Sample records for processes including atherosclerosis

  1. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis.

    PubMed

    Kitada, Munehiro; Ogura, Yoshio; Koya, Daisuke

    2016-10-15

    Cardiovascular disease (CVD) due to atherosclerosis is the main cause of death in both the elderly and patients with metabolic diseases, including diabetes. Aging processes contribute to the pathogenesis of atherosclerosis. Calorie restriction (CR) is recognized as a dietary intervention for promoting longevity and delaying age-related diseases, including atherosclerosis. Sirt1, an NAD + -dependent deacetylase, is considered an anti-aging molecule and is induced during CR. Sirt1 deacetylates target proteins and is linked to cellular metabolism, the redox state and survival pathways. Sirt1 expression/activation is decreased in vascular tissue undergoing senescence. Sirt1 deficiency in endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and monocytes/macrophages contributes to increased oxidative stress, inflammation, foam cell formation, senescences impaired nitric oxide production and autophagy, thereby promoting vascular aging and atherosclerosis. Endothelial dysfunction, activation of monocytes/macrophages, and the functional and phenotypical plasticity of VSMCs are critically implicated in the pathogenesis of atherosclerosis through multiple mechanisms. Therefore, the activation of Sirt1 in vascular tissue, which includes ECs, monocytes/macrophages and VSMCs, may be a new therapeutic strategy against atherosclerosis and the increasing resistance to the metabolic disorder-related causal factors of CVD. In this review, we discuss the protective role of Sirt1 in the pathophysiology of vascular aging and atherosclerosis.

  2. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis

    PubMed Central

    Kitada, Munehiro; Ogura, Yoshio; Koya, Daisuke

    2016-01-01

    Cardiovascular disease (CVD) due to atherosclerosis is the main cause of death in both the elderly and patients with metabolic diseases, including diabetes. Aging processes contribute to the pathogenesis of atherosclerosis. Calorie restriction (CR) is recognized as a dietary intervention for promoting longevity and delaying age-related diseases, including atherosclerosis. Sirt1, an NAD+-dependent deacetylase, is considered an anti-aging molecule and is induced during CR. Sirt1 deacetylates target proteins and is linked to cellular metabolism, the redox state and survival pathways. Sirt1 expression/activation is decreased in vascular tissue undergoing senescence. Sirt1 deficiency in endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and monocytes/macrophages contributes to increased oxidative stress, inflammation, foam cell formation, senescences impaired nitric oxide production and autophagy, thereby promoting vascular aging and atherosclerosis. Endothelial dysfunction, activation of monocytes/macrophages, and the functional and phenotypical plasticity of VSMCs are critically implicated in the pathogenesis of atherosclerosis through multiple mechanisms. Therefore, the activation of Sirt1 in vascular tissue, which includes ECs, monocytes/macrophages and VSMCs, may be a new therapeutic strategy against atherosclerosis and the increasing resistance to the metabolic disorder-related causal factors of CVD. In this review, we discuss the protective role of Sirt1 in the pathophysiology of vascular aging and atherosclerosis. PMID:27744418

  3. Animal Models of Atherosclerosis

    PubMed Central

    Getz, Godfrey S.; Reardon, Catherine A.

    2012-01-01

    Atherosclerosis is a chronic inflammatory disorder that is the underlying cause of most cardiovascular disease. Both cells of the vessel wall and cells of the immune system participate in atherogenesis. This process is heavily influenced by plasma lipoproteins, genetics and the hemodynamics of the blood flow in the artery. A variety of small and large animal models have been used to study the atherogenic process. No model is ideal as each has its own advantages and limitations with respect to manipulation of the atherogenic process and modeling human atherosclerosis or lipoprotein profile. Useful large animal models include pigs, rabbits and non-human primates. Due in large part to the relative ease of genetic manipulation and the relatively short time frame for the development of atherosclerosis, murine models are currently the most extensively used. While not all aspects of murine atherosclerosis are identical to humans, studies using murine models have suggested potential biological processes and interactions that underlie this process. As it becomes clear that different factors may influence different stages of lesion development, the use of mouse models with the ability to turn on or delete proteins or cells in tissue specific and temporal manner will be very valuable. PMID:22383700

  4. Atherosclerotic Cardiovascular Disease Beginning in Childhood

    PubMed Central

    2010-01-01

    Although the clinical manifestations of cardiovascular disease (CVD), such as myocardial infarction, stroke, and peripheral vascular disease, appear from middle age, the process of atherosclerosis can begin early in childhood. The early stage and progression of atherosclerosis in youth are influenced by risk factors that include obesity, hypertension, dyslipidemia, and smoking, and by the presence of specific diseases, such as diabetes mellitus and Kawasaki disease (KD). The existing evidence indicates that primary prevention of atherosclerotic disease should begin in childhood. Identification of children at risk for atherosclerosis may allow early intervention to decrease the atherosclerotic process, thereby preventing or delaying CVD. This review will describe the origin and progression of atherosclerosis in childhood, and the identification and management of known risk factors for atherosclerotic CVD in children and young adults. PMID:20111646

  5. Structural analysis of a Petri net model of oxidative stress in atherosclerosis.

    PubMed

    Kozak, Adam; Formanowicz, Dorota; Formanowicz, Piotr

    2018-06-01

    Atherosclerosis is a complex process of gathering sub-endothelial plaques decreasing lumen of the blood vessels. This disorder affects people of all ages, but its progression is asymptomatic for many years. It is regulated by many typical and atypical factors including the immune system response, a chronic kidney disease, a diet rich in lipids, a local inflammatory process and a local oxidative stress that is here one of the key factors. In this study, a Petri net model of atherosclerosis regulation is presented. This model includes also some information about stoichiometric relationships between its components and covers all mentioned factors. For the model, a structural analysis based on invariants was made and biological conclusions are presented. Since the model contains inhibitor arcs, a heuristic method for analysis of such cases is presented. This method can be used to extend the concept of feasible t -invariants.

  6. FoxO4 inhibits atherosclerosis through its function in bone marrow derived cells

    PubMed Central

    Zhu, Min; Zhang, Qing-Jun; Wang, Lin; Li, Hao; Liu, Zhi-Ping

    2011-01-01

    Objectives FoxO proteins are transcription factors involved in varieties of cellular processes, including immune cell homeostasis, cytokine production, anti-oxidative stress, and cell proliferation and differentiation. Although these processes are implicated in the development of atherosclerosis, very little is known about the role of FoxO proteins in the context of atherosclerosis. Our objectives were to determine whether and how inactivation of Foxo4, a member of the FoxO family, in vivo promotes atherosclerosis. Methods and Results Apolipoprotein E-deficient (apoE−/−) mice were crossbred with animals lacking Foxo4 (Foxo4−/−). After 10 weeks on a high fat diet (HFD), Foxo4−/−apoE−/− mice showed elevated atherosclerosis and increased amount of macrophages and T cells in the plaque compared to apoE−/− mice. Bone marrow transplantations of chimeric C57B/6 mice reconstituted with either wild-type or Foxo4−/− bone marrows indicate that Foxo4-deficiency in bone marrow derived cells sufficiently promoted atherosclerosis. Foxo4-null macrophages produced elevated inflammatory cytokine IL-6 and levels of reactive oxygen species (ROS) in response to lipopolysaccharides in vitro. Serum levels of IL-6 were upregulated in HFD-fed Foxo4−/−apoE−/− mice compared to those of apoE−/− mice. Conclusions FoxO4 inhibits atherosclerosis through bone marrow derived cells, possibly by inhibition of ROS and inflammatory cytokines that promote monocyte recruitment and/or retention. PMID:22005198

  7. Atherosclerosis in epilepsy: its causes and implications.

    PubMed

    Hamed, Sherifa A

    2014-12-01

    Evidence from epidemiological, longitudinal, prospective, double-blinded clinical trials as well as case reports documents age-accelerated atherosclerosis with increased carotid artery intima media thickness (CA-IMT) in patients with epilepsy. These findings raise concern regarding their implications for age-accelerated cognitive and behavioral changes in midlife and risk of later age-related cognitive disorders including neurodegenerative processes such as Alzheimer's disease (AD). Chronic epilepsy, cerebral atherosclerosis, and age-related cognitive disorders including AD share many clinical manifestations (e.g. characteristic cognitive deficits), risk factors, and structural and pathological brain abnormalities. These shared risk factors include increased CA-IMT, hyperhomocysteinemia (HHcy), lipid abnormalities, weight gain and obesity, insulin resistance (IR), and high levels of inflammatory and oxidative stresses. The resulting brain structural and pathological abnormalities include decreased volume of the hippocampus, increased cortical thinning of the frontal lobe, ventricular expansion and increased white matter ischemic disease, total brain atrophy, and β-amyloid protein deposition in the brain. The knowledge that age-accelerated atherosclerosis may contribute to age-accelerated cognitive and behavioral abnormalities and structural brain pathologies in patients with chronic epilepsy represents an important research path to pursue future clinical and management considerations. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Long-term exposure to traffic-related air pollution and progression of carotid artery atherosclerosis: a prospective cohort study

    PubMed Central

    Gan, Wen Qi; Allen, Ryan W; Brauer, Michael; Davies, Hugh W; Mancini, G B John; Lear, Scott A

    2014-01-01

    Objectives Epidemiological studies have demonstrated associations between long-term exposure to traffic-related air pollution and coronary heart disease (CHD). Atherosclerosis is the principal pathological process responsible for CHD events, but effects of traffic-related air pollution on progression of atherosclerosis are not clear. This study aimed to investigate associations between long-term exposure to traffic-related air pollution and progression of carotid artery atherosclerosis. Setting Healthy volunteers in metropolitan Vancouver, Canada. Participants and outcome measures 509 participants aged 30–65 years were recruited and followed for approximately 5 years. At baseline and end of follow-up, participants underwent carotid artery ultrasound examinations to assess atherosclerosis severity, including carotid intima-media thickness, plaque area, plaque number and total area. Annual change of each atherosclerosis marker during the follow-up period was calculated as the difference between these two measurements divided by years of follow-up. Living close to major roads was defined as ≤150 m from a highway or ≤50 m from a major road. Residential exposures to traffic-related air pollutants including black carbon, fine particles, nitrogen dioxide and nitric oxide were estimated using high-resolution land-use regression models. The data were analysed using general linear models adjusting for various covariates. Results At baseline, there were no significant differences in any atherosclerosis markers between participants living close to and those living away from major roads. After follow-up, the differences in annual changes of these markers between these two groups were small and not statistically significant. Also, no significant associations were observed with concentrations of traffic-related air pollutants including black carbon, fine particles, nitrogen dioxide and nitric oxide. Conclusions This study did not find significant associations between traffic-related air pollution and progression of carotid artery atherosclerosis in a region with lower levels and smaller contrasts of ambient air pollution. PMID:24710134

  9. [Long non-coding RNAs in the pathophysiology of atherosclerosis].

    PubMed

    Novak, Jan; Vašků, Julie Bienertová; Souček, Miroslav

    2018-01-01

    The human genome contains about 22 000 protein-coding genes that are transcribed to an even larger amount of messenger RNAs (mRNA). Interestingly, the results of the project ENCODE from 2012 show, that despite up to 90 % of our genome being actively transcribed, protein-coding mRNAs make up only 2-3 % of the total amount of the transcribed RNA. The rest of RNA transcripts is not translated to proteins and that is why they are referred to as "non-coding RNAs". Earlier the non-coding RNA was considered "the dark matter of genome", or "the junk", whose genes has accumulated in our DNA during the course of evolution. Today we already know that non-coding RNAs fulfil a variety of regulatory functions in our body - they intervene into epigenetic processes from chromatin remodelling to histone methylation, or into the transcription process itself, or even post-transcription processes. Long non-coding RNAs (lncRNA) are one of the classes of non-coding RNAs that have more than 200 nucleotides in length (non-coding RNAs with less than 200 nucleotides in length are called small non-coding RNAs). lncRNAs represent a widely varied and large group of molecules with diverse regulatory functions. We can identify them in all thinkable cell types or tissues, or even in an extracellular space, which includes blood, specifically plasma. Their levels change during the course of organogenesis, they are specific to different tissues and their changes also occur along with the development of different illnesses, including atherosclerosis. This review article aims to present lncRNAs problematics in general and then focuses on some of their specific representatives in relation to the process of atherosclerosis (i.e. we describe lncRNA involvement in the biology of endothelial cells, vascular smooth muscle cells or immune cells), and we further describe possible clinical potential of lncRNA, whether in diagnostics or therapy of atherosclerosis and its clinical manifestations.Key words: atherosclerosis - lincRNA - lncRNA - MALAT - MIAT.

  10. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture

    NASA Astrophysics Data System (ADS)

    Nadkarni, Seemantini K.

    2013-12-01

    During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.

  11. Xanthine Oxidase Inhibition by Febuxostat Attenuates Experimental Atherosclerosis in Mice

    PubMed Central

    Nomura, Johji; Busso, Nathalie; Ives, Annette; Matsui, Chieko; Tsujimoto, Syunsuke; Shirakura, Takashi; Tamura, Mizuho; Kobayashi, Tsunefumi; So, Alexander; Yamanaka, Yoshihiro

    2014-01-01

    Atherosclerosis is a chronic inflammatory disease due to lipid deposition in the arterial wall. Multiple mechanisms participate in the inflammatory process, including oxidative stress. Xanthine oxidase (XO) is a major source of reactive oxygen species (ROS) and has been linked to the pathogenesis of atherosclerosis, but the underlying mechanisms remain unclear. Here, we show enhanced XO expression in macrophages in the atherosclerotic plaque and in aortic endothelial cells in ApoE−/− mice, and that febuxostat, a highly potent XO inhibitor, suppressed plaque formation, reduced arterial ROS levels and improved endothelial dysfunction in ApoE−/− mice without affecting plasma cholesterol levels. In vitro, febuxostat inhibited cholesterol crystal-induced ROS formation and inflammatory cytokine release in murine macrophages. These results demonstrate that in the atherosclerotic plaque, XO-mediated ROS formation is pro-inflammatory and XO-inhibition by febuxostat is a potential therapy for atherosclerosis. PMID:24686534

  12. Insulin resistance, metabolic stress, and atherosclerosis

    PubMed Central

    Pansuria, Meghana; Xi, Hang; Li, Le; Yang, Xiao-Feng; Wang, Hong

    2012-01-01

    Atherosclerosis, a pathological process that underlies the development of cardiovascular disease, is the primary cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). T2DM is characterized by hyperglycemia and insulin resistance (IR), in which target tissues fail to respond to insulin. Systemic IR is associated with impaired insulin signaling in the metabolic tissues and vasculature. Insulin receptor is highly expressed in the liver, muscle, pancreas, and adipose tissue. It is also expressed in vascular cells. It has been suggested that insulin signaling in vascular cells regulates cell proliferation and vascular function. In this review, we discuss the association between IR, metabolic stress, and atherosclerosis with focus on 1) tissue and cell distribution of insulin receptor and its differential signaling transduction and 2) potential mechanism of insulin signaling impairment and its role in the development of atherosclerosis and vascular function in metabolic disorders including hyperglycemia, hypertension, dyslipidemia, and hyperhomocysteinemia. We propose that insulin signaling impairment is the foremost biochemical mechanism underlying increased cardiovascular morbidity and mortality in atherosclerosis, T2DM, and metabolic syndrome. PMID:22202099

  13. The Multifaceted Uses and Therapeutic Advantages of Nanoparticles for Atherosclerosis Research.

    PubMed

    DiStasio, Nicholas; Lehoux, Stephanie; Khademhosseini, Ali; Tabrizian, Maryam

    2018-05-08

    Nanoparticles are uniquely suited for the study and development of potential therapies against atherosclerosis by virtue of their size, fine-tunable properties, and ability to incorporate therapies and/or imaging modalities. Furthermore, nanoparticles can be specifically targeted to the atherosclerotic plaque, evading off-target effects and/or associated cytotoxicity. There has been a wealth of knowledge available concerning the use of nanotechnologies in cardiovascular disease and atherosclerosis, in particular in animal models, but with a major focus on imaging agents. In fact, roughly 60% of articles from an initial search for this review included examples of imaging applications of nanoparticles. Thus, this review focuses on experimental therapy interventions applied to and observed in animal models. Particular emphasis is placed on how nanoparticle materials and properties allow researchers to learn a great deal about atherosclerosis. The objective of this review was to provide an update for nanoparticle use in imaging and drug delivery studies and to illustrate how nanoparticles can be used for sensing and modelling, for studying fundamental biological mechanisms, and for the delivery of biotherapeutics such as proteins, peptides, nucleic acids, and even cells all with the goal of attenuating atherosclerosis. Furthermore, the various atherosclerosis processes targeted mainly for imaging studies have been summarized in the hopes of inspiring new and exciting targeted therapeutic and/or imaging strategies.

  14. The biology of atherosclerosis: general paradigms and distinct pathogenic mechanisms among HIV-infected patients.

    PubMed

    Lo, Janet; Plutzky, Jorge

    2012-06-01

    Complications of atherosclerosis, including myocardial infarction and stroke, are the leading cause of death and disability worldwide. Recent data strongly implicate cardiovascular death as a contributor to mortality among patients with human immunodeficiency virus (HIV) infection, with evidence suggesting increased incidence of atherosclerosis among these patients. Therefore, greater understanding of atherosclerotic mechanisms and how these responses may be similar or distinct in HIV-infected patients is needed. Key concepts in atherosclerosis are reviewed, including the evidence that inflammation and abnormal metabolism are major drivers of atherosclerosis, and connected to the current literature regarding atherosclerosis in the context of HIV.

  15. Medical diagnosis of atherosclerosis from Carotid Artery Doppler Signals using principal component analysis (PCA), k-NN based weighting pre-processing and Artificial Immune Recognition System (AIRS).

    PubMed

    Latifoğlu, Fatma; Polat, Kemal; Kara, Sadik; Güneş, Salih

    2008-02-01

    In this study, we proposed a new medical diagnosis system based on principal component analysis (PCA), k-NN based weighting pre-processing, and Artificial Immune Recognition System (AIRS) for diagnosis of atherosclerosis from Carotid Artery Doppler Signals. The suggested system consists of four stages. First, in the feature extraction stage, we have obtained the features related with atherosclerosis disease using Fast Fourier Transformation (FFT) modeling and by calculating of maximum frequency envelope of sonograms. Second, in the dimensionality reduction stage, the 61 features of atherosclerosis disease have been reduced to 4 features using PCA. Third, in the pre-processing stage, we have weighted these 4 features using different values of k in a new weighting scheme based on k-NN based weighting pre-processing. Finally, in the classification stage, AIRS classifier has been used to classify subjects as healthy or having atherosclerosis. Hundred percent of classification accuracy has been obtained by the proposed system using 10-fold cross validation. This success shows that the proposed system is a robust and effective system in diagnosis of atherosclerosis disease.

  16. C-reactive protein in degenerative aortic valve stenosis

    PubMed Central

    Sanchez, Pedro L; Mazzone, AnnaMaria

    2006-01-01

    Degenerative aortic valve stenosis includes a range of disorder severity from mild leaflet thickening without valve obstruction, "aortic sclerosis", to severe calcified aortic stenosis. It is a slowly progressive active process of valve modification similar to atherosclerosis for cardiovascular risk factors, lipoprotein deposition, chronic inflammation, and calcification. Systemic signs of inflammation, as wall and serum C-reactive protein, similar to those found in atherosclerosis, are present in patients with degenerative aortic valve stenosis and may be expression of a common disease, useful in monitoring of stenosis progression. PMID:16774687

  17. Monocytic cell junction proteins serve important roles in atherosclerosis via the endoglin pathway

    PubMed Central

    Chen, Lina; Chen, Zhongliang; Ge, Menghua; Tang, Oushan; Cheng, Yinhong; Zhou, Haoliang; Shen, Yu; Qin, Fengming

    2017-01-01

    The formation of atherosclerosis is recognized to be caused by multiple factors including pathogenesis in monocytes during inflammation. The current study provided evidence that monocytic junctions were significantly altered in patients with atherosclerosis, which suggested an association between cell junctions and atherosclerosis. Claudin-1, occludin-1 and ZO-1 were significantly enhanced in atherosclerosis, indicating that the tight junction pathway was activated during the pathogenesis of atherosclerosis. In addition, the gene expression of 5 connexin members involved in the gap junction pathway were quantified, indicating that connexin 43 and 46 were significantly up-regulated in atherosclerosis. Furthermore, inflammatory factors including endoglin and SMAD were observed, suggesting that immune regulative factors were down-regulated in this pathway. Silicon-based analysis additionally identified that connexins and tight junctions were altered in association with monocytic inflammation regulations, endoglin pathway. The results imply that reduced expression of the immune regulation pathway in monocytes is correlated with the generation of gap junctions and tight junctions which serve important roles in atherosclerosis. PMID:28901429

  18. Gender Differences in Cardiovascular Disease: Hormonal and Biochemical Influences

    PubMed Central

    Pérez-López, Faustino R.; Larrad-Mur, Luis; Kallen, Amanda; Chedraui, Peter; Taylor, Hugh S.

    2011-01-01

    Objective Atherosclerosis is a complex process characterized by an increase in vascular wall thickness owing to the accumulation of cells and extracellular matrix between the endothelium and the smooth muscle cell wall. There is evidence that females are at lower risk of developing cardiovascular disease (CVD) as compared to males. This has led to an interest in examining the contribution of genetic background and sex hormones to the development of CVD. The objective of this review is to provide an overview of factors, including those related to gender, that influence CVD. Methods Evidence analysis from PubMed and individual searches concerning biochemical and endocrine influences and gender differences, which affect the origin and development of CVD. Results Although still controversial, evidence suggests that hormones including estradiol and androgens are responsible for subtle cardiovascular changes long before the development of overt atherosclerosis. Conclusion Exposure to sex hormones throughout an individual's lifespan modulates many endocrine factors involved in atherosclerosis. PMID:20460551

  19. Distinct effects of glucose and glucosamine on vascular endothelial and smooth muscle cells: Evidence for a protective role for glucosamine in atherosclerosis

    PubMed Central

    Duan, Wenlan; Paka, Latha; Pillarisetti, Sivaram

    2005-01-01

    Accelerated atherosclerosis is one of the major vascular complications of diabetes. Factors including hyperglycemia and hyperinsulinemia may contribute to accelerated vascular disease. Among the several mechanisms proposed to explain the link between hyperglycemia and vascular dysfunction is the hexosamine pathway, where glucose is converted to glucosamine. Although some animal experiments suggest that glucosamine may mediate insulin resistance, it is not clear whether glucosamine is the mediator of vascular complications associated with hyperglycemia. Several processes may contribute to diabetic atherosclerosis including decreased vascular heparin sulfate proteoglycans (HSPG), increased endothelial permeability and increased smooth muscle cell (SMC) proliferation. In this study, we determined the effects of glucose and glucosamine on endothelial cells and SMCs in vitro and on atherosclerosis in apoE null mice. Incubation of endothelial cells with glucosamine, but not glucose, significantly increased matrix HSPG (perlecan) containing heparin-like sequences. Increased HSPG in endothelial cells was associated with decreased protein transport across endothelial cell monolayers and decreased monocyte binding to subendothelial matrix. Glucose increased SMC proliferation, whereas glucosamine significantly inhibited SMC growth. The antiproliferative effect of glucosamine was mediated via induction of perlecan HSPG. We tested if glucosamine affects atherosclerosis development in apoE-null mice. Glucosamine significantly reduced the atherosclerotic lesion in aortic root. (P < 0.05) These data suggest that macrovascular disease associated with hyperglycemia is unlikely due to glucosamine. In fact, glucosamine by increasing HSPG showed atheroprotective effects. PMID:16207378

  20. Association between diabetes mellitus, hypothyroidism or hyperadrenocorticism, and atherosclerosis in dogs.

    PubMed

    Hess, Rebecka S; Kass, Philip H; Van Winkle, Thomas J

    2003-01-01

    The objective of this study was to determine whether dogs with atherosclerosis are more likely to have concurrent diabetes mellitus, hypothyroidism, or hyperadrenocorticism than dogs that do not have atherosclerosis. A retrospective mortality prevalence case-control study was performed. The study group included 30 dogs with histopathological evidence of atherosclerosis. The control group included 142 dogs with results of a complete postmortem examination, a final postmortem examination diagnosis of neoplasia, and no histopathological evidence of atherosclerosis. Control dogs were frequency matched for age and year in which the postmortem examination was performed. Proportionate changes in the prevalence of diabetes mellitus, hypothyroidism, and hyperadrenocorticism were calculated by exact prevalence odds ratios (POR), 95% confidence intervals (95% CI), and P values. Multiple logistic regression analysis was used to examine the combined effects of prevalence determinants while controlling for age and year of postmortem examination. Dogs with atherosclerosis were over 53 times more likely to have concurrent diabetes mellitus than dogs without atherosclerosis (POR = 53.6; 95% CI, 4.6-627.5; P = .002) and over 51 times more likely to have concurrent hypothyroidism than dogs without atherosclerosis (POR = 51.1; 95% CI, 14.5-180.1; P < .001). Dogs with atherosclerosis were not found to be more likely to have concurrent hyperadrenocorticism than dogs that did not have atherosclerosis (POR = 1.8; 95% CI, 0.2-17.6; P = .59). Diabetes mellitus and hypothyroidism, but not hyperadrenocorticism, are more prevalent in dogs with atherosclerosis compared to dogs without atherosclerosis on postmortem examination.

  1. Mechanisms of foam cell formation in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Melnichenko, Alexandra A; Myasoedova, Veronika A; Grechko, Andrey V; Orekhov, Alexander N

    2017-11-01

    Low-density lipoprotein (LDL) and cholesterol homeostasis in the peripheral blood is maintained by specialized cells, such as macrophages. Macrophages express a variety of scavenger receptors (SR) that interact with lipoproteins, including SR-A1, CD36, and lectin-like oxLDL receptor-1 (LOX-1). These cells also have several cholesterol transporters, including ATP-binding cassette transporter ABCA1, ABCG1, and SR-BI, that are involved in reverse cholesterol transport. Lipids internalized by phagocytosis are transported to late endosomes/lysosomes, where lysosomal acid lipase (LAL) digests cholesteryl esters releasing free cholesterol. Free cholesterol in turn is processed by acetyl-CoA acetyltransferase (ACAT1), an enzyme that transforms cholesterol to cholesteryl esters. The endoplasmic reticulum serves as a depot for maintaining newly synthesized cholesteryl esters that can be processed by neutral cholesterol ester hydrolase (NCEH), which generates free cholesterol that can exit via cholesterol transporters. In atherosclerosis, pro-inflammatory stimuli upregulate expression of scavenger receptors, especially LOX-1, and downregulate expression of cholesterol transporters. ACAT1 is also increased, while NCEH expression is reduced. This results in deposition of free and esterified cholesterol in macrophages and generation of foam cells. Moreover, other cell types, such as endothelial (ECs) and vascular smooth muscle cells (VSMCs), can also become foam cells. In this review, we discuss known pathways of foam cell formation in atherosclerosis.

  2. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers

    PubMed Central

    Xu, Suowen; Ogura, Sayoko; Chen, Jiawei; Little, Peter J.; Moss, Joel; Liu, Peiqing

    2013-01-01

    Lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1, also known as OLR-1), is a class E scavenger receptor that mediates the uptake of oxLDL by vascular cells. LOX-1 is involved in endothelial dysfunction, monocyte adhesion, the proliferation, migration, and apoptosis of smooth muscle cells, foam cell formation, platelet activation, as well as plaque instability; all of these events are critical in the pathogenesis of atherosclerosis. These LOX-1-dependent biological processes contribute to plaque instability and the ultimate clinical sequelae of plaque rupture and life-threatening tissue ischemia. Administration of anti-LOX-1 antibodies inhibits atherosclerosis by decreasing these cellular events. Over the past decade, multiple drugs including naturally occurring antioxidants, statins, antiinflammatory agents, antihypertensive and antihyperglycemic drugs have been demonstrated to inhibit vascular LOX-1 expression and activity. Therefore, LOX-1 represents an attractive therapeutic target for the treatment of human atherosclerotic diseases. This review aims to integrate the current understanding of LOX-1 signaling, regulation of LOX-1 by vasculoprotective drugs, and the importance of LOX-1 in the pathogenesis of atherosclerosis. PMID:23124189

  3. [Phenotypes of dendritic cells in central lymph of healthy rabbits and during correction of experimental atherosclerosis].

    PubMed

    Kuznetsov, A V

    1992-09-01

    Dendritic cells of central lymph of rabbits have been identified according to the form of the cell body, characteristics of formation and branchiness of its processes in health, in atherosclerosis, its correction with radon, polyphenol preparations made of Sanguisorba officinalis and in combination of the latter. Two main types of dendritic cells have been distinguished. Type I is characterized by a rounded body with clear outlines, protrusions and one compact process. Such cells are often found in lymph of intact animals. Type II has a cell body of various forms with two and more compact or branching processes. This type is mainly detected in atherosclerosis and its correction. The prevalence of the above phenotypes of dendritic cells is attributed to the response of the immune system to atherosclerosis and its correction.

  4. Connecting the Lines between Hypogonadism and Atherosclerosis

    PubMed Central

    Fahed, Akl C.; Gholmieh, Joanna M.; Azar, Sami T.

    2012-01-01

    Epidemiological studies show that atherosclerotic cardiovascular disease is a leading cause of morbidity and mortality worldwide and point to gender differences with ageing males being at highest risk. Atherosclerosis is a complex process that has several risk factors and mediators. Hypogonadism is a commonly undiagnosed disease that has been associated with many of the events, and risk factors leading to atherosclerosis. The mechanistic relations between testosterone levels, atherosclerotic events, and risk factors are poorly understood in many instances, but the links are clear. In this paper, we summarize the research journey that explains the link between hypogonadism, each of the atherosclerotic events, and risk factors. We look into the different areas from which lessons could be learned, including epidemiological studies, animal and laboratory experiments, studies on androgen deprivation therapy patients, and studies on testosterone-treated patients. We finish by providing recommendations for the clinician and needs for future research. PMID:22518131

  5. [Psychosocial factors as predictors of atherosclerosis and cardiovascular events: contribution from animal models].

    PubMed

    Alboni, Paolo; Alboni, Marco

    2006-11-01

    Conventional risk factors (abnormal lipids, hypertension, etc.) are independent predictors of atherosclerosis and cardiovascular events; however, these factors are not specific since about half patients with acute myocardial infarction paradoxically result at low cardiovascular risk. Recent prospective studies provide convincing evidence that some psychosocial factors are independent predictors of atherosclerosis and cardiovascular events, as well. Psychosocial factors that promote atherosclerosis can be divided into two general categories: chronic stressors, including social isolation/low social support and work stress (subordination without job control) and emotional factors, including affective disorders such as depression, severe anxiety and hostility/anger. The emotional factors, such as the chronic stressors, activate the biological mechanisms of chronic stress: increased activity of the hypothalamic-pituitary-adrenal axis, sympathetic system and inflammation processes, which have atherogenic effects, and an increase in blood coagulation. In spite of the amount of published data, psychosocial factors receive little attention in the medical setting. About 30 years ago, Kuller defined the criteria for a causal relation between a risk factor and atherosclerosis and cardiac events. The first of these criteria states that experimental research should demonstrate that any new factor would increase the extent of atherosclerosis or its complications in suitable animal models. We carried out a bibliographic research in order to investigate whether the results of the studies dealing with animal examination and experimentation support the psychosocial factors as predictors of atherosclerosis. Contributions related to some of the psychosocial factors such as social isolation, subordination and hostility/anger have been found. In these studies atherosclerotic extension has been evaluated at necroscopy; however, the incidence of cardiovascular events has not been investigated. As regards the biological mechanisms of chronic stress, the hypothalamic-pituitary-adrenal axis and the sympathetic system have been investigated. The studies have mainly been carried out on primates, and, to a less extent, on other mammals such as rabbit and wolf and on some species of birds. In the animals under social isolation, subordination or hostility/anger, a significantly more severe atherosclerosis was present, besides an increased activity of the hypothalamic-pituitary-adrenal axis and sympathetic system. In conclusion, the results offered by animal models seem to satisfy the first of Kuller's criteria, as for the three above-mentioned psychosocial factors.

  6. Dietary effects on cardiovcascular risk factors

    USDA-ARS?s Scientific Manuscript database

    In this updated fifth edition of the Atlas of Atherosclerosis and Metabolic Syndrome (formerly the Atlas of Atherosclerosis), the editors have compiled a comprehensive update on the field of atherosclerosis. This four-color atlas includes detailed legends and extensive reference listings for hundred...

  7. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    NASA Technical Reports Server (NTRS)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  8. [Transdisciplinary Approach for Sarcopenia. Sarcopenia and atherosclerosis].

    PubMed

    Kohara, Katsuhiko

    2014-10-01

    Risk factors for sarcopenia, including aging, inflammation, oxidative stress, and sedentary life style, are also known as risks for atherosclerosis. Sarcopenia and atherosclerosis relate each other. We found that sarcopenia, especially sarcopenic visceral obesity in male subjects, was associated with higher arterial stiffness and central blood pressure. We also observed that leptin resistance may underlie the link between sarcopenia, sarcopenic obesity and atherosclerosis. In epidemiological studies, it has been demonstrated sarcopenic indices were associated with cardiovascular death. These findings indicate that sarcopenia could be regarded as risk factor for atherosclerosis and cardiovascular events.

  9. [Age-related macular degeneration as a local manifestation of atherosclerosis - a novel insight into pathogenesis].

    PubMed

    Machalińska, Anna

    2013-01-01

    Age-related macular degeneration is the leading cause of irreversible visual impairment and disability among the elderly in developed countries. There is compelling evidence that atherosclerosis and age-related macular degeneration share a similar pathogenic process. The association between atherosclerosis and age-related macular degeneration has been inferred from histological, biochemical and epidemiological studies. Many published data indicate that drusen are similar in molecular composition to plaques in atherosclerosis. Furthermore, a great body of evidence has emerged over the past decade that implicates the chronic inflammatory processes in the pathogenesis and progression of both disorders. We speculate that vascular atherosclerosis and age-related macular degeneration may represent different manifestations of the same disease induced by a pathologic tissue response to the damage caused by oxidative stress and local ischemia. In this review, we characterise in detail a strong association between age-related macular degeneration and atherosclerosis development, and we postulate the hypothesis that age-related macular degeneration is a local manifestation of a systemic disease. This provides a new approach for understanding the aspects of pathogenesis and might improve the prevention and treatment of both diseases which both result from ageing of the human body.

