney, Edward W; Doerrer, Nancy G; Eaton, David L; Fitzpatrick, Suzanne Compton; Hastings, Kenneth L; Mendrick, Donna L; Tice, Raymond R; Watkins, Paul B; Whelan, Maurice
2015-02-01
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo responses from in vitro and in silico data, and to define the goals for the future. Presentations and discussions were held on priority concerns such as predicting and modeling of metabolism, cell growth and differentiation, effects on sensitive subpopulations, and integrating data into risk assessment. Emerging trends in technologies such as stem cell-derived human cells, 3D organotypic culture models, mathematical modeling of cellular processes and morphogenesis, adverse outcome pathway development, and high-content imaging of in vivo systems were discussed. Although advances in moving towards an in vitro/in silico based risk assessment paradigm were apparent, knowledge gaps in these areas and limitations of technologies were identified. Specific recommendations were made for future directions and research needs in the areas of hepatotoxicity, cancer prediction, developmental toxicity, and regulatory toxicology. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Uncertainty Considerations for Ballistic Limit Equations
NASA Technical Reports Server (NTRS)
Schonberg, W. P.; Evans, H. J.; Williamsen, J. E.; Boyer, R. L.; Nakayama, G. S.
2005-01-01
The overall risk for any spacecraft system is typically determined using a Probabilistic Risk Assessment (PRA). A PRA attempts to determine the overall risk associated with a particular mission by factoring in all known risks (and their corresponding uncertainties, if known) to the spacecraft during its mission. The threat to mission and human life posed by the mircro-meteoroid & orbital debris (MMOD) environment is one of the risks. NASA uses the BUMPER II program to provide point estimate predictions of MMOD risk for the Space Shuttle and the International Space Station. However, BUMPER II does not provide uncertainty bounds or confidence intervals for its predictions. With so many uncertainties believed to be present in the models used within BUMPER II, providing uncertainty bounds with BUMPER II results would appear to be essential to properly evaluating its predictions of MMOD risk. The uncertainties in BUMPER II come primarily from three areas: damage prediction/ballistic limit equations, environment models, and failure criteria definitions. In order to quantify the overall uncertainty bounds on MMOD risk predictions, the uncertainties in these three areas must be identified. In this paper, possible approaches through which uncertainty bounds can be developed for the various damage prediction and ballistic limit equations encoded within the shuttle and station versions of BUMPER II are presented and discussed. We begin the paper with a review of the current approaches used by NASA to perform a PRA for the Space Shuttle and the International Space Station, followed by a review of the results of a recent sensitivity analysis performed by NASA using the shuttle version of the BUMPER II code. Following a discussion of the various equations that are encoded in BUMPER II, we propose several possible approaches for establishing uncertainty bounds for the equations within BUMPER II. We conclude with an evaluation of these approaches and present a recommendation regarding which of them would be the most appropriate to follow.
NASA Astrophysics Data System (ADS)
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; Wahl, W.
2016-11-01
Third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and ramped operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. This made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.
Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems
NASA Astrophysics Data System (ADS)
Lau, Wayne Heung
This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton-QD (QW) coupled system is inhibited and polariton bound states are formed within the polaritonic energy gap. A theory is also developed to study the polariton eigenenergy spectrum, polariton effective mass, and polariton spectral density of N identical semiconductor QDs (QWs) or a superlattice (SL) placed inside a III--V semiconductor. A polariton-impurity band lying within the polaritonic energy gap of the III--V semiconductor is predicted when the resonance energies of the QDs (QWs) lie inside the polaritonic energy gap. Hole-like polariton effective mass of the polariton-impurity band is predicted. It is also predicted that the spectral density of the polariton has a Lorentzian shape if the resonance energies of the QDs (QWs) lie outside the polaritonic gap.
Criscitiello, Michael F; Ohta, Yuko; Graham, Matthew D; Eubanks, Jeannine O; Chen, Patricia L; Flajnik, Martin F
2012-03-01
The invariant chain (Ii) is the critical third chain required for the MHC class II heterodimer to be properly guided through the cell, loaded with peptide, and expressed on the surface of antigen presenting cells. Here, we report the isolation of the nurse shark Ii gene, and the comparative analysis of Ii splice variants, expression, genomic organization, predicted structure, and function throughout vertebrate evolution. Alternative splicing to yield Ii with and without the putative protease-protective, thyroglobulin-like domain is as ancient as the MHC-based adaptive immune system, as our analyses in shark and lizard further show conservation of this mechanism in all vertebrate classes except bony fish. Remarkable coordinate expression of Ii and class II was found in shark tissues. Conserved Ii residues and cathepsin L orthologs suggest their long co-evolution in the antigen presentation pathway, and genomic analyses suggest 450 million years of conserved Ii exon/intron structure. Other than an extended linker preceding the thyroglobulin-like domain in cartilaginous fish, the Ii gene and protein are predicted to have largely similar physiology from shark to man. Duplicated Ii genes found only in teleosts appear to have become sub-functionalized, as one form is predicted to play the same role as that mediated by Ii mRNA alternative splicing in all other vertebrate classes. No Ii homologs or potential ancestors of any of the functional Ii domains were found in the jawless fish or lower chordates. Copyright © 2011 Elsevier Ltd. All rights reserved.
Auditory processing efficiency deficits in children with developmental language impairments
NASA Astrophysics Data System (ADS)
Hartley, Douglas E. H.; Moore, David R.
2002-12-01
The ``temporal processing hypothesis'' suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an ``auditory efficiency'' hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is transported from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, accomplishes some tight turns on its approach to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, passes the mobile service tower at Space Launch Complex 2 on its way to the Horizontal Processing Facility on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Improving acceptance for Higgs events at CDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sforza, Federico; /INFN, Pisa
2008-03-01
The Standard Model of elementary particles predicts the existence of the Higgs boson as the responsable of the electroweak symmetry breaking, the process by which fermions and vector bosons acquire mass. The Higgs existence is one of the most important questions in the present high energy physics research. This work concerns the search of W H associate production at the CDF II experiment (Collider Detector at Fermilab).
Chu, Chi Meng; Ng, Kynaston; Fong, June; Teoh, Jennifer
2012-04-01
Recent research suggested that the predictive validity of adult sexual offender risk assessment measures can be affected when used cross-culturally, but there is no published study on the predictive validity of risk assessment measures for youth who sexually offended in a non-Western context. This study compared the predictive validity of three youth risk assessment measures (i.e., the Estimate of Risk of Adolescent Sexual Offense Recidivism [ERASOR], the Juvenile Sex Offender Assessment Protocol-II [J-SOAP-II], and the Youth Level of Service/Case Management Inventory [YLS/CMI]) for sexual and nonviolent recidivism in a sample of 104 male youth who sexually offended within a Singaporean context (M (follow-up) = 1,637 days; SD (follow-up) = 491). Results showed that the ERASOR overall clinical rating and total score significantly predicted sexual recidivism but only the former significantly predicted time to sexual reoffense. All of the measures (i.e., the ERASOR overall clinical rating and total score, the J-SOAP-II total score, as well as the YLS/CMI) significantly predicted nonsexual recidivism and time to nonsexual reoffense for this sample of youth who sexually offended. Overall, the results suggest that the ERASOR appears to be suited for assessing youth who sexually offended in a non-Western context, but the J-SOAP-II and the YLS/CMI have limited utility for such a purpose.
Nielsen, Morten; Lundegaard, Claus; Lund, Ole
2007-01-01
Background Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. Results The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. Conclusion The SMM-align method was shown to outperform other state of the art MHC class II prediction methods. The method predicts quantitative peptide:MHC binding affinity values, making it ideally suited for rational epitope discovery. The method has been trained and evaluated on the, to our knowledge, largest benchmark data set publicly available and covers the nine HLA-DR supertypes suggested as well as three mouse H2-IA allele. Both the peptide benchmark data set, and SMM-align prediction method (NetMHCII) are made publicly available. PMID:17608956
Nielsen, Morten; Lundegaard, Claus; Lund, Ole
2007-07-04
Antigen presenting cells (APCs) sample the extra cellular space and present peptides from here to T helper cells, which can be activated if the peptides are of foreign origin. The peptides are presented on the surface of the cells in complex with major histocompatibility class II (MHC II) molecules. Identification of peptides that bind MHC II molecules is thus a key step in rational vaccine design and developing methods for accurate prediction of the peptide:MHC interactions play a central role in epitope discovery. The MHC class II binding groove is open at both ends making the correct alignment of a peptide in the binding groove a crucial part of identifying the core of an MHC class II binding motif. Here, we present a novel stabilization matrix alignment method, SMM-align, that allows for direct prediction of peptide:MHC binding affinities. The predictive performance of the method is validated on a large MHC class II benchmark data set covering 14 HLA-DR (human MHC) and three mouse H2-IA alleles. The predictive performance of the SMM-align method was demonstrated to be superior to that of the Gibbs sampler, TEPITOPE, SVRMHC, and MHCpred methods. Cross validation between peptide data set obtained from different sources demonstrated that direct incorporation of peptide length potentially results in over-fitting of the binding prediction method. Focusing on amino terminal peptide flanking residues (PFR), we demonstrate a consistent gain in predictive performance by favoring binding registers with a minimum PFR length of two amino acids. Visualizing the binding motif as obtained by the SMM-align and TEPITOPE methods highlights a series of fundamental discrepancies between the two predicted motifs. For the DRB1*1302 allele for instance, the TEPITOPE method favors basic amino acids at most anchor positions, whereas the SMM-align method identifies a preference for hydrophobic or neutral amino acids at the anchors. The SMM-align method was shown to outperform other state of the art MHC class II prediction methods. The method predicts quantitative peptide:MHC binding affinity values, making it ideally suited for rational epitope discovery. The method has been trained and evaluated on the, to our knowledge, largest benchmark data set publicly available and covers the nine HLA-DR supertypes suggested as well as three mouse H2-IA allele. Both the peptide benchmark data set, and SMM-align prediction method (NetMHCII) are made publicly available.
Alexander, Jock Asanja; Surajudeen, Abdulsalam; Aliyu, El-Nafaty Usman; Omeiza, Aroke Umar; Zaini, Muhammad Abbas Ahmad
2017-10-01
The present work was aimed at evaluating the multi-metals column adsorption of lead(II), cadmium(II) and manganese(II) ions onto natural bentonite. The bentonite clay adsorbent was characterized for physical and chemical properties using X-ray diffraction, X-ray fluorescence, Brunauer-Emmett-Teller surface area and cation exchange capacity. The column performance was evaluated using adsorbent bed height of 5.0 cm, with varying influent concentrations (10 mg/L and 50 mg/L) and flow rates (1.4 mL/min and 2.4 mL/min). The result shows that the breakthrough time for all metal ions ranged from 50 to 480 minutes. The maximum adsorption capacity was obtained at initial concentration of 10 mg/L and flow rate of 1.4 mL/min, with 2.22 mg/g of lead(II), 1.71 mg/g of cadmium(II) and 0.37 mg/g of manganese(II). The order of metal ions removal by natural bentonite is lead(II) > cadmium(II) > manganese(II). The sorption performance and the dynamic behaviour of the column were predicted using Adams-Bohart, Thomas, and Yoon-Nelson models. The linear regression analysis demonstrated that the Thomas and Yoon-Nelson models fitted well with the column adsorption data for all metal ions. The natural bentonite was effective for the treatment of wastewater laden with multi-metals, and the process parameters obtained from this work can be used at the industrial scale.
Zhao, Guo; Wang, Hui; Liu, Gang; Wang, Zhiqiang
2016-09-21
An easy, but effective, method has been proposed to detect and quantify the Pb(II) in the presence of Cd(II) based on a Bi/glassy carbon electrode (Bi/GCE) with the combination of a back propagation artificial neural network (BP-ANN) and square wave anodic stripping voltammetry (SWASV) without further electrode modification. The effects of Cd(II) in different concentrations on stripping responses of Pb(II) was studied. The results indicate that the presence of Cd(II) will reduce the prediction precision of a direct calibration model. Therefore, a two-input and one-output BP-ANN was built for the optimization of a stripping voltammetric sensor, which considering the combined effects of Cd(II) and Pb(II) on the SWASV detection of Pb(II) and establishing the nonlinear relationship between the stripping peak currents of Pb(II) and Cd(II) and the concentration of Pb(II). The key parameters of the BP-ANN and the factors affecting the SWASV detection of Pb(II) were optimized. The prediction performance of direct calibration model and BP-ANN model were tested with regard to the mean absolute error (MAE), root mean square error (RMSE), average relative error (ARE), and correlation coefficient. The results proved that the BP-ANN model exhibited higher prediction accuracy than the direct calibration model. Finally, a real samples analysis was performed to determine trace Pb(II) in some soil specimens with satisfactory results.
Relativistic corrections to electromagnetic heavy quarkonium production
NASA Astrophysics Data System (ADS)
Shtabovenko, Vladyslav
2017-03-01
We report on the calculation [1] of the relativistic O(αs0 ν2) corrections to the quarkonium production process e+e- → χcJ + γ in non-relativistic QCD (NRQCD). In our work we incorporate effects from operators that contribute through the sub-leading Fock state |QQ¯g>, that were not taken into account by previous studies. We determine the corresponding matching coeffcients that should be included into theoretical predictions for the electromagnetic production cross-section of χcJ. This process could be, in principle, measured by the Belle II experiment.
NASA Astrophysics Data System (ADS)
Naughton, H.; Keiluweit, M.; Fendorf, S. E.; Farrant, D. N.
2016-12-01
Soil organic carbon (SOC) chemistry is known to impact carbon preservation via mineral associations and physical protection, which chemically or physically block SOC from microbial enzymatic access for decomposition. However, SOC decay models that include these processes do not reliably predict SOC dynamics. We propose that the energetics of respiration additionally regulate SOC cycling. Specifically, organic carbon will only be respired if the available electron acceptors yield enough energy for microbial growth when metabolically coupled to the SOC. To test this hypothesis, we constructed dual pore domain reactors in which water flows normal to a column of packed soil, allowing oxygen to diffuse from the upper channel through the soil and establish a redox gradient. With increasing depth into the soil column, the soil experiences a typical redox profile indicative of anaerobic respiration processes: after oxygen is consumed, nitrate, Mn, Fe, and sulfate serve as electron acceptors. We measure porewater and effluent for nitrate, sulfate, Fe(II) and Mn(II) and take microsensor profiles of dissolved oxygen and H2S to characterize the redox gradient and respiration pathways. To this we couple incubations of solid material at each depth post-experiment and quantify CO2 and CH4 production to assess respiration potential along the redox gradient. Porewater SOC chemistry is analyzed via spectroscopy and mass spectrometry to interpret SOC oxidation state and composition and thus test thermodynamic predictions on SOC stability given the available redox acceptors at a given depth in the reactor. Within 0.5 cm of the soil surface, oxygen concentrations drop below detection and signs of anaerobic respiration (Fe(II) production, loss of nitrate) initiate while respiration rates drops precipitously. More oxidized SOC is preferentially utilized with progression along the redox gradient, supporting thermodynamic predictions. This work highlights the potential of SOC chemistry within specific redox metabolic zones of soils and sediments to drive carbon utilization. An improved understanding on organic carbon utliization is critical to predict SOC dynamics under changing hydrology (e.g. saltwater intrusion, permafrost melting), temperature, and other factors impacting microbial respiration energetics.
Theoretical studies of chromospheres and winds in cool stars
NASA Technical Reports Server (NTRS)
Dupree, A.
1983-01-01
The formation of spectral lines in expanding spherical atmospheres was determined in a physically realistic way, taking into account multilevel atomic processes, partial frequency redistribution, and other non-LTE transfer effects that affect the formation of optically thick lines. The formation of MgII and Ca II circumstellar absorption lines in late type giants and supergiants is investigated. The radiative cooling rate as a function of density and temperature was calculated from the results of plane parallel chromospheric models and these results were used to approximate the radiative cooling in an extended wind. The run of temperature was calculated along with the density and velocity profiles. The most important prediction of these models is that a warm zone in the wind must exist as a result of the wave heating. Within this zone, the Ca II and Mg II atoms can be ionized to Ca III and Mg III, so that the gas is transparent in the resonance transitions.
Law, evolution and the brain: applications and open questions.
Jones, Owen D
2004-01-01
This paper discusses several issues at the intersection of law and brain science. It focuses principally on ways in which an improved understanding of how evolutionary processes affect brain function and human behaviour may improve law's ability to regulate behaviour. It explores sample uses of such 'evolutionary analysis in law' and also raises questions about how that analysis might be improved in the future. Among the discussed uses are: (i) clarifying cost-benefit analyses; (ii) providing theoretical foundation and potential predictive power; (iii) assessing comparative effectiveness of legal strategies; and (iv) revealing deep patterns in legal architecture. Throughout, the paper emphasizes the extent to which effective law requires: (i) building effective behavioural models; (ii) integrating life-science perspectives with social-science perspectives; (iii) considering the effects of brain biology on behaviours that law seeks to regulate; and (iv) examining the effects of evolutionary processes on brain design. PMID:15590611
Law, evolution and the brain: applications and open questions.
Jones, Owen D
2004-11-29
This paper discusses several issues at the intersection of law and brain science. It focuses principally on ways in which an improved understanding of how evolutionary processes affect brain function and human behaviour may improve law's ability to regulate behaviour. It explores sample uses of such 'evolutionary analysis in law' and also raises questions about how that analysis might be improved in the future. Among the discussed uses are: (i) clarifying cost-benefit analyses; (ii) providing theoretical foundation and potential predictive power; (iii) assessing comparative effectiveness of legal strategies; and (iv) revealing deep patterns in legal architecture. Throughout, the paper emphasizes the extent to which effective law requires: (i) building effective behavioural models; (ii) integrating life-science perspectives with social-science perspectives; (iii) considering the effects of brain biology on behaviours that law seeks to regulate; and (iv) examining the effects of evolutionary processes on brain design.
Chan, John K; Ueda, Stefanie M; Sugiyama, Valerie E; Stave, Christopher D; Shin, Jacob Y; Monk, Bradley J; Sikic, Branimir I; Osann, Kathryn; Kapp, Daniel S
2008-03-20
To identify the characteristics of phase II studies that predict for subsequent "positive" phase III trials (those that reached the proposed primary end points of study or those wherein the study drug was superior to the standard regimen investigating targeted agents in advanced tumors. We identified all phase III clinical trials of targeted therapies against advanced cancers published from 1985 to 2005. Characteristics of the preceding phase II studies were reviewed to identify predictive factors for success of the subsequent phase III trial. Data were analyzed using the chi(2) test and logistic regression models. Of 351 phase II studies, 167 (47.6%) subsequent phase III trials were positive and 184 (52.4%) negative. Phase II studies from multiple rather than single institutions were more likely to precede a successful trial (60.4% v 39.4%; P < .001). Positive phase II results were more likely to lead to a successful phase III trial (50.8% v 22.5%; P = .003). The percentage of successful trials from pharmaceutical companies was significantly higher compared with academic, cooperative groups, and research institutes (89.5% v 44.2%, 45.2%, and 46.3%, respectively; P = .002). On multivariate analysis, these factors and shorter time interval between publication of phase II results and III study publication were independent predictive factors for a positive phase III trial. In phase II studies of targeted agents, multiple- versus single-institution participation, positive phase II trial, pharmaceutical company-based trials, and shorter time period between publication of phase II to phase III trial were independent predictive factors of success in a phase III trial. Investigators should be cognizant of these factors in phase II studies before designing phase III trials.
2014-06-20
VANDENBERG AIR FORCE BASE, Calif. – Workers prepare to lift the canister containing the interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, from its transportation trailer in the high bay of the Building 836 hangar on south Vandenberg Air Force Base in California. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-06-20
VANDENBERG AIR FORCE BASE, Calif. – As the cover of the transportation trailer is lifted in the high bay of the Building 836 hangar on south Vandenberg Air Force Base in California, the canister containing the interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, comes into view. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-06-20
VANDENBERG AIR FORCE BASE, Calif. – The canister containing the interstage adapter, or ISA, for NASA's Soil Moisture Active Passive mission, or SMAP, is lifted out of its transportation trailer in the high bay of the Building 836 hangar on south Vandenberg Air Force Base in California. A United Launch Alliance Delta II rocket will loft SMAP into orbit from Vandenberg's Space Launch Complex 2. The ISA connects the Delta II first and second stages and encloses the second stage engine and thrust section. The spacecraft will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. The data returned also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hewamanage, Samantha Kaushalya
2011-01-01
A model-independent signature-based search for physics beyond the Standard Model is performed in the photon + jets + missing transverse energy channel in \\ppbar collisions at a center of mass energy of 1.96 TeV using the CDF II detector. Events with a photon + jets are predicted by the Standard Model and also by many theoretical models beyond the Standard Model. In the Standard Model, the main mechanisms for photon + jets production include quark-antiquark annihilation and quark-gluon scattering. No intrinsic missing transverse energy is present in any of these Standard Model processes. In this search, photon +more » $$\\geq$$1 jet and photon + $$\\geq$$2 jet events are analyzed with and without a minimum requirement on the missing transverse energy. Numerous mass distributions and kinematic distributions are studied and no significant excess over the background prediction is found. All results indicate good agreement with expectations of the Standard Model.« less
NASA Astrophysics Data System (ADS)
Spanoudaki, Katerina
2016-04-01
Oil biodegradation by native bacteria is one of the most important natural processes that can attenuate the environmental impacts of marine oil spills. However, very few numerical models of oil spill fate and transport include biodegradation kinetics of spilled oil. Furthermore, in models where biodegradation is included amongst the oil transformation processes simulated, it is mostly represented as a first order decay process neglecting the effect of several important parameters that can limit biodegradation rate, such as oil composition and oil droplets-water interface. To this end, the open source numerical model MEDSKIL-II, which simulates oil spill fate and transport in the marine environment, has been modified to include biodegradation kinetics of oil droplets dispersed in the water column. MEDSLIK-II predicts the transport and weathering of oil spills following a Lagrangian approach for the solution of the advection-diffusion equation. Transport is governed by the 3D sea currents and wave field provided by ocean circulation models. In addition to advective and diffusive displacements, the model simulates several physical and chemical processes that transform the oil (evaporation, emulsification, dispersion in the water column, adhesion to coast). The fate algorithms employed in MEDSLIK-II consider the oil as a uniform substance whose properties change as the slick weathers, an approach that can lead to reduced accuracy, especially in the estimation of oil evaporation and biodegradation. Therefore MEDSLIK-II has been modified by adopting the "pseudo-component" approach for simulating weathering processes. Spilled oil is modelled as a relatively small number of discrete, non-interacting components (pseudo-components). Chemicals in the oil mixture are grouped by physical-chemical properties and the resulting pseudo-component behaves as if it were a single substance with characteristics typical of the chemical group. The fate (evaporation, dispersion, biodegradation) of each component is tracked separately. Biodegradation of oil droplets is modelled by Monod kinetics. The kinetics of oil particles size reduction due to the microbe-mediated degradation at water-oil particle interface is represented by the shrinking core model. In order to test the performance of the modified MEDSLIK-II model, it has been applied to a test case built-in the original code. The total fate of the oil spill is simulated both without biodegradation kinetics and when biodegradation is taken into account, for reasons of comparison. Several parameters that control biodegradation rate, including initial oil concentration and composition, size distribution of oil droplets and initial microbial concentration have been investigated. This upgraded version of MEDSLIK-II can be useful not only for predicting the transport and fate of spilled oil in the short term but also for evaluating different bioremediation strategies and risk assessment for the mid- and long term. Acknowledgements: The financial support by the EU project DECATASTROPHIZE: Use of SDSS and MCDA to Prepare for Disasters or Plan for Multiple Hazards, GA no. ECHO/SUB/2015/713788/PREP02, is greatly acknowledged.
Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; You, Shao-hong; Hu, Xi; Tan, Xiao-fei; Chen, An-wei; Guo, Fang-ying
2015-05-01
The present work evaluated the effects of six inorganic electrolyte anions on Cu(II) removal using aminated Fe3O4/graphene oxide (AMGO) in single- and multi-ion systems. A 2(6-2) fractional factorial design (FFD) was employed for assessing the effects of multiple anions on the adsorption process. The results indicated that the Cu(II) adsorption was strongly dependent on pH and could be significantly affected by inorganic electrolyte anions due to the changes in Cu(II) speciation and surface charge of AMGO. In the single-ion systems, the presence of monovalent anions (Cl(-), ClO4(-), and NO3(-)) slightly increased the Cu(II) adsorption onto AMGO at low pH, while the Cu(II) adsorption was largely enhanced by the presence of SO4(2-), CO3(2-), and HPO4(2-). Based on the estimates of major effects and interactions from FFD, the factorial effects of the six selected species on Cu(II) adsorption in multi-ion system were in the following sequence: HPO4(2-)>CO3(2-)>Cl(-)>SO4(2-)>NO3(-)=ClO4(-), and the combined factors of AD (Cl(-)×SO4(2-)) and EF (Cl(-)×SO4(2-)) had significant effects on Cu(II) removal. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Del Raye, G.; Weng, K.
2011-12-01
Ocean acidification affects organisms on a biochemical scale, yet its societal impacts manifest from changes that propagate through entire populations. Successful forecasting of the effects of ocean acidification therefore depends on at least two steps: (1) deducing systemic physiology based on subcellular stresses and (2) scaling individual physiology up to ecosystem processes. Predictions that are based on known biological processes (process-based models) may fare better than purely statistical models in both these steps because the latter are less robust to novel environmental conditions. Here we present a process-based model that uses temperature, pO2, and pCO2 to predict maximal aerobic scope in Atlantic cod. Using this model, we show that (i) experimentally-derived physiological parameters are sufficient to capture the response of cod aerobic scope to temperature and oxygen, and (ii) subcellular pH effects can be used to predict the systemic physiological response of cod to an acidified ocean. We predict that acute pH stress (on a scale of hours) could limit the mobility of Atlantic cod during diel vertical migration across a pCO2 gradient, promoting habitat compression. Finally, we use a global sensitivity analysis to identify opportunities for the improvement of model uncertainty as well as some physiological adaptations that could mitigate climate stresses on cod in the future.
ERIC Educational Resources Information Center
McGill, Ryan J.; Spurgin, Angelia R.
2016-01-01
The current study examined the incremental validity of the Luria interpretive scheme for the Kaufman Assessment Battery for Children-Second Edition (KABC-II) for predicting scores on the Kaufman Test of Educational Achievement-Second Edition (KTEA-II). All participants were children and adolescents (N = 2,025) drawn from the nationally…
Interoceptive inference: From computational neuroscience to clinic.
Owens, Andrew P; Allen, Micah; Ondobaka, Sasha; Friston, Karl J
2018-04-22
The central and autonomic nervous systems can be defined by their anatomical, functional and neurochemical characteristics, but neither functions in isolation. For example, fundamental components of autonomically mediated homeostatic processes are afferent interoceptive signals reporting the internal state of the body and efferent signals acting on interoceptive feedback assimilated by the brain. Recent predictive coding (interoceptive inference) models formulate interoception in terms of embodied predictive processes that support emotion and selfhood. We propose interoception may serve as a way to investigate holistic nervous system function and dysfunction in disorders of brain, body and behaviour. We appeal to predictive coding and (active) interoceptive inference, to describe the homeostatic functions of the central and autonomic nervous systems. We do so by (i) reviewing the active inference formulation of interoceptive and autonomic function, (ii) survey clinical applications of this formulation and (iii) describe how it offers an integrative approach to human physiology; particularly, interactions between the central and peripheral nervous systems in health and disease. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Revisiting the Holy Grail: using plant functional traits to understand ecological processes.
Funk, Jennifer L; Larson, Julie E; Ames, Gregory M; Butterfield, Bradley J; Cavender-Bares, Jeannine; Firn, Jennifer; Laughlin, Daniel C; Sutton-Grier, Ariana E; Williams, Laura; Wright, Justin
2017-05-01
One of ecology's grand challenges is developing general rules to explain and predict highly complex systems. Understanding and predicting ecological processes from species' traits has been considered a 'Holy Grail' in ecology. Plant functional traits are increasingly being used to develop mechanistic models that can predict how ecological communities will respond to abiotic and biotic perturbations and how species will affect ecosystem function and services in a rapidly changing world; however, significant challenges remain. In this review, we highlight recent work and outstanding questions in three areas: (i) selecting relevant traits; (ii) describing intraspecific trait variation and incorporating this variation into models; and (iii) scaling trait data to community- and ecosystem-level processes. Over the past decade, there have been significant advances in the characterization of plant strategies based on traits and trait relationships, and the integration of traits into multivariate indices and models of community and ecosystem function. However, the utility of trait-based approaches in ecology will benefit from efforts that demonstrate how these traits and indices influence organismal, community, and ecosystem processes across vegetation types, which may be achieved through meta-analysis and enhancement of trait databases. Additionally, intraspecific trait variation and species interactions need to be incorporated into predictive models using tools such as Bayesian hierarchical modelling. Finally, existing models linking traits to community and ecosystem processes need to be empirically tested for their applicability to be realized. © 2016 Cambridge Philosophical Society.
Atashi, Alireza; Amini, Shahram; Tashnizi, Mohammad Abbasi; Moeinipour, Ali Asghar; Aazami, Mathias Hossain; Tohidnezhad, Fariba; Ghasemi, Erfan; Eslami, Saeid
2018-01-01
Introduction The European System for Cardiac Operative Risk Evaluation II (EuroSCORE II) is a prediction model which maps 18 predictors to a 30-day post-operative risk of death concentrating on accurate stratification of candidate patients for cardiac surgery. Objective The objective of this study was to determine the performance of the EuroSCORE II risk-analysis predictions among patients who underwent heart surgeries in one area of Iran. Methods A retrospective cohort study was conducted to collect the required variables for all consecutive patients who underwent heart surgeries at Emam Reza hospital, Northeast Iran between 2014 and 2015. Univariate and multivariate analysis were performed to identify covariates which significantly contribute to higher EuroSCORE II in our population. External validation was performed by comparing the real and expected mortality using area under the receiver operating characteristic curve (AUC) for discrimination assessment. Also, Brier Score and Hosmer-Lemeshow goodness-of-fit test were used to show the overall performance and calibration level, respectively. Results Two thousand five hundred eight one (59.6% males) were included. The observed mortality rate was 3.3%, but EuroSCORE II had a prediction of 4.7%. Although the overall performance was acceptable (Brier score=0.047), the model showed poor discriminatory power by AUC=0.667 (sensitivity=61.90, and specificity=66.24) and calibration (Hosmer-Lemeshow test, P<0.01). Conclusion Our study showed that the EuroSCORE II discrimination power is less than optimal for outcome prediction and less accurate for resource allocation programs. It highlights the need for recalibration of this risk stratification tool aiming to improve post cardiac surgery outcome predictions in Iran. PMID:29617500
Wu, Yimin; Lu, Yunzhe; Hu, Yanfen; Li, Rong
2005-11-01
In response to gonadotropins, the elevated level of intracellular-cyclic AMP (cAMP) in ovarian granulosa cells triggers an ordered activation of multiple ovarian genes, which in turn promotes various ovarian functions including folliculogenesis and steroidogenesis. Identification and characterization of transcription factors that control ovarian gene expression are pivotal to the understanding of the molecular basis of the tissue-specific gene regulation programs. The recent discovery of the mouse TATA binding protein (TBP)-associated factor 105 (TAF(II)105) as a gonad-selective transcriptional co-activator strongly suggests that general transcription factors such as TFIID may play a key role in regulating tissue-specific gene expression. Here we show that the human TAF(II)105 protein is preferentially expressed in ovarian granulosa cells. We also identified a novel TAF(II)105 mRNA isoform that results from alternative exon inclusion and is predicted to encode a dominant negative mutant of TAF(II)105. Following stimulation by the adenylyl cyclase activator forskolin, TAF(II)105 in granulosa cells undergoes rapid and transient phosphorylation that is dependent upon protein kinase A (PKA). Thus, our work suggests that pre-mRNA processing and post-translational modification represent two important regulatory steps for the gonad-specific functions of human TAF(II)105. Copyright 2005 Wiley-Liss, Inc.
Li, Longhai; Feng, Cindy X; Qiu, Shi
2017-06-30
An important statistical task in disease mapping problems is to identify divergent regions with unusually high or low risk of disease. Leave-one-out cross-validatory (LOOCV) model assessment is the gold standard for estimating predictive p-values that can flag such divergent regions. However, actual LOOCV is time-consuming because one needs to rerun a Markov chain Monte Carlo analysis for each posterior distribution in which an observation is held out as a test case. This paper introduces a new method, called integrated importance sampling (iIS), for estimating LOOCV predictive p-values with only Markov chain samples drawn from the posterior based on a full data set. The key step in iIS is that we integrate away the latent variables associated the test observation with respect to their conditional distribution without reference to the actual observation. By following the general theory for importance sampling, the formula used by iIS can be proved to be equivalent to the LOOCV predictive p-value. We compare iIS and other three existing methods in the literature with two disease mapping datasets. Our empirical results show that the predictive p-values estimated with iIS are almost identical to the predictive p-values estimated with actual LOOCV and outperform those given by the existing three methods, namely, the posterior predictive checking, the ordinary importance sampling, and the ghosting method by Marshall and Spiegelhalter (2003). Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Valdés, Julio J; Bonham-Carter, Graeme
2006-03-01
A computational intelligence approach is used to explore the problem of detecting internal state changes in time dependent processes; described by heterogeneous, multivariate time series with imprecise data and missing values. Such processes are approximated by collections of time dependent non-linear autoregressive models represented by a special kind of neuro-fuzzy neural network. Grid and high throughput computing model mining procedures based on neuro-fuzzy networks and genetic algorithms, generate: (i) collections of models composed of sets of time lag terms from the time series, and (ii) prediction functions represented by neuro-fuzzy networks. The composition of the models and their prediction capabilities, allows the identification of changes in the internal structure of the process. These changes are associated with the alternation of steady and transient states, zones with abnormal behavior, instability, and other situations. This approach is general, and its sensitivity for detecting subtle changes of state is revealed by simulation experiments. Its potential in the study of complex processes in earth sciences and astrophysics is illustrated with applications using paleoclimate and solar data.
Kumar, Dhananjay; Singh, Alpana; Gaur, J P
2008-11-01
The sorption of Cu(II) and Pb(II) by Pithophora markedly decreased as the concentration of the secondary metal ion, Cu(II) or Pb(II), increased in the binary metal solution. However, the test alga showed a greater affinity to sorb Cu(II) than Pb(II) from the binary metal solution. Mono-component Freundlich, Langmuir, Redlich-Peterson and Sips isotherms successfully predicted the sorption of Cu(II) and Pb(II) from both single and binary metal solutions. None of the tested binary sorption isotherms could realistically predict Cu(II) and Pb(II) sorption capacity and affinity of the test alga for the binary metal solutions of varying composition, which mono-component isotherms could very well accomplish. Hence, mono-component isotherm modeling at different concentrations of the secondary metal ion seems to be a better option than binary isotherms for metal sorption from binary metal solution.
HART-II: Prediction of Blade-Vortex Interaction Loading
NASA Technical Reports Server (NTRS)
Lim, Joon W.; Tung, Chee; Yu, Yung H.; Burley, Casey L.; Brooks, Thomas; Boyd, Doug; vanderWall, Berend; Schneider, Oliver; Richard, Hugues; Raffel, Markus
2003-01-01
During the HART-I data analysis, the need for comprehensive wake data was found including vortex creation and aging, and its re-development after blade-vortex interaction. In October 2001, US Army AFDD, NASA Langley, German DLR, French ONERA and Dutch DNW performed the HART-II test as an international joint effort. The main objective was to focus on rotor wake measurement using a PIV technique along with the comprehensive data of blade deflections, airloads, and acoustics. Three prediction teams made preliminary correlation efforts with HART-II data: a joint US team of US Army AFDD and NASA Langley, German DLR, and French ONERA. The predicted results showed significant improvements over the HART-I predicted results, computed about several years ago, which indicated that there has been better understanding of complicated wake modeling in the comprehensive rotorcraft analysis. All three teams demonstrated satisfactory prediction capabilities, in general, though there were slight deviations of prediction accuracies for various disciplines.
Geisler, Christoph; Jarvis, Donald L
2012-03-02
Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2) is a key branch point intermediate in the insect N-glycosylation pathway because it can be either trimmed by a processing β-N-acetylglucosaminidase (FDL) to produce paucimannosidic N-glycans or elongated by N-acetylglucosaminyltransferase II (GNT-II) to produce complex N-glycans. N-acetylglucosaminyltransferase I (GNT-I) contributes to branch point intermediate production and can potentially reverse the FDL trimming reaction. However, there has been no concerted effort to evaluate the relationships among these three enzymes in any single insect system. Hence, we extended our previous studies on Spodoptera frugiperda (Sf) FDL to include GNT-I and -II. Sf-GNT-I and -II cDNAs were isolated, the predicted protein sequences were analyzed, and both gene products were expressed and their acceptor substrate specificities and intracellular localizations were determined. Sf-GNT-I transferred N-acetylglucosamine to Man(5)GlcNAc(2), Man(3)GlcNAc(2), and GlcNAc(β1-2)Man(α1-6)[Man(α1-3)]ManGlcNAc(2), demonstrating its role in branch point intermediate production and its ability to reverse FDL trimming. Sf-GNT-II only transferred N-acetylglucosamine to Man(α1-6)[GlcNAc(β1-2)Man(α1-3)]ManGlcNAc(2), demonstrating that it initiates complex N-glycan production, but cannot use Man(3)GlcNAc(2) to produce hybrid or complex structures. Fluorescently tagged Sf-GNT-I and -II co-localized with an endogenous Sf Golgi marker and Sf-FDL co-localized with Sf-GNT-I and -II, indicating that all three enzymes are Golgi resident proteins. Unexpectedly, fluorescently tagged Drosophila melanogaster FDL also co-localized with Sf-GNT-I and an endogenous Drosophila Golgi marker, indicating that it is a Golgi resident enzyme in insect cells. Thus, the substrate specificities and physical juxtapositioning of GNT-I, GNT-II, and FDL support the idea that these enzymes function at the N-glycan processing branch point and are major factors determining the net outcome of the insect cell N-glycosylation pathway.
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is transported from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/U.S. Air Force 30th Space Wing
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – A worker is stationed on the transporter carrying the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is readied for the short trip from the Horizontal Processing Facility to the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, makes its way along the roadways on Vandenberg Air Force Base in California from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/U.S. Air Force 30th Space Wing
Ryan, Nicola; Nombela-Franco, Luis; Jiménez-Quevedo, Pilar; Biagioni, Corina; Salinas, Pablo; Aldazábal, Andrés; Cerrato, Enrico; Gonzalo, Nieves; Del Trigo, María; Núñez-Gil, Iván; Fernández-Ortiz, Antonio; Macaya, Carlos; Escaned, Javier
2017-11-27
The predictive value of the SYNTAX score (SS) for clinical outcomes after transcatheter aortic valve implantation (TAVI) is very limited and could potentially be improved by the combination of anatomic and clinical variables, the SS-II. We aimed to evaluate the value of the SS-II in predicting outcomes in patients undergoing TAVI. A total of 402 patients with severe symptomatic aortic stenosis undergoing transfemoral TAVI were included. Preprocedural TAVI angiograms were reviewed and the SS-I and SS-II were calculated using the SS algorithms. Patients were stratified in 3 groups according to SS-II tertiles. The coprimary endpoints were all-cause death and major adverse cardiovascular events (MACE), a composite of all-cause death, cerebrovascular event, or myocardial infarction at 1 year. Increased SS-II was associated with higher 30-day mortality (P=.036) and major bleeding (P=.015). The 1-year risk of death and MACE was higher among patients in the 3rd SS-II tertile (HR, 2.60; P=.002 and HR, 2.66; P<.001) and was similar among patients in the 2nd tertile (HR, 1.27; P=.507 and HR, 1.05; P=.895) compared with patients in the 1st tertile. The highest SS-II tertile was an independent predictor of long-term mortality (P=.046) and MACE (P=.001). The SS-II seems more suited to predict clinical outcomes in patients undergoing TAVI than the SS-I. Increased SS-II was associated with poorer clinical outcomes at 1 and 4 years post-TAVI, independently of the presence of coronary artery disease. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Dang, Mia; Ramsaran, Kalinda D; Street, Melissa E; Syed, S Noreen; Barclay-Goddard, Ruth; Stratford, Paul W; Miller, Patricia A
2011-01-01
To estimate the predictive accuracy and clinical usefulness of the Chedoke-McMaster Stroke Assessment (CMSA) predictive equations. A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from -0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted.
Predicting Backdrafting and Spillage for Natural-Draft Gas Combustion Appliances: Validating VENT-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, Vi H.; Pastor-Perez, Albert; Singer, Brett C.
2013-04-01
VENT-II is a computer program designed to provide detailed analysis of natural draft and induced draft combustion appliance vent-systems (i.e., furnace or water heater). This program is capable of predicting house depressurization thresholds that lead to backdrafting and spillage of combustion appliances; however, validation reports of the program being applied for this purpose are not readily available. The purpose of this report is to assess VENT-II’s ability to predict combustion gas spillage events due to house depressurization by comparing VENT-II simulated results with experimental data for four appliance configurations. The results show that VENT-II correctly predicts depressurizations resulting in spillagemore » for natural draft appliances operating in cold and mild outdoor conditions, but not for hot conditions. In the latter case, the predicted depressurizations depend on whether the vent section is defined as part of the vent connector or the common vent when setting up the model. Overall, the VENTII solver requires further investigation before it can be used reliably to predict spillage caused by depressurization over a full year of weather conditions, especially where hot conditions occur.« less
Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming
NASA Astrophysics Data System (ADS)
Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.
2011-12-01
Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.
A comparison between the observed and predicted Fe II spectrum in different plasmas
NASA Astrophysics Data System (ADS)
Johansson, S.
This paper gives a survey of the spectral distribution of emission lines of Fe II, predicted from a single atomic model. The observed differences between the recorded and the predicted spectrum are discussed in terms of deficiencies of the model and interactions within the emitting plasma. A number of illustrative examples of unexpected features with applications to astrophysics are given. Selective population, due to charge transfer and resonant photo excitation, is elucidated. The future need of more laboratory data for Fe II as regards energy levels and line classification is also discussed.
Ahmadi, Mehdi; Ghanbari, Farshid
2016-10-01
Greywater (GW) is a potential source for water reuse in various applications. However, GW treatment is still a vital issue in water reuse in cases of environmental standards and risk to public health. This study investigates optimization and modeling of a hybrid process for COD removal from GW. Persulfate (PS) was simultaneously activated by electrogenerated ferrous ion (EC) and UV to generate sulfate radical. Photoelectro-persulfate (PEPS) was optimized by Box-Behnken design and the effects of four variables (pH, PS dosage, current density, and electrolysis time) were evaluated on COD removal. The results and several coefficients showed that the obtained model was acceptable for predicting the COD removal. Moreover, under optimum conditions (pH = 6.9, PS = 8.8 mM, current density = 2.0 mA/cm(2), and 49.3 min electrolysis time), BOD5, turbidity, TSS, phosphate, and UV254 were effectively removed and COD and BOD5 values reached to discharge standards. Different configurations of the processes were assessed for COD removal. The order of COD removal efficiency followed: PS < Fe(II) < UV/PS ≤ Fe(II)/PS < Fe(II)/PS/UV < electrocoagulation ≤ electrocoagulation/UV < electro-PS < PEPS. The monitoring PS concentration during 60 min reaction time in the aforesaid processes indicated that PEPS could remarkably activate PS. The solution pH was also monitored and related results revealed that the presence of PS during the 10 min first time decreased pH value while production of hydroxide ion at cathode increased pH significantly. Finally, the contribution of electrochemical process in the electrical energy consumption was far less than that of photolysis process in hybrid PEPS process.
Yu, Enyan; Li, Huihui; Fan, Hongying; Gao, Qianqian; Tan, Yunfei; Lou, Junyao; Zhang, Jie; Wang, Wei
2015-12-01
To investigate whether personality traits are related to emotional symptoms (mania, hypomania, and depression) in Chinese patients with bipolar disorders. Patients with bipolar I and II disorders, and healthy volunteers, were assessed using the Chinese Adjective Descriptors of Personality (CADP) questionnaire, Mood Disorder Questionnaire (MDQ), Hypomanic Checklist (HCL-32), and Plutchik-van Praag Depression Inventory (PVP). Seventy-three patients with bipolar I disorder, 35 with bipolar II disorder and 216 healthy controls were included. Bipolar I and II groups scored significantly higher on MDQ, HCL-32 and PVP scales than controls; the bipolar II group scored lower on the MDQ, but higher on the HCL-32 and PVP than bipolar I. In the bipolar I group, the CADP Intelligent trait (β, 0.25) predicted MDQ; Intelligent (β, -0.24), Agreeable (β, 0.22) and Emotional (β, 0.34) traits predicted PVP. In the bipolar II group, Intelligent (β, 0.22), Agreeable (β, -0.24) and Unsocial (β, 0.31) traits predicted MDQ; Intelligent (β, -0.20), Agreeable (β, -0.31) and Emotional (β, -0.26) traits predicted HCL-32. Four out of five Chinese personality traits were associated with emotional symptoms in patients with bipolar I or II disorder, but displayed different associations depending on disorder type. © The Author(s) 2015.