  10. Histone deacetylases and atherosclerosis.

    PubMed

    Zheng, Xia-xia; Zhou, Tian; Wang, Xin-An; Tong, Xiao-hong; Ding, Jia-wang

    2015-06-01

    Atherosclerosis is the most common pathological process that leads to cardiovascular diseases, a disease of large- and medium-sized arteries that is characterized by a formation of atherosclerotic plaques consisting of necrotic cores, calcified regions, accumulated modified lipids, smooth muscle cells (SMCs), endothelial cells, leukocytes, and foam cells. Recently, the question about how to suppress the occurrence of atherosclerosis and alleviate the progress of cardiovascular disease becomes the hot topic. Accumulating evidence suggests that histone deacetylases(HDACs) play crucial roles in arteriosclerosis. This review summarizes the effect of HDACs and HDAC inhibitors(HDACi) on the progress of atherosclerosis. Copyright © 2015. Published by Elsevier Ireland Ltd.

  11. Regulation of programmed cell death or apoptosis in atherosclerosis.

    PubMed

    Geng, Y J

    1997-01-01

    Intimal thickening caused by accumulation of cells, lipids, and connective tissue characterizes atherosclerosis, an arterial disease that leads to cardiac and cerebral infarction. Apoptosis, or genetically programmed cell death, is important for the development and morphogenesis of organs and tissues. As in other tissues, cells of cardiovascular tissues can undergo apoptosis. Increased apoptosis has been found in both human and animal atherosclerotic lesions, mediating tissue turnover and lesion development. In addition to vascular cells, many activated immune cells, mainly macrophages and T cells, are present in atherosclerotic lesions, where these cells produce biologically active substances such as the proinflammatory cytokines tumor necrosis factor, interleukin-1 (IL-1), and interferon-gamma. Simultaneous exposure to these cytokines may trigger apoptosis of vascular smooth muscle cells. The products of death-regulating genes including Fas/Fas ligand, members of IL-1 beta cysteinyl protease (caspase) family, the tumor suppressive gene p53, and the protooncogene c-myc have been found in vascular cells and may participate in the regulation of vascular apoptosis during the development of atherosclerosis. Abnormal occurrence of apoptosis may take place in atherosclerotic lesions, including attenuation or acceleration of the apoptotic death process. The former may cause an increase in the cellularity of the lesions, and the latter can reduce cellular components important for maintaining the integrity and stability of the plaques. Clarification of the molecular mechanism that regulates apoptosis may help design a new strategy for treatment of patients with atherosclerosis and its major complications, heart attack and stroke.

  12. The Molecular Concept of Atheromatous Plaques.

    PubMed

    Thent, Zar Chi; Chakraborty, Chiranjib; Mahakkanukrauh, Pasuk; Nik Ritza Kosai Nik Mahmood, Nik; Rajan, Reynu; Das, Srijit

    2017-01-01

    Recently, there are scientific attempts to discover new drugs in the biotechnology industry in order to treat various diseases including atherosclerosis. The main objective of the present review was to highlight the cellular, molecular biology and inflammatory process related to the atheromatous plaques. A thorough literature search of Pubmed, Google and Scopus databases was done. Atherosclerosis is considered to be a leading cause of death throughout the world. Atherosclerosis involves oxidative damage to the cells with production of reactive oxygen species (ROS). Development of atheromatous plaques in the arterial wall is a common feature. Specific inflammatory markers pertaining to the arterial wall in atherosclerosis may be useful for both diagnosis and treatment. These include Nitric oxide (NO), cytokines, macrophage inhibiting factor (MIF), leucocytes and Pselectin. Modern therapeutic paradigms involving endothelial progenitor cells therapy, angiotensin II type-2 (AT<sub>2</sub>R) and ATP-activated purinergic receptor therapy are notable to mention. Future drugs may be designed aiming three signalling mechanisms of AT<sub>2</sub>R which are (a) activation of protein phosphatases resulting in protein dephosphorylation (b) activation of bradykinin/nitric oxide/cyclic guanosine 3&#039;,5&#039;-monophosphate pathway by vasodilation and (c) stimulation of phospholipase A(2) and release of arachidonic acid. Drugs may also be designed to act on ATP-activated purinergic receptor channel type P2X7 molecules which acts on cardiovascular system. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Correlation between Mitochondrial Reactive Oxygen and Severity of Atherosclerosis.

    PubMed

    Dorighello, Gabriel G; Paim, Bruno A; Kiihl, Samara F; Ferreira, Mônica S; Catharino, Rodrigo R; Vercesi, Anibal E; Oliveira, Helena C F

    2016-01-01

    Atherosclerosis has been associated with mitochondria dysfunction and damage. Our group demonstrated previously that hypercholesterolemic mice present increased mitochondrial reactive oxygen (mtROS) generation in several tissues and low NADPH/NADP+ ratio. Here, we investigated whether spontaneous atherosclerosis in these mice could be modulated by treatments that replenish or spare mitochondrial NADPH, named citrate supplementation, cholesterol synthesis inhibition, or both treatments simultaneously. Robust statistical analyses in pooled group data were performed in order to explain the variation of atherosclerosis lesion areas as related to the classic atherosclerosis risk factors such as plasma lipids, obesity, and oxidative stress, including liver mtROS. Using three distinct statistical tools (univariate correlation, adjusted correlation, and multiple regression) with increasing levels of stringency, we identified a novel significant association and a model that reliably predicts the extent of atherosclerosis due to variations in mtROS. Thus, results show that atherosclerosis lesion area is positively and independently correlated with liver mtROS production rates. Based on these findings, we propose that modulation of mitochondrial redox state influences the atherosclerosis extent.

  14. Targeting neutrophils in ischemic stroke: translational insights from experimental studies

    PubMed Central

    Jickling, Glen C; Liu, DaZhi; Ander, Bradley P; Stamova, Boryana; Zhan, Xinhua; Sharp, Frank R

    2015-01-01

    Neutrophils have key roles in ischemic brain injury, thrombosis, and atherosclerosis. As such, neutrophils are of great interest as targets to treat and prevent ischemic stroke. After stroke, neutrophils respond rapidly promoting blood–brain barrier disruption, cerebral edema, and brain injury. A surge of neutrophil-derived reactive oxygen species, proteases, and cytokines are released as neutrophils interact with cerebral endothelium. Neutrophils also are linked to the major processes that cause ischemic stroke, thrombosis, and atherosclerosis. Thrombosis is promoted through interactions with platelets, clotting factors, and release of prothrombotic molecules. In atherosclerosis, neutrophils promote plaque formation and rupture by generating oxidized-low density lipoprotein, enhancing monocyte infiltration, and degrading the fibrous cap. In experimental studies targeting neutrophils can improve stroke. However, early human studies have been met with challenges, and suggest that selective targeting of neutrophils may be required. Several properties of neutrophil are beneficial and thus may important to preserve in patients with stroke including antimicrobial, antiinflammatory, and neuroprotective functions. PMID:25806703

  15. Identification of Aortic Arch-Specific Quantitative Trait Loci for Atherosclerosis by an Intercross of DBA/2J and 129S6 Apolipoprotein E-Deficient Mice

    PubMed Central

    Kayashima, Yukako; Makhanova, Natalia A.; Matsuki, Kota; Tomita, Hirofumi; Bennett, Brian J.; Maeda, Nobuyo

    2015-01-01

    The genetic background of apolipoprotein E (apoE) deficient mice influences atherosclerotic plaque development. We previously reported three quantitative trait loci (QTL), Aath1–Aath3, that affect aortic arch atherosclerosis independently of those in the aortic root in a cross between C57BL6 apoEKO mice (B6-apoE) and 129S6 apoEKO mice (129-apoE). To gain further insight into genetic factors that influence atherosclerosis at different vascular locations, we analyzed 335 F2 mice from an intercross between 129-apoE and apoEKO mice on a DBA/2J genetic background (DBA-apoE). The extent of atherosclerosis in the aortic arch was very similar in the two parental strains. Nevertheless, a genome-wide scan identified two significant QTL for plaque size in the aortic arch: Aath4 on Chromosome (Chr) 2 at 137 Mb and Aath5 on Chr 10 at 51 Mb. The DBA alleles of Aath4 and Aath5 respectively confer susceptibility and resistance to aortic arch atherosclerosis over 129 alleles. Both QTL are also independent of those affecting plaque size at the aortic root. Genome analysis suggests that athero-susceptibility of Aath4 in DBA may be contributed by multiple genes, including Mertk and Cd93, that play roles in phagocytosis of apoptotic cells and modulate inflammation. A candidate gene for Aath5 is Stab2, the DBA allele of which is associated with 10 times higher plasma hyaluronan than the 129 allele. Overall, our identification of two new QTL that affect atherosclerosis in an aortic arch-specific manner further supports the involvement of distinct pathological processes at different vascular locations. PMID:25689165

  16. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness

    PubMed Central

    Wentland, Andrew L.; Grist, Thomas M.

    2014-01-01

    Atherosclerosis is the leading cause of cardiovascular disease (CVD) in the Western world. In the early development of atherosclerosis, vessel walls remodel outwardly such that the vessel luminal diameter is minimally affected by early plaque development. Only in the late stages of the disease does the vessel lumen begin to narrow—leading to stenoses. As a result, angiographic techniques are not useful for diagnosing early atherosclerosis. Given the absence of stenoses in the early stages of atherosclerosis, CVD remains subclinical for decades. Thus, methods of diagnosing atherosclerosis early in the disease process are needed so that affected patients can receive the necessary interventions to prevent further disease progression. Pulse wave velocity (PWV) is a biomarker directly related to vessel stiffness that has the potential to provide information on early atherosclerotic disease burden. A number of clinical methods are available for evaluating global PWV, including applanation tonometry and ultrasound. However, these methods only provide a gross global measurement of PWV—from the carotid to femoral arteries—and may mitigate regional stiffness within the vasculature. Additionally, the distance measurements used in the PWV calculation with these methods can be highly inaccurate. Faster and more robust magnetic resonance imaging (MRI) sequences have facilitated increased interest in MRI-based PWV measurements. This review provides an overview of the state-of-the-art in MRI-based PWV measurements. In addition, both gold standard and clinical standard methods of computing PWV are discussed. PMID:24834415

  17. Inflammation at the Molecular Interface of Atherogenesis

    PubMed Central

    Lamon, Brian D.; Hajjar, David P.

    2008-01-01

    Despite the multifactorial nature of atherosclerosis, substantial evidence has established inflammation as an often surreptitious, yet critical and unifying driving force which promotes disease progression. To this end, research has defined molecular networks initiated by cytokines, growth factors and other pro-inflammatory molecules which promote hallmarks of atherosclerosis such as endothelial dysfunction, macrophage infiltration, LDL oxidation, cell proliferation and thrombosis. Although commonly associated with risk factors such as dyslipidemia, diabetes and hypertension, the global etiology of atherosclerosis may be alternatively attributed to underlying anthropological pressures. The agricultural, industrial and technological revolutions produced alterations in dietary, social and economic factors which have collectively exaggerated the exposure of the human genome to environmental stimuli. Furthermore, advances in sanitation, nutrition, and medicine have increased the lifespan of humans, effectively prolonging blood vessel exposure to these factors. As a result, the vasculature has become conditioned to respond to injury with what is arguably an overzealous immunological response; thus setting the stage for the prevalence of cardiovascular disease, including atherosclerotic plaque development in Western populations. Evidence suggests that each of these alterations can be linked to specific mediators in the inflammatory process. Integration of these factors with an inflammation-based hypothesis of atherosclerosis has yet to be extrapolated to observations in the realms of basic and clinical sciences and is the focus of this review. PMID:18948435

  18. Noninvasive Molecular Imaging of Disease Activity in Atherosclerosis

    PubMed Central

    Aikawa, Elena; Newby, David E.; Tarkin, Jason M.; Rudd, James H.F.; Narula, Jagat; Fayad, Zahi A.

    2016-01-01

    Major focus has been placed on the identification of vulnerable plaques as a means of improving the prediction of myocardial infarction. However, this strategy has recently been questioned on the basis that the majority of these individual coronary lesions do not in fact go on to cause clinical events. Attention is, therefore, shifting to alternative imaging modalities that might provide a more complete pan-coronary assessment of the atherosclerotic disease process. These include markers of disease activity with the potential to discriminate between patients with stable burnt-out disease that is no longer metabolically active and those with active atheroma, faster disease progression, and increased risk of infarction. This review will examine how novel molecular imaging approaches can provide such assessments, focusing on inflammation and microcalcification activity, the importance of these processes to coronary atherosclerosis, and the advantages and challenges posed by these techniques. PMID:27390335

  19. Roles of Cells from the Arterial Vessel Wall in Atherosclerosis.

    PubMed

    Wang, Di; Wang, Zhiyan; Zhang, Lili; Wang, Yi

    2017-01-01

    Atherosclerosis has been identified as a chronic inflammatory disease of the arterial vessel wall. Accumulating evidence indicates that different cells from the tunica intima, media, adventitia, and perivascular adipose tissue not only comprise the intact and normal arterial vessel wall but also participate all in the inflammatory response of atherosclerosis via multiple intricate pathways. For instance, endothelial dysfunction has historically been considered to be the initiator of the development of atherosclerosis. The migration and proliferation of smooth muscle cells also play a pivotal role in the progression of atherosclerosis. Additionally, the fibroblasts from the adventitia and adipocytes from perivascular adipose tissue have received considerable attention given their special functions that contribute to atherosclerosis. In addition, numerous types of cytokines produced by different cells from the arterial vessel wall, including endothelium-derived relaxing factors, endothelium-derived contracting factors, tumor necrosis factors, interleukin, adhesion molecules, interferon, and adventitium-derived relaxing factors, have been implicated in atherosclerosis. Herein, we summarize the possible roles of different cells from the entire arterial vessel wall in the pathogenesis of atherosclerosis.

  20. G Protein-coupled Estrogen Receptor Protects from Atherosclerosis

    PubMed Central

    Meyer, Matthias R.; Fredette, Natalie C.; Howard, Tamara A.; Hu, Chelin; Ramesh, Chinnasamy; Daniel, Christoph; Amann, Kerstin; Arterburn, Jeffrey B.; Barton, Matthias; Prossnitz, Eric R.

    2014-01-01

    Coronary atherosclerosis and myocardial infarction in postmenopausal women have been linked to inflammation and reduced nitric oxide (NO) formation. Natural estrogen exerts protective effects on both processes, yet also displays uterotrophic activity. Here, we used genetic and pharmacologic approaches to investigate the role of the G protein-coupled estrogen receptor (GPER) in atherosclerosis. In ovary-intact mice, deletion of gper increased atherosclerosis progression, total and LDL cholesterol levels and inflammation while reducing vascular NO bioactivity, effects that were in some cases aggravated by surgical menopause. In human endothelial cells, GPER was expressed on intracellular membranes and mediated eNOS activation and NO formation, partially accounting for estrogen-mediated effects. Chronic treatment with G-1, a synthetic, highly selective small molecule agonist of GPER, reduced postmenopausal atherosclerosis and inflammation without uterotrophic effects. In summary, this study reveals an atheroprotective function of GPER and introduces selective GPER activation as a novel therapeutic approach to inhibit postmenopausal atherosclerosis and inflammation in the absence of uterotrophic activity. PMID:25532911

  1. Omega-3 fatty acids, inflammation and angiogenesis: basic mechanisms behind the cardioprotective effects of fish and fish oils.

    PubMed

    Massaro, M; Scoditti, E; Carluccio, M A; Campana, M C; De Caterina, R

    2010-02-25

    Atherosclerosis is now widely accepted to be an inflammatory disease, characterized by degenerative as well as proliferative changes and extracellular accumulation of lipid and cholesterol, in which an ongoing inflammatory reaction plays an important role both in initiation and progression/destabilization, converting a chronic process into an acute disorder. Neovascularization has also been recognized as an important process for the progression/destabilization of atherosclerotic plaques. In fact, vulnerable atherosclerotic plaques prone to rupture are characterized by an enlarged necrotic core, containing an increased number of vasa vasorum, apoptotic macrophages, and more frequent intraplaque haemorrhage. Various functional roles have been assigned to intimal microvessels, however the relationship between the process of angiogenesis and its causal association with the progression and complications of atherosclerosis are still challenging and controversial. In the past 30 years, the dietary intake of omega-3 (n-3) polyunsaturated fatty acids--mainly derived from fish--has emerged as an important way to modify cardiovascular risk through beneficial effects on all stages of atherosclerosis, including plaque angiogenesis. This review specifically focuses on the modulating effects of n-3 fatty acids on molecular events involved in early and late atherogenesis, including effects on endothelial expression of adhesion molecules, as well as pro-inflammatory and pro-angiogenic enzymes. By accumulating in endothelial membrane phospholipids, omega-3 fatty acids have been shown to decrease the transcriptional activation of several genes through an attenuation of activation of the nuclear factor-kappaB system of transcription factors. This occurs secondary to decreased generation of intracellular reactive oxygen species. This series of investigations configures a clear example of nutrigenomics--i.e., how nutrients may affect gene expression, ultimately affecting a wide spectrum of human diseases.

  2. The influence of different diets on metabolism and atherosclerosis processes-A porcine model: Blood serum, urine and tissues 1H NMR metabolomics targeted analysis.

    PubMed

    Zabek, Adam; Paslawski, Robert; Paslawska, Urszula; Wojtowicz, Wojciech; Drozdz, Katarzyna; Polakof, Sergio; Podhorska, Marzena; Dziegiel, Piotr; Mlynarz, Piotr; Szuba, Andrzej

    2017-01-01

    The global epidemic of cardiovascular diseases leads to increased morbidity and mortality caused mainly by myocardial infarction and stroke. Atherosclerosis is the major pathological process behind this epidemic. We designed a novel model of atherosclerosis in swine. Briefly, the first group (11 pigs) received normal pig feed (balanced diet group-BDG) for 12 months, the second group (9 pigs) was fed a Western high-calorie diet (unbalanced diet group-UDG) for 12 months, the third group (8 pigs) received a Western type high-calorie diet for 9 months later replaced by a normal diet for 3 months (regression group-RG). Clinical measurements included zoometric data, arterial blood pressure, heart rate and ultrasonographic evaluation of femoral arteries. Then, the animals were sacrificed and the blood serum, urine and skeletal muscle tissue were collected and 1H NMR based metabolomics studies with the application of fingerprinting PLS-DA and univariate analysis were done. Our results have shown that the molecular disturbances might overlap with other diseases such as onset of diabetes, sleep apnea and other obesity accompanied diseases. Moreover, we revealed that once initiated, molecular changes did not return to homeostatic equilibrium, at least for the duration of this experiment.

  3. [Microbiota and metabolic syndrome].

    PubMed

    Altuntaş, Yüksel; Batman, Adnan

    2017-04-01

    The role of gut bacteria in the pathogenesis and treatment of various diseases has been a focus of attention in the last 10 years. Prevalence of diabetes, obesity, and cardiovascular diseases continues to increase, in spite of technological developments and treatment alternatives. Microbial dysbiosis, described as the decrease of useful bacteria and the increase of harmful bacteria, has been associated with diabetes, obesity, atherosclerosis, and metabolic syndrome. In microbial dysbiosis, increase of harmful metabolites and changes to composition of bile acids occur via carbohydrate and protein fermentation. As a result, insulin resistance pathways are activated, which initiate the processes of obesity, diabetes, and atherosclerosis. Healthy diet recommendations, including prebiotic and probiotic foods and the use of probiotic agents, look promising for future treatment of metabolic syndrome and cardiovascular diseases.

  4. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Wang; Chaoshu, Tang; Key Laboratory of Molecular Cardiovascular Medicine, Ministry of Education

    2010-05-28

    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosismore » and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.« less

  5. The Role of TLR2, TLR4, and TLR9 in the Pathogenesis of Atherosclerosis

    PubMed Central

    2016-01-01

    Toll-like receptors (TLRs) are key players in the pathogenesis of inflammatory conditions including coronary arterial disease (CAD). They are expressed by a variety of immune cells where they recognize pathogen-associated molecular patterns (PAMPs). TLRs recruit adaptor molecules, including myeloid differentiation primary response protein (MYD88) and TIRF-related adaptor protein (TRAM), to mediate activation of MAPKs and NF-kappa B pathways. They are associated with the development of CAD through various mechanisms. TLR4 is expressed in lipid-rich and atherosclerotic plaques. In TLR2−/− and TLR4−/− mice, atherosclerosis-associated inflammation was diminished. Moreover, TLR2 and TLR4 may induce expression of Wnt5a in advanced staged atheromatous plaque leading to activation of the inflammatory processes. TLR9 is activated by CpG motifs in nucleic acids and have been implicated in macrophage activation and the uptake of oxLDL from the circulation. Furthermore, TLR9 also stimulates interferon-α (INF-α) secretion and increases cytotoxic activity of CD4+ T-cells towards coronary artery tunica media smooth muscle cells. This review outlines the pathophysiological role of TLR2, TLR4, and TLR9 in atherosclerosis, focusing on evidence from animal models of the disease. PMID:27795867

  6. MicroRNAs in the pathobiology of atherosclerosis

    PubMed Central

    Laffont, Benoit; Rayner, Katey J

    2017-01-01

    MicroRNAs are short non-coding RNAs, expressed in humans and involved in sequence-specific post-transcriptional regulation of gene expression. They have emerged as key players in a wide array of biological processes, and changes in their expression and/or function have been associated with plethora of human diseases. Atherosclerosis and its related clinical complications, such as myocardial infarction or stroke, represent the leading cause of death in the western world. Accumulating experimental evidence has revealed a key role for microRNAs in regulating cellular and molecular processes related to atherosclerosis development, ranging from risk factors, to plaque initiation and progression, up to atherosclerotic plaque rupture. In this review, we will focus on how microRNAs can influence atherosclerosis biology, as well as the potential clinical applications of microRNAs which are being developed as both targets and therapeutics for a growing industry hoping to harness the power of RNA-guided gene regulation to fight disease and infection. PMID:28232017

  7. Data in support of dyslipidemia-associated alterations in B cell subpopulations frequency and phenotype during experimental atherosclerosis

    PubMed Central

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A.; Ramírez-Pineda, José R.; Yassin, Lina M.

    2016-01-01

    Cardiovascular diseases are the most common cause of death in the world, atherosclerosis being its main underlying disease. Information about the role of B cells during atherosclerotic process is scarce, but both proatherogenic and atheroprotective properties have been described in the immunopathology of this disease. Frequency and phenotype of B cell subpopulations were studied in wild type and apolipoprotein-E-deficient (apoE−/−) mice fed or not with high-fat diet (HFD), by flow cytometry. Here, we provide the information about the materials, methods, analysis and additional information related to our study published in Atherosclerosis (DOI: 10.1016/j.atherosclerosis.2015.12.022, article reference: ATH14410) [1]. The data contained in this article shows and supports that mice with advanced atherosclerosis have a variety of alterations in frequency and phenotype of B cell subsets, most of which associated with dyslipidemia. PMID:27081674

  8. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Tain-Junn; Department of Neurology, Chi Mei Medical Center, 901 Chung-Hwa Road, Tainan 710, Taiwan; Department of Occupational Medicine, Chi Mei Medical Center, 901 Chung-Hwa Road, Yongkang, Tainan 710, Taiwan

    2011-10-15

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoproteinmore » cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor {beta} (LXR{beta}) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXR{beta} activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXR{beta} and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: > Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. > Arsenic may promote atherosclerosis with transient increase in HSP 70 and hs-CRP. > Arsenic exposure and high cholesterol diet early in life suppress CEPT-1 and LXR? > Arsenic may induce atherosclerosis by modifying reverse cholesterol transport. > Prevent arsenic exposure in early life is important to decreasing atherosclerosis.« less

  9. Serum levels of Mac-2 binding protein increase with cardiovascular risk and reflect silent atherosclerosis.

    PubMed

    Sugiura, Tomonori; Dohi, Yasuaki; Takase, Hiroyuki; Yamashita, Sumiyo; Murai, Shunsuke; Tsuzuki, Yuji; Ogawa, Shintaro; Tanaka, Yasuhito; Ohte, Nobuyuki

    2016-08-01

    Mac-2 binding protein (M2BP) was reported to be a useful biomarker for liver fibrosis and malignant tumors. We hypothesized that expression of M2BP might also change in the process of atherosclerosis. This study included subjects who visited our hospital for a physical checkup. The M2BP levels in subjects with hypertension, dyslipidemia, or abnormal glucose metabolism were higher than those in subjects without such risk factors. Moreover, the M2BP levels were associated with severity of cardiovascular risk. Subdivision of M2BP levels into quartiles revealed that M2BP was significantly associated with reactive oxygen metabolites, central systolic blood pressure, and radial augmentation index (AI). Logistic regression analysis with the endpoint of high radial AI (above mean value) showed that high radial AI was independently associated with high M2BP. Although the spectrum was narrow as compared to that in cases of hepatic fibrosis, serum M2BP may reflect silent atherosclerosis in apparently healthy subjects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Posttransplant Immune Activation: Innocent Bystander or Insidious Culprit of Posttransplant Accelerated Atherosclerosis.

    PubMed

    Ducloux, Didier; Bamoulid, Jamal; Crepin, Thomas; Rebibou, Jean-Michel; Courivaud, Cecile; Saas, Philippe

    2017-09-01

    Cardiovascular disease is a major cause of morbidity, disability, and mortality in kidney transplant patients. Cumulative reports indicate that the excessive risk of cardiovascular events is not entirely explained by the increased prevalence of traditional cardiovascular risk factors. Atherosclerosis is a chronic inflammatory disease, and it has been postulated that posttransplant immune disturbances may explain the gap between the predicted and observed risks of cardiovascular events. Although concordant data suggest that innate immunity contributes to the posttransplant accelerated atherosclerosis, only few arguments plead for a role of adaptive immunity. We report and discuss here consistent data demonstrating that CD8 + T cell activation is a frequent posttransplant immune feature that may have pro-atherogenic effects. Expansion of exhausted/activated CD8 + T cells in kidney transplant recipients is stimulated by several factors including cytomegalovirus infections, lymphodepletive therapy (e.g., antithymocyte globulins), chronic allogeneic stimulation, and a past history of renal insufficiency. This is observed in the setting of decreased thymic activity, a process also found in elderly individuals and reflecting accelerated immune senescence.

  11. Platelets and their chemokines in atherosclerosis—clinical applications

    PubMed Central

    von Hundelshausen, Philipp; Schmitt, Martin M. N.

    2014-01-01

    The concept of platelets as important players in the process of atherogenesis has become increasingly accepted due to accumulating experimental and clinical evidence. Despite the progress in understanding the molecular details of atherosclerosis, particularly by using animal models, the inflammatory and thrombotic roles of activated platelet s especially in the human system remain difficult to dissect, as often only the complications of atherosclerosis, i.e., stroke and myocardial infarction are definable but not the plaque burden. Platelet indices including platelet count and mean platelet volume (MPV) and soluble mediators released by activated platelets are associated with atherosclerosis. The chemokine CXCL4 has multiple atherogenic activities, e.g., altering the differentiation of T cells and macrophages by inhibiting neutrophil and monocyte apoptosis and by increasing the uptake of oxLDL and synergizing with CCL5. CCL5 is released and deposited on endothelium by activated platelets thereby triggering atherogenic monocyte recruitment, which can be attenuated by blocking the corresponding chemokine receptor CCR5. Atheroprotective and plaque stabilizing properties are attributed to CXCL12, which plays an important role in regenerative processes by attracting progenitor cells. Its release from luminal attached platelets accelerates endothelial healing after injury. Platelet surface molecules GPIIb/IIIa, GP1bα, P-selectin, JAM-A and the CD40/CD40L dyade are crucially involved in the interaction with endothelial cells, leukocytes and matrix molecules affecting atherogenesis. Beyond the effects on the arterial inflammatory infiltrate, platelets affect cholesterol metabolism by binding, modifying and endocytosing LDL particles via their scavenger receptors and contribute to the formation of lipid laden macrophages. Current medical therapies for the prevention of atherosclerotic therapies enable the elucidation of mechanisms linking platelets to inflammation and atherosclerosis. PMID:25152735

  12. [The role of subclinical inflammation in progression of multifocal atherosclerosis during one year after myocardial infarction].

    PubMed

    Barbarash, O L; Usol'tseva, E N; Kashtalap, V V; Kolomytseva, I S; Sizova, I N; Volykova, M A; Shibanova, I A

    2014-01-01

    To elucidate role of subclinical inflammation in progression of atherosclerotic process in magistral noncoronary arteries in patients during one year after ST-elevation myocardial infarction (MI). We examined 168 men with MI (mean age 59.5 years). All patients during hospitalization underwent coronary angiography and color duplex scanning of brachiocephalic arteries. In a year ultrasound study of noncoronary vessels was repeated and progression of atherosclerosis assessed. Parameters of inflammation in blood serum were measured on days 10-14 of MI and after one year. At repeat study most patients demonstrated progression of noncoronary atherosclerosis. Some biomarkers measured during inhospital phase of MI (low concentration of anti-inflammatory interleukin 10 - IL-10, elevated N-terminal pro brain natriuretic peptide) allowed to distinguish group of patients with subsequent progression of noncoronary atherosclerosis. Elevated concentrations of C-reactive protein and 11-10 registered in a year after MI were also associated with more severe progression of atherosclerosis. Serum levels of neopterin and IL-12 remained stable in patients with and decreased in patients without pronounced progression of atherosclerosis.

  13. [Association between IGF system and PAPP-A in coronary atherosclerosis].

    PubMed

    Fierro-Macías, Alfonso Eduardo; Floriano-Sánchez, Esaú; Mena-Burciaga, Victoria Michelle; Gutiérrez-Leonard, Hugo; Lara-Padilla, Eleazar; Abarca-Rojano, Edgar; Fierro-Almanzán, Alfonso Edmundo

    2016-01-01

    Atherosclerosis is a condition that involves multiple pathophysiological mechanisms and whose knowledge has not been fully elucidated. Often, scientific advances on the atherogenic pathophysiology generate that molecules not previously considered in the scene of this disease, were attributed actions on the onset or progression of it. A representative example is the study of a new mechanism involved in the atherogenic process, consisting of the association between the insulin-like growth factor (IGF) system and pregnancy-associated plasma protein-A (PAPP-A). Insulin-like growth factor system is a family of peptides that include 3 peptide hormones, 4 transmembrane receptors and 6 binding proteins. Insulin-like growth factor-1 (IGF-1) is the main ligand of the IGF system involved in coronary atherosclerosis. IGF-1 exerts its effects via activation of the IGF-1R receptor on vascular smooth muscle cells or macrophages. In vascular smooth muscle cells promotes migration and prevents apoptosis which increases plaque stability while in macrophages reduces reverse cholesterol transport leading to the formation of foam cells. Regulation of IGF-1 endothelial bioavailability is carried out by IGFBP proteases, mainly by PAPP-A. In this review, we address the mechanisms between IGF system and PAPP-A in atherosclerosis with emphasis on molecular effects on vascular smooth muscle cells and macrophages. Copyright © 2016 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  14. Identification of total reversible cysteine oxidation in an atherosclerosis model using a modified biotin switch assay.

    PubMed

    Li, Ru; Huang, Jiqing; Kast, Juergen

    2015-05-01

    Oxidative stress due to the imbalance of reactive oxygen species (ROS) and the resulting reversible cysteine oxidation (CysOX) are involved in the early proatherogenic aspect of atherosclerosis. Given that the corresponding redox signaling pathways are still unclear, a modified biotin switch assay was developed to quantify the reversible CysOX in an atherosclerosis model established by using a monocytic cell line treated with platelet releasate. The accumulation of ROS was observed in the model system and validated in human primary monocytes. Through the application of the modified biotin switch assay, we obtained the first reversible CysOX proteome for this model. A total of 75 peptides, corresponding to 53 proteins, were quantified with oxidative modification. The bioinformatics analysis of these CysOX-containing proteins highlighted biological processes including glycolysis, cytoskeleton arrangement, and redox regulation. Moreover, the reversible oxidation of three glycolysis enzymes was observed using this method, and the regulation influence was verified by an enzyme activity assay. NADPH oxidase (NOX) inhibition treatment, in conjunction with the modified biotin switch method, was used to evaluate the global CysOX status. In conclusion, this versatile modified biotin switch assay provides an approach for the quantification of all reversible CysOX and for the study of redox signaling in atherosclerosis as well as in diseases in other biological systems.

  15. Plasma Cholesterol–Induced Lesion Networks Activated before Regression of Early, Mature, and Advanced Atherosclerosis

    PubMed Central

    Björkegren, Johan L. M.; Hägg, Sara; Jain, Rajeev K.; Cedergren, Cecilia; Shang, Ming-Mei; Rossignoli, Aránzazu; Takolander, Rabbe; Melander, Olle; Hamsten, Anders; Michoel, Tom; Skogsberg, Josefin

    2014-01-01

    Plasma cholesterol lowering (PCL) slows and sometimes prevents progression of atherosclerosis and may even lead to regression. Little is known about how molecular processes in the atherosclerotic arterial wall respond to PCL and modify responses to atherosclerosis regression. We studied atherosclerosis regression and global gene expression responses to PCL (≥80%) and to atherosclerosis regression itself in early, mature, and advanced lesions. In atherosclerotic aortic wall from Ldlr−/−Apob 100/100 Mttp flox/floxMx1-Cre mice, atherosclerosis regressed after PCL regardless of lesion stage. However, near-complete regression was observed only in mice with early lesions; mice with mature and advanced lesions were left with regression-resistant, relatively unstable plaque remnants. Atherosclerosis genes responding to PCL before regression, unlike those responding to the regression itself, were enriched in inherited risk for coronary artery disease and myocardial infarction, indicating causality. Inference of transcription factor (TF) regulatory networks of these PCL-responsive gene sets revealed largely different networks in early, mature, and advanced lesions. In early lesions, PPARG was identified as a specific master regulator of the PCL-responsive atherosclerosis TF-regulatory network, whereas in mature and advanced lesions, the specific master regulators were MLL5 and SRSF10/XRN2, respectively. In a THP-1 foam cell model of atherosclerosis regression, siRNA targeting of these master regulators activated the time-point-specific TF-regulatory networks and altered the accumulation of cholesterol esters. We conclude that PCL leads to complete atherosclerosis regression only in mice with early lesions. Identified master regulators and related PCL-responsive TF-regulatory networks will be interesting targets to enhance PCL-mediated regression of mature and advanced atherosclerotic lesions. PMID:24586211

  16. Why did ancient people have atherosclerosis?: from autopsies to computed tomography to potential causes.

    PubMed

    Thomas, Gregory S; Wann, L Samuel; Allam, Adel H; Thompson, Randall C; Michalik, David E; Sutherland, M Linda; Sutherland, James D; Lombardi, Guido P; Watson, Lucia; Cox, Samantha L; Valladolid, Clide M; Abd El-Maksoud, Gomaa; Al-Tohamy Soliman, Muhammad; Badr, Ibrahem; el-Halim Nur el-Din, Abd; Clarke, Emily M; Thomas, Ian G; Miyamoto, Michael I; Kaplan, Hillard S; Frohlich, Bruno; Narula, Jagat; Stewart, Alexandre F R; Zink, Albert; Finch, Caleb E

    2014-06-01

    Computed tomographic findings of atherosclerosis in the ancient cultures of Egypt, Peru, the American Southwest and the Aleutian Islands challenge our understanding of the fundamental causes of atherosclerosis. Could these findings be true? Is so, what traditional risk factors might be present in these cultures that could explain this apparent paradox? The recent computed tomographic findings are consistent with multiple autopsy studies dating as far back as 1852 that demonstrate calcific atherosclerosis in ancient Egyptians and Peruvians. A nontraditional cause of atherosclerosis that could explain this burden of atherosclerosis is the microbial and parasitic inflammatory burden likely to be present in ancient cultures inherently lacking modern hygiene and antimicrobials. Patients with chronic systemic inflammatory diseases of today, including systemic lupus erythematosus, rheumatoid arthritis, and human immunodeficiency virus infection, experience premature atherosclerosis and coronary events. Might the chronic inflammatory load of ancient times secondary to infection have resulted in atherosclerosis? Smoke inhalation from the use of open fires for daily cooking and illumination represents another potential cause. Undiscovered risk factors could also have been present, potential causes that technologically cannot currently be measured in our serum or other tissue. A synthesis of these findings suggests that a gene-environmental interplay is causal for atherosclerosis. That is, humans have an inherent genetic susceptibility to atherosclerosis, whereas the speed and severity of its development are secondary to known and potentially unknown environmental factors. Copyright © 2014 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.

  17. Life stress and atherosclerosis: a pathway through unhealthy lifestyle.

    PubMed

    Mainous, Arch G; Everett, Charles J; Diaz, Vanessa A; Player, Marty S; Gebregziabher, Mulugeta; Smith, Daniel W

    2010-01-01

    To examine the relationship between a general measure of chronic life stress and atherosclerosis among middle aged adults without clinical cardiovascular disease via pathways through unhealthy lifestyle characteristics. We conducted an analysis of The Multi-Ethnic Study of Atherosclerosis (MESA). The MESA collected in 2000 includes 5,773 participants, aged 45-84. We computed standard regression techniques to examine the relationship between life stress and atherosclerosis as well as path analysis with hypothesized paths from stress to atherosclerosis through unhealthy lifestyle. Our outcome was sub-clinical atherosclerosis measured as presence of coronary artery calcification (CAC). A logistic regression adjusted for potential confounding variables along with the unhealthy lifestyle characteristics of smoking, excessive alcohol use, high caloric intake, sedentary lifestyle, and obesity yielded no significant relationship between chronic life stress (OR 0.93, 95% CI 0.80-1.08) and CAC. However, significant indirect pathways between chronic life stress and CAC through smoking (p = .007), and sedentary lifestyle (p = .03) and caloric intake (.002) through obesity were found. These results suggest that life stress is related to atherosclerosis once paths of unhealthy coping behaviors are considered.

  18. HIV-1-Associated Atherosclerosis: Unraveling the Missing Link.

    PubMed

    Kearns, Alison; Gordon, Jennifer; Burdo, Tricia H; Qin, Xuebin

    2017-06-27

    Cardiovascular disease, including atherosclerosis and atherosclerosis-associated complications, is an increasing cause of morbidity and mortality in human immunodeficiency virus (HIV) patients in the post-antiretroviral therapy era. HIV alone accelerates atherosclerosis. Antiretroviral therapy; HIV-associated comorbidities, such as dyslipidemia, drug abuse, and opportunistic infections; and lifestyle are risk factors for HIV-associated atherosclerosis. However, our current understanding of HIV-associated atherogenesis is very limited and has largely been obtained from clinical observation. There is a pressing need to experimentally unravel the missing link between HIV and atherosclerosis. Understanding these mechanisms will help to better develop and design novel therapeutic interventions for the treatment of HIV-associated cardiovascular disease. HIV mainly infects T cells and macrophages resulting in the induction of oxidative and endoplasmic reticulum stress, the formation of the inflammasome, and the dysregulation of autophagy. These mechanisms may contribute to HIV-associated atherogenesis. In this review, we will summarize our current understanding and propose potential mechanisms of HIV-associated atherosclerosis. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  19. Acidic Polysaccharide Extracts from Gastrodia Rhizomes Suppress the Atherosclerosis Risk Index through Inhibition of the Serum Cholesterol Composition in Sprague Dawley Rats Fed a High-Fat Diet

    PubMed Central

    Kim, Kui-Jin; Lee, Ok-Hwan; Han, Chan-Kyu; Kim, Young-Chan; Hong, Hee-Do

    2012-01-01

    Obesity is associated with a broad spectrum of cardio-metabolic disturbances, including atherosclerosis and cardiovascular disease (CDV). A high-fat diet has been shown to cause an elevation of the plasma cholesterol levels in humans, and the control of serum cholesterol has been demonstrated to be important in the prevention of CVD and atherosclerosis. The aims of this study were to demonstrate that crude and acidic polysaccharide extracts from Gastrodia rhizomes suppress atherosclerosis through the regulation of serum lipids in Sprague Dawley (SD) rats fed a high-fat diet. We examined the concentrations of serum lipids, including total cholesterol, triglycerides, high-density lipoproteins (HDL) cholesterol, and low-density lipoproteins (LDL) cholesterol, in SD rats fed a high-fat diet and evaluated the atherogenic index. Here, we show that both crude and acidic polysaccharide extracts from Gastrodia rhizomes inhibited the total cholesterol and LDL levels. Moreover, there was a significantly suppressed atherosclerosis risk due to the acidic polysaccharide extract from Gastrodia rhizome. Taken together, our results suggested that acidic polysaccharide extracts from Gastrodia rhizomes might be beneficial for lowering the incidence of CVD and atherosclerosis by reducing the de novo synthesis of total cholesterol and the LDL levels. PMID:22408412

  20. Acidic polysaccharide extracts from Gastrodia Rhizomes suppress the atherosclerosis risk index through inhibition of the serum cholesterol composition in Sprague Dawley rats fed a high-fat diet.

    PubMed

    Kim, Kui-Jin; Lee, Ok-Hwan; Han, Chan-Kyu; Kim, Young-Chan; Hong, Hee-Do

    2012-01-01

    Obesity is associated with a broad spectrum of cardio-metabolic disturbances, including atherosclerosis and cardiovascular disease (CDV). A high-fat diet has been shown to cause an elevation of the plasma cholesterol levels in humans, and the control of serum cholesterol has been demonstrated to be important in the prevention of CVD and atherosclerosis. The aims of this study were to demonstrate that crude and acidic polysaccharide extracts from Gastrodia rhizomes suppress atherosclerosis through the regulation of serum lipids in Sprague Dawley (SD) rats fed a high-fat diet. We examined the concentrations of serum lipids, including total cholesterol, triglycerides, high-density lipoproteins (HDL) cholesterol, and low-density lipoproteins (LDL) cholesterol, in SD rats fed a high-fat diet and evaluated the atherogenic index. Here, we show that both crude and acidic polysaccharide extracts from Gastrodia rhizomes inhibited the total cholesterol and LDL levels. Moreover, there was a significantly suppressed atherosclerosis risk due to the acidic polysaccharide extract from Gastrodia rhizome. Taken together, our results suggested that acidic polysaccharide extracts from Gastrodia rhizomes might be beneficial for lowering the incidence of CVD and atherosclerosis by reducing the de novo synthesis of total cholesterol and the LDL levels.

  1. Periodontal disease and carotid atherosclerosis: A meta-analysis of 17,330 participants.

    PubMed

    Zeng, Xian-Tao; Leng, Wei-Dong; Lam, Yat-Yin; Yan, Bryan P; Wei, Xue-Mei; Weng, Hong; Kwong, Joey S W

    2016-01-15

    The association between periodontal disease and carotid atherosclerosis has been evaluated primarily in single-center studies, and whether periodontal disease is an independent risk factor of carotid atherosclerosis remains uncertain. This meta-analysis aimed to evaluate the association between periodontal disease and carotid atherosclerosis. We searched PubMed and Embase for relevant observational studies up to February 20, 2015. Two authors independently extracted data from included studies, and odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for overall and subgroup meta-analyses. Statistical heterogeneity was assessed by the chi-squared test (P<0.1 for statistical significance) and quantified by the I(2) statistic. Data analysis was conducted using the Comprehensive Meta-Analysis (CMA) software. Fifteen observational studies involving 17,330 participants were included in the meta-analysis. The overall pooled result showed that periodontal disease was associated with carotid atherosclerosis (OR: 1.27, 95% CI: 1.14-1.41; P<0.001) but statistical heterogeneity was substantial (I(2)=78.90%). Subgroup analysis of adjusted smoking and diabetes mellitus showed borderline significance (OR: 1.08; 95% CI: 1.00-1.18; P=0.05). Sensitivity and cumulative analyses both indicated that our results were robust. Findings of our meta-analysis indicated that the presence of periodontal disease was associated with carotid atherosclerosis; however, further large-scale, well-conducted clinical studies are needed to explore the precise risk of developing carotid atherosclerosis in patients with periodontal disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Atherosclerosis of the carotid artery: absence of evidence for CMV involvement in atheroma formation.

    PubMed

    Saetta, A; Fanourakis, G; Agapitos, E; Davaris, P S

    2000-01-01

    Several studies suggest that certain viral and bacterial pathogens may contribute to the process of atherogenesis. However, this relation between infectious agents and atherosclerosis has not yet been established with certainty. The aim of this study was to investigate the presence of CMV in carotid endarterectomies from 40 patients suffering from atherosclerosis using immunohistochemistry and the polymerase chain reaction (PCR). None of the specimens examined gave a positive result, indicating absence of CMV particles or CMV DNA sequences in the walls of carotid arteries. This finding suggests it is possible that CMV infection may not play a major role in the formation of atheroma. Therefore, further investigation is required in order to clarify the etiology of atherosclerosis.

  3. Antiartherosclerotic Effects of Plant Flavonoids

    PubMed Central

    Gunasekaran, Baskaran; Shukor, Mohd Yunus

    2014-01-01

    Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin. PMID:24971331

  4. Risk Factors for Atherosclerosis and the Development of Pre-Atherosclerotic Intimal Hyperplasia

    PubMed Central

    Cizek, Stephanie M.; Bedri, Shahinaz; Talusan, Paul; Silva, Nilsa; Lee, Hang; Stone, James R.

    2007-01-01

    Summary Intimal hyperplasia or thickening is considered to be the precursor lesion for atherosclerosis in humans; however the factors governing its formation are unclear. In the atherosclerosis-resistant internal thoracic artery, pre-atherosclerotic intimal hyperplasia routinely forms during adulthood after the 4th decade and is associated with at least two traditional risk factors for atherosclerosis: age and smoking. Background Intimal hyperplasia, or thickening, is considered to be the precursor lesion for atherosclerosis in humans; however, the factors governing its formation are unclear. To gain insight into the etiology of pre-atherosclerotic intimal hyperplasia, traditional risk factors for atherosclerosis were correlated with the intimal hyperplasia in an atherosclerosis-resistant vessel, the internal thoracic artery. Methods Paired internal thoracic arteries were obtained from 89 autopsies. Multivariate logistic regression and multiple regression models were used to examine the association of pre-atherosclerotic intimal hyperplasia with traditional risk factors for atherosclerosis: age, gender, hypertension, smoking, body mass index, diabetes, and hypercholesterolemia. Results Atherosclerotic lesions consisting of fatty streaks and/or type III intermediate lesions were identified in 19 autopsies. Only age >75 years was found to be significantly correlated with atherosclerotic lesion development (P=0.01). Multiple regression model of the intima/media ratio in all 89 cases revealed age >75 years (P<0.0001), age 51–75years (P=0.0012), smoking (P=0.008) and hypertension (P=0.02) to be significantly correlated with intimal thickness. In the 70 cases without atherosclerosis, only age 51–75 years (P=0.006) and smoking (P=0.028) were found to be significantly associated with pre-atherosclerotic intimal thickening. Conclusions In the atherosclerosis-resistant internal thoracic artery, pre-atherosclerotic intimal hyperplasia routinely forms during adulthood after the 4th decade and is associated with at least two traditional risk factors for atherosclerosis: age and smoking. These observations indicate that in some settings, intimal hyperplasia may be part of the disease process of atherosclerosis, and that its formation may be influenced by traditional risk factors for atherosclerosis. PMID:18005873

  5. The impact of atherosclerosis and vascular collagen on energy-based vessel sealing.

    PubMed

    Martin, Kimberly; Krugman, Kimberly; Latimer, Cassandra; Moore, Camille

    2013-12-01

    Bipolar energy ligation of vessels in surgery is common. Although rare, serious failures occur. Atherosclerosis may contribute to seal failures by altering vascular compressibility and collagen content; however, no data exist. Femoral and iliac arteries of six Yucatan swine with an identified genetic locus predisposing them to atherosclerosis were denuded with a Fogarty catheter. Animals were fed a high-fat diet for 28 wk. A Yorkshire pig was used as a normal control and fed a standard diet. At 28 wk, arteries were measured for their diameters, sealed, and divided in vivo with LigaSure. The sealed artery sections were excised and subjected to burst pressure testing. Half of the seal distal to the aorta was kept intact for histology and collagen and elastin quantification. A multiple linear regression model was used to assess variables contributing to burst pressure. Covariates included were vessel diameter, degree of atherosclerosis, and collagen content. Experimental animals were hypercholesterolemic. Atherosclerosis occurred in 90% of seals in induced animals, with severe atherosclerosis in 62% of seals. There was site-selective deposition of atherosclerotic plaques in larger diameter iliac vessels. A model including collagen and size best predicted burst pressure. Every 10-U increase in collagen resulted in 15% increase in burst pressure (95% confidence interval = 0.2%-32%, P = 0.047, R(2) = 0.36). Atherosclerosis was unrelated to burst pressure controlling for collagen and size. Collagen and size provide the best model fit for predicting burst pressure. Quantitative research in human vasculature is warranted to better understand the influence of atherosclerosis and collagen content on seal failures. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Human cells involved in atherosclerosis have a sex.

    PubMed

    Franconi, Flavia; Rosano, Giuseppe; Basili, Stefania; Montella, Andrea; Campesi, Ilaria

    2017-02-01

    The influence of sex has been largely described in cardiovascular diseases. Atherosclerosis is a complex process that involves many cell types such as vessel cells, immune cells and endothelial progenitor cells; however, many, if not all, studies do not report the sex of the cells. This review focuses on sex differences in human cells involved in the atherosclerotic process, emphasizing the role of sex hormones. Furthermore, we report sex differences and issues related to the processes that determine the fate of the cells such as apoptotic and autophagic mechanisms. The analysis of the data reveals that there are still many gaps in our knowledge regarding sex influences in atherosclerosis, largely for the cell types that have not been well studied, stressing the urgent need for a clear definition of experimental conditions and the inclusion of both sexes in preclinical studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Anti-cytokine therapy for prevention of atherosclerosis.

    PubMed

    Kirichenko, Tatiana V; Sobenin, Igor A; Nikolic, Dragana; Rizzo, Manfredi; Orekhov, Alexander N

    2016-10-15

    Currently a chronic inflammation is considered to be the one of the most important reasons of the atherosclerosis progression. A huge amount of researches over the past few decades are devoted to study the various mechanisms of inflammation in the development of atherosclerotic lesions. To review current capabilities of anti-inflammatory therapy for the prevention and treatment of atherosclerosis and its clinical manifestations. Appropriate articles on inflammatory cytokines in atherosclerosis and anti-inflammatory prevention of atherosclerosis were searched in PubMed Database from their respective inceptions until October 2015. "The role of inflammatory cytokines in the development of atherosclerotic lesions" describes available data on the possible inflammatory mechanisms of the atherogenesis with a special attention to the role of cytokines. "Modern experience of anti-inflammatory therapy for the treatment of atherosclerosis" describes modern anti-inflammatory preparations with anti-atherosclerotic effect including natural preparations. In "the development of anti-inflammatory herbal preparation for atherosclerosis prevention" an algorithm is demonstrated that includes screening of anti-cytokine activity of different natural products, the development of the most effective combination and estimation of its effect in cell culture model, in animal model of the acute aseptic inflammation and in a pilot clinical trial. A natural preparation "Inflaminat" based on black elder berries (Sambucus nigra L.), violet tricolor herb (Viola tricolor L.) and calendula flowers (Calendula officinalis L.) possessing anti-cytokine activity was developed using the designed algorithm. The results of the following 2-year double blind placebo-controlled clinical study show that "Inflaminat" reduces carotid IMT progression, i.e. has anti-atherosclerotic effect. Anti-cytokine therapy may be a promising direction in moderation of atherogenesis, especially when it begins on the early stages of subclinical atherosclerosis. The use of herbal preparations with anti-cytokine mechanism of action is the most perspective for timely prevention of atherosclerosis, as they have no significant side effects and can be prescribed for long-term administration. Copyright © 2015 Elsevier GmbH. All rights reserved.

  8. Atherosclerosis in the Erythrocebus patas, an old world monkey.

    PubMed Central

    Mahley, R. W.; Johnson, D. K.; Pucak, G. J.; Fry, D. L.

    1980-01-01

    Fifty monkeys of the species Erythrocebus patas were fed a control monkey chow, a semi-synthetic diet containing 25% lard, or a semisynthetic diet containing 25% lard and 0.5% cholesterol for 2 years. The patas monkeys had naturally occurring atherosclerosis that was greatly accelerated by feeding a diet containing cholesterol. The atherosclerosis involved the aorta, predominantly the abdominal portion, the coronary arteries, and various peripheral vessels. Histologically, the atherosclerosis was characterized by intimal proliferative lesions associated with intra- and extracellular lipid deposition. Complicated lesions that developed after 2 years on the cholesterol-containing diet were associated with lipid crystals, necrosis, mineralization, and encroachment upon the media. Adventitial reactions characterized by increased vascularity and the presence of inflammatory cells were seen. All of these observations have been described as components of the human atherosclerotic disease process. The similarity of the patas monkey atherosclerosis to human atherosclerosis, the relatively large size and easy handling of the animals, and the fact that previous studies have shown the lipoproteins of both control and cholesterol-fed monkeys to resemble human lipoproteins all contribute to making the patas monkey a useful model for the study of experimental atherosclerosis. Images Figure 1-5 Figure 6 Figure 7-10 Figure 11 Figure 12 PMID:6766672

  9. The Prebiotic Inulin Aggravates Accelerated Atherosclerosis in Hypercholesterolemic APOE*3-Leiden Mice.

    PubMed

    Hoving, Lisa R; de Vries, Margreet R; de Jong, Rob C M; Katiraei, Saeed; Pronk, Amanda; Quax, Paul H A; van Harmelen, Vanessa; Willems van Dijk, Ko

    2018-02-03

    The prebiotic inulin has proven effective at lowering inflammation and plasma lipid levels. As atherosclerosis is provoked by both inflammation and hyperlipidemia, we aimed to determine the effect of inulin supplementation on atherosclerosis development in hypercholesterolemic APOE*3-Leiden ( E3L ) mice. Male E3L mice were fed a high-cholesterol (1%) diet, supplemented with or without 10% inulin for 5 weeks. At week 3, a non-constrictive cuff was placed around the right femoral artery to induce accelerated atherosclerosis. At week 5, vascular pathology was determined by lesion thickness, vascular remodeling, and lesion composition. Throughout the study, plasma lipids were measured and in week 5, blood monocyte subtypes were determined using flow cytometry analysis. In contrast to our hypothesis, inulin exacerbated atherosclerosis development, characterized by increased lesion formation and outward vascular remodeling. The lesions showed increased number of macrophages, smooth muscle cells, and collagen content. No effects on blood monocyte composition were found. Inulin significantly increased plasma total cholesterol levels and total cholesterol exposure. In conclusion, inulin aggravated accelerated atherosclerosis development in hypercholesterolemic E3L mice, accompanied by adverse lesion composition and outward remodeling. This process was not accompanied by differences in blood monocyte composition, suggesting that the aggravated atherosclerosis development was driven by increased plasma cholesterol.

  10. The Prebiotic Inulin Aggravates Accelerated Atherosclerosis in Hypercholesterolemic APOE*3-Leiden Mice

    PubMed Central

    de Jong, Rob C. M.; Katiraei, Saeed; Pronk, Amanda; van Harmelen, Vanessa

    2018-01-01

    The prebiotic inulin has proven effective at lowering inflammation and plasma lipid levels. As atherosclerosis is provoked by both inflammation and hyperlipidemia, we aimed to determine the effect of inulin supplementation on atherosclerosis development in hypercholesterolemic APOE*3-Leiden (E3L) mice. Male E3L mice were fed a high-cholesterol (1%) diet, supplemented with or without 10% inulin for 5 weeks. At week 3, a non-constrictive cuff was placed around the right femoral artery to induce accelerated atherosclerosis. At week 5, vascular pathology was determined by lesion thickness, vascular remodeling, and lesion composition. Throughout the study, plasma lipids were measured and in week 5, blood monocyte subtypes were determined using flow cytometry analysis. In contrast to our hypothesis, inulin exacerbated atherosclerosis development, characterized by increased lesion formation and outward vascular remodeling. The lesions showed increased number of macrophages, smooth muscle cells, and collagen content. No effects on blood monocyte composition were found. Inulin significantly increased plasma total cholesterol levels and total cholesterol exposure. In conclusion, inulin aggravated accelerated atherosclerosis development in hypercholesterolemic E3L mice, accompanied by adverse lesion composition and outward remodeling. This process was not accompanied by differences in blood monocyte composition, suggesting that the aggravated atherosclerosis development was driven by increased plasma cholesterol. PMID:29401645

  11. Cellular Model of Atherogenesis Based on Pluripotent Vascular Wall Pericytes.

    PubMed

    Ivanova, Ekaterina A; Orekhov, Alexander N

    2016-01-01

    Pericytes are pluripotent cells that can be found in the vascular wall of both microvessels and large arteries and veins. They have distinct morphology with long branching processes and form numerous contacts with each other and with endothelial cells, organizing the vascular wall cells into a three-dimensional network. Accumulating evidence demonstrates that pericytes may play a key role in the pathogenesis of vascular disorders, including atherosclerosis. Macrovascular pericytes are able to accumulate lipids and contribute to growth and vascularization of the atherosclerotic plaque. Moreover, they participate in the local inflammatory process and thrombosis, which can lead to fatal consequences. At the same time, pericytes can represent a useful model for studying the atherosclerotic process and for the development of novel therapeutic approaches. In particular, they are suitable for testing various substances' potential for decreasing lipid accumulation induced by the incubation of cells with atherogenic low-density lipoprotein. In this review we will discuss the application of cellular models for studying atherosclerosis and provide several examples of successful application of these models to drug research.

  12. Digital image processing of vascular angiograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Blankenhorn, D. H.; Beckenbach, E. S.; Crawford, D. W.; Brooks, S. H.

    1975-01-01

    A computer image processing technique was developed to estimate the degree of atherosclerosis in the human femoral artery. With an angiographic film of the vessel as input, the computer was programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements were combined into an atherosclerosis index, which was found to correlate well with both visual and chemical estimates of atherosclerotic disease.

  13. Protein Thiol Redox Signaling in Monocytes and Macrophages.

    PubMed

    Short, John D; Downs, Kevin; Tavakoli, Sina; Asmis, Reto

    2016-11-20

    Monocyte and macrophage dysfunction plays a critical role in a wide range of inflammatory disease processes, including obesity, impaired wound healing diabetic complications, and atherosclerosis. Emerging evidence suggests that the earliest events in monocyte or macrophage dysregulation include elevated reactive oxygen species production, thiol modifications, and disruption of redox-sensitive signaling pathways. This review focuses on the current state of research in thiol redox signaling in monocytes and macrophages, including (i) the molecular mechanisms by which reversible protein-S-glutathionylation occurs, (ii) the identification of bona fide S-glutathionylated proteins that occur under physiological conditions, and (iii) how disruptions of thiol redox signaling affect monocyte and macrophage functions and contribute to atherosclerosis. Recent Advances: Recent advances in redox biochemistry and biology as well as redox proteomic techniques have led to the identification of many new thiol redox-regulated proteins and pathways. In addition, major advances have been made in expanding the list of S-glutathionylated proteins and assessing the role that protein-S-glutathionylation and S-glutathionylation-regulating enzymes play in monocyte and macrophage functions, including monocyte transmigration, macrophage polarization, foam cell formation, and macrophage cell death. Protein-S-glutathionylation/deglutathionylation in monocytes and macrophages has emerged as a new and important signaling paradigm, which provides a molecular basis for the well-established relationship between metabolic disorders, oxidative stress, and cardiovascular diseases. The identification of specific S-glutathionylated proteins as well as the mechanisms that control this post-translational protein modification in monocytes and macrophages will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis and other metabolic diseases. Antioxid. Redox Signal. 25, 816-835.

  14. Blueberry diet protect against atherosclerosis in apoE-deficient mice by inhibiting scavenger receptor expression

    USDA-ARS?s Scientific Manuscript database

    Atherosclerosis is an inflammatory process that leads to the onset of cardiovascular disease. The scavenger receptor-mediated uptake of oxLDL by macrophages leads to foam cell formation, which is an initial event in the formation of atherosclerotic fatty streak lesions. In this report, the mechanism...

  15. PDGFRβ signaling regulates local inflammation and synergizes with hypercholesterolemia to promote atherosclerosis

    PubMed Central

    He, Chaoyong; Medley, Shayna C.; Hu, Taishan; Hinsdale, Myron E.; Lupu, Florea; Virmani, Renu; Olson, Lorin E.

    2015-01-01

    Platelet-derived growth factor (PDGF) is a mitogen and chemoattractant for vascular smooth muscle cells (VSMCs). However, the direct effects of PDGF receptor β (PDGFRβ) activation on VSMCs have not been studied in the context of atherosclerosis. Here, we present a new mouse model of atherosclerosis with an activating mutation in PDGFRβ. Increased PDGFRβ signaling induces chemokine secretion and leads to leukocyte accumulation in the adventitia and media of the aorta. Furthermore, PDGFRβD849V amplifies and accelerates atherosclerosis in hypercholesterolemic ApoE−/− or Ldlr−/− mice. Intriguingly, increased PDGFRβ signaling promotes advanced plaque formation at novel sites in the thoracic aorta and coronary arteries. However, deletion of the PDGFRβ-activated transcription factor STAT1 in VSMCs alleviates inflammation of the arterial wall and reduces plaque burden. These results demonstrate that PDGFRβ pathway activation has a profound effect on vascular disease and support the conclusion that inflammation in the outer arterial layers is a driving process for atherosclerosis. PMID:26183159

  16. [Potential protective role of nitric oxide and Hsp70 linked to functional foods in the atherosclerosis].

    PubMed

    Camargo, Alejandra B; Manucha, Walter

    Atherosclerosis, one of the main pathologic entities considered epidemic and a worldwide public health problem, is currently under constant review as regards its basic determining mechanisms and therapeutic possibilities. In this regard, all patients afflicted with the disease exhibit mitochondrial dysfunction, oxidative stress and inflammation. Interestingly, nitric oxide - a known vasoactive messenger gas - has been closely related to the inflammatory, oxidative and mitochondrial dysfunctional process that characterizes atherosclerosis. In addition, it has recently been demonstrated that alterations in the bioavailability of nitric oxide would induce the expression of heat shock proteins. This agrees with the use of functional foods as a strategy to prevent both vascular aging and the development of atherosclerosis. Finally, a greater knowledge regarding the mechanisms implied in the development of atherosclerosis will enable proposing new and possible hygiene, health and therapeutic interventions. Copyright © 2016 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Oral microbiota in patients with atherosclerosis.

    PubMed

    Fåk, Frida; Tremaroli, Valentina; Bergström, Göran; Bäckhed, Fredrik

    2015-12-01

    Recent evidence suggests that the microbiota may be considered as an environmental factor that contributes to the development of atherosclerosis. Periodontal disease has been associated with cardio- and cerebrovascular events, and inflammation in the periodontium is suggested to increase the systemic inflammatory level of the host, which may in turn influence plaque composition and rupture. We previously showed that bacteria from the oral cavity and the gut could be found in atherosclerotic plaques. To elucidate whether the oral microbiota composition differed between patients with asymptomatic and symptomatic atherosclerosis we performed pyrosequencing of the oral microbiota of 92 individuals including patients with asymptomatic and symptomatic atherosclerosis and control individuals without carotid plaques or previous stroke or myocardial infarction. The overall microbial structure was similar in controls and atherosclerosis patients, but patients with symptomatic atherosclerosis had higher relative abundance of Anaeroglobus (mean 0.040% (SD 0.049)) than the control group (0.010% (SD 0.028)) (P = 0.03). Using linear regression analysis, we found that Parvimonas associated positively with uCRP and Capnocytophaga, Catonella and Lactobacillus associated with blood lipid markers. In conclusion, abundance of Anaeroglobus in the oral cavity could be associated with symptomatic atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. BAFF Neutralization Aggravates Atherosclerosis.

    PubMed

    Tsiantoulas, Dimitrios; Sage, Andrew P; Göderle, Laura; Ozsvar-Kozma, Maria; Murphy, Deirdre; Porsch, Florentina; Pasterkamp, Gerard; Menche, Jörg; Schneider, Pascal; Mallat, Ziad; Binder, Christoph J

    2018-06-01

    Background -Atherosclerotic cardiovascular disease (heart attacks and strokes) is the major cause of death globally and is caused by the buildup of a plaque in the arterial wall. Genomic data showed that the B cell activating factor receptor (BAFFR) pathway, which is specifically essential for the survival of conventional B lymphocytes (B-2 cells), is a key driver of coronary heart disease. Deletion or antibody-mediated blockade of BAFFR ablates B-2 cells and decreases experimental atherosclerosis. Anti-BAFF immunotherapy is approved for treatment of autoimmune systemic lupus erythematosus and can therefore be expected to limit their associated cardiovascular risk. However, direct effects of anti-BAFF immunotherapy on atherosclerosis remain unknown. Methods -To investigate the effect of BAFF neutralization in atherosclerosis, we treated Apoe -/- and Ldlr -/- mice with a well-characterized blocking anti-BAFF antibody. Moreover, to investigate the mechanism by which BAFF impacts atherosclerosis, we studied atherosclerosis-prone mice that lack the alternative receptor for BAFF, transmembrane activator and CAML interactor (TACI). Results -We demonstrate here that anti-BAFF antibody treatment increased atherosclerosis in mice, despite efficient depletion of mature B-2 cells, suggesting a unique mechanism of action. Indeed, myeloid cell specific deletion TACI, also results in increased atherosclerosis, while B cell-specific TACI deletion had no effect. Mechanistically, BAFF-TACI signaling represses macrophage IRF7-dependent (but not NF-kB dependent) TLR9 responses including proatherogenic CXCL10 production. Conclusions -These data identify a novel B cell independent anti-inflammatory role for BAFF in atherosclerosis and may have important clinical implications.

  19. Potential Mechanisms Linking Atherosclerosis and Increased Cardiovascular Risk in COPD: Focus On Sirtuins

    PubMed Central

    Corbi, Graziamaria; Bianco, Andrea; Turchiarelli, Viviana; Cellurale, Michele; Fatica, Federica; Daniele, Aurora; Mazzarella, Gennaro; Ferrara, Nicola

    2013-01-01

    The development of atherosclerosis is a multi-step process, at least in part controlled by the vascular endothelium function. Observations in humans and experimental models of atherosclerosis have identified monocyte recruitment as an early event in atherogenesis. Chronic inflammation is associated with ageing and its related diseases (e.g., atherosclerosis and chronic obstructive pulmonary disease). Recently it has been discovered that Sirtuins (NAD+-dependent deacetylases) represent a pivotal regulator of longevity and health. They appear to have a prominent role in vascular biology and regulate aspects of age-dependent atherosclerosis. Many studies demonstrate that SIRT1 exhibits anti-inflammatory properties in vitro (e.g., fatty acid-induced inflammation), in vivo (e.g., atherosclerosis, sustainment of normal immune function in knock-out mice) and in clinical studies (e.g., patients with chronic obstructive pulmonary disease). Because of a significant reduction of SIRT1 in rodent lungs exposed to cigarette smoke and in lungs of patients with chronic obstructive pulmonary disease (COPD), activation of SIRT1 may be a potential target for chronic obstructive pulmonary disease therapy. We review the inflammatory mechanisms involved in COPD-CVD coexistence and the potential role of SIRT1 in the regulation of these systems. PMID:23774840

  20. [The impact of electronic cigarettes usage on the endothelial function and the progression of atherosclerosis].

    PubMed

    Knura, Miłosz; Dragon, Jonasz; Łabuzek, Krzysztof; Okopień, Bogusław

    2018-01-23

    The exponetial growth in popularity of electronic cigarettes in the world markets intensifies the debate about their health effects. The smoking of traditional tabacoo products is a factor associated with the endothelium damage and progression of atherosclerosis. The elimination of the combustion process in electronic cigarettes allows to conclude that they are less harmful to a vascular endothelium than traditional tobacco products. E-cigarette aerosol contains many compounds that have an influence on initiation and progression of atherosclerosis. Nicotine protherogenic action is not fully explained. On one hand, nicotine modifies metabolic pathways leading to atherosclerosis, whereas epidemiological studies do not show an increased risk of cardiovascular disease in the population using nicotine replacement therapy or snuff. Acrolein, formaldehyde and the ultrafine particles generated during e-liquid heating have an impact on initiation and progression of atherosclerosis, but their level is lower than that of tobacco smoke. In order to assess accurately the longterm effects of e-cigarettes, it is necessary to conduct epidemiological studies measuring the effects of using e-cigarettes. It is claimed that the use of electronic cigarettes has a potential impact on the development of atherosclerosis, but is significantly lower than that of traditional cigarettes.