2010-01-01
Background The binding of peptide fragments of extracellular peptides to class II MHC is a crucial event in the adaptive immune response. Each MHC allotype generally binds a distinct subset of peptides and the enormous number of possible peptide epitopes prevents their complete experimental characterization. Computational methods can utilize the limited experimental data to predict the binding affinities of peptides to class II MHC. Results We have developed the Regularized Thermodynamic Average, or RTA, method for predicting the affinities of peptides binding to class II MHC. RTA accounts for all possible peptide binding conformations using a thermodynamic average and includes a parameter constraint for regularization to improve accuracy on novel data. RTA was shown to achieve higher accuracy, as measured by AUC, than SMM-align on the same data for all 17 MHC allotypes examined. RTA also gave the highest accuracy on all but three allotypes when compared with results from 9 different prediction methods applied to the same data. In addition, the method correctly predicted the peptide binding register of 17 out of 18 peptide-MHC complexes. Finally, we found that suboptimal peptide binding registers, which are often ignored in other prediction methods, made significant contributions of at least 50% of the total binding energy for approximately 20% of the peptides. Conclusions The RTA method accurately predicts peptide binding affinities to class II MHC and accounts for multiple peptide binding registers while reducing overfitting through regularization. The method has potential applications in vaccine design and in understanding autoimmune disorders. A web server implementing the RTA prediction method is available at http://bordnerlab.org/RTA/. PMID:20089173
Narme, Pauline; Roussel, Martine; Mouras, Harold; Krystkowiak, Pierre; Godefroy, Olivier
2017-01-01
Behavioral dysexecutive disorders are highly prevalent in patients with neurological diseases but cannot be explained by cognitive dysexecutive impairments. In fact, the underlying mechanisms are poorly understood. Given that socioemotional functioning underlies appropriate behavior, socioemotional impairments may contribute to the appearance of behavioral disorders. To investigate this issue, we performed a transnosological study. Seventy-five patients suffering from various neurological diseases (Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal lobar degeneration, and stroke) were included in the study. The patients were comprehensively assessed in terms of cognitive and behavioral dysexecutive disorders and socioemotional processes (facial emotion recognition and theory of mind). As was seen for cognitive and behavioral dysexecutive impairments, the prevalence of socioemotional impairments varied according to the diagnosis. Stepwise logistic regressions showed that (i) only cognitive executive indices predicted hypoactivity with apathy/abulia, (ii) theory of mind impairments predicted hyperactivity-distractibility-impulsivity and stereotyped/perseverative behaviors, and (iii) impaired facial emotion recognition predicted social behavior disorders. Several dysexecutive behavioral disorders are associated with an underlying impairment in socioemotional processes but not with cognitive indices of executive functioning (except for apathy). These results strongly suggest that some dysexecutive behavioral disorders are the outward signs of an underlying impairment in socioemotional processes.
Papas, Klearchos K; Bellin, Melena D; Sutherland, David E R; Suszynski, Thomas M; Kitzmann, Jennifer P; Avgoustiniatos, Efstathios S; Gruessner, Angelika C; Mueller, Kathryn R; Beilman, Gregory J; Balamurugan, Appakalai N; Loganathan, Gopalakrishnan; Colton, Clark K; Koulmanda, Maria; Weir, Gordon C; Wilhelm, Josh J; Qian, Dajun; Niland, Joyce C; Hering, Bernhard J
2015-01-01
Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity. Membrane integrity staining (FDA/PI), OCR normalized to DNA (OCR/DNA), islet equivalent (IE) and OCR (viable IE) normalized to recipient body weight (IE dose and OCR dose), and OCR/DNA normalized to islet size index (ISI) were used to characterize autoislet preparations (n = 35). Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis. Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001). These islet characterization methods were highly correlated with II at 6-12 months post-IAT (area-under-the-curve (AUC) = 0.94 for IE dose and 0.96 for OCR dose). FDA/PI (AUC = 0.49) and OCR/DNA (AUC = 0.58) did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72). Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations.
Development and fabrication of improved Schottky power diodes, phases I and II
NASA Technical Reports Server (NTRS)
Cordes, L. F.; Garfinkle, M.; Taft, E. A.
1974-01-01
Reproducible methods for the fabrication of silicon Schottky diodes were developed for the metals tungsten, aluminum, conventional platinum silicide and low temperature platinum silicide. Barrier heights and barrier lowering were measured permitting the accurate prediction of ideal forward and reverse diode performance. Processing procedures were developed which permit the fabrication of large area (approximately 1 sqcm) mesa-geometry power Schottky diodes with forward and reverse characteristics that approach theoretical values.
Dynamics of charge-transfer excitons in type-II semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Stein, M.; Lammers, C.; Richter, P.-H.; Fuchs, C.; Stolz, W.; Koch, M.; Vänskä, O.; Weseloh, M. J.; Kira, M.; Koch, S. W.
2018-03-01
The formation, decay, and coherence properties of charge-transfer excitons in semiconductor heterostructures are investigated by applying four-wave-mixing and terahertz spectroscopy in combination with a predictive microscopic theory. A charge-transfer process is identified where the optically induced coherences decay directly into a charge-transfer electron-hole plasma and exciton states. It is shown that charge-transfer excitons are more sensitive to the fermionic electron-hole substructure than regular excitons.
Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril
2017-01-01
The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755-0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691-0.783) and 0.742 (0.698-0.785), p < 0.0001). Decision Curve Analysis showed that the machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction.
Mainz, Nina; Shao, Zeshu; Brysbaert, Marc; Meyer, Antje S.
2017-01-01
Vocabulary knowledge is central to a speaker's command of their language. In previous research, greater vocabulary knowledge has been associated with advantages in language processing. In this study, we examined the relationship between individual differences in vocabulary and language processing performance more closely by (i) using a battery of vocabulary tests instead of just one test, and (ii) testing not only university students (Experiment 1) but young adults from a broader range of educational backgrounds (Experiment 2). Five vocabulary tests were developed, including multiple-choice and open antonym and synonym tests and a definition test, and administered together with two established measures of vocabulary. Language processing performance was measured using a lexical decision task. In Experiment 1, vocabulary and word frequency were found to predict word recognition speed while we did not observe an interaction between the effects. In Experiment 2, word recognition performance was predicted by word frequency and the interaction between word frequency and vocabulary, with high-vocabulary individuals showing smaller frequency effects. While overall the individual vocabulary tests were correlated and showed similar relationships with language processing as compared to a composite measure of all tests, they appeared to share less variance in Experiment 2 than in Experiment 1. Implications of our findings concerning the assessment of vocabulary size in individual differences studies and the investigation of individuals from more varied backgrounds are discussed. PMID:28751871
Hou, Tian-Xing; Yang, Xing-Guo; Xing, Hui-Ge; Huang, Kang-Xin; Zhou, Jia-Wen
2016-01-01
Estimating groundwater inflow into a tunnel before and during the excavation process is an important task to ensure the safety and schedule during the underground construction process. Here we report a case of the forecasting and prevention of water inrush at the Jinping II Hydropower Station diversion tunnel groups during the excavation process. The diversion tunnel groups are located in mountains and valleys, and with high water pressure head. Three forecasting methods are used to predict the total water inflow of the #2 diversion tunnel. Furthermore, based on the accurate estimation of the water inrush around the tunnel working area, a theoretical method is presented to forecast the water inflow at the working area during the excavation process. The simulated results show that the total water flow is 1586.9, 1309.4 and 2070.2 m(3)/h using the Qshima method, Kostyakov method and Ochiai method, respectively. The Qshima method is the best one because it most closely matches the monitoring result. According to the huge water inflow into the #2 diversion tunnel, reasonable drainage measures are arranged to prevent the potential disaster of water inrush. The groundwater pressure head can be determined using the water flow velocity from the advancing holes; then, the groundwater pressure head can be used to predict the possible water inflow. The simulated results show that the groundwater pressure head and water inflow re stable and relatively small around the region of the intact rock mass, but there is a sudden change around the fault region with a large water inflow and groundwater pressure head. Different countermeasures are adopted to prevent water inrush disasters during the tunnel excavation process. Reasonable forecasting the characteristic parameters of water inrush is very useful for the formation of prevention and mitigation schemes during the tunnel excavation process.
Johnson, Douglas B.; Estrada, Monica V.; Salgado, Roberto; Sanchez, Violeta; Doxie, Deon B.; Opalenik, Susan R.; Vilgelm, Anna E.; Feld, Emily; Johnson, Adam S.; Greenplate, Allison R.; Sanders, Melinda E.; Lovly, Christine M.; Frederick, Dennie T.; Kelley, Mark C.; Richmond, Ann; Irish, Jonathan M.; Shyr, Yu; Sullivan, Ryan J.; Puzanov, Igor; Sosman, Jeffrey A.; Balko, Justin M.
2016-01-01
Anti-PD-1 therapy yields objective clinical responses in 30–40% of advanced melanoma patients. Since most patients do not respond, predictive biomarkers to guide treatment selection are needed. We hypothesize that MHC-I/II expression is required for tumour antigen presentation and may predict anti-PD-1 therapy response. In this study, across 60 melanoma cell lines, we find bimodal expression patterns of MHC-II, while MHC-I expression was ubiquitous. A unique subset of melanomas are capable of expressing MHC-II under basal or IFNγ-stimulated conditions. Using pathway analysis, we show that MHC-II(+) cell lines demonstrate signatures of ‘PD-1 signalling', ‘allograft rejection' and ‘T-cell receptor signalling', among others. In two independent cohorts of anti-PD-1-treated melanoma patients, MHC-II positivity on tumour cells is associated with therapeutic response, progression-free and overall survival, as well as CD4+ and CD8+ tumour infiltrate. MHC-II+ tumours can be identified by melanoma-specific immunohistochemistry using commercially available antibodies for HLA-DR to improve anti-PD-1 patient selection. PMID:26822383
Application Programming in AWIPS II
NASA Technical Reports Server (NTRS)
Smit, Matt; McGrath, Kevin; Burks, Jason; Carcione, Brian
2012-01-01
Since its inception almost 8 years ago, NASA's Short-term Prediction Research and Transition (SPoRT) Center has integrated NASA data into the National Weather Service's decision support system (DSS) the Advanced Weather Interactive Processing System (AWIPS). SPoRT has, in some instances, had to shape and transform data sets into various formats and manipulate configurations to visualize them in AWIPS. With the advent of the next generation of DSS, AWIPS II, developers will be able to develop their own plugins to handle any type of data. Raytheon is developing AWIPS II to be a more extensible package written mainly in Java, and built around a Service Oriented Architecture. A plugin architecture will allow users to install their own code modules, and (if all the rules have been properly followed) they will work hand-in-hand with AWIPS II as if it were originally built in. Users can bring in new datasets with existing plugins, tweak plugins to handle a nuance or desired new functionality, or create an entirely new visualization layout for a new dataset. SPoRT is developing plugins to ensure its existing NASA data will be ready for AWIPS II when it is delivered, and to prepare for the future of new instruments on upcoming satellites.
2017-10-01
in the baseline samples of the Scleroderma Lung Study II (SLS II). We are currently analyzing whether these serum proteins have predictive...In this project, we use the valuable samples collected in the Scleroderma Lung Study II (SLSII) clinical trial and the observational cohort, GENISOS...determine key serum protein levels and transcript signatures in whole blood and skin samples collected in the SLSII study . The identified candidate
Results on three predictions for July 2012 federal elections in Mexico based on past regularities.
Hernández-Saldaña, H
2013-01-01
The Presidential Election in Mexico of July 2012 has been the third time that PREP, Previous Electoral Results Program works. PREP gives voting outcomes based in electoral certificates of each polling station that arrive to capture centers. In previous ones, some statistical regularities had been observed, three of them were selected to make predictions and were published in arXiv:1207.0078 [physics.soc-ph]. Using the database made public in July 2012, two of the predictions were completely fulfilled, while, the third one was measured and confirmed using the database obtained upon request to the electoral authorities. The first two predictions confirmed by actual measures are: (ii) The Partido Revolucionario Institucional, PRI, is a sprinter and has a better performance in polling stations arriving late to capture centers during the process. (iii) Distribution of vote of this party is well described by a smooth function named a Daisy model. A Gamma distribution, but compatible with a Daisy model, fits the distribution as well. The third prediction confirms that errare humanum est, since the error distributions of all the self-consistency variables appeared as a central power law with lateral lobes as in 2000 and 2006 electoral processes. The three measured regularities appeared no matter the political environment.
Results on Three Predictions for July 2012 Federal Elections in Mexico Based on Past Regularities
Hernández-Saldaña, H.
2013-01-01
The Presidential Election in Mexico of July 2012 has been the third time that PREP, Previous Electoral Results Program works. PREP gives voting outcomes based in electoral certificates of each polling station that arrive to capture centers. In previous ones, some statistical regularities had been observed, three of them were selected to make predictions and were published in arXiv:1207.0078 [physics.soc-ph]. Using the database made public in July 2012, two of the predictions were completely fulfilled, while, the third one was measured and confirmed using the database obtained upon request to the electoral authorities. The first two predictions confirmed by actual measures are: (ii) The Partido Revolucionario Institucional, PRI, is a sprinter and has a better performance in polling stations arriving late to capture centers during the process. (iii) Distribution of vote of this party is well described by a smooth function named a Daisy model. A Gamma distribution, but compatible with a Daisy model, fits the distribution as well. The third prediction confirms that errare humanum est, since the error distributions of all the self-consistency variables appeared as a central power law with lateral lobes as in 2000 and 2006 electoral processes. The three measured regularities appeared no matter the political environment. PMID:24386103
Prediction of Central Burst Defects in Copper Wire Drawing Process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega, G.; NEXANS France, NMC Nexans Metallurgy Centre, Boulevard du Marais, BP39, F-62301 Lens; Haddi, A.
2011-01-17
In this study, the prediction of chevron cracks (central bursts) in copper wire drawing process is investigated using experimental and numerical approaches. The conditions of the chevron cracks creation along the wire axis depend on (i) the die angle, the friction coefficient between the die and the wire, (ii) the reduction in crosssectional area of the wire, (iii) the material properties and (iv) the drawing velocity or strain rate. Under various drawing conditions, a numerical simulation for the prediction of central burst defects is presented using an axisymmetric finite element model. This model is based on the application of themore » Cockcroft and Latham fracture criterion. This criterion was used as the damage value to estimate if and where defects will occur during the copper wire drawing. The critical damage value of the material is obtained from a uniaxial tensile test. The results show that the die angle and the reduction ratio have a significant effect on the stress distribution and the maximum damage value. The central bursts are expected to occur when the die angle and reduction ratio reach a critical value. Numerical predictions are compared with experimental observations.« less
Dang, Mia; Ramsaran, Kalinda D.; Street, Melissa E.; Syed, S. Noreen; Barclay-Goddard, Ruth; Miller, Patricia A.
2011-01-01
ABSTRACT Purpose: To estimate the predictive accuracy and clinical usefulness of the Chedoke–McMaster Stroke Assessment (CMSA) predictive equations. Method: A longitudinal prognostic study using historical data obtained from 104 patients admitted post cerebrovascular accident was undertaken. Data were abstracted for all patients undergoing rehabilitation post stroke who also had documented admission and discharge CMSA scores. Published predictive equations were used to determine predicted outcomes. To determine the accuracy and clinical usefulness of the predictive model, shrinkage coefficients and predictions with 95% confidence bands were calculated. Results: Complete data were available for 74 patients with a mean age of 65.3±12.4 years. The shrinkage values for the six Impairment Inventory (II) dimensions varied from −0.05 to 0.09; the shrinkage value for the Activity Inventory (AI) was 0.21. The error associated with predictive values was greater than ±1.5 stages for the II dimensions and greater than ±24 points for the AI. Conclusions: This study shows that the large error associated with the predictions (as defined by the confidence band) for the CMSA II and AI limits their clinical usefulness as a predictive measure. Further research to establish predictive models using alternative statistical procedures is warranted. PMID:22654239
van Schie, Petra E M; Becher, Jules G; Dallmeijer, Annet J; Barkhof, Frederik; Van Weissenbruch, Mirjam M; Vermeulen, R Jeroen
2010-01-01
To investigate the predictive value of motor testing at 1 year for motor and mental outcome at 2 years after perinatal hypoxic-ischaemic encephalopathy (HIE) in term neonates. Motor and mental outcome at 2 years was assessed with the Bayley Scales of Infant Development, 2nd edition (BSID-II) in 32 surviving children (20 males, 12 females; mean gestational age 40.2 wk, SD 1.4; mean birthweight 3217g, SD 435) participating in a prospective cohort study of HIE. The predictive value of three motor tests (Alberta Infant Motor Scale [AIMS], BSID-II, and the Neurological Optimality Score [NOS]) at 1 year was analysed, in addition to predictions based on neonatal Sarnat staging and magnetic resonance imaging (MRI). Poor motor test results were defined as an AIMS z-score of <-2, a psychomotor developmental index of the BSID-II of <70, or a NOS of <26. Poor motor and poor mental outcome at 2 years was defined as a psychomotor developmental index or mental developmental index of the BSID-II of <70. Twelve children, all with Sarnat grade II, had a poor motor outcome and 12 children, of whom one had Sarnat grade I, had a poor mental outcome at 2 years. Nine children had cerebral palsy, of whom five had quadriplegia, three had dyskinesia, and one had hemiplegia. Poor motor tests at 1 year increased the probability of a poor motor outcome from 71% (range 92 to 100%), and a poor mental outcome from 59% (range 77 to 100%) in children with Sarnat grade II and abnormal MRI, assessed with the AIMS and BSID-II or NOS respectively. Additional motor testing at 1 year improves the prediction of motor and mental outcome at 2 years in children with Sarnat grade II and abnormal MRI.
SMAP Spacecraft Rotate & Placed on Fixture
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians mount NASA's Soil Moisture Active Passive, or SMAP, spacecraft on a work platform. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
SMAP Spacecraft Rotate & Placed on Fixture
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians inspect NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
SMAP Spacecraft Rotate & Placed on Fixture
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, an engineer inspects NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
SMAP Spacecraft Rotate & Placed on Fixture
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians remove a protective covering from NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, crosses a railroad bridge on its move from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/U.S. Air Force 30th Space Wing
SMAP Spacecraft Arrives at Astrotech
2014-10-14
Workers push the pallet supporting the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft into the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians prepare a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
SMAP Spacecraft Rotate & Placed on Fixture
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians use a crane to move NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – The U.S. Air Force 30th Security Forces Squadron is responsible for the safety of the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, on its move from the Building 836 hangar to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
SMAP Spacecraft Rotate & Placed on Fixture
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians prepare a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians remove a protective covering from NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians inspect NASA's Soil Moisture Active Passive, or SMAP, spacecraft. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-10-16
Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians use a crane to move a component of NASA's Soil Moisture Active Passive, or SMAP, spacecraft for a lift by a crane. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
SMAP Spacecraft Arrives at Astrotech
2014-10-14
The truck transporting NASA's Soil Moisture Active Passive, or SMAP, spacecraft arrives at the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-10-15
NASA's Soil Moisture Active Passive, or SMAP, spacecraft is delivered by truck from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
Albergaria, José Tomás; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina
2012-08-15
This paper presents the study of the remediation of sandy soils containing six of the most common contaminants (benzene, toluene, ethylbenzene, xylene, trichloroethylene and perchloroethylene) using soil vapour extraction (SVE). The influence of soil water content on the process efficiency was evaluated considering the soil type and the contaminant. For artificially contaminated soils with negligible clay contents and natural organic matter it was concluded that: (i) all the remediation processes presented efficiencies above 92%; (ii) an increase of the soil water content led to a more time-consuming remediation; (iii) longer remediation periods were observed for contaminants with lower vapour pressures and lower water solubilities due to mass transfer limitations. Based on these results an easy and relatively fast procedure was developed for the prediction of the remediation times of real soils; 83% of the remediation times were predicted with relative deviations below 14%. Copyright © 2012 Elsevier Ltd. All rights reserved.
Aligned metal absorbers and the ultraviolet background at the end of reionization
NASA Astrophysics Data System (ADS)
Doughty, Caitlin; Finlator, Kristian; Oppenheimer, Benjamin D.; Davé, Romeel; Zackrisson, Erik
2018-04-01
We use observations of spatially aligned C II, C IV, Si II, Si IV, and O I absorbers to probe the slope and intensity of the ultraviolet background (UVB) at z ˜ 6. We accomplish this by comparing observations with predictions from a cosmological hydrodynamic simulation using three trial UVBs applied in post-processing: a spectrally soft, fluctuating UVB calculated using multifrequency radiative transfer; a soft, spatially uniform UVB; and a hard, spatially uniform `quasars-only' model. When considering our paired high-ionization absorbers (C IV/Si IV), the observed statistics strongly prefer the hard, spatially uniform UVB. This echoes recent findings that cosmological simulations generically underproduce strong C IV absorbers at z > 5. A single low/high ionization pair (Si II/Si IV), by contrast, shows a preference for the HM12 UVB, whereas two more (C II/C IV and O I/C IV) show no preference for any of the three UVBs. Despite this, future observations of specific absorbers, particularly Si IV/C IV, with next-generation telescopes probing to lower column densities should yield tighter constraints on the UVB.
Monte Carol-based validation of neutronic methodology for EBR-II analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liaw, J.R.; Finck, P.J.
1993-01-01
The continuous-energy Monte Carlo code VIM (Ref. 1) has been validated extensively over the years against fast critical experiments and other neutronic analysis codes. A high degree of confidence in VIM for predicting reactor physics parameters has been firmly established. This paper presents a numerical validation of two conventional multigroup neutronic analysis codes, DIF3D (Ref. 4) and VARIANT (Ref. 5), against VIM for two Experimental Breeder Reactor II (EBR-II) core loadings in detailed three-dimensional hexagonal-z geometry. The DIF3D code is based on nodal diffusion theory, and it is used in calculations for day-today reactor operations, whereas the VARIANT code ismore » based on nodal transport theory and is used with increasing frequency for specific applications. Both DIF3D and VARIANT rely on multigroup cross sections generated from ENDF/B-V by the ETOE-2/MC[sup 2]-II/SDX (Ref. 6) code package. Hence, this study also validates the multigroup cross-section processing methodology against the continuous-energy approach used in VIM.« less
NASA Astrophysics Data System (ADS)
Fikri Zanil, Muhamad; Nur Wahidah Nik Hashim, Nik; Azam, Huda
2017-11-01
Psychiatrist currently relies on questionnaires and interviews for psychological assessment. These conservative methods often miss true positives and might lead to death, especially in cases where a patient might be experiencing suicidal predisposition but was only diagnosed as major depressive disorder (MDD). With modern technology, an assessment tool might aid psychiatrist with a more accurate diagnosis and thus hope to reduce casualty. This project will explore on the relationship between speech features of spoken audio signal (reading) in Bahasa Malaysia with the Beck Depression Inventory scores. The speech features used in this project were Power Spectral Density (PSD), Mel-frequency Ceptral Coefficients (MFCC), Transition Parameter, formant and pitch. According to analysis, the optimum combination of speech features to predict BDI-II scores include PSD, MFCC and Transition Parameters. The linear regression approach with sequential forward/backward method was used to predict the BDI-II scores using reading speech. The result showed 0.4096 mean absolute error (MAE) for female reading speech. For male, the BDI-II scores successfully predicted 100% less than 1 scores difference with MAE of 0.098437. A prediction system called Depression Severity Evaluator (DSE) was developed. The DSE managed to predict one out of five subjects. Although the prediction rate was low, the system precisely predict the score within the maximum difference of 4.93 for each person. This demonstrates that the scores are not random numbers.
Pharmacogenetic excitation of dorsomedial prefrontal cortex restores fear prediction error.
Yau, Joanna Oi-Yue; McNally, Gavan P
2015-01-07
Pavlovian conditioning involves encoding the predictive relationship between a conditioned stimulus (CS) and an unconditioned stimulus, so that synaptic plasticity and learning is instructed by prediction error. Here we used pharmacogenetic techniques to show a causal relation between activity of rat dorsomedial prefrontal cortex (dmPFC) neurons and fear prediction error. We expressed the excitatory hM3Dq designer receptor exclusively activated by a designer drug (DREADD) in dmPFC and isolated actions of prediction error by using an associative blocking design. Rats were trained to fear the visual CS (CSA) in stage I via pairings with footshock. Then in stage II, rats received compound presentations of visual CSA and auditory CS (CSB) with footshock. This prior fear conditioning of CSA reduced the prediction error during stage II to block fear learning to CSB. The group of rats that received AAV-hSYN-eYFP vector that was treated with clozapine-N-oxide (CNO; 3 mg/kg, i.p.) before stage II showed blocking when tested in the absence of CNO the next day. In contrast, the groups that received AAV-hSYN-hM3Dq and AAV-CaMKIIα-hM3Dq that were treated with CNO before stage II training did not show blocking; learning toward CSB was restored. This restoration of prediction error and fear learning was specific to the injection of CNO because groups that received AAV-hSYN-hM3Dq and AAV-CaMKIIα-hM3Dq that were injected with vehicle before stage II training did show blocking. These effects were not attributable to the DREADD manipulation enhancing learning or arousal, increasing fear memory strength or asymptotic levels of fear learning, or altering fear memory retrieval. Together, these results identify a causal role for dmPFC in a signature of adaptive behavior: using the past to predict future danger and learning from errors in these predictions. Copyright © 2015 the authors 0270-6474/15/350074-10$15.00/0.
Kramer, S. L.; Ghosh, V. J.; Breitfeller, M.; ...
2016-08-10
We present that third generation high brightness light sources are designed to have low emittance and high current beams, which contribute to higher beam loss rates that will be compensated by Top-Off injection. Shielding for these higher loss rates will be critical to protect the projected higher occupancy factors for the users. Top-Off injection requires a full energy injector, which will demand greater consideration of the potential abnormal beam miss-steering and localized losses that could occur. The high energy electron injection beam produces significantly higher neutron component dose to the experimental floor than a lower energy beam injection and rampedmore » operations. Minimizing this dose will require adequate knowledge of where the miss-steered beam can occur and sufficient EM shielding close to the loss point, in order to attenuate the energy of the particles in the EM shower below the neutron production threshold (<10 MeV), which will spread the incident energy on the bulk shield walls and thereby the dose penetrating the shield walls. Designing supplemental shielding near the loss point using the analytic shielding model is shown to be inadequate because of its lack of geometry specification for the EM shower process. To predict the dose rates outside the tunnel requires detailed description of the geometry and materials that the beam losses will encounter inside the tunnel. Modern radiation shielding Monte-Carlo codes, like FLUKA, can handle this geometric description of the radiation transport process in sufficient detail, allowing accurate predictions of the dose rates expected and the ability to show weaknesses in the design before a high radiation incident occurs. The effort required to adequately define the accelerator geometry for these codes has been greatly reduced with the implementation of the graphical interface of FLAIR to FLUKA. In conclusion, this made the effective shielding process for NSLS-II quite accurate and reliable. The principles used to provide supplemental shielding to the NSLS-II accelerators and the lessons learned from this process are presented.« less
Improved methods for predicting peptide binding affinity to MHC class II molecules.
Jensen, Kamilla Kjaergaard; Andreatta, Massimo; Marcatili, Paolo; Buus, Søren; Greenbaum, Jason A; Yan, Zhen; Sette, Alessandro; Peters, Bjoern; Nielsen, Morten
2018-07-01
Major histocompatibility complex class II (MHC-II) molecules are expressed on the surface of professional antigen-presenting cells where they display peptides to T helper cells, which orchestrate the onset and outcome of many host immune responses. Understanding which peptides will be presented by the MHC-II molecule is therefore important for understanding the activation of T helper cells and can be used to identify T-cell epitopes. We here present updated versions of two MHC-II-peptide binding affinity prediction methods, NetMHCII and NetMHCIIpan. These were constructed using an extended data set of quantitative MHC-peptide binding affinity data obtained from the Immune Epitope Database covering HLA-DR, HLA-DQ, HLA-DP and H-2 mouse molecules. We show that training with this extended data set improved the performance for peptide binding predictions for both methods. Both methods are publicly available at www.cbs.dtu.dk/services/NetMHCII-2.3 and www.cbs.dtu.dk/services/NetMHCIIpan-3.2. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian
2017-03-01
Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I + II + III (FI + II + III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (Rp2), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501 g/L, 0.465 g/L and 5.57 for TP, and 0.969, 0.530 g/L, 0.341 g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI + II + III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS.
Li, Can; Wang, Fei; Zang, Lixuan; Zang, Hengchang; Alcalà, Manel; Nie, Lei; Wang, Mingyu; Li, Lian
2017-03-15
Nowadays, as a powerful process analytical tool, near infrared spectroscopy (NIRS) has been widely applied in process monitoring. In present work, NIRS combined with multivariate analysis was used to monitor the ethanol precipitation process of fraction I+II+III (FI+II+III) supernatant in human albumin (HA) separation to achieve qualitative and quantitative monitoring at the same time and assure the product's quality. First, a qualitative model was established by using principal component analysis (PCA) with 6 of 8 normal batches samples, and evaluated by the remaining 2 normal batches and 3 abnormal batches. The results showed that the first principal component (PC1) score chart could be successfully used for fault detection and diagnosis. Then, two quantitative models were built with 6 of 8 normal batches to determine the content of the total protein (TP) and HA separately by using partial least squares regression (PLS-R) strategy, and the models were validated by 2 remaining normal batches. The determination coefficient of validation (R p 2 ), root mean square error of cross validation (RMSECV), root mean square error of prediction (RMSEP) and ratio of performance deviation (RPD) were 0.975, 0.501g/L, 0.465g/L and 5.57 for TP, and 0.969, 0.530g/L, 0.341g/L and 5.47 for HA, respectively. The results showed that the established models could give a rapid and accurate measurement of the content of TP and HA. The results of this study indicated that NIRS is an effective tool and could be successfully used for qualitative and quantitative monitoring the ethanol precipitation process of FI+II+III supernatant simultaneously. This research has significant reference value for assuring the quality and improving the recovery ratio of HA in industrialization scale by using NIRS. Copyright © 2016 Elsevier B.V. All rights reserved.
Kinetics of Cd(ii) adsorption and desorption on ferrihydrite: experiments and modeling.
Liang, Yuzhen; Tian, Lei; Lu, Yang; Peng, Lanfang; Wang, Pei; Lin, Jingyi; Cheng, Tao; Dang, Zhi; Shi, Zhenqing
2018-05-15
The kinetics of Cd(ii) adsorption/desorption on ferrihydrite is an important process affecting the fate, transport, and bioavailability of Cd(ii) in the environment, which was rarely systematically studied and understood at quantitative levels. In this work, a combination of stirred-flow kinetic experiments, batch adsorption equilibrium experiments, high-resolution transmission electron microscopy (HR-TEM), and mechanistic kinetic modeling were used to study the kinetic behaviors of Cd(ii) adsorption/desorption on ferrihydrite. HR-TEM images showed the open, loose, and sponge-like structure of ferrihydrite. The batch adsorption equilibrium experiments revealed that higher pH and initial metal concentration increased Cd(ii) adsorption on ferrihydrite. The stirred-flow kinetic results demonstrated the increased adsorption rate and capacity as a result of the increased pH, influent concentration, and ferrihydrite concentration. The mechanistic kinetic model successfully described the kinetic behaviors of Cd(ii) during the adsorption and desorption stages under various chemistry conditions. The model calculations showed that the adsorption rate coefficients varied as a function of solution chemistry, and the relative contributions of the weak and strong ferrihydrite sites for Cd(ii) binding varied with time at different pH and initial metal concentrations. Our model is able to quantitatively assess the contributions of each individual ferrihydrite binding site to the overall Cd(ii) adsorption/desorption kinetics. This study provided insights into the dynamic behavior of Cd(ii) and a predictive modeling tool for Cd(ii) adsorption/desorption kinetics when ferrihydrite is present, which may be helpful for the risk assessment and management of Cd contaminated sites.
AWIPS II Application Development, a SPoRT Perspective
NASA Technical Reports Server (NTRS)
Burks, Jason E.; Smith, Matthew; McGrath, Kevin M.
2014-01-01
The National Weather Service (NWS) is deploying its next-generation decision support system, called AWIPS II (Advanced Weather Interactive Processing System II). NASA's Short-term Prediction Research and Transition (SPoRT) Center has developed several software 'plug-ins' to extend the capabilities of AWIPS II. SPoRT aims to continue its mission of improving short-term forecasts by providing NASA and NOAA products on the decision support system used at NWS weather forecast offices (WFOs). These products are not included in the standard Satellite Broadcast Network feed provided to WFOs. SPoRT has had success in providing support to WFOs as they have transitioned to AWIPS II. Specific examples of transitioning SPoRT plug-ins to WFOs with newly deployed AWIPS II systems will be presented. Proving Ground activities (GOES-R and JPSS) will dominate SPoRT's future AWIPS II activities, including tool development as well as enhancements to existing products. In early 2012 SPoRT initiated the Experimental Product Development Team, a group of AWIPS II developers from several institutions supporting NWS forecasters with innovative products. The results of the team's spring and fall 2013 meeting will be presented. Since AWIPS II developers now include employees at WFOs, as well as many other institutions related to weather forecasting, the NWS has dealt with a multitude of software governance issues related to the difficulties of multiple remotely collaborating software developers. This presentation will provide additional examples of Research-to-Operations plugins, as well as an update on how governance issues are being handled in the AWIPS II developer community.
Renn, S C; Tomkinson, B; Taghert, P H
1998-07-24
We describe the characterization, cloning, and genetic analysis of tripeptidyl peptidase II (TPP II) from Drosophila melanogaster. Mammalian TPP II removes N-terminal tripeptides, has wide distribution, and has been identified as the cholecystokinin-degrading peptidase in rat brain. Size exclusion and ion exchange chromatography produced a 70-fold purification of dTPP II activity from Drosophila tissue extracts. The substrate specificity and the inhibitor sensitivity of dTPP II is comparable to that of the human enzyme. In particular, dTPP II is sensitive to butabindide, a specific inhibitor of the rat cholecystokinin-inactivating activity. We isolated a 4309-base pair dTPP II cDNA which predicts a 1354-amino acid protein. The deduced human and Drosophila TPP II proteins display 38% overall identity. The catalytic triad, its spacing, and the sequences that surround it are highly conserved; the C-terminal end of dTPP II contains a 100-amino acid insert not found in the mammalian proteins. Recombinant dTPP II displays the predicted activity following expression in HEK cells. TPP II maps to cytological position 49F4-7; animals deficient for this interval show reduced TPP II activity.
Mirzaei, Masoud; Khajeh, Mohammad
2018-04-13
The purpose of this study was to determine the best anthropometric index and calculate the cut-off point for each anthropometric index in predicting the risk of type II diabetes in the population of Yazd city in Iran. The present analytical cross-sectional study was performed using the data from Yazd Health Study (YaHS) with a sample size of 9293. All required data including anthropometric indices BMI, WC, WHR, and WHtR were extracted from the YAHS questionnaire. The ROC curve was employed to compare the predictive power of each anthropometric index in the risk of developing the type II diabetes. WHtR in both genders had better predictive power for the risk of type II diabetes (AUC = 0.692 for males and AUC = 0.708 for females), and BMI showed a weaker predictive power (AUC = 0.603 for males and AUC = 0.632 for females), WC and WHR also revealed similar predictive power in the risk of type II diabetes. The cut-off point of BMI for predicting the risk of diabetes was almost identical in both genders (26.2 in males and 25.9 in females), the cut-off point of WC (91 cm), and WHtR (0.56) in males was lower than in the females (96 cm for WC and 0.605 for WHtR). The cut-off point of WHR in males (0.939) was higher than in females (0.892). The WHtR showed the best predictor of diabetes risk compared to other indices, and the BMI was the weakest predictor of the risk for diabetes. Copyright © 2018. Published by Elsevier Ltd.
Mortality Probability Model III and Simplified Acute Physiology Score II
Vasilevskis, Eduard E.; Kuzniewicz, Michael W.; Cason, Brian A.; Lane, Rondall K.; Dean, Mitzi L.; Clay, Ted; Rennie, Deborah J.; Vittinghoff, Eric; Dudley, R. Adams
2009-01-01
Background: To develop and compare ICU length-of-stay (LOS) risk-adjustment models using three commonly used mortality or LOS prediction models. Methods: Between 2001 and 2004, we performed a retrospective, observational study of 11,295 ICU patients from 35 hospitals in the California Intensive Care Outcomes Project. We compared the accuracy of the following three LOS models: a recalibrated acute physiology and chronic health evaluation (APACHE) IV-LOS model; and models developed using risk factors in the mortality probability model III at zero hours (MPM0) and the simplified acute physiology score (SAPS) II mortality prediction model. We evaluated models by calculating the following: (1) grouped coefficients of determination; (2) differences between observed and predicted LOS across subgroups; and (3) intraclass correlations of observed/expected LOS ratios between models. Results: The grouped coefficients of determination were APACHE IV with coefficients recalibrated to the LOS values of the study cohort (APACHE IVrecal) [R2 = 0.422], mortality probability model III at zero hours (MPM0 III) [R2 = 0.279], and simplified acute physiology score (SAPS II) [R2 = 0.008]. For each decile of predicted ICU LOS, the mean predicted LOS vs the observed LOS was significantly different (p ≤ 0.05) for three, two, and six deciles using APACHE IVrecal, MPM0 III, and SAPS II, respectively. Plots of the predicted vs the observed LOS ratios of the hospitals revealed a threefold variation in LOS among hospitals with high model correlations. Conclusions: APACHE IV and MPM0 III were more accurate than SAPS II for the prediction of ICU LOS. APACHE IV is the most accurate and best calibrated model. Although it is less accurate, MPM0 III may be a reasonable option if the data collection burden or the treatment effect bias is a consideration. PMID:19363210
Chatzikonstantinou, Alexandra V; Chatziathanasiadou, Maria V; Ravera, Enrico; Fragai, Marco; Parigi, Giacomo; Gerothanassis, Ioannis P; Luchinat, Claudio; Stamatis, Haralambos; Tzakos, Andreas G
2018-01-01
Natural products offer a wide range of biological activities, but they are not easily integrated in the drug discovery pipeline, because of their inherent scaffold intricacy and the associated complexity in their synthetic chemistry. Enzymes may be used to perform regioselective and stereoselective incorporation of functional groups in the natural product core, avoiding harsh reaction conditions, several protection/deprotection and purification steps. Herein, we developed a three step protocol carried out inside an NMR-tube. 1st-step: STD-NMR was used to predict the: i) capacity of natural products as enzyme substrates and ii) possible regioselectivity of the biotransformations. 2nd-step: The real-time formation of multiple-biotransformation products in the NMR-tube bioreactor was monitored in-situ. 3rd-step: STD-NMR was applied in the mixture of the biotransformed products to screen ligands for protein targets. Herein, we developed a simple and time-effective process, the "NMR-tube bioreactor", that is able to: (i) predict which component of a mixture of natural products can be enzymatically transformed, (ii) monitor in situ the transformation efficacy and regioselectivity in crude extracts and multiple substrate biotransformations without fractionation and (iii) simultaneously screen for interactions of the biotransformation products with pharmaceutical protein targets. We have developed a green, time-, and cost-effective process that provide a simple route from natural products to lead compounds for drug discovery. This process can speed up the most crucial steps in the early drug discovery process, and reduce the chemical manipulations usually involved in the pipeline, improving the environmental compatibility. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of modellers' decisions on hydrological a priori predictions
NASA Astrophysics Data System (ADS)
Holländer, H. M.; Bormann, H.; Blume, T.; Buytaert, W.; Chirico, G. B.; Exbrayat, J.-F.; Gustafsson, D.; Hölzel, H.; Krauße, T.; Kraft, P.; Stoll, S.; Blöschl, G.; Flühler, H.
2013-07-01
The purpose of this paper is to stimulate a re-thinking of how we, the catchment hydrologists, could become reliable forecasters. A group of catchment modellers predicted the hydrological response of a man-made 6 ha catchment in its initial phase (Chicken Creek) without having access to the observed records. They used conceptually different model families. Their modelling experience differed largely. The prediction exercise was organized in three steps: (1) for the 1st prediction modellers received a basic data set describing the internal structure of the catchment (somewhat more complete than usually available to a priori predictions in ungauged catchments). They did not obtain time series of stream flow, soil moisture or groundwater response. (2) Before the 2nd improved prediction they inspected the catchment on-site and attended a workshop where the modellers presented and discussed their first attempts. (3) For their improved 3rd prediction they were offered additional data by charging them pro forma with the costs for obtaining this additional information. Holländer et al. (2009) discussed the range of predictions obtained in step 1. Here, we detail the modeller's decisions in accounting for the various processes based on what they learned during the field visit (step 2) and add the final outcome of step 3 when the modellers made use of additional data. We document the prediction progress as well as the learning process resulting from the availability of added information. For the 2nd and 3rd step, the progress in prediction quality could be evaluated in relation to individual modelling experience and costs of added information. We learned (i) that soft information such as the modeller's system understanding is as important as the model itself (hard information), (ii) that the sequence of modelling steps matters (field visit, interactions between differently experienced experts, choice of model, selection of available data, and methods for parameter guessing), and (iii) that added process understanding can be as efficient as adding data for improving parameters needed to satisfy model requirements.
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is mated to its Delta II rocket at Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is mated to its Delta II rocket at Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is mated to its Delta II rocket at Space Launch Complex 2. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
Gao, Shanwu; Tibiche, Chabane; Zou, Jinfeng; Zaman, Naif; Trifiro, Mark; O'Connor-McCourt, Maureen; Wang, Edwin
2016-01-01
Decisions regarding adjuvant therapy in patients with stage II colorectal cancer (CRC) have been among the most challenging and controversial in oncology over the past 20 years. To develop robust combinatory cancer hallmark-based gene signature sets (CSS sets) that more accurately predict prognosis and identify a subset of patients with stage II CRC who could gain survival benefits from adjuvant chemotherapy. Thirteen retrospective studies of patients with stage II CRC who had clinical follow-up and adjuvant chemotherapy were analyzed. Respective totals of 162 and 843 patients from 2 and 11 independent cohorts were used as the discovery and validation cohorts, respectively. A total of 1005 patients with stage II CRC were included in the 13 cohorts. Among them, 84 of 416 patients in 3 independent cohorts received fluorouracil-based adjuvant chemotherapy. Identification of CSS sets to predict relapse-free survival and identify a subset of patients with stage II CRC who could gain substantial survival benefits from fluorouracil-based adjuvant chemotherapy. Eight cancer hallmark-based gene signatures (30 genes each) were identified and used to construct CSS sets for determining prognosis. The CSS sets were validated in 11 independent cohorts of 767 patients with stage II CRC who did not receive adjuvant chemotherapy. The CSS sets accurately stratified patients into low-, intermediate-, and high-risk groups. Five-year relapse-free survival rates were 94%, 78%, and 45%, respectively, representing 60%, 28%, and 12% of patients with stage II disease. The 416 patients with CSS set-defined high-risk stage II CRC who received fluorouracil-based adjuvant chemotherapy showed a substantial gain in survival benefits from the treatment (ie, recurrence reduced by 30%-40% in 5 years). The CSS sets substantially outperformed other prognostic predictors of stage 2 CRC. They are more accurate and robust for prognostic predictions and facilitate the identification of patients with stage II disease who could gain survival benefit from fluorouracil-based adjuvant chemotherapy.
Zhang, Xian; Yaseen, Zimri S.; Galynker, Igor I.; Hirsch, Joy; Winston, Arnold
2011-01-01
Objective Objective measurement of depression remains elusive. Depression has been associated with insecure attachment, and both have been associated with changes in brain reactivity in response to viewing standard emotional and neutral faces. In this study, we developed a method to calculate predicted scores for the Beck Depression Inventory II (BDI-II) using personalized stimuli: fMRI imaging of subjects viewing pictures of their own mothers. Methods 28 female subjects ages 18–30 (14 healthy controls and 14 unipolar depressed diagnosed by MINI psychiatric interview) were scored on the Beck Depression Inventory II (BDI-II) and the Adult Attachment Interview (AAI) coherence of mind scale of global attachment security. Subjects viewed pictures of Mother (M), Friend (F) and Stranger (S), during functional magnetic resonance imaging (fMRI). Using a principal component regression method (PCR), a predicted Beck Depression Inventory II (BDI-II) score was obtained from activity patterns in the paracingulate gyrus (Brodmann area 32) and compared to clinical diagnosis and the measured BDI-II score. The same procedure was performed for AAI coherence of mind scores. Results Activity patterns in BA-32 identified depressed subjects. The categorical agreement between the derived BDI-II score (using the standard clinical cut-score of 14 on the BDI-II) and depression diagnosis by MINI psychiatric interview was 89%, with sensitivity 85.7% and specificity 92.8%. Predicted and measured BDI-II scores had a correlation of 0.55. Prediction of attachment security was not statistically significant. Conclusions Brain activity in response to viewing one's mother may be diagnostic of depression. Functional magnetic resonance imaging using personalized paradigms has the potential to provide objective assessments, even when behavioral measures are not informative. Further, fMRI based diagnostic algorithms may enhance our understanding of the neural mechanisms of depression by identifying distinctive neural features of the illness. PMID:22180777
2014-08-20
VANDENBERG AIR FORCE BASE, Calif. – The second stage of the Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is transferred into the top of the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. Operations are underway to install the second stage atop the rocket's first stage. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for no earlier than November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Pipathsouk, Anne; Belotserkovskii, Boris P; Hanawalt, Philip C
2017-02-01
Non-canonical DNA structures can obstruct transcription. This transcription blockage could have various biological consequences, including genomic instability and gratuitous transcription-coupled repair. Among potential structures causing transcription blockage are Holliday junctions (HJs), which can be generated as intermediates in homologous recombination or during processing of stalled replication forks. Of particular interest is the double Holliday junction (DHJ), which contains two HJs. Topological considerations impose the constraint that the total number of helical turns in the DNA duplexes between the junctions cannot be altered as long as the flanking DNA duplexes are intact. Thus, the DHJ structure should strongly resist transient unwinding during transcription; consequently, it is predicted to cause significantly stronger blockage than single HJ structures. The patterns of transcription blockage obtained for RNA polymerase II transcription in HeLa cell nuclear extracts were in accordance with this prediction. However, we did not detect transcription blockage with purified T7 phage RNA polymerase; we discuss a possible explanation for this difference. In general, our findings implicate naturally occurring Holliday junctions in transcription arrest. Copyright © 2016 Elsevier B.V. All rights reserved.
1991-11-01
These materials feature repeating stem-turn elements composed of 1-strands and amino acids predicted to participate in 1-hairpin formation. The...highly ordered crystalline material. Presently we are studying: (i) the effects of amino acid sequence on 1-turn formation, (ii) the influence of stem...length and amino acid composition on chain folding and materials properties, and (iii) the potential for biological incorporation of unnatural amino
Allyn, Jérôme; Allou, Nicolas; Augustin, Pascal; Philip, Ivan; Martinet, Olivier; Belghiti, Myriem; Provenchere, Sophie; Montravers, Philippe; Ferdynus, Cyril
2017-01-01
Background The benefits of cardiac surgery are sometimes difficult to predict and the decision to operate on a given individual is complex. Machine Learning and Decision Curve Analysis (DCA) are recent methods developed to create and evaluate prediction models. Methods and finding We conducted a retrospective cohort study using a prospective collected database from December 2005 to December 2012, from a cardiac surgical center at University Hospital. The different models of prediction of mortality in-hospital after elective cardiac surgery, including EuroSCORE II, a logistic regression model and a machine learning model, were compared by ROC and DCA. Of the 6,520 patients having elective cardiac surgery with cardiopulmonary bypass, 6.3% died. Mean age was 63.4 years old (standard deviation 14.4), and mean EuroSCORE II was 3.7 (4.8) %. The area under ROC curve (IC95%) for the machine learning model (0.795 (0.755–0.834)) was significantly higher than EuroSCORE II or the logistic regression model (respectively, 0.737 (0.691–0.783) and 0.742 (0.698–0.785), p < 0.0001). Decision Curve Analysis showed that the machine learning model, in this monocentric study, has a greater benefit whatever the probability threshold. Conclusions According to ROC and DCA, machine learning model is more accurate in predicting mortality after elective cardiac surgery than EuroSCORE II. These results confirm the use of machine learning methods in the field of medical prediction. PMID:28060903
Su, Yingying; Wang, Miao; Liu, Yifei; Ye, Hong; Gao, Daiquan; Chen, Weibi; Zhang, Yunzhou; Zhang, Yan
2014-12-01
This study aimed to conduct and assess a module modified acute physiology and chronic health evaluation (MM-APACHE) II model, based on disease categories modified-acute physiology and chronic health evaluation (DCM-APACHE) II model, in predicting mortality more accurately in neuro-intensive care units (N-ICUs). In total, 1686 patients entered into this prospective study. Acute physiology and chronic health evaluation (APACHE) II scores of all patients on admission and worst 24-, 48-, 72-hour scores were obtained. Neurological diagnosis on admission was classified into five categories: cerebral infarction, intracranial hemorrhage, neurological infection, spinal neuromuscular (SNM) disease, and other neurological diseases. The APACHE II scores of cerebral infarction, intracranial hemorrhage, and neurological infection patients were used for building the MM-APACHE II model. There were 1386 cases for cerebral infarction disease, intracranial hemorrhage disease, and neurological infection disease. The logistic linear regression showed that 72-hour APACHE II score (Wals = 173.04, P < 0.001) and disease classification (Wals = 12.51, P = 0.02) were of importance in forecasting hospital mortality. Module modified acute physiology and chronic health evaluation II model, built on the variables of the 72-hour APACHE II score and disease category, had good discrimination (area under the receiver operating characteristic curve (AU-ROC = 0.830)) and calibration (χ2 = 12.518, P = 0.20), and was better than the Knaus APACHE II model (AU-ROC = 0.778). The APACHE II severity of disease classification system cannot provide accurate prognosis for all kinds of the diseases. A MM-APACHE II model can accurately predict hospital mortality for cerebral infarction, intracranial hemorrhage, and neurologic infection patients in N-ICU.
Sathe, Prachee M; Bapat, Sharda N
2014-01-01
To assess the performance and utility of two mortality prediction models viz. Acute Physiology and Chronic Health Evaluation II (APACHE II) and Simplified Acute Physiology Score II (SAPS II) in a single Indian mixed tertiary intensive care unit (ICU). Secondary objectives were bench-marking and setting a base line for research. In this observational cohort, data needed for calculation of both scores were prospectively collected for all consecutive admissions to 28-bedded ICU in the year 2011. After excluding readmissions, discharges within 24 h and age <18 years, the records of 1543 patients were analyzed using appropriate statistical methods. Both models overpredicted mortality in this cohort [standardized mortality ratio (SMR) 0.88 ± 0.05 and 0.95 ± 0.06 using APACHE II and SAPS II respectively]. Patterns of predicted mortality had strong association with true mortality (R (2) = 0.98 for APACHE II and R (2) = 0.99 for SAPS II). Both models performed poorly in formal Hosmer-Lemeshow goodness-of-fit testing (Chi-square = 12.8 (P = 0.03) for APACHE II, Chi-square = 26.6 (P = 0.001) for SAPS II) but showed good discrimination (area under receiver operating characteristic curve 0.86 ± 0.013 SE (P < 0.001) and 0.83 ± 0.013 SE (P < 0.001) for APACHE II and SAPS II, respectively). There were wide variations in SMRs calculated for subgroups based on International Classification of Disease, 10(th) edition (standard deviation ± 0.27 for APACHE II and 0.30 for SAPS II). Lack of fit of data to the models and wide variation in SMRs in subgroups put a limitation on utility of these models as tools for assessing quality of care and comparing performances of different units without customization. Considering comparable performance and simplicity of use, efforts should be made to adapt SAPS II.
Diffusive Shock Acceleration and Reconnection Acceleration Processes
NASA Astrophysics Data System (ADS)
Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Li, Gang; Webb, G. M.; Khabarova, O.; Cummings, A.; Stone, E.; Decker, R.
2015-12-01
Shock waves, as shown by simulations and observations, can generate high levels of downstream vortical turbulence, including magnetic islands. We consider a combination of diffusive shock acceleration (DSA) and downstream magnetic-island-reconnection-related processes as an energization mechanism for charged particles. Observations of electron and ion distributions downstream of interplanetary shocks and the heliospheric termination shock (HTS) are frequently inconsistent with the predictions of classical DSA. We utilize a recently developed transport theory for charged particles propagating diffusively in a turbulent region filled with contracting and reconnecting plasmoids and small-scale current sheets. Particle energization associated with the anti-reconnection electric field, a consequence of magnetic island merging, and magnetic island contraction, are considered. For the former only, we find that (i) the spectrum is a hard power law in particle speed, and (ii) the downstream solution is constant. For downstream plasmoid contraction only, (i) the accelerated spectrum is a hard power law in particle speed; (ii) the particle intensity for a given energy peaks downstream of the shock, and the distance to the peak location increases with increasing particle energy, and (iii) the particle intensity amplification for a particular particle energy, f(x,c/{c}0)/f(0,c/{c}0), is not 1, as predicted by DSA, but increases with increasing particle energy. The general solution combines both the reconnection-induced electric field and plasmoid contraction. The observed energetic particle intensity profile observed by Voyager 2 downstream of the HTS appears to support a particle acceleration mechanism that combines both DSA and magnetic-island-reconnection-related processes.
Barnes, Jo; Morris, Andrew
2009-01-01
The ability to predict impairment outcomes in large databases using a simplified technique allows researchers to focus attention on preventing costly impairing injuries. The dilemma that exists for researchers is to determine which method is the most reliable and valid. This study examines available methods to predict impairment and explores the differences between the IIS and pFCI applied to real world crash injury data. Occupant injury data from the UK Co-operative Crash Injury Study (CCIS) database have been coded using AIS 1990 and AIS 2005. The data have subsequently been recoded using the associated impairment scales namely the Injury Impairment Scale (IIS) and the predicted Functional Capacity Index (pFCI) to determine the predicted impairment levels of injuries at one year post crash. Comparisons between the levels of impairment were made and any differences further explored. Injury data for the period February 2006 to September 2008 from the CCIS database were used in the analysis which involved a dataset of 2,437 occcupants who sustained over 8000 injuries. This study found some differences between the impairment scales for injuries coded to the AIS 1990 and AIS 2005 coding dictionaries. The pFCI predicts 31.5% of injuries to be impairing in AIS 2005, less than the IIS (38.5%) using AIS 1990. Using CCIS data the pFCI predicted that only 6% of the occupants with a coded injury would have an impairing injury compared to 24% of occupants using the IIS. The main body regions identified as having the major differences between the two impairment scales for car occupants were the head and spine. Follow up data were then used for a small number of cases (n=31, lower extremity and whiplash injuries) to examine any differences in predicted impairment versus perceived impairment. These data were selected from a previous study conducted between 2003 and 2006 and identified the discrepancy between predicted impairment and actual perceived impairment as defined by the participant. Overall the work highlights the variaton between the pFCI and IIS and emphasises the importance and need for a single validated impairment scale that can be universally applied. This would allow emphasis to be directed towards preventing injuries that are associated with the most significant impairment outcomes. PMID:20184844
Barnes, Jo; Morris, Andrew
2009-10-01
The ability to predict impairment outcomes in large databases using a simplified technique allows researchers to focus attention on preventing costly impairing injuries. The dilemma that exists for researchers is to determine which method is the most reliable and valid. This study examines available methods to predict impairment and explores the differences between the IIS and pFCI applied to real world crash injury data. Occupant injury data from the UK Co-operative Crash Injury Study (CCIS) database have been coded using AIS 1990 and AIS 2005. The data have subsequently been recoded using the associated impairment scales namely the Injury Impairment Scale (IIS) and the predicted Functional Capacity Index (pFCI) to determine the predicted impairment levels of injuries at one year post crash. Comparisons between the levels of impairment were made and any differences further explored. Injury data for the period February 2006 to September 2008 from the CCIS database were used in the analysis which involved a dataset of 2,437 occcupants who sustained over 8000 injuries. This study found some differences between the impairment scales for injuries coded to the AIS 1990 and AIS 2005 coding dictionaries. The pFCI predicts 31.5% of injuries to be impairing in AIS 2005, less than the IIS (38.5%) using AIS 1990. Using CCIS data the pFCI predicted that only 6% of the occupants with a coded injury would have an impairing injury compared to 24% of occupants using the IIS. The main body regions identified as having the major differences between the two impairment scales for car occupants were the head and spine. Follow up data were then used for a small number of cases (n=31, lower extremity and whiplash injuries) to examine any differences in predicted impairment versus perceived impairment. These data were selected from a previous study conducted between 2003 and 2006 and identified the discrepancy between predicted impairment and actual perceived impairment as defined by the participant. Overall the work highlights the variation between the pFCI and IIS and emphasises the importance and need for a single validated impairment scale that can be universally applied. This would allow emphasis to be directed towards preventing injuries that are associated with the most significant impairment outcomes.
The second phase of the MicroArray Quality Control (MAQC-II) project evaluated common practices for developing and validating microarray-based models aimed at predicting toxicological and clinical endpoints. Thirty-six teams developed classifiers for 13 endpoints - some easy, som...
FORUM - FutureTox II: In vitro Data and In Silico Models for Predictive Toxicology
FutureTox II, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in January, 2014. The meeting goals were to review and discuss the state of the science in toxicology in the context of implementing the NRC 21st century vision of predicting in vivo resp...
Concurrent and Predictive Validity of the Phelps Kindergarten Readiness Scale-II
ERIC Educational Resources Information Center
Duncan, Jennifer; Rafter, Erin M.
2005-01-01
The purpose of this research was to establish the concurrent and predictive validity of the Phelps Kindergarten Readiness Scale, Second Edition (PKRS-II; L. Phelps, 2003). Seventy-four kindergarten students of diverse ethnic backgrounds enrolled in a northeastern suburban school participated in the study. The concurrent administration of the…
Wijetunga, Charity; Martinez, Ricardo; Rosenfeld, Barry; Cruise, Keith
2018-01-01
The Juvenile Sex Offender Assessment Protocol-Revised (J-SOAP-II) is the most commonly used measure in the assessment of recidivism risk among juveniles who have committed sexual offenses (JSOs), but mixed support exists for its predictive validity. This study compared the predictive validity of the J-SOAP-II across two offender characteristics, age and sexual drive, in a sample of 156 JSOs who had been discharged from a correctional facility or a residential treatment program. The J-SOAP-II appeared to be a better predictor of sexual recidivism for younger JSOs (14-16 years old) than for older ones (17-19 years old), with significant differences found for the Dynamic Summary Scale and Scale III (Intervention). In addition, several of the measure's scales significantly predicted sexual recidivism for JSOs with a clear pattern of sexualized behavior but not for those without such a pattern, indicating that the J-SOAP-II may have greater clinical utility for JSOs with heightened sexual drive. The implications of these findings are discussed.
Modeling Physiological Processes That Relate Toxicant Exposure and Bacterial Population Dynamics
Klanjscek, Tin; Nisbet, Roger M.; Priester, John H.; Holden, Patricia A.
2012-01-01
Quantifying effects of toxicant exposure on metabolic processes is crucial to predicting microbial growth patterns in different environments. Mechanistic models, such as those based on Dynamic Energy Budget (DEB) theory, can link physiological processes to microbial growth. Here we expand the DEB framework to include explicit consideration of the role of reactive oxygen species (ROS). Extensions considered are: (i) additional terms in the equation for the “hazard rate” that quantifies mortality risk; (ii) a variable representing environmental degradation; (iii) a mechanistic description of toxic effects linked to increase in ROS production and aging acceleration, and to non-competitive inhibition of transport channels; (iv) a new representation of the “lag time” based on energy required for acclimation. We estimate model parameters using calibrated Pseudomonas aeruginosa optical density growth data for seven levels of cadmium exposure. The model reproduces growth patterns for all treatments with a single common parameter set, and bacterial growth for treatments of up to 150 mg(Cd)/L can be predicted reasonably well using parameters estimated from cadmium treatments of 20 mg(Cd)/L and lower. Our approach is an important step towards connecting levels of biological organization in ecotoxicology. The presented model reveals possible connections between processes that are not obvious from purely empirical considerations, enables validation and hypothesis testing by creating testable predictions, and identifies research required to further develop the theory. PMID:22328915
Improvement of Meteorological Inputs for TexAQS-II Air Quality Simulations
NASA Astrophysics Data System (ADS)
Ngan, F.; Byun, D.; Kim, H.; Cheng, F.; Kim, S.; Lee, D.
2008-12-01
An air quality forecasting system (UH-AQF) for Eastern Texas, which is in operation by the Institute for Multidimensional Air Quality Studies (IMAQS) at the University of Houston, uses the Fifth-Generation PSU/NCAR Mesoscale Model MM5 model as the meteorological driver for modeling air quality with the Community Multiscale Air Quality (CMAQ) model. While the forecasting system was successfully used for the planning and implementation of various measurement activities, evaluations of the forecasting results revealed a few systematic problems in the numerical simulations. From comparison with observations, we observe some times over-prediction of northerly winds caused by inaccurate synoptic inputs and other times too strong southerly winds caused by local sea breeze development. Discrepancies in maximum and minimum temperature are also seen for certain days. Precipitation events, as well as clouds, are simulated at the incorrect locations and times occasionally. Model simulatednrealistic thunderstorms are simulated, causing sometimes cause unrealistically strong outflows. To understand physical and chemical processes influencing air quality measures, a proper description of real world meteorological conditions is essential. The objective of this study is to generate better meteorological inputs than the AQF results to support the chemistry modeling. We utilized existing objective analysis and nudging tools in the MM5 system to develop the MUltiscale Nest-down Data Assimilation System (MUNDAS), which incorporates extensive meteorological observations available in the simulated domain for the retrospective simulation of the TexAQS-II period. With the re-simulated meteorological input, we are able to better predict ozone events during TexAQS-II period. In addition, base datasets in MM5 such as land use/land cover, vegetation fraction, soil type and sea surface temperature are updated by satellite data to represent the surface features more accurately. They are key physical parameters inputs affecting transfer of heat, momentum and soil moisture in land-surface process in MM5. Using base the accurate input datasets, we are able to have improved see the differences of predictions of ground temperatures, winds and even thunderstorm activities within boundary layer.
Berghoff, Bork A; Karlsson, Torgny; Källman, Thomas; Wagner, E Gerhart H; Grabherr, Manfred G
2017-01-01
Measuring how gene expression changes in the course of an experiment assesses how an organism responds on a molecular level. Sequencing of RNA molecules, and their subsequent quantification, aims to assess global gene expression changes on the RNA level (transcriptome). While advances in high-throughput RNA-sequencing (RNA-seq) technologies allow for inexpensive data generation, accurate post-processing and normalization across samples is required to eliminate any systematic noise introduced by the biochemical and/or technical processes. Existing methods thus either normalize on selected known reference genes that are invariant in expression across the experiment, assume that the majority of genes are invariant, or that the effects of up- and down-regulated genes cancel each other out during the normalization. Here, we present a novel method, moose 2 , which predicts invariant genes in silico through a dynamic programming (DP) scheme and applies a quadratic normalization based on this subset. The method allows for specifying a set of known or experimentally validated invariant genes, which guides the DP. We experimentally verified the predictions of this method in the bacterium Escherichia coli , and show how moose 2 is able to (i) estimate the expression value distances between RNA-seq samples, (ii) reduce the variation of expression values across all samples, and (iii) to subsequently reveal new functional groups of genes during the late stages of DNA damage. We further applied the method to three eukaryotic data sets, on which its performance compares favourably to other methods. The software is implemented in C++ and is publicly available from http://grabherr.github.io/moose2/. The proposed RNA-seq normalization method, moose 2 , is a valuable alternative to existing methods, with two major advantages: (i) in silico prediction of invariant genes provides a list of potential reference genes for downstream analyses, and (ii) non-linear artefacts in RNA-seq data are handled adequately to minimize variations between replicates.
Accessing the public MIMIC-II intensive care relational database for clinical research.
Scott, Daniel J; Lee, Joon; Silva, Ikaro; Park, Shinhyuk; Moody, George B; Celi, Leo A; Mark, Roger G
2013-01-10
The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database is a free, public resource for intensive care research. The database was officially released in 2006, and has attracted a growing number of researchers in academia and industry. We present the two major software tools that facilitate accessing the relational database: the web-based QueryBuilder and a downloadable virtual machine (VM) image. QueryBuilder and the MIMIC-II VM have been developed successfully and are freely available to MIMIC-II users. Simple example SQL queries and the resulting data are presented. Clinical studies pertaining to acute kidney injury and prediction of fluid requirements in the intensive care unit are shown as typical examples of research performed with MIMIC-II. In addition, MIMIC-II has also provided data for annual PhysioNet/Computing in Cardiology Challenges, including the 2012 Challenge "Predicting mortality of ICU Patients". QueryBuilder is a web-based tool that provides easy access to MIMIC-II. For more computationally intensive queries, one can locally install a complete copy of MIMIC-II in a VM. Both publicly available tools provide the MIMIC-II research community with convenient querying interfaces and complement the value of the MIMIC-II relational database.
Are the binary typology models of alcoholism valid in polydrug abusers?
Pombo, Samuel; da Costa, Nuno F; Figueira, Maria L
2015-01-01
To evaluate the dichotomy of type I/II and type A/B alcoholism typologies in opiate-dependent patients with a comorbid alcohol dependence problem (ODP-AP). The validity assessment process comprised the information regarding the history of alcohol use (internal validity), cognitive-behavioral variables regarding substance use (external validity), and indicators of treatment during 6-month follow-up (predictive validity). ODP-AP subjects classified as type II/B presented an early and much more severe drinking problem and a worse clinical prognosis when considering opiate treatment variables as compared with ODP-AP subjects defined as type I/A. Furthermore, type II/B patients endorse more general positive beliefs and expectancies related to the effect of alcohol and tend to drink heavily across several intra- and interpersonal situations as compared with type I/A patients. These findings confirm two different forms of alcohol dependence, recognized as a low-severity/vulnerability subgroup and a high-severity/vulnerability subgroup, in an opiate-dependent population with a lifetime diagnosis of alcohol dependence.
Halperin, Daniel M.; Lee, J. Jack; Dagohoy, Cecile Gonzales; Yao, James C.
2015-01-01
Purpose Despite a robust clinical trial enterprise and encouraging phase II results, the vast minority of oncologic drugs in development receive regulatory approval. In addition, clinicians occasionally make therapeutic decisions based on phase II data. Therefore, clinicians, investigators, and regulatory agencies require improved understanding of the implications of positive phase II studies. We hypothesized that prior probability of eventual drug approval was significantly different across GI cancers, with substantial ramifications for the predictive value of phase II studies. Methods We conducted a systematic search of phase II studies conducted between 1999 and 2004 and compared studies against US Food and Drug Administration and National Cancer Institute databases of approved indications for drugs tested in those studies. Results In all, 317 phase II trials were identified and followed for a median of 12.5 years. Following completion of phase III studies, eventual new drug application approval rates varied from 0% (zero of 45) in pancreatic adenocarcinoma to 34.8% (24 of 69) for colon adenocarcinoma. The proportion of drugs eventually approved was correlated with the disease under study (P < .001). The median type I error for all published trials was 0.05, and the median type II error was 0.1, with minimal variation. By using the observed median type I error for each disease, phase II studies have positive predictive values ranging from less than 1% to 90%, depending on primary site of the cancer. Conclusion Phase II trials in different GI malignancies have distinct prior probabilities of drug approval, yielding quantitatively and qualitatively different predictive values with similar statistical designs. Incorporation of prior probability into trial design may allow for more effective design and interpretation of phase II studies. PMID:26261263
Vyas, V K; Gupta, N; Ghate, M; Patel, S
2014-01-01
In this study we designed novel substituted benzimidazole derivatives and predicted their absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, based on a predictive 3D QSAR study on 132 substituted benzimidazoles as AngII-AT1 receptor antagonists. The two best predicted compounds were synthesized and evaluated for AngII-AT1 receptor antagonism. Three different alignment tools for comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used. The best 3D QSAR models were obtained using the rigid body (Distill) alignment method. CoMFA and CoMSIA models were found to be statistically significant with leave-one-out correlation coefficients (q(2)) of 0.630 and 0.623, respectively, cross-validated coefficients (r(2)cv) of 0.651 and 0.630, respectively, and conventional coefficients of determination (r(2)) of 0.848 and 0.843, respectively. 3D QSAR models were validated using a test set of 24 compounds, giving satisfactory predicted results (r(2)pred) of 0.727 and 0.689 for the CoMFA and CoMSIA models, respectively. We have identified some key features in substituted benzimidazole derivatives, such as lipophilicity and H-bonding at the 2- and 5-positions of the benzimidazole nucleus, respectively, for AT1 receptor antagonistic activity. We designed 20 novel substituted benzimidazole derivatives and predicted their activity. In silico ADMET properties were also predicted for these designed molecules. Finally, the compounds with best predicted activity were synthesized and evaluated for in vitro angiotensin II-AT1 receptor antagonism.
Menéndez, M; Gasset, M; Laynez, J; López-Zumel, C; Usobiaga, P; Töpfer-Petersen, E; Calvete, J J
1995-12-15
The CUB domain is a widespread 110-amino-acid module found in functionally diverse, often developmentally regulated proteins, for which an antiparallel beta-barrel topology similar to that in immunoglobulin V domains has been predicted. Spermadhesins have been proposed as a subgroup of this protein family built up by a single CUB domain architecture. To test the proposed structural model, we have analyzed the structural organization of two members of the spermadhesin protein family, porcine seminal plasma proteins I/II (PSP-I/PSP-II) heterodimer and bovine acidic seminal fluid protein (aSFP) homodimer, using differential scanning calorimetry, far-ultraviolet circular dichroism and Fourier-transform infrared spectroscopy. Thermal unfolding of PSP-I/PSP-II and aSFP were irreversible and followed a one-step process with transition temperatures (Tm) of 60.5 degrees C and 78.6 degrees C, respectively. The calorimetric enthalpy changes (delta Hcat) of thermal denaturation were 439 kJ/mol for PSP-I/PSP-II and 660 kJ/mol for aSFP dimer. Analysis of the calorimetric curves of PSP-I/PSP-II showed that the entire dimer constituted the cooperative unfolding unit. Fourier-transform infrared spectroscopy and deconvolution of circular dichroic spectra using a convex constraint analysis indicated that beta-structure and turns are the major structural element of both PSP-I/PSP-II (53% of beta-sheet, 21% of turns) and aSFP (44% of beta-sheet, 36% of turns), and that the porcine and the bovine proteins contain little, if any, alpha-helical structure. Taken together, our results indicate that the porcine and the bovine spermadhesin molecules are probably all-beta-structure proteins, and would support a beta-barrel topology like that predicted for the CUB domain. Other beta-structure folds, such as the Greek-key pattern characteristic of many carbohydrate-binding protein domains cannot be eliminated. Finally, the same combination of biophysical techniques was used to characterize the residual secondary structure of thermally denatured forms of PSP-I/PSP-II and aSFP, and to emphasize the aggregation tendency of these forms.
PySeqLab: an open source Python package for sequence labeling and segmentation.
Allam, Ahmed; Krauthammer, Michael
2017-11-01
Text and genomic data are composed of sequential tokens, such as words and nucleotides that give rise to higher order syntactic constructs. In this work, we aim at providing a comprehensive Python library implementing conditional random fields (CRFs), a class of probabilistic graphical models, for robust prediction of these constructs from sequential data. Python Sequence Labeling (PySeqLab) is an open source package for performing supervised learning in structured prediction tasks. It implements CRFs models, that is discriminative models from (i) first-order to higher-order linear-chain CRFs, and from (ii) first-order to higher-order semi-Markov CRFs (semi-CRFs). Moreover, it provides multiple learning algorithms for estimating model parameters such as (i) stochastic gradient descent (SGD) and its multiple variations, (ii) structured perceptron with multiple averaging schemes supporting exact and inexact search using 'violation-fixing' framework, (iii) search-based probabilistic online learning algorithm (SAPO) and (iv) an interface for Broyden-Fletcher-Goldfarb-Shanno (BFGS) and the limited-memory BFGS algorithms. Viterbi and Viterbi A* are used for inference and decoding of sequences. Using PySeqLab, we built models (classifiers) and evaluated their performance in three different domains: (i) biomedical Natural language processing (NLP), (ii) predictive DNA sequence analysis and (iii) Human activity recognition (HAR). State-of-the-art performance comparable to machine-learning based systems was achieved in the three domains without feature engineering or the use of knowledge sources. PySeqLab is available through https://bitbucket.org/A_2/pyseqlab with tutorials and documentation. ahmed.allam@yale.edu or michael.krauthammer@yale.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Yuan, Shaoxin; Gao, Yusong; Ji, Wenqing; Song, Junshuai; Mei, Xue
2018-05-01
The aim of this study was to assess the ability of acute physiology and chronic health evaluation II (APACHE II) score, poisoning severity score (PSS) as well as sequential organ failure assessment (SOFA) score combining with lactate (Lac) to predict mortality in the Emergency Department (ED) patients who were poisoned with organophosphate.A retrospective review of 59 stands-compliant patients was carried out. Receiver operating characteristic (ROC) curves were constructed based on the APACHE II score, PSS, SOFA score with or without Lac, respectively, and the areas under the ROC curve (AUCs) were determined to assess predictive value. According to SOFA-Lac (a combination of SOFA and Lac) classification standard, acute organophosphate pesticide poisoning (AOPP) patients were divided into low-risk and high-risk groups. Then mortality rates were compared between risk levels.Between survivors and non-survivors, there were significant differences in the APACHE II score, PSS, SOFA score, and Lac (all P < .05). The AUCs of the APACHE II score, PSS, and SOFA score were 0.876, 0.811, and 0.837, respectively. However, after combining with Lac, the AUCs were 0.922, 0.878, and 0.956, respectively. According to SOFA-Lac, the mortality of high-risk group was significantly higher than low-risk group (P < .05) and the patients of the non-survival group were all at high risk.These data suggest the APACHE II score, PSS, SOFA score can all predict the prognosis of AOPP patients. For its simplicity and objectivity, the SOFA score is a superior predictor. Lac significantly improved the predictive abilities of the 3 scoring systems, especially for the SOFA score. The SOFA-Lac system effectively distinguished the high-risk group from the low-risk group. Therefore, the SOFA-Lac system is significantly better at predicting mortality in AOPP patients.
Understanding r-process nucleosynthesis with dwarf galaxies
NASA Astrophysics Data System (ADS)
Ji, Alexander P.
2018-06-01
The Milky Way's faintest dwarf galaxy satellites each sample short, independent bursts of star formation from the first 1-2 Gyr of the universe. Their simple formation history makes them ideal systems to understand how rare events like neutron star mergers contribute to early enrichment of r-process elements. I will focus on the ultra-faint galaxy Reticulum II, which experienced a single prolific r-process event that left ~80% of its stars extremely enriched in r-process elements. I will present abundances of ~40 elements derived from the highest signal-to-noise high-resolution spectrum ever taken for an ultra-faint dwarf galaxy star. Precise measurements of elements from all three r-process peaks reaffirm the universal nature of the r-process abundance pattern from Ba to Ir. The first r-process peak is significantly lower than solar but matches other r-process enhanced stars. This constrains the neutron-richness of r-process ejecta in neutron star mergers. The radioactive element thorium is detected with a somewhat low abundance. Naive application of currently predicted initial production ratios could imply an age >20 Gyr, but more likely indicates that the initial production ratios require revision. The abundance of lighter elements up to Zn are consistent with extremely metal-poor Milky Way halo stars. These elements may eventually provide a way to test for other hypothesized r-process sites, but only after a more detailed understanding of the chemical evolution in this galaxy. Reticulum II provides a clean view of early r-process enrichment that can be used to understand the increasing number of r-process measurements in other dwarf galaxies.
NASA Astrophysics Data System (ADS)
Minsker, Karl S.; Ivanova, S. R.; Biglova, Raisa Z.
1995-05-01
The Bronsted acids formed as a result of the interaction of aluminium chlorides with Group I and II metal chlorides in the presence of proton-donating compounds are promising polyfunctional catalysts for electrophilic processes (polymerisation, depolymerisation and degradation of macromolecules, alkylation, desulfurisation, and hydrogenation). The factor determing the electrophilic activity and selectivity of the action of the catalysts is their acidity. This makes it possible to predict the direction of the changes in the activity and selectivity of the catalyst in specific chemical processes in conformity with the opposite variation rule: with increase in the acidity of the electrophilic catalyst, their activity increases but the selectivity of their action diminishes. The bibliography includes 72 references.
Mild cognitive impairment as a risk factor for Parkinson's disease dementia.
Hoogland, Jeroen; Boel, Judith A; de Bie, Rob M A; Geskus, Ronald B; Schmand, Ben A; Dalrymple-Alford, John C; Marras, Connie; Adler, Charles H; Goldman, Jennifer G; Tröster, Alexander I; Burn, David J; Litvan, Irene; Geurtsen, Gert J
2017-07-01
The International Parkinson and Movement Disorder Society criteria for mild cognitive impairment in PD were recently formulated. The aim of this international study was to evaluate the predictive validity of the comprehensive (level II) version of these criteria by assessment of their contribution to the hazard of PD dementia. Individual patient data were selected from four separate studies on cognition in PD that provided information on demographics, motor examination, depression, neuropsychological examination suitable for application of level II criteria, and longitudinal follow-up for conversion to dementia. Survival analysis evaluated the predictive value of level II criteria for cognitive decline toward dementia as expressed by the relative hazard of dementia. A total of 467 patients were included. The analyses showed a clear contribution of impairment according to level II mild cognitive impairment criteria, age, and severity of PD motor symptoms to the hazard of dementia. There was a trend of increasing hazard of dementia with declining neuropsychological performance. This is the first large international study evaluating the predictive validity of level II mild cognitive impairment criteria for PD. The results showed a clear and unique contribution of classification according to level II criteria to the hazard of PD dementia. This finding supports their predictive validity and shows that they contribute important new information on the hazard of dementia, beyond known demographic and PD-specific factors of influence. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Eta Carinae and the Homunculus: An Astrophysical Laboratory
NASA Technical Reports Server (NTRS)
Gull, Theodore R.
2006-01-01
High spatial resolution spectroscopy with HST/STIS between 1998.0 and 2004.2 has provided much exciting information about the central binary system and the physics of its N-rich, C,O-poor ejecta. Stellar He I profiles, noticeably blue-shifted relative to P Cygni H and Fe II line profiles, originate from the ionized wind region between two massive companions. Changes in profiles of He I singlet and triplet lines provide clues to the excitation mechanisms involved as the hot, UV companion moves in its highly eccentric orbit. For 90% of the 5.54-year period, the spectra of nearby Weigelt blobs and the Little Homunculus include highly excited emission lines of Ar, Ne, and Fe. During the few month-long spectroscopic minimum, these systems are deprived of Lyman continuum. Recombination, plus cooling, occurs. In the skirt region between the bipolar Homunculus, a neutral emission region, devoid of hydrogen emission, glows in Ti II, Fe I, Sr II, Sc II, etc. We find the ejecta to have Ti/Ni abundances nearly 100 times solar, not due to nuclear processing, but due to lack of oxygen. Many metals normally tied up in interstellar dust remain in gaseous phase. Much information is being obtained on the physical processes in these warm N-rich gases, whose excitation varies with time in a predictable pattern. Indeed recent GRB high dispersion spectra include signatures of circumGRB warm gases. This indicates that the early, primordial massive stars have warm massive ejecta reminiscent to that around Eta Carinae.
Goo, Yeung-Ja James; Chi, Der-Jang; Shen, Zong-De
2016-01-01
The purpose of this study is to establish rigorous and reliable going concern doubt (GCD) prediction models. This study first uses the least absolute shrinkage and selection operator (LASSO) to select variables and then applies data mining techniques to establish prediction models, such as neural network (NN), classification and regression tree (CART), and support vector machine (SVM). The samples of this study include 48 GCD listed companies and 124 NGCD (non-GCD) listed companies from 2002 to 2013 in the TEJ database. We conduct fivefold cross validation in order to identify the prediction accuracy. According to the empirical results, the prediction accuracy of the LASSO-NN model is 88.96 % (Type I error rate is 12.22 %; Type II error rate is 7.50 %), the prediction accuracy of the LASSO-CART model is 88.75 % (Type I error rate is 13.61 %; Type II error rate is 14.17 %), and the prediction accuracy of the LASSO-SVM model is 89.79 % (Type I error rate is 10.00 %; Type II error rate is 15.83 %).
Basha, Shaik; Jaiswar, Santlal; Jha, Bhavanath
2010-09-01
The biosorption equilibrium isotherms of Ni(II) onto marine brown algae Lobophora variegata, which was chemically-modified by CaCl(2) were studied and modeled. To predict the biosorption isotherms and to determine the characteristic parameters for process design, twenty-three one-, two-, three-, four- and five-parameter isotherm models were applied to experimental data. The interaction among biosorbed molecules is attractive and biosorption is carried out on energetically different sites and is an endothermic process. The five-parameter Fritz-Schluender model gives the most accurate fit with high regression coefficient, R (2) (0.9911-0.9975) and F-ratio (118.03-179.96), and low standard error, SE (0.0902-0.0.1556) and the residual or sum of square error, SSE (0.0012-0.1789) values to all experimental data in comparison to other models. The biosorption isotherm models fitted the experimental data in the order: Fritz-Schluender (five-parameter) > Freundlich (two-parameter) > Langmuir (two-parameter) > Khan (three-parameter) > Fritz-Schluender (four-parameter). The thermodynamic parameters such as DeltaG (0), DeltaH (0) and DeltaS (0) have been determined, which indicates the sorption of Ni(II) onto L. variegata was spontaneous and endothermic in nature.
Anvil Forecast Tool in the Advanced Weather Interactive Processing System, Phase II
NASA Technical Reports Server (NTRS)
Barrett, Joe H., III
2008-01-01
Meteorologists from the 45th Weather Squadron (45 WS) and Spaceflight Meteorology Group have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Light Rules. As a result, the Applied Meteorology Unit (AMU) created a graphical overlay tool for the Meteorological Interactive Data Display Systems (MIDDS) to indicate the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input.
Structure-Property-Environmental Relations in Glass and Glass-Ceramics.
1980-03-01
dense Al203 result in a deep surface layer of preferred orientation detection by RKS methods. ii: C Mv CL.ASSIFICAIC S . e .. fa " " p h D e TABLE OF...distribution and decreases the isoelectric point of the powders. Variations in processing of dense Al 203 result in a deep surface layer of preferred...by their surfaces, it is essential that we learn how to predict the surface chemistry of these materials in order to optimize their performance. The
Scoring systems for outcome prediction in patients with perforated peptic ulcer.
Thorsen, Kenneth; Søreide, Jon Arne; Søreide, Kjetil
2013-04-10
Patients with perforated peptic ulcer (PPU) often present with acute, severe illness that carries a high risk for morbidity and mortality. Mortality ranges from 3-40% and several prognostic scoring systems have been suggested. The aim of this study was to review the available scoring systems for PPU patients, and to assert if there is evidence to prefer one to the other. We searched PubMed for the mesh terms "perforated peptic ulcer", "scoring systems", "risk factors", "outcome prediction", "mortality", "morbidity" and the combinations of these terms. In addition to relevant scores introduced in the past (e.g. Boey score), we included recent studies published between January 2000 and December 2012) that reported on scoring systems for prediction of morbidity and mortality in PPU patients. A total of ten different scoring systems used to predict outcome in PPU patients were identified; the Boey score, the Hacettepe score, the Jabalpur score the peptic ulcer perforation (PULP) score, the ASA score, the Charlson comorbidity index, the sepsis score, the Mannheim Peritonitis Index (MPI), the Acute physiology and chronic health evaluation II (APACHE II), the simplified acute physiology score II (SAPS II), the Mortality probability models II (MPM II), the Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity physical sub-score (POSSUM-phys score). Only four of the scores were specifically constructed for PPU patients. In five studies the accuracy of outcome prediction of different scoring systems was evaluated by receiver operating characteristics curve (ROC) analysis, and the corresponding area under the curve (AUC) among studies compared. Considerable variation in performance both between different scores and between different studies was found, with the lowest and highest AUC reported between 0.63 and 0.98, respectively. While the Boey score and the ASA score are most commonly used to predict outcome for PPU patients, considerable variations in accuracy for outcome prediction were shown. Other scoring systems are hampered by a lack of validation or by their complexity that precludes routine clinical use. While the PULP score seems promising it needs external validation before widespread use.
NASA Astrophysics Data System (ADS)
Shelton, Robin L.
2018-06-01
High velocity clouds (HVCs) and turbulent mixing layers (TMLs) emit light across a wide range of wavelengths. In order to aid in the detection of their ultraviolet emission, we predict the UV emission line intensities emitted by C II, C III, C IV, N II, N III, N IV, N V, O III, O IV, O V, O VI, Si II, Si III, and Si IV in a variety of simulated HVCs and TMLs. These predictions are based on detailed hydrodynamic simulations made with the FLASH code and employing non-equilibrium ionization calculations for carbon, nitrogen, oxygen, and silicon. The results are compared with FUSE and SPEAR/FIMS observations and with predictions from other models of hot/cool interfaces. We also present methods for scaling the results so that they can be applied to more or less dense environments.
The Society of Toxicology (SOT) held avery successful FutureTox II Contemporary Concepts in Toxicology (CCT) Conference in Chapel Hill, North Carolina, on January 16th and 17th, 2014. There were over 291 attendees representing industry, government and academia; the sessions were ...
Uncertainty Considerations for Ballistic Limit Equations
NASA Technical Reports Server (NTRS)
Schonberg, W. P.; Evans, H. J.; Williamsen, J. E; Boyer, R. L.; Nakayama, G. S.
2005-01-01
The overall risk for any spacecraft system is typically determined using a Probabilistic Risk Assessment (PRA). A PRA determines the overall risk associated with a particular mission by factoring in all known risks to the spacecraft during its mission. The threat to mission and human life posed by the micro-meteoroid and orbital debris (MMOD) environment is one of the risks. NASA uses the BUMPER II program to provide point estimate predictions of MMOD risk for the Space Shuttle and the ISS. However, BUMPER II does not provide uncertainty bounds or confidence intervals for its predictions. In this paper, we present possible approaches through which uncertainty bounds can be developed for the various damage prediction and ballistic limit equations encoded within the Shuttle and Station versions of BUMPER II.
Sinha, Vikash K; Vaarties, Karin; De Buck, Stefan S; Fenu, Luca A; Nijsen, Marjoleen; Gilissen, Ron A H J; Sanderson, Wendy; Van Uytsel, Kelly; Hoeben, Eva; Van Peer, Achiel; Mackie, Claire E; Smit, Johan W
2011-05-01
It is imperative that new drugs demonstrate adequate pharmacokinetic properties, allowing an optimal safety margin and convenient dosing regimens in clinical practice, which then lead to better patient compliance. Such pharmacokinetic properties include suitable peak (maximum) plasma drug concentration (C(max)), area under the plasma concentration-time curve (AUC) and a suitable half-life (t(½)). The C(max) and t(½) following oral drug administration are functions of the oral clearance (CL/F) and apparent volume of distribution during the terminal phase by the oral route (V(z)/F), each of which may be predicted and combined to estimate C(max) and t(½). Allometric scaling is a widely used methodology in the pharmaceutical industry to predict human pharmacokinetic parameters such as clearance and volume of distribution. In our previous published work, we have evaluated the use of allometry for prediction of CL/F and AUC. In this paper we describe the evaluation of different allometric scaling approaches for the prediction of C(max), V(z)/F and t(½) after oral drug administration in man. Twenty-nine compounds developed at Janssen Research and Development (a division of Janssen Pharmaceutica NV), covering a wide range of physicochemical and pharmacokinetic properties, were selected. The C(max) following oral dosing of a compound was predicted using (i) simple allometry alone; (ii) simple allometry along with correction factors such as plasma protein binding (PPB), maximum life-span potential or brain weight (reverse rule of exponents, unbound C(max) approach); and (iii) an indirect approach using allometrically predicted CL/F and V(z)/F and absorption rate constant (k(a)). The k(a) was estimated from (i) in vivo pharmacokinetic experiments in preclinical species; and (ii) predicted effective permeability in man (P(eff)), using a Caco-2 permeability assay. The V(z)/F was predicted using allometric scaling with or without PPB correction. The t(½) was estimated from the allometrically predicted parameters CL/F and V(z)/F. Predictions were deemed adequate when errors were within a 2-fold range. C(max) and t(½) could be predicted within a 2-fold error range for 59% and 66% of the tested compounds, respectively, using allometrically predicted CL/F and V(z)/F. The best predictions for C(max) were obtained when k(a) values were calculated from the Caco-2 permeability assay. The V(z)/F was predicted within a 2-fold error range for 72% of compounds when PPB correction was applied as the correction factor for scaling. We conclude that (i) C(max) and t(½) are best predicted by indirect scaling approaches (using allometrically predicted CL/F and V(z)/F and accounting for k(a) derived from permeability assay); and (ii) the PPB is an important correction factor for the prediction of V(z)/F by using allometric scaling. Furthermore, additional work is warranted to understand the mechanisms governing the processes underlying determination of C(max) so that the empirical approaches can be fine-tuned further.