  1. Protective Effects of Hydroxychloroquine against Accelerated Atherosclerosis in Systemic Lupus Erythematosus

    PubMed Central

    Cauli, Alberto

    2018-01-01

    Cardiovascular (CV) morbidity and mortality are a challenge in management of patients with systemic lupus erythematosus (SLE). Higher risk of CV disease in SLE patients is mostly related to accelerated atherosclerosis. Nevertheless, high prevalence of traditional cardiovascular risk factors in SLE patients does not fully explain the increased CV risk. Despite the pathological bases of accelerated atherosclerosis are not fully understood, it is thought that this process is driven by the complex interplay between SLE and atherosclerosis pathogenesis. Hydroxychloroquine (HCQ) is a cornerstone in treatment of SLE patients and has been thought to exert a broad spectrum of beneficial effects on disease activity, prevention of damage accrual, and mortality. Furthermore, HCQ is thought to protect against accelerated atherosclerosis targeting toll-like receptor signaling, cytokine production, T-cell and monocyte activation, oxidative stress, and endothelial dysfunction. HCQ was also described to have beneficial effects on traditional CV risk factors, such as dyslipidemia and diabetes. In conclusion, despite lacking randomized controlled trials unambiguously proving the protection of HCQ against accelerated atherosclerosis and incidence of CV events in SLE patients, evidence analyzed in this review is in favor of its beneficial effect. PMID:29670462

  2. Lipid-Altering Therapies and the Progression of Atherosclerotic Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wierzbicki, Anthony S.

    2007-04-15

    Lipids play a key role in the progression of atherosclerosis, and lipid-lowering therapies have been studied for 30 years in coronary disease. Measurement of the progression of atherosclerosis through carotid intima-media thickness, coronary mean lumen diameter, and, mostly recently, intravascular ultrasound is generally accepted. This article reviews the role of lipid-lowering therapies in changing the rate of atherosclerosis progression in the coronary and carotid circulations. Statins are the primary therapy used to reduce atherosclerosis and cardiovascular events, including strokes and transient ischemic attacks, and have benefits in reducing events in patients undergoing carotid endarterectomy. In contrast, data for other agents,more » including fibrates and nicotinic acid, in reducing the progression of atherosclerosis are less extensive and not as well known. There is increasing interest in optimizing the whole lipid profile, as this might deliver extra benefits over and above statin therapy alone. Initial proof of this concept has recently come from studies that measured the progression of atherosclerosis and showed that adding nicotinic acid to statin therapy and, more directly, infusion of high-density lipoprotein-like particles reduced progression and indeed might induce regression of the disease. It is likely that the management of significant carotid stenosis will become ever more drug focused and will be customized to the lipid profile of each patient with intervention reserved only for late-stage symptomatic disease.« less

  3. The walking dead: macrophage inflammation and death in atherosclerosis.

    PubMed

    Kavurma, Mary M; Rayner, Katey J; Karunakaran, Denuja

    2017-04-01

    To highlight recent studies that describe novel inflammatory and signaling mechanisms that regulate macrophage death in atherosclerosis. Macrophages contribute to all stages of atherosclerosis. The traditional dogma states that in homeostatic conditions, macrophages undergo apoptosis and are efficiently phagocytosed to be cleared by a process called efferocytosis. In advanced atherosclerosis, however, defective efferocytosis results in secondary necrosis of these uncleared apoptotic cells, which ultimately contributes to the formation of the characteristic necrotic core and the vulnerable plaque. Here, we outline the different types of lesional macrophage death: apoptosis, autophagic and the newly defined necroptosis (i.e. a type of programmed necrosis). Recent discoveries demonstrate that macrophage necroptosis directly contributes to necrotic core formation and plaque instability. Further, promoting the resolution of inflammation using preresolving mediators has been shown to enhance efferocytosis and decrease plaque vulnerability. Finally, the canonical 'don't eat me' signal CD47 has recently been described as playing an important role in atherosclerotic lesion progression by impairing efficient efferocytosis. Although we have made significant strides in improving our understanding of cell death and clearance mechanisms in atherosclerosis, there still remains unanswered questions as to how these pathways can be harnessed using therapeutics to promote lesion regression and disease stability. Improving our understanding of the mechanisms that regulate macrophage death in atherosclerosis, in particular apoptosis, necroptosis and efferocytosis, will provide novel therapeutic opportunities to resolve atherosclerosis and promote plaque stability.

  4. Proprotein convertase furin/PCSK3 and atherosclerosis: New insights and potential therapeutic targets.

    PubMed

    Ren, Kun; Jiang, Ting; Zheng, Xi-Long; Zhao, Guo-Jun

    2017-07-01

    Furin, a member of the mammalian proprotein convertases family, can promote the proteolytic maturation of proproteins. It is known that furin is predominantly present in certain cell types of human atherosclerotic lesions and neointima in animal models, including vascular smooth muscle cells, endothelial cells and mononuclear inflammatory cells. Evidence suggests that furin participates in the initiation and progression of atherosclerosis through regulation of lipid and cholesterol metabolism, inflammatory response, blood pressure and the formation of atherosclerotic lesions. This review provides a panorama of the roles of furin in atherosclerosis and the insights into the prevention and treatment of atherosclerosis and cardiovascular disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Ageing induced vascular smooth muscle cell senescence in atherosclerosis.

    PubMed

    Uryga, Anna K; Bennett, Martin R

    2016-04-15

    Atherosclerosis is a disease of ageing in that its incidence and prevalence increase with age. However, atherosclerosis is also associated with biological ageing, manifest by a number of typical hallmarks of ageing in the atherosclerotic plaque. Thus, accelerated biological ageing may be superimposed on the effects of chronological ageing in atherosclerosis. Tissue ageing is seen in all cells that comprise the plaque, but particularly in vascular smooth muscle cells (VSMCs). Hallmarks of ageing include evidence of cell senescence, DNA damage (including telomere attrition), mitochondrial dysfunction, a pro-inflammatory secretory phenotype, defects in proteostasis, epigenetic changes, deregulated nutrient sensing, and exhaustion of progenitor cells. In this model, initial damage to DNA (genomic, telomeric, mitochondrial and epigenetic changes) results in a number of cellular responses (cellular senescence, deregulated nutrient sensing and defects in proteostasis). Ultimately, ongoing damage and attempts at repair by continued proliferation overwhelm reparative capacity, causing loss of specialised cell functions, cell death and inflammation. This review summarises the evidence for accelerated biological ageing in atherosclerosis, the functional consequences of cell ageing on cells comprising the plaque, and the causal role that VSMC senescence plays in atherogenesis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  6. Mindin deficiency in macrophages protects against foam cell formation and atherosclerosis by targeting LXR-β.

    PubMed

    Zhang, Cheng; Qin, Juan-Juan; Gong, Fu-Han; Tong, Jing-Jing; Cheng, Wen-Lin; Wang, Haiping; Zhang, Yan; Zhu, Xueyong; She, Zhi-Gang; Xia, Hao; Zhu, Li-Hua

    2018-06-15

    Mindin, which is a highly conserved extracellular matrix protein, has been documented to play pivotal roles in regulating angiogenesis, inflammatory processes, and immune responses. The aim of the present study was to assess whether mindin contributes to the development of atherosclerosis. A significant up-regulation of Mindin expression was observed in the serum, arteries and atheromatous plaques of ApoE -/- mice after high-fat diet treatment. Mindin -/- ApoE -/- mice and macrophage-specific mindin overexpression in ApoE -/- mice (Lyz2-mindin-TG) were generated to evaluate the effect of mindin on the development of atherosclerosis. The Mindin -/- ApoE -/- mice exhibited significantly ameliorated atherosclerotic burdens in the entire aorta and aortic root and increased atherosclerotic plaque stability. Moreover, bone marrow transplantation further demonstrated that mindin deficiency in macrophages was largely responsible for the alleviated atherogenesis. The Lyz2-mindin-TG mice exhibited the opposite phenotype. Mindin deficiency enhanced foam cell formation by increasing the expression of cholesterol effectors, including ABCA1 and ABCG1. The mechanistic study indicated that mindin ablation promoted LXR-β expression via a direct interaction. Importantly, LXR-β inhibition largely reversed the ameliorating effect of mindin deficiency on foam cell formation and ABCA1 and ABCG1 expression. The present study demonstrated that mindin deficiency serves as a novel mediator that protects against foam cell formation and atherosclerosis by directly interacting with LXR-β. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  7. A review of plant-based compounds and medicinal plants effective on atherosclerosis

    PubMed Central

    Sedighi, Mehrnoosh; Bahmani, Mahmoud; Asgary, Sedigheh; Beyranvand, Fatemeh; Rafieian-Kopaei, Mahmoud

    2017-01-01

    Atherosclerosis is one of the most important cardiovascular diseases that involve vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis through affecting the involved factors. The main purpose of this review article is to investigate and introduce medicinal plants and their potential activities regarding antioxidant properties, effective on lipids level and development of plaque, atherosclerosis, and progression of atherosclerosis as well as the development of cardiovascular disease and ischemia. To search for the relevant articles indexed in Information Sciences Institute, PubMed, Scientific Information Database, IranMedex, and Scopus between 1980 and 2013, with further emphasis on those indexed from 2004 to 2015, we used these search terms: atherosclerosis, antioxidant, cholesterol, inflammation, and the medicinal plants below. Then, the articles with inclusion criteria were used in the final analysis of the findings. Plant-based active compounds, including phenols, flavonoids, and antioxidants, can be effective on atherosclerosis predisposing factors and hence in preventing this disease and associated harmful complications, especially through reducing cholesterol, preventing increase in free radicals, and ultimately decreasing vascular plaque and vascular resistance. Hence, medicinal plants can contribute to treating atherosclerosis and preventing its progression through reducing cholesterolemia, free radicals, inflammation, vascular resistance, and certain enzymes. They, alone or in combination with hypocholesterolemic drugs, can therefore be useful for patients with hyperlipidemia and its complications. PMID:28461816

  8. A review of plant-based compounds and medicinal plants effective on atherosclerosis.

    PubMed

    Sedighi, Mehrnoosh; Bahmani, Mahmoud; Asgary, Sedigheh; Beyranvand, Fatemeh; Rafieian-Kopaei, Mahmoud

    2017-01-01

    Atherosclerosis is one of the most important cardiovascular diseases that involve vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis through affecting the involved factors. The main purpose of this review article is to investigate and introduce medicinal plants and their potential activities regarding antioxidant properties, effective on lipids level and development of plaque, atherosclerosis, and progression of atherosclerosis as well as the development of cardiovascular disease and ischemia. To search for the relevant articles indexed in Information Sciences Institute, PubMed, Scientific Information Database, IranMedex, and Scopus between 1980 and 2013, with further emphasis on those indexed from 2004 to 2015, we used these search terms: atherosclerosis, antioxidant, cholesterol, inflammation, and the medicinal plants below. Then, the articles with inclusion criteria were used in the final analysis of the findings. Plant-based active compounds, including phenols, flavonoids, and antioxidants, can be effective on atherosclerosis predisposing factors and hence in preventing this disease and associated harmful complications, especially through reducing cholesterol, preventing increase in free radicals, and ultimately decreasing vascular plaque and vascular resistance. Hence, medicinal plants can contribute to treating atherosclerosis and preventing its progression through reducing cholesterolemia, free radicals, inflammation, vascular resistance, and certain enzymes. They, alone or in combination with hypocholesterolemic drugs, can therefore be useful for patients with hyperlipidemia and its complications.

  9. [Atherosclerosis, oxidative stress and physical activity. Review].

    PubMed

    Calderón, Juan Camilo; Fernández, Ana Zita; María de Jesús, Alina Isabel

    2008-09-01

    Atherosclerosis and related diseases have emerged as the leading cause of morbidity and mortality in the western world and, therefore, as a problem of public health. Free radicals and reactive oxygen species have been suggested to be part of the pathophysiology of these diseases. It is well known that physical activity plays an important role as a public health measure by reducing the risk of developing atherosclerosis-related cardiovascular events in the general population. It is also known that physical activity increases in some tissues, the reactive oxygen species production. In this review the atherosclerosis-oxidative stress-physical activity relationship is focused on the apparent paradox by which physical activity reduces atherosclerosis and cardiovascular risk in parallel with the activation of an apparently damaging mechanism which is an increased oxidative stress. A hypothesis including the experimental and clinical evidence is presented to explain the aforementioned paradox.

  10. Follicular B Cells Promote Atherosclerosis via T Cell-Mediated Differentiation Into Plasma Cells and Secreting Pathogenic Immunoglobulin G.

    PubMed

    Tay, Christopher; Liu, Yu-Han; Kanellakis, Peter; Kallies, Axel; Li, Yi; Cao, Anh; Hosseini, Hamid; Tipping, Peter; Toh, Ban-Hock; Bobik, Alex; Kyaw, Tin

    2018-05-01

    B cells promote or protect development of atherosclerosis. In this study, we examined the role of MHCII (major histocompatibility II), CD40 (cluster of differentiation 40), and Blimp-1 (B-lymphocyte-induced maturation protein) expression by follicular B (FO B) cells in development of atherosclerosis together with the effects of IgG purified from atherosclerotic mice. Using mixed chimeric Ldlr -/- mice whose B cells are deficient in MHCII or CD40, we demonstrate that these molecules are critical for the proatherogenic actions of FO B cells. During development of atherosclerosis, these deficiencies affected T-B cell interactions, germinal center B cells, plasma cells, and IgG. As FO B cells differentiating into plasma cells require Blimp-1, we also assessed its role in the development of atherosclerosis. Blimp-1-deficient B cells greatly attenuated atherosclerosis and immunoglobulin-including IgG production, preventing IgG accumulation in atherosclerotic lesions; Blimp-1 deletion also attenuated lesion proinflammatory cytokines, apoptotic cell numbers, and necrotic core. To determine the importance of IgG for atherosclerosis, we purified IgG from atherosclerotic mice. Their transfer but not IgG from nonatherosclerotic mice into Ldlr -/- mice whose B cells are Blimp-1-deficient increased atherosclerosis; transfer was associated with IgG accumulating in atherosclerotic lesions, increased lesion inflammatory cytokines, apoptotic cell numbers, and necrotic core size. The mechanism by which FO B cells promote atherosclerosis is highly dependent on their expression of MHCII, CD40, and Blimp-1. FO B cell differentiation into IgG-producing plasma cells also is critical for their proatherogenic actions. Targeting B-T cell interactions and pathogenic IgG may provide novel therapeutic strategies to prevent atherosclerosis and its adverse cardiovascular complications. © 2018 American Heart Association, Inc.

  11. Risk of carotid atherosclerosis associated with genetic polymorphisms of apolipoprotein E and inflammatory genes among arsenic exposed residents in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Y.-C.; Hsieh, F.-I; Lien, L.-M.

    2008-02-15

    Arsenic had been reported to be associated with carotid atherosclerosis. However, there were few studies to evaluate the association between the susceptible gene of lipid metabolism and inflammation and carotid atherosclerosis among arsenic exposure residents. The aim of the study was to investigate the associations between the genetic polymorphisms of APOE and MCP-1 and the risk of carotid atherosclerosis among residents of Lanyang Basin in Taiwan which was a newly confirmed arsenic-endemic area. In total, 479 residents who had been genotyped of these two genes and examined the severity of carotid atherosclerosis were included in this study. The study subjectsmore » with carotid intima media thickness (IMT) {>=} 1.0 mm or with the observable plaque in the extracranial carotid artery were diagnosed as carotid atherosclerosis. A significantly age- and gender-adjusted odds ratio of 2.0 for the development of carotid atherosclerosis was observed in study subjects with {epsilon}4 allele of APOE than those without {epsilon}4 allele. Compared with study subjects who carried wild genotypes of APOE and MCP-1, those with both risk genotypes of APOE and MCP-1 had 2.5-fold risk of carotid atherosclerosis after adjustment for age and gender, revealing a significant dose-response relationship between number of risk genotypes of these genes and risk of carotid atherosclerosis. Additionally, study subjects with two risk genotypes of APOE and MCP-1 and either had ingested well water contained arsenic level > 10 {mu}g/L or had arsenic exposure > 0.22 mg/L-year would have strikingly highest risk of 10.3-fold and 15.7-fold, respectively, for the development carotid atherosclerosis, showing significant joint effect of arsenic exposure and risk genotypes of APOE and MCP-1.« less

  12. Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis.

    PubMed

    Zhong, Huiqin; Lu, Jianhong; Xia, Lin; Zhu, Mingjiang; Yin, Huiyong

    2014-01-01

    Emerging evidence indicates that mitochondrial cardiolipins (CL) are prone to free radical oxidation and this process appears to be intimately associated with multiple biological functions of mitochondria. Our previous work demonstrated that a significant amount of potent lipid electrophiles including 4-hydroxy-nonenal (4-HNE) was generated from CL oxidation through a novel chemical mechanism. Here we provide further evidence that a characteristic class of CL oxidation products, epoxyalcohol-aldehyde-CL (EAA-CL), is formed through this novel mechanism in isolated mice liver mitochondria when treated with the pro-apoptotic protein t-Bid to induce cyt c release. Generation of these oxidation products are dose-dependently attenuated by a peroxidase inhibitor acetaminophen (ApAP). Using a mouse model of atherosclerosis, we detected significant amount of these CL oxidation products in liver tissue of low density lipoprotein receptor knockout (LDLR -/-) mice after Western diet feeding. Our studies highlight the importance of lipid electrophiles formation from CL oxidation in the settings of apoptosis and atherosclerosis as inhibition of CL oxidation and lipid electrophiles formation may have potential therapeutic value in diseases linked to oxidant stress and mitochondrial dysfunctions.

  13. Reheated Palm Oil Consumption and Risk of Atherosclerosis: Evidence at Ultrastructural Level

    PubMed Central

    Xian, Tan Kai; Omar, Noor Azzizah; Ying, Low Wen; Hamzah, Aniza; Raj, Santhana; Jaarin, Kamsiah; Othman, Faizah; Hussan, Farida

    2012-01-01

    Background. Palm oil is commonly consumed in Asia. Repeatedly heating the oil is very common during food processing. Aim. This study is aimed to report on the risk of atherosclerosis due to the reheated oil consumption. Material and Methods. Twenty four male Sprague Dawley rats were divided into control, fresh-oil, 5 times heated-oil and 10 times heated-oil feeding groups. Heated palm oil was prepared by frying sweet potato at 180°C for 10 minutes. The ground standard rat chows were fortified with the heated oils and fed it to the rats for six months. Results. Tunica intima thickness in aorta was significantly increased in 10 times heated-oil feeding group (P < 0.05), revealing a huge atherosclerotic plaque with central necrosis projecting into the vessel lumen. Repeatedly heated oil feeding groups also revealed atherosclerotic changes including mononuclear cells infiltration, thickened subendothelial layer, disrupted internal elastic lamina and smooth muscle cells fragmentation in tunica media of the aorta. Conclusion. The usage of repeated heated oil is the predisposing factor of atherosclerosis leading to cardiovascular diseases. It is advisable to avoid the consumption of repeatedly heated palm oil. PMID:23320039

  14. Fine particulate matter air pollution and atherosclerosis: Mechanistic insights.

    PubMed

    Bai, Yuntao; Sun, Qinghua

    2016-12-01

    Atherosclerosis is a progressive disease characterized by the accumulation of lipids and fibrous plaque in the arteries. Its etiology is very complicated and its risk factors primarily include genetic defects, smoking, hyperlipidemia, hypertension, lack of exercise, and infection. Recent studies suggest that fine particulate matter (PM2.5) air pollution may also contribute to the development of atherosclerosis. The present review integrates current experimental evidence with mechanistic pathways whereby PM2.5 exposure can promote the development of atherosclerosis. PM2.5-mediated enhancement of atherosclerosis is likely due to its pro-oxidant and pro-inflammatory effects, involving multiple organs, different cell types, and various molecular mediators. Studies about the effects of PM2.5inhalation on atherosclerosis may yield a better understanding of the link between air pollution and major cardiovascular diseases, and provide useful information for policy makers to determine acceptable levels of PM2.5 air quality. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Aging, Atherosclerosis, and IGF-1

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Anwar, Asif; Shai, Shaw-Yung

    2012-01-01

    Insulin-like growth factor 1 (IGF-1) is an endocrine and autocrine/paracrine growth factor that circulates at high levels in the plasma and is expressed in most cell types. IGF-1 has major effects on development, cell growth and differentiation, and tissue repair. Recent evidence indicates that IGF-1 reduces atherosclerosis burden and improves features of atherosclerotic plaque stability in animal models. Potential mechanisms for this atheroprotective effect include IGF-1–induced reduction in oxidative stress, cell apoptosis, proinflammatory signaling, and endothelial dysfunction. Aging is associated with increased vascular oxidative stress and vascular disease, suggesting that IGF-1 may exert salutary effects on vascular aging processes. In this review, we will provide a comprehensive update on IGF-1's ability to modulate vascular oxidative stress and to limit atherogenesis and the vascular complications of aging. PMID:22491965

  16. Improved animal models for testing gene therapy for atherosclerosis.

    PubMed

    Du, Liang; Zhang, Jingwan; De Meyer, Guido R Y; Flynn, Rowan; Dichek, David A

    2014-04-01

    Gene therapy delivered to the blood vessel wall could augment current therapies for atherosclerosis, including systemic drug therapy and stenting. However, identification of clinically useful vectors and effective therapeutic transgenes remains at the preclinical stage. Identification of effective vectors and transgenes would be accelerated by availability of animal models that allow practical and expeditious testing of vessel-wall-directed gene therapy. Such models would include humanlike lesions that develop rapidly in vessels that are amenable to efficient gene delivery. Moreover, because human atherosclerosis develops in normal vessels, gene therapy that prevents atherosclerosis is most logically tested in relatively normal arteries. Similarly, gene therapy that causes atherosclerosis regression requires gene delivery to an existing lesion. Here we report development of three new rabbit models for testing vessel-wall-directed gene therapy that either prevents or reverses atherosclerosis. Carotid artery intimal lesions in these new models develop within 2-7 months after initiation of a high-fat diet and are 20-80 times larger than lesions in a model we described previously. Individual models allow generation of lesions that are relatively rich in either macrophages or smooth muscle cells, permitting testing of gene therapy strategies targeted at either cell type. Two of the models include gene delivery to essentially normal arteries and will be useful for identifying strategies that prevent lesion development. The third model generates lesions rapidly in vector-naïve animals and can be used for testing gene therapy that promotes lesion regression. These models are optimized for testing helper-dependent adenovirus (HDAd)-mediated gene therapy; however, they could be easily adapted for testing of other vectors or of different types of molecular therapies, delivered directly to the blood vessel wall. Our data also supports the promise of HDAd to deliver long-term therapy from vascular endothelium without accelerating atherosclerotic disease.

  17. Atherosclerosis across 4000 years of human history: the Horus study of four ancient populations.

    PubMed

    Thompson, Randall C; Allam, Adel H; Lombardi, Guido P; Wann, L Samuel; Sutherland, M Linda; Sutherland, James D; Soliman, Muhammad Al-Tohamy; Frohlich, Bruno; Mininberg, David T; Monge, Janet M; Vallodolid, Clide M; Cox, Samantha L; Abd el-Maksoud, Gomaa; Badr, Ibrahim; Miyamoto, Michael I; el-Halim Nur el-Din, Abd; Narula, Jagat; Finch, Caleb E; Thomas, Gregory S

    2013-04-06

    Atherosclerosis is thought to be a disease of modern human beings and related to contemporary lifestyles. However, its prevalence before the modern era is unknown. We aimed to evaluate preindustrial populations for atherosclerosis. We obtained whole body CT scans of 137 mummies from four different geographical regions or populations spanning more than 4000 years. Individuals from ancient Egypt, ancient Peru, the Ancestral Puebloans of southwest America, and the Unangan of the Aleutian Islands were imaged. Atherosclerosis was regarded as definite if a calcified plaque was seen in the wall of an artery and probable if calcifications were seen along the expected course of an artery. Probable or definite atherosclerosis was noted in 47 (34%) of 137 mummies and in all four geographical populations: 29 (38%) of 76 ancient Egyptians, 13 (25%) of 51 ancient Peruvians, two (40%) of five Ancestral Puebloans, and three (60%) of five Unangan hunter gatherers (p=NS). Atherosclerosis was present in the aorta in 28 (20%) mummies, iliac or femoral arteries in 25 (18%), popliteal or tibial arteries in 25 (18%), carotid arteries in 17 (12%), and coronary arteries in six (4%). Of the five vascular beds examined, atherosclerosis was present in one to two beds in 34 (25%) mummies, in three to four beds in 11 (8%), and in all five vascular beds in two (1%). Age at time of death was positively correlated with atherosclerosis (mean age at death was 43 [SD 10] years for mummies with atherosclerosis vs 32 [15] years for those without; p<0·0001) and with the number of arterial beds involved (mean age was 32 [SD 15] years for mummies with no atherosclerosis, 42 [10] years for those with atherosclerosis in one or two beds, and 44 [8] years for those with atherosclerosis in three to five beds; p<0·0001). Atherosclerosis was common in four preindustrial populations including preagricultural hunter-gatherers. Although commonly assumed to be a modern disease, the presence of atherosclerosis in premodern human beings raises the possibility of a more basic predisposition to the disease. National Endowment for the Humanities, Paleocardiology Foundation, The National Bank of Egypt, Siemens, and St Luke's Hospital Foundation of Kansas City. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. MAOA Genotype, Childhood Trauma and Subclinical Atherosclerosis: A Twin Study

    PubMed Central

    Zhao, Jinying; Bremner, James D.; Goldberg, Jack; Quyyumi, Arshed A.; Vaccarino, Viola

    2013-01-01

    Objective A functional promoter polymorphism in the MAOA gene has been implicated in neuropsychiatric disorders and also moderates the association between early life stress and mental disorders, which often co-occur with cardiovascular disease. No study has examined the relationship between MAOA genotype, childhood trauma and subclinical atherosclerosis. The objective of this investigation was to examine whether childhood trauma moderates the association between MAOA genotype and subclinical atherosclerosis. Methods A sample including 289 middle-aged male twin pairs was studied. Subclinical atherosclerosis was assessed by brachial flow-mediated dilation (FMD) using ultrasound. Childhood trauma, before age 18, was measured with the Early Trauma Inventory and included physical, emotional, and sexual abuse as well as general trauma. Generalized estimating equation models were used to test the main and interactive effects of the MAOA genotype and each domain of childhood trauma on FMD, adjusting for known risk factors. Results General trauma was the most prevalent childhood trauma (28.4%), followed by physical abuse (25.0%), emotional abuse (19.4%) and sexual abuse (11.6%). MAOA genotype was not associated with any domain of childhood trauma (β ≥ 0.36). There was no significant evidence for a main effect for the MAOA genotype (β = 0.02, p = 0.82) or childhood trauma (0.005 < β < 0.10, p > 0.54) on early atherosclerosis. However, a significant interaction was observed between MAOA genotype and physical (βinteraction = 0.37, p = 0.026) or emotional abuse (βinteraction = 0.43, p = 0.025) on subclinical atherosclerosis. Conclusion This study provides initial evidence that childhood trauma modulates the impact of MAOA variant on subclinical atherosclerosis, independent of traditional cardiovascular risk factors. PMID:23723362

  19. Atherosclerosis in ancient Egyptian mummies: the Horus study.

    PubMed

    Allam, Adel H; Thompson, Randall C; Wann, L Samuel; Miyamoto, Michael I; Nur El-Din, Abd El-Halim; El-Maksoud, Gomaa Abd; Al-Tohamy Soliman, Muhammad; Badr, Ibrahem; El-Rahman Amer, Hany Abd; Sutherland, M Linda; Sutherland, James D; Thomas, Gregory S

    2011-04-01

    The purpose of this study was to determine whether ancient Egyptians had atherosclerosis. The worldwide burden of atherosclerotic disease continues to rise and parallels the spread of diet, lifestyles, and environmental risk factors associated with the developed world. It is tempting to conclude that atherosclerotic cardiovascular disease is exclusively a disease of modern society and did not affect our ancient ancestors. We performed whole body, multislice computed tomography scanning on 52 ancient Egyptian mummies from the Middle Kingdom to the Greco-Roman period to identify cardiovascular structures and arterial calcifications. We interpreted images by consensus reading of 7 imaging physicians, and collected demographic data from historical and museum records. We estimated age at the time of death from the computed tomography skeletal evaluation. Forty-four of 52 mummies had identifiable cardiovascular (CV) structures, and 20 of these had either definite atherosclerosis (defined as calcification within the wall of an identifiable artery, n = 12) or probable atherosclerosis (defined as calcifications along the expected course of an artery, n = 8). Calcifications were found in the aorta as well as the coronary, carotid, iliac, femoral, and peripheral leg arteries. The 20 mummies with definite or probable atherosclerosis were older at time of death (mean age 45.1 ± 9.2 years) than the mummies with CV tissue but no atherosclerosis (mean age 34.5 ± 11.8 years, p < 0.002). Two mummies had evidence of severe arterial atherosclerosis with calcifications in virtually every arterial bed. Definite coronary atherosclerosis was present in 2 mummies, including a princess who lived between 1550 and 1580 BCE. This finding represents the earliest documentation of coronary atherosclerosis in a human. Definite or probable atherosclerosis was present in mummies who lived during virtually every era of ancient Egypt represented in this study, a time span of >2,000 years. Atherosclerosis is commonplace in mummified ancient Egyptians. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Anatomical Confirmation of Computed Tomography-Based Diagnosis of the Atherosclerosis Discovered in 17th Century Korean Mummy

    PubMed Central

    Kim, Myeung Ju; Kim, Yi-Suk; Oh, Chang Seok; Go, Jai-Hyang; Lee, In Sun; Park, Won-Kyu; Cho, Seok-Min; Kim, Soon-Kwan; Shin, Dong Hoon

    2015-01-01

    In the present study on a newly discovered 17th century Korean mummy, computed tomography (CT) revealed multiple aortic calcifications within the aortic wall that were indicative of ancient atherosclerosis. The CT-based findings were confirmed by our subsequent post-factum dissection, which exhibited possible signs of the disease including ulcerated plaques, ruptured hemorrhages, and intimal thickening where the necrotic core was covered by the fibrous cap. These findings are strong indicators that the mummy suffered from aortic atherosclerosis during her lifetime. The present study is a good example of how CT images of vascular calcifications can be a useful diagnostic tool in forming at least preliminary diagnoses of ancient atherosclerosis. PMID:25816014

  1. [Cyclooxygenase-2: a new therapeutic target in atherosclerosis?].

    PubMed

    Páramo, José A; Beloqui, Oscar; Orbe, Josune

    2006-05-27

    It is now widely accepted that atherosclerosis is a complex chronic inflammatory disorder of the arterial tree associated with several risk factors. From the initial phases to eventual rupture of vulnerable atherosclerotic plaques, a low-grade inflammation, also termed microinflammation, appears to play a key pathogenetic role. Systemic inflammatory markers (C reactive protein, cytokines adhesion molecules) also play a role in this process. Experimental and clinical evidence suggests that cyclooxygenase-2 (COX-2), an enzyme which catalyzes the generation of prostaglandins from arachidonic acid, also contributes to lesion formation. Recent reports by our group have demonstrated increased monocyte COX-2 activity and the production of prostaglandin E2 in relation to cardiovascular risk factors and subclinical atherosclerosis in asymptomatic subjects. Our findings support the notion that the COX-2/prostaglandin E2 axis may have a role, raising the question as to whether its selective inhibition might be an attractive therapeutic target in atherosclerosis. COX-2 inhibitors, collectively called "coxibs" (celecoxib, rofecoxib, valdecoxib, lumiracoxib, etc), held a promise as anti-inflammatory drugs without the some of the side effects of aspirin or non steroidal antiinflammatory agents. However, clinical studies raise several clinically relevant questions as to their beneficial role in atherosclerosis prevention, because of increased thrombogenicity and cardiovascular risk, and therefore coxibs should be restricted in atherosclerosis-prone patients.

  2. The role of Fenton reaction in ROS-induced toxicity underlying atherosclerosis - modeled and analyzed using a Petri net-based approach.

    PubMed

    Formanowicz, Dorota; Radom, Marcin; Rybarczyk, Agnieszka; Formanowicz, Piotr

    2018-03-01

    The superoxide-driven Fenton reaction plays an important role in the transformation of poorly reactive radicals into highly reactive ones. These highly reactive species (ROS), especially hydroxyl radicals can lead to many disturbances contributing to the endothelial dysfunction being a starting point for atherosclerosis. Although, iron has been identified as a possible culprit influencing formation of ROS, its significance in this process is still debatable. To better understand this phenomenon, the influence of blockade of Fenton reaction in a proposed Petri net-based model of the selected aspects of the iron ROS-induced toxicity in atherosclerosis has been evaluated. As a result of the blockade of iron ions formation in the model, even up to 70% of the paths leading to the progression of atherosclerosis in this model has been blocked. In addition, after adding to the model, the blockade of the lipids peroxidation paths, progression of atherosclerotic plaque has been not observed. This allowed to conclude that the superoxide-driven Fenton reaction plays a significant role in the atherosclerosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Co-stimulatory molecules in and beyond co-stimulation - tipping the balance in atherosclerosis?

    PubMed

    Gerdes, N; Zirlik, A

    2011-11-01

    A plethora of basic laboratory and clinical studies has uncovered the chronic inflammatory nature of atherosclerosis. The adaptive immune system with its front-runner, the T cell, drives the atherogenic process at all stages. T cell function is dependent on and controlled by a variety of either co-stimulatory or co-inhibitory signals. In addition, many of these proteins enfold T cell-independent pro-atherogenic functions on a variety of cell types. Accordingly they represent potential targets for immune-modulatory and/or anti-inflammatory therapy of atherosclerosis. This review focuses on the diverse role of co-stimulatory molecules of the B7 and tumour necrosis factor (TNF)-superfamily and their downstream signalling effectors in atherosclerosis. In particular, the contribution of CD28/CD80/CD86/CTLA4, ICOS/ICOSL, PD-1/PDL-1/2, TRAF, CD40/CD154, OX40/OX40L, CD137/CD137L, CD70/CD27, GITR/GITRL, and LIGHT to arterial disease is reviewed. Finally, the potential for a therapeutic exploitation of these molecules in the treatment of atherosclerosis is discussed.