NASA Technical Reports Server (NTRS)
He, Yuning
2015-01-01
Safety of unmanned aerial systems (UAS) is paramount, but the large number of dynamically changing controller parameters makes it hard to determine if the system is currently stable, and the time before loss of control if not. We propose a hierarchical statistical model using Treed Gaussian Processes to predict (i) whether a flight will be stable (success) or become unstable (failure), (ii) the time-to-failure if unstable, and (iii) time series outputs for flight variables. We first classify the current flight input into success or failure types, and then use separate models for each class to predict the time-to-failure and time series outputs. As different inputs may cause failures at different times, we have to model variable length output curves. We use a basis representation for curves and learn the mappings from input to basis coefficients. We demonstrate the effectiveness of our prediction methods on a NASA neuro-adaptive flight control system.
Stellar Populations and Radial Migrations in Virgo Disk Galaxies
NASA Astrophysics Data System (ADS)
Roediger, Joel C.; Courteau, Stéphane; Sánchez-Blázquez, Patricia; McDonald, Michael
2012-10-01
We present new stellar age profiles, derived from well-resolved optical and near-infrared images of 64 Virgo cluster disk galaxies, whose analysis poses a challenge for current disk galaxy formation models. Our ability to break the age-metallicity degeneracy and the significant size of our sample represent key improvements over complementary studies of field disk galaxies. Our results can be summarized as follows: first, and contrary to observations of disk galaxies in the field, these cluster galaxies are distributed almost equally amongst the three main types of disk galaxy luminosity profiles (I/II/III), indicating that the formation and/or survival of Type II breaks is suppressed within the cluster environment. Second, we find examples of statistically significant inversions ("U-shapes") in the age profiles of all three disk galaxy types, reminiscent of predictions from high-resolution simulations of classically truncated Type II disks in the field. These features characterize the age profiles for only about a third (<=36%) of each disk galaxy type in our sample. An even smaller fraction of cluster disks (~11% of the total sample) exhibit age profiles that decrease outward (i.e., negative age gradients). Instead, flat and/or positive age gradients prevail (>=50%) within our Type I, II, and III subsamples. These observations thus suggest that while stellar migrations and inside-out growth can play a significant role in the evolution of all disk galaxy types, other factors contributing to the evolution of galaxies can overwhelm the predicted signatures of these processes. We interpret our observations through a scenario whereby Virgo cluster disk galaxies formed initially like their brethren in the field but which, upon falling into the cluster, were transformed into their present state through external processes linked to the environment (e.g., ram-pressure stripping and harassment). Current disk galaxy formation models, which have largely focused on field galaxies, fail to reproduce these results, thus calling for adequate hydrodynamical simulations of dense galaxy environments if we are to understand cluster disks. The current paper highlights numerous constraints for such simulations. In the Appendix, we confirm the claim by Erwin et al. that Type II breaks are absent in Virgo cluster S0s and discuss the detection of Type III breaks in such galaxies.
NASA Astrophysics Data System (ADS)
Rodrigues, João Fabrício Mota; Coelho, Marco Túlio Pacheco; Ribeiro, Bruno R.
2018-04-01
Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.
Design of Oil-Lubricated Machine for Life and Reliability
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.
2007-01-01
In the post-World War II era, the major technology drivers for improving the life, reliability, and performance of rolling-element bearings and gears have been the jet engine and the helicopter. By the late 1950s, most of the materials used for bearings and gears in the aerospace industry had been introduced into use. By the early 1960s, the life of most steels was increased over that experienced in the early 1940s, primarily by the introduction of vacuum degassing and vacuum melting processes in the late 1950s. The development of elastohydrodynamic (EHD) theory showed that most rolling bearings and gears have a thin film separating the contacting bodies during motion and it is that film which affects their lives. Computer programs modeling bearing and gear dynamics that incorporate probabilistic life prediction methods and EHD theory enable optimization of rotating machinery based on life and reliability. With improved manufacturing and processing, the potential improvement in bearing and gear life can be as much as 80 times that attainable in the early 1950s. The work presented summarizes the use of laboratory fatigue data for bearings and gears coupled with probabilistic life prediction and EHD theories to predict the life and reliability of a commercial turboprop gearbox. The resulting predictions are compared with field data.
Stoichio-Kinetic Modeling of Fenton Chemistry in a Meat-Mimetic Aqueous-Phase Medium.
Oueslati, Khaled; Promeyrat, Aurélie; Gatellier, Philippe; Daudin, Jean-Dominique; Kondjoyan, Alain
2018-05-31
Fenton reaction kinetics, which involved an Fe(II)/Fe(III) oxidative redox cycle, were studied in a liquid medium that mimics meat composition. Muscle antioxidants (enzymes, peptides, and vitamins) were added one by one in the medium to determine their respective effects on the formation of superoxide and hydroxyl radicals. A stoichio-kinetic mathematical model was used to predict the formation of these radicals under different iron and H 2 O 2 concentrations and temperature conditions. The difference between experimental and predicted results was mainly due to iron reactivity, which had to be taken into account in the model, and to uncertainties on some of the rate constant values introduced in the model. This stoichio-kinetic model will be useful to predict oxidation during meat processes, providing it can be completed to take into account the presence of myoglobin in the muscle.
Judgment under Uncertainty: Heuristics and Biases.
Tversky, A; Kahneman, D
1974-09-27
This article described three heuristics that are employed in making judgements under uncertainty: (i) representativeness, which is usually employed when people are asked to judge the probability that an object or event A belongs to class or process B; (ii) availability of instances or scenarios, which is often employed when people are asked to assess the frequency of a class or the plausibility of a particular development; and (iii) adjustment from an anchor, which is usually employed in numerical prediction when a relevant value is available. These heuristics are highly economical and usually effective, but they lead to systematic and predictable errors. A better understanding of these heuristics and of the biases to which they lead could improve judgements and decisions in situations of uncertainty.
First principles materials design of novel functional oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Valentino R.; Voas, Brian K.; Bridges, Craig A.
2016-05-31
We review our efforts to develop and implement robust computational approaches for exploring phase stability to facilitate the prediction-to-synthesis process of novel functional oxides. These efforts focus on a synergy between (i) electronic structure calculations for properties predictions, (ii) phenomenological/empirical methods for examining phase stability as related to both phase segregation and temperature-dependent transitions and (iii) experimental validation through synthesis and characterization. We illustrate this philosophy by examining an inaugural study that seeks to discover novel functional oxides with high piezoelectric responses. Lastly, our results show progress towards developing a framework through which solid solutions can be studied to predictmore » materials with enhanced properties that can be synthesized and remain active under device relevant conditions.« less
2014-07-22
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is delivered to the Building 836 hangar on south Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is prepared for lifting at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is lifted at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is transported to Space Launch Complex 2 where it will be mated to a Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is prepared for lifting at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is transported to Space Launch Complex 2 where it will be mated to a Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is lifted at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is transported to Space Launch Complex 2 where it will be mated to a Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is prepared for lifting at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is lifted at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is transported to Space Launch Complex 2 where it will be mated to a Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2015-01-13
VANDENBERG AIR FORCE BASE, Calif. – At Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive mission, or SMAP, satellite is lifted at Space Launch Complex 2 for mating to its Delta II rocket. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
Blind Pose Prediction, Scoring, and Affinity Ranking of the CSAR 2014 Dataset.
Martiny, Virginie Y; Martz, François; Selwa, Edithe; Iorga, Bogdan I
2016-06-27
The 2014 CSAR Benchmark Exercise was focused on three protein targets: coagulation factor Xa, spleen tyrosine kinase, and bacterial tRNA methyltransferase. Our protocol involved a preliminary analysis of the structural information available in the Protein Data Bank for the protein targets, which allowed the identification of the most appropriate docking software and scoring functions to be used for the rescoring of several docking conformations datasets, as well as for pose prediction and affinity ranking. The two key points of this study were (i) the prior evaluation of molecular modeling tools that are most adapted for each target and (ii) the increased search efficiency during the docking process to better explore the conformational space of big and flexible ligands.
In silico prediction of ROCK II inhibitors by different classification approaches.
Cai, Chuipu; Wu, Qihui; Luo, Yunxia; Ma, Huili; Shen, Jiangang; Zhang, Yongbin; Yang, Lei; Chen, Yunbo; Wen, Zehuai; Wang, Qi
2017-11-01
ROCK II is an important pharmacological target linked to central nervous system disorders such as Alzheimer's disease. The purpose of this research is to generate ROCK II inhibitor prediction models by machine learning approaches. Firstly, four sets of descriptors were calculated with MOE 2010 and PaDEL-Descriptor, and optimized by F-score and linear forward selection methods. In addition, four classification algorithms were used to initially build 16 classifiers with k-nearest neighbors [Formula: see text], naïve Bayes, Random forest, and support vector machine. Furthermore, three sets of structural fingerprint descriptors were introduced to enhance the predictive capacity of classifiers, which were assessed with fivefold cross-validation, test set validation and external test set validation. The best two models, MFK + MACCS and MLR + SubFP, have both MCC values of 0.925 for external test set. After that, a privileged substructure analysis was performed to reveal common chemical features of ROCK II inhibitors. Finally, binding modes were analyzed to identify relationships between molecular descriptors and activity, while main interactions were revealed by comparing the docking interaction of the most potent and the weakest ROCK II inhibitors. To the best of our knowledge, this is the first report on ROCK II inhibitors utilizing machine learning approaches that provides a new method for discovering novel ROCK II inhibitors.
Prognostic scores in cirrhotic patients admitted to a gastroenterology intensive care unit.
Freire, Paulo; Romãozinho, José M; Amaro, Pedro; Ferreira, Manuela; Sofia, Carlos
2011-04-01
prognostic scores have been validated in cirrhotic patients admitted to general Intensive Care Units. No assessment of these scores was performed in cirrhotics admitted to specialized Gastroenterology Intensive Care Units (GICUs). to assess the prognostic accuracy of Acute Physiology and Chronic Health Evaluation (APACHE) II, Simplified Acute Physiology Score (SAPS) II, Sequential Organ Failure Assessment (SOFA), Model for End-stage Liver Disease (MELD) and Child-Pugh-Turcotte (CPT) in predicting GICU mortality in cirrhotic patients. the study involved 124 consecutive cirrhotic admissions to a GICU. Clinical data, prognostic scores and mortality were recorded. Discrimination was evaluated with area under receiver operating characteristic curves (AUC). Calibration was assessed with Hosmer-Lemeshow goodness-of-fit test. GICU mortality was 9.7%. Mean APACHE II, SAPS II, SOFA, MELD and CPT scores for survivors (13.6, 25.4, 3.5,18.0 and 8.6, respectively) were found to be significantly lower than those of non-survivors (22.0, 47.5, 10.1, 30.7 and 12.5,respectively) (p < 0.001). All the prognostic systems showed good discrimination, with AUC = 0.860, 0.911, 0.868, 0.897 and 0.914 for APACHE II, SAPS II, SOFA, MELD and CPT, respectively. Similarly, APACHE II, SAPS II, SOFA, MELD and CPT scores achieved good calibration, with p = 0.146, 0.120, 0.686,0.267 and 0.120, respectively. The overall correctness of prediction was 81.9%, 86.1%, 93.3%, 90.7% and 87.7% for the APA-CHE II, SAPS II, SOFA, MELD and CPT scores, respectively. in cirrhotics admitted to a GICU, all the tested scores have good prognostic accuracy, with SOFA and MELD showing the greatest overall correctness of prediction.
NASA Astrophysics Data System (ADS)
Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin
2018-03-01
A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.
NASA Astrophysics Data System (ADS)
Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin
2018-06-01
A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.
Nishida, Takahiro; Sonoda, Hiromichi; Oishi, Yasuhisa; Tanoue, Yoshihisa; Nakashima, Atsuhiro; Shiokawa, Yuichi; Tominaga, Ryuji
2014-04-01
The European System for Cardiac Operative Risk Evaluation (EuroSCORE) II was developed to improve the overestimation of surgical risk associated with the original (additive and logistic) EuroSCOREs. The purpose of this study was to evaluate the significance of the EuroSCORE II by comparing its performance with that of the original EuroSCOREs in Japanese patients undergoing surgery on the thoracic aorta. We have calculated the predicted mortalities according to the additive EuroSCORE, logistic EuroSCORE and EuroSCORE II algorithms in 461 patients who underwent surgery on the thoracic aorta during a period of 20 years (1993-2013). The actual in-hospital mortality rates in the low- (additive EuroSCORE of 3-6), moderate- (7-11) and high-risk (≥11) groups (followed by overall mortality) were 1.3, 6.2 and 14.4% (7.2% overall), respectively. Among the three different risk groups, the expected mortality rates were 5.5 ± 0.6, 9.1 ± 0.7 and 13.5 ± 0.2% (9.5 ± 0.1% overall) by the additive EuroSCORE algorithm, 5.3 ± 0.1, 16 ± 0.4 and 42.4 ± 1.3% (19.9 ± 0.7% overall) by the logistic EuroSCORE algorithm and 1.6 ± 0.1, 5.2 ± 0.2 and 18.5 ± 1.3% (7.4 ± 0.4% overall) by the EuroSCORE II algorithm, indicating poor prediction (P < 0.0001) of the mortality in the high-risk group, especially by the logistic EuroSCORE. The areas under the receiver operating characteristic curves of the additive EuroSCORE, logistic EuroSCORE and EuroSCORE II algorithms were 0.6937, 0.7169 and 0.7697, respectively. Thus, the mortality expected by the EuroSCORE II more closely matched the actual mortality in all three risk groups. In contrast, the mortality expected by the logistic EuroSCORE overestimated the risks in the moderate- (P = 0.0002) and high-risk (P < 0.0001) patient groups. Although all of the original EuroSCOREs and EuroSCORE II appreciably predicted the surgical mortality for thoracic aortic surgery in Japanese patients, the EuroSCORE II best predicted the mortalities in all risk groups.
NASA Astrophysics Data System (ADS)
Savani, N. P.; Vourlidas, A.; Szabo, A.; Mays, M. L.; Richardson, I. G.; Thompson, B. J.; Pulkkinen, A.; Evans, R.; Nieves-Chinchilla, T.
2015-06-01
The process by which the Sun affects the terrestrial environment on short timescales is predominately driven by the amount of magnetic reconnection between the solar wind and Earth's magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment. Unfortunately, forecasting magnetic vectors within coronal mass ejections remain elusive. Here we report how, by combining a statistically robust helicity rule for a CME's solar origin with a simplified flux rope topology, the magnetic vectors within the Earth-directed segment of a CME can be predicted. In order to test the validity of this proof-of-concept architecture for estimating the magnetic vectors within CMEs, a total of eight CME events (between 2010 and 2014) have been investigated. With a focus on the large false alarm of January 2014, this work highlights the importance of including the early evolutionary effects of a CME for forecasting purposes. The angular rotation in the predicted magnetic field closely follows the broad rotational structure seen within the in situ data. This time-varying field estimate is implemented into a process to quantitatively predict a time-varying Kp index that is described in detail in paper II. Future statistical work, quantifying the uncertainties in this process, may improve the more heuristic approach used by early forecasting systems.
Evaluation of Voice Acoustics as Predictors of Clinical Depression Scores.
Hashim, Nik Wahidah; Wilkes, Mitch; Salomon, Ronald; Meggs, Jared; France, Daniel J
2017-03-01
The aim of the present study was to determine if acoustic measures of voice, characterizing specific spectral and timing properties, predict clinical ratings of depression severity measured in a sample of patients using the Hamilton Depression Rating Scale (HAMD) and Beck Depression Inventory (BDI-II). This is a prospective study. Voice samples and clinical depression scores were collected prospectively from consenting adult patients who were referred to psychiatry from the adult emergency department or primary care clinics. The patients were audio-recorded as they read a standardized passage in a nearly closed-room environment. Mean Absolute Error (MAE) between actual and predicted depression scores was used as the primary outcome measure. The average MAE between predicted and actual HAMD scores was approximately two scores for both men and women, and the MAE for the BDI-II scores was approximately one score for men and eight scores for women. Timing features were predictive of HAMD scores in female patients while a combination of timing features and spectral features was predictive of scores in male patients. Timing features were predictive of BDI-II scores in male patients. Voice acoustic features extracted from read speech demonstrated variable effectiveness in predicting clinical depression scores in men and women. Voice features were highly predictive of HAMD scores in men and women, and BDI-II scores in men, respectively. The methodology is feasible for diagnostic applications in diverse clinical settings as it can be implemented during a standard clinical interview in a normal closed room and without strict control on the recording environment. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
A Dynamic Calibration Method for Experimental and Analytical Hub Load Comparison
NASA Technical Reports Server (NTRS)
Kreshock, Andrew R.; Thornburgh, Robert P.; Wilbur, Matthew L.
2017-01-01
This paper presents the results from an ongoing effort to produce improved correlation between analytical hub force and moment prediction and those measured during wind-tunnel testing on the Aeroelastic Rotor Experimental System (ARES), a conventional rotor testbed commonly used at the Langley Transonic Dynamics Tunnel (TDT). A frequency-dependent transformation between loads at the rotor hub and outputs of the testbed balance is produced from frequency response functions measured during vibration testing of the system. The resulting transformation is used as a dynamic calibration of the balance to transform hub loads predicted by comprehensive analysis into predicted balance outputs. In addition to detailing the transformation process, this paper also presents a set of wind-tunnel test cases, with comparisons between the measured balance outputs and transformed predictions from the comprehensive analysis code CAMRAD II. The modal response of the testbed is discussed and compared to a detailed finite-element model. Results reveal that the modal response of the testbed exhibits a number of characteristics that make accurate dynamic balance predictions challenging, even with the use of the balance transformation.
Accessing the public MIMIC-II intensive care relational database for clinical research
2013-01-01
Background The Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC-II) database is a free, public resource for intensive care research. The database was officially released in 2006, and has attracted a growing number of researchers in academia and industry. We present the two major software tools that facilitate accessing the relational database: the web-based QueryBuilder and a downloadable virtual machine (VM) image. Results QueryBuilder and the MIMIC-II VM have been developed successfully and are freely available to MIMIC-II users. Simple example SQL queries and the resulting data are presented. Clinical studies pertaining to acute kidney injury and prediction of fluid requirements in the intensive care unit are shown as typical examples of research performed with MIMIC-II. In addition, MIMIC-II has also provided data for annual PhysioNet/Computing in Cardiology Challenges, including the 2012 Challenge “Predicting mortality of ICU Patients”. Conclusions QueryBuilder is a web-based tool that provides easy access to MIMIC-II. For more computationally intensive queries, one can locally install a complete copy of MIMIC-II in a VM. Both publicly available tools provide the MIMIC-II research community with convenient querying interfaces and complement the value of the MIMIC-II relational database. PMID:23302652
Jia, Cangzhi; Zuo, Yun; Zou, Quan; Hancock, John
2018-02-06
Protein O-GlcNAcylation (O-GlcNAc) is an important post-translational modification of serine (S)/threonine (T) residues that involves multiple molecular and cellular processes. Recent studies have suggested that abnormal O-G1cNAcylation causes many diseases, such as cancer and various neurodegenerative diseases. With the available protein O-G1cNAcylation sites experimentally verified, it is highly desired to develop automated methods to rapidly and effectively identify O-G1cNAcylation sites. Although some computational methods have been proposed, their performance has been unsatisfactory, particularly in terms of prediction sensitivity. In this study, we developed an ensemble model O-GlcNAcPRED-II to identify potential O-G1cNAcylation sites. A K-means principal component analysis oversampling technique (KPCA) and fuzzy undersampling method (FUS) were first proposed and incorporated to reduce the proportion of the original positive and negative training samples. Then, rotation forest, a type of classifier-integrated system, was adopted to divide the eight types of feature space into several subsets using four sub-classifiers: random forest, k-nearest neighbour, naive Bayesian and support vector machine. We observed that O-GlcNAcPRED-II achieved a sensitivity of 81.05%, specificity of 95.91%, accuracy of 91.43% and Matthew's correlation coefficient of 0.7928 for five-fold cross-validation run 10 times. Additionally, the results obtained by O-GlcNAcPRED-II on two independent datasets also indicated that the proposed predictor outperformed five published prediction tools. http://121.42.167.206/OGlcPred/. cangzhijia@dlmu.edu.cn or zouquan@nclab.net. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
A Prediction for the Outcome of Press-Enterprise Co. v. Superior Court (II).
ERIC Educational Resources Information Center
Schwartz, Thomas A.
To determine whether U.S. Supreme Court judges have a systematic attitude toward court cases dealing with the law of newsgathering and fair trial-free press, and whether that attitude can help predict the outcome of the pending case Press-Enterprise Co. v. Superior Court (II), this paper applies an attitudinal theory from the field of social…
Nealon, William H; Bhutani, Manoop; Riall, Taylor S; Raju, Gottumukkala; Ozkan, Orhan; Neilan, Ryan
2009-05-01
Precepts about acute pancreatitis, necrotizing pancreatitis, and pancreatic fluid collections or pseudocyst rarely include the impact of pancreatic ductal injuries on their natural course and outcomes. We previously examined and established a system to categorize ductal changes. We sought a unifying concept that may predict course and direct therapies in these complex patients. We use our system categorizing ductal changes in pseudocyst of the pancreas and severe necrotizing pancreatitis (type I, normal duct; type II, duct stricture; type III, duct occlusion or "disconnected duct"; and type IV, chronic pancreatitis). From 1985 to 2006, a policy was implemented of routine imaging (cross-sectional, endoscopic retrograde cholangiopancreatography, or magnetic resonance cholangiopancreatography). Clinical outcomes were measured. Among 563 patients with pseudocyst, 142 resolved spontaneously (87% of type I, 5% of type II, and no type III, and 3% of type IV). Percutaneous drainage was successful in 83% of type I, 49% of type II, and no type III or type IV. Among 174 patients with severe acute pancreatitis percutaneous drainage was successful in 64% of type I, 38% of type II, and no type III. Operative debridement was required in 39% of type I and 83% and 85% of types II and III, respectively. Persistent fistula after debridement occurred in 27%, 54%, and 85% of types I, II, and III ducts, respectively. Late complications correlated with duct injury. Pancreatic ductal changes predict spontaneous resolution, success of nonoperative measures, and direct therapies in pseudocyst. Ductal changes also predict patients with necrotizing pancreatitis who are most likely to have immediate and delayed complications.
Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia
2014-08-01
The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fernández, Gema; Martró, Elisa; González, Victoria; Saludes, Verónica; Bascuñana, Elisabet; Marcó, Clara; Rivaya, Belén; López, Evelin; Coll, Pep; Matas, Lurdes; Ausina, Vicente
2016-10-01
Sexually transmitted infections (STI) are currently on the increase worldwide. New molecular tools have been developed in the past few years in order to improve their diagnosis. An evaluation was carried out using a new commercially available real-time PCR assay, Anyplex™ II STI-7 (Seegene, Seoul, Korea), which detects seven major pathogens in a single reaction - Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis, Mycoplasma hominis, Mycoplasma genitalium, Ureaplasma urealyticum, and Ureaplasma parvum - and compared with conventional methods performed in our laboratory. Two different populations were included, and 267 specimens from different sites of infection (urines, endocervical swabs, rectal swabs, vaginal swabs, urethral swabs and one inguinal adenopathy) were processed for both methods. The parameters of clinical performance were calculated for C. trachomatis, N. gonorrhoeae, and T. vaginalis, and the assay achieved sensitivities (SE) from 93.94% to 100%, and specificities (SP) from 96.55% to 100%, with negative predictive values (NPV) from 93.33% to 98.85%, and positive predictive values (PPV) from 96.88% to 100%, with a very good agreement (kappa index from 0.88 to 1). Anyplex™ II STI-7 is a good tool for the reliable diagnosis of STI. Its ease of use and processing allows it to be incorporated into the day to day laboratory work. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
AbdelRahman, Samir E; Zhang, Mingyuan; Bray, Bruce E; Kawamoto, Kensaku
2014-05-27
The aim of this study was to propose an analytical approach to develop high-performing predictive models for congestive heart failure (CHF) readmission using an operational dataset with incomplete records and changing data over time. Our analytical approach involves three steps: pre-processing, systematic model development, and risk factor analysis. For pre-processing, variables that were absent in >50% of records were removed. Moreover, the dataset was divided into a validation dataset and derivation datasets which were separated into three temporal subsets based on changes to the data over time. For systematic model development, using the different temporal datasets and the remaining explanatory variables, the models were developed by combining the use of various (i) statistical analyses to explore the relationships between the validation and the derivation datasets; (ii) adjustment methods for handling missing values; (iii) classifiers; (iv) feature selection methods; and (iv) discretization methods. We then selected the best derivation dataset and the models with the highest predictive performance. For risk factor analysis, factors in the highest-performing predictive models were analyzed and ranked using (i) statistical analyses of the best derivation dataset, (ii) feature rankers, and (iii) a newly developed algorithm to categorize risk factors as being strong, regular, or weak. The analysis dataset consisted of 2,787 CHF hospitalizations at University of Utah Health Care from January 2003 to June 2013. In this study, we used the complete-case analysis and mean-based imputation adjustment methods; the wrapper subset feature selection method; and four ranking strategies based on information gain, gain ratio, symmetrical uncertainty, and wrapper subset feature evaluators. The best-performing models resulted from the use of a complete-case analysis derivation dataset combined with the Class-Attribute Contingency Coefficient discretization method and a voting classifier which averaged the results of multi-nominal logistic regression and voting feature intervals classifiers. Of 42 final model risk factors, discharge disposition, discretized age, and indicators of anemia were the most significant. This model achieved a c-statistic of 86.8%. The proposed three-step analytical approach enhanced predictive model performance for CHF readmissions. It could potentially be leveraged to improve predictive model performance in other areas of clinical medicine.
Bayesian Optimization for Neuroimaging Pre-processing in Brain Age Classification and Prediction
Lancaster, Jenessa; Lorenz, Romy; Leech, Rob; Cole, James H.
2018-01-01
Neuroimaging-based age prediction using machine learning is proposed as a biomarker of brain aging, relating to cognitive performance, health outcomes and progression of neurodegenerative disease. However, even leading age-prediction algorithms contain measurement error, motivating efforts to improve experimental pipelines. T1-weighted MRI is commonly used for age prediction, and the pre-processing of these scans involves normalization to a common template and resampling to a common voxel size, followed by spatial smoothing. Resampling parameters are often selected arbitrarily. Here, we sought to improve brain-age prediction accuracy by optimizing resampling parameters using Bayesian optimization. Using data on N = 2003 healthy individuals (aged 16–90 years) we trained support vector machines to (i) distinguish between young (<22 years) and old (>50 years) brains (classification) and (ii) predict chronological age (regression). We also evaluated generalisability of the age-regression model to an independent dataset (CamCAN, N = 648, aged 18–88 years). Bayesian optimization was used to identify optimal voxel size and smoothing kernel size for each task. This procedure adaptively samples the parameter space to evaluate accuracy across a range of possible parameters, using independent sub-samples to iteratively assess different parameter combinations to arrive at optimal values. When distinguishing between young and old brains a classification accuracy of 88.1% was achieved, (optimal voxel size = 11.5 mm3, smoothing kernel = 2.3 mm). For predicting chronological age, a mean absolute error (MAE) of 5.08 years was achieved, (optimal voxel size = 3.73 mm3, smoothing kernel = 3.68 mm). This was compared to performance using default values of 1.5 mm3 and 4mm respectively, resulting in MAE = 5.48 years, though this 7.3% improvement was not statistically significant. When assessing generalisability, best performance was achieved when applying the entire Bayesian optimization framework to the new dataset, out-performing the parameters optimized for the initial training dataset. Our study outlines the proof-of-principle that neuroimaging models for brain-age prediction can use Bayesian optimization to derive case-specific pre-processing parameters. Our results suggest that different pre-processing parameters are selected when optimization is conducted in specific contexts. This potentially motivates use of optimization techniques at many different points during the experimental process, which may improve statistical sensitivity and reduce opportunities for experimenter-led bias. PMID:29483870
NASA Technical Reports Server (NTRS)
Johnson, M. S.; Meskhidze, N.
2013-01-01
Mineral dust deposition is suggested to be a significant atmospheric supply pathway of bioavailable iron (Fe) to Fe-depleted surface oceans. In this study, mineral dust and dissolved Fe (Fed) deposition rates are predicted for March 2009 to February 2010 using the 3-D chemical transport model GEOS-Chem implemented with a comprehensive dust-Fe dissolution scheme. The model simulates Fed production during the atmospheric transport of mineral dust taking into account inorganic and organic (oxalate)-promoted Fe dissolution processes, photochemical redox cycling between ferric (Fe(III)) and ferrous (Fe(II)) forms of Fe, dissolution of three different Fe-containing minerals (hematite, goethite, and aluminosilicates), and detailed mineralogy of windblown dust from the major desert regions. Our calculations suggest that during the yearlong simulation is approximately 0.26 Tg (1 Tg = 1012 g) of Fed was deposited to global oceanic regions. Compared to simulations only taking into account proton-promoted Fe dissolution, the addition of oxalate to the dust-Fe mobilization scheme increased total annual model-predicted Fed deposition to global oceanic regions by approximately 75%. The implementation of Fe(II)/Fe(III) photochemical redox cycling in the model allows for the distinction between different oxidation states of deposited Fed. Our calculations suggest that during the daytime, large fractions of Fed deposited to the global oceans is likely to be in Fe(II) form, while nocturnal fluxes of Fed are largely in Fe(III) form. Model simulations also show that atmospheric fluxes of Fed can be strongly influenced by the mineralogy of Fe-containing compounds. This study shows that Fed deposition to the oceans is controlled by total dust-Fe mass concentrations, mineralogy, the surface area of dust particles, atmospheric chemical composition, cloud processing, and meteorological parameters and exhibits complex and spatiotemporally variable patterns. Our study suggests that the explicit model representation of individual processes leading to Fed production within mineral dust are needed to improve the understanding of the atmospheric Fe cycle, and quantify the effect of dust-Fe on ocean biological productivity, carbon cycle, and climate.
2014-10-15
VANDENBERG AIR FORCE BASE, Calif. – The truck transporting NASA's Soil Moisture Active Passive, or SMAP, spacecraft arrives at the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-10-15
VANDENBERG AIR FORCE BASE, Calif. – Workers push the pallet supporting the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft into the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-10-15
NASA's Soil Moisture Active Passive, or SMAP, spacecraft, enclosed in a transportation container, is offloaded from the truck on which it traveled from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-10-15
VANDENBERG AIR FORCE BASE, Calif. – Workers push the pallet supporting the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft into the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
SMAP Spacecraft Arrives at Astrotech
2014-10-14
The transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft is offloaded from the truck that delivered it from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California with the aid of a forklift. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015.
2014-10-16
VANDENBERG AIR FORCE BASE, Calif. – Inside the Astrotech payload processing facility on Vandenberg Air Force Base in California, engineers and technicians mount NASA's Soil Moisture Active Passive, or SMAP, spacecraft on a work platform. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/ Randy Beaudoin
Pekala, Ronald J; Kumar, V K; Maurer, Ronald; Elliott-Carter, Nancy; Moon, Edward; Mullen, Karen
2010-04-01
This study sought to determine if self-reported hypnotic depth (srHD) could be predicted from the variables of the Phenomenology of Consciousness Inventory - Hypnotic Assessment Procedure (PCI-HAP) (Pekala, 1995a, 1995b; Pekala & Kumar, 2007; Pekala et al., 2010), assessing several of the processes theorized by researchers to be associated with hypnotism: trance (altered state effects), suggestibility, and expectancy. One hundred and eighty participants completed the PCI-HAP. Using regression analyses, srHD scores were predicted from the PCI-HAP pre-hypnotic and post-hypnotic assessment items, and several other variables. The results suggested that the srHD scores were found to be a function of imagoic suggestibility, expectancy (both estimated hypnotic depth and expected therapeutic efficacy), and trance state and eye catalepsy effects; effects that appear to be additive and not (statistically) interactive. The results support the theorizing of many investigators concerning the involvement of the aforementioned component processes with this particular aspect of hypnotism, the self-reported hypnotic depth score.
NASA Astrophysics Data System (ADS)
Rodriguez Lucatero, C.; Schaum, A.; Alarcon Ramos, L.; Bernal-Jaquez, R.
2014-07-01
In this study, the dynamics of decisions in complex networks subject to external fields are studied within a Markov process framework using nonlinear dynamical systems theory. A mathematical discrete-time model is derived using a set of basic assumptions regarding the convincement mechanisms associated with two competing opinions. The model is analyzed with respect to the multiplicity of critical points and the stability of extinction states. Sufficient conditions for extinction are derived in terms of the convincement probabilities and the maximum eigenvalues of the associated connectivity matrices. The influences of exogenous (e.g., mass media-based) effects on decision behavior are analyzed qualitatively. The current analysis predicts: (i) the presence of fixed-point multiplicity (with a maximum number of four different fixed points), multi-stability, and sensitivity with respect to the process parameters; and (ii) the bounded but significant impact of exogenous perturbations on the decision behavior. These predictions were verified using a set of numerical simulations based on a scale-free network topology.
Peer influence processes for youth delinquency and depression.
Reynolds, Andrew D; Crea, Thomas M
2015-08-01
This study explores the multiple factors that account for peer influence processes of adolescent delinquency and depression using data from Waves I and II of the National Longitudinal Study of Adolescent to Adult Health (Add Health). Random-effects longitudinal negative binomial models were used to predict depression and delinquency, controlling for social connection variables to account for selection bias. Findings suggest peer depression and delinquency are both predictive of youth delinquency, while peer influences of depression are much more modest. Youth who are more connected to parents and communities and who are more popular within their networks are more susceptible to peer influence, while self-regulating youth are less susceptible. We find support for theories of popularity-socialization as well as weak-ties in explaining social network factors that amplify or constrain peer influence. We argue that practitioners working with youth should consider network-informed interventions to improve program efficacy and avoid iatrogenic effects. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Features of Afterbody Radiative Heating for Earth Entry
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.; Brandis, Aaron
2014-01-01
Radiative heating is identified as a major contributor to afterbody heating for Earth entry capsules at velocities above 10 km/s. Because of rate-limited electron-ion recombination processes, a large fraction of the electronically-excited N and O atoms produced in the high temperature/pressure forebody remain as they expand into the afterbody region, which results in significant afterbody radiation. Large radiative heating sensitivities to electron-impact ionization rates and escape factors are identified. Ablation products from a forebody ablator are shown to increase the afterbody radiation by as much as 40%. The tangent-slab radiation transport approach is shown to over-predict the radiative flux by as much as 40% in the afterbody, therefore making the more computationally expensive ray-tracing approach necessary for accurate radiative flux predictions. For the Stardust entry, the afterbody radiation is predicted to be nearly twice as large as the convective heating during the peak heating phase of the trajectory. Comparisons between simulations and the Stardust Echelle observation measurements, which are shown to be dominated by afterbody emission, indicate agreement within 20% for various N and O lines. Similarly, calorimeter measurements from the Fire II experiment are identified as a source of validation data for afterbody radiation. For the afterbody calorimeter measurement closest to the forebody, which experiences the largest afterbody radiative heating component, the convective heating alone is shown to under-predict the measurement, even for the fullycatalytic assumption. Agreement with the measurements is improved with the addition of afterbody radiation. These comparisons with Stardust and Fire II measurements provide validation that the significant afterbody radiation values proposed in this work are legitimate.
BiodMHC: an online server for the prediction of MHC class II-peptide binding affinity.
Wang, Lian; Pan, Danling; Hu, Xihao; Xiao, Jinyu; Gao, Yangyang; Zhang, Huifang; Zhang, Yan; Liu, Juan; Zhu, Shanfeng
2009-05-01
Effective identification of major histocompatibility complex (MHC) molecules restricted peptides is a critical step in discovering immune epitopes. Although many online servers have been built to predict class II MHC-peptide binding affinity, they have been trained on different datasets, and thus fail in providing a unified comparison of various methods. In this paper, we present our implementation of seven popular predictive methods, namely SMM-align, ARB, SVR-pairwise, Gibbs sampler, ProPred, LP-top2, and MHCPred, on a single web server named BiodMHC (http://biod.whu.edu.cn/BiodMHC/index.html, the software is available upon request). Using a standard measure of AUC (Area Under the receiver operating characteristic Curves), we compare these methods by means of not only cross validation but also prediction on independent test datasets. We find that SMM-align, ProPred, SVR-pairwise, ARB, and Gibbs sampler are the five best-performing methods. For the binding affinity prediction of class II MHC-peptide, BiodMHC provides a convenient online platform for researchers to obtain binding information simultaneously using various methods.
Ovayolu, Ali; Arslanbuğa, Cansev Yilmaz; Gun, Ismet; Devranoglu, Belgin; Ozdemir, Arman; Cakar, Sule Eren
2016-01-01
To determine whether semen and plasma presepsin values measured in men with normozoospermia and oligoasthenospermia undergoing invitro-fertilization would be helpful in predicting ongoing pregnancy and live birth. Group-I was defined as patients who had pregnancy after treatment and Group-II comprised those with no pregnancy. Semen and blood presepsin values were subsequently compared between the groups. Parametric comparisons were performed using Student's t-test, and non-parametric comparisons were conducted using the Mann-Whitney U test. There were 42 patients in Group-I and 72 in Group-II. In the context of successful pregnancy and live birth, semen presepsin values were statistically significantly higher in Group-I than in Group-II (p= 0.004 and p= 0.037, respectively). The most appropriate semen presepsin cut-off value for predicting both ongoing pregnancy and live birth was calculated as 199 pg/mL. Accordingly, their sensitivity was 64.5% to 59.3%, their specificity was 57.0% to 54.2%, and their positive predictive value was 37.0% to 29.6%, respectively; their negative predictive value was 80.4% in both instances. Semen presepsin values could be a new marker that may enable the prediction of successful pregnancy and/or live birth. Its negative predictive values are especially high.
Spectral simplicity of apparent complexity. I. The nondiagonalizable metadynamics of prediction
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Crutchfield, James P.
2018-03-01
Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question—correlation, predictability, predictive cost, observer synchronization, and the like—induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the spectral projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II [P. M. Riechers and J. P. Crutchfield, Chaos 28, 033116 (2018)], to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.
When is giving an impulse? An ERP investigation of intuitive prosocial behavior
Aknin, Lara B.; Liotti, Mario
2016-01-01
Human prosociality is often assumed to emerge from exerting reflective control over initial, selfish impulses. However, recent findings suggest that prosocial actions can also stem from processes that are fast, automatic and intuitive. Here, we attempt to clarify when prosocial behavior may be intuitive by examining prosociality as a form of reward seeking. Using event-related potentials (ERPs), we explored whether a neural signature that rapidly encodes the motivational salience of an event—the P300—can predict intuitive prosocial motivation. Participants allocated varying amounts of money between themselves and charities they initially labelled as high- or low-empathy targets under conditions that promoted intuitive or reflective decision making. Consistent with our predictions, P300 amplitude over centroparietal regions was greater when giving involved high-empathy targets than low-empathy targets, but only when deciding under intuitive conditions. Reflective conditions, alternatively, elicited an earlier frontocentral positivity related to response inhibition, regardless of target. Our findings suggest that during prosocial decision making, larger P300 amplitude could (i) signal intuitive prosocial motivation and (ii) predict subsequent engagement in prosocial behavior. This work offers novel insight into when prosociality may be driven by intuitive processes and the roots of such behaviors. PMID:26084530
Pattern-oriented modelling: a ‘multi-scope’ for predictive systems ecology
Grimm, Volker; Railsback, Steven F.
2012-01-01
Modern ecology recognizes that modelling systems across scales and at multiple levels—especially to link population and ecosystem dynamics to individual adaptive behaviour—is essential for making the science predictive. ‘Pattern-oriented modelling’ (POM) is a strategy for doing just this. POM is the multi-criteria design, selection and calibration of models of complex systems. POM starts with identifying a set of patterns observed at multiple scales and levels that characterize a system with respect to the particular problem being modelled; a model from which the patterns emerge should contain the right mechanisms to address the problem. These patterns are then used to (i) determine what scales, entities, variables and processes the model needs, (ii) test and select submodels to represent key low-level processes such as adaptive behaviour, and (iii) find useful parameter values during calibration. Patterns are already often used in these ways, but a mini-review of applications of POM confirms that making the selection and use of patterns more explicit and rigorous can facilitate the development of models with the right level of complexity to understand ecological systems and predict their response to novel conditions. PMID:22144392
Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review.
Cárdenas, Juan Pablo; Quatrini, Raquel; Holmes, David S
2016-09-01
High-throughput genomic technologies are accelerating progress in understanding the diversity of microbial life in many environments. Here we highlight advances in genomics and metagenomics of microorganisms from bioleaching heaps and related acidic mining environments. Bioleaching heaps used for copper recovery provide significant opportunities to study the processes and mechanisms underlying microbial successions and the influence of community composition on ecosystem functioning. Obtaining quantitative and process-level knowledge of these dynamics is pivotal for understanding how microorganisms contribute to the solubilization of copper for industrial recovery. Advances in DNA sequencing technology provide unprecedented opportunities to obtain information about the genomes of bioleaching microorganisms, allowing predictive models of metabolic potential and ecosystem-level interactions to be constructed. These approaches are enabling predictive phenotyping of organisms many of which are recalcitrant to genetic approaches or are unculturable. This mini-review describes current bioleaching genomic and metagenomic projects and addresses the use of genome information to: (i) build metabolic models; (ii) predict microbial interactions; (iii) estimate genetic diversity; and (iv) study microbial evolution. Key challenges and perspectives of bioleaching genomics/metagenomics are addressed. Copyright © 2016 The Author(s). Published by Elsevier Masson SAS.. All rights reserved.
Computational Electrocardiography: Revisiting Holter ECG Monitoring.
Deserno, Thomas M; Marx, Nikolaus
2016-08-05
Since 1942, when Goldberger introduced the 12-lead electrocardiography (ECG), this diagnostic method has not been changed. After 70 years of technologic developments, we revisit Holter ECG from recording to understanding. A fundamental change is fore-seen towards "computational ECG" (CECG), where continuous monitoring is producing big data volumes that are impossible to be inspected conventionally but require efficient computational methods. We draw parallels between CECG and computational biology, in particular with respect to computed tomography, computed radiology, and computed photography. From that, we identify technology and methodology needed for CECG. Real-time transfer of raw data into meaningful parameters that are tracked over time will allow prediction of serious events, such as sudden cardiac death. Evolved from Holter's technology, portable smartphones with Bluetooth-connected textile-embedded sensors will capture noisy raw data (recording), process meaningful parameters over time (analysis), and transfer them to cloud services for sharing (handling), predicting serious events, and alarming (understanding). To make this happen, the following fields need more research: i) signal processing, ii) cycle decomposition; iii) cycle normalization, iv) cycle modeling, v) clinical parameter computation, vi) physiological modeling, and vii) event prediction. We shall start immediately developing methodology for CECG analysis and understanding.
The SRP-II as a Rich Source of Data on the Psychopathic Personality
ERIC Educational Resources Information Center
Lester, Whitney S.; Salekin, Randall T.; Sellbom, Martin
2013-01-01
This study examined the factor structure, external correlates, and predictive utility of the Self-Report Psychopathy scale (SRP-II; Hare, Harpur, & Hemphill, 1989). Despite a revision of the SRP-II to address, among other criticisms, a lack of items reflecting antisocial behavior, we hypothesized that the SRP-II would have a conceptually coherent…
Sam, Kishore Gnana; Kondabolu, Krishnakanth; Pati, Dipanwita; Kamath, Asha; Pradeep Kumar, G; Rao, Padma G M
2009-07-01
Self-poisoning with organophosphorus (OP) compounds is a major cause of morbidity and mortality across South Asian countries. To develop uniform and effective management guidelines, the severity of acute OP poisoning should be assessed through scientific methods and a clinical database should be maintained. A prospective descriptive survey was carried out to assess the utility of severity scales in predicting the outcome of 71 organophosphate (OP) and carbamate poisoning patients admitted during a one year period at the Kasturba Hospital, Manipal, India. The Glasgow coma scale (GCS) scores, acute physiology and chronic health evaluation II (APACHE II) scores, predicted mortality rate (PMR) and Poisoning severity score (PSS) were estimated within 24h of admission. Significant correlation (P<0.05) between PSS and GCS and APACHE II and PMR scores were observed with the PSS scores predicting mortality significantly (P< or =0.001). A total of 84.5% patients improved after treatment while 8.5% of the patients were discharged with severe morbidity. The mortality rate was 7.0%. Suicidal poisoning was observed to be the major cause (80.2%), while other reasons attributed were occupational (9.1%), accidental (6.6%), homicidal (1.6%) and unknown (2.5%) reasons. This study highlights the application of clinical indices like GCS, APACHE, PMR and severity scores in predicting mortality and may be considered for planning standard treatment guidelines.
Opioid receptors mediate direct predictive fear learning: evidence from one-trial blocking.