  4. Oral activated charcoal adsorbent (AST-120) ameliorates extent and instability of atherosclerosis accelerated by kidney disease in apolipoprotein E-deficient mice

    PubMed Central

    Yamamoto, Suguru; Zuo, Yiqin; Ma, Ji; Yancey, Patricia G.; Hunley, Tracy E.; Motojima, Masaru; Fogo, Agnes B.; Linton, MacRae F.; Fazio, Sergio; Ichikawa, Iekuni

    2011-01-01

    Background. Accelerated atherosclerosis and increased cardiovascular events are not only more common in chronic kidney disease (CKD) but are more resistant to therapeutic interventions effective in the general population. The oral charcoal adsorbent, AST-120, currently used to delay start of dialysis, reduces circulating and tissue uremic toxins, which may contribute to vasculopathy, including atherosclerosis. We, therefore, investigated whether AST-120 affects CKD-induced atherosclerosis. Methods. Apolipoprotein E-deficient mice, a model of atherosclerosis, underwent uninephrectomy, subtotal nephrectomy or sham operation at 8 weeks of age and were treated with AST-120 after renal ablation. Atherosclerosis and its characteristics were assessed at 25 weeks of age. Results. Uninephrectomy and subtotal nephrectomised mice had significantly increased acceleration of atherosclerosis. AST-120 treatment dramatically reduced the atherosclerotic burden in mice with kidney damage, while there was no beneficial effect in sham-operated mice. The benefit was independent of blood pressure, serum total cholesterol or creatinine clearance. AST-120 significantly decreased necrotic areas and lessened aortic deposition of the uremic toxin indoxyl sulfate without affecting lesional macrophage or collagen content. Furthermore, AST-120 lessened aortic expression of monocyte chemoattractant protein-1, tumor necrosis factor-α and interleukin-1β messenger RNA. Conclusions. AST-120 lessens the extent of atherosclerosis induced by kidney injury and alters lesion characteristics in apolipoprotein E-deficient mice, resulting in plaques with a more stable phenotype with less necrosis and reduced inflammation. PMID:21245127

  5. [Arterial media calcification in patients with type 2 diabetes mellitus].

    PubMed

    Belovici, Maria Isabela; Pandele, G I

    2008-01-01

    Arterial calcification was previously viewed as an inevitable, passive, and degenerative process that occurred at the end stages of atherosclerosis. Recent studies, however, have demonstrated that calcification of arteries is a complex and regulated process. It may occur in conjunction with atherosclerosis or in an isolated form that is commonly associated with diabetes and renal failure. Higher artery calcium scores are associated with increased cardiovascular events, and some aspects of arterial calcification are similar to the biology of forming bone. Arterial calcification can thus be viewed as a distinct inflammatory arteriopathy, much like atherosclerosis and aneurysms, with its own contribution to cardiovascular morbidity and mortality. Current research involves efforts to define the complex interactions between cellular and molecular mediators of arterial calcification and, in particular, the role of endogenous calcification inhibitors. This review discusses the clinical relevance, cellular events, and suspected molecular pathways that control arterial calcification.

  6. The role of Krüppel-like factor 14 in the pathogenesis of atherosclerosis.

    PubMed

    Xie, Wei; Li, Liang; Zheng, Xi-Long; Yin, Wei-Dong; Tang, Chao-Ke

    2017-08-01

    The Krüppel-like factor (KLF) family, as the SP/XKLF transcription factors, plays important roles in regulating the expression of genes required for the proper execution of important biological and pathological processes. Recent studies have demonstrated that KLF14, a member of the KLF family, participates in the initiation and progression of atherosclerotic cardiovascular disease (CVD). From the molecular function aspect, this review focuses on the impact of KLF14-mediated regulation in major atherosclerosis-related diseases and pathological processes, such as insulin resistance, type 2 diabetes, dyslipidemia, inflammation, obesity, metabolic syndrome, cell proliferation and differentiation. This review was designed to help understand the roles of KLF14 in the pathogenesis of atherosclerosis and define KLF14 as a potential disease biomarker and a novel therapeutic target in CVD. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Iron and Atherosclerosis: Nailing Down a Novel Target with Magnetic Resonance

    PubMed Central

    Sharkey-Toppen, Travis P.; Tewari, Arun K.; Raman, Subha V.

    2014-01-01

    Iron is an essential mineral in many proteins and enzymes in human physiology, with limited means of iron elimination to maintain iron balance. Iron accrual incurs various pathological mechanisms linked to cardiovascular disease. In atherosclerosis, iron catalyzes the creation of reactive oxygen free radicals that contribute to lipid modification, which is essential to atheroma formation. Inflammation further fuels iron-related pathologic processes associated with plaque progression. Given iron’s role in atherosclerosis development, in vivo detection techniques sensitive iron are needed for translational studies targeting iron for earlier diagnosis and treatment. Magnetic resonance imaging (MRI) is uniquely able to quantify iron in human tissues noninvasively and without ionizing radiation, offering appealing for longitudinal and interventional studies. Particularly intriguing is iron’s complementary biology vs. calcium, which is readily detectable by computed tomography (CT). This review summarizes the role of iron in atherosclerosis with considerable implications for novel diagnostic and therapeutic approaches. PMID:24590608

  8. Involvement of the Warburg effect in non-tumor diseases processes.

    PubMed

    Chen, Zhe; Liu, Meiqing; Li, Lanfang; Chen, Linxi

    2018-04-01

    Warburg effect, as an energy shift from mitochondrial oxidative phosphorylation to aerobic glycolysis, is extensively found in various cancers. Interestingly, increasing researchers show that Warburg effect plays a crucial role in non-tumor diseases. For instance, inhibition of Warburg effect can alleviate pulmonary vascular remodeling in the process of pulmonary hypertension (PH). Interference of Warburg effect improves mitochondrial function and cardiac function in the process of cardiac hypertrophy and heart failure. Additionally, the Warburg effect induces vascular smooth muscle cell proliferation and contributes to atherosclerosis. Warburg effect may also involve in axonal damage and neuronal death, which are related with multiple sclerosis. Furthermore, Warburg effect significantly promotes cell proliferation and cyst expansion in polycystic kidney disease (PKD). Besides, Warburg effect relieves amyloid β-mediated cell death in Alzheimer's disease. And Warburg effect also improves the mycobacterium tuberculosis infection. Finally, we also introduce some glycolytic agonists. This review focuses on the newest researches about the role of Warburg effect in non-tumor diseases, including PH, tuberculosis, idiopathic pulmonary fibrosis (IPF), failing heart, cardiac hypertrophy, atherosclerosis, Alzheimer's diseases, multiple sclerosis, and PKD. Obviously, Warburg effect may be a potential therapeutic target for those non-tumor diseases. © 2017 Wiley Periodicals, Inc.

  9. Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress

    PubMed Central

    Di Pietro, Marisa; Filardo, Simone; Falasca, Francesca; Turriziani, Ombretta; Sessa, Rosa

    2017-01-01

    Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis-induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research. PMID:29156574

  10. Infectious Agents in Atherosclerotic Cardiovascular Diseases through Oxidative Stress.

    PubMed

    Di Pietro, Marisa; Filardo, Simone; Falasca, Francesca; Turriziani, Ombretta; Sessa, Rosa

    2017-11-18

    Accumulating evidence demonstrates that vascular oxidative stress is a critical feature of atherosclerotic process, potentially triggered by several infectious agents that are considered as risk co-factors for the atherosclerotic cardiovascular diseases (CVDs). C. pneumoniae has been shown to upregulate multiple enzymatic systems capable of producing reactive oxygen species (ROS) such as NADPH oxidase (NOX) and cyclooxygenase in vascular endothelial cells, NOX and cytochrome c oxidase in macrophages as well as nitric oxide synthase and lipoxygenase in platelets contributing to both early and late stages of atherosclerosis. P. gingivalis seems to be markedly involved in the atherosclerotic process as compared to A. actinomycetemcomitans contributing to LDL oxidation and foam cell formation. Particularly interesting is the evidence describing the NLRP3 inflammasome activation as a new molecular mechanism underlying P. gingivalis -induced oxidative stress and inflammation. Amongst viral agents, immunodeficiency virus-1 and hepatitis C virus seem to have a major role in promoting ROS production, contributing, hence, to the early stages of atherosclerosis including endothelial dysfunction and LDL oxidation. In conclusion, oxidative mechanisms activated by several infectious agents during the atherosclerotic process underlying CVDs are very complex and not well-known, remaining, thus, an attractive target for future research.

  11. Signaling events in pathogen-induced macrophage foam cell formation.

    PubMed

    Shaik-Dasthagirisaheb, Yazdani B; Mekasha, Samrawit; He, Xianbao; Gibson, Frank C; Ingalls, Robin R

    2016-08-01

    Macrophage foam cell formation is a key event in atherosclerosis. Several triggers induce low-density lipoprotein (LDL) uptake by macrophages to create foam cells, including infections with Porphyromonas gingivalis and Chlamydia pneumoniae, two pathogens that have been linked to atherosclerosis. While gene regulation during foam cell formation has been examined, comparative investigations to identify shared and specific pathogen-elicited molecular events relevant to foam cell formation are not well documented. We infected mouse bone marrow-derived macrophages with P. gingivalis or C. pneumoniae in the presence of LDL to induce foam cell formation, and examined gene expression using an atherosclerosis pathway targeted plate array. We found over 30 genes were significantly induced in response to both pathogens, including PPAR family members that are broadly important in atherosclerosis and matrix remodeling genes that may play a role in plaque development and stability. Six genes mainly involved in lipid transport were significantly downregulated. The response overall was remarkably similar and few genes were regulated in a pathogen-specific manner. Despite very divergent lifestyles, P. gingivalis and C. pneumoniae activate similar gene expression profiles during foam cell formation that may ultimately serve as targets for modulating infection-elicited foam cell burden, and progression of atherosclerosis. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, Yi-Chen; Lien, Li-Ming; School of Medicine, Taipei Medical University, Taipei, Taiwan

    2011-08-15

    Individual susceptibility to arsenic-induced carotid atherosclerosis might be associated with genetic variations in arsenic metabolism. The purpose of this study is to explore the interaction effect on risk of carotid atherosclerosis between arsenic exposure and risk genotypes of purine nucleoside phosphorylase (PNP), arsenic (+3) methyltransferase (As3MT), and glutathione S-transferase omega 1 (GSTO1) and omega 2 (GSTO2). A community-based case-control study was conducted in northeastern Taiwan to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. In total, 863 subjects, who had been genotyped and for whom the severity of carotid atherosclerosis had been determined, were included in the present study.more » Individual well water was collected and arsenic concentration determined using hydride generation combined with flame atomic absorption spectrometry. The result showed that a significant dose-response trend (P=0.04) of carotid atherosclerosis risk associated with increasing arsenic concentration. Non-significant association between genetic polymorphisms of PNP Gly51Ser, Pro57Pro, As3MT Met287Thr, GSTO1 Ala140Asp, and GSTO2 A-183G and the risk for development of carotid atherosclerosis were observed. However, the significant interaction effect on carotid atherosclerosis risk was found for arsenic exposure (>50 {mu}g/l) and the haplotypes of PNP (p=0.0115). A marked elevated risk of carotid atherosclerosis was observed in subjects with arsenic exposure of >50 {mu}g/l in drinking water and those who carried the PNP A-T haplotype and at least either of the As3MT risk polymorphism or GSTO risk haplotypes (OR, 6.43; 95% CI, 1.79-23.19). In conclusion, arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate the formation of atherosclerosis in individuals with high levels of arsenic concentration in well water (>50 {mu}g/l). - Highlights: {yields}Arsenic metabolic genes might be associated with carotid atherosclerosis. {yields} A case-control study was conducted to investigate the arsenic metabolic-related genetic susceptibility to carotid atherosclerosis. {yields} Arsenic metabolic genes, PNP, As3MT, and GSTO, may exacerbate atherosclerosis risk in individuals with high levels of arsenic in well water.« less

  13. Effect of plasma homocysteine level and urinary monomethylarsonic acid on the risk of arsenic-associated carotid atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, M.-M.; Graduate Institute of Medicine, College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan; Chiou, H.-Y.

    2006-10-01

    Arsenic-contaminated well water has been shown to increase the risk of atherosclerosis. Because of involving S-adenosylmethionine, homocysteine may modify the risk by interfering with the biomethylation of ingested arsenic. In this study, we assessed the effect of plasma homocysteine level and urinary monomethylarsonic acid (MMA{sup V}) on the risk of atherosclerosis associated with arsenic. In total, 163 patients with carotid atherosclerosis and 163 controls were studied. Lifetime cumulative arsenic exposure from well water for study subjects was measured as index of arsenic exposure. Homocysteine level was determined by high-performance liquid chromatography (HPLC). Proportion of MMA{sup V} (MMA%) was calculated bymore » dividing with total arsenic species in urine, including arsenite, arsenate, MMA{sup V}, and dimethylarsinic acid (DMA{sup V}). Results of multiple linear regression analysis show a positive correlation of plasma homocysteine levels to the cumulative arsenic exposure after controlling for atherosclerosis status and nutritional factors (P < 0.05). This correlation, however, did not change substantially the effect of arsenic exposure on the risk of atherosclerosis as analyzed in a subsequent logistic regression model. Logistic regression analyses also show that elevated plasma homocysteine levels did not confer an independent risk for developing atherosclerosis in the study population. However, the risk of having atherosclerosis was increased to 5.4-fold (95% CI, 2.0-15.0) for the study subjects with high MMA% ({>=}16.5%) and high homocysteine levels ({>=}12.7 {mu}mol/l) as compared to those with low MMA% (<9.9%) and low homocysteine levels (<12.7 {mu}mol/l). Elevated homocysteinemia may exacerbate the formation of atherosclerosis related to arsenic exposure in individuals with high levels of MMA% in urine.« less

  14. Appropriateness of the hamster as a model to study diet-induced atherosclerosis

    USDA-ARS?s Scientific Manuscript database

    Golden-Syrian hamsters have been used as an animal model to assess diet-induced atherosclerosis since the early 1980s. Advantages appeared to include a low rate of endogenous cholesterol synthesis, receptor-mediated uptake of LDL cholesterol, cholesteryl ester transfer protein activity, hepatic apo...

  15. Oxidative stress as a mechanism of added sugar-induced cardiovascular disease.

    PubMed

    Prasad, Kailash; Dhar, Indu

    2014-12-01

    Added sugars comprising of table sugar, brown sugar, corn syrup, maple syrup, honey, molasses, and other sweeteners in the prepared processed foods and beverages have been implicated in the pathophysiology of cardiovascular diseases. This article deals with the reactive oxygen species (ROS) as a mechanism of sugar-induced cardiovascular diseases. There is an association between the consumption of high levels of serum glucose with cardiovascular diseases. Various sources of sugar-induced generation of ROS, including mitochondria, nicotinamide adenine dinucleotide phosphate-oxidase, advanced glycation end products, insulin, and uric acid have been discussed. The mechanism by which ROS induce the development of atherosclerosis, hypertension, peripheral vascular disease, coronary artery disease, cardiomyopathy, heart failure, and cardiac arrhythmias have been discussed in detail. In conclusion, the data suggest that added sugars induce atherosclerosis, hypertension, peripheral vascular disease, coronary artery disease, cardiomyopathy, heart failure, and cardiac arrhythmias and that these effects of added sugars are mediated through ROS.

  16. Markers of insulin resistance and carotid atherosclerosis. A comparison of the homeostasis model assessment and triglyceride glucose index.

    PubMed

    Irace, C; Carallo, C; Scavelli, F B; De Franceschi, M S; Esposito, T; Tripolino, C; Gnasso, A

    2013-07-01

    The present investigation was designed to test the association between carotid atherosclerosis and two simple markers of insulin resistance, i.e. HOMA-Index and TyG-Index. The study was performed in two different cohorts. In the first cohort, 330 individuals were enrolled. Blood pressure, lipids, glucose, waist and cigarette smoking were evaluated. HOMA-IR and TyG-Index were calculated as markers of prevalent hepatic and muscular insulin resistance respectively. Carotid atherosclerosis was assessed by Doppler ultrasonography. The association between cardiovascular risk factors, markers of insulin resistance and carotid atherosclerosis was assessed by multiple logistic regression analyses. In the second cohort, limited to the evaluation of TyG-Index, 1432 subjects were studied. In the first cohort, TyG-Index was significantly associated with carotid atherosclerosis in a model including age, sex, diabetes, cigarette smoking and LDL cholesterol, while HOMA-IR was not. When components of metabolic syndrome were added to the model as dichotomous variables (absent/present), TyG-Index retained its predictive power. The same result was obtained when the metabolic syndrome was added to the model (absence/presence). The association between TyG-Index and carotid atherosclerosis was confirmed in the second cohort. The present findings suggest that TyG-Index is better associated with carotid atherosclerosis than HOMA-IR. © 2013 John Wiley & Sons Ltd.

  17. Low levels of CD36 in peripheral blood monocytes in subclinical atherosclerosis in rheumatoid arthritis: a cross-sectional study in a Mexican population.

    PubMed

    Gómez-Bañuelos, Eduardo; Martín-Márquez, Beatriz Teresita; Martínez-García, Erika Aurora; Figueroa-Sanchez, Mauricio; Nuñez-Atahualpa, Lourdes; Rocha-Muñoz, Alberto Daniel; Sánchez-Hernández, Pedro Ernesto; Navarro-Hernandez, Rosa Elena; Madrigal-Ruiz, Perla Monserrat; Saldaña-Millan, Adan Alberto; Duran-Barragan, Sergio; Gonzalez-Lopez, Laura; Gamez-Nava, Jorge Ivan; Vázquez-Del Mercado, Mónica

    2014-01-01

    Patients with rheumatoid arthritis (RA) have a higher risk for atherosclerosis. There is no clinical information about scavenger receptor CD36 and the development of subclinical atherosclerosis in patients with RA. The aim of this study was to evaluate the association between membrane expression of CD36 in peripheral blood mononuclear cells (PBMC) and carotid intima-media thickness (cIMT) in patients with RA. We included 67 patients with RA from the Rheumatology Department of Hospital Civil "Dr. Juan I. Menchaca," Guadalajara, Jalisco, Mexico. We evaluated the cIMT, considering subclinical atherosclerosis when >0.6 mm. Since our main objective was to associate the membrane expression of CD36 with subclinical atherosclerosis, other molecules related with cardiovascular risk such as ox-LDL, IL-6, and TNFα were tested. We found low CD36 membrane expression in PBMC from RA patients with subclinical atherosclerosis (P < 0.001). CD36 mean fluorescence intensity had negative correlations with cIMT (r = -0.578, P < 0.001), ox-LDL (r = -0.427, P = 0.05), TNFα (r = -0.729, P < 0.001), and IL-6 (r = -0.822, P < 0.001). RA patients with subclinical atherosclerosis showed low membrane expression of CD36 in PBMC and increased serum proinflammatory cytokines. Further studies are needed to clarify the regulation of CD36 in RA.

  18. Serum cystatin C level is associated with carotid arterial wall elasticity in subjects with type 2 diabetes mellitus: A potential marker of early-stage atherosclerosis.

    PubMed

    Kaneko, Rei; Sawada, Shojiro; Tokita, Ai; Honkura, Rieko; Tamura, Noriko; Kodama, Shinjiro; Izumi, Tomohito; Takahashi, Kei; Uno, Kenji; Imai, Junta; Yamada, Tetsuya; Miyachi, Yukiya; Hasegawa, Hideyuki; Kanai, Hiroshi; Ishigaki, Yasushi; Katagiri, Hideki

    2018-05-01

    Detection of early-stage atherosclerosis in type 2 diabetes mellitus (T2DM) patients is important for preventing cardiovascular disease. A phased tracking method for evaluating arterial wall elasticity sensitively detects early-stage atherosclerosis. However, biochemical markers for early-stage atherosclerosis have yet to be established. This cross-sectional study enrolled 180 T2DM patients, who were classified as not having atherosclerosis according to the carotid intima-media thickness (IMT) criteria. We measured serum cystatin C, the estimated glomerular filtration rate (eGFR) and urinary albumin-to-creatinine ratio (ACR), and analyzed the associations between these markers and arterial wall elasticity (Eθ), IMT and the cardio-ankle velocity index. Multiple linear regression analyses revealed that cystatin C was significantly associated with Eθ, while neither eGFR nor ACR showed an association. Furthermore, among the examined atherosclerotic markers, Eθ was most reliably associated with cystatin C. Additionally, the association between cystatin C and Eθ disappeared in the low elasticity subgroup, which included subjects in whom no atherosclerotic changes had yet been initiated. In T2DM patients without apparent arterial wall thickening, cystatin C is strongly and independently associated with arterial wall elasticity, which reflects the degree of subclinical atherosclerosis. Thus, cystatin C is a potentially useful marker of early-stage atherosclerosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Monoamine oxidase A genotype, childhood trauma, and subclinical atherosclerosis: a twin study.

    PubMed

    Zhao, Jinying; Bremner, James D; Goldberg, Jack; Quyyumi, Arshed A; Vaccarino, Viola

    2013-06-01

    A functional promoter polymorphism in the monoamine oxidase A (MAOA) gene has been implicated in neuropsychiatric disorders and also moderates the association between early-life stress and mental disorders, which often co-occur with cardiovascular disease. No study has examined the relationship between MAOA genotype, childhood trauma, and subclinical atherosclerosis. The objective of this investigation was to examine whether childhood trauma moderates the association between MAOA genotype and subclinical atherosclerosis. A sample including 289 middle-aged male twin pairs was studied. Subclinical atherosclerosis was assessed by brachial flow-mediated dilation (FMD) using ultrasound. Childhood trauma, before age 18 years, was measured with the Early Trauma Inventory and included physical, emotional, and sexual abuse as well as general trauma. Generalized estimating equation models were used to test the main and interactive effects of the MAOA genotype and each domain of childhood trauma on FMD, adjusting for known risk factors. General trauma was the most prevalent childhood trauma (28.4%), followed by physical abuse (25.0%), emotional abuse (19.4%), and sexual abuse (11.6%). MAOA genotype was not associated with any domain of childhood trauma. There was no significant evidence for a main effect for the MAOA genotype (β = .02, p = .82) or childhood trauma (.005 < β < .10, p > .54) FMD. However, a significant interaction was observed between MAOA genotype and physical (β interaction = .37, p = .026) or emotional abuse (β interaction = .43, p = .025) on subclinical atherosclerosis. Childhood trauma modulates the impact of MAOA variant on subclinical atherosclerosis, independent of traditional cardiovascular risk factors.

  20. Myeloid Cell Prostaglandin E2 Receptor EP4 Modulates Cytokine Production but Not Atherogenesis in a Mouse Model of Type 1 Diabetes.

    PubMed

    Vallerie, Sara N; Kramer, Farah; Barnhart, Shelley; Kanter, Jenny E; Breyer, Richard M; Andreasson, Katrin I; Bornfeldt, Karin E

    2016-01-01

    Type 1 diabetes mellitus (T1DM) is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2) is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4) to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/-) of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis.

  1. Myeloid Cell Prostaglandin E2 Receptor EP4 Modulates Cytokine Production but Not Atherogenesis in a Mouse Model of Type 1 Diabetes

    PubMed Central

    Vallerie, Sara N.; Kramer, Farah; Barnhart, Shelley; Kanter, Jenny E.; Breyer, Richard M.; Andreasson, Katrin I.; Bornfeldt, Karin E.

    2016-01-01

    Type 1 diabetes mellitus (T1DM) is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2) is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4) to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/-) of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis. PMID:27351842

  2. High Fat Diet Induces Adhesion of Platelets to Endothelium in Two Models of Dyslipidemia

    PubMed Central

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE−/− mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE−/− mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate. PMID:25328689

  3. High fat diet induces adhesion of platelets to endothelium in two models of dyslipidemia.

    PubMed

    Gonzalez, Jaime; Donoso, Wendy; Díaz, Natalia; Albornoz, María Eliana; Huilcaman, Ricardo; Morales, Erik; Moore-Carrasco, Rodrigo

    2014-01-01

    Cardiovascular diseases (CVD) represent about 30% of all global deaths. It is currently accepted that, in the atherogenic process, platelets play an important role, contributing to endothelial activation and modulation of the inflammatory phenomenon, promoting the beginning and formation of lesions and their subsequent thrombotic complications. The objective of the present work was to study using immunohistochemistry, the presence of platelets, monocytes/macrophages, and cell adhesion molecules (CD61, CD163, and CD54), in two stages of the atheromatous process. CF-1 mice fed a fat diet were used to obtain early stages of atheromatous process, denominated early stage of atherosclerosis, and ApoE(-/-) mice fed a fat diet were used to observe advanced stages of atherosclerosis. The CF-1 mice model presented immunostaining on endothelial surface for all three markers studied; the advanced atherosclerosis model in ApoE(-/-) mice also presented granular immunostaining on lesion thickness, for the same markers. These results suggest that platelets participate in atheromatous process from early stages to advance d stages. High fat diet induces adhesion of platelets to endothelial cells in vivo. These findings support studying the participation of platelets in the formation of atheromatous plate.

  4. Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential.

    PubMed

    Spitz, Charlotte; Winkels, Holger; Bürger, Christina; Weber, Christian; Lutgens, Esther; Hansson, Göran K; Gerdes, Norbert

    2016-03-01

    Atherosclerosis is a chronic inflammatory disease that is mediated by innate and adaptive immune responses. The disease is characterized by sub-endothelial accumulation and modification of lipids in the artery wall triggering an inflammatory reaction which promotes lesion progression and eventual plaque rupture, thrombus formation, and the respective clinical sequelae such as myocardial infarction or stroke. During the past decade, T-cell-mediated immune responses, especially control of pro-inflammatory signals by regulatory T cells (Tregs), have increasingly attracted the interest of experimental and clinical researchers. By suppression of T cell proliferation and secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor-β, Tregs exert their atheroprotective properties. Atherosclerosis-prone, hyperlipidemic mice harbor systemically less Tregs compared to wild-type mice, suggesting an imbalance of immune cells which affects local and systemic inflammatory and potentially metabolic processes leading to atherogenesis. Restoring or increasing Treg frequency and enhancing their suppressive capacity by various modulations may pose a promising approach for treating inflammatory conditions such as cardiovascular diseases. In this review, we briefly summarize the immunological basics of atherosclerosis and introduce the role and contribution of different subsets of T cells. We then discuss experimental data and current knowledge pertaining to Tregs in atherosclerosis and perspectives on manipulating the adaptive immune system to alleviate atherosclerosis and cardiovascular disease.

  5. Treg/Th17 balance in stable CAD patients with different stages of coronary atherosclerosis.

    PubMed

    Potekhina, Alexandra V; Pylaeva, Ekaterina; Provatorov, Sergey; Ruleva, Natalya; Masenko, Valery; Noeva, Elena; Krasnikova, Tatiana; Arefieva, Tatiana

    2015-01-01

    Objective. Immune processes play a significant role in atherosclerosis plaque progression. Regulatory T cells and T helpers 17 were shown to possess anti- and pro-atherogenic activity, respectively. We aimed to investigate the balance of circulating Treg and Th17 in stable angina patients with different stages of coronary atherosclerosis. Methods. Treg, Th17 and Th1 cell frequencies were studied in 117 patients via direct immunofluorescence staining and flow cytometry. Group 1 had intact coronary arteries. Group 2 and Group 3 had undergone previous coronary stenting; in Group 2 no coronary atherosclerosis progression was found, in Group 3 patients had disease progression in non-invaded coronary arteries. Group 4 had severe coronary atherosclerosis. Results. The frequencies of CD4+CD25highCD127low, CD4+foxp3+, and CD4+IL10 + T cells were decreased, and CD4+IL17 + T cells frequencies were increased in group 4 vs. 1. Treg/Th17 ratios were declined in groups 3 and 4 vs. groups 1 and 2. IL-10 level was lower while hsCRP and sCD25 levels were higher in group 4 vs. 1. Conclusion. We assume that the imbalance in pro- and anti-inflammatory/atherogenic lymphocyte subpopulations is associated with atherosclerosis progression. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains

    PubMed Central

    Bennett, Brian J.; Davis, Richard C.; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R. Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C.; Hazen, Stanley L.; Gargalovic, Peter S.; Lusis, Aldons J.

    2015-01-01

    Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression showed that the combined variations in plasma metabolites, including LDL/VLDL-cholesterol, trimethylamine N-oxide (TMAO), arginine, glucose and insulin, account for approximately 30 to 40% of the variation in atherosclerotic lesion area. Overall, our data provide a rich resource for studies of complex interactions underlying atherosclerosis. PMID:26694027

  7. Towards personalised management of atherosclerosis via computational models in vascular clinics: technology based on patient-specific simulation approach

    PubMed Central

    Di Tomaso, Giulia; Agu, Obiekezie; Pichardo-Almarza, Cesar

    2014-01-01

    The development of a new technology based on patient-specific modelling for personalised healthcare in the case of atherosclerosis is presented. Atherosclerosis is the main cause of death in the world and it has become a burden on clinical services as it manifests itself in many diverse forms, such as coronary artery disease, cerebrovascular disease/stroke and peripheral arterial disease. It is also a multifactorial, chronic and systemic process that lasts for a lifetime, putting enormous financial and clinical pressure on national health systems. In this Letter, the postulate is that the development of new technologies for healthcare using computer simulations can, in the future, be developed as in-silico management and support systems. These new technologies will be based on predictive models (including the integration of observations, theories and predictions across a range of temporal and spatial scales, scientific disciplines, key risk factors and anatomical sub-systems) combined with digital patient data and visualisation tools. Although the problem is extremely complex, a simulation workflow and an exemplar application of this type of technology for clinical use is presented, which is currently being developed by a multidisciplinary team following the requirements and constraints of the Vascular Service Unit at the University College Hospital, London. PMID:26609369

  8. [Therapeutic potential of Hibiscus sabdariffa: a review of the scientific evidence].

    PubMed

    Guardiola, Soledad; Mach, Núria

    2014-05-01

    Infusion of Hibiscus sabdariffa (H. sabdariffa) is a very popular drink in many parts of the world. Its phytochemical composition is associated to antioxidant, hypotensive, and antiatherosclerotic effects. However, the molecular mechanisms involved in these processes are not well known. The aim of this review was to report the scientific evidence supporting that regular use of H. sabdariffa decreases oxidative stress, atherosclerosis, lipid profile, and blood pressure. A search of recent publications was made in the following specialized electronic databases: Elsevier Journal, SciELO, FSTA, Science Direct, Springer Link, and NCBI. Results of research conducted in clinical trials in humans and in animal models and cell cultures were recorded. Keywords used included Hibiscus sabdariffa, oxidative stress, polyphenols, hypertension, atherosclerosis, and lipid profile. Results of the different articles suggested a possible therapeutic effect of H. sabdariffa extracts on oxidative stress, lipid profile, hypertension, and atherosclerosis thanks to its composition rich in phenolic compounds. Anthocyanins significantly decrease LDL oxidation, inhibit adipogenesis by regulating adipogenic signaling pathways and transcription factors, and modulate gene expression of certain microRNAs. No adverse events or side effects were reported. Further more homogeneous, placebo-controlled studies in humans are needed to state that H. sabdariffa has therapeutic efficacy in humans. Copyright © 2013 SEEN. Published by Elsevier Espana. All rights reserved.

  9. Hypocholesterolemic and antiatherosclerotic effect of artemisia aucheri in hypercholesterolemic rabbits.

    PubMed

    Dinani, N Jafari; Asgary, Asgary; Madani, H; Naderi, Gh; Mahzoni, P

    2010-07-01

    Atherosclerosis which results from gradual deposition of lipids in arteries is a leading cause of mortality worldwide. Diet is one of the most important factors underlying atherosclerosis. High-cholesterol diets enhance atherosclerosis and vegetarian diets are known to slow down the process. Artemisia aucheri is an herb of the Composite family. Many species of Artemisia have proven hypolipidemic and antioxidant properties. This study determine the effects of Artemisia aucheri on lipoproteins and atherosclerosis in hypercholesterolemic rabbits. Fifteen male rabbits were randomly divided into three groups. Normal diet group, high-cholesterol diet group (1% cholesterol) and Artemisia aucheri group (1% cholesterol diet supplemented with 100 mg/kg body weight the Artemisi aucheri every other day). Biochemical factors were measured at the start, end of the first and second months of the study. At the end of the study, the aorta were removed for assessment of atherosclerotic plaques. The results indicate that Artemisia aucheri significantly reduced the level of total cholesterol, LDL cholesterol and triglycerids and increased HDL cholesterol. The degree of atherosclerotic thickness was significantly reduced in the treated group. Therefore, Artemisia aucheri is one of the useful herbal medicine for preventation of atherosclerosis and more studies in this regard is recommended.

  10. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease

    PubMed Central

    Wang, Zeneng; Klipfell, Elizabeth; Bennett, Brian J.; Koeth, Robert; Levison, Bruce S.; DuGar, Brandon; Feldstein, Ariel E.; Britt, Earl B.; Fu, Xiaoming; Chung, Yoon-Mi; Wu, Yuping; Schauer, Phil; Smith, Jonathan D.; Allayee, Hooman; Tang, W. H. Wilson; DiDonato, Joseph A.; Lusis, Aldons J.; Hazen, Stanley L.

    2011-01-01

    Metabolomics studies hold promise for discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. A metabolomics approach was used to generate unbiased small molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine, namely choline, trimethylamine N-oxide (TMAO), and betaine, were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted up-regulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with choline or TMAO promoted atherosclerosis. Studies using germ-free mice confirmed a critical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases (FMOs), an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidemic mice. Discovery of a relationship between gut flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for development of both novel diagnostic tests and therapeutic approaches for atherosclerotic heart disease. PMID:21475195

  11. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis.

    PubMed

    Hovland, Anders; Jonasson, Lena; Garred, Peter; Yndestad, Arne; Aukrust, Pål; Lappegård, Knut T; Espevik, Terje; Mollnes, Tom E

    2015-08-01

    Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  12. Specific Amino Acids Affect Cardiovascular Diseases and Atherogenesis via Protection against Macrophage Foam Cell Formation: Review Article.

    PubMed

    Grajeda-Iglesias, Claudia; Aviram, Michael

    2018-06-20

    The strong relationship between cardiovascular diseases (CVD), atherosclerosis, and endogenous or exogenous lipids has been recognized for decades, underestimating the contribution of other dietary components, such as amino acids, to the initiation of the underlying inflammatory disease. Recently, specific amino acids have been associated with incident cardiovascular disorders, suggesting their significant role in the pathogenesis of CVD. Special attention has been paid to the group of branched-chain amino acids (BCAA), leucine, isoleucine, and valine, since their plasma values are frequently found in high concentrations in individuals with CVD risk. Nevertheless, dietary BCAA, leucine in particular, have been associated with improved indicators of atherosclerosis. Therefore, their potential role in the process of atherogenesis and concomitant CVD development remains unclear. Macrophages play pivotal roles in the development of atherosclerosis. They can accumulate high amounts of circulating lipids, through a process known as macrophage foam cell formation, and initiate the atherogenesis process. We have recently screened for anti- or pro-atherogenic amino acids in the macrophage model system. Our study showed that glycine, cysteine, alanine, leucine, glutamate, and glutamine significantly affected macrophage atherogenicity mainly through modulation of the cellular triglyceride metabolism. The anti-atherogenic properties of glycine and leucine, and the pro-atherogenic effects of glutamine, were also confirmed in vivo. Further investigation is warranted to define the role of these amino acids in atherosclerosis and CVD, which may serve as a basis for the development of anti-atherogenic nutritional and therapeutic approaches.

  13. How Do Elevated Triglycerides and Low HDL-Cholesterol Affect Inflammation and Atherothrombosis?

    PubMed Central

    Welty, Francine K.

    2015-01-01

    This review article summarizes recent research into the mechanisms as to how elevated levels of triglyceride (TG) and low levels of high- density- lipoprotein cholesterol (HDL-C) contribute to inflammation and atherosclerosis. Evidence supports the role of TG-rich lipoproteins in signaling mechanisms via apolipoproteins C-III and free fatty acids leading to activation of NFKβ, VCAM-1 and other inflammatory mediators which lead to fatty streak formation and advanced atherosclerosis. Moreover, the cholesterol content in TG-rich lipoproteins has been shown to predict CAD risk better than LDL-C. In addition to reverse cholesterol transport, HDL has many other cardioprotective effects which include regulating immune function. The “functionality” of HDL appears more important than the level of HDL-C. Insulin resistance and central obesity underlie the pathophysiology of elevated TG and low HDL-C in metabolic syndrome and type 2 diabetes. Lifestyle recommendations including exercise and weight loss remain first line therapy in ameliorating insulin resistance and the adverse signaling processes from elevated levels of TG-rich lipoproteins and low HDL-C. PMID:23881582

  14. Anti-atherosclerotic therapy based on botanicals.

    PubMed

    Orekhov, Alexander N; Sobenin, Igor A; Korneev, Nikolay V; Kirichenko, Tatyana V; Myasoedova, Veronika A; Melnichenko, Alexandra A; Balcells, Mercedes; Edelman, Elazer R; Bobryshev, Yuri V

    2013-04-01

    Natural products including botanicals for both therapy of clinical manifestations of atherosclerosis and reduction of atherosclerosis risk factors are topics of recent patents. Only a few recent patents are relevant to the direct antiatherosclerotic therapy leading to regression of atherosclerotic lesions. Earlier, using a cellular model we have developed and patented several anti-atherosclerotic drugs. The AMAR (Atherosclerosis Monitoring and Atherogenicity Reduction) study was designed to estimate the effect of two-year treatment with time-released garlic-based drug Allicor on the progression of carotid atherosclerosis in 196 asymptomatic men aged 40-74 in double-blinded placebo-controlled randomized clinical study. The primary outcome was the rate of atherosclerosis progression, measured by high-resolution B-mode ultrasonography as the increase in carotid intima-media thickness (IMT) of the far wall of common carotid arteries. The mean rate of IMT changes in Allicor-treated group (-0.022±0.007 mm per year) was significantly different (P = 0.002) from the placebo group in which there was a moderate progression of 0.015±0.008 mm at the overall mean baseline IMT of 0.931±0.009 mm. A significant correlation was found between the changes in blood serum atherogenicity (the ability of serum to induce cholesterol accumulation in cultured cells) during the study and the changes in intima-media thickness of common carotid arteries (r = 0.144, P = 0.045). Thus, the results of AMAR study demonstrate that long-term treatment with Allicor has a direct anti-atherosclerotic effect on carotid atherosclerosis and this effect is likely to be due to serum atherogenicity inhibition. The beneficial effects of other botanicals including Inflaminat (calendula, elder and violet), phytoestrogen- rich Karinat (garlic powder, extract of grape seeds, green tea leafs, hop cones, β-carotene, α-tocopherol and ascorbic acid) on atherosclerosis have also been revealed in clinical studies which enforces a view that botanicals might represent promising drugs for anti-atherosclerotic therapy.

  15. Low Levels of CD36 in Peripheral Blood Monocytes in Subclinical Atherosclerosis in Rheumatoid Arthritis: A Cross-Sectional Study in a Mexican Population

    PubMed Central

    Gómez-Bañuelos, Eduardo; Martín-Márquez, Beatriz Teresita; Martínez-García, Erika Aurora; Figueroa-Sanchez, Mauricio; Nuñez-Atahualpa, Lourdes; Rocha-Muñoz, Alberto Daniel; Sánchez-Hernández, Pedro Ernesto; Navarro-Hernandez, Rosa Elena; Madrigal-Ruiz, Perla Monserrat; Saldaña-Millan, Adan Alberto; Duran-Barragan, Sergio; Gonzalez-Lopez, Laura; Gamez-Nava, Jorge Ivan; Vázquez-Del Mercado, Mónica

    2014-01-01

    Patients with rheumatoid arthritis (RA) have a higher risk for atherosclerosis. There is no clinical information about scavenger receptor CD36 and the development of subclinical atherosclerosis in patients with RA. The aim of this study was to evaluate the association between membrane expression of CD36 in peripheral blood mononuclear cells (PBMC) and carotid intima-media thickness (cIMT) in patients with RA. Methods. We included 67 patients with RA from the Rheumatology Department of Hospital Civil “Dr. Juan I. Menchaca,” Guadalajara, Jalisco, Mexico. We evaluated the cIMT, considering subclinical atherosclerosis when >0.6 mm. Since our main objective was to associate the membrane expression of CD36 with subclinical atherosclerosis, other molecules related with cardiovascular risk such as ox-LDL, IL-6, and TNFα were tested. Results. We found low CD36 membrane expression in PBMC from RA patients with subclinical atherosclerosis (P < 0.001). CD36 mean fluorescence intensity had negative correlations with cIMT (r = −0.578, P < 0.001), ox-LDL (r = −0.427, P = 0.05), TNFα (r = −0.729, P < 0.001), and IL-6 (r = −0.822, P < 0.001). Conclusion. RA patients with subclinical atherosclerosis showed low membrane expression of CD36 in PBMC and increased serum proinflammatory cytokines. Further studies are needed to clarify the regulation of CD36 in RA. PMID:25006585

  16. Polymer-Based Therapeutics: Nanoassemblies and Nanoparticles for Management of Atherosclerosis

    PubMed Central

    Lewis, Daniel R.; Kamisoglu, Kubra; York, Adam; Moghe, Prabhas V.

    2012-01-01

    Coronary arterial disease, one of the leading causes of adult mortality, is triggered by atherosclerosis. A disease with complex etiology, atherosclerosis results from the progressive long-term combination of atherogenesis, the accumulation of modified lipoproteins within blood vessel walls, along with vascular and systemic inflammatory processes. The management of atherosclerosis is challenged by the localized flare-up of several multipronged signaling interactions between activated monocytes, atherogenic macrophages and inflamed or dysfunctional endothelial cells. A new generation of approaches is now emerging founded on multifocal, targeted therapies that seek to reverse or ameliorate the athero-inflammatory cascade within the vascular intima. This article reviews the various classes and primary examples of bioactive configurations of nanoscale assemblies. Of specific interest are polymer-based or polymer-lipid micellar assemblies designed as multimodal receptor-targeted blockers or drug carriers whose activity can be tuned by variations in polymer hydrophobicity, charge, and architecture. Also reviewed are emerging reports on multifunctional nanoassemblies and nanoparticles for improved circulation and enhanced targeting to athero-inflammatory lesions and atherosclerotic plaques. PMID:21523920

  17. Atorvastatin Improves Inflammatory Response in Atherosclerosis by Upregulating the Expression of GARP.

    PubMed

    Zhao, Xiaoqi; Liu, Yuzhou; Zhong, Yucheng; Liu, Bo; Yu, Kunwu; Shi, Huairui; Zhu, Ruirui; Meng, Kai; Zhang, Wei; Wu, Bangwei; Zeng, Qiutang

    2015-01-01

    Regulatory T cells play an important role in the progression of atherosclerosis. GARP is a newly biological membrane molecule existed on activated Tregs, which is related to the release of TGF-β. The antiatherosclerosis effects of statins partly depend on their multiple immune modulatory potencies. In this paper, we present that atorvastatin could upregulate the expression of GARP and TGF-β in CD4+ T cells and increase the numbers of CD4+LAP+ and CD4+Foxp3+ regulatory T cells in ApoE-/- mice. Also, we indicate that atorvastatin promotes the aggregation of GARP+ and Foxp3+ cells and secretory of the TGF-β1 in atherosclerotic plaques. Furthermore, we prove that atorvastatin could delay the procession of atherosclerosis and improve the stability of atherosclerotic plaques. Interestingly, we report that inhibition of GARP distinctly inhibits the anti-inflammatory effects of atorvastatin. We conclude that atorvastatin improves the inflammatory response in atherosclerosis partly by upregulating the expression of GARP on regulatory T cells.

  18. Atorvastatin Improves Inflammatory Response in Atherosclerosis by Upregulating the Expression of GARP

    PubMed Central

    Zhao, Xiaoqi; Liu, Yuzhou; Zhong, Yucheng; Liu, Bo; Yu, Kunwu; Shi, Huairui; Zhu, Ruirui; Meng, Kai; Zhang, Wei; Wu, Bangwei

    2015-01-01

    Regulatory T cells play an important role in the progression of atherosclerosis. GARP is a newly biological membrane molecule existed on activated Tregs, which is related to the release of TGF-β. The antiatherosclerosis effects of statins partly depend on their multiple immune modulatory potencies. In this paper, we present that atorvastatin could upregulate the expression of GARP and TGF-β in CD4+ T cells and increase the numbers of CD4+LAP+ and CD4+Foxp3+ regulatory T cells in ApoE−/− mice. Also, we indicate that atorvastatin promotes the aggregation of GARP+ and Foxp3+ cells and secretory of the TGF-β1 in atherosclerotic plaques. Furthermore, we prove that atorvastatin could delay the procession of atherosclerosis and improve the stability of atherosclerotic plaques. Interestingly, we report that inhibition of GARP distinctly inhibits the anti-inflammatory effects of atorvastatin. We conclude that atorvastatin improves the inflammatory response in atherosclerosis partly by upregulating the expression of GARP on regulatory T cells. PMID:26063978

  19. High-methionine diets accelerate atherosclerosis by HHcy-mediated FABP4 gene demethylation pathway via DNMT1 in ApoE(-/-) mice.

    PubMed

    Yang, An-Ning; Zhang, Hui-Ping; Sun, Yue; Yang, Xiao-Ling; Wang, Nan; Zhu, Guangrong; Zhang, Hui; Xu, Hua; Ma, Sheng-Chao; Zhang, Yue; Li, Gui-Zhong; Jia, Yue-Xia; Cao, Jun; Jiang, Yi-Deng

    2015-12-21

    Homocysteine (Hcy) is an independent risk factor for atherosclerosis, but the underlying molecular mechanisms are not known. We investigated the effects of Hcy on fatty acid-binding protein 4 (FABP4), and tested our hypothesis that Hcy-induced atherosclerosis is mediated by increased FABP4 expression and decreased methylation. The FABP4 expression and DNA methylation was assessed in the aorta of ApoE(-/-) mice fed high-methionine diet for 20weeks. Over-expression of FABP4 enhanced accumulation of total cholesterol and cholesterol ester in foam cells. The up-regulation of DNA methyltransferase 1 (DNMT1) promoted the methylation process and decreased FABP4 expression. These data suggest that FABP4 plays a key role in Hcy-mediated disturbance of lipid metabolism and that DNMT1 may be a novel therapeutic target in Hcy-related atherosclerosis. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Relationship of lipid oxidation with subclinical atherosclerosis and 10-year coronary events in general population.

    PubMed

    Gómez, Miquel; Vila, Joan; Elosua, Roberto; Molina, Lluís; Bruguera, Jordi; Sala, Joan; Masià, Rafel; Covas, Maria Isabel; Marrugat, Jaume; Fitó, Montserrat

    2014-01-01

    To assess 1) the association of lipid oxidation biomarkers with 10-year coronary artery disease (CAD) events and subclinical atherosclerosis, and 2) the reclassification capacity of these biomarkers over Framingham-derived CAD risk functions, in a general population. Within the framework of the REGICOR study, 4782 individuals aged between 25 and 74 years were recruited in a population-based cohort study. Follow-up of the 4042 who met the eligibility criteria was carried out. Plasma, circulating oxidized low-density lipoprotein (oxLDL) and oxLDL antibodies (OLAB) were measured in a random sample of 2793 participants. End-points included fatal and non-fatal acute myocardial infarction (AMI) and angina. Carotid intima-media thickness (IMT) in the highest quintile and ankle-brachial index <0.9 were considered indicators of subclinical atherosclerosis. Mean age was 50.0 (13.4) years, and 52.4% were women. There were 103 CAD events (34 myocardial infarction, 43 angina, 26 coronary deaths), and 306 subclinical atherosclerosis cases. Oxidized LDL was independently associated with higher incidence of CAD events (HR = 1.70; 95% Confidence Interval: 1.02-2.84), but not with subclinical atherosclerosis. The net classification index of the Framingham-derived CAD risk function was significantly improved when ox-LDL was included (NRI = 14.67% [4.90; 24.45], P = 0.003). No associations were found between OLAB and clinical or subclinical events. The reference values for oxLDL and OLAB are also provided (percentiles). OxLDL was independently associated with 10-year CAD events but not subclinical atherosclerosis in a general population, and improved the reclassification capacity of Framingham-derived CAD risk functions. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Incremental prognostic value of coronary and systemic atherosclerosis after myocardial infarction.

    PubMed

    Calais, Fredrik; Eriksson Östman, Maja; Hedberg, Pär; Rosenblad, Andreas; Leppert, Jerzy; Fröbert, Ole

    2018-06-15

    The role of systemic atherosclerosis in myocardial infarction (MI) patients is not fully understood. We investigated the incremental prognostic value of coronary and systemic atherosclerosis after acute MI by estimating extra-cardiac artery disease (ECAD) and extent of coronary atherosclerosis. The study included 544 prospective MI patients undergoing coronary angiography. For all patients, the longitudinal coronary atherosclerotic extent, expressed as Sullivan extent score (SES) was calculated. In addition, the patients underwent non-invasive screening for ECAD in the carotid, aortic, renal and lower limb. SES was found to be associated with ECAD independent of baseline clinical parameters [adjusted odds ratio (OR) 1.04 95% confidence interval (CI) 1.02-1.06, P < 0.001]. Extensive systemic atherosclerosis, defined as the combination of extensive coronary disease (SES ≥ 17) and ECAD, was associated with higher risk for all-cause mortality compared to limited systemic atherosclerosis (SES < 17 and no ECAD) (hazard ratio [HR] 2.9 95% CI 1.9-4.5, P < 0.001, adjusted for Global Registry of Acute Coronary Events risk score parameters 1.8, 95% CI 1.1-3.0, P = 0.019). The risk for the composite endpoint of cardiovascular death or hospitalization was significantly higher in patients with extensive systemic atherosclerosis compared to patients with limited systemic atherosclerosis (HR 3.1, 95% CI 2.1-4.7, P < 0.001, adjusted HR 1.9, 95% CI 1.2-3.1, P < 0.004). Visual estimation of the longitudinal coronary atherosclerotic extent at the time of MI predicts ECAD. Coexistence of extensive coronary disease and ECAD defines a group with particularly poor prognosis after MI. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Associations between markers of subclinical atherosclerosis and dietary patterns derived by principal components analysis and reduced rank regression in the Multi-Ethnic Study of Atherosclerosis (MESA)1–3

    PubMed Central

    Nettleton, Jennifer A; Steffen, Lyn M; Schulze, Matthias B; Jenny, Nancy S; Barr, R Graham; Bertoni, Alain G; Jacobs, David R

    2010-01-01

    Background The association between diet and cardiovascular disease (CVD) may be mediated partly through inflammatory processes and reflected by markers of subclinical atherosclerosis. Objective We investigated whether empirically derived dietary patterns are associated with coronary artery calcium (CAC) and common and internal carotid artery intima media thickness (IMT) and whether prior information about inflammatory processes would increase the strength of the associations. Design At baseline, dietary patterns were derived with the use of a food-frequency questionnaire, and inflammatory biomarkers, CAC, and IMT were measured in 5089 participants aged 45–84 y, who had no clinical CVD or diabetes, in the Multi-Ethnic Study of Atherosclerosis. Dietary patterns based on variations in C-reactive protein, interleukin-6, homocysteine, and fibrinogen concentrations were created with reduced rank regression (RRR). Dietary patterns based on variations in food group intake were created with principal components analysis (PCA). Results The primary RRR(RRR 1) and PCA(PCA factor 1) dietary patterns were high in total and saturated fat and low in fiber and micronutrients. However, the food sources of these nutrients differed between the dietary patterns. RRR 1 was positively associated with CAC [Agatston score >0: OR(95% CI) for quartile 5 compared with quartile 1 = 1.34 (1.05, 1.71); ln(Agatston score = 1): P for trend = 0.023] and with common carotid IMT [≥1.0 mm: OR (95% CI) for quartile 5 compared with quartile 1 = 1.33 (0.99, 1.79); ln(common carotid IMT): P for trend = 0.006]. PCA 1 was not associated with CAC or IMT. Conclusion The results suggest that subtle differences in dietary pattern composition, realized by incorporating measures of inflammatory processes, affect associations with markers of subclinical atherosclerosis. PMID:17556701

  3. Increased plasma DPP4 activities predict new-onset atherosclerosis in association with its proinflammatory effects in Chinese over a four year period: A prospective study.

    PubMed

    Zheng, T P; Yang, F; Gao, Y; Baskota, A; Chen, T; Tian, H M; Ran, X W

    2014-08-01

    DPP4, a novel proinflammatory cytokine, is involved in the inflammatory process through its interaction with IGF-II/M6P receptor. We aimed to investigate whether it could predict new-onset atherosclerosis in Chinese. A prospective study was conducted of 590 adults (213 men and 377 women) aged 18-70 years without atherosclerosis examined in 2007(baseline) and 2011(follow-up). Circulating DPP4 activity, inflammatory markers, IGF-II/M6P receptor and common carotid artery Intima-Media Thickness (C-IMT) were measured at baseline and four years later. At baseline, individuals in the highest quartile of DPP4 activity had higher age, WHR, BMI, SBP, fasting insulin, 2h-PG, TG, LDL-C, IL-6, hs-CRP, IGF-II/M6P-R, C-IMT and lower HDL-C compared with individuals in the lowest quartile. After a 4-year follow-up, 71 individuals developed atherosclerosis. In multiple linear regression analysis, baseline DPP4 activity was an independent predictor of an increase in inflammatory markers, IGF-II/M6P receptor, and C-IMT over a 4-year period (all P < 0.01). In multivariable-adjusted models, the odds ratio (OR) for incident atherosclerosis comparing the highest with the lowest quartiles of DPP4 activity was 3.17 (95%CI 1.33-7.58) after adjustment for confounding risk factors (P = 0.009). The incidence of atherosclerosis owing to DPP4 activity increased by 12.41%. DPP4 activity is an important predictor of the onset of inflammation and atherosclerosis in apparently healthy Chinese. This finding may have important implications for understanding the proinflammatory role of DPP-4 in the pathogenesis of atherosclerosis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Applications of Two-Dimensional Electrophoresis Technology to the Study of Atherosclerosis

    PubMed Central

    Lepedda, Antonio J.

    2008-01-01

    Atherosclerosis is a multifactorial disease in which hypertension, diabetes, hyperlipidemia and other risk factors are thought to play a role. However, the molecular processes underlying plaque formation and progression are not yet completely known. In the last years some researchers applied proteomics technologies for the comprehension of biochemical pathways of atherogenesis and to search new cardiovascular biomarkers to be utilized either as early diagnostic traits or as targets for new drug therapies. Due to its intrinsic complexity, the problem has been approached by different strategies, all of which have some limitations. In this review, we summarize the most common critical experimental variables in two-dimensional electrophoresis-based techniques and recent data obtained by applying proteomic approaches in the study of atherosclerosis. PMID:27683313

  5. β-arrestins Regulate Atherosclerosis and Neointimal Hyperplasia by Controlling Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Kim, Jihee; Zhang, Lisheng; Peppel, Karsten; Wu, Jiao-Hui; Zidar, David A.; Brian, Leigh; DeWire, Scott M.; Exum, Sabrina T.; Lefkowitz, Robert J.; Freedman, Neil J.

    2009-01-01

    Atherosclerosis and arterial injury-provoked neointimal hyperplasia involve medial smooth muscle cell (SMC) proliferation and migration into the arterial intima. Because many 7-transmembrane and growth factor receptors promote atherosclerosis, we hypothesized that the multifunctional adaptor proteins β-arrestin1 and -2 might regulate this pathologic process. Deficiency of β-arrestin2 in ldlr-/- mice reduced aortic atherosclerosis by 40%, and decreased the prevalence of atheroma SMCs by 35%—suggesting that β-arrestin2 promotes atherosclerosis through effects on SMCs. To test this potential atherogenic mechanism more specifically, we performed carotid endothelial denudation in congenic WT, β-arrestin1-/-, and β-arrestin2-/- mice. Neointimal hyperplasia was enhanced in β-arrestin1-/- mice, and diminished in β-arrestin2-/- mice. Neointimal cells expressed SMC markers and did not derive from bone marrow progenitors, as demonstrated by bone marrow transplantation with GFP-transgenic cells. Moreover, the reduction in neointimal hyperplasia seen in β-arrestin2-/- mice was not altered by transplantation with either WT or β-arrestin2-/- bone marrow cells. After carotid injury, medial SMC ERK activation and proliferation were increased in β-arrestin1-/- and decreased in β-arrestin2-/- mice. Concordantly, thymidine incorporation, ERK activation and migration evoked by 7-transmembrane receptors were greater than WT in β-arrestin1-/- SMCs, and less in β-arrestin2-/- SMCs. Proliferation was less than WT in β-arrestin2-/- SMCs, but not in β-arrestin2-/- endothelial cells. We conclude that β-arrestin2 aggravates atherosclerosis through mechanisms involving SMC proliferation and migration, and that these SMC activities are regulated reciprocally by β-arrestin2 and β-arrestin1. These findings identify inhibition of β-arrestin2 as a novel therapeutic strategy for combating atherosclerosis and arterial restenosis after angioplasty. PMID:18519945

  6. Effects of transplanted circulating endothelial progenitor cells and platelet microparticles in atherosclerosis development.

    PubMed

    Georgescu, Adriana; Alexandru, Nicoleta; Andrei, Eugen; Dragan, Emanuel; Cochior, Daniel; Dias, Sérgio

    2016-08-01

    Atherosclerosis is an inflammatory disease, in which risk factors such as hyperlipidemia and hypertension affect the arterial endothelium, resulting in dysfunction, cell damage or both. The number of circulating endothelial progenitor cells and microparticles provides invaluable outcome prediction for atherosclerosis disease. However, evidence for the therapeutic potential of endothelial progenitor cells and microparticles in atherosclerosis development is limited. Our study was designed to investigate the possible protective role of a cell therapy-based approach, using endothelial progenitor cells and the dual behaviour of circulating platelet microparticles, on atherosclerosis development in hypertensive-hypercholesterolemic hamster model. Consequently, control hamsters received four intravenous inoculations of: (1) 1×10(5) endothelial progenitor cells of healthy origins in one dose per month, during four months of diet-induced atherosclerosis, and after hypertensive-hypercholesterolemic diet for further four months; (2) in a second set of experiments, 1×10(5) endothelial progenitor cells of healthy origins or/and 1×10(5) platelet microparticles of atherosclerotic origins were inoculated every other month during hypertensive-hypercholesterolemic diet. Endothelial progenitor cell treatment had the following effects: (1) re-established plasmatic parameters: cholesterol and triglyceride concentrations, blood pressure, heart rate, cytokine and chemokine profiles, platelet microparticle pro-thrombotic activity and endothelial progenitor cell paracrine activity reflected by cytokine/chemokine detection; (2) reduced lipid, macrophage and microparticle accumulation in liver; (3) reduced atherosclerosis development, revealed by decreased lipid, macrophage and microparticle content of arterial wall; (4) induced the recruitment and incorporation of endothelial progenitor cells into liver and arterial wall; (5) improved arterial dysfunction by increasing contraction and relaxation; (6) reduced the protein expression of specific pro-inflammatory molecules in liver and arterial wall. Platelet microparticle transplantation aggravated the above-mentioned biomarkers and atherosclerosis process, which were partially reverted with co-inoculation of platelet microparticles and endothelial progenitor cells. With this study, we demonstrate in a hypertensive-hypercholesterolemic hamster model, that the endothelial progenitor cell-based therapy suppresses the development of atherosclerosis and reduces hepatic lipid and macrophage accumulation with the consequent alleviation of dyslipidaemia and hypertension. Our results support the notion that increasing the number of circulating endothelial progenitor cells by different ways could be a promising therapeutic tool for atherosclerosis. © 2016 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  7. Promoter methylation of glucocorticoid receptor gene is associated with subclinical atherosclerosis: A monozygotic twin study.

    PubMed

    Zhao, Jinying; An, Qiang; Goldberg, Jack; Quyyumi, Arshed A; Vaccarino, Viola

    2015-09-01

    Endothelial dysfunction assessed by brachial artery flow-mediated dilation (FMD) is a marker of early atherosclerosis. Glucocorticoid receptor gene (NR3C1) regulates many biological processes, including stress response, behavioral, cardiometabolic and immunologic functions. Genetic variants in NR3C1 have been associated with atherosclerosis and related risk factors. This study investigated the association of NR3C1 promoter methylation with FMD, independent of genetic and family-level environmental factors. We studied 84 middle-aged, male-male monozygotic twin pairs recruited from the Vietnam Era Twin Registry. Brachial artery FMD was measured by ultrasound. DNA methylation levels at 22 CpG residues in the NR3C1 exon 1F promoter region were quantified by bisulfite pyrosequencing in genomic DNA isolated from peripheral blood leukocytes. Co-twin control analyses were conducted to examine the association of methylation variation with FMD, adjusting for smoking, physical activity, body mass index, lipids, blood pressure, fasting glucose, and depressive symptoms. Multiple testing was corrected using the false discovery rate. Mean methylation level across the 22 studied CpG sites was 2.02%. Methylation alterations at 12 out of the 22 CpG residues were significantly associated with FMD. On average, a 1% increase in the intra-pair difference in mean DNA methylation was associated with 2.83% increase in the intra-pair difference in FMD (95% CI: 1.46-4.20; P < 0.0001) after adjusting for risk factors and multiple testing. Methylation variation in NR3C1 exon 1F promoter significantly influences subclinical atherosclerosis, independent of genetic, early family environmental and other risk factors. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Current and cumulative night shift work and subclinical atherosclerosis: results of the Gutenberg Health Study.

    PubMed

    Jankowiak, S; Backé, E; Liebers, F; Schulz, A; Hegewald, J; Garthus-Niegel, S; Nübling, M; Blankenberg, S; Pfeiffer, N; Lackner, K J; Beutel, M; Blettner, M; Münzel, T; Wild, P S; Seidler, A; Letzel, S; Latza, U

    2016-11-01

    The study examines the association between exposure to current and cumulative night shift work and subclinical parameters of atherosclerosis. Participants of a population-based cohort study (the Gutenberg Health Study, N = 15,010) aged 35-64 years were examined at baseline (2007-2012). Investigations included measurements of arterial stiffness, vascular function [reactive hyperaemia (RH) index], and intima media thickness (IMT). Also, a complete job history (including up to 15 periods), occupational exposures, a variety of lifestyle, and dispositional variables were enquired. Night shift work was performed by 1071 out of 8065 currently employed individuals. The strongest association after adjustment for age, sex, job complexity level, being a manager, overtime work, and noise appeared for more than 660 night shifts within the last 10 years and a significantly increased arterial stiffness of 0.33 m/s. This reflects a 4 % flow velocity increase for individuals with more than 660 night shifts compared to non-night workers. Regarding the entire professional life, night shift workers showed a significantly decreased vascular function by -0.054 RH index points by using the same adjustment. IMT values did not differ statistically from non-night workers. Lifestyle and dispositional factors showed an influence on all used subclinical atherosclerosis parameters. The cross-sectional results demonstrate an association between night work and detrimental changes in the atherosclerotic process. The association is more pronounced with more years in night shift and is partly explained by lifestyle and dispositional factors. Longitudinal analyses are necessary to confirm the results.

  9. Pro-resolution therapeutics for cardiovascular diseases.

    PubMed

    Heinz, Justin; Marinello, Michael; Fredman, Gabrielle

    2017-09-01

    Studies over the last couple of decades suggest that failed resolution of a chronic inflammatory response is an important driving force in the progression of atherosclerosis. Resolution of inflammation is mediated in part by lipid-derived specialized pro-resolving mediators (SPMs) such as lipoxins, resolvins, protectins and maresins. The major functions of SPMs are to quell inflammation and repair tissue damage in a manner that does not compromise host defense. An imbalance between SPMs and pro-inflammatory mediators like leukotriene B 4 (LTB 4 ) are associated with several prevalent human diseases, including atherosclerosis. Because atherosclerosis is marked by persistent, unresolved inflammation and arterial tissue injury, SPMs have garnered immense interest as a potential treatment strategy. This mini review will highlight recent advances in the application of SPMs in atherosclerosis as well as the ability of SPMs to control several of the risk factors associated with cardiovascular diseases. Copyright © 2017. Published by Elsevier Inc.

  10. Progress and future opportunities in the development of vaccines against atherosclerosis.

    PubMed

    Govea-Alonso, Dania O; Beltrán-López, Josué; Salazar-González, Jorge A; Vargas-Morales, Juan; Rosales-Mendoza, Sergio

    2017-04-01

    Atherosclerosis represents a serious global health problem that demands new therapeutic and prophylactic interventions. Considering that atherosclerosis has autoimmune and inflammatory components, immunotherapy is a possible focus to treat this disease. Areas covered: Based on the analysis of the current biomedical literature, this review describes the status on the development of vaccines against atherosclerosis. Several targets have been identified including sequences of apolipoprotein B100 (ApoB100), cholesteryl ester transfer protein (CETP), heat shock proteins (HSP), extracellular matrix proteins, T cell receptor β chain variable region 31 (TRBV31), the major outer membrane protein (MOMP), and the outer membrane protein 5 (Pomp5) from Chlamydia pneumoniae. Humoral and cellular immunities to these targets have been associated with therapeutic effects in murine models and humans. The evaluation of some candidates in clinical trials is ongoing. Expert commentary: New research paths based on the use of next generation vaccine production platforms are envisioned.

  11. [Clinical and immunological study of the relationship of the digestive system chronic diseases and atherosclerosis in the basin of the abdominal aorta in elderly patients].

    PubMed

    Dolgushina, A I; Shaposhnik, I I; Volchegorskiĭ, I A

    2014-01-01

    Paper describes clinical and immunological study about the relationship between chronic diseases of the digestive system and atherosclerosis in the basin of the abdominal aorta in patients of elderly and senile age. There were revealed the structural and clinical features of the gastrointestinal tract diseases, depending on the extent of atherosclerosis in the basin of the abdominal aorta. Evaluation of the immune status included the determination of lymphocyte subpopulation composition, the functional state of neutrophils and cytokine levels. It is found that the progression of atherosclerosis in the basin of the abdominal aorta in patients of elderly and senile age with chronic diseases of the digestive system was accompanied by the activation of pro-inflammatory mechanisms of the immune system and the accompanying intensification of oxidative stress.

  12. Cardiorespiratory Fitness and Atherosclerosis: Recent Data and Future Directions.

    PubMed

    Mehanna, Emile; Hamik, Anne; Josephson, Richard A

    2016-05-01

    Historically, the relationship between exercise and the cardiovascular system was viewed as unidirectional, with a disease resulting in exercise limitation and hazard. This article reviews and explores the bidirectional nature, delineating the effects, generally positive, on the cardiovascular system and atherosclerosis. Exercise augments eNOS, affects redox potential, and favorably affects mediators of atherosclerosis including lipids, glucose homeostasis, and inflammation. There are direct effects on the vasculature as well as indirect benefits related to exercise-induced changes in body composition and skeletal muscle. Application of aerobic exercise to specific populations is described, with the hope that this knowledge will move the science forward and improve individual patient outcome.