Cole, Sindy; McNally, Gavan P
2007-04-01
Pavlovian fear learning depends on predictive error, so that fear learning occurs when the actual outcome of a conditioning trial exceeds the expected outcome. Previous research has shown that opioid receptors, including mu-opioid receptors in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG), mediate such predictive fear learning. Four experiments reported here used a within-subject one-trial blocking design to study whether opioid receptors mediate a direct or indirect action of predictive error on Pavlovian association formation. In Stage I, rats were trained to fear conditioned stimulus (CS) A by pairing it with shock. In Stage II, CSA and CSB were co-presented once and co-terminated with shock. Two novel stimuli, CSC and CSD, were also co-presented once and co-terminated with shock in Stage II. The results showed one-trial blocking of fear learning (Experiment 1) as well as one-trial unblocking of fear learning when Stage II training employed a higher intensity footshock than was used in Stage I (Experiment 2). Systemic administrations of the opioid receptor antagonist naloxone (Experiment 3) or intra-vlPAG administrations of the selective mu-opioid receptor antagonist CTAP (Experiment 4) prior to Stage II training prevented one-trial blocking. These results show that opioid receptors mediate the direct actions of predictive error on Pavlovian association formation.
Sampling design optimisation for rainfall prediction using a non-stationary geostatistical model
NASA Astrophysics Data System (ADS)
Wadoux, Alexandre M. J.-C.; Brus, Dick J.; Rico-Ramirez, Miguel A.; Heuvelink, Gerard B. M.
2017-09-01
The accuracy of spatial predictions of rainfall by merging rain-gauge and radar data is partly determined by the sampling design of the rain-gauge network. Optimising the locations of the rain-gauges may increase the accuracy of the predictions. Existing spatial sampling design optimisation methods are based on minimisation of the spatially averaged prediction error variance under the assumption of intrinsic stationarity. Over the past years, substantial progress has been made to deal with non-stationary spatial processes in kriging. Various well-documented geostatistical models relax the assumption of stationarity in the mean, while recent studies show the importance of considering non-stationarity in the variance for environmental processes occurring in complex landscapes. We optimised the sampling locations of rain-gauges using an extension of the Kriging with External Drift (KED) model for prediction of rainfall fields. The model incorporates both non-stationarity in the mean and in the variance, which are modelled as functions of external covariates such as radar imagery, distance to radar station and radar beam blockage. Spatial predictions are made repeatedly over time, each time recalibrating the model. The space-time averaged KED variance was minimised by Spatial Simulated Annealing (SSA). The methodology was tested using a case study predicting daily rainfall in the north of England for a one-year period. Results show that (i) the proposed non-stationary variance model outperforms the stationary variance model, and (ii) a small but significant decrease of the rainfall prediction error variance is obtained with the optimised rain-gauge network. In particular, it pays off to place rain-gauges at locations where the radar imagery is inaccurate, while keeping the distribution over the study area sufficiently uniform.
Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; d'Ascenzo, N; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S
2010-02-12
We present a search for standard model (SM) Higgs boson production using pp collision data at square root(s) = 1.96 TeV, collected with the CDF II detector and corresponding to an integrated luminosity of 4.8 fb(-1). We search for Higgs bosons produced in all processes with a significant production rate and decaying to two W bosons. We find no evidence for SM Higgs boson production and place upper limits at the 95% confidence level on the SM production cross section (sigma(H)) for values of the Higgs boson mass (sigma(H)) in the range from 110 to 200 GeV. These limits are the most stringent for m(H) > 130 GeV and are 1.29 above the predicted value of sigma(H) for c = 165 GeV.
Empirical calibration of the near-infrared Ca II triplet - III. Fitting functions
NASA Astrophysics Data System (ADS)
Cenarro, A. J.; Gorgas, J.; Cardiel, N.; Vazdekis, A.; Peletier, R. F.
2002-02-01
Using a near-infrared stellar library of 706 stars with a wide coverage of atmospheric parameters, we study the behaviour of the CaII triplet strength in terms of effective temperature, surface gravity and metallicity. Empirical fitting functions for recently defined line-strength indices, namely CaT*, CaT and PaT, are provided. These functions can be easily implemented into stellar population models to provide accurate predictions for integrated CaII strengths. We also present a thorough study of the various error sources and their relation to the residuals of the derived fitting functions. Finally, the derived functional forms and the behaviour of the predicted CaII are compared with those of previous works in the field.
Predictive data modeling of human type II diabetes related statistics
NASA Astrophysics Data System (ADS)
Jaenisch, Kristina L.; Jaenisch, Holger M.; Handley, James W.; Albritton, Nathaniel G.
2009-04-01
During the course of routine Type II treatment of one of the authors, it was decided to derive predictive analytical Data Models of the daily sampled vital statistics: namely weight, blood pressure, and blood sugar, to determine if the covariance among the observed variables could yield a descriptive equation based model, or better still, a predictive analytical model that could forecast the expected future trend of the variables and possibly eliminate the number of finger stickings required to montior blood sugar levels. The personal history and analysis with resulting models are presented.
NASA Astrophysics Data System (ADS)
Parry, Christian S.; Gorski, Jack; Stern, Lawrence J.
2003-03-01
The stable binding of processed foreign peptide to a class II major histocompatibility (MHC) molecule and subsequent presentation to a T cell receptor is a central event in immune recognition and regulation. Polymorphic residues on the floor of the peptide binding site form pockets that anchor peptide side chains. These and other residues in the helical wall of the groove determine the specificity of each allele and define a motif. Allele specific motifs allow the prediction of epitopes from the sequence of pathogens. There are, however, known epitopes that do not satisfy these motifs: anchor motifs are not adequate for predicting epitopes as there are apparently major and minor motifs. We present crystallographic studies into the nature of the interactions that govern the binding of these so called nonconforming peptides. We would like to understand the role of the P10 pocket and find out whether the peptides that do not obey the consensus anchor motif bind in the canonical conformation observed in in prior structures of class II MHC-peptide complexes. HLA-DRB3*0101 complexed with peptide crystallized in unit cell 92.10 x 92.10 x 248.30 (90, 90, 90), P41212, and the diffraction data is reliable to 2.2ÅWe are complementing our studies with dynamical long time simulations to answer these questions, particularly the interplay of the anchor motifs in peptide binding, the range of protein and ligand conformations, and water hydration structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan
2013-10-24
Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes directmore » quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.« less
Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation
Balci, N.; Bullen, T.D.; Witte-Lien, K.; Shanks, Wayne C.; Motelica, M.; Mandernack, K.W.
2006-01-01
Interpretation of the origins of iron-bearing minerals preserved in modern and ancient rocks based on measured iron isotope ratios depends on our ability to distinguish between biological and non-biological iron isotope fractionation processes. In this study, we compared 56Fe/54Fe ratios of coexisting aqueous iron (Fe(II)aq, Fe(III)aq) and iron oxyhydroxide precipitates (Fe(III)ppt) resulting from the oxidation of ferrous iron under experimental conditions at low pH (<3). Experiments were carried out using both pure cultures of Acidothiobacillus ferrooxidans and sterile controls to assess possible biological overprinting of non-biological fractionation, and both SO42- and Cl- salts as Fe(II) sources to determine possible ionic/speciation effects that may be associated with oxidation/precipitation reactions. In addition, a series of ferric iron precipitation experiments were performed at pH ranging from 1.9 to 3.5 to determine if different precipitation rates cause differences in the isotopic composition of the iron oxyhydroxides. During microbially stimulated Fe(II) oxidation in both the sulfate and chloride systems, 56Fe/54Fe ratios of residual Fe(II)aq sampled in a time series evolved along an apparent Rayleigh trend characterized by a fractionation factor ??Fe(III)aq-Fe(II)aq???1.0022. This fractionation factor was significantly less than that measured in our sterile control experiments (???1.0034) and that predicted for isotopic equilibrium between Fe(II)aq and Fe(III)aq (???1.0029), and thus might be interpreted to reflect a biological isotope effect. However, in our biological experiments the measured difference in 56Fe/54Fe ratios between Fe(III)aq, isolated as a solid by the addition of NaOH to the final solution at each time point under N2-atmosphere, and Fe(II)aq was in most cases and on average close to 2.9??? (??Fe(III)aq-Fe(II)aq ???1.0029), consistent with isotopic equilibrium between Fe(II)aq and Fe(III)aq. The ferric iron precipitation experiments revealed that 56Fe/54Fe ratios of Fe(III)aq were generally equal to or greater than those of Fe(III)ppt, and isotopic fractionation between these phases decreased with increasing precipitation rate and decreasing grain size. Considered together, the data confirm that the iron isotope variations observed in our microbial experiments are primarily controlled by non-biological equilibrium and kinetic factors, a result that aids our ability to interpret present-day iron cycling processes but further complicates our ability to use iron isotopes alone to identify biological processing in the rock record. ?? 2005 Elsevier Inc. All rights reserved.
Walsh, Erin; Carl, Hannah; Eisenlohr-Moul, Tory; Minkel, Jared; Crowther, Andrew; Moore, Tyler; Gibbs, Devin; Petty, Chris; Bizzell, Josh; Smoski, Moria J; Dichter, Gabriel S
2017-03-01
There are few reliable predictors of response to antidepressant treatments. In the present investigation, we examined pretreatment functional brain connectivity during reward processing as a potential predictor of response to Behavioral Activation Treatment for Depression (BATD), a validated psychotherapy that promotes engagement with rewarding stimuli and reduces avoidance behaviors. Thirty-three outpatients with major depressive disorder (MDD) and 20 matched controls completed two runs of the monetary incentive delay task during functional magnetic resonance imaging after which participants with MDD received up to 15 sessions of BATD. Seed-based generalized psychophysiological interaction analyses focused on task-based connectivity across task runs, as well as the attenuation of connectivity from the first to the second run of the task. The average change in Beck Depression Inventory-II scores due to treatment was 10.54 points, a clinically meaningful response. Groups differed in seed-based functional connectivity among multiple frontostriatal regions. Hierarchical linear modeling revealed that improved treatment response to BATD was predicted by greater connectivity between the left putamen and paracingulate gyrus during reward anticipation. In addition, MDD participants with greater attenuation of connectivity between several frontostriatal seeds, and midline subcallosal cortex and left paracingulate gyrus demonstrated improved response to BATD. These findings indicate that pretreatment frontostriatal functional connectivity during reward processing is predictive of response to a psychotherapy modality that promotes improving approach-related behaviors in MDD. Furthermore, connectivity attenuation among reward-processing regions may be a particularly powerful endophenotypic predictor of response to BATD in MDD.
He, Xueqin; Han, Lujia; Ge, Jinyi; Huang, Guangqun
2018-04-01
This study establishes an optimal mathematical modelling to rationally describe the dynamic changes and spatial distribution of temperature and oxygen concentration in the aerobic composting process using coupling mass-heat-momentum transfer based on the microbial mechanism. Two different conditional composting experiments, namely continuous aeration and intermittent aeration, were performed to verify the proposed model. The results show that the model accurately predicted the dynamic changes in temperature (case I: R 2 = 0.93, RMSE = 1.95 K; case II: R 2 = 0.86, RMSE = 4.69 K) and oxygen concentration (case I: R 2 = 0.90, RMSE = 1.26%; case II: R 2 = 0.75, RMSE = 2.93%) in the central point of compost substrates. It also systematically simulated fluctuations in oxygen concentration caused by boundary conditions and the spatial distribution of the actual temperature and oxygen concentration. The proposed model exhibits good applicability in simulating the actual working conditions of aerobic composting process. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baensch, B.; Meier, M.; Martinez, P.
1994-10-12
The reversible intermolecular electron-transfer reaction between pentaammine(isonicotinamide)ruthenium(II/III) and horse-heart cytochrome c iron(III/II) was subjected to a detailed kinetic and thermodynamic study as a function of temperature and pressure. Theoretical calculations based on the Marcus-Hush theory were employed to predict all rate and equilibrium constants as well as activation parameters. There is an excellent agreement between the kinetically and thermodynamically determined equilibrium constants and associated pressure parameters. These data are used to construct a volume profile for the overall process, from which it follows that the transition state lies halfway between the reactant and product states on a volume basis. Themore » reorganization in the transition state has reached a similar degree in both directions of the electron-transfer process and corresponds to a {lambda}{sup {double_dagger}} value of 0.44 for this reversible reaction. This is the first complete volume profile analysis for a reversible intermolecular electron-transfer reaction.« less
Lungu, Claudiu N; Diudea, Mircea V
2018-01-01
Lipid II, a peptidoglycan, is a precursor in bacterial cell synthesis. It has both hydrophilic and lipophilic properties. The molecule translocates a bacterial membrane to deliver and incorporate "building blocks" from disaccharide-pentapeptide into the peptidoglican wall. Lipid II is a valid antibiotic target. A receptor binding pocket may be occupied by a ligand in various plausible conformations, among which only few ones are energetically related to a biological activity in the physiological efficiency domain. This paper reports the mapping of the conformational space of Lipid II in its interaction with Teixobactin and other Lipid II ligands. In order to study computationally the complex between Lipid II and ligands, a docking study was first carried on. Docking site was retrieved form literature. After docking, 5 ligand conformations and further 5 complexes (denoted 00 to 04) for each molecule were taken into account. For each structure, conformational studies were performed. Statistical analysis, conformational analysis and molecular dynamics based clustering were used to predict the potency of these compounds. A score for potency prediction was developed. Appling lipid II classification according to Lipid II conformational energy, a conformation of Teixobactin proved to be energetically favorable, followed by Oritravicin, Dalbavycin, Telvanicin, Teicoplamin and Vancomycin, respectively. Scoring of molecules according to cluster band and PCA produced the same result. Molecules classified according to standard deviations showed Dalbavycin as the most favorable conformation, followed by Teicoplamin, Telvanicin, Teixobactin, Oritravicin and Vancomycin, respectively. Total score showing best energetic efficiency of complex formation shows Teixobactin to have the best conformation (a score of 15 points) followed by Dalbavycin (14 points), Oritravicin (12v points), Telvanicin (10 points), Teicoplamin (9 points), Vancomycin (3 points). Statistical analysis of conformations can be used to predict the efficiency of ligand - target interaction and consecutively to find insight regarding ligand potency and postulate about favorable conformation of ligand and binding site. In this study it was shown that Teixobactin is more efficient in binding with Lipid II compared to Vancomycin, results confirmed by experimental data reported in literature. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Designing of interferon-gamma inducing MHC class-II binders
2013-01-01
Background The generation of interferon-gamma (IFN-γ) by MHC class II activated CD4+ T helper cells play a substantial contribution in the control of infections such as caused by Mycobacterium tuberculosis. In the past, numerous methods have been developed for predicting MHC class II binders that can activate T-helper cells. Best of author’s knowledge, no method has been developed so far that can predict the type of cytokine will be secreted by these MHC Class II binders or T-helper epitopes. In this study, an attempt has been made to predict the IFN-γ inducing peptides. The main dataset used in this study contains 3705 IFN-γ inducing and 6728 non-IFN-γ inducing MHC class II binders. Another dataset called IFNgOnly contains 4483 IFN-γ inducing epitopes and 2160 epitopes that induce other cytokine except IFN-γ. In addition we have alternate dataset that contains IFN-γ inducing and equal number of random peptides. Results It was observed that the peptide length, positional conservation of residues and amino acid composition affects IFN-γ inducing capabilities of these peptides. We identified the motifs in IFN-γ inducing binders/peptides using MERCI software. Our analysis indicates that IFN-γ inducing and non-inducing peptides can be discriminated using above features. We developed models for predicting IFN-γ inducing peptides using various approaches like machine learning technique, motifs-based search, and hybrid approach. Our best model based on the hybrid approach achieved maximum prediction accuracy of 82.10% with MCC of 0.62 on main dataset. We also developed hybrid model on IFNgOnly dataset and achieved maximum accuracy of 81.39% with 0.57 MCC. Conclusion Based on this study, we have developed a webserver for predicting i) IFN-γ inducing peptides, ii) virtual screening of peptide libraries and iii) identification of IFN-γ inducing regions in antigen (http://crdd.osdd.net/raghava/ifnepitope/). Reviewers This article was reviewed by Prof Kurt Blaser, Prof Laurence Eisenlohr and Dr Manabu Sugai. PMID:24304645
Scoring systems for outcome prediction in patients with perforated peptic ulcer
2013-01-01
Background Patients with perforated peptic ulcer (PPU) often present with acute, severe illness that carries a high risk for morbidity and mortality. Mortality ranges from 3-40% and several prognostic scoring systems have been suggested. The aim of this study was to review the available scoring systems for PPU patients, and to assert if there is evidence to prefer one to the other. Material and methods We searched PubMed for the mesh terms “perforated peptic ulcer”, “scoring systems”, “risk factors”, ”outcome prediction”, “mortality”, ”morbidity” and the combinations of these terms. In addition to relevant scores introduced in the past (e.g. Boey score), we included recent studies published between January 2000 and December 2012) that reported on scoring systems for prediction of morbidity and mortality in PPU patients. Results A total of ten different scoring systems used to predict outcome in PPU patients were identified; the Boey score, the Hacettepe score, the Jabalpur score the peptic ulcer perforation (PULP) score, the ASA score, the Charlson comorbidity index, the sepsis score, the Mannheim Peritonitis Index (MPI), the Acute physiology and chronic health evaluation II (APACHE II), the simplified acute physiology score II (SAPS II), the Mortality probability models II (MPM II), the Physiological and Operative Severity Score for the enumeration of Mortality and Morbidity physical sub-score (POSSUM-phys score). Only four of the scores were specifically constructed for PPU patients. In five studies the accuracy of outcome prediction of different scoring systems was evaluated by receiver operating characteristics curve (ROC) analysis, and the corresponding area under the curve (AUC) among studies compared. Considerable variation in performance both between different scores and between different studies was found, with the lowest and highest AUC reported between 0.63 and 0.98, respectively. Conclusion While the Boey score and the ASA score are most commonly used to predict outcome for PPU patients, considerable variations in accuracy for outcome prediction were shown. Other scoring systems are hampered by a lack of validation or by their complexity that precludes routine clinical use. While the PULP score seems promising it needs external validation before widespread use. PMID:23574922
Usefulness of Glycemic Gap to Predict ICU Mortality in Critically Ill Patients With Diabetes.
Liao, Wen-I; Wang, Jen-Chun; Chang, Wei-Chou; Hsu, Chin-Wang; Chu, Chi-Ming; Tsai, Shih-Hung
2015-09-01
Stress-induced hyperglycemia (SIH) has been independently associated with an increased risk of mortality in critically ill patients without diabetes. However, it is also necessary to consider preexisting hyperglycemia when investigating the relationship between SIH and mortality in patients with diabetes. We therefore assessed whether the gap between admission glucose and A1C-derived average glucose (ADAG) levels could be a predictor of mortality in critically ill patients with diabetes.We retrospectively reviewed the Acute Physiology and Chronic Health Evaluation II (APACHE-II) scores and clinical outcomes of patients with diabetes admitted to our medical intensive care unit (ICU) between 2011 and 2014. The glycosylated hemoglobin (HbA1c) levels were converted to the ADAG by the equation, ADAG = [(28.7 × HbA1c) - 46.7]. We also used receiver operating characteristic (ROC) curves to determine the optimal cut-off value for the glycemic gap when predicting ICU mortality and used the net reclassification improvement (NRI) to measure the improvement in prediction performance gained by adding the glycemic gap to the APACHE-II score.We enrolled 518 patients, of which 87 (17.0%) died during their ICU stay. Nonsurvivors had significantly higher APACHE-II scores and glycemic gaps than survivors (P < 0.001). Critically ill patients with diabetes and a glycemic gap ≥80 mg/dL had significantly higher ICU mortality and adverse outcomes than those with a glycemic gap <80 mg/dL (P < 0.001). Incorporation of the glycemic gap into the APACHE-II score increased the discriminative performance for predicting ICU mortality by increasing the area under the ROC curve from 0.755 to 0.794 (NRI = 13.6%, P = 0.0013).The glycemic gap can be used to assess the severity and prognosis of critically ill patients with diabetes. The addition of the glycemic gap to the APACHE-II score significantly improved its ability to predict ICU mortality.
Kalantari, Katayoon; Ahmad, Mansor B.; Masoumi, Hamid Reza Fard; Shameli, Kamyar; Basri, Mahiran; Khandanlou, Roshanak
2014-01-01
Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions. PMID:25050784
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, L.K.; Mohr, D.; Planchon, H.P.
This article discusses a series of successful loss-of-flow-without-scram tests conducted in Experimental Breeder Reactor-II (EBR-II), a metal-fueled, sodium-cooled fast reactor. These May 1985 tests demonstrated the capability of the EBR to reduce reactor power passively during a loss of flow and to maintain reactor temperatures within bounds without any reliance on an active safety system. The tests were run from reduced power to ensure that temperatures could be maintained well below the fuel-clad eutectic temperature. Good agreement was found between selected test data and pretest predictions made with the EBR-II system analysis code NATDEMO and the hot channel analysis codemore » HOTCHAN. The article also discusses safety assessments of the tests as well as modifications required on the EBR-II reactor safety system for conducting required on the EBR-II reactor safety system for the conducting the tests.« less
Kalantari, Katayoon; Ahmad, Mansor B; Masoumi, Hamid Reza Fard; Shameli, Kamyar; Basri, Mahiran; Khandanlou, Roshanak
2014-07-21
Fe3O4/talc nanocomposite was used for removal of Cu(II), Ni(II), and Pb(II) ions from aqueous solutions. Experiments were designed by response surface methodology (RSM) and a quadratic model was used to predict the variables. The adsorption parameters such as adsorbent dosage, removal time, and initial ion concentration were used as the independent variables and their effects on heavy metal ion removal were investigated. Analysis of variance was incorporated to judge the adequacy of the models. Optimal conditions with initial heavy metal ion concentration of 100, 92 and 270 mg/L, 120 s of removal time and 0.12 g of adsorbent amount resulted in 72.15%, 50.23%, and 91.35% removal efficiency for Cu(II), Ni(II), and Pb(II), respectively. The predictions of the model were in good agreement with experimental results and the Fe3O4/talc nanocomposite was successfully used to remove heavy metals from aqueous solutions.
Hamashima, Chisato; Sasazuki, Shizuka; Inoue, Manami; Tsugane, Shoichiro
2017-03-09
Chronic Helicobacter pylori infection plays a central role in the development of gastric cancer as shown by biological and epidemiological studies. The H. pylori antibody and serum pepsinogen (PG) tests have been anticipated to predict gastric cancer development. We determined the predictive sensitivity and specificity of gastric cancer development using these tests. Receiver operating characteristic analysis was performed, and areas under the curve were estimated. The predictive sensitivity and specificity of gastric cancer development were compared among single tests and combined methods using serum pepsinogen and H. pylori antibody tests. From a large-scale population-based cohort of over 100,000 subjects followed between 1990 and 2004, 497 gastric cancer subjects and 497 matched healthy controls were chosen. The predictive sensitivity and specificity were low in all single tests and combination methods. The highest predictive sensitivity and specificity were obtained for the serum PG I/II ratio. The optimal PG I/II cut-off values were 2.5 and 3.0. At a PG I/II cut-off value of 3.0, the sensitivity was 86.9% and the specificity was 39.8%. Even if three biomarkers were combined, the sensitivity was 97.2% and the specificity was 21.1% when the cut-off values were 3.0 for PG I/II, 70 ng/mL for PG I, and 10.0 U/mL for H. pylori antibody. The predictive accuracy of gastric cancer development was low with the serum pepsinogen and H. pylori antibody tests even if these tests were combined. To adopt these biomarkers for gastric cancer screening, a high specificity is required. When these tests are adopted for gastric cancer screening, they should be carefully interpreted with a clear understanding of their limitations.
Marlowe, D B; Husband, S D; Bonieskie, L M; Kirby, K C; Platt, J J
1997-01-01
The study compared structured interview (SCID-II) and self-report test (MCMI-II) vantages for the detection and characterization of personality pathology among 144 urban, poor, cocaine-addicted individuals seeking outpatient treatment. Diagnostic agreement was inadequate for most disorders, and the instruments at best shared only modest common variance. Positive predictive power was poor for all MCMI-II scales, though negative predictive power was good to excellent. This lends support for the use of the MCMI-II as a screening measure to rule out Axis II disorders; however, confirmation of positive diagnoses will require follow-up interview assessment. Future development of self-report personality inventories for substance abusers should focus on controlling for the acute dysphoric effects of drug use and related dysfunction, expanding attention to Cluster B content domains, and incorporating more objective criteria for assessing paranoia and "odd/eccentric" traits.
Improved Yttrium and Zirconium Abundances in Metal-Poor Stars
NASA Astrophysics Data System (ADS)
Violante, Renata; Biemont, E.; Cowan, J. J.; Sneden, C.
2012-01-01
Abstract We present new abundances of the lighter n-capture elements, Yttrium (Z=39) and Zirconium (Z=40) in the very metal poor, r-process rich stars BD+17 3248 and HD 221170. Very accurate abundances were obtained by use of the new transition probabilities for Y II published by Biémont et al. 2011, and Zr II by Malcheva et al. 2006, and by expanding the number of transitions employed for each element. For example, in BD+17 3248, we find log ɛπσιλον=-0.03 +/- 0.03 (σιγμα=0.15, from 23 lines) for Y II. As for Zr II, log ɛπσιλον = 0.65 +/- 0.03 (σɛγμα = 0.1, from 13 lines). The resulting abundance ratio is log ɛπσιλον [Y/Zr] = -0.68 +/- 0.05. The results for HD 221170 are in accord with those of BD+17 3248. The quantity of lines used to form the abundance means has increased significantly since the original studies of these stars, resulting in more trustworthy abundances. These observed abundance ratios are in agreement with an r-process-only value predicted from stellar models, but is under-abundant compared to an empirical model derived from direct analyses of meteoritic material. This ambiguity should stimulate further nucleosynthetic analysis to explain this abundance ratio. We would like to extend our gratitude to NSF grant AST-0908978 and the University of Texas Astronomy Department Rex G. Baker, Jr. Endowment for their financial support in this project.
Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian
2017-01-01
Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149
AGN-driven helium reionization and the incidence of extended He III regions at redshift z > 3
NASA Astrophysics Data System (ADS)
Compostella, Michele; Cantalupo, Sebastiano; Porciani, Cristiano
2014-12-01
We use hydrodynamic simulations post-processed with the radiative-transfer code RADAMESH to assess recent claims that the low He II opacity observed in z > 3 quasar spectra may be incompatible with models of He II reionization driven by the observed population of active galactic nuclei (AGNs). In particular, building upon our previous work, we consider an early population of sources and start the radiative-transfer calculation at redshifts z ≥ 5. Our model faithfully reproduces the emissivity of optically selected AGNs as inferred from measurements of their luminosity function. We find that He II reionization is very extended in redshift (Δz ≥ 2) and highly spatially inhomogeneous. In fact, mock spectra extracted from the simulations show a large variability in the evolution of the He II effective optical depth within chunks of size Δz = 0.04. Regions with low opacity (τ_ {He {II}}^eff < 3) can be found at high redshift, in agreement with the most recent observations of UV-transmitting quasars. At the highest redshift currently probed by observations (z ˜ 3.4), our updated model predicts a much lower He II effective optical depth than previous simulations in the literature relieving most of the tension with the current data, that, however, still persists at about the (Gaussian) 1σ to 2σ level. Given the very small number of observed lines of sight, our analysis indicates that current data cannot rule out a purely AGN-driven scenario with high statistical significance.
Luštrek, Mitja; Lorenz, Peter; Kreutzer, Michael; Qian, Zilliang; Steinbeck, Felix; Wu, Di; Born, Nadine; Ziems, Bjoern; Hecker, Michael; Blank, Miri; Shoenfeld, Yehuda; Cao, Zhiwei; Glocker, Michael O; Li, Yixue; Fuellen, Georg; Thiesen, Hans-Jürgen
2013-01-01
Epitope-antibody-reactivities (EAR) of intravenous immunoglobulins (IVIGs) determined for 75,534 peptides by microarray analysis demonstrate that roughly 9% of peptides derived from 870 different human protein sequences react with antibodies present in IVIG. Computational prediction of linear B cell epitopes was conducted using machine learning with an ensemble of classifiers in combination with position weight matrix (PWM) analysis. Machine learning slightly outperformed PWM with area under the curve (AUC) of 0.884 vs. 0.849. Two different types of epitope-antibody recognition-modes (Type I EAR and Type II EAR) were found. Peptides of Type I EAR are high in tyrosine, tryptophan and phenylalanine, and low in asparagine, glutamine and glutamic acid residues, whereas for peptides of Type II EAR it is the other way around. Representative crystal structures present in the Protein Data Bank (PDB) of Type I EAR are PDB 1TZI and PDB 2DD8, while PDB 2FD6 and 2J4W are typical for Type II EAR. Type I EAR peptides share predicted propensities for being presented by MHC class I and class II complexes. The latter interaction possibly favors T cell-dependent antibody responses including IgG class switching. Peptides of Type II EAR are predicted not to be preferentially presented by MHC complexes, thus implying the involvement of T cell-independent IgG class switch mechanisms. The high extent of IgG immunoglobulin reactivity with human peptides implies that circulating IgG molecules are prone to bind to human protein/peptide structures under non-pathological, non-inflammatory conditions. A webserver for predicting EAR of peptide sequences is available at www.sysmed-immun.eu/EAR.
Differential expression of α-L-arabinofuranosidases during maize (Zea mays L.) root elongation.
Kozlova, Liudmila V; Gorshkov, Oleg V; Mokshina, Natalia E; Gorshkova, Tatyana A
2015-05-01
Specific α- l -arabinofuranosidases are involved in the realisation of elongation growth process in cells with type II cell walls. Elongation growth in a plant cell is largely based on modification of the cell wall. In type II cell walls, the Ara/Xyl ratio is known to decrease during elongation due to the partial removal of Ara residues from glucuronoarabinoxylan. We searched within the maize genome for the genes of all predicted α-L-arabinofuranosidases that may be responsible for such a process and related their expression to the activity of the enzyme and the amount of free arabinose measured in six zones of a growing maize root. Eight genes of the GH51 family (ZmaABFs) and one gene of the GH3 family (ZmaARA-I) were identified. The abundance of ZmaABF1 and 3-6 transcripts was highly correlated with the measured enzymatic activity and free arabinose content that significantly increased during elongation. The transcript abundances also coincided with the pattern of changes in the Ara/Xyl ratio of the xylanase-extractable glucuronoarabinoxylan described in previous studies. The expression of ZmaABF3, 5 and 6 was especially up-regulated during elongation although corresponding proteins are devoid of the catalytic glutamate at the proper position. ZmaABF2 transcripts were specifically enriched in the root cap and meristem. A single ZmaARA-I gene was not expressed as a whole gene but instead as splice variants that encode the C-terminal end of the protein. Changes in the ZmaARA-I transcript level were rather moderate and had no significant correlation with free arabinose content. Thus, elongation growth of cells with type II cell walls is accompanied by the up-regulation of specific and predicted α-L-arabinofuranosidase genes, and the corresponding activity is indeed pronounced and is important for the modification of glucuronoarabinoxylan, which plays a key role in the modification of the cell wall supramolecular organisation.
Nonverbal components of Theory of Mind in typical and atypical development.
Kampis, Dora; Fogd, Dóra; Kovács, Ágnes Melinda
2017-08-01
To successfully navigate the human social world one needs to realize that behavior is guided by mental states such as goals and beliefs. Humans are highly proficient in using mental states to explain and predict their conspecific's behavior, which enables adjusting one's own behavior in online social interactions. Whereas according to recent studies even young infants seem to integrate others' beliefs into their own behavior, it is unclear what processes contribute to such competencies and how they may develop. Here we analyze a set of possible nonverbal components of theory of mind that may be involved in taking into account others' mental states, and discuss findings from typical and atypical development. To track an agent's belief one needs to (i) pay attention to agents that might be potential belief holders, and identify their focus of attention and their potential belief contents; (ii) keep track of their different experiences and their consequent beliefs, and (iii) to make behavioral predictions based on such beliefs. If an individual fails to predict an agent's behavior depending on the agent's beliefs, this may be due to a problem at any stage in the above processes. An analysis of the possible nonverbal processes contributing to belief tracking and their functioning in typical and atypical development aims to provide new insights into the possible mechanisms that make human social interactions uniquely rich. Copyright © 2016 Elsevier Inc. All rights reserved.
Information processing by networks of quantum decision makers
NASA Astrophysics Data System (ADS)
Yukalov, V. I.; Yukalova, E. P.; Sornette, D.
2018-02-01
We suggest a model of a multi-agent society of decision makers taking decisions being based on two criteria, one is the utility of the prospects and the other is the attractiveness of the considered prospects. The model is the generalization of quantum decision theory, developed earlier for single decision makers realizing one-step decisions, in two principal aspects. First, several decision makers are considered simultaneously, who interact with each other through information exchange. Second, a multistep procedure is treated, when the agents exchange information many times. Several decision makers exchanging information and forming their judgment, using quantum rules, form a kind of a quantum information network, where collective decisions develop in time as a result of information exchange. In addition to characterizing collective decisions that arise in human societies, such networks can describe dynamical processes occurring in artificial quantum intelligence composed of several parts or in a cluster of quantum computers. The practical usage of the theory is illustrated on the dynamic disjunction effect for which three quantitative predictions are made: (i) the probabilistic behavior of decision makers at the initial stage of the process is described; (ii) the decrease of the difference between the initial prospect probabilities and the related utility factors is proved; (iii) the existence of a common consensus after multiple exchange of information is predicted. The predicted numerical values are in very good agreement with empirical data.
Multisurface modeling of Ni bioavailability to wheat (Triticum aestivum L.) in various soils.
Zhao, Xiaopeng; Jiang, Yang; Gu, Xueyuan; Gu, Cheng; Taylor, J Anita; Evans, Les J
2018-07-01
Continual efforts have been made to determine a simple and universal method of estimating heavy metal phytoavailability in terrestrial systems. In the present study, a mechanism-based multi-surface model (MSM) was developed to predict the partition of Ni(II) in soil-solution phases and its bioaccumulation in wheat (Triticum aestivum L.) in 19 Chinese soils with a wide range of soil properties. MSM successfully predicted the Ni(II) dissolution in 0.01 M CaCl 2 extracting solution (R 2 = 0.875). The two-site model for clay fraction improved the prediction, particularly for alkaline soils, because of the additional consideration of edge sites. More crucially, the calculated dissolved Ni(II) was highly correlated with the metal accumulation in wheat (R 2 = 0.820 for roots and 0.817 for shoots). The correlation coefficients for the MSM and various chemical extraction methods have the following order: soil pore water > MSM ≈ diffuse gradient technique (DGT) > soil total Ni > 0.43 M HNO 3 > 0.01 M CaCl 2 . The results suggested that the dissolved Ni(II) calculated using MSM can serve as an effective indicator of the bioavailability of Ni(II) in various soils; hence, MSM can be used as an supplement for metal risk prediction and assessment besides chemical extraction techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chaves, Francisco A.; Lee, Alvin H.; Nayak, Jennifer; Richards, Katherine A.; Sant, Andrea J.
2012-01-01
The ability to track CD4 T cells elicited in response to pathogen infection or vaccination is critical because of the role these cells play in protective immunity. Coupled with advances in genome sequencing of pathogenic organisms, there is considerable appeal for implementation of computer-based algorithms to predict peptides that bind to the class II molecules, forming the complex recognized by CD4 T cells. Despite recent progress in this area, there is a paucity of data regarding their success in identifying actual pathogen-derived epitopes. In this study, we sought to rigorously evaluate the performance of multiple web-available algorithms by comparing their predictions and our results using purely empirical methods for epitope discovery in influenza that utilized overlapping peptides and cytokine Elispots, for three independent class II molecules. We analyzed the data in different ways, trying to anticipate how an investigator might use these computational tools for epitope discovery. We come to the conclusion that currently available algorithms can indeed facilitate epitope discovery, but all shared a high degree of false positive and false negative predictions. Therefore, efficiencies were low. We also found dramatic disparities among algorithms and between predicted IC50 values and true dissociation rates of peptide:MHC class II complexes. We suggest that improved success of predictive algorithms will depend less on changes in computational methods or increased data sets and more on changes in parameters used to “train” the algorithms that factor in elements of T cell repertoire and peptide acquisition by class II molecules. PMID:22467652
Feng, Zhihong; Wang, Tao; Liu, Ping; Chen, Sipeng; Xiao, Han; Xia, Ning; Luo, Zhiming; Wei, Bing; Nie, Xiuhong
2017-01-01
We aimed to investigate the efficacy of four severity-of-disease scoring systems in predicting the 28-day survival rate among patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) requiring emergency care. Clinical data of patients with AECOPD who required emergency care were recorded over 2 years. APACHE II, SAPS II, SOFA, and MEDS scores were calculated from severity-of-disease indicators recorded at admission and compared between patients who died within 28 days of admission (death group; 46 patients) and those who did not (survival group; 336 patients). Compared to the survival group, the death group had a significantly higher GCS score, frequency of comorbidities including hypertension and heart failure, and age ( P < 0.05 for all). With all four systems, scores of age, gender, renal inadequacy, hypertension, coronary heart disease, heart failure, arrhythmia, anemia, fracture leading to bedridden status, tumor, and the GCS were significantly higher in the death group than the survival group. The prediction efficacy of the APACHE II and SAPS II scores was 88.4%. The survival rates did not differ significantly between APACHE II and SAPS II ( P = 1.519). Our results may guide triage for early identification of critically ill patients with AECOPD in the emergency department.
Holt, G D; Swiedler, S J; Freed, J H; Hart, G W
1985-07-01
The processing of murine invariant chain (Ii) to a cell surface form bearing complex N-linked oligosaccharides has been demonstrated in the B cell lymphoma, AKTB-1b. In addition, the rate of processing of pulse-labeled Ii has been determined relative to its rate of dissociation from the alpha/beta complex of I-Ak. Ii, alpha-, and beta-chains were immunoprecipitated with anti-I-Ak or anti-Ii monoclonal antibodies. The heretofore uncharacterized complex oligosaccharide form of Ii (Ii-c) was identified in gel-purified immunoprecipitates by peptide mapping with reverse-phase HPLC. Ii-c is resistant to deglycosylation by Endo H, which is specific for high-mannose N-linkages, but can be digested with Endo F, a glycosidase capable of cleaving both complex and high-mannose N-linked oligosaccharides. Immunoprecipitation of surface iodinated cells indicates that Ii-c is expressed on the plasma membrane. Pulse-chase metabolic labeling data show that the processing of Ii to Ii-c occurs with a t1/2 of about 120 min. In contrast, the processing of both alpha- and beta-chains of I-Ak to complex forms occurs with a t1/2 of 15 to 20 min. Our data show that Ii-hm begins to dissociate rapidly from the I-Ak complex after 100 to 120 min of chase. Only a small amount (less than 5% on a per mole basis) of Ii-c was found associated with the I-Ak complexes after 300 min of continuous metabolic labeling. These results are consistent with Ii serving as a carrier for Ia antigens as they are transported to the cell surface. In addition, they suggest that the processing of Ii to Ii-c, or a late processing event of the alpha- and beta-chains, such as their sialylation, may be a possible mechanism for inducing the dissociation of Ii from the I-Ak complex.
2014-07-17
VANDENBERG AIR FORCE BASE, Calif. – NASA's Soil Moisture Active Passive mission, or SMAP, is scheduled to launch in November 2014 from Space Launch Complex 2 on Vandenberg Air Force Base in California, seen here on a temperate, fog-free summer's day. A United Launch Alliance Delta II rocket will be used to deliver SMAP into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
The Priority Heuristic: Making Choices Without Trade-Offs
Brandstätter, Eduard; Gigerenzer, Gerd; Hertwig, Ralph
2010-01-01
Bernoulli's framework of expected utility serves as a model for various psychological processes, including motivation, moral sense, attitudes, and decision making. To account for evidence at variance with expected utility, we generalize the framework of fast and frugal heuristics from inferences to preferences. The priority heuristic predicts (i) Allais' paradox, (ii) risk aversion for gains if probabilities are high, (iii) risk seeking for gains if probabilities are low (lottery tickets), (iv) risk aversion for losses if probabilities are low (buying insurance), (v) risk seeking for losses if probabilities are high, (vi) certainty effect, (vii) possibility effect, and (viii) intransitivities. We test how accurately the heuristic predicts people's choices, compared to previously proposed heuristics and three modifications of expected utility theory: security-potential/aspiration theory, transfer-of-attention-exchange model, and cumulative prospect theory. PMID:16637767
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – Workers guide the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, onto the launcher adjacent to the fixed umbilical tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – A crane transfers the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – A crane hoists the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, into a vertical position alongside the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Tony Vauccin, USAF
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is hoisted into a vertical position for its move into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway at Space Launch Complex 2 on Vandenberg Air Force Base in California for the arrival of the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – Workers oversee the preparations to lift the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – A crane transfers the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Tony Vauccin, USAF
Vargas, Teodoro; Moreno-Rubio, Juan; Herranz, Jesús; Cejas, Paloma; Molina, Susana; González-Vallinas, Margarita; Ramos, Ricardo; Burgos, Emilio; Aguayo, Cristina; Custodio, Ana B; Reglero, Guillermo; Feliu, Jaime; Ramírez de Molina, Ana
2014-12-01
Studies have recently suggested that metabolic syndrome and its components increase the risk of colorectal cancer. Both diseases are increasing in most countries, and the genetic association between them has not been fully elucidated. The objective of this study was to assess the association between genetic risk factors of metabolic syndrome or related conditions (obesity, hyperlipidaemia, diabetes mellitus type 2) and clinical outcome in stage II colorectal cancer patients. Expression levels of several genes related to metabolic syndrome and associated alterations were analysed by real-time qPCR in two equivalent but independent sets of stage II colorectal cancer patients. Using logistic regression models and cross-validation analysis with all tumour samples, we developed a metabolic syndrome-related gene expression profile to predict clinical outcome in stage II colorectal cancer patients. The results showed that a gene expression profile constituted by genes previously related to metabolic syndrome was significantly associated with clinical outcome of stage II colorectal cancer patients. This metabolic profile was able to identify patients with a low risk and high risk of relapse. Its predictive value was validated using an independent set of stage II colorectal cancer patients. The identification of a set of genes related to metabolic syndrome that predict survival in intermediate-stage colorectal cancer patients allows delineation of a high-risk group that may benefit from adjuvant therapy and avoid the toxic and unnecessary chemotherapy in patients classified as low risk. Our results also confirm the linkage between metabolic disorder and colorectal cancer and suggest the potential for cancer prevention and/or treatment by targeting these genes. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Opioid receptors regulate blocking and overexpectation of fear learning in conditioned suppression.
Arico, Carolyn; McNally, Gavan P
2014-04-01
Endogenous opioids play an important role in prediction error during fear learning. However, the evidence for this role has been obtained almost exclusively using the species-specific defense response of freezing as the measure of learned fear. It is unknown whether opioid receptors regulate predictive fear learning when other measures of learned fear are used. Here, we used conditioned suppression as the measure of learned fear to assess the role of opioid receptors in fear learning. Experiment 1a studied associative blocking of fear learning. Rats in an experimental group received conditioned stimulus A (CSA) + training in Stage I and conditioned stimulus A and B (CSAB) + training in Stage II, whereas rats in a control group received only CSAB + training in Stage II. The prior fear conditioning of CSA blocked fear learning to conditioned stimulus B (CSB) in the experimental group. In Experiment 1b, naloxone (4 mg/kg) administered before Stage II prevented this blocking, thereby enabling normal fear learning to CSB. Experiment 2a studied overexpectation of fear. Rats received CSA + training and CSB + training in Stage I, and then rats in the experimental group received CSAB + training in Stage II whereas control rats did not. The Stage II compound training of CSAB reduced fear to CSA and CSB on test. In Experiment 2b, naloxone (4 mg/kg) administered before Stage II prevented this overexpectation. These results show that opioid receptors regulate Pavlovian fear learning, augmenting learning in response to positive prediction error and impairing learning in response to negative prediction error, when fear is assessed via conditioned suppression. These effects are identical to those observed when freezing is used as the measure of learned fear. These findings show that the role for opioid receptors in regulating fear learning extends across multiple measures of learned fear.
VijayGanapathy, Sundaramoorthy; Karthikeyan, VIlvapathy Senguttuvan; Sreenivas, Jayaram; Mallya, Ashwin; Keshavamurthy, Ramaiah
2017-11-01
Urosepsis implies clinically evident severe infection of urinary tract with features of systemic inflammatory response syndrome (SIRS). We validate the role of a single Acute Physiology and Chronic Health Evaluation II (APACHE II) score at 24 hours after admission in predicting mortality in urosepsis. A prospective observational study was done in 178 patients admitted with urosepsis in the Department of Urology, in a tertiary care institute from January 2015 to August 2016. Patients >18 years diagnosed as urosepsis using SIRS criteria with positive urine or blood culture for bacteria were included. At 24 hours after admission to intensive care unit, APACHE II score was calculated using 12 physiological variables, age and chronic health. Mean±standard deviation (SD) APACHE II score was 26.03±7.03. It was 24.31±6.48 in survivors and 32.39±5.09 in those expired (p<0.001). Among patients undergoing surgery, mean±SD score was higher (30.74±4.85) than among survivors (24.30±6.54) (p<0.001). Receiver operating characteristic (ROC) analysis revealed area under curve (AUC) of 0.825 with cutoff 25.5 being 94.7% sensitive and 56.4% specific to predict mortality. Mean±SD score in those undergoing surgery was 25.22±6.70 and was lesser than those who did not undergo surgery (28.44±7.49) (p=0.007). ROC analysis revealed AUC of 0.760 with cutoff 25.5 being 94.7% sensitive and 45.6% specific to predict mortality even after surgery. A single APACHE II score assessed at 24 hours after admission was able to predict morbidity, mortality, need for surgical intervention, length of hospitalization, treatment success and outcome in urosepsis patients.