  13. Cardiorespiratory Fitness and Atherosclerosis: Recent Data and Future Directions

    PubMed Central

    Mehanna, Emile; Hamik, Anne; Josephson, Richard A

    2017-01-01

    Historically the relationship between exercise and the cardiovascular system was viewed as unidirectional, with disease resulting in exercise limitation and hazard. This article reviews and explores the bidirectional nature, delineating the effects, generally positive, on the cardiovascular system and atherosclerosis. Exercise augments eNOS, affects redox potential, and favorably affects mediators of atherosclerosis including lipids, glucose homeostasis, and inflammation. There are direct effects on the vasculature as well as indirect benefits related to exercises induced changes in body composition and skeletal muscle. Application of aerobic exercise to specific populations is described, with the hope that this knowledge will move the science forward and improve individual patient outcome. PMID:27005804

  14. Effect of non-alcoholic fatty liver disease on carotid artery intima-media thickness as a risk factor for atherosclerosis

    PubMed Central

    Nahandi, Maryam Zaare; Ramazanzadeh, Elham; Abbaszadeh, Leili; Javadrashid, Reza; Shirazi, Koorosh Masnadi; Gholami, Nasrin

    2014-01-01

    Aim This study aimed to evaluate the effect of NAFLD on CIMT as a risk factor for atherosclerosis. Background The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide due to rise of obesity and diabetes mellitus (DM) prevalence. Non-invasive assessment of carotid intima-media thickness (CIMT) by high-resolution carotid B-mode ultrasonography is widely used for determining the atherosclerosis. Patients and methods In this case-control setting, 151 subjects were categorized in three groups: group I including 49 patients with NAFLD and DM; group II including 50 non-diabetic NAFLD patients; and the control including 52 normal subjects as group III. The right and left CIMTs and its maximum reading (CIMTmax) were measured by a skilled sonographist blind to the groups. The sonographic grading of the NAFLD was determined in group I and II. Results Median CIMTmax was significantly higher in group I comparing with group II and control group (p<0.001). This difference between group I and group II was not significant after adjusting for age and history of hypertension and hyperlipidemia (p=0.089). After controlling the confounders, there was statistical significant between group I and group II with the control group (p<0.05). There was no significant difference in median maximal thickness of intima-media in the carotid of group I compare to group II in patients with and without elevated liver enzymes (in both groups, 0.6 mm, p= 0.402). Conclusion Based on our findings, there is a significant association between the presence of NAFLD and atherosclerosis. This association was independent to the DM presence. The grade of NAFLD and elevated liver function tests had no effect on severity of atherosclerosis. PMID:25436098

  15. MicroRNAs and lipoproteins: a connection beyond atherosclerosis?

    PubMed Central

    Norata, Giuseppe Danilo; Sala, Federica; Catapano, Alberico Luigi; Fernández-Hernando, Carlos

    2014-01-01

    MicroRNAs (miRNAs) are involved in the pathogenesis of a number of cardiovascular diseases. In this review article, we have summarized the role of miRNAs in regulating lipid metabolism and how their therapeutical inhibition may lead to new approaches to treat cardiometabolic diseases, including atherosclerosis and metabolic syndrome. Specific miRNAs, such as miR-33a and -33b, represent one of the most interesting and attractive targets for metabolic-related disorders and anti-miR33 approaches are under intensive investigation. In addition to miR-33, other miRNAs, including miR-122, are also emerging as key players in lipid metabolism. More recently miRNAs were shown to exert their activities in a paracrine manner and also systemically. The latter is possible due to lipid-carriers, including lipoproteins, that transport and protect miRNAs from degradation. The emerging strong connection between miRNAs, lipoproteins and lipid metabolism indicates the existence of a reciprocal modulation that might go beyond atherosclerosis. PMID:23260873

  16. Digital image processing of vascular angiograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Beckenbach, E. S.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.

    1975-01-01

    The paper discusses the estimation of the degree of atherosclerosis in the human femoral artery through the use of a digital image processing system for vascular angiograms. The film digitizer uses an electronic image dissector camera to scan the angiogram and convert the recorded optical density information into a numerical format. Another processing step involves locating the vessel edges from the digital image. The computer has been programmed to estimate vessel abnormality through a series of measurements, some derived primarily from the vessel edge information and others from optical density variations within the lumen shadow. These measurements are combined into an atherosclerosis index, which is found in a post-mortem study to correlate well with both visual and chemical estimates of atherosclerotic disease.

  17. A Novel Strategy to Prevent Advanced Atherosclerosis and Lower Blood Glucose in a Mouse Model of Metabolic Syndrome.

    PubMed

    Kanter, Jenny E; Kramer, Farah; Barnhart, Shelley; Duggan, Jeffrey M; Shimizu-Albergine, Masami; Kothari, Vishal; Chait, Alan; Bouman, Stephan D; Hamerman, Jessica A; Hansen, Bo F; Olsen, Grith S; Bornfeldt, Karin E

    2018-05-01

    Cardiovascular disease caused by atherosclerosis is the leading cause of mortality associated with type 2 diabetes and metabolic syndrome. Insulin therapy is often needed to improve glycemic control, but it does not clearly prevent atherosclerosis. Upon binding to the insulin receptor (IR), insulin activates distinct arms of downstream signaling. The IR-Akt arm is associated with blood glucose lowering and beneficial effects, whereas the IR-Erk arm might exert less desirable effects. We investigated whether selective activation of the IR-Akt arm, leaving the IR-Erk arm largely inactive, would result in protection from atherosclerosis in a mouse model of metabolic syndrome. The insulin mimetic peptide S597 lowered blood glucose and activated Akt in insulin target tissues, mimicking insulin's effects, but only weakly activated Erk and even prevented insulin-induced Erk activation. Strikingly, S597 retarded atherosclerotic lesion progression through a process associated with protection from leukocytosis, thereby reducing lesional accumulation of inflammatory Ly6C hi monocytes. S597-mediated protection from leukocytosis was accompanied by reduced numbers of the earliest bone marrow hematopoietic stem cells and reduced IR-Erk activity in hematopoietic stem cells. This study provides a conceptually novel treatment strategy for advanced atherosclerosis associated with metabolic syndrome and type 2 diabetes. © 2018 by the American Diabetes Association.

  18. Compound K Attenuates the Development of Atherosclerosis in ApoE−/− Mice via LXRα Activation

    PubMed Central

    Zhou, Li; Zheng, Yu; Li, Zhuoying; Bao, Lingxia; Dou, Yin; Tang, Yuan; Zhang, Jianxiang; Zhou, Jianzhi; Liu, Ya; Jia, Yi; Li, Xiaohui

    2016-01-01

    Background: Atherosclerosis is a fundamental pathological process responded to some serious cardiovascular events. Although the cholesterol-lowering drugs are widely prescribed for atherosclerosis therapy, it is still the leading cause of death in the developed world. Here we measured the effects of compound K in atherosclerosis formation and investigated the probably mechanisms of the anti-antherosclerosis roles of compound K. Methods: We treated the atherosclerotic model animals (apoE−/− mice on western diet) with compound K and measured the size of atherosclerotic lesions, inflammatory cytokine levels and serum lipid profile. Peritoneal macrophages were collected in vitro for the foam cell and inflammasome experiments. Results: Our results show that treatment with compound K dose-dependently attenuates the formation of atherosclerotic plaques by 55% through activation of reverse cholesterol transport pathway, reduction of systemic inflammatory cytokines and inhibition of local inflammasome activity. Compound K increases the cholesterol efflux of macrophage-derived foam cells, and reduces the inflammasome activity in cholesterol crystal stimulated macrophages. The activation of LXRα may contribute to the athero-protective effects of compound K. Conclusion: These observations provide evidence for an athero-protective effect of compound K via LXRα activation, and support its further evaluation as a potential effective modulator for the prevention and treatment of atherosclerosis. PMID:27399689

  19. Androgen Receptor (AR) in Cardiovascular Diseases

    PubMed Central

    Huang, Chiung-Kuei; Lee, Soo Ok; Chang, Eugene; Pang, Haiyan; Chang, Chawnshang

    2016-01-01

    Cardiovascular diseases (CVDs) are still the highest leading cause of death worldwide. Several risk factors have been linked to CVDs, including smoking, diabetes, hyperlipidemia, and gender among others. Sex hormones, especially the androgen and its receptor, androgen receptor (AR), have been linked to many diseases with a clear gender difference. Here, we summarize androgen/AR effects on CVDs, including hypertension, stroke, atherosclerosis, abdominal aortic aneurysm (AAA), myocardial hypertrophy, and heart failure, as well as metabolic syndrome/diabetes and their impacts on CVDs. Androgen/AR signaling exacerbates hypertension and anti-androgens may suppress hypertension. Androgen/AR signaling plays dual roles in strokes, depending on different kinds of factors, but generally males have a higher incidence of strokes than females. Androgen and AR differentially modulate atherosclerosis. Androgen deficiency causes elevated lipid accumulation to enhance atherosclerosis, but targeting AR in selective cells without altering serum androgen levels would suppress atherosclerosis progression. Androgen/AR signaling is crucial in AAA development and progression, and targeting androgen/AR profoundly restricts AAA progression. Men have increased cardiac hypertrophy as compared to age-matched women that may be due to androgens. Finally, androgen/AR plays important roles in contributing to obesity and insulin/leptin resistance to increase the metabolic syndrome. PMID:26769913

  20. Acute Loss of Apolipoprotein E Triggers an Autoimmune Response That Accelerates Atherosclerosis.

    PubMed

    Centa, Monica; Prokopec, Kajsa E; Garimella, Manasa G; Habir, Katrin; Hofste, Lisa; Stark, Julian M; Dahdah, Albert; Tibbit, Chris A; Polyzos, Konstantinos A; Gisterå, Anton; Johansson, Daniel K; Maeda, Nobuyo N; Hansson, Göran K; Ketelhuth, Daniel F J; Coquet, Jonathan M; Binder, Christoph J; Karlsson, Mikael C I; Malin, Stephen

    2018-06-07

    Dyslipidemia is a component of the metabolic syndrome, an established risk factor for atherosclerotic cardiovascular disease, and is also observed in various autoimmune and chronic inflammatory conditions. However, there are limited opportunities to study the impact of acquired dyslipidemia on cardiovascular and immune pathology. We designed a model system that allows for the conversion to a state of acute hyperlipidemia in adult life, so that the consequences of such a transition could be observed, through conditionally deleting APOE (apolipoprotein E) in the adult mouse. The transition to hypercholesterolemia was accompanied by adaptive immune responses, including the expansion of T lymphocyte helper cell 1, T follicular helper cell, and T regulatory subsets and the formation of germinal centers. Unlike steady-state Apoe -deficientmice, abrupt loss of APOE induced rapid production of antibodies recognizing rheumatoid disease autoantigens. Genetic ablation of the germinal center reduced both autoimmunity and atherosclerosis, indicating that the immune response that follows loss of APOE is independent of atherosclerosis but nevertheless promotes plaque development. Our findings suggest that immune activation in response to hyperlipidemia could contribute to a wide range of inflammatory autoimmune diseases, including atherosclerosis. © 2018 American Heart Association, Inc.

  1. The lectin-like oxidized low-density lipoprotein receptor-1 as therapeutic target for atherosclerosis, inflammatory conditions and longevity.

    PubMed

    Ulrich-Merzenich, Gudrun; Zeitler, Heike

    2013-08-01

    The lectin-like oxidized LDL receptor-1 (LOX-1) is a scavenger receptor and is regarded as a central element in the initiation of endothelial dysfunction and its further progression to atherosclerosis. Increasing numbers of studies suggest that therapeutic strategies to modulate LOX-1 will have a broad spectrum of applications ranging from cardiovascular diseases to longevity. The dual role of LOX-1 as a culprit molecule in the process of atherosclerosis and as a danger signal in various tissues is introduced. The structure of the receptor, its ligands and its modulation by known drugs, by natural products (e.g., statins, imipramine, salicylate-based drugs, procyanidins, curcumin) and by new strategies (antisenseRNA, miRNA, pyrrole-imidazol-polyamides, LOX-1 antibodies, lipid apheresis) are described. Therapeutic approaches via transcript regulation, allowing a modulation of LOX-1, may be an easier and safer strategy than a blockade of the receptor. Considering the wide distribution of LOX-1 on different tissues, research on the mechanisms of LOX-1 modulation by drugs and natural products applying "omic"-technologies will not only allow a better understanding of the role of LOX-1 in the processes of atherosclerosis, inflammation and longevity but also support the development of specific LOX-1 modulators, avoiding the initiation of molecular mechanisms which lead to adverse events.

  2. 17-β Estradiol reduces atherosclerosis without exacerbating lupus in ovariectomized systemic lupus erythematosus-susceptible LDLr(-/-) mice.

    PubMed

    Shelton, K A; Cline, J M; Cann, J A

    2013-04-01

    To test the hypothesis that estrogen treatment in a radiation chimera mouse model of systemic lupus erythematosus (SLE) and atherosclerosis will increase SLE-associated atherosclerosis by increasing autoantibody production and inflammation. We used a radiation chimera mouse model in which bone marrow from the polygenic B6.Sle1.2.3 model of SLE was transferred to the low density lipoprotein receptor knock out (LDLr(-/-)) model of atherosclerosis on a C57BL/6 background (Sle/LDLr(-/-)). Ovariectomized chimeric mice were treated for 10 weeks with either 5.6 μg/day of 17β-estradiol or placebo; outcomes included atherosclerosis plaque size, anti-dsDNA autoantibody production and renal pathology. Mean atherosclerosis plaque size was 67.4 ± 7.6% smaller in the estrogen treated group (p < 0.0001). Estrogen treated Sle/LDLr(-/-) mice had no significant difference in serum cholesterol concentration, lipoprotein distribution, anti-dsDNA autoantibody concentration, antibody isotype concentration and renal histopathology score compared to placebo. However, they had significantly lower mean urine protein to urine creatinine ratio (UP:UC). There was no correlation between atherosclerosis lesion size and either the renal histology score or UP:UC ratio in Sle/LDLr(-/-) mice. These results indicate that 17β-estradiol is atheroprotective within the context of murine SLE independent of changes in serum cholesterol concentration, autoantibody concentration, or renal pathology. The SLE phenotype in Sle/LDLr(-/-) mice is not exacerbated by exogenous 17β-estradiol administration, and the reduced UP:UC ratio suggests a protective effect against lupus nephritis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. 17-β Estradiol reduces atherosclerosis without exacerbating lupus in ovariectomized systemic lupus erythematosus-susceptible LDLr−/− mice

    PubMed Central

    Shelton, KA; Cline, JM; Cann, JA

    2013-01-01

    Objective To test the hypothesis that estrogen treatment in a radiation chimera mouse model of systemic lupus erythematosus (SLE) and atherosclerosis will increase SLE-associated atherosclerosis by increasing autoantibody production and inflammation. Methods We used a radiation chimera mouse model in which bone marrow from the polygenic B6.Sle1.2.3 model of SLE was transferred to the low density lipoprotein receptor knock out (LDLr−/−) model of atherosclerosis on a C57BL/6 background (Sle/LDLr−/−). Ovariectomized chimeric mice were treated for 10 weeks with either 5.6 ug/day of 17β-estradiol or placebo; outcomes included atherosclerosis plaque size, anti-dsDNA autoantibody production and renal pathology. Results Mean atherosclerosis plaque size was 67.4 ± 7.6% smaller in the estrogen treated group (p<0.0001). Estrogen treated Sle/LDLr−/− mice had no significant difference in serum cholesterol concentration, lipoprotein distribution, anti-dsDNA autoantibody concentration, antibody isotype concentration and renal histopathology score compared to placebo. However, they had significantly lower mean urine protein to urine creatinine ratio (UP:UC). There was no correlation between atherosclerosis lesion size and either the renal histology score or UP:UC ratio in Sle/LDLr−/− mice. Conclusion These results indicate that 17β-estradiol is atheroprotective within the context of murine SLE independent of changes in serum cholesterol concentration, autoantibody concentration, or renal pathology. The SLE phenotype in Sle/LDLr−/− mice is not exacerbated by exogenous 17β-estradiol administration, and the reduced UP:UC ratio suggests a protective effect against lupus nephritis. PMID:23395521

  4. Resistant Atherosclerosis: The Need for Monitoring of Plaque Burden.

    PubMed

    Spence, J David; Solo, Karla

    2017-06-01

    Recent studies indicate that patients with lower levels of low-density lipoprotein cholesterol (LDL-C) have greater regression of coronary plaque. In 2002, we found that carotid plaque progression doubled cardiovascular risk. In 2003, we therefore implemented a new approach, treating arteries instead of risk factors. Since then, we have seen many patients with carotid plaque progression despite very low levels of LDL-C, suggesting other causes of atherosclerosis. We studied the relationship of achieved LDL-C and change in LDL-C to progression/regression of atherosclerosis, before and after 2003. All 4512 patients in our clinic database with at least 2 measurements of LDL-C and carotid total plaque area approximately a year apart and complete data for analyses (n=2025 before and 2487 after December 31, 2003) were included in the study. Baseline total plaque area was significantly higher after 2003 (129.56±134.32 versus 113.33±121.52 mm 2 ; P <0.0001), and plaque progression was significantly less after 2003 (2.94±37.11 versus 12.62±43.24 mm 2 ; P <0.0001). Many patients with LDL-C <1.8 mm had plaque progression (47.5%), and change in LDL-C was not correlated with plaque progression/regression. Increasing age and serum creatinine contributed to resistant atherosclerosis. Many patients have Resistant Atherosclerosis, failing to achieve regression of atherosclerosis despite low levels of LDL-C. Instead of relying on LDL-C, measuring plaque burden may be a more useful way of assessing individual response to therapy, particularly in resistant atherosclerosis. © 2017 American Heart Association, Inc.

  5. Psychosocial Factors Associated with Subclinical Atherosclerosis in South Asians: The MASALA Study.

    PubMed

    Shah, Bijal M; Shah, Shriraj; Kandula, Namratha R; Gadgil, Meghana D; Kanaya, Alka M

    2016-12-01

    South Asians have the highest rates of premature atherosclerotic cardiovascular disease amongst all ethnic groups in the world; however this risk cannot be fully explained by traditional risk factors. Participants from the Mediators of Atherosclerosis in South Asians Living in America Study were included in this cross-sectional analysis. The purpose of this study was to investigate the association of psychosocial factors (including anger, anxiety, depressive symptoms, current and chronic stress, and everyday hassles) with carotid intima-media thickness (CIMT). Three multivariate models were examined to evaluate the association between the psychosocial factors and CIMT. Findings suggest that the impact of psychosocial factors on subclinical atherosclerosis is differential for South Asian men and women. For men, anxiety and depression were associated; while for women, stress was associated with common carotid intima media thickness, independent of traditional CVD risk factors, diet and physical activity.

  6. The identification of the variation of atherosclerosis plaques by invasive and non-invasive methods

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Blankenhorn, D. H.

    1982-01-01

    Computer-enhanced visualization of coronary arteries and lesions within them is discussed, comparing invasive and noninvasive methods. Trial design factors in computer lesions assessment are briefly discussed, and the use of the computer edge-tracking technique in that assessment is described. The results of a small pilot study conducted on serial cineangiograms of men with premature atherosclerosis are presented. A canine study to determine the feasibility of quantifying atherosclerosis from intravenous carotid angiograms is discussed. Comparative error for arterial and venous injection in the canines is determined, and the mode of processing the films to achieve better visualization is described. The application of the computer edge-tracking technique to an ultrasound image of the human carotid artery is also shown and briefly discussed.

  7. Posttransplant Immune Activation

    PubMed Central

    Bamoulid, Jamal; Crepin, Thomas; Rebibou, Jean-Michel; Courivaud, Cecile; Saas, Philippe

    2017-01-01

    Cardiovascular disease is a major cause of morbidity, disability, and mortality in kidney transplant patients. Cumulative reports indicate that the excessive risk of cardiovascular events is not entirely explained by the increased prevalence of traditional cardiovascular risk factors. Atherosclerosis is a chronic inflammatory disease, and it has been postulated that posttransplant immune disturbances may explain the gap between the predicted and observed risks of cardiovascular events. Although concordant data suggest that innate immunity contributes to the posttransplant accelerated atherosclerosis, only few arguments plead for a role of adaptive immunity. We report and discuss here consistent data demonstrating that CD8+ T cell activation is a frequent posttransplant immune feature that may have pro-atherogenic effects. Expansion of exhausted/activated CD8+ T cells in kidney transplant recipients is stimulated by several factors including cytomegalovirus infections, lymphodepletive therapy (e.g., antithymocyte globulins), chronic allogeneic stimulation, and a past history of renal insufficiency. This is observed in the setting of decreased thymic activity, a process also found in elderly individuals and reflecting accelerated immune senescence. PMID:29113470

  8. Trimethylamine N-oxide in atherogenesis: impairing endothelial self-repair capacity and enhancing monocyte adhesion.

    PubMed

    Ma, GuoHua; Pan, Bing; Chen, Yue; Guo, CaiXia; Zhao, MingMing; Zheng, LeMin; Chen, BuXing

    2017-04-30

    Several studies have reported a strong association between high plasma level of trimethylamine N-oxide (TMAO) and atherosclerosis development. However, the exact mechanism underlying this correlation is unknown. In the present study, we try to explore the impact of TMAO on endothelial dysfunction. After TMAO treatment, human umbilical vein endothelial cells (HUVECs) showed significant impairment in cellular proliferation and HUVECs-extracellular matrix (ECM) adhesion compared with control. Likewise, TMAO markedly suppressed HUVECs migration in transwell migration assay and wound healing assay. In addition, we found TMAO up-regulated vascular cell adhesion molecule-1 (VCAM-1) expression, promoted monocyte adherence, activated protein kinase C (PKC) and p-NF-κB. Interestingly, TMAO-stimulated VCAM-1 expression and monocyte adherence were diminished by PKC inhibitor. These results demonstrate that TMAO promotes early pathological process of atherosclerosis by accelerating endothelial dysfunction, including decreasing endothelial self-repair and increasing monocyte adhesion. Furthermore, TMAO-induced monocyte adhesion is partly attributable to activation of PKC/NF-κB/VCAM-1. © 2017 The Author(s).

  9. Effect of blockage of the endocannabinoid system by CB(1) antagonism on cardiovascular risk.

    PubMed

    Mach, François; Montecucco, Fabrizio; Steffens, Sabine

    2009-01-01

    The endocannabinoid system is a crucial player in the inflammatory processes underlying atherosclerosis. Recently, basic research studies and animal models have strongly supported the role of the endocannabinoid system not only in the regulation of classical cardiovascular risk factors (including lipid profile and glucose homeostasis), but also in the activation of immune cells and inflammatory mediators. Clinical trials investigating treatment with rimonabant (a selective antagonist of the cannabinoid type 1 receptor) have suggested a beneficial effect of this drug in the management of obesity. Further studies are needed to explore a possible use for rimonabant in treating type 2 diabetes and acute and chronic cardiovascular disease. Despite the slight increase in adverse events (mainly psychiatric), which has led to the recent withdrawal of rimonabant from the market, CB(1) receptor antagonism might represent a very promising therapeutic strategy to reduce the cardiovascular risk. In the present review, we focused on the most important experimental investigations into the role of the endocannabinoid system in atherosclerosis and cardiovascular risk.

  10. Macrophage Apoptosis and Efferocytosis in the Pathogenesis of Atherosclerosis

    PubMed Central

    Linton, MacRae F.; Babaev, Vladimir R.; Huang, Jiansheng; Linton, Edward F.; Tao, Huan; Yancey, Patricia G.

    2017-01-01

    Macrophage apoptosis and the ability of macrophages to clean up dead cells, a process called efferocytosis, are crucial determinants of atherosclerosis lesion progression and plaque stability. Environmental stressors initiate endoplasmic reticulum (ER) stress and activate the unfolded protein response (UPR). Unresolved ER stress with activation of the UPR initiates apoptosis. Macrophages are resistant to apoptotic stimuli, because of activity of the PI3K/Akt pathway. Macrophages express 3 Akt isoforms, Akt1, Akt2 and Akt3, which are products of distinct but homologous genes. Akt displays isoform-specific effects on atherogenesis, which vary with different vascular cell types. Loss of macrophage Akt2 promotes the anti-inflammatory M2 phenotype and reduces atherosclerosis. However, Akt isoforms are redundant with regard to apoptosis. c-Jun NH2-terminal kinase (JNK) is a pro-apoptotic effector of the UPR, and the JNK1 isoform opposes anti-apoptotic Akt signaling. Loss of JNK1 in hematopoietic cells protects macrophages from apoptosis and accelerates early atherosclerosis. IκB kinase α (IKKα, a member of the serine/threonine protein kinase family) plays an important role in mTORC2-mediated Akt signaling in macrophages, and IKKα deficiency reduces macrophage survival and suppresses early atherosclerosis. Efferocytosis involves the interaction of receptors, bridging molecules, and apoptotic cell ligands. Scavenger receptor class B type I is a critical mediator of macrophage efferocytosis via the Src/PI3K/Rac1 pathway in atherosclerosis. Agonists that resolve inflammation offer promising therapeutic potential to promote efferocytosis and prevent atherosclerotic clinical events. PMID:27725526

  11. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications

    PubMed Central

    Kratz, Jeremy D.; Chaddha, Ashish; Bhattacharjee, Somnath

    2016-01-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD. PMID:26809711

  12. Atherosclerosis and Nanotechnology: Diagnostic and Therapeutic Applications.

    PubMed

    Kratz, Jeremy D; Chaddha, Ashish; Bhattacharjee, Somnath; Goonewardena, Sascha N

    2016-02-01

    Over the past several decades, tremendous advances have been made in the understanding, diagnosis, and treatment of coronary artery disease (CAD). However, with shifting demographics and evolving risk factors we now face new challenges that must be met in order to further advance are management of patients with CAD. In parallel with advances in our mechanistic appreciation of CAD and atherosclerosis, nanotechnology approaches have greatly expanded, offering the potential for significant improvements in our diagnostic and therapeutic management of CAD. To realize this potential we must go beyond to recognize new frontiers including knowledge gaps between understanding atherosclerosis to the translation of targeted molecular tools. This review highlights nanotechnology applications for imaging and therapeutic advancements in CAD.

  13. Defining the Relationship Between Biomarkers of Oxidative and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Lee, S. M. C.; Martin, D. S.; Smith, S. M.; Zwart, S. R.; Laurie, S. S; Ribeiro, L. C.; Stenger, M. B.

    2017-01-01

    Current human space travel consists primarily of long-duration missions onboard the International Space Station (ISS), but in the future may include exploration-class missions to nearby asteroids, Mars, or its moons. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative stress and inflammation can accelerate the development of atherosclerosis.

  14. The relationship of miR-146a gene polymorphism with carotid atherosclerosis in Chinese patients with type 2 diabetes mellitus.

    PubMed

    Shen, Jing; Zhang, Min; Sun, Mingfang; Tang, Kang; Zhou, Bo

    2015-12-01

    Atherosclerosis (AS) is regarded as the major cause of disability and death in diabetic patients. However, its precise pathogenesis is not entirely clear. Recent genome-wide association studies (GWAS) have revealed AS is related to some epigenetic changes. This study aimed to investigate the possible associations of miR-146a and transcriptional coactivator p300 polymorphisms with carotid atherosclerosis in type 2 diabetes mellitus. This case-control study included 596 type 2 diabetes mellitus patients with carotid atherosclerosis and 379 patients without carotid atherosclerosis. Genotyping of miR-146a and p300 polymorphisms was performed by allelic discrimination assay with TaqMan-MGB probes. The CC genotype of rs2910164 in miR-146a was found to be associated with an increased risk of carotid vulnerable plaque in the Chinese type 2 diabetes mellitus patients, but this association was not found in the type 2 diabetes mellitus patients with carotid atherosclerosis or in the plaque load group. In addition, no significant difference in transcriptional coactivator p300 genotype distribution was observed between the type 2 diabetes mellitus patients with and without carotid atherosclerosis, plaque stability or plaque load, respectively. Stratified analyses revealed that the miR-146aCC genotype was associated with an increased risk of vulnerable plaque in subjects who were older, females, those with diabetes duration of more than 10 years, and those with hypertension. The gene-gene interactions between the miR-146a rs2910164 and p300 rs20551 polymorphisms were further analysed, but no combined effects of these two genes on enhancing the risk of carotid atherosclerosis, plaque stability, or plaque load were detected. The miR-146a rs2910164 polymorphism might be associated with carotid vulnerable plaque risk in Chinese type 2 diabetes mellitus patients, particularly in older patients, females, those with diabetes duration of more than 10 years and those with hypertension. The transcriptional coactivator p300 rs20551 polymorphism may not be a risk factor for the development or progression of atherosclerosis in type 2 diabetes mellitus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Risk of carotid atherosclerosis is associated with low serum paraoxonase (PON1) activity among arsenic exposed residents in Southwestern Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, W.-F.; Sun, C.-W.; Cheng, T.-J.

    2009-04-15

    To understand whether human paraoxonase 1 (PON1) would modulate the risk for arsenic-related atherosclerosis, we studied 196 residents from an arseniasis-endemic area in Southwestern Taiwan and 291 age- and sex-matched residents from a nearby control area where arsenic exposure was found low. Carotid atherosclerosis was defined by a carotid artery intima-media wall thickness (IMT) of > 1.0 mm. Prevalence of carotid atherosclerosis was increased in the arseniasis-endemic area as compared to the control area after adjustment for conventional risk factors (OR = 2.20, p < 0.01). The prevalence was positively associated with cumulative arsenic exposure (mg/L-year) in a dose-dependent manner.more » Multiple logistic regression analysis showed that in the endemic group, low serum PON1 activity was an independent risk factor for atherosclerosis (OR = 4.18 low vs. high, p < 0.05). For those of low PON1 activity and high cumulative arsenic exposure, the odds ratio for the prevalence of atherosclerosis was further increased up to 5.68 (p < 0.05). No significant association was found between atherosclerosis and four polymorphisms of the PON gene cluster (PON1 - 108C/T, PON1 Q192R, PON2 A148G, PON2 C311S). However, genetic frequencies of certain alleles including PON1 Q192, PON2 G148 and PON2 C311 were found increased in the endemic group as compared to the controls and a general Chinese population, indicating a possible survival selection in the endemic group after a long arsenic exposure history. Our results showed a significant joint effect between arsenic exposure and serum PON1 activity on carotid atherosclerosis, suggesting that subjects of low PON1 activity may be more susceptible to arsenic-related cardiovascular disease.« less

  16. The prevalence and correlates of subclinical atherosclerosis among adults with low-density lipoprotein cholesterol <70 mg/dL: The Multi-Ethnic Study of Atherosclerosis (MESA) and Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    PubMed

    Al Rifai, Mahmoud; Martin, Seth S; McEvoy, John W; Nasir, Khurram; Blankstein, Ron; Yeboah, Joseph; Miedema, Michael; Shea, Steven J; Polak, Joseph F; Ouyang, Pamela; Blumenthal, Roger S; Bittencourt, Marcio; Bensenor, Isabela; Santos, Raul D; Duncan, Bruce B; Santos, Itamar S; Lotufo, Paulo A; Blaha, Michael J

    2018-07-01

    The prevalence and correlates of subclinical atherosclerosis when low-density lipoprotein cholesterol (LDL-C) levels are low remain unclear. Therefore, we examined the association of cardiovascular risk factors and subclinical atherosclerosis among individuals with untreated LDL-C <70 mg/dL. We included participants from the Multi-Ethnic Study of Atherosclerosis (MESA) and the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil) cohorts. To optimize accuracy, LDL-C was calculated by the validated Martin/Hopkins equation that uses an adjustable factor for the ratio of triglycerides to very low-density lipoprotein cholesterol. We defined subclinical atherosclerosis as a coronary artery calcium (CAC) score >0 in the combined cohort or common carotid intima media thickness (cIMT) in the 4 th quartile, using cohort-specific cIMT distributions at baseline. Logistic regression models examined the cross-sectional associations of cardiovascular risk factors and subclinical atherosclerosis. Among 9411 participants not on lipid lowering therapy, 263 (3%) had LDL-C <70 mg/dL (MESA: 206, ELSA: 57). Mean age in this population was 58 (SD 12) years, with 43% men, and 41% Black. The prevalence of CAC >0 in those with untreated LDL-C<70 mg/dL was 30%, and 18% were in 4th quartile of cIMT. In demographically adjusted models, only ever smoking was significantly associated with both CAC and cIMT. Similar results were obtained in risk factor-adjusted models (smoking: OR, 2.29; 95% CI, 1.10-4.80 and OR, 3.44; 95% CI, 1.41-8.37 for CAC and cIMT, respectively). Among middle-aged to older individuals with untreated LDL-C <70 mg/dL, subclinical atherosclerosis remains moderately common and is associated with cigarette smoking. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Food-derived bioactive peptides on inflammation and oxidative stress.

    PubMed

    Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping

    2014-01-01

    Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.

  18. Airflow obstruction, atherosclerosis and cardiovascular risk factors in the AGES Reykjavik study.

    PubMed

    Gudmundsson, Gunnar; Margretardottir, Olof Birna; Sigurdsson, Martin Ingi; Harris, Tamara B; Launer, Lenore J; Sigurdsson, Sigurdur; Olafsson, Orn; Aspelund, Thor; Gudnason, Vilmundur

    2016-09-01

    Airflow limitation, i.e. reduced forced expiratory volume in 1-s (FEV1), is associated with increased prevalence of atherosclerosis, however, causal mechanisms remain elusive. The objective of the study was to determine if the association between airflow obstruction and markers of atherosclerosis is mediated by systemic inflammation. 1154 subjects from the longitudinal AGES Reykjavik study were included. Population characteristics, systemic inflammation markers from blood (white blood cell counts (WBC) and level of C-reactive protein (CRP)) were compared between patients with and without airflow limitation defined by reduced FEV1 on spirometry. Atherosclerosis burden was quantified by measurements of coronary artery calcium, aortic arch and distal aortic calcification in addition to carotid intimal media thickness (CIMT). Subjects were split into four groups according to smoking status and whether airflow limitation was present. There was a higher overall burden of atherosclerosis in ever-smokers compared to never-smokers, and in individuals with airflow obstruction compared to individuals without airflow obstruction. After adjusting for population characteristics, Framingham cardiovascular risk factors and markers of systemic inflammation (WBC and CRP), there was a significantly increased aortic arch and distal aorta calcification and higher CIMT measurement in individuals with airflow obstruction compared to individuals without airflow obstruction. After adjusting for population characteristics, Framingham cardiovascular risk factors and markers of systemic inflammation (WBC and CRP), there was a significantly increased aortic arch and distal aorta calcification and higher CIMT measurement in individuals with airflow obstruction compared to individuals without airflow obstruction. Systemic inflammation (WBC and CRP) does not appear to mediate the association between airflow limitation and atherosclerosis. Only airflow limitation and not systemic inflammation (WBC and CRP) appears to be an independent predictor of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Association of subclinical atherosclerosis using carotid intima-media thickness, carotid plaque, and coronary calcium score with left ventricular dyssynchrony: the multi-ethnic Study of Atherosclerosis.