Abizanda, R; Padron, A; Vidal, B; Mas, S; Belenguer, A; Madero, J; Heras, A
2006-04-01
To make the validation of a new system of prognostic estimation of survival in critical patients (EPEC) seen in a multidisciplinar Intensive care unit (ICU). Prospective analysis of a patient cohort seen in the ICU of a multidisciplinar Intensive Medicine Service of a reference teaching hospital with 19 beds. Four hundred eighty four patients admitted consecutively over 6 months in 2003. Data collection of a basic minimum data set that includes patient identification data (gender, age), reason for admission and their origin, prognostic estimation of survival by EPEC, MPM II 0 and SAPS II (the latter two considered as gold standard). Mortality was evaluated on hospital discharge. EPEC validation was done with analysis of its discriminating capacity (ROC curve), calibration of its prognostic capacity (Hosmer Lemeshow C test), resolution of the 2 x 2 Contingency tables around different probability values (20, 50, 70 and mean value of prognostic estimation). The standardized mortality rate (SMR) for each one of the methods was calculated. Linear regression of the EPEC regarding the MPM II 0 and SAPS II was established and concordance analyses were done (Bland-Altman test) of the prediction of mortality by the three systems. In spite of an apparently good linear correlation, similar accuracy of prediction and discrimination capacity, EPEC is not well-calibrated (no likelihood of death greater than 50%) and the concordance analyses show that more than 10% of the pairs were outside the 95% confidence interval. In spite of its ease of application and calculation and of incorporating delay of admission in ICU as a variable, EPEC does not offer any predictive advantage on MPM II 0 or SAPS II, and its predictions adapt to reality worse.
FOUR Score Predicts Early Outcome in Patients After Traumatic Brain Injury.
Nyam, Tee-Tau Eric; Ao, Kam-Hou; Hung, Shu-Yu; Shen, Mei-Li; Yu, Tzu-Chieh; Kuo, Jinn-Rung
2017-04-01
The aim of the study was to determine whether the Full Outline of UnResponsiveness (FOUR) score, which includes eyes opening (E), motor function (M), brainstem reflex (B), and respiratory pattern (R), can be used as an alternate method to the Glasgow Coma Scale (GCS) in predicting intensive care unit (ICU) mortality in traumatic brain injury (TBI) patients. From January 2015 to June 2015, patients with isolated TBI admitted to the ICU were enrolled. Three advanced practice nurses administered the FOUR score, GCS, Acute Physiology and Chronic Health Evaluation II (APACHE II), and Therapeutic Intervention Scoring System (TISS) concurrently from ICU admissions. The endpoint of observation was mortality when the patients left the ICU. Data are presented as frequency with percentages, mean with standard deviation, or median with interquartile range. Each measurement tool used area under the receiver operating characteristic curve to compare the predictive power between these four tools. In addition, the difference between survival and death was estimated using the Wilcoxon rank sum test. From 55 TBI patients, males (72.73 %) were represented more than females, the mean age was 63.1 ± 17.9, and 19 of 55 observations (35 %) had a maximum FOUR score of 16. The overall mortality rate was 14.6 %. The area under the receiver operating characteristic curve was 74.47 % for the FOUR score, 74.73 % for the GCS, 81.78 % for the APACHE II, and 53.32 % for the TISS. The FOUR score has similar predictive power of mortality compared to the GCS and APACHE II. Each of the parameters-E, M, B, and R-of the FOUR score showed a significant difference between mortality and survival group, while the verbal and eye-opening components of the GCS did not. Having similar predictive power of mortality compared to the GCS and APACHE II, the FOUR score can be used as an alternative in the prediction of early mortality in TBI patients in the ICU.
Physical Properties of the MER and Beagle II Landing Sites on Mars
NASA Astrophysics Data System (ADS)
Jakosky, B. M.; Pelkey, S. M.; Mellon, M. T.; Putzig, N.; Martinez-Alonso, S.; Murphy, N.; Hynek, B.
2003-12-01
The ESA Beagle II and the NASA Mars Exploration Rover spacecraft are scheduled to land on the martian surface in December 2003 and January 2004, respectively. Mission operations and success depends on the physical properties of the surfaces on which they land. Surface structural characteristics such as the abundances of loose, unconsolidated fine material, of fine material that has been cemented into a duricrust, and of rocks affect the ability to safely land and to successfully sample and traverse the surface. Also, physical properties affect surface and atmospheric temperatures, which affect lander and rover functionality. We are in the process of analyzing surface temperature information for these sites, derived from MGS TES and Odyssey THEMIS daytime and nighttime measurements. Our approach is to: (i) remap thermal inertia using TES data at ~3-km resolution, to obtain the most complete coverage possible; (ii) interpret physical properties from TES coverage in conjunction with other remote-sensing data sets; (iii) map infrared brightness using daytime and nighttime THEMIS data at 100-m resolution, and do qualitative analysis of physical properties and processes; and (iv) derive thermal inertia from THEMIS nighttime data in conjunction with daytime albedo measurements derived from TES, THEMIS, and MOC observations. In addition, we will use measured temperatures and derived thermal inertia to predict surface temperatures for the periods of the missions.
Prasad, Singamsetty E.R.V.; Indukuri, Ravikishore Reddy; Singh, Rupesh; Nooney, Anitha; Palagiri, Firoz Babu; Narayana, Veera
2014-01-01
Background: A thorough knowledge of the salient features of malocclusion helps the clinician in arriving at a proper diagnosis and treatment plan, and also to predict the prognosis, prior to the onset of treatment process. Among the four classes of Angle's classification of malocclusion, Class II division 2 occurs with the least frequency. There is still continuing debate in the literature whether the Class II division 2 patients ascribe the pathognomonic skeletal and dental features. Aim of the study: The aim of this study is to describe the unique features of Angle's Class II division 2 malocclusion to differentiate it from Angle's Class II division 1 malocclusion. Materials and Methods: A total of 582 pre-treatment records (study models and cephalograms), with the age of patients ranging from 15 to 22 years, were obtained from the hospital records of Vishnu Dental College, Bhimavaram and Geetam's Dental College, Visakhapatnam. Out of these, 11 pre-treatment records were excluded because of lack of clarity. In the rest of the sample, 283 were Class II division 1 and 288 were Class II division 2. The lateral cephalograms were analyzed by using digiceph and the arch width analysis was done based on the anatomical points described by Staley et al. and Sergl et al. Results: An intergroup evaluation was done by using unpaired Student's “t” test. The skeletal vertical parameters, dental parameters, and the maxillary arch width parameters revealed a statistically significant difference between the two groups of malocclusion. Conclusion: Angle's Class II division 2 malocclusion has a pronounced horizontal growth pattern with decreased lower anterior facial height, retroclined upper anteriors, and significantly increased maxillary arch width parameters. PMID:25558449
NASA Technical Reports Server (NTRS)
2004-01-01
Contents include the following: High power density motors. The training process of the organization development and training office. Modeling and analysis of a regenerative fuel cell propulsion system for a high altitude long endurance. Increasing the thermal stability of aluminum titanate for solid oxide mJEL cell anodes. Microstructural evaluation of forging parameters for superalloy disks. Epoxy adgesives for stator magnet assembly in stirling radioisotope generator. Nickel-Hydrogen and lithium ion space batteries. Statistical and prediction modeling of the Ka band using experimental results from ACTS propagation terminals at 20.185 and 27.505 GHz.
Neural network and its application to CT imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikravesh, M.; Kovscek, A.R.; Patzek, T.W.
We present an integrated approach to imaging the progress of air displacement by spontaneous imbibition of oil into sandstone. We combine Computerized Tomography (CT) scanning and neural network image processing. The main aspects of our approach are (I) visualization of the distribution of oil and air saturation by CT, (II) interpretation of CT scans using neural networks, and (III) reconstruction of 3-D images of oil saturation from the CT scans with a neural network model. Excellent agreement between the actual images and the neural network predictions is found.
Predicting protein function and other biomedical characteristics with heterogeneous ensembles
Whalen, Sean; Pandey, Om Prakash
2015-01-01
Prediction problems in biomedical sciences, including protein function prediction (PFP), are generally quite difficult. This is due in part to incomplete knowledge of the cellular phenomenon of interest, the appropriateness and data quality of the variables and measurements used for prediction, as well as a lack of consensus regarding the ideal predictor for specific problems. In such scenarios, a powerful approach to improving prediction performance is to construct heterogeneous ensemble predictors that combine the output of diverse individual predictors that capture complementary aspects of the problems and/or datasets. In this paper, we demonstrate the potential of such heterogeneous ensembles, derived from stacking and ensemble selection methods, for addressing PFP and other similar biomedical prediction problems. Deeper analysis of these results shows that the superior predictive ability of these methods, especially stacking, can be attributed to their attention to the following aspects of the ensemble learning process: (i) better balance of diversity and performance, (ii) more effective calibration of outputs and (iii) more robust incorporation of additional base predictors. Finally, to make the effective application of heterogeneous ensembles to large complex datasets (big data) feasible, we present DataSink, a distributed ensemble learning framework, and demonstrate its sound scalability using the examined datasets. DataSink is publicly available from https://github.com/shwhalen/datasink. PMID:26342255
Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration
NASA Astrophysics Data System (ADS)
Asano, Katsuaki; Takahara, Fumio; Kusunose, Masaaki; Toma, Kenji; Kakuwa, Jun
2014-01-01
The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101-232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range of Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 1038 erg s-1, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.
NASA Astrophysics Data System (ADS)
Stam, Samantha; Alberts, Jonathan; Gardel, Margaret; Munro, Edwin
2013-03-01
The interactions of bipolar myosin II filaments with actin arrays are a predominate means of generating forces in numerous physiological processes including muscle contraction and cell migration. However, how the spatiotemporal regulation of these forces depends on motor mechanochemistry, bipolar filament size, and local actin mechanics is unknown. Here, we simulate myosin II motors with an agent-based model in which the motors have been benchmarked against experimental measurements. Force generation occurs in two distinct regimes characterized either by stable tension maintenance or by stochastic buildup and release; transitions between these regimes occur by changes to duty ratio and myosin filament size. The time required for building force to stall scales inversely with the stiffness of a network and the actin gliding speed of a motor. Finally, myosin motors are predicted to contract a network toward stiffer regions, which is consistent with experimental observations. Our representation of myosin motors can be used to understand how their mechanical and biochemical properties influence their observed behavior in a variety of in vitro and in vivo contexts.
African swine fever virus ORF P1192R codes for a functional type II DNA topoisomerase.
Coelho, João; Martins, Carlos; Ferreira, Fernando; Leitão, Alexandre
2015-01-01
Topoisomerases modulate the topological state of DNA during processes, such as replication and transcription, that cause overwinding and/or underwinding of the DNA. African swine fever virus (ASFV) is a nucleo-cytoplasmic double-stranded DNA virus shown to contain an OFR (P1192R) with homology to type II topoisomerases. Here we observed that pP1192R is highly conserved among ASFV isolates but dissimilar from other viral, prokaryotic or eukaryotic type II topoisomerases. In both ASFV/Ba71V-infected Vero cells and ASFV/L60-infected pig macrophages we detected pP1192R at intermediate and late phases of infection, cytoplasmically localized and accumulating in the viral factories. Finally, we used a Saccharomyces cerevisiae temperature-sensitive strain in order to demonstrate, through complementation and in vitro decatenation assays, the functionality of P1192R, which we further confirmed by mutating its predicted catalytic residue. Overall, this work strengthens the idea that P1192R constitutes a target for studying, and possibly controlling, ASFV transcription and replication. Copyright © 2014 Elsevier Inc. All rights reserved.
Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.
2014-01-01
Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750
Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui; Stone, Jennifer S
2014-10-01
Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates. © 2014 Wiley Periodicals, Inc.
Ling, Li; Zhang, Dapeng; Fan, Chihhao; Shang, Chii
2017-11-01
A novel Fe(II)/citrate/UV/PMS process for degrading a model micropollutant, carbamazepine (CBZ), at a low Fe(II)/PMS ratio and neutral pH has been proposed in this study, and the mechanisms of radical generation in the system was explored. With a UV dose of 302.4 mJ/cm 2 , an initial pH of 7, and CBZ, PMS, Fe(II) and citrate at initial concentrations of 10, 100, 12 and 26 μM, respectively, the CBZ degradation efficiency reached 71% in 20 min in the Fe(II)/citrate/UV/PMS process, which was 4.7 times higher than that in either the citrate/UV/PMS or Fe(II)/citrate/PMS process. The enhanced CBZ degradation in the Fe(II)/citrate/UV/PMS process was mainly attributed to the continuous activation of PMS by the UV-catalyzed regenerated Fe(II) from a Fe(III)-citrate complex, [Fe 3 O(cit) 3 H 3 ] 2- , which not only maintained Fe(III) soluble at neutral pH, but also increased 6.6 and 2.6 times of its molar absorbance and quantum yield as compared to those of ionic Fe(III), respectively. In the Fe(II)/citrate/UV/PMS process, the SO 4 •- produced from the fast reaction between PMS and the initially-added Fe(II) contributed 11% of CBZ degradation. The PMS activation by the UV radiation and regenerated Fe(II) contributed additional 14% and 46% of CBZ removal, respectively. The low iron and citrate doses and the fast radical generation at neutral pH make the Fe(II)/citrate/UV/PMS process suitable for degrading recalcitrant organic compounds in potable water. Copyright © 2017 Elsevier Ltd. All rights reserved.
Patterson, Brian W; Repplinger, Michael D; Pulia, Michael S; Batt, Robert J; Svenson, James E; Trinh, Alex; Mendonça, Eneida A; Smith, Maureen A; Hamedani, Azita G; Shah, Manish N
2018-04-01
To evaluate the utility of routinely collected Hendrich II fall scores in predicting returns to the emergency department (ED) for falls within 6 months. Retrospective electronic record review. Academic medical center ED. Individuals aged 65 and older seen in the ED from January 1, 2013, through September 30, 2015. We evaluated the utility of routinely collected Hendrich II fall risk scores in predicting ED visits for a fall within 6 months of an all-cause index ED visit. For in-network patient visits resulting in discharge with a completed Hendrich II score (N = 4,366), the return rate for a fall within 6 months was 8.3%. When applying the score alone to predict revisit for falls among the study population the resultant receiver operating characteristic (ROC) plot had an area under the curve (AUC) of 0.64. In a univariate model, the odds of returning to the ED for a fall in 6 months were 1.23 times as high for every 1-point increase in Hendrich II score (odds ratio (OR)=1.23 (95% confidence interval (CI)=1.19-1.28). When included in a model with other potential confounders or predictors of falls, the Hendrich II score is a significant predictor of a return ED visit for fall (adjusted OR=1.15, 95% CI=1.10-1.20, AUC=0.75). Routinely collected Hendrich II scores were correlated with outpatient falls, but it is likely that they would have little utility as a stand-alone fall risk screen. When combined with easily extractable covariates, the screen performs much better. These results highlight the potential for secondary use of electronic health record data for risk stratification of individuals in the ED. Using data already routinely collected, individuals at high risk of falls after discharge could be identified for referral without requiring additional screening resources. © 2018, Copyright the Authors Journal compilation © 2018, The American Geriatrics Society.
Prediction of biodiversity hotspots in the Anthropocene: The case of veteran oaks.
Skarpaas, Olav; Blumentrath, Stefan; Evju, Marianne; Sverdrup-Thygeson, Anne
2017-10-01
Over the past centuries, humans have transformed large parts of the biosphere, and there is a growing need to understand and predict the distribution of biodiversity hotspots influenced by the presence of humans. Our basic hypothesis is that human influence in the Anthropocene is ubiquitous, and we predict that biodiversity hot spot modeling can be improved by addressing three challenges raised by the increasing ecological influence of humans: (i) anthropogenically modified responses to individual ecological factors, (ii) fundamentally different processes and predictors in landscape types shaped by different land use histories and (iii) a multitude and complexity of natural and anthropogenic processes that may require many predictors and even multiple models in different landscape types. We modeled the occurrence of veteran oaks in Norway, and found, in accordance with our basic hypothesis and predictions, that humans influence the distribution of veteran oaks throughout its range, but in different ways in forests and open landscapes. In forests, geographical and topographic variables related to the oak niche are still important, but the occurrence of veteran oaks is shifted toward steeper slopes, where logging is difficult. In open landscapes, land cover variables are more important, and veteran oaks are more common toward the north than expected from the fundamental oak niche. In both landscape types, multiple predictor variables representing ecological and human-influenced processes were needed to build a good model, and several models performed almost equally well. Models accounting for the different anthropogenic influences on landscape structure and processes consistently performed better than models based exclusively on natural biogeographical and ecological predictors. Thus, our results for veteran oaks clearly illustrate the challenges to distribution modeling raised by the ubiquitous influence of humans, even in a moderately populated region, but also show that predictions can be improved by explicitly addressing these anthropogenic complexities.
Thelen, Kirstin; Coboeken, Katrin; Willmann, Stefan; Dressman, Jennifer B; Lippert, Jörg
2012-03-01
The physiological absorption model presented in part I of this work is now extended to account for dosage-form-dependent gastrointestinal (GI) transit as well as disintegration and dissolution processes of various immediate-release and modified-release dosage forms. Empirical functions of the Weibull type were fitted to experimental in vitro dissolution profiles of solid dosage forms for eight test compounds (aciclovir, caffeine, cimetidine, diclofenac, furosemide, paracetamol, phenobarbital, and theophylline). The Weibull functions were then implemented into the model to predict mean plasma concentration-time profiles of the various dosage forms. On the basis of these dissolution functions, pharmacokinetics (PK) of six model drugs was predicted well. In the case of diclofenac, deviations between predicted and observed plasma concentrations were attributable to the large variability in gastric emptying time of the enteric-coated tablets. Likewise, oral PK of furosemide was found to be predominantly governed by the gastric emptying patterns. It is concluded that the revised model for GI transit and absorption was successfully integrated with dissolution functions of the Weibull type, enabling prediction of in vivo PK profiles from in vitro dissolution data. It facilitates a comparative analysis of the parameters contributing to oral drug absorption and is thus a powerful tool for formulation design. Copyright © 2011 Wiley Periodicals, Inc.
Li, Mingjie; Zhou, Ping; Wang, Hong; ...
2017-09-19
As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingjie; Zhou, Ping; Wang, Hong
As one of the most important unit in the papermaking industry, the high consistency (HC) refining system is confronted with challenges such as improving pulp quality, energy saving, and emissions reduction in its operation processes. Here in this correspondence, an optimal operation of HC refining system is presented using nonlinear multiobjective model predictive control strategies that aim at set-point tracking objective of pulp quality, economic objective, and specific energy (SE) consumption objective, respectively. First, a set of input and output data at different times are employed to construct the subprocess model of the state process model for the HC refiningmore » system, and then the Wiener-type model can be obtained through combining the mechanism model of Canadian Standard Freeness and the state process model that determines their structures based on Akaike information criterion. Second, the multiobjective optimization strategy that optimizes both the set-point tracking objective of pulp quality and SE consumption is proposed simultaneously, which uses NSGA-II approach to obtain the Pareto optimal set. Furthermore, targeting at the set-point tracking objective of pulp quality, economic objective, and SE consumption objective, the sequential quadratic programming method is utilized to produce the optimal predictive controllers. In conclusion, the simulation results demonstrate that the proposed methods can make the HC refining system provide a better performance of set-point tracking of pulp quality when these predictive controllers are employed. In addition, while the optimal predictive controllers orienting with comprehensive economic objective and SE consumption objective, it has been shown that they have significantly reduced the energy consumption.« less
Douglas, Helen E; Ratcliffe, Andrew; Sandhu, Rajdeep; Anwar, Umair
2015-02-01
Many different burns mortality prediction models exist; however most agree that important factors that can be weighted include the age of the patient, the total percentage of body surface area burned and the presence or absence of smoke inhalation. A retrospective review of all burns primarily admitted to Pinderfields Burns ICU under joint care of burns surgeons and intensivists for the past 3 years was completed. Predicted mortality was calculated using the revised Baux score (2010), the Belgian Outcome in Burn Injury score (2009) and the Boston group score by Ryan et al. (1998). Additionally 28 of the 48 patients had APACHE II scores recorded on admission and the predicted and actual mortality of this group were compared. The Belgian score had the highest sensitivity and negative predictive value (72%/85%); followed by the Boston score (66%/78%) and then the revised Baux score (53%/70%). APACHE II scores had higher sensitivity (81%) and NPV (92%) than any of the burns scores. In our group of burns ICU patients the Belgian model was the most sensitive and specific predictor of mortality. In our subgroup of patients with APACHE II data, this score more accurately predicted survival and mortality. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.
Khwannimit, Bodin; Bhurayanontachai, Rungsun; Vattanavanit, Veerapong
2017-06-01
Recently, the Sepsis Severity Score (SSS) was constructed to predict mortality in sepsis patients. The aim of this study was to compare performance of the SSS with the Acute Physiology and Chronic Health Evaluation (APACHE) II-IV, Simplified Acute Physiology Score (SAPS) II, and SAPS 3 scores in predicting hospital outcome in sepsis patients. A retroprospective analysis was conducted in the medical intensive care unit of a tertiary university hospital. A total of 913 patients were enrolled; 476 of these patients (52.1%) had septic shock. The median SSS was 80 (range 20-137). The SSS presented good discrimination with an area under the receiver operating characteristic curve (AUC) of 0.892. However, the AUC of the SSS did not differ significantly from that of APACHE II (P = 0.07), SAPS II (P = 0.06), and SAPS 3 (P = 0.11). The APACHE IV score showed the best discrimination with an AUC of 0.948 and the overall performance by a Brier score of 0.096. The AUC of the APACHE IV score was statistically greater than the SSS, APACHE II, SAPS II, and SAPS 3 (P <0.0001 for all) and APACHE III (P = 0.0002). The calibration of all scores was poor with the Hosmer-Lemeshow goodness-of-fit H test <0.05. The SSS provided as good discrimination as the APACHE II, SAPS II, and SAPS 3 scores. However, the APACHE IV score had the best discrimination and overall performance in our sepsis patients. The SSS needs to be adapted and modified with new parameters to improve its performance.
Ovayolu, Ali; Arslanbuğa, Cansev Yilmaz; Gun, Ismet; Devranoglu, Belgin; Ozdemir, Arman; Cakar, Sule Eren
2016-01-01
Objective: To determine whether semen and plasma presepsin values measured in men with normozoospermia and oligoasthenospermia undergoing invitro-fertilization would be helpful in predicting ongoing pregnancy and live birth. Methods: Group-I was defined as patients who had pregnancy after treatment and Group-II comprised those with no pregnancy. Semen and blood presepsin values were subsequently compared between the groups. Parametric comparisons were performed using Student’s t-test, and non-parametric comparisons were conducted using the Mann-Whitney U test. Results: There were 42 patients in Group-I and 72 in Group-II. In the context of successful pregnancy and live birth, semen presepsin values were statistically significantly higher in Group-I than in Group-II (p= 0.004 and p= 0.037, respectively). The most appropriate semen presepsin cut-off value for predicting both ongoing pregnancy and live birth was calculated as 199 pg/mL. Accordingly, their sensitivity was 64.5% to 59.3%, their specificity was 57.0% to 54.2%, and their positive predictive value was 37.0% to 29.6%, respectively; their negative predictive value was 80.4% in both instances. Conclusion: Semen presepsin values could be a new marker that may enable the prediction of successful pregnancy and/or live birth. Its negative predictive values are especially high. PMID:27882005
An Analysis Plan for the ARCOMS II (Armor Combat Operations Model Support II) Experiment.
1983-06-01
In order to facilitate Armor Combat Modeling, the data analysis shculd focus upon the methods which transform the data intc descriptive or predictive ...discussed in Chapter III tc predict the Farameter for probability of detection in time ŕt. This should be compared with the results of the N.4gh -t Vision...J 6A 46.) I-I 0 f U-CL 0~ z o -Z 06 09 03 v 0 0 SJldnYS 10 ON Ipgr Cp o LSTm n at emn itgas 4AA rI z ;A (AZ - 090.0 UlA0 -O ON 404 Fiur CAd &P CC
Continuous protein concentration via free-flow moving reaction boundary electrophoresis.
Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi
2017-07-28
In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.
Reminder Cues Modulate the Renewal Effect in Human Predictive Learning
Bustamante, Javier; Uengoer, Metin; Lachnit, Harald
2016-01-01
Associative learning refers to our ability to learn about regularities in our environment. When a stimulus is repeatedly followed by a specific outcome, we learn to expect the outcome in the presence of the stimulus. We are also able to modify established expectations in the face of disconfirming information (the stimulus is no longer followed by the outcome). Both the change of environmental regularities and the related processes of adaptation are referred to as extinction. However, extinction does not erase the initially acquired expectations. For instance, following successful extinction, the initially learned expectations can recover when there is a context change – a phenomenon called the renewal effect, which is considered as a model for relapse after exposure therapy. Renewal was found to be modulated by reminder cues of acquisition and extinction. However, the mechanisms underlying the effectiveness of reminder cues are not well understood. The aim of the present study was to investigate the impact of reminder cues on renewal in the field of human predictive learning. Experiment I demonstrated that renewal in human predictive learning is modulated by cues related to acquisition or extinction. Initially, participants received pairings of a stimulus and an outcome in one context. These stimulus-outcome pairings were preceded by presentations of a reminder cue (acquisition cue). Then, participants received extinction in a different context in which presentations of the stimulus were no longer followed by the outcome. These extinction trials were preceded by a second reminder cue (extinction cue). During a final phase conducted in a third context, participants showed stronger expectations of the outcome in the presence of the stimulus when testing was accompanied by the acquisition cue compared to the extinction cue. Experiment II tested an explanation of the reminder cue effect in terms of simple cue-outcome associations. Therefore, acquisition and extinction cues were equated for their associative histories in Experiment II, which should abolish their impact on renewal if based on simple cue-outcome associations. In contrast to this prediction, Experiment II replicated the findings from Experiment I indicating that the effectiveness of reminder cues did not require direct reminder cue-outcome associations. PMID:28066293
Benchmarking Deep Learning Models on Large Healthcare Datasets.
Purushotham, Sanjay; Meng, Chuizheng; Che, Zhengping; Liu, Yan
2018-06-04
Deep learning models (aka Deep Neural Networks) have revolutionized many fields including computer vision, natural language processing, speech recognition, and is being increasingly used in clinical healthcare applications. However, few works exist which have benchmarked the performance of the deep learning models with respect to the state-of-the-art machine learning models and prognostic scoring systems on publicly available healthcare datasets. In this paper, we present the benchmarking results for several clinical prediction tasks such as mortality prediction, length of stay prediction, and ICD-9 code group prediction using Deep Learning models, ensemble of machine learning models (Super Learner algorithm), SAPS II and SOFA scores. We used the Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4) publicly available dataset, which includes all patients admitted to an ICU at the Beth Israel Deaconess Medical Center from 2001 to 2012, for the benchmarking tasks. Our results show that deep learning models consistently outperform all the other approaches especially when the 'raw' clinical time series data is used as input features to the models. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Caviness, V. S. Jr; Goto, T.; Tarui, T.; Takahashi, T.; Bhide, P. G.; Nowakowski, R. S.
2003-01-01
The neurons of the neocortex are generated over a 6 day neuronogenetic interval that comprises 11 cell cycles. During these 11 cell cycles, the length of cell cycle increases and the proportion of cells that exits (Q) versus re-enters (P) the cell cycle changes systematically. At the same time, the fate of the neurons produced at each of the 11 cell cycles appears to be specified at least in terms of their laminar destination. As a first step towards determining the causal interrelationships of the proliferative process with the process of laminar specification, we present a two-pronged approach. This consists of (i) a mathematical model that integrates the output of the proliferative process with the laminar fate of the output and predicts the effects of induced changes in Q and P during the neuronogenetic interval on the developing and mature cortex and (ii) an experimental system that allows the manipulation of Q and P in vivo. Here we show that the predictions of the model and the results of the experiments agree. The results indicate that events affecting the output of the proliferative population affect both the number of neurons produced and their specification with regard to their laminar fate.
Oceanic island biogeography through the lens of the general dynamic model: assessment and prospect.
Borregaard, Michael K; Amorim, Isabel R; Borges, Paulo A V; Cabral, Juliano S; Fernández-Palacios, José M; Field, Richard; Heaney, Lawrence R; Kreft, Holger; Matthews, Thomas J; Olesen, Jens M; Price, Jonathan; Rigal, Francois; Steinbauer, Manuel J; Triantis, Konstantinos A; Valente, Luis; Weigelt, Patrick; Whittaker, Robert J
2017-05-01
The general dynamic model of oceanic island biogeography (GDM) has added a new dimension to theoretical island biogeography in recognizing that geological processes are key drivers of the evolutionary processes of diversification and extinction within remote islands. It provides a dynamic and essentially non-equilibrium framework generating novel predictions for emergent diversity properties of oceanic islands and archipelagos. Its publication in 2008 coincided with, and spurred on, renewed attention to the dynamics of remote islands. We review progress, both in testing the GDM's predictions and in developing and enhancing ecological-evolutionary understanding of oceanic island systems through the lens of the GDM. In particular, we focus on four main themes: (i) macroecological tests using a space-for-time rationale; (ii) extensions of theory to islands following different patterns of ontogeny; (iii) the implications of GDM dynamics for lineage diversification and trait evolution; and (iv) the potential for downscaling GDM dynamics to local-scale ecological patterns and processes within islands. We also consider the implications of the GDM for understanding patterns of non-native species diversity. We demonstrate the vitality of the field of island biogeography by identifying a range of potentially productive lines for future research. © 2016 Cambridge Philosophical Society.
Bastiaens, Tim; Smits, Dirk; De Hert, Marc; Vanwalleghem, Dominique; Claes, Laurence
2016-04-30
The Personality Inventory for DSM-5 (PID-5; Krueger et al., 2012) is a dimensional self-report questionnaire designed to measure personality pathology according to the criterion B of the DSM-5 Section III personality model. In the current issue of DSM, this dimensional Section III personality model co-exists with the Section II categorical personality model derived from DSM-IV-TR. Therefore, investigation of the inter-relatedness of both models across populations and languages is warranted. In this study, we first examined the factor structure and reliability of the PID-5 in a Flemish community sample (N=509) by means of exploratory structural equation modeling and alpha coefficients. Next, we investigated the predictive ability of section III personality traits in relation to section II personality disorders through correlations and stepwise regression analyses. Results revealed a five factor solution for the PID-5, with adequate reliability of the facet scales. The variance in Section II personality disorders could be predicted by their theoretically comprising Section III personality traits, but additional Section III personality traits augmented this prediction. Based on current results, we discuss the Section II personality disorder conceptualization and the Section III personality disorder operationalization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Guida, Pietro; Mastro, Florinda; Scrascia, Giuseppe; Whitlock, Richard; Paparella, Domenico
2014-12-01
A systematic review of the European System for Cardiac Operative Risk Evaluation (euroSCORE) II performance for prediction of operative mortality after cardiac surgery has not been performed. We conducted a meta-analysis of studies based on the predictive accuracy of the euroSCORE II. We searched the Embase and PubMed databases for all English-only articles reporting performance characteristics of the euroSCORE II. The area under the receiver operating characteristic curve, the observed/expected mortality ratio, and observed-expected mortality difference with their 95% confidence intervals were analyzed. Twenty-two articles were selected, including 145,592 procedures. Operative mortality occurred in 4293 (2.95%), whereas the expected events according to euroSCORE II were 4802 (3.30%). Meta-analysis of these studies provided an area under the receiver operating characteristic curve of 0.792 (95% confidence interval, 0.773-0.811), an estimated observed/expected ratio of 1.019 (95% confidence interval, 0.899-1.139), and observed-expected difference of 0.125 (95% confidence interval, -0.269 to 0.519). Statistical heterogeneity was detected among retrospective studies including less recent procedures. Subgroups analysis confirmed the robustness of combined estimates for isolated valve procedures and those combined with revascularization surgery. A significant overestimation of the euroSCORE II with an observed/expected ratio of 0.829 (95% confidence interval, 0.677-0.982) was observed in isolated coronary artery bypass grafting and a slight underestimation of predictions in high-risk patients (observed/expected ratio 1.253 and observed-expected difference 1.859). Despite the heterogeneity, the results from this meta-analysis show a good overall performance of the euroSCORE II in terms of discrimination and accuracy of model predictions for operative mortality. Validation of the euroSCORE II in prospective populations needs to be further studied for a continuous improvement of patients' risk stratification before cardiac surgery. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.
2012-01-01
This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables automatic delineation of a simulation basin of any size (area) and having any level of stream-network complexity. WATER then automatically identifies the presence of sinkholes catchments within the simulation basin boundaries; extracts and compiles the necessary climatic, topographic, and basin characteristics datasets; and runs the SDP-TOPMODEL approach to estimate daily mean discharges (streamflow).
Treating Attention in Mild Aphasia: Evaluation of Attention Process Training-II
ERIC Educational Resources Information Center
Murray, Laura L.; Keeton, R. Jessica; Karcher, Laura
2006-01-01
This study examined whether attention processing training-II [Sohlberg, M. M., Johnson, L., Paule, L., Raskin, S. A., & Mateer, C. A. (2001). "Attention Process Training-II: A program to address attentional deficits for persons with mild cognitive dysfunction" (2nd ed.). Wake Forest, NC: Lash & Associates.; APT-II], when applied in the context of…
Madeira, Sérgio; Rodrigues, Ricardo; Tralhão, António; Santos, Miguel; Almeida, Carla; Marques, Marta; Ferreira, Jorge; Raposo, Luís; Neves, José; Mendes, Miguel
2016-02-01
The European System for Cardiac Operative Risk Evaluation (EuroSCORE) has been established as a tool for assisting decision-making in surgical patients and as a benchmark for quality assessment. Infective endocarditis often requires surgical treatment and is associated with high mortality. This study was undertaken to (i) validate both versions of the EuroSCORE, the older logistic EuroSCORE I and the recently developed EuroSCORE II and to compare their performances; (ii) identify predictors other than those included in the EuroSCORE models that might further improve their performance. We retrospectively studied 128 patients from a single-centre registry who underwent heart surgery for active infective endocarditis between January 2007 and November 2014. Binary logistic regression was used to find independent predictors of mortality and to create a new prediction model. Discrimination and calibration of models were assessed by receiver-operating characteristic curve analysis, calibration curves and the Hosmer-Lemeshow test. The observed perioperative mortality was 16.4% (n = 21). The median EuroSCORE I and EuroSCORE II were 13.9% interquartile range (IQ) (7.0-35.0) and 6.6% IQ (3.5-18.2), respectively. Discriminative power was numerically higher for EuroSCORE II {area under the curve (AUC) of 0.83 [95% confidence interval (CI), 0.75-0.91]} than for EuroSCORE I [0.75 (95% CI, 0.66-0.85), P = 0.09]. The Hosmer-Lemeshow test showed good calibration for EuroSCORE II (P = 0.08) but not for EuroSCORE I (P = 0.04). EuroSCORE I tended to over-predict and EuroSCORE II to under-predict mortality. Among the variables known to be associated with greater infective endocarditis severity, only prosthetic valve infective endocarditis remained an independent predictor of mortality [odds ratio (OR) 6.6; 95% CI, 1.1-39.5; P = 0.04]. The new model including the EuroSCORE II variables and variables known to be associated with greater infective endocarditis severity showed an AUC of 0.87 (95% CI, 0.79-0.94) and differed significantly from EuroSCORE I (P = 0.03) but not from EuroSCORE II (P = 0.4). Both EuroSCORE I and II satisfactorily stratify risk in active infective endocarditis; however, EuroSCORE II performed better in the overall comparison. Specific endocarditis features will increase model complexity without an unequivocal improvement in predictive ability. © The Author 2015. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
NASA Astrophysics Data System (ADS)
Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Meyer, Bradley S.; O’D. Alexander, Conel M.; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.
2018-03-01
We report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB (14N/15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains (14N/15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likely originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars’ pre-SN evolution rather than from an explosive neutron-capture process. In addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...
2018-03-16
In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nan; Stephan, Thomas; Boehnke, Patrick
In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less
Biswas, Ambarish; Gagnon, Joshua N.; Brouns, Stan J.J.; Fineran, Peter C.; Brown, Chris M.
2013-01-01
The bacterial and archaeal CRISPR/Cas adaptive immune system targets specific protospacer nucleotide sequences in invading organisms. This requires base pairing between processed CRISPR RNA and the target protospacer. For type I and II CRISPR/Cas systems, protospacer adjacent motifs (PAM) are essential for target recognition, and for type III, mismatches in the flanking sequences are important in the antiviral response. In this study, we examine the properties of each class of CRISPR. We use this information to provide a tool (CRISPRTarget) that predicts the most likely targets of CRISPR RNAs (http://bioanalysis.otago.ac.nz/CRISPRTarget). This can be used to discover targets in newly sequenced genomic or metagenomic data. To test its utility, we discover features and targets of well-characterized Streptococcus thermophilus and Sulfolobus solfataricus type II and III CRISPR/Cas systems. Finally, in Pectobacterium species, we identify new CRISPR targets and propose a model of temperate phage exposure and subsequent inhibition by the type I CRISPR/Cas systems. PMID:23492433
Numerical modelling in biosciences using delay differential equations
NASA Astrophysics Data System (ADS)
Bocharov, Gennadii A.; Rihan, Fathalla A.
2000-12-01
Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arias, Julia I.; Barbá, Rodolfo H.; Sabín-Sanjulián, Carolina
On the basis of the Galactic O Star Spectroscopic Survey (GOSSS), we present a detailed systematic investigation of the O Vz stars. The currently used spectral classification criteria are rediscussed, and the Vz phenomenon is recalibrated through the addition of a quantitative criterion based on the equivalent widths of the He i λ 4471, He ii λ 4542, and He ii λ 4686 spectral lines. The GOSSS O Vz and O V populations resulting from the newly adopted spectral classification criteria are comparatively analyzed. The locations of the O Vz stars are probed, showing a concentration of the most extrememore » cases toward the youngest star-forming regions. The occurrence of the Vz spectral peculiarity in a solar-metallicity environment, as predicted by the fastwind code, is also investigated, confirming the importance of taking into account several processes for the correct interpretation of the phenomenon.« less
Romeo, B; Choucha, W; Fossati, P; Rotge, J-Y
2017-08-01
The aim of this review was to determine the clinical and biological predictors of the ketamine response. A systematic research on PubMed and PsycINFO database was performed without limits on year of publication. The main predictive factors of ketamine response, which were found in different studies, were (i) a family history of alcohol dependence, (ii) unipolar depressive disorder, and (iii) neurocognitive impairments, especially a slower processing speed. Many other predictive factors were identified, but not replicated, such as personal history of alcohol dependence, no antecedent of suicide attempt, anxiety symptoms. Some biological factors were also found such as markers of neural plasticity (slow wave activity, brain-derived neurotrophic factor Val66Met polymorphism, expression of Shank 3 protein), other neurologic factors (anterior cingulate activity, concentration of glutamine/glutamate), inflammatory factors (IL-6 concentration) or metabolic factors (concentration of B12 vitamin, D- and L-serine, alterations in the mitochondrial β-oxidation of fatty acids). This review had several limits: (i) patients had exclusively resistant major depressive episodes which represent a sub-type of depression and not all depression, (ii) response criteria were more frequently assessed than remission criteria, it was therefore difficult to conclude that these predictors were similar, and finally (iii) many studies used a very small number of patients. In conclusion, this review found that some predictors of ketamine response, like basal activity of anterior cingulate or vitamin B12 concentration, were identical to other therapeutics used in major depressive episode. These factors could be more specific to the major depressive episode and not to the ketamine response. Others, like family history of alcohol dependence, body mass index, or D- and L-serine were different from the other therapeutics. Neurocognitive impairments like slower speed processing or alterations in attention tests were also predictive to a good response. These predictive factors could be more specific to ketamine. With these different predictor factors (clinical and biological), it could be interesting to develop clinical strategies to personalize ketamine's administration. Copyright © 2016 L'Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Behavioral and experiential avoidance in patients with hoarding disorder.
Ayers, Catherine R; Castriotta, Natalie; Dozier, Mary E; Espejo, Emmanuel P; Porter, Ben
2014-09-01
This study examined the relationship between experiential and behavioral avoidance and hoarding symptom severity, controlling for anxiety and depression symptoms, in 66 adult individuals (M age = 61.41; SD = 9.03) with HD. Hierarchical regression was used to test the associations between hoarding severity, as defined by the Savings Inventory-Revised (SI-R) total and its three subscales, and avoidance, as defined by the Acceptance and Action Questionnaire II (AAQ-II) and two scales from the Brief COPE (Self-Distraction and Behavioral Disengagement) when controlling for anxiety and depression symptoms. Experiential avoidance (AAQ-II) and behavioral avoidance (Brief COPE subscales Self-Distraction and Behavioral Disengagement) uniquely accounted for aspects of hoarding severity (SI-R) in regression models. Behavioral avoidance contributed significant additional variance to the SI-R Clutter subscale, whereas experiential avoidance was uniquely predictive of additional variance in the SI-R Difficulty Discarding and the SI-R Acquisition subscales. Future research should examine the effect of experiential avoidance on hoarding behaviors experimentally. Given that the AAQ-II and Self-Distraction and Behavioral Disengagement subscales were not correlated, these findings suggest that experiential and behavioral avoidance are two distinct processes contributing to the severity of specific HD. Results support the utility of avoidance in the cognitive-behavioral model for HD. Copyright © 2014 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Q.; Kaewsarn, P.
1999-06-01
Much work on the biosorption of heavy metals by low-cost, natural biomass has been on the uptake of single metals. In practice, wastewaters often contain multiple heavy metal ions. In this paper the binary adsorption of copper(II) and cadmium(II) by a pretreated biomass of the marine alga Durvillaea potatorum from aqueous solutions was studied. The results showed that the uptake capacities for each heavy metal of the binary system were lower when compared with the single metal biosorption for copper and cadmium, respectively, but the total capacities for the binary system were similar to those obtained for single metal biosorption.more » The uptake capacities for copper and cadmium increased as the equilibrium pH increased and reached a plateau at a pH around 5.0. The uptake process was relatively fast, with 90% of the adsorption completed within 10 minutes for copper and 30 minutes for cadmium, and equilibrium reached after about 60 minutes of stirring. The biosorption isotherms of binary systems were not significantly affected by equilibrium temperature. The presence of light metal ions in solution also did not affect adsorption significantly. The binary adsorption was successfully predicted by the extended Langmuir model, using parameters and capacities obtained from single component systems.« less
Machado, G D.C.; Paiva, L M.C.; Pinto, G F.; Oestreicher, E G.
2001-03-08
1The Enantiomeric Ratio (E) of the enzyme, acting as specific catalysts in resolution of enantiomers, is an important parameter in the quantitative description of these chiral resolution processes. In the present work, two novel methods hereby called Method I and II, for estimating E and the kinetic parameters Km and Vm of enantiomers were developed. These methods are based upon initial rate (v) measurements using different concentrations of enantiomeric mixtures (C) with several molar fractions of the substrate (x). Both methods were tested using simulated "experimental data" and actual experimental data. Method I is easier to use than Method II but requires that one of the enantiomers is available in pure form. Method II, besides not requiring the enantiomers in pure form shown better results, as indicated by the magnitude of the standard errors of estimates. The theoretical predictions were experimentally confirmed by using the oxidation of 2-butanol and 2-pentanol catalyzed by Thermoanaerobium brockii alcohol dehydrogenase as reaction models. The parameters E, Km and Vm were estimated by Methods I and II with precision and were not significantly different from those obtained experimentally by direct estimation of E from the kinetic parameters of each enantiomer available in pure form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, W.; Loos, M.; Maeurer, M.J.
1996-12-31
The ability to develop type II collagen (CII)-induced arthritis (CIA) in mice is associated with the major histocompatibility I-A gene and with as yet poorly defined regulatory molecules of the major histocompatibility complex (MHC) class II antigen processing and presentation pathway. H2-M molecules are thought to be involved in the loading of antigenic peptides into the MHC class II binding cleft. We sequenced H2-Ma, H2-Mb1, and H2-Mb2 genes from CIA-susceptible and -resistant mouse strains and identified four different Ma and Mb2 alleles, and three different Mb1 alleles defined by polymorphic residues within the predicted peptide binding groove. Most CIA-resistant mousemore » strains share common Ma, Mb1, and Mb2 alleles. In contrast, H2-M alleles designated Ma-III, Ma-IV, Mb1-III, and Mb2-IV could be exclusively identified in the CIA-susceptible H2{sup r} and H2{sup q} haplotypes, suggesting that allelic H2-M molecules may modulate the composition of different CII peptides loaded onto MHC class II molecules, presumably presenting {open_quotes}arthritogenic{close_quotes} epitopes to T lymphocytes. 42 refs., 4 figs., 3 tabs.« less
Using phase II data for the analysis of phase III studies: An application in rare diseases.
Wandel, Simon; Neuenschwander, Beat; Röver, Christian; Friede, Tim
2017-06-01
Clinical research and drug development in orphan diseases are challenging, since large-scale randomized studies are difficult to conduct. Formally synthesizing the evidence is therefore of great value, yet this is rarely done in the drug-approval process. Phase III designs that make better use of phase II data can facilitate drug development in orphan diseases. A Bayesian meta-analytic approach is used to inform the phase III study with phase II data. It is particularly attractive, since uncertainty of between-trial heterogeneity can be dealt with probabilistically, which is critical if the number of studies is small. Furthermore, it allows quantifying and discounting the phase II data through the predictive distribution relevant for phase III. A phase III design is proposed which uses the phase II data and considers approval based on a phase III interim analysis. The design is illustrated with a non-inferiority case study from a Food and Drug Administration approval in herpetic keratitis (an orphan disease). Design operating characteristics are compared to those of a traditional design, which ignores the phase II data. An analysis of the phase II data reveals good but insufficient evidence for non-inferiority, highlighting the need for a phase III study. For the phase III study supported by phase II data, the interim analysis is based on half of the patients. For this design, the meta-analytic interim results are conclusive and would justify approval. In contrast, based on the phase III data only, interim results are inconclusive and require further evidence. To accelerate drug development for orphan diseases, innovative study designs and appropriate methodology are needed. Taking advantage of randomized phase II data when analyzing phase III studies looks promising because the evidence from phase II supports informed decision-making. The implementation of the Bayesian design is straightforward with public software such as R.
Ji, Li; Franke, Alicja; Brindell, Małgorzata; Oszajca, Maria; Zahl, Achim; van Eldik, Rudi
2014-10-27
For the exploration of the intrinsic reactivity of two key active species in the catalytic cycle of horseradish peroxidase (HRP), Compound I (HRP-I) and Compound II (HRP-II), we generated in situ [Fe(IV) O(TMP(+.) )(2-MeIm)](+) and [Fe(IV) O(TMP)(2-MeIm)](0) (TMP=5,10,15,20-tetramesitylporphyrin; 2-MeIm=2-methylimidazole) as biomimetics for HRP-I and HRP-II, respectively. Their catalytic activities in epoxidation, hydrogen abstraction, and heteroatom oxidation reactions were studied in acetonitrile at -15 °C by utilizing rapid-scan UV/Vis spectroscopy. Comparison of the second-order rate constants measured for the direct reactions of the HRP-I and HRP-II mimics with the selected substrates clearly confirmed the outstanding oxidizing capability of the HRP-I mimic, which is significantly higher than that of HRP-II. The experimental study was supported by computational modeling (DFT calculations) of the oxidation mechanism of the selected substrates with the involvement of quartet and doublet HRP-I mimics ((2,4) Cpd I) and the closed-shell triplet spin HRP-II model ((3) Cpd II) as oxidizing species. The significantly lower activation barriers calculated for the oxidation systems involving (2,4) Cpd I than those found for (3) Cpd II are in line with the much higher oxidizing efficiency of the HRP-I mimic proven in the experimental part of the study. In addition, the DFT calculations show that all three reaction types catalyzed by HRP-I occur on the doublet spin surface in an effectively concerted manner, whereas these reactions may proceed in a stepwise mechanism with the HRP-II mimic as oxidant. However, the high desaturation or oxygen rebound barriers during CH bond activation processes by the HRP-II mimic predict a sufficient lifetime for the substrate radical formed through hydrogen abstraction. Thus, the theoretical calculations suggest that the dissociation of the substrate radical may be a more favorable pathway than desaturation or oxygen rebound processes. Importantly, depending on the electronic nature of the oxidizing species, that is, (2,4) Cpd I or (3) Cpd II, an interesting region-selective conversion phenomenon between sulfoxidation and H-atom abstraction was revealed in the course of the oxidation reaction of dimethylsulfide. The combined experimental and theoretical study on the elucidation of the intrinsic reactivity patterns of the HRP-I and HRP-II mimics provides a valuable tool for evaluating the particular role of the HRP active species in biological systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR Table II-2 to Subpart II - Collection Efficiencies of Anaerobic Processes
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Collection Efficiencies of Anaerobic Processes II Table II-2 to Subpart II Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98...
40 CFR Table II-2 to Subpart II - Collection Efficiencies of Anaerobic Processes
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Collection Efficiencies of Anaerobic Processes II Table II-2 to Subpart II Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98...
Joule-Thomson effect and internal convection heat transfer in turbulent He II flow
NASA Technical Reports Server (NTRS)
Walstrom, P. L.
1988-01-01
The temperature rise in highly turbulent He II flowing in tubing was measured in the temperature range 1.6-2.1 K. The effect of internal convection heat transport on the predicted temperature profiles is calculated from the two-fluid model with mutual friction. The model predictions are in good agreement with the measurements, provided that the pressure gradient term is retained in the expression for internal convection heat flow.
Micrometeoroid and Orbital Debris Threat Assessment: Mars Sample Return Earth Entry Vehicle
NASA Technical Reports Server (NTRS)
Christiansen, Eric L.; Hyde, James L.; Bjorkman, Michael D.; Hoffman, Kevin D.; Lear, Dana M.; Prior, Thomas G.
2011-01-01
This report provides results of a Micrometeoroid and Orbital Debris (MMOD) risk assessment of the Mars Sample Return Earth Entry Vehicle (MSR EEV). The assessment was performed using standard risk assessment methodology illustrated in Figure 1-1. Central to the process is the Bumper risk assessment code (Figure 1-2), which calculates the critical penetration risk based on geometry, shielding configurations and flight parameters. The assessment process begins by building a finite element model (FEM) of the spacecraft, which defines the size and shape of the spacecraft as well as the locations of the various shielding configurations. This model is built using the NX I-deas software package from Siemens PLM Software. The FEM is constructed using triangular and quadrilateral elements that define the outer shell of the spacecraft. Bumper-II uses the model file to determine the geometry of the spacecraft for the analysis. The next step of the process is to identify the ballistic limit characteristics for the various shield types. These ballistic limits define the critical size particle that will penetrate a shield at a given impact angle and impact velocity. When the finite element model is built, each individual element is assigned a property identifier (PID) to act as an index for its shielding properties. Using the ballistic limit equations (BLEs) built into the Bumper-II code, the shield characteristics are defined for each and every PID in the model. The final stage of the analysis is to determine the probability of no penetration (PNP) on the spacecraft. This is done using the micrometeoroid and orbital debris environment definitions that are built into the Bumper-II code. These engineering models take into account orbit inclination, altitude, attitude and analysis date in order to predict an impacting particle flux on the spacecraft. Using the geometry and shielding characteristics previously defined for the spacecraft and combining that information with the environment model calculations, the Bumper-II code calculates a probability of no penetration for the spacecraft.
Moghram, Basem Ameen; Nabil, Emad; Badr, Amr
2018-01-01
T-cell epitope structure identification is a significant challenging immunoinformatic problem within epitope-based vaccine design. Epitopes or antigenic peptides are a set of amino acids that bind with the Major Histocompatibility Complex (MHC) molecules. The aim of this process is presented by Antigen Presenting Cells to be inspected by T-cells. MHC-molecule-binding epitopes are responsible for triggering the immune response to antigens. The epitope's three-dimensional (3D) molecular structure (i.e., tertiary structure) reflects its proper function. Therefore, the identification of MHC class-II epitopes structure is a significant step towards epitope-based vaccine design and understanding of the immune system. In this paper, we propose a new technique using a Genetic Algorithm for Predicting the Epitope Structure (GAPES), to predict the structure of MHC class-II epitopes based on their sequence. The proposed Elitist-based genetic algorithm for predicting the epitope's tertiary structure is based on Ab-Initio Empirical Conformational Energy Program for Peptides (ECEPP) Force Field Model. The developed secondary structure prediction technique relies on Ramachandran Plot. We used two alignment algorithms: the ROSS alignment and TM-Score alignment. We applied four different alignment approaches to calculate the similarity scores of the dataset under test. We utilized the support vector machine (SVM) classifier as an evaluation of the prediction performance. The prediction accuracy and the Area Under Receiver Operating Characteristic (ROC) Curve (AUC) were calculated as measures of performance. The calculations are performed on twelve similarity-reduced datasets of the Immune Epitope Data Base (IEDB) and a large dataset of peptide-binding affinities to HLA-DRB1*0101. The results showed that GAPES was reliable and very accurate. We achieved an average prediction accuracy of 93.50% and an average AUC of 0.974 in the IEDB dataset. Also, we achieved an accuracy of 95.125% and an AUC of 0.987 on the HLA-DRB1*0101 allele of the Wang benchmark dataset. The results indicate that the proposed prediction technique "GAPES" is a promising technique that will help researchers and scientists to predict the protein structure and it will assist them in the intelligent design of new epitope-based vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.
2017-04-01
A COMPARISON OF PREDICTIVE THERMO AND WATER SOLVATION PROPERTY PREDICTION TOOLS AND EXPERIMENTAL DATA FOR...4. TITLE AND SUBTITLE A Comparison of Predictive Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected...1 2. EXPERIMENTAL PROCEDURE
The purpose of this work was to (i) study the effect of structure composition on the reactivity of a series of N-hydroxylaniline and nitrosobenzene compounds toward their reduction by Fe(II) species, (ii) evaluate the usefulness of several chemical parameters for predicting the r...
Alloy, Lauren B.; Urošević, Snežana; Abramson, Lyn Y.; Jager-Hyman, Shari; Nusslock, Robin; Whitehouse, Wayne G.; Hogan, Michael
2011-01-01
Little longitudinal research has examined progression to more severe bipolar disorders in individuals with “soft” bipolar spectrum conditions. We examine rates and predictors of progression to bipolar I and II diagnoses in a non-patient sample of college-age participants (n = 201) with high General Behavior Inventory scores and childhood or adolescent onset of “soft” bipolar spectrum disorders followed longitudinally for 4.5 years from the Longitudinal Investigation of Bipolar Spectrum (LIBS) project. Of 57 individuals with initial cyclothymia or bipolar disorder not otherwise specified (BiNOS) diagnoses, 42.1% progressed to a bipolar II diagnosis and 10.5% progressed to a bipolar I diagnosis. Of 144 individuals with initial bipolar II diagnoses, 17.4% progressed to a bipolar I diagnosis. Consistent with hypotheses derived from the clinical literature and the Behavioral Approach System (BAS) model of bipolar disorder, and controlling for relevant variables (length of follow-up, initial depressive and hypomanic symptoms, treatment-seeking, and family history), high BAS sensitivity (especially BAS Fun Seeking) predicted a greater likelihood of progression to bipolar II disorder, whereas early age of onset and high impulsivity predicted a greater likelihood of progression to bipolar I (high BAS sensitivity and Fun-Seeking also predicted progression to bipolar I when family history was not controlled). The interaction of high BAS and high Behavioral Inhibition System (BIS) sensitivities also predicted greater likelihood of progression to bipolar I. We discuss implications of the findings for the bipolar spectrum concept, the BAS model of bipolar disorder, and early intervention efforts. PMID:21668080
Stacey, D Graham; Whittaker, John M
2005-02-01
Measures used in the selection of international dental students to a U.S. D.D.S. program were examined to identify the grouping that most effectively and efficiently predicted academic performance and clinical competency. Archival records from the International Dental Program (IDP) at Loma Linda University provided data on 171 students who had trained in countries outside the United States. The students sought admission to the D.D.S. degree program, successful completion of which qualified them to sit for U.S. licensure. As with most dental schools, competition is high for admission to the D.D.S. program. The study's goal was to identify what measures contributed to a fair and accurate selection process for dental school applicants from other nations. Multiple regression analyses identified National Board Part II and dexterity measures as significant predictors of academic performance and clinical competency. National Board Part I, TOEFL, and faculty interviews added no significant additional help in predicting eventual academic performance and clinical competency.
Duan, Liwei; Zhang, Sheng; Lin, Zhaofen
2017-02-01
To explore the method and performance of using multiple indices to diagnose sepsis and to predict the prognosis of severe ill patients. Critically ill patients at first admission to intensive care unit (ICU) of Changzheng Hospital, Second Military Medical University, from January 2014 to September 2015 were enrolled if the following conditions were satisfied: (1) patients were 18-75 years old; (2) the length of ICU stay was more than 24 hours; (3) All records of the patients were available. Data of the patients was collected by searching the electronic medical record system. Logistic regression model was formulated to create the new combined predictive indicator and the receiver operating characteristic (ROC) curve for the new predictive indicator was built. The area under the ROC curve (AUC) for both the new indicator and original ones were compared. The optimal cut-off point was obtained where the Youden index reached the maximum value. Diagnostic parameters such as sensitivity, specificity and predictive accuracy were also calculated for comparison. Finally, individual values were substituted into the equation to test the performance in predicting clinical outcomes. A total of 362 patients (218 males and 144 females) were enrolled in our study and 66 patients died. The average age was (48.3±19.3) years old. (1) For the predictive model only containing categorical covariants [including procalcitonin (PCT), lipopolysaccharide (LPS), infection, white blood cells count (WBC) and fever], increased PCT, increased WBC and fever were demonstrated to be independent risk factors for sepsis in the logistic equation. The AUC for the new combined predictive indicator was higher than that of any other indictor, including PCT, LPS, infection, WBC and fever (0.930 vs. 0.661, 0.503, 0.570, 0.837, 0.800). The optimal cut-off value for the new combined predictive indicator was 0.518. Using the new indicator to diagnose sepsis, the sensitivity, specificity and diagnostic accuracy rate were 78.00%, 93.36% and 87.47%, respectively. One patient was randomly selected, and the clinical data was substituted into the probability equation for prediction. The calculated value was 0.015, which was less than the cut-off value (0.518), indicating that the prognosis was non-sepsis at an accuracy of 87.47%. (2) For the predictive model only containing continuous covariants, the logistic model which combined acute physiology and chronic health evaluation II (APACHE II) score and sequential organ failure assessment (SOFA) score to predict in-hospital death events, both APACHE II score and SOFA score were independent risk factors for death. The AUC for the new predictive indicator was higher than that of APACHE II score and SOFA score (0.834 vs. 0.812, 0.813). The optimal cut-off value for the new combined predictive indicator in predicting in-hospital death events was 0.236, and the corresponding sensitivity, specificity and diagnostic accuracy for the combined predictive indicator were 73.12%, 76.51% and 75.70%, respectively. One patient was randomly selected, and the APACHE II score and SOFA score was substituted into the probability equation for prediction. The calculated value was 0.570, which was higher than the cut-off value (0.236), indicating that the death prognosis at an accuracy of 75.70%. The combined predictive indicator, which is formulated by logistic regression models, is superior to any single indicator in predicting sepsis or in-hospital death events.
Krick, Erika Lauren; Kiupel, Matti; Durham, Amy C; Thaiwong, Tuddow; Brown, Dorothy C; Sorenmo, Karin U
Previous studies have evaluated cellular proliferation indices, KIT expression, and c-kit mutations to predict the clinical behavior of canine mast cell tumors (MCTs). The study purpose was to retrospectively compare mitotic index, argyrophilic nucleolar organizer regions (AgNORs)/nucleus, Ki-67 index, KIT labeling pattern, and internal tandem duplication mutations in c-KIT between stage I and stage II grade II MCTs. Medical records and tumor biopsy samples from dogs with Grade II MCTs with cytological or histopathological regional lymph node evaluation were included. Signalment, tumor location and stage, and presence of a recurrent versus de novo tumor were recorded. Mitotic index, AgNORs/nucleus, Ki-67, KIT staining pattern, and internal tandem duplication mutations in exon 11 of c-KIT were evaluated. Sixty-six tumors (51 stage I; 15 stage II) were included. Only AgNORs/nucleus and recurrent tumors were significantly associated with stage (odds ratio 2.8, 95% confidence interval [CI] 1.0-8.0, P = .049; odds ratio 8.8, 95% CI 1.1-69.5; P = .039). Receiver-operator characteristic analysis showed that the sensitivity and specificity of AgNORs/cell ≥ 1.87 were 93.3% and 27.4%, respectively, (area under the curve: 0.65) for predicting stage. Recurrent tumors and higher AgNORs/nucleus are associated with stage II grade II MCTs; however, an AgNOR cutoff value that reliably predicts lymph node metastasis was not determined.
Vyas, Vivek K; Ghate, Manjunath; Patel, Kinjal; Qureshi, Gulamnizami; Shah, Surmil
2015-08-01
Ang II-AT1 receptors play an important role in mediating virtually all of the physiological actions of Ang II. Several drugs (SARTANs) are available, which can block the AT1 receptor effectively and lower the blood pressure in the patients with hypertension. Currently, there is no experimental Ang II-AT1 structure available; therefore, in this study we modeled Ang II-AT1 receptor structure using homology modeling followed by identification and characterization of binding sites and thereby assessing druggability of the receptor. Homology models were constructed using MODELLER and I-TASSER server, refined and validated using PROCHECK in which 96.9% of 318 residues were present in the favoured regions of the Ramachandran plots. Various Ang II-AT1 receptor antagonist drugs are available in the market as antihypertensive drug, so we have performed docking study with the binding site prediction algorithms to predict different binding pockets on the modeled proteins. The identification of 3D structures and binding sites for various known drugs will guide us for the structure-based drug design of novel compounds as Ang II-AT1 receptor antagonists for the treatment of hypertension. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Jing, Lan; Guo, Dandan; Hu, Wenjie; Niu, Xiaofan
2017-03-11
Many plant pathogen secretory proteins are known to be elicitors or pathogenic factors,which play an important role in the host-pathogen interaction process. Bioinformatics approaches make possible the large scale prediction and analysis of secretory proteins from the Puccinia helianthi transcriptome. The internet-based software SignalP v4.1, TargetP v1.01, Big-PI predictor, TMHMM v2.0 and ProtComp v9.0 were utilized to predict the signal peptides and the signal peptide-dependent secreted proteins among the 35,286 ORFs of the P. helianthi transcriptome. 908 ORFs (accounting for 2.6% of the total proteins) were identified as putative secretory proteins containing signal peptides. The length of the majority of proteins ranged from 51 to 300 amino acids (aa), while the signal peptides were from 18 to 20 aa long. Signal peptidase I (SpI) cleavage sites were found in 463 of these putative secretory signal peptides. 55 proteins contained the lipoprotein signal peptide recognition site of signal peptidase II (SpII). Out of 908 secretory proteins, 581 (63.8%) have functions related to signal recognition and transduction, metabolism, transport and catabolism. Additionally, 143 putative secretory proteins were categorized into 27 functional groups based on Gene Ontology terms, including 14 groups in biological process, seven in cellular component, and six in molecular function. Gene ontology analysis of the secretory proteins revealed an enrichment of hydrolase activity. Pathway associations were established for 82 (9.0%) secretory proteins. A number of cell wall degrading enzymes and three homologous proteins specific to Phytophthora sojae effectors were also identified, which may be involved in the pathogenicity of the sunflower rust pathogen. This investigation proposes a new approach for identifying elicitors and pathogenic factors. The eventual identification and characterization of 908 extracellularly secreted proteins will advance our understanding of the molecular mechanisms of interactions between sunflower and rust pathogen and will enhance our ability to intervene in disease states.
NASA Astrophysics Data System (ADS)
Siegwolf, R. T. W.; Buchmann, N.; Frank, D.; Joos, F.; Kahmen, A.; Treydte, K.; Leuenberger, M.; Saurer, M.
2012-04-01
Trees play are a critical role in the carbon cycle - their photosynthetic assimilation is one of the largest terrestrial carbon fluxes and their standing biomass represents the largest carbon pool of the terrestrial biosphere. Understanding how tree physiology and growth respond to long-term environmental change is pivotal to predict the magnitude and direction of the terrestrial carbon sink. iTREE is an interdisciplinary research framework to capitalize on synergies among leading dendroclimatologists, plant physiologists, isotope specialists, and global carbon cycle modelers with the objectives of reducing uncertainties related to tree/forest growth in the context of changing natural environments. Cross-cutting themes in our project are tree rings, stable isotopes, and mechanistic modelling. We will (i) establish a European network of tree-ring based isotope time-series to retrodict interannual to long-term tree physiological changes, (ii) conduct laboratory and field experiments to adapt a mechanistic isotope model to derive plant physiological variables from tree-ring isotopes, (iii) implement this model into a dynamic global vegetation model, and perform subsequent model-data validation exercises to refine model representation of plant physiological processes and (iv) attribute long-term variation in tree growth to plant physiological and environmental drivers, and identify how our refined knowledge revises predictions of the coupled carbon-cycle climate system. We will contribute to i) advanced quantifications of long-term variation in tree growth across Central Europe, ii) novel long-term information on key physiological processes that underlie variations in tree growth, and iii) improved carbon cycle models that can be employed to revise predictions of the coupled carbon-cycle climate system. Hence iTREE will significantly contribute towards a seamless understanding of the responses of terrestrial ecosystems to long-term environmental change, and ultimately help reduce uncertainties of the magnitude and direction of the past and future terrestrial carbon sink.
BetaTPred: prediction of beta-TURNS in a protein using statistical algorithms.
Kaur, Harpreet; Raghava, G P S
2002-03-01
beta-turns play an important role from a structural and functional point of view. beta-turns are the most common type of non-repetitive structures in proteins and comprise on average, 25% of the residues. In the past numerous methods have been developed to predict beta-turns in a protein. Most of these prediction methods are based on statistical approaches. In order to utilize the full potential of these methods, there is a need to develop a web server. This paper describes a web server called BetaTPred, developed for predicting beta-TURNS in a protein from its amino acid sequence. BetaTPred allows the user to predict turns in a protein using existing statistical algorithms. It also allows to predict different types of beta-TURNS e.g. type I, I', II, II', VI, VIII and non-specific. This server assists the users in predicting the consensus beta-TURNS in a protein. The server is accessible from http://imtech.res.in/raghava/betatpred/
Using multicriteria decision analysis during drug development to predict reimbursement decisions.
Williams, Paul; Mauskopf, Josephine; Lebiecki, Jake; Kilburg, Anne
2014-01-01
Pharmaceutical companies design clinical development programs to generate the data that they believe will support reimbursement for the experimental compound. The objective of the study was to present a process for using multicriteria decision analysis (MCDA) by a pharmaceutical company to estimate the probability of a positive recommendation for reimbursement for a new drug given drug and environmental attributes. The MCDA process included 1) selection of decisions makers who were representative of those making reimbursement decisions in a specific country; 2) two pre-workshop questionnaires to identify the most important attributes and their relative importance for a positive recommendation for a new drug; 3) a 1-day workshop during which participants undertook three tasks: i) they agreed on a final list of decision attributes and their importance weights, ii) they developed level descriptions for these attributes and mapped each attribute level to a value function, and iii) they developed profiles for hypothetical products 'just likely to be reimbursed'; and 4) use of the data from the workshop to develop a prediction algorithm based on a logistic regression analysis. The MCDA process is illustrated using case studies for three countries, the United Kingdom, Germany, and Spain. The extent to which the prediction algorithms for each country captured the decision processes for the workshop participants in our case studies was tested using a post-meeting questionnaire that asked the participants to make recommendations for a set of hypothetical products. The data collected in the case study workshops resulted in a prediction algorithm: 1) for the United Kingdom, the probability of a positive recommendation for different ranges of cost-effectiveness ratios; 2) for Spain, the probability of a positive recommendation at the national and regional levels; and 3) for Germany, the probability of a determination of clinical benefit. The results from the post-meeting questionnaire revealed a high predictive value for the algorithm developed using MCDA. Prediction algorithms developed using MCDA could be used by pharmaceutical companies when designing their clinical development programs to estimate the likelihood of a favourable reimbursement recommendation for different product profiles and for different positions in the treatment pathway.
Using multicriteria decision analysis during drug development to predict reimbursement decisions
Williams, Paul; Mauskopf, Josephine; Lebiecki, Jake; Kilburg, Anne
2014-01-01
Background Pharmaceutical companies design clinical development programs to generate the data that they believe will support reimbursement for the experimental compound. Objective The objective of the study was to present a process for using multicriteria decision analysis (MCDA) by a pharmaceutical company to estimate the probability of a positive recommendation for reimbursement for a new drug given drug and environmental attributes. Methods The MCDA process included 1) selection of decisions makers who were representative of those making reimbursement decisions in a specific country; 2) two pre-workshop questionnaires to identify the most important attributes and their relative importance for a positive recommendation for a new drug; 3) a 1-day workshop during which participants undertook three tasks: i) they agreed on a final list of decision attributes and their importance weights, ii) they developed level descriptions for these attributes and mapped each attribute level to a value function, and iii) they developed profiles for hypothetical products ‘just likely to be reimbursed’; and 4) use of the data from the workshop to develop a prediction algorithm based on a logistic regression analysis. The MCDA process is illustrated using case studies for three countries, the United Kingdom, Germany, and Spain. The extent to which the prediction algorithms for each country captured the decision processes for the workshop participants in our case studies was tested using a post-meeting questionnaire that asked the participants to make recommendations for a set of hypothetical products. Results The data collected in the case study workshops resulted in a prediction algorithm: 1) for the United Kingdom, the probability of a positive recommendation for different ranges of cost-effectiveness ratios; 2) for Spain, the probability of a positive recommendation at the national and regional levels; and 3) for Germany, the probability of a determination of clinical benefit. The results from the post-meeting questionnaire revealed a high predictive value for the algorithm developed using MCDA. Conclusions Prediction algorithms developed using MCDA could be used by pharmaceutical companies when designing their clinical development programs to estimate the likelihood of a favourable reimbursement recommendation for different product profiles and for different positions in the treatment pathway.
Studying the highly bent spectra of FR II-type radio galaxies with the KDA EXT model
NASA Astrophysics Data System (ADS)
Kuligowska, Elżbieta
2018-04-01
Context. The Kaiser, Dennett-Thorpe & Alexander (KDA, 1997, MNRAS, 292, 723) EXT model, that is, the extension of the KDA model of Fanaroff & Riley (FR) II-type source evolution, is applied and confronted with the observational data for selected FR II-type radio sources with significantly aged radio spectra. Aim. A sample of FR II-type radio galaxies with radio spectra strongly bent at their highest frequencies is used for testing the usefulness of the KDA EXT model. Methods: The dynamical evolution of FR II-type sources predicted with the KDA EXT model is briefly presented and discussed. The results are then compared to the ones obtained with the classical KDA approach, assuming the source's continuous injection and self-similarity. Results: The results and corresponding diagrams obtained for the eight sample sources indicate that the KDA EXT model predicts the observed radio spectra significantly better than the best spectral fit provided by the original KDA model.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Snipes, J. S.; Galgalikar, R.; Ramaswami, S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.
2014-09-01
In our recent work, a multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process was introduced. The model is of a modular type and comprises five modules, each designed to handle a specific aspect of the GMAW process, i.e.: (i) electro-dynamics of the welding-gun; (ii) radiation-/convection-controlled heat transfer from the electric-arc to the workpiece and mass transfer from the filler-metal consumable electrode to the weld; (iii) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (iv) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; and (v) spatial distribution of the as-welded material mechanical properties. In the present work, the GMAW process model has been upgraded with respect to its predictive capabilities regarding the spatial distribution of the mechanical properties controlling the ballistic-limit (i.e., penetration-resistance) of the weld. The model is upgraded through the introduction of the sixth module in the present work in recognition of the fact that in thick steel GMAW weldments, the overall ballistic performance of the armor may become controlled by the (often inferior) ballistic limits of its weld (fusion and heat-affected) zones. To demonstrate the utility of the upgraded GMAW process model, it is next applied to the case of butt-welding of a prototypical high-hardness armor-grade martensitic steel, MIL A46100. The model predictions concerning the spatial distribution of the material microstructure and ballistic-limit-controlling mechanical properties within the MIL A46100 butt-weld are found to be consistent with prior observations and general expectations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yun; Kukkadapu, Ravi K.; Livi, Kenneth J. T.
The redox state and speciation of metalloid arsenic (As) determine its toxicity and mobility. Knowledge of biogeochemical processes influencing the As redox state is therefore important to understand and predict its environmental behavior. Many previous studies examined As(III) oxidation by various Mn-oxides, but little is known the environmental influences (e.g. co-existing ions) on such process. In this study, we investigated the mechanisms of As(III) oxidation by a poorly crystalline hexagonal birnessite (δ-MnO2) in the presence of Fe(II) using X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy and transmission electron microscopy (TEM) coupled with energy-dispersive X-ray spectroscopy (EDS). As K-edge X-ray absorption nearmore » edge spectroscopy (XANES) analysis revealed that, at low Fe(II) concentration (100 μM), As(V) was the predominant As species on the solid phase, while at higher Fe(II) concentration (200-1000 μM), both As(III) and As(V) were sorbed on the solid phase. As K-edge extended X-ray absorption fine structure spectroscopy (EXAFS) analysis showed an increasing As-Mn/Fe distance over time, indicating As prefers to bind with the newly formed Fe(III)-(hydr)oxides. As adsorbed on Fe(III)-(hydr)oxides as a bidentate binuclear corner-sharing complex. Both Mössbauer and TEM-EDS investigations demonstrated that the oxidized Fe(III) products formed during Fe(II) oxidation by δ-MnO2 were predominantly ferrihydrite, goethite, and ferric arsenate like compounds. However, Fe EXAFS analysis also suggested the formation of a small amount of lepidocrocite. The Mn K-edge XANES data indicated that As(III) and Fe(II) oxidation occurs as a two electron transfer with δ-MnO2 and the observed Mn(III) is due to conproportionation of surface sorbed Mn(II) with Mn(IV) in δ-MnO2 structure. This study reveals that the mechanisms of As(III) oxidation by δ-MnO2 in the presence of Fe(II) are very complex, involving many simultaneous reactions, and the formation of Fe(III)-(hydr)oxides plays a very important role in reducing As mobility.« less
Type II supernovae in low luminosity host galaxies
NASA Astrophysics Data System (ADS)
Gutiérrez, C. P.; Anderson, J. P.; Sullivan, M.; Dessart, L.; González-Gaitan, S.; Galbany, L.; Dimitriadis, G.; Arcavi, I.; Bufano, F.; Chen, T.-W.; Dennefeld, M.; Gromadzki, M.; Haislip, J. B.; Hosseinzadeh, G.; Howell, D. A.; Inserra, C.; Kankare, E.; Leloudas, G.; Maguire, K.; McCully, C.; Morrell, N.; E, F. Olivares; Pignata, G.; Reichart, D. E.; Reynolds, T.; Smartt, S. J.; Sollerman, J.; Taddia, F.; Takáts, K.; Terreran, G.; Valenti, S.; Young, D. R.
2018-06-01
We present an analysis of a new sample of type II core-collapse supernovae (SNe II) occurring within low-luminosity galaxies, comparing these with a sample of events in brighter hosts. Our analysis is performed comparing SN II spectral and photometric parameters and estimating the influence of metallicity (inferred from host luminosity differences) on SN II transient properties. We measure the SN absolute magnitude at maximum, the light-curve plateau duration, the optically thick duration, and the plateau decline rate in the V -band, together with expansion velocities and pseudo-equivalent-widths (pEWs) of several absorption lines in the SN spectra. For the SN host galaxies, we estimate the absolute magnitude and the stellar mass, a proxy for the metallicity of the host galaxy. SNe II exploding in low luminosity galaxies display weaker pEWs of Fe II λ5018, confirming the theoretical prediction that metal lines in SN II spectra should correlate with metallicity. We also find that SNe II in low-luminosity hosts have generally slower declining light curves and display weaker absorption lines. We find no relationship between the plateau duration or the expansion velocities with SN environment, suggesting that the hydrogen envelope mass and the explosion energy are not correlated with the metallicity of the host galaxy. This result supports recent predictions that mass-loss for red supergiants is independent of metallicity.
Nonhydrostatic and surfbeat model predictions of extreme wave run-up in fringing reef environments
Lashley, Christopher H.; Roelvink, Dano; van Dongeren, Ap R.; Buckley, Mark L.; Lowe, Ryan J.
2018-01-01
The accurate prediction of extreme wave run-up is important for effective coastal engineering design and coastal hazard management. While run-up processes on open sandy coasts have been reasonably well-studied, very few studies have focused on understanding and predicting wave run-up at coral reef-fronted coastlines. This paper applies the short-wave resolving, Nonhydrostatic (XB-NH) and short-wave averaged, Surfbeat (XB-SB) modes of the XBeach numerical model to validate run-up using data from two 1D (alongshore uniform) fringing-reef profiles without roughness elements, with two objectives: i) to provide insight into the physical processes governing run-up in such environments; and ii) to evaluate the performance of both modes in accurately predicting run-up over a wide range of conditions. XBeach was calibrated by optimizing the maximum wave steepness parameter (maxbrsteep) in XB-NH and the dissipation coefficient (alpha) in XB-SB) using the first dataset; and then applied to the second dataset for validation. XB-NH and XB-SB predictions of extreme wave run-up (Rmax and R2%) and its components, infragravity- and sea-swell band swash (SIG and SSS) and shoreline setup (<η>), were compared to observations. XB-NH more accurately simulated wave transformation but under-predicted shoreline setup due to its exclusion of parameterized wave-roller dynamics. XB-SB under-predicted sea-swell band swash but overestimated shoreline setup due to an over-prediction of wave heights on the reef flat. Run-up (swash) spectra were dominated by infragravity motions, allowing the short-wave (but not wave group) averaged model (XB-SB) to perform comparably well to its more complete, short-wave resolving (XB-NH) counterpart. Despite their respective limitations, both modes were able to accurately predict Rmax and R2%.
Sayed, Danish; He, Minzhen; Yang, Zhi; Lin, Lin; Abdellatif, Maha
2013-01-01
Cardiac hypertrophy is characterized by a generalized increase in gene expression that is commensurate with the increase in myocyte size and mass, on which is superimposed more robust changes in the expression of specialized genes. Both transcriptional and posttranscriptional mechanisms play fundamental roles in these processes; however, genome-wide characterization of the transcriptional changes has not been investigated. Our goal was to identify the extent and modes, RNA polymerase II (pol II) pausing versus recruitment, of transcriptional regulation underlying cardiac hypertrophy. We used anti-pol II and anti-histone H3K9-acetyl (H3K9ac) chromatin immunoprecipitation-deep sequencing to determine the extent of pol II recruitment and pausing, and the underlying epigenetic modifications, respectively, during cardiac growth. The data uniquely reveal two mutually exclusive modes of transcriptional regulation. One involves an incremental increase (30–50%) in the elongational activity of preassembled, promoter-paused, pol II, and encompasses ∼25% of expressed genes that are essential/housekeeping genes (e.g. RNA synthesis and splicing). Another involves a more robust activation via de novo pol II recruitment, encompassing ∼5% of specialized genes (e.g. contractile and extracellular matrix). Moreover, the latter subset has relatively shorter 3′-UTRs with fewer predicted targeting miRNA, whereas most miRNA targets fall in the former category, underscoring the significance of posttranscriptional regulation by miRNA. The results, for the first time, demonstrate that promoter-paused pol II plays a role in incrementally increasing housekeeping genes, proportionate to the increase in heart size. Additionally, the data distinguish between the roles of posttranscriptional versus transcriptional regulation of specific genes. PMID:23229551
When is giving an impulse? An ERP investigation of intuitive prosocial behavior.
Carlson, Ryan W; Aknin, Lara B; Liotti, Mario
2016-07-01
Human prosociality is often assumed to emerge from exerting reflective control over initial, selfish impulses. However, recent findings suggest that prosocial actions can also stem from processes that are fast, automatic and intuitive. Here, we attempt to clarify when prosocial behavior may be intuitive by examining prosociality as a form of reward seeking. Using event-related potentials (ERPs), we explored whether a neural signature that rapidly encodes the motivational salience of an event-the P300-can predict intuitive prosocial motivation. Participants allocated varying amounts of money between themselves and charities they initially labelled as high- or low-empathy targets under conditions that promoted intuitive or reflective decision making. Consistent with our predictions, P300 amplitude over centroparietal regions was greater when giving involved high-empathy targets than low-empathy targets, but only when deciding under intuitive conditions. Reflective conditions, alternatively, elicited an earlier frontocentral positivity related to response inhibition, regardless of target. Our findings suggest that during prosocial decision making, larger P300 amplitude could (i) signal intuitive prosocial motivation and (ii) predict subsequent engagement in prosocial behavior. This work offers novel insight into when prosociality may be driven by intuitive processes and the roots of such behaviors. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Models for estimating daily rainfall erosivity in China
NASA Astrophysics Data System (ADS)
Xie, Yun; Yin, Shui-qing; Liu, Bao-yuan; Nearing, Mark A.; Zhao, Ying
2016-04-01
The rainfall erosivity factor (R) represents the multiplication of rainfall energy and maximum 30 min intensity by event (EI30) and year. This rainfall erosivity index is widely used for empirical soil loss prediction. Its calculation, however, requires high temporal resolution rainfall data that are not readily available in many parts of the world. The purpose of this study was to parameterize models suitable for estimating erosivity from daily rainfall data, which are more widely available. One-minute resolution rainfall data recorded in sixteen stations over the eastern water erosion impacted regions of China were analyzed. The R-factor ranged from 781.9 to 8258.5 MJ mm ha-1 h-1 y-1. A total of 5942 erosive events from one-minute resolution rainfall data of ten stations were used to parameterize three models, and 4949 erosive events from the other six stations were used for validation. A threshold of daily rainfall between days classified as erosive and non-erosive was suggested to be 9.7 mm based on these data. Two of the models (I and II) used power law functions that required only daily rainfall totals. Model I used different model coefficients in the cool season (Oct.-Apr.) and warm season (May-Sept.), and Model II was fitted with a sinusoidal curve of seasonal variation. Both Model I and Model II estimated the erosivity index for average annual, yearly, and half-month temporal scales reasonably well, with the symmetric mean absolute percentage error MAPEsym ranging from 10.8% to 32.1%. Model II predicted slightly better than Model I. However, the prediction efficiency for the daily erosivity index was limited, with the symmetric mean absolute percentage error being 68.0% (Model I) and 65.7% (Model II) and Nash-Sutcliffe model efficiency being 0.55 (Model I) and 0.57 (Model II). Model III, which used the combination of daily rainfall amount and daily maximum 60-min rainfall, improved predictions significantly, and produced a Nash-Sutcliffe model efficiency for daily erosivity index prediction of 0.93. Thus daily rainfall data was generally sufficient for estimating annual average, yearly, and half-monthly time scales, while sub-daily data was needed when estimating daily erosivity values.
Hosseini, Seyed Hossein; Ayyasi, Mitra; Akbari, Hooshang; Heidari Gorji, Mohammad Ali
2016-01-01
Background Traumatic brain injury (TBI) is a common cause of mortality and disability worldwide. Choosing an appropriate diagnostic tool is critical in early stage for appropriate decision about primary diagnosis, medical care and prognosis. Objectives This study aimed to compare the Glasgow coma scale (GCS), full outline of unresponsiveness (FOUR) and acute physiology and chronic health evaluation (APACHE II) with respect to prediction of the mortality rate of patients with TBI admitted to intensive care unit. Patients and Methods This diagnostic study was conducted on 80 patients with TBI in educational hospitals. The scores of APACHE II, GCS and FOUR were recorded during the first 24 hours of admission of patients. In this study, early mortality means the patient death before 14 days and delayed mortality means the patient death 15 days after admitting to hospital. The collected data were analyzed using descriptive and inductive statistics. Results The results showed that the mean age of the patients was 33.80 ± 12.60. From a total of 80 patients with TBI, 16 (20%) were females and 64 (80%) males. The mortality rate was 15 (18.7%). The results showed no significant difference among three tools. In prediction of early mortality, the areas under the curve (AUCs) were 0.92 (CI = 0.95. 0.81 - 0.97), 0.90 (CI = 0.95. 0.74 - 0.94), and 0.96 (CI = 0.95. 0.87 - 0.9) for FOUR, APACHE II and GCS, respectively. In delayed mortality, the AUCs were 0.89 (CI = 0.95. 0.81-0.94), 0.94 (CI = 0.95. 0.74 - 0.97) and 0.90 (CI = 0.95. 0.87 - 0.95) for FOUR, APACHE II and GCS, respectively. Conclusions Considering that GCS is easy to use and the FOUR can diagnose a locking syndrome along same values of subscales. These two subscales are superior to APACHI II in prediction of early mortality. Conversation APACHE II is more punctual in the prediction of delayed mortality. PMID:29696116
Harrison, David A; Brady, Anthony R; Parry, Gareth J; Carpenter, James R; Rowan, Kathy
2006-05-01
To assess the performance of published risk prediction models in common use in adult critical care in the United Kingdom and to recalibrate these models in a large representative database of critical care admissions. Prospective cohort study. A total of 163 adult general critical care units in England, Wales, and Northern Ireland, during the period of December 1995 to August 2003. A total of 231,930 admissions, of which 141,106 met inclusion criteria and had sufficient data recorded for all risk prediction models. None. The published versions of the Acute Physiology and Chronic Health Evaluation (APACHE) II, APACHE II UK, APACHE III, Simplified Acute Physiology Score (SAPS) II, and Mortality Probability Models (MPM) II were evaluated for discrimination and calibration by means of a combination of appropriate statistical measures recommended by an expert steering committee. All models showed good discrimination (the c index varied from 0.803 to 0.832) but imperfect calibration. Recalibration of the models, which was performed by both the Cox method and re-estimating coefficients, led to improved discrimination and calibration, although all models still showed significant departures from perfect calibration. Risk prediction models developed in another country require validation and recalibration before being used to provide risk-adjusted outcomes within a new country setting. Periodic reassessment is beneficial to ensure calibration is maintained.
Cockings, Jerome G L; Cook, David A; Iqbal, Rehana K
2006-02-01
A health care system is a complex adaptive system. The effect of a single intervention, incorporated into a complex clinical environment, may be different from that expected. A national database such as the Intensive Care National Audit & Research Centre (ICNARC) Case Mix Programme in the UK represents a centralised monitoring, surveillance and reporting system for retrospective quality and comparative audit. This can be supplemented with real-time process monitoring at a local level for continuous process improvement, allowing early detection of the impact of both unplanned and deliberately imposed changes in the clinical environment. Demographic and UK Acute Physiology and Chronic Health Evaluation II (APACHE II) data were prospectively collected on all patients admitted to a UK regional hospital between 1 January 2003 and 30 June 2004 in accordance with the ICNARC Case Mix Programme. We present a cumulative expected minus observed (E-O) plot and the risk-adjusted p chart as methods of continuous process monitoring. We describe the construction and interpretation of these charts and show how they can be used to detect planned or unplanned organisational process changes affecting mortality outcomes. Five hundred and eighty-nine adult patients were included. The overall death rate was 0.78 of predicted. Calibration showed excess survival in ranges above 30% risk of death. The E-O plot confirmed a survival above that predicted. Small transient variations were seen in the slope that could represent random effects, or real but transient changes in the quality of care. The risk-adjusted p chart showed several observations below the 2 SD control limits of the expected mortality rate. These plots provide rapid analysis of risk-adjusted performance suitable for local application and interpretation. The E-O chart provided rapid easily visible feedback of changes in risk-adjusted mortality, while the risk-adjusted p chart allowed statistical evaluation. Local analysis of risk-adjusted mortality data with an E-O plot and a risk-adjusted p chart is feasible and allows the rapid detection of changes in risk-adjusted outcome of intensive care patients. This complements the centralised national database, which is more archival and comparative in nature.
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is raised off its transporter into a vertical position for its transfer into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Tony Vauccin, USAF
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is hoisted into a vertical position for its transfer into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Tony Vauccin, USAF
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – Technicians prepare to offload the first stage of a United Launch Alliance Delta II rocket following its arrival at NASA hangar 836 on Vandenberg Air Force Base in California. The launch vehicle will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – Technicians assist in offloading the first stage of a United Launch Alliance Delta II rocket following its arrival at NASA hangar 836 on Vandenberg Air Force Base in California. The launch vehicle will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is positioned in the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California in preparation for mating with the rocket's second stage. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, is elevated off its transporter into a vertical position for its move into the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – A crane is positioned to offload the first stage of a United Launch Alliance Delta II rocket following its arrival at NASA hangar 836 on Vandenberg Air Force Base in California. The launch vehicle will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – Workers steady the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, after it is lifted into a vertical position beside the mobile service tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2014-07-23
VANDENBERG AIR FORCE BASE, Calif. – A crane is used to offload the first stage of a United Launch Alliance Delta II rocket following its arrival at NASA hangar 836 on Vandenberg Air Force Base in California. The launch vehicle will be used to deliver NASA's Soil Moisture Active Passive mission, or SMAP, into orbit. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov Photo credit: NASA/Randy Beaudoin
2014-08-04
VANDENBERG AIR FORCE BASE, Calif. – The nozzle on the first stage of the United Launch Alliance Delta II rocket for NASA's Soil Moisture Active Passive mission, or SMAP, comes into view as the booster is lowered onto the launcher adjacent to the fixed umbilical tower at Space Launch Complex 2 on Vandenberg Air Force Base in California. SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch is scheduled for November 2014. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
Jiang, Zhao; Cao, Bo; Su, Guangxia; Lu, Yan; Zhao, Jiaying; Shan, Dexin; Zhang, Xiuyuan; Wang, Ziyi
2016-01-01
This study selected solid wastes, such as rice husk ash (RHA), inactive Saccharomyces cerevisiae powder (ISP), and rice husk (RH), as the potential adsorbents for the removal of Fe(II) and Mn(II) in aqueous solution. The structural characteristics, functional groups, and elemental compositions were determined by scanning electron microscope (SEM) and Fourier translation infrared spectrum (FT-IR) analyses, respectively. Then the influence on the Fe(II) and Mn(II) removing efficiency by the factors, such as pH, adsorbent dosage, initial Fe(II) and Mn(II) concentration, and contact time, was investigated by the static batch test. The adsorption isotherm study results show that Langmuir equation can better fit the Fe(II) and Mn(II) adsorption process by the three adsorbents. The maximum adsorption amounts for Fe(II) were 6.211 mg/g, 4.464 mg/g, and 4.049 mg/g by RHA, ISP, and RH and for Mn(II) were 3.016 mg/g, 2.229 mg/g, and 1.889 mg/g, respectively. The adsorption kinetics results show that the pseudo-second-order kinetic model can better fit the Fe(II) and Mn(II) adsorption process. D-R model and thermodynamic parameters hint that the adsorption processes of Fe(II) and Mn(II) on the three adsorbents took place physically and the processes were feasible, spontaneous, and exothermic. PMID:28042571
Effect of Heat Treatment Process on Microstructure and Fatigue Behavior of a Nickel-Base Superalloy
Zhang, Peng; Zhu, Qiang; Chen, Gang; Qin, Heyong; Wang, Chuanjie
2015-01-01
The study of fatigue behaviors for nickel-base superalloys is very significant because fatigue damage results in serious consequences. In this paper, two kinds of heat treatment procedures (Pro.I and Pro.II) were taken to investigate the effect of heat treatment on microstructures and fatigue behaviors of a nickel-base superalloy. Fatigue behaviors were studied through total strain controlled mode at 650 °C. Manson-Coffin relationship and three-parameter power function were used to predict fatigue life. A good link between the cyclic/fatigue behavior and microscopic studies was established. The cyclic deformation mechanism and fatigue mechanism were discussed. The results show that the fatigue resistance significantly drops with the increase of total strain amplitudes. Manson-Coffin relationship can well predict the fatigue life for total strain amplitude from 0.5% to 0.8%. The fatigue resistance is related with heat treatment procedures. The fatigue resistance performance of Pro.I is better than that of Pro.II. The cyclic stress response behaviors are closely related to the changes of the strain amplitudes. The peak stress of the alloy gradually increases with the increase of total strain amplitudes. The main fracture mechanism is inhomogeneous deformation and the different interactions between dislocations and γ′ precipitates. PMID:28793559
Liao, C M; Liang, H M
2000-05-01
Two models for evaluating the contents and advection of manure moisture on odor causing volatile organic compounds (VOC-odor) volatilization from stored swine manure were studied for their ability to predict the volatilization rate (indoor air concentration) and cumulative exposure dose: a MJ-I model and a MJ-II model. Both models simulating depletion of source contaminant via volatilization and degradation based on an analytical model adapted from the behavior assessment model of Jury et al. In the MJ-I model, manure moisture movement was negligible, whereas in the MJ-II model, time-dependent indoor air concentrations was a function of constant manure moisture contents and steady-state moisture advection. Predicted indoor air concentrations and inhaled doses for the study VOC-odors of p-cresol, toluene, and p-xylene varied by up to two to three orders of magnitude depending on the manure moisture conditions. The sensitivity analysis of both models suggests that when manure moisture movement exists, simply MJ-I model is inherently not sufficient to represent a more generally volatilization process, which can even become stringent as moisture content increases. The conclusion illustrates how one needs to include a wide variety of manure moisture values in order to fully assess the complex volatilization mechanisms that are present in a real situation.
Neighborhood cohesion and daily well-being: Results from a diary study
Robinette, Jennifer W.; Charles, Susan T.; Mogle, Jacqueline A.; Almeida, David M.
2013-01-01
Neighborly cohesiveness has documented benefits for health. Furthermore, high perceived neighborhood cohesion offsets the adverse health effects of neighborhood socioeconomic adversity. One potential way neighborhood cohesion influences health is through daily stress processes. The current study uses participants (n = 2022, age 30–84 years) from The Midlife in the United States II and the National Study of Daily Experiences II, collected between 2004–2006, to examine this hypothesis using a within-person, daily diary design. We predicted that people who perceive high neighborhood cohesion are exposed to fewer daily stressors, such as interpersonal arguments, lower daily physical symptoms and negative affect, and higher daily positive affect. We also hypothesized that perceptions of neighborhood cohesion buffer declines in affective and physical well-being on days when daily stressors do occur. Results indicate that higher perceived neighborhood cohesion predicts fewer self-reported daily stressors, higher positive affect, lower negative affect, and fewer physical health symptoms. High perceived neighborhood cohesion also buffers the effects of daily stressors on negative affect, even after adjusting for other sources of social support. Results from the present study suggest interventions focusing on neighborhood cohesion may result in improved well-being and may minimize the adverse effect of daily stressors. PMID:24034965
Modeling Fe II Emission and Revised Fe II (UV) Empirical Templates for the Seyfert 1 Galaxy I Zw 1
NASA Astrophysics Data System (ADS)
Bruhweiler, F.; Verner, E.
2008-03-01
We use the narrow-lined broad-line region (BLR) of the Seyfert 1 galaxy, I Zw 1, as a laboratory for modeling the ultraviolet (UV) Fe II 2100-3050 Å emission complex. We calculate a grid of Fe II emission spectra representative of BLR clouds and compare them with the observed I Zw 1 spectrum. Our predicted spectrum for log [nH/(cm -3) ] = 11.0, log [ΦH/(cm -2 s-1) ] = 20.5, and ξ/(1 km s-1) = 20, using Cloudy and an 830 level model atom for Fe II with energies up to 14.06 eV, gives a better fit to the UV Fe II emission than models with fewer levels. Our analysis indicates (1) the observed UV Fe II emission must be corrected for an underlying Fe II pseudocontinuum; (2) Fe II emission peaks can be misidentified as that of other ions in active galactic nuclei (AGNs) with narrow-lined BLRs possibly affecting deduced physical parameters; (3) the shape of 4200-4700 Å Fe II emission in I Zw 1 and other AGNs is a relative indicator of narrow-line region (NLR) and BLR Fe II emission; (4) predicted ratios of Lyα, C III], and Fe II emission relative to Mg II λ2800 agree with extinction corrected observed I Zw 1 fluxes, except for C IV λ1549 (5) the sensitivity of Fe II emission strength to microturbulence ξ casts doubt on existing relative Fe/Mg abundances derived from Fe II (UV)/Mg II flux ratios. Our calculated Fe II emission spectra, suitable for BLRs in AGNs, are available at http://iacs.cua.edu/people/verner/FeII. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 05-26555.
Lalot, Fanny; Zerhouni, Oulmann; Pinelli, Mathieu
2017-10-01
The smartphone game Pokémon Go™ has attracted much scientific attention regarding its potential health-related outcomes. Most studies, however, limited their investigation to short-term outcomes. The aim of the present study is to investigate the role of personality traits in predicting sustained playing to the game on a 6-month period as well as related health outcomes in terms of distance walked per day. Pokémon Go players from 10 countries were recruited through social media and answered an online questionnaire. At Phase I (August 2016), 402 participants provided their game statistics and filled an extensive personality inventory (six main personality traits, impulsivity, need for cognition, need for closure, competitiveness, and self-efficacy). At Phase II (December 2016), 151 participants indicated whether they were still playing or not and provided updated game statistics. No personality traits predicted the distance walked by the players. However, the probability of still being playing the game at Phase II was positively predicted by three personality traits: agreeableness, perseverance, and premeditation. Distance walked per day significantly decreased between Phases I and II but remained substantial. This study identified three personality traits that predicted sustained playing and thus potentially higher game-related physical activity in the long run. In comparison with prior work, this study goes a step forward by (i) investigating personality traits underlying use of the game and related health outcomes, and (ii) providing longitudinal data concerning the use of the game. Findings open new perspectives for the development of other exergames.
Probe measurements and numerical model predictions of evolving size distributions in premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Filippo, A.; Sgro, L.A.; Lanzuolo, G.
2009-09-15
Particle size distributions (PSDs), measured with a dilution probe and a Differential Mobility Analyzer (DMA), and numerical predictions of these PSDs, based on a model that includes only coagulation or alternatively inception and coagulation, are compared to investigate particle growth processes and possible sampling artifacts in the post-flame region of a C/O = 0.65 premixed laminar ethylene-air flame. Inputs to the numerical model are the PSD measured early in the flame (the initial condition for the aerosol population) and the temperature profile measured along the flame's axial centerline. The measured PSDs are initially unimodal, with a modal mobility diameter ofmore » 2.2 nm, and become bimodal later in the post-flame region. The smaller mode is best predicted with a size-dependent coagulation model, which allows some fraction of the smallest particles to escape collisions without resulting in coalescence or coagulation through the size-dependent coagulation efficiency ({gamma}{sub SD}). Instead, when {gamma} = 1 and the coagulation rate is equal to the collision rate for all particles regardless of their size, the coagulation model significantly under predicts the number concentration of both modes and over predicts the size of the largest particles in the distribution compared to the measured size distributions at various heights above the burner. The coagulation ({gamma}{sub SD}) model alone is unable to reproduce well the larger particle mode (mode II). Combining persistent nucleation with size-dependent coagulation brings the predicted PSDs to within experimental error of the measurements, which seems to suggest that surface growth processes are relatively insignificant in these flames. Shifting measured PSDs a few mm closer to the burner surface, generally adopted to correct for probe perturbations, does not produce a better matching between the experimental and the numerical results. (author)« less
Cu(II) removal by Anoxybacillus flavithermus-iron oxide composites during the addition of Fe(II)aq
NASA Astrophysics Data System (ADS)
Franzblau, Rachel E.; Daughney, Christopher J.; Swedlund, Peter J.; Weisener, Christopher G.; Moreau, Magali; Johannessen, Bernt; Harmer, Sarah L.
2016-01-01
There is currently poor understanding of metal removal by composites of bacteria and iron oxide minerals, even though they commonly co-occur and are among the most important sorbents in near-surface fluid-rock environments. This study evaluated Cu removal by composites of Anoxybacillus flavithermus and iron oxide over time during the addition, oxidation, and hydrolysis of Fe(II)aq and precipitation of the mineral, in comparison to Cu removal in the two single-sorbent end-member systems. In the absence of iron oxide, Cu removal by A. flavithermus was well described by a previously published surface complexation model, after inclusion of additional reactions describing aqueous complexation by exudate ligands released by the bacteria. In the absence of bacterial cells, Cu removal by iron oxide synthesized in the presence of the bacterial exudate ligands demonstrated the formation of ternary surface complexes. Removal of Cu by the A. flavithermus-iron oxide composites was ca. 20% greater than the prediction based on assumption of additivity in the two end-member systems. This non-additive behavior was attributed to (1) progressive physical blockage of bacterial surface sites by the iron oxide particles, (2) physical blockage of adsorption sites as a result of self-aggregation of the iron oxide particles, and (3) the reduction of Cu(II) to Cu(I) at the bacterial cell surface, as demonstrated by X-ray absorption spectroscopy. The extent of reduction of Cu(II) to Cu(I) was proportional to the concentration of solid phase Fe(II), suggesting that iron oxidation and copper reduction are linked. This study has shown that Cu removal by bacteria-iron oxide composites is greatly affected by redox processes such as Cu(II) reduction on the cell surface both by other bacterial surface ligands and the oxidation of sorbed Fe(II), as well as Fe(II) redox interactions, and aging effects of the mineral (i.e. surface site masking).
Functional Outcome Trajectories after Out-of Hospital Pediatric Cardiac Arrest
Silverstein, Faye S; Slomine, Beth; Christensen, James; Holubkov, Richard; Page, Kent; Dean, J. Michael; Moler, Frank
2016-01-01
Objective To analyze functional performance measures collected prospectively during the conduct of a clinical trial that enrolled children (up to age 18 years), resuscitated after out-of-hospital cardiac arrest, who were at high risk for poor outcomes. Design Children with Glasgow Motor Scales <5, within 6 hours of resuscitation, were enrolled in a clinical trial that compared two targeted temperature management interventions (THAPCA-OH, NCT00878644). The primary outcome, 12-month survival with Vineland Adaptive Behavior Scales, second edition (VABS-II) score ≥70, did not differ between groups. Setting 38 North American pediatric ICU’s. Participants 295 children were enrolled; 270/295 had baseline VABS-II scores ≥70; 87/270 survived one year. Interventions Targeted temperatures were 33.0°C and 36.8°C for hypothermia and normothermia groups. Measurements and Main Results Baseline measures included VABS-II, Pediatric Cerebral Performance Category(PCPC), and Pediatric Overall Performance Category (POPC). PCPC and POPC were rescored at hospital discharges; all three were scored at 3 and 12 months. In survivors with baseline VABS-II scores ≥70, we evaluated relationships of hospital discharge PCPC with 3 and 12 month scores, and between 3 and 12 month VABS-II scores. Hospital discharge PCPC scores strongly predicted 3 and 12 month PCPC (r=0.82,0.79; p<0.0001) and VABS-II scores (r=−0.81,−0.77; p<0.0001) Three month VABS-II scores strongly predicted 12 month performance (r=0.95, p<0.0001). Hypothermia treatment did not alter these relationships. Conclusions In comatose children, with Glasgow Motor Scales <5 in the initial hours after out-of-hospital cardiac arrest resuscitation, function scores at hospital discharge and at 3 months predicted 12-month performance well in the majority of survivors. PMID:27509385
Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L
2012-10-01
The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.
Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.
2012-01-01
The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft, has been secured inside a transportation canister and secured onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA's Soil Moisture Active Passive, or SMAP, spacecraft for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft, secured inside a transportation canister is lowered onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, a technician ensures the transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft is ready for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2014-10-15
VANDENBERG AIR FORCE BASE, Calif. – NASA's Soil Moisture Active Passive, or SMAP, spacecraft, enclosed in a transportation container, is offloaded from the truck on which it traveled from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Robert Rasmison
2014-10-15
VANDENBERG AIR FORCE BASE, Calif. – NASA's Soil Moisture Active Passive, or SMAP, spacecraft, still protected in its transportation container, arrives in the Astrotech payload processing facility at Vandenberg Air Force Base in California, completing its journey from the Jet Propulsion Laboratory in Pasadena, California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2014-12-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians secure a transportation canister around NASA's Soil Moisture Active Passive, or SMAP, spacecraft for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians enclose a transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft in an environmentally protective wrap for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
2014-10-15
VANDENBERG AIR FORCE BASE, Calif. – A forklift is enlisted to offload the transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft from the truck that delivered it from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Stephen Greenberg, JPL
2014-10-15
VANDENBERG AIR FORCE BASE, Calif. – The transportation container protecting NASA's Soil Moisture Active Passive, or SMAP, spacecraft is offloaded from the truck that delivered it from the Jet Propulsion Laboratory in Pasadena, California, to the Astrotech payload processing facility on Vandenberg Air Force Base in California with the aid of a forklift. SMAP will launch on a Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29, 2015. To learn more about SMAP, visit http://smap.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin
NASA Astrophysics Data System (ADS)
Abbaspour, S.; Mohammad Moosavi Nejad, S.
2018-05-01
Charged Higgs bosons are predicted by some non-minimal Higgs scenarios, such as models containing Higgs triplets and two-Higgs-doublet models, so that the experimental observation of these bosons would indicate physics beyond the Standard Model. In the present work, we introduce a channel to indirect search for the charged Higgses through the hadronic decay of polarized top quarks where a top quark decays into a charged Higgs H+ and a bottom-flavored meson B via the hadronization process of the produced bottom quark, t (↑) →H+ + b (→ B + jet). To obtain the energy spectrum of produced B-mesons we present, for the first time, an analytical expression for the O (αs) corrections to the differential decay width of the process t →H+ b in presence of a massive b-quark in the General-Mass Variable-Flavor-Number (GM-VFN) scheme. We find that the most reliable predictions for the B-hadron energy spectrum are made in the GM-VFN scheme, specifically, when the Type-II 2HDM scenario is concerned.
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, NASA's Soil Moisture Active Passive, or SMAP, spacecraft has had the appropriate logos affixed to its transportation canister before its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
Scherbaum, Stefan; Dshemuchadse, Maja; Goschke, Thomas
2012-01-01
Temporal discounting denotes the fact that individuals prefer smaller rewards delivered sooner over larger rewards delivered later, often to a higher extent than suggested by normative economical theories. In this article, we identify three lines of research studying this phenomenon which aim (i) to describe temporal discounting mathematically, (ii) to explain observed choice behavior psychologically, and (iii) to predict the influence of specific factors on intertemporal decisions. We then opt for an approach integrating postulated mechanisms and empirical findings from these three lines of research. Our approach focuses on the dynamical properties of decision processes and is based on computational modeling. We present a dynamic connectionist model of intertemporal choice focusing on the role of self-control and time framing as two central factors determining choice behavior. Results of our simulations indicate that the two influences interact with each other, and we present experimental data supporting this prediction. We conclude that computational modeling of the decision process dynamics can advance the integration of different strands of research in intertemporal choice. PMID:23181048
Scherbaum, Stefan; Dshemuchadse, Maja; Goschke, Thomas
2012-01-01
Temporal discounting denotes the fact that individuals prefer smaller rewards delivered sooner over larger rewards delivered later, often to a higher extent than suggested by normative economical theories. In this article, we identify three lines of research studying this phenomenon which aim (i) to describe temporal discounting mathematically, (ii) to explain observed choice behavior psychologically, and (iii) to predict the influence of specific factors on intertemporal decisions. We then opt for an approach integrating postulated mechanisms and empirical findings from these three lines of research. Our approach focuses on the dynamical properties of decision processes and is based on computational modeling. We present a dynamic connectionist model of intertemporal choice focusing on the role of self-control and time framing as two central factors determining choice behavior. Results of our simulations indicate that the two influences interact with each other, and we present experimental data supporting this prediction. We conclude that computational modeling of the decision process dynamics can advance the integration of different strands of research in intertemporal choice.
2015-01-12
VANDENBERG AIR FORCE BASE, Calif. – In the Astrotech payload processing facility on Vandenberg Air Force Base in California, technicians monitor the transportation canister containing NASA's Soil Moisture Active Passive, or SMAP, spacecraft as it is lowered onto a transporter for its move to the launch pad. SMAP will launch on a United Launch Alliance Delta II 7320 configuration vehicle featuring a United Launch Alliance first stage booster powered by an Aerojet Rocketdyne RS-27A main engine and three Alliant Techsystems, or ATK, strap-on solid rocket motors. Once on station in Earth orbit, SMAP will provide global measurements of soil moisture and its freeze/thaw state. These measurements will be used to enhance understanding of processes that link the water, energy and carbon cycles, and to extend the capabilities of weather and climate prediction models. SMAP data also will be used to quantify net carbon flux in boreal landscapes and to develop improved flood prediction and drought monitoring capabilities. Launch from Space Launch Complex 2 is targeted for Jan. 29. To learn more about SMAP, visit http://www.nasa.gov/smap. Photo credit: NASA/U.S. Air Force Photo Squadron
Bobovská, Adela; Tvaroška, Igor; Kóňa, Juraj
2016-05-01
Human Golgi α-mannosidase II (GMII), a zinc ion co-factor dependent glycoside hydrolase (E.C.3.2.1.114), is a pharmaceutical target for the design of inhibitors with anti-cancer activity. The discovery of an effective inhibitor is complicated by the fact that all known potent inhibitors of GMII are involved in unwanted co-inhibition with lysosomal α-mannosidase (LMan, E.C.3.2.1.24), a relative to GMII. Routine empirical QSAR models for both GMII and LMan did not work with a required accuracy. Therefore, we have developed a fast computational protocol to build predictive models combining interaction energy descriptors from an empirical docking scoring function (Glide-Schrödinger), Linear Interaction Energy (LIE) method, and quantum mechanical density functional theory (QM-DFT) calculations. The QSAR models were built and validated with a library of structurally diverse GMII and LMan inhibitors and non-active compounds. A critical role of QM-DFT descriptors for the more accurate prediction abilities of the models is demonstrated. The predictive ability of the models was significantly improved when going from the empirical docking scoring function to mixed empirical-QM-DFT QSAR models (Q(2)=0.78-0.86 when cross-validation procedures were carried out; and R(2)=0.81-0.83 for a testing set). The average error for the predicted ΔGbind decreased to 0.8-1.1kcalmol(-1). Also, 76-80% of non-active compounds were successfully filtered out from GMII and LMan inhibitors. The QSAR models with the fragmented QM-DFT descriptors may find a useful application in structure-based drug design where pure empirical and force field methods reached their limits and where quantum mechanics effects are critical for ligand-receptor interactions. The optimized models will apply in lead optimization processes for GMII drug developments. Copyright © 2016 Elsevier Inc. All rights reserved.
DOT National Transportation Integrated Search
1974-04-01
A unifying wake vortex transport model is developed and applied to a wake vortex predictive system concept. The fundamentals of vortex motion underlying the predictive model are discussed including vortex decay, bursting and instability phenomena. A ...
Estimating replicate time shifts using Gaussian process regression
Liu, Qiang; Andersen, Bogi; Smyth, Padhraic; Ihler, Alexander
2010-01-01
Motivation: Time-course gene expression datasets provide important insights into dynamic aspects of biological processes, such as circadian rhythms, cell cycle and organ development. In a typical microarray time-course experiment, measurements are obtained at each time point from multiple replicate samples. Accurately recovering the gene expression patterns from experimental observations is made challenging by both measurement noise and variation among replicates' rates of development. Prior work on this topic has focused on inference of expression patterns assuming that the replicate times are synchronized. We develop a statistical approach that simultaneously infers both (i) the underlying (hidden) expression profile for each gene, as well as (ii) the biological time for each individual replicate. Our approach is based on Gaussian process regression (GPR) combined with a probabilistic model that accounts for uncertainty about the biological development time of each replicate. Results: We apply GPR with uncertain measurement times to a microarray dataset of mRNA expression for the hair-growth cycle in mouse back skin, predicting both profile shapes and biological times for each replicate. The predicted time shifts show high consistency with independently obtained morphological estimates of relative development. We also show that the method systematically reduces prediction error on out-of-sample data, significantly reducing the mean squared error in a cross-validation study. Availability: Matlab code for GPR with uncertain time shifts is available at http://sli.ics.uci.edu/Code/GPRTimeshift/ Contact: ihler@ics.uci.edu PMID:20147305
Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis
NASA Technical Reports Server (NTRS)
Gokcen, Tahir; Dateo, Christopher E.; Meyyappan, M.
2002-01-01
The high-pressure carbon monoxide (HiPco) process, developed at Rice University, has been reported to produce single-walled carbon nanotubes from gas-phase reactions of iron carbonyl in carbon monoxide at high pressures (10-100 atm). Computational modeling is used here to develop an understanding of the HiPco process. A detailed kinetic model of the HiPco process that includes of the precursor, decomposition metal cluster formation and growth, and carbon nanotube growth was developed in the previous article (Part I). Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. The diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by the Boudouard reaction with metal catalysts. Based on the detailed model simulations, a reduced kinetic model was also developed in Part I for use in reactor-scale flowfield calculations. Here this reduced kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance. Carbon nanotube growth is examined with respect to several process variables (peripheral jet temperature, reactor pressure, and Fe(CO)5 concentration) with the use of the axisymmetric model, and the computed results are compared with existing experimental data. The model yields most of the qualitative trends observed in the experiments and helps to understanding the fundamental processes in HiPco carbon nanotube production.
Lodha, Abhay; Sauvé, Reg; Chen, Sophie; Tang, Selphee; Christianson, Heather
2009-11-01
In this study, we evaluated the Clinical Risk Index for Babies - revised (CRIB-II) score as a predictor of long-term neurodevelopmental outcomes in preterm infants at 36 months' corrected age. CRIB-II scores, which include birthweight, gestational age, sex, admission temperature, and base excess, were recorded prospectively on all infants weighing 1250g or less admitted to the neonatal intensive care unit (NICU). The sensitivity and specificity of CRIB-II scores to predict poor outcomes were examined using receiver operating characteristic curves, and predictive accuracy was assessed using the area under the curve (AUC), based on the observed values entered on a continuous scale. Poor outcomes were defined as death or major neurodevelopmental disability (cerebral palsy, neurosensory hearing loss requiring amplification, legal blindness, severe seizure disorder, or cognitive score >2SD below the mean for adjusted age determined by clinical neurological examination and on the Wechsler Preschool and Primary Scale of Intelligence, Bayley Scales of Infant Development, or revised Leiter International Performance Scale). Of the 180 infants admitted to the NICU, 155 survived. Complete follow-up data were available for 107 children. The male:female ratio was 50:57 (47-53%), median birthweight was 930g (range 511-1250g), and median gestational age was 27 weeks (range 23-32wks). Major neurodevelopmental impairment was observed in 11.2% of participants. In a regression model, the CRIB-II score was significantly correlated with long-term neurodevelopmental outcomes. It predicted major neurodevelopmental impairment (odds ratio [OR] 1.57, bootstrap 95% confidence interval [CI] 1.26-3.01; AUC 0.84) and poor outcome (OR 1.46; bootstrap 95% CI 1.31-1.71, AUC 0.82) at 36 months' corrected age. CRIB-II scores of 13 or more in the first hour of life can reliably predict major neurodevelopmental impairment at 36 months' corrected age (sensitivity 83%; specificity 84%).
Cheng, Hui; Fan, Wei-Ze; Wang, Sheng-Chi; Liu, Zhao-Hui; Zang, Hui-Ling; Wang, Li-Zhong; Liu, Hong-Juan; Shen, Xiao-Hui; Liang, Shao-Qing
2015-06-01
Using biomarkers to predict mortality in patient with severe sepsis or septic shock is of importance, as these patients frequently have high mortality and unsatisfied outcome. N-terminal pro-brain natriuretic peptide (NT-proBNP) and cardiac troponin I (cTnI) play extremely important roles in prognostic value in the mortality of severe sepsis and septic shock. The present study was retrospectively designed to evaluate the predicting mortality of NT-proBNP and cTnI in elderly patients with severe sepsis or septic shock administered in the intensive care unit (ICU) and also to evaluate whether the predicting ability of Acute Physiology and Chronic Health Evaluation II (APACHE-II) score or C-reactive protein (CRP) was increased in combination with the biomarkers. A cohort of 430 patients (aged ≥65 years) with severe sepsis or septic shock admitted to our ICU between October 2011 and December 2013 was included in the study. Patient data including clinical, laboratory, and survival and mortality were collected. All patients were examined with NT-proBNP, cTnI, CRP, and APACHE-II score and were categorized as the survived and deceased groups according to the outcome 30 days after ICU treatment. The levels of NT-proBNP and cTnI (P < .01) or CRP (P < .05) were significantly higher in the deceased group than those in the survived group. The predicting mortality of APACHE-II score alone was low but largely improved, when it was combined with both NT-proBNP and cTnI (P < .05). The alteration of NT-proBNP and cTnI levels strongly predicated the ICU prognosis in elderly patients with severe sepsis or septic shock. N-terminal pro-brain natriuretic peptide and cTnI were superior to CRP in predicting mortality. The predicting ability of APACHE-II score was improved only when combined with NT-proBNP and cTnI. Copyright © 2014 Elsevier Inc. All rights reserved.
Cortázar-Chinarro, Maria; Lattenkamp, Ella Z; Meyer-Lucht, Yvonne; Luquet, Emilien; Laurila, Anssi; Höglund, Jacob
2017-08-14
Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. Using outlier analyses, we identified the MHC II exon 2 (corresponding to the β-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.
Mortality in Code Blue; can APACHE II and PRISM scores be used as markers for prognostication?
Bakan, Nurten; Karaören, Gülşah; Tomruk, Şenay Göksu; Keskin Kayalar, Sinem
2018-03-01
Code blue (CB) is an emergency call system developed to respond to cardiac and respiratory arrest in hospitals. However, in literature, no scoring system has been reported that can predict mortality in CB procedures. In this study, we aimed to investigate the effectiveness of estimated APACHE II and PRISM scores in the prediction of mortality in patients assessed using CB to retrospectively analyze CB calls. We retrospectively examined 1195 patients who were evaluated by the CB team at our hospital between 2009 and 2013. The demographic data of the patients, diagnosis and relevant de-partments, reasons for CB, cardiopulmonary resuscitation duration, mortality calculated from the APACHE II and PRISM scores, and the actual mortality rates were retrospectively record-ed from CB notification forms and the hospital database. In all age groups, there was a significant difference between actual mortality rate and the expected mortality rate as estimated using APACHE II and PRISM scores in CB calls (p<0.05). The actual mortality rate was significantly lower than the expected mortality. APACHE and PRISM scores with the available parameters will not help predict mortality in CB procedures. Therefore, novels scoring systems using different parameters are needed.
Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis
Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K
2011-01-01
Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator–effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway. PMID:22108795
Testing the Predictive Validity of the Hendrich II Fall Risk Model.
Jung, Hyesil; Park, Hyeoun-Ae
2018-03-01
Cumulative data on patient fall risk have been compiled in electronic medical records systems, and it is possible to test the validity of fall-risk assessment tools using these data between the times of admission and occurrence of a fall. The Hendrich II Fall Risk Model scores assessed during three time points of hospital stays were extracted and used for testing the predictive validity: (a) upon admission, (b) when the maximum fall-risk score from admission to falling or discharge, and (c) immediately before falling or discharge. Predictive validity was examined using seven predictive indicators. In addition, logistic regression analysis was used to identify factors that significantly affect the occurrence of a fall. Among the different time points, the maximum fall-risk score assessed between admission and falling or discharge showed the best predictive performance. Confusion or disorientation and having a poor ability to rise from a sitting position were significant risk factors for a fall.
Incorporating High-Throughput Exposure Predictions with ...
We previously integrated dosimetry and exposure with high-throughput screening (HTS) to enhance the utility of ToxCast™ HTS data by translating in vitro bioactivity concentrations to oral equivalent doses (OEDs) required to achieve these levels internally. These OEDs were compared against regulatory exposure estimates, providing an activity-to-exposure ratio (AER) useful for a risk-based ranking strategy. As ToxCast™ efforts expand (i.e., Phase II) beyond food-use pesticides towards a wider chemical domain that lacks exposure and toxicity information, prediction tools become increasingly important. In this study, in vitro hepatic clearance and plasma protein binding were measured to estimate OEDs for a subset of Phase II chemicals. OEDs were compared against high-throughput (HT) exposure predictions generated using probabilistic modeling and Bayesian approaches generated by the U.S. EPA ExpoCast™ program. This approach incorporated chemical-specific use and national production volume data with biomonitoring data to inform the exposure predictions. This HT exposure modeling approach provided predictions for all Phase II chemicals assessed in this study whereas estimates from regulatory sources were available for only 7% of chemicals. Of the 163 chemicals assessed in this study, three or 13 chemicals possessed AERs <1 or <100, respectively. Diverse bioactivities y across a range of assays and concentrations was also noted across the wider chemical space su
Konstantinov effect in helium II
NASA Astrophysics Data System (ADS)
Melnikovsky, L. A.
2008-04-01
The reflection of first and second sound waves by a rigid flat wall in helium II is considered. A nontrivial dependence of the reflection coefficients on the angle of incidence is obtained. Sound conversion is predicted at oblique incidence.
Wiese, Eva; Wykowska, Agnieszka; Müller, Hermann J.
2014-01-01
For effective social interactions with other people, information about the physical environment must be integrated with information about the interaction partner. In order to achieve this, processing of social information is guided by two components: a bottom-up mechanism reflexively triggered by stimulus-related information in the social scene and a top-down mechanism activated by task-related context information. In the present study, we investigated whether these components interact during attentional orienting to gaze direction. In particular, we examined whether the spatial specificity of gaze cueing is modulated by expectations about the reliability of gaze behavior. Expectations were either induced by instruction or could be derived from experience with displayed gaze behavior. Spatially specific cueing effects were observed with highly predictive gaze cues, but also when participants merely believed that actually non-predictive cues were highly predictive. Conversely, cueing effects for the whole gazed-at hemifield were observed with non-predictive gaze cues, and spatially specific cueing effects were attenuated when actually predictive gaze cues were believed to be non-predictive. This pattern indicates that (i) information about cue predictivity gained from sampling gaze behavior across social episodes can be incorporated in the attentional orienting to social cues, and that (ii) beliefs about gaze behavior modulate attentional orienting to gaze direction even when they contradict information available from social episodes. PMID:24722348
Emergence of two types of terrestrial planet on solidification of magma ocean.
Hamano, Keiko; Abe, Yutaka; Genda, Hidenori
2013-05-30
Understanding the origins of the diversity in terrestrial planets is a fundamental goal in Earth and planetary sciences. In the Solar System, Venus has a similar size and bulk composition to those of Earth, but it lacks water. Because a richer variety of exoplanets is expected to be discovered, prediction of their atmospheres and surface environments requires a general framework for planetary evolution. Here we show that terrestrial planets can be divided into two distinct types on the basis of their evolutionary history during solidification from the initially hot molten state expected from the standard formation model. Even if, apart from their orbits, they were identical just after formation, the solidified planets can have different characteristics. A type I planet, which is formed beyond a certain critical distance from the host star, solidifies within several million years. If the planet acquires water during formation, most of this water is retained and forms the earliest oceans. In contrast, on a type II planet, which is formed inside the critical distance, a magma ocean can be sustained for longer, even with a larger initial amount of water. Its duration could be as long as 100 million years if the planet is formed together with a mass of water comparable to the total inventory of the modern Earth. Hydrodynamic escape desiccates type II planets during the slow solidification process. Although Earth is categorized as type I, it is not clear which type Venus is because its orbital distance is close to the critical distance. However, because the dryness of the surface and mantle predicted for type II planets is consistent with the characteristics of Venus, it may be representative of type II planets. Also, future observations may have a chance to detect not only terrestrial exoplanets covered with water ocean but also those covered with magma ocean around a young star.
Barriga, Gonzalo P; Villalón-Letelier, Fernando; Márquez, Chantal L; Bignon, Eduardo A; Acuña, Rodrigo; Ross, Breyan H; Monasterio, Octavio; Mardones, Gonzalo A; Vidal, Simon E; Tischler, Nicole D
2016-07-01
Hantaviruses can cause hantavirus pulmonary syndrome or hemorrhagic fever with renal syndrome in humans. To enter cells, hantaviruses fuse their envelope membrane with host cell membranes. Previously, we have shown that the Gc envelope glycoprotein is the viral fusion protein sharing characteristics with class II fusion proteins. The ectodomain of class II fusion proteins is composed of three domains connected by a stem region to a transmembrane anchor in the viral envelope. These fusion proteins can be inhibited through exogenous fusion protein fragments spanning domain III (DIII) and the stem region. Such fragments are thought to interact with the core of the fusion protein trimer during the transition from its pre-fusion to its post-fusion conformation. Based on our previous homology model structure for Gc from Andes hantavirus (ANDV), here we predicted and generated recombinant DIII and stem peptides to test whether these fragments inhibit hantavirus membrane fusion and cell entry. Recombinant ANDV DIII was soluble, presented disulfide bridges and beta-sheet secondary structure, supporting the in silico model. Using DIII and the C-terminal part of the stem region, the infection of cells by ANDV was blocked up to 60% when fusion of ANDV occurred within the endosomal route, and up to 95% when fusion occurred with the plasma membrane. Furthermore, the fragments impaired ANDV glycoprotein-mediated cell-cell fusion, and cross-inhibited the fusion mediated by the glycoproteins from Puumala virus (PUUV). The Gc fragments interfered in ANDV cell entry by preventing membrane hemifusion and pore formation, retaining Gc in a non-resistant homotrimer stage, as described for DIII and stem peptide inhibitors of class II fusion proteins. Collectively, our results demonstrate that hantavirus Gc shares not only structural, but also mechanistic similarity with class II viral fusion proteins, and will hopefully help in developing novel therapeutic strategies against hantaviruses.
Zheng, T P; Yang, F; Gao, Y; Baskota, A; Chen, T; Tian, H M; Ran, X W
2014-08-01
DPP4, a novel proinflammatory cytokine, is involved in the inflammatory process through its interaction with IGF-II/M6P receptor. We aimed to investigate whether it could predict new-onset atherosclerosis in Chinese. A prospective study was conducted of 590 adults (213 men and 377 women) aged 18-70 years without atherosclerosis examined in 2007(baseline) and 2011(follow-up). Circulating DPP4 activity, inflammatory markers, IGF-II/M6P receptor and common carotid artery Intima-Media Thickness (C-IMT) were measured at baseline and four years later. At baseline, individuals in the highest quartile of DPP4 activity had higher age, WHR, BMI, SBP, fasting insulin, 2h-PG, TG, LDL-C, IL-6, hs-CRP, IGF-II/M6P-R, C-IMT and lower HDL-C compared with individuals in the lowest quartile. After a 4-year follow-up, 71 individuals developed atherosclerosis. In multiple linear regression analysis, baseline DPP4 activity was an independent predictor of an increase in inflammatory markers, IGF-II/M6P receptor, and C-IMT over a 4-year period (all P < 0.01). In multivariable-adjusted models, the odds ratio (OR) for incident atherosclerosis comparing the highest with the lowest quartiles of DPP4 activity was 3.17 (95%CI 1.33-7.58) after adjustment for confounding risk factors (P = 0.009). The incidence of atherosclerosis owing to DPP4 activity increased by 12.41%. DPP4 activity is an important predictor of the onset of inflammation and atherosclerosis in apparently healthy Chinese. This finding may have important implications for understanding the proinflammatory role of DPP-4 in the pathogenesis of atherosclerosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
The chemical and radiative effects of the Mount Pinatubo eruption
NASA Technical Reports Server (NTRS)
Kinneson, Douglas E.; Grant, Keith E.; Connell, Peter S.; Rotman, Douglas A.; Wuebbles, Donald J.
1994-01-01
To clarify the mechanisms leading to effects on stratospheric ozone, time-dependent stratospheric aerosol and gas experiment II (SAGE II) and cryogenic limb array elaton spectrometer (CLAES) aerosol optical extinction data and SAGE II surface area density are used as parameters in a two-dimensional (2-D) zonally averaged chemical radiative transport model. The model was integrated with time from before the eruption through December 1993. The modeled impact on global ozone results from increased rates of heterogeneous reactions on sulfate aerosols and from the increased radiative heating and scattering caused by these aerosols. When the aerosol heating is allowed to modify the temperature distribution, the maximum change calculated in equatorial column ozone is -1.6%. The calculated equatorial temperature change and peak local ozone change in October 1991 are +6K and -4%, respectively. When aerosol heating perturbs the circulation in the model, the maximum change in equatorial column ozone is -6%. Increased heterogeneous processing on sulfate aerosols is calculated to have changed equatorial column ozone in late 1991 by -1.5%. Global column ozone in the model in 1992 and 1993 changed by -2.8% and -2.4%, respectively. The relationship of ozone-controlling processes in the lower stratosphere is altered as well; HO(x) becomes the most important catalytic cycle, followed by ClO(x) and NO(x). This is driven by significant changes in trace gas concentrations. In October 1991, lower stratospheric, equatorial NO(x) decreased by 40%, ClO(x) increased by 60%, and HO(x) increased by 25%. When the effect of heterogeneous chemical processing on sulfate aerosols is combined with aerosol heating, modifying either circulation or temperature, dramatically different ozone fingerprints with time and latitude are predicted. Model-derived changes in the equatorial region in column ozone best represented the observed data when perturbed circulation was combined with heterogeneous chemical effects. However, at high latitudes, the increased ozone production from the strengthening of the mean circulation tends to cancel the heterogeneous reduction of ozone. This is not in good agreement with observed data, especially in 1992 and 1993. When the circulation is held fixed and the temperature allowed to change, and heterogeneous chemical effects are included, the equatorial ozone decrease predicted was too small for 1991. However, the mid- to high-latitude decrease in 1992 and 1993 is in better agreement with observed data.
Wenner, Joshua B; Norena, Monica; Khan, Nadia; Palepu, Anita; Ayas, Najib T; Wong, Hubert; Dodek, Peter M
2009-09-01
Although reliability of severity of illness and predicted probability of hospital mortality have been assessed, interrater reliability of the abstraction of primary and other intensive care unit (ICU) admitting diagnoses and underlying comorbidities has not been studied. Patient data from one ICU were originally abstracted and entered into an electronic database by an ICU nurse. A research assistant reabstracted patient demographics, ICU admitting diagnoses and underlying comorbidities, and elements of Acute Physiology and Chronic Health Evaluation II (APACHE II) score from 100 random patients of 474 admitted during 2005 using an identical electronic database. Chamberlain's percent positive agreement was used to compare diagnoses and comorbidities between the 2 data abstractors. A kappa statistic was calculated for demographic variables, Glasgow Coma Score, APACHE II chronic health points, and HIV status. Intraclass correlation was calculated for acute physiology points and predicted probability of hospital mortality. Percent positive agreement for ICU primary and other admitting diagnoses ranged from 0% (primary brain injury) to 71% (sepsis), and for underlying comorbidities, from 40% (coronary artery bypass graft) to 100% (HIV). Agreement as measured by kappa statistic was strong for race (0.81) and age points (0.95), moderate for chronic health points (0.50) and HIV (0.66), and poor for Glasgow Coma Score (0.36). Intraclass correlation showed a moderate-high agreement for acute physiology points (0.88) and predicted probability of hospital mortality (0.71). Reliability for ICU diagnoses and elements of the APACHE II score is related to the objectivity of primary data in the medical charts.
Vinnik, Y S; Dunaevskaya, S S; Antufrieva, D A
2015-01-01
The aim of the study was to evaluate the diagnostic value of specific and nonspecific scoring systems Tolstoy-Krasnogorov score, Ranson, BISAP, Glasgow, MODS 2, APACHE II and CTSI, which used at urgent pancreatology for estimation the severity of acute pancreatitis and status of patient. 1550 case reports of patients which had inpatient surgical treatment at Road clinical hospital at the station Krasnoyarsk from 2009 till 2013 were analyzed. Diagnosis of severe acute pancreatitis and its complications were determined based on anamnestic data, physical exami- nation, clinical indexes, ultrasonic examination and computed tomography angiography. Specific and nonspecific scores (scoring system of estimation by Tolstoy-Krasnogorov, Ranson, Glasgow, BISAP, MODS 2, APACHE II, CTSI) were used for estimation the severity of acute pancreatitis and patient's general condition. Effectiveness of these scoring systems was determined based on some parameters: accuracy (Ac), sensitivity (Se), specificity (Sp), positive predictive value (PPV) and negative predictive value (NPV). Most valuables score for estimation of acute pancreatitis's severity is BISAP (Se--98.10%), for estimation of organ failure--MODS 2 (Sp--100%, PPV--100%) and APACHE II (Sp--100%, PPV--100%), for detection of pancreatonecrosis sings--CTSI (Sp--100%, NPV--100%), for estimation of need for intensive care--MODS 2 (Sp--100%, PPV--100%, NPV--96.29%) and APACHE II (Sp--100%, PPV--100%, NPV--97.21%), for prediction of lethality--MODS 2 (Se-- 100%, Sp--98.14%, NPV--100%) and APACHE II (Se--95.00%, NPV-.99.86%). Most effective scores for estimation of acute pancreatitis's severity are Score of estimation by Tolstoy-Krasnogorov, Ranson, Glasgow and BISAP Scoring systems MODS 2, APACHE I high specificity and positive predictive value allow using it at clinical practice.
DOT National Transportation Integrated Search
1975-01-01
This report recommended that NOISE 3 initially use the same basic logic as the MICNOISE program for highway noise prediction except that additional options be made available, such as flexibility in specifying vehicle noise sources. A choice of six no...