    PubMed

    Sharma, Ravi K; Donekal, Sirisha; Rosen, Boaz D; Tattersall, Matthew C; Volpe, Gustavo J; Ambale-Venkatesh, Bharath; Nasir, Khurram; Wu, Colin O; Polak, Joseph F; Korcarz, Claudia E; Stein, James H; Carr, James; Watson, Karol E; Bluemke, David A; Lima, João A C

    2015-04-01

    The role of atherosclerosis in the progression of global left ventricular dysfunction and cardiovascular events has been well recognized. Left ventricular (LV) dyssynchrony is a measure of regional myocardial dysfunction. Our objective was to investigate the relationship of subclinical atherosclerosis with mechanical LV dyssynchrony in a population-based asymptomatic multi-ethnic cohort. Participants of the Multi-Ethnic Study of Atherosclerosis (MESA) at exam 5 were evaluated using 1.5T cardiac magnetic resonance (CMR) imaging, carotid ultrasound (n = 2062) for common carotid artery (CCA) and internal carotid artery (ICA) intima-media thickness (IMT), and cardiac computed tomography (n = 2039) for coronary artery calcium (CAC) assessment (Agatston method). Dyssynchrony indices were defined as the standard deviation of time to peak systolic circumferential strain (SD-TPS) and the difference between maximum and minimum (max-min) time to peak strain using harmonic phase imaging in 12 segments (3-slices × 4 segments). Multivariable regression analyses were performed to assess associations after adjusting for participant demographics, cardiovascular risk factors, LV mass, and ejection fraction. In multivariable analyses, SD-TPS was significantly related to measures of atherosclerosis, including CCA-IMT (8.7 ms/mm change in IMT, p = 0.020), ICA-IMT (19.2 ms/mm change in IMT, p < 0.001), carotid plaque score (1.2 ms/unit change in score, p < 0.001), and log transformed CAC+1 (0.66 ms/unit log-CAC+1, p = 0.018). These findings were consistent with other parameter of LV dyssynchrony i.e. max-min. In the MESA cohort, measures of atherosclerosis are associated with parameters of subclinical LV dyssynchrony in the absence of clinical coronary event and left-bundle-branch block. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Effects of Smad decoy ODN on shear stress-induced atherosclerotic ApoE-/-mouse

    PubMed Central

    An, Hyun-Jin; Lee, Woo-Ram; Kim, Kyung-Hyun; Kim, Jung-Yeon; Kim, Woon-Hae; Park, Kwan-Kyu; Youn, Sung Won

    2015-01-01

    Atherosclerosis is a complex disease which involves both genetic and environmental factors in its development and progression. Shear stress is the drag force per unit area acting on the endothelium as a result of blood flow, and it plays a critical role in plaque location and progression. TGF-β1 is often regarded to have pro-atherosclerotic effect on vascular disease. TGF-β1 downstream targets Smad, for regulating a set of genes associated with atherosclerosis. Therefore, modulation of TGF-β1 and Smad expression may be the important targets for the prevention and treatment of shear stress-induced vascular disease. However, the precise mechanism of the anti-atherosclerotic effects of novel therapeutic approach has not been elucidated by using animal models regarding the shear stress-induced vascular disease. Therefore, we designed to test whether Smad decoy ODN would prevent the development of atherosclerosis in the shear stress-induced ApoE-/-mice on a western diet. We examined the effect of cast placement on the development of atherosclerosis, and the carotid artery was harvested at the sacrifice to observe histological changes. Also, we evaluated the impact of Smad decoy ODN in the regulation of genes expression related to atherosclerosis, including TGF-β1, PAI-1, and α-SMA. Our results showed that western diet with cast placement developed atherosclerosis in ApoE-/-mouse. Also, administration of Smad decoy ODN decreases the expression of TGF-β1, PAI-1, and α-SMA. These results demonstrate the potential of Smad decoy ODN to prevent the progression of atherosclerosis in ApoE-/-mouse model with western diet and shear stress. PMID:26097583

  1. Innate immune cell activation and epigenetic remodeling in symptomatic and asymptomatic atherosclerosis in humans in vivo.

    PubMed

    Bekkering, Siroon; van den Munckhof, Inge; Nielen, Tim; Lamfers, Evert; Dinarello, Charles; Rutten, Joost; de Graaf, Jacqueline; Joosten, Leo A B; Netea, Mihai G; Gomes, Marc E R; Riksen, Niels P

    2016-11-01

    We have recently reported that monocytes can undergo functional and transcriptional reprogramming towards a long-term pro-inflammatory phenotype after brief in vitro exposure to atherogenic stimuli such as oxidized LDL. This process is termed 'trained immunity', and is mediated by epigenetic remodeling and a metabolic switch towards increased aerobic glycolysis. We hypothesize that trained immunity contributes to atherogenesis. Therefore, we investigated the inflammatory phenotype and epigenetic remodeling of monocytes from patients with and without established atherosclerosis. Monocytes were isolated from 20 patients with severe symptomatic coronary atherosclerosis (total plaque score >4 on coronary computed tomography angiography) and 17 patients with asymptomatic carotid atherosclerosis and matched controls for both groups. Ex vivo stimulation, RNA analysis and chromatin immunoprecipitation were performed. Monocytes from patients with symptomatic atherosclerosis have a higher production of pro-inflammatory cytokines upon LPS stimulation than healthy controls (TNFα 499 ± 102 vs. 267 ± 45 pg/ml, p = 0.01). This was associated with lower histone 3 lysine 4 trimethylation (H3K4me3) (19% vs. 33%, p = 0.002), and lower H3K27me3 (0.005% vs. 0.8%, p < 0.0001) on the TNFα promoter. Furthermore, relative mRNA expression of the glycolytic rate limiting enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 was higher in patients (0.7 ± 0.2 vs. 0.3 ± 0.1 resp. 1.7 ± 0.2 vs. 1.0 ± 0.1, p = 0.007 resp. 0.003) compared to control individuals. Interestingly, this pro-inflammatory phenotype was only present in patients with symptomatic atherosclerosis, and not in patients with asymptomatic carotid atherosclerosis. Circulating monocytes of patients with symptomatic, but not asymptomatic, atherosclerosis have a pro-inflammatory phenotype and increased expression of glycolytic enzymes, associated with epigenetic remodeling at the level of histone methylation. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. Study design and rationale of "Synergistic Effect of Combination Therapy with Cilostazol and ProbUcol on Plaque Stabilization and Lesion REgression (SECURE)" study: a double-blind randomised controlled multicenter clinical trial

    PubMed Central

    2011-01-01

    Background Probucol, a cholesterol-lowering agent that paradoxically also lowers high-density lipoprotein cholesterol has been shown to prevent progression of atherosclerosis. The antiplatelet agent cilostazol, which has diverse antiatherogenic properties, has also been shown to reduce restenosis in previous clinical trials. Recent experimental studies have suggested potential synergy between probucol and cilostazol in preventing atherosclerosis, possibly by suppressing inflammatory reactions and promoting cholesterol efflux. Methods/design The Synergistic Effect of combination therapy with Cilostazol and probUcol on plaque stabilization and lesion REgression (SECURE) study is designed as a double-blind, randomised, controlled, multicenter clinical trial to investigate the effect of cilostazol and probucol combination therapy on plaque volume and composition in comparison with cilostazol monotherapy using intravascular ultrasound and Virtual Histology. The primary end point is the change in the plaque volume of index intermediate lesions between baseline and 9-month follow-up. Secondary endpoints include change in plaque composition, neointimal growth after implantation of stents at percutaneous coronary intervention target lesions, and serum levels of lipid components and biomarkers related to atherosclerosis and inflammation. A total of 118 patients will be included in the study. Discussion The SECURE study will deliver important information on the effects of combination therapy on lipid composition and biomarkers related to atherosclerosis, thereby providing insight into the mechanisms underlying the prevention of atherosclerosis progression by cilostazol and probucol. Trial registration number ClinicalTrials (NCT): NCT01031667 PMID:21226953

  3. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis

    PubMed Central

    Chung, Eun Ji; Tirrell, Matthew

    2016-01-01

    Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows for easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this review, we first describe the pathogenesis of atherosclerosis and the damage caused to vascular tissue, as well as the current diagnostic and treatment options. Then we provide an overview of targeted strategies using self-assembling nanoparticles and include liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, we elaborate on and provide an overview of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles. PMID:26085109

  4. Work schedules and 11-year progression of carotid atherosclerosis in middle-aged Finnish men.

    PubMed

    Wang, Aolin; Arah, Onyebuchi A; Kauhanen, Jussi; Krause, Niklas

    2015-01-01

    This study investigated the relationship between different work schedules and progression of carotid atherosclerosis, an early indicator of cardiovascular disease (CVD). We studied 621 men, aged 42-60 years, in the prospective Kuopio Ischemic Heart Disease Risk Factor Study cohort. Using multivariable regressions adjusting for 22 covariates including total time worked during follow-up, we evaluated the associations of baseline work schedules with 11-year progression of ultrasonographically assessed carotid intima-media thickness (IMT), and their variation by preexisting CVD. Standard daytime work, weekend shifts, and evening/night/rotating shifts were associated with 31%, 37%, and 33% increases in IMT, respectively. Compared to daytime workers, weekend workers experienced a faster progression of carotid atherosclerosis [relative change ratio (RCR) = 1.05, 95% CI: 1.00-1.09)]. This ratio was higher among men who had preexisting CVD. Weekend shifts, more than standard daytime work, appear to accelerate carotid atherosclerosis progression among middle-aged Finnish men, especially those with pre-existing CVD. © 2014 Wiley Periodicals, Inc.

  5. Multicenter AIDS Cohort Study Quantitative Coronary Plaque Progression Study: rationale and design.

    PubMed

    Nakanishi, Rine; Post, Wendy S; Osawa, Kazuhiro; Jayawardena, Eranthi; Kim, Michael; Sheidaee, Nasim; Nezarat, Negin; Rahmani, Sina; Kim, Nicholas; Hathiramani, Nicolai; Susarla, Shriraj; Palella, Frank; Witt, Mallory; Blaha, Michael J; Brown, Todd T; Kingsley, Lawrence; Haberlen, Sabina A; Dailing, Christopher; Budoff, Matthew J

    2018-01-01

    The association of HIV with coronary atherosclerosis has been established; however, the progression of coronary atherosclerosis over time among participants with HIV is not well known. The Multicenter AIDS Cohort Study Quantitative Coronary Plaque Progression Study is a large prospective multicenter study quantifying progression of coronary plaque assessed by serial coronary computed tomography angiography (CTA). HIV-infected and uninfected men who were enrolled in the Multicenter AIDS Cohort Study Cardiovascular Substudy were eligible to complete a follow-up contrast coronary CTA 3-6 years after baseline. We measured coronary plaque volume and characteristics (calcified and noncalcified plaque including fibrous, fibrous-fatty, and low attenuation) and vulnerable plaque among HIV-infected and uninfected men using semiautomated plaque software to investigate the progression of coronary atherosclerosis over time. We describe a novel, large prospective multicenter study investigating incidence, transition of characteristics, and progression in coronary atherosclerosis quantitatively assessed by serial coronary CTAs among HIV-infected and uninfected men.

  6. Valsartan Attenuates Atherosclerosis via Upregulating the Th2 Immune Response in Prolonged Angiotensin II–Treated ApoE−/− Mice

    PubMed Central

    Meng, Kai; Zeng, Qiutang; Lu, Qinghua; Lin, Yingzhong; Wu, Bangwei; Yu, Kunwu; Dong, Zhaoqiang; Zhang, Jianwei; Chai, Meng; Liu, Yuyang; Ji, Qingwei; Zhou, Yujie

    2015-01-01

    Valsartan has a protective effect against hypertension and atherosclerosis in humans and experimental animal models. This study aimed to determine the effect of prolonged treatment with angiotensin II (Ang II) on atherosclerosis and the effect of valsartan on the activity of CD4+ T lymphocyte subsets. The results showed that prolonged treatment (8 wks) with exogenous Ang II resulted in an increased atherosclerotic plaque size and a switch of stable-to-unstable plaque via modulating on CD4+ T lymphocyte activity, including an increase in the T helper cell type 1 (Th1) and Th17 cells and a decrease in Th2 and regulatory T (Treg) cells. In contrast, valsartan treatment efficiently reversed the imbalance in CD4+ T lymphocyte activity, ameliorated atherosclerosis and elicited a stable plaque phenotype in addition to controlling blood pressure. In addition, treatment with anti-interleukin (IL)-5 monoclonal antibodies weakened the antiatherosclerotic effects of valsartan without affecting blood pressure. PMID:25685964

  7. Dyslipidemia-associated alterations in B cell subpopulation frequency and phenotype during experimental atherosclerosis.

    PubMed

    Rincón-Arévalo, Héctor; Castaño, Diana; Villa-Pulgarín, Janny; Rojas, Mauricio; Vásquez, Gloria; Correa, Luis A; Ramírez-Pineda, José R; Yassin, Lina M

    2016-04-01

    Lymphocytes, the cellular effectors of adaptive immunity, are involved in the chronic inflammatory process known as atherosclerosis. Proatherogenic and atheroprotective properties have been ascribed to B cells. However, information regarding the role of B cells during atherosclerosis is scarce. Both the frequency and the phenotype of B cell subpopulations were studied by flow cytometry in wild type and apolipoprotein-E-deficient (apoE(-/-)) mice fed a high-fat (HFD) or control diet. Whereas the proportion of follicular cells was decreased, transitional 1-like cells were increased in mice with advanced atherosclerotic lesions (apoE(-/-) HFD). B cells in atherosclerotic mice were more activated, indicated by their higher surface expression of CD80, CD86, CD40 and CD95 and increased serum IgG1 levels. In the aorta, a decreased frequency of B cells was observed in mice with advanced atherosclerosis. Low expression of CD19 was observed on B cells from the spleen, aorta and lymph nodes of apoE(-/-) HFD mice. This alteration correlated with serum levels of IgG1 and cholesterol. A reduction in CD19 expression was induced in splenic cells from young apoE(-/-) mice cultured with lipemic serum. These results show that mice with advanced atherosclerosis display a variety of alterations in the frequency and phenotype of B lymphocytes, most of which are associated with dyslipidemia. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Myeloid Kdm6b deficiency results in advanced atherosclerosis.

    PubMed

    Neele, Annette E; Gijbels, Marion J J; van der Velden, Saskia; Hoeksema, Marten A; Boshuizen, Marieke C S; Prange, Koen H M; Chen, Hung-Jen; Van den Bossche, Jan; van Roomen, Cindy P P A; Shami, Annelie; Levels, Johannes H M; Kroon, Jeffrey; Lucas, Tina; Dimmeler, Stefanie; Lutgens, Esther; de Winther, Menno P J

    2018-06-01

    Atherosclerosis is a lipid-driven chronic inflammatory disorder of the arteries, and monocytes and macrophages play a central role in this process. Within the atherosclerotic lesion, macrophages can scavenge modified lipids and become the so-called foam cells. We previously reported that the epigenetic enzyme Kdm6b (also known as Jmjd3) controls the pro-fibrotic transcriptional profile of peritoneal foam cells. Given the importance of these cells in atherosclerosis, we now studied the effect of myeloid Kdm6b on disease progression. Bone marrow of myeloid Kdm6b deficient (Kdm6b del ) mice or wild type littermates (Kdm6b wt ) was transplanted to lethally irradiated Ldlr -/- mice fed a high fat diet for 9 weeks to induce atherosclerosis. Lesion size was similar in Kdm6b wt and Kdm6b del transplanted mice. However, lesions of Kdm6b del mice contained more collagen and were more necrotic. Pathway analysis on peritoneal foam cells showed that the pathway involved in leukocyte chemotaxis was most significantly upregulated. Although macrophage and neutrophil content was similar after 9 weeks of high fat diet feeding, the relative increase in collagen content and necrosis revealed that atherosclerotic lesions in Kdm6b del mice progress faster. Myeloid Kdm6b deficiency results in more advanced atherosclerosis. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Endothelial dysfunction in patients with coronary atherosclerosis.

    PubMed

    Chapidze, L; Kapanadze, S; Dolidze, N; Bakhutashvili, Z; Latsabidze, N

    2007-01-01

    It is well known that endothelial dysfunction as a nontraditional risk factor is an important early event in the pathogenesis of coronary atherosclerosis, contributing to plaque initiation and progression. In order to assess endothelial function plasma nitric oxide (NO) concentrations were determined. A total of 157 patients (119 men and 38 women, mean age 57+/-5,4 years) with coronary atherosclerosis were enrolled in the research. The study was cross-sectional in design. Most of the patients (n=127) had undergone myocardial revascularization procedures. There was statistically significant difference in mean values of plasma nitric oxide levels between patients with coronary atherosclerosis and healthy subjects (11,1+/-2,52 mkmol/L and 22,3+/-3,27 mkmol/L, respectively. p<0,01). Among all 157 patients only 17% had normal NO concentrations. In 59% cases low and in 24% cases high nitric oxide levels were found. Extent of coronary artery disease was associated with severity of endothelial dysfunction. The patients with three-vessel disease had the lowest mean plasma NO concentration. There was statistically significant negative correlation between mean plasma NO level and extent of coronary artery disease. Measurement of plasma nitric oxide concentration will give useful information for cardiologists, modification of abnormal levels of this parameter may delay progression of aggressive atherosclerotic process and thus, may prevent recurrent coronary events in patients with coronary atherosclerosis.

  10. A semantically-aided architecture for a web-based monitoring system for carotid atherosclerosis.

    PubMed

    Kolias, Vassileios D; Stamou, Giorgos; Golemati, Spyretta; Stoitsis, Giannis; Gkekas, Christos D; Liapis, Christos D; Nikita, Konstantina S

    2015-08-01

    Carotid atherosclerosis is a multifactorial disease and its clinical diagnosis depends on the evaluation of heterogeneous clinical data, such as imaging exams, biochemical tests and the patient's clinical history. The lack of interoperability between Health Information Systems (HIS) does not allow the physicians to acquire all the necessary data for the diagnostic process. In this paper, a semantically-aided architecture is proposed for a web-based monitoring system for carotid atherosclerosis that is able to gather and unify heterogeneous data with the use of an ontology and to create a common interface for data access enhancing the interoperability of HIS. The architecture is based on an application ontology of carotid atherosclerosis that is used to (a) integrate heterogeneous data sources on the basis of semantic representation and ontological reasoning and (b) access the critical information using SPARQL query rewriting and ontology-based data access services. The architecture was tested over a carotid atherosclerosis dataset consisting of the imaging exams and the clinical profile of 233 patients, using a set of complex queries, constructed by the physicians. The proposed architecture was evaluated with respect to the complexity of the queries that the physicians could make and the retrieval speed. The proposed architecture gave promising results in terms of interoperability, data integration of heterogeneous sources with an ontological way and expanded capabilities of query and retrieval in HIS.

  11. Ursolic Acid Attenuates Atherosclerosis in ApoE-/- Mice: Role of LOX-1 Mediated by ROS/NF-κB Pathway.

    PubMed

    Li, Qiu; Zhao, Wenwen; Zeng, Xi; Hao, Zhihui

    2018-05-07

    Atherosclerosis, a chronic inflammatory disease, is a major contributor to cardiovascular diseases. Ursolic acid (UA) is a phytonutrient with widely biological effects including anti-oxidative, anti-inflammatory, and so on. At present, the effect of UA on atherosclerosis and the mechanism of action are still obscure. This study focused on investigating the effects of UA on atherosclerosis both in vivo and in vitro. We first selected LOX-1 as our target, which was reckoned as a new promising receptor for treating atherosclerosis. The evaluation in vitro suggested that UA significantly decreased endothelial LOX-1 expression induced by LPS both in mRNA and protein levels. Pre-treatment of UA also inhibited TLR4/MyD88 signaling activated by LPS. Moreover, UA reduced ROS production and suppressed the activation of NF-κB stimulated by LPS. Particularly, the evaluation in vivo further verified the conclusion obtained in vitro. In ApoE −/− mice fed with an atherogenic diet, both UA (100 mg/kg/day) and simvastatin significantly attenuated atherosclerotic plaque formation and shrunk necrotic core areas. The enhanced expression of LOX-1 in atherosclerotic aorta was also dramatically decreased by administration of UA. Taken together, these results suggested that UA, with anti-atherosclerotic activity through inhibition of LOX-1 mediated by ROS/NF-κB signaling pathways, may become a valuable vascular protective candidate for the treatment of atherosclerosis.

  12. Parity and carotid atherosclerosis in men and women: insights into the roles of childbearing and child-rearing.

    PubMed

    Skilton, Michael R; Sérusclat, André; Begg, Lisa M; Moulin, Philippe; Bonnet, Fabrice

    2009-04-01

    Parity appears to be associated with carotid atherosclerosis in women aged 45 years and older. Studying this association among younger women and men may provide insight into whether this association relates predominantly to childbearing or child-rearing. The association between parity and carotid atherosclerosis (intima-media thickness and presence of plaques) was assessed in a cohort consisting of 750 women and 1164 men, all with at least one traditional cardiovascular risk factor, aged 18 to 80 years of age. Traditional cardiovascular risk factors were also assessed, and the Framingham Risk Score calculated. In age-adjusted analyses, the number of children was associated with adiposity, fasting glucose, 2-hour glucose, Framingham risk score, and carotid atherosclerosis in women, but not in men. Multivariate linear regression models indicate that the prevalence of plaques was increased by 15% (95% CI, 2 to 29) per child among women, and 0% (95% CI, -10 to 11) among men, after adjustment for age, socioeconomic and lifestyle factors (including waist circumference). The association between parity and carotid intima-media thickness was similar in younger and older women (P(Heterogeneity)=0.20). A higher number of children is associated with increased carotid atherosclerosis in both younger and older women, but not among men. These findings indicate that childbearing, but not child-rearing, may be a risk factor for atherosclerosis, and suggest the potential importance of considering the number of children when assessing the level of cardiovascular risk in women.

  13. Adiponectin may be a biomarker of early atherosclerosis of smokers and decreased by nicotine through KATP channel in adipocytes.

    PubMed

    Fan, Li Hong; He, Ying; Xu, Wei; Tian, Hong Yan; Zhou, Yan; Liang, Qi; Huang, Xin; Huo, Jian Hua; Li, Hong Bin; Bai, Ling; Ma, Ai Qun

    2015-01-01

    Plasm adiponectin is decreased in smokers. Adiponectin is emerging as a potential key molecular marker in atherosclerosis and other cardiovascular diseases. The aim of this study was to investigate the association between serum adiponectin levels and early atherosclerosis in smokers. Furthermore, the role of the KATP channel in the down-regulation of adiponectin by smoking was preliminarily explored. We consecutively enrolled 96 men, including 50 smokers with atherosclerosis and 46 nonsmokers. Serum adiponectin was detected with enzyme-linked immunosorbent assay - in all participants. Large (C1) and small (C2) artery elasticity indices and carotid intima-media thickness (IMT) were measured as evaluation indexes of early atherosclerosis in smokers. Finally, the effect of nicotine via ATP-dependent potassium (KATP) channels on adiponectin secretion by 3T3-L1 preadipocytes was examined in vitro. Adiponectin levels of smokers were statistically negatively correlated to IMT (r = -.440; P < 0.001) and positively correlated to C1 (r = 0.448; P < 0.001) as well as C2 (r = 0.426; P = 0.002). In 3-T3-L1 preadipocytes, nicotine treatment significantly decreased adiponectin levels (P = 0.003), whereas the adiponectin level was rescued by the inhibition of KATP channel (P < 0.001). Serum adiponectin level was an independent predictor of early atherosclerosis in smokers. Nicotine might decrease adiponectin in part through altering KATP channels in adipocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The additive effect of adherence to multiple healthy lifestyles on subclinical atherosclerosis: Insights from the AWHS.

    PubMed

    Uzhova, Irina; Mateo-Gallego, Rocio; Moreno-Franco, Belén; Molina-Montes, Esther; Leon-Latre, Montserrat; Casasnovas Lenguas, José A; Civeira, Fernando; Peñalvo, José L

    2018-03-28

    Public health strategies targeting multiple healthy behaviors, rather than individual factors, have been proposed as more efficient strategies to promote cardiovascular health. However, the additive effect of multiple targets on primary prevention has not been fully characterized. To examine how adherence to multiple healthy behaviors is associated with the presence of subclinical atherosclerosis, a measure of early cardiovascular disease. Analysis of a baseline data from 1798 middle-aged men from the Aragon Workers Health Study conducted between 2009 and 2010. Healthy behaviors were defined according to American Heart Association recommendations, aligned with Spanish Nutritional recommendations and included moderate alcohol consumption, smoking abstinence, no abdominal adiposity, decreased sedentarism, and adherence to Alternate Mediterranean Dietary Index. Presence of coronary artery calcium and plaques in femoral and carotid was quantified by a 16-slice computed tomography scanner and 2D ultrasound. Moderate alcohol consumption, as well as adherence to Mediterranean diet is independently associated with a 6% lower risk of having subclinical atherosclerosis. Smoking abstinence is associated with a 11% lower risk of subclinical atherosclerosis. Those who follow 3 lifestyle behaviors (Mediterranean diet, nonsmoking, and moderate alcohol intake) have 18% lower odds of presenting subclinical atherosclerosis compared with those who do not follow these protective lifestyle habits. Adoption of multiple healthy lifestyle behaviors early in life could be a key strategy to tackle the onset of atherosclerosis and reduce cardiovascular disease burden. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  15. Nanotechnology for Synthetic High Density Lipoproteins

    PubMed Central

    Luthi, Andrea J.; Patel, Pinal C.; Ko, Caroline H.; Mutharasan, R. Kannan; Mirkin, Chad A.; Thaxton, C. Shad

    2014-01-01

    Atherosclerosis is the disease mechanism responsible for coronary heart disease (CHD), the leading cause of death worldwide. One strategy to combat atherosclerosis is to increase the amount of circulating high density lipoproteins (HDL), which transport cholesterol from peripheral tissues to the liver for excretion. The process, known as reverse cholesterol transport, is thought to be one of the main reasons for the significant inverse correlation observed between HDL blood levels and the development of CHD. This article highlights the most common strategies for treating atherosclerosis using HDL. We further detail potential treatment opportunities that utilize nanotechnology to increase the amount of HDL in circulation. The synthesis of biomimetic HDL nanostructures that replicate the chemical and physical properties of natural HDL provides novel materials for investigating the structure-function relationships of HDL and for potential new therapeutics to combat CHD. PMID:21087901

  16. Phosphatidylserine in atherosclerosis.

    PubMed

    Darabi, Maryam; Kontush, Anatol

    2016-08-01

    It is now widely acknowledged that phosphatidylserine is a multifunctional bioactive lipid. In this review, we focus on the function of phosphatidylserine in modulating cholesterol metabolism, influencing inflammatory response and regulating coagulation system, and discuss promising phosphatidylserine-based therapeutic approaches and detection techniques in atherosclerosis. Phosphatidylserine has been suggested to play important roles in physiological processes, such as apoptosis, inflammation, and coagulation. Recent data demonstrate atheroprotective potential of phosphatidylserine, reflecting its capacity to inhibit inflammation, modulate coagulation, and enhance HDL functionality. Furthermore, modern lipidomic approaches have enabled the investigation of phosphatidylserine properties relevant to the lipid-based drug delivery and development of reconstituted HDL. Studies of phosphatidylserine in relation to atherosclerosis represent an area of opportunity. Additional research elucidating mechanisms underlying experimentally observed atheroprotective effects of phosphatidylserine is required to fully explore therapeutic potential of this naturally occurring phospholipid in cardiovascular disease.

  17. Quantification of atherosclerosis with MRI and image processing in spontaneously hyperlipidemic rabbits.

    PubMed

    Hänni, Mari; Edvardsson, H; Wågberg, M; Pettersson, K; Smedby, O

    2004-01-01

    The need for a quantitative method to assess atherosclerosis in vivo is well known. This study tested, in a familiar animal model of atherosclerosis, a combination of magnetic resonance imaging (MRI) and image processing. Six spontaneously hyperlipidemic (Watanabe) rabbits were examined with a knee coil in a 1.5-T clinical MRI scanner. Inflow angio (2DI) and proton density weighted (PDW) images were acquired to examine 10 cm of the aorta immediately cranial to the aortic bifurcation. Examination of the thoracic aorta was added in four animals. To identify the inner and outer boundary of the arterial wall, a dynamic contour algorithm (Gradient Vector Flow snakes) was applied to the 2DI and PDW images, respectively, after which the vessel wall area was calculated. The results were compared with histopathological measurements of intima and intima-media cross-sectional area. The correlation coefficient between wall area measurements with MRI snakes and intima-media area was 0.879 when computed individual-wise for abdominal aortas, 0.958 for thoracic aortas, and 0.834 when computed segment-wise. When the algorithm was applied to the PDW images only, somewhat lower correlations were obtained. The MRI yielded significantly higher values than histopathology, which excludes the adventitia. Magnetic resonance imaging, in combination with dynamic contours, may be a suitable technique for quantitative assessment of atherosclerosis in vivo. Using two sequences for the measurement seems to be superior to using a single sequence.

  18. Molecular and cellular mechanisms of aortic stenosis.

    PubMed

    Yetkin, Ertan; Waltenberger, Johannes

    2009-06-12

    Calcific aortic stenosis is the most common cause of aortic valve replacement in developed countries, and this condition increases in prevalence with advancing age. The fibrotic thickening and calcification are common eventual endpoint in both non-rheumatic calcific and rheumatic aortic stenoses. New observations in human aortic valves support the hypothesis that degenerative valvular aortic stenosis is the result of active bone formation in the aortic valve, which may be mediated through a process of osteoblast-like differentiation in these tissues. Additionally histopathologic evidence suggests that early lesions in aortic valves are not just a disease process secondary to aging, but an active cellular process that follows the classical "response to injury hypothesis" similar to the situation in atherosclerosis. Although there are similarities with the risk factor and as well as with the process of atherogenesis, not all the patients with coronary artery disease or atherosclerosis have calcific aortic stenosis. This review mainly focuses on the potential vascular and molecular mechanisms involved in the pathogenesis of aortic valve stenosis. Namely extracellular matrix remodeling, angiogenesis, inflammation, and eventually osteoblast-like differentiation resulting in bone formation have been shown to play a role in the pathogenesis of calcific aortic stenosis. Several mediators related to underlying mechanisms, including growth factors especially transforming growth factor-beta1 and vascular endothelial growth factors, angiogenesis, cathepsin enzymes, adhesion molecules, bone regulatory proteins and matrix metalloproteinases have been demonstrated, however the target to be attacked is not defined yet.

  19. Endothelium and Its Alterations in Cardiovascular Diseases: Life Style Intervention

    PubMed Central

    Paganelli, Corrado; Buffoli, Barbara; Rodella, Luigi Fabrizio; Rezzani, Rita

    2014-01-01

    The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions. PMID:24719887

  20. A genome-wide trans-ethnic interaction study links the PIGR-FCAMR locus to coronary atherosclerosis via interactions between genetic variants and residential exposure to traffic

    PubMed Central

    Neas, Lucas M.; Blach, Colette; Haynes, Carol S.; LaRocque-Abramson, Karen; Grass, Elizabeth; Dowdy, Z. Elaine; Devlin, Robert B.; Diaz-Sanchez, David; Cascio, Wayne E.; Miranda, Marie Lynn; Gregory, Simon G.; Shah, Svati H.; Kraus, William E.; Hauser, Elizabeth R.

    2017-01-01

    Air pollution is a worldwide contributor to cardiovascular disease mortality and morbidity. Traffic-related air pollution is a widespread environmental exposure and is associated with multiple cardiovascular outcomes such as coronary atherosclerosis, peripheral arterial disease, and myocardial infarction. Despite the recognition of the importance of both genetic and environmental exposures to the pathogenesis of cardiovascular disease, studies of how these two contributors operate jointly are rare. We performed a genome-wide interaction study (GWIS) to examine gene-traffic exposure interactions associated with coronary atherosclerosis. Using race-stratified cohorts of 538 African-Americans (AA) and 1562 European-Americans (EA) from a cardiac catheterization cohort (CATHGEN), we identify gene-by-traffic exposure interactions associated with the number of significantly diseased coronary vessels as a measure of chronic atherosclerosis. We found five suggestive (P<1x10-5) interactions in the AA GWIS, of which two (rs1856746 and rs2791713) replicated in the EA cohort (P < 0.05). Both SNPs are in the PIGR-FCAMR locus and are eQTLs in lymphocytes. The protein products of both PIGR and FCAMR are implicated in inflammatory processes. In the EA GWIS, there were three suggestive interactions; none of these replicated in the AA GWIS. All three were intergenic; the most significant interaction was in a regulatory region associated with SAMSN1, a gene previously associated with atherosclerosis and B cell activation. In conclusion, we have uncovered several novel genes associated with coronary atherosclerosis in individuals chronically exposed to increased ambient concentrations of traffic air pollution. These genes point towards inflammatory pathways that may modify the effects of air pollution on cardiovascular disease risk. PMID:28355232

  1. Echocardiographic epicardial fat thickness measurement: A new screening test for subclinic atherosclerosis in patients with inflammatory bowel diseases

    PubMed Central

    Ozdil, Kamil; Caliskan, Zuhal; Keles, Nursen; Ozturk, Oguzhan; Tekin, Ahmet Selami; Kahraman, Resul; Doganay, Levent; Demircioglu, Kenan; Yilmaz, Yusuf; Caliskan, Mustafa

    2017-01-01

    OBJECTIVE: Inflammatory bowel diseases (IBD) consist of a number of chronic inflammatory diseases. Inflammatory process is known to be involved in all stages of atherosclerosis. Early atherosclerosis is reflected by increased levels of carotid artery intima media thickness (c-IMT) and high-sensitivity C-reactive protein (hs-CRP). Epicardial fat thickness (EFT) strongly influences both the formation and progression of atherosclerosis. Recent studies have demonstrated a relationship between c-IMT and hs-CRP levels and the risk of atherosclerosis in patients with IBD. However, no study has yet compared EFT between patients with IBD and the general healthy population. Hence, this study was designed to further evaluate whether patients with IBD have higher EFT values with increased c-IMT and hs-CRP levels compared to those in the healthy population. METHODS: A total of 110 patients with IBD and 105 healthy volunteers were enrolled into this study. EFT was evaluated by transthoracic echocardiography. c-IMT levels were measured using an ultrasound scanner with a linear probe. The plasma levels of hs-CRP were measured using a highly sensitive sandwich ELISA technique. RESULTS: The hs-CRP and c-IMT levels of patients with IBD were significantly higher than those of the control group. The EFT values of patients with IBD were significantly higher than those of the control group (0.54±0.13 vs. 0.49±0.09, p=0.002). CONCLUSION: Echocardiographic EFT measurements of patients with IBD were significantly higher than those of the normal population, which may be associated with an increased subclinical atherosclerosis risk in these patients. PMID:28752137

  2. Computational modelling of atherosclerosis.

    PubMed

    Parton, Andrew; McGilligan, Victoria; O'Kane, Maurice; Baldrick, Francina R; Watterson, Steven

    2016-07-01

    Atherosclerosis is one of the principle pathologies of cardiovascular disease with blood cholesterol a significant risk factor. The World Health Organization estimates that approximately 2.5 million deaths occur annually because of the risk from elevated cholesterol, with 39% of adults worldwide at future risk. Atherosclerosis emerges from the combination of many dynamical factors, including haemodynamics, endothelial damage, innate immunity and sterol biochemistry. Despite its significance to public health, the dynamics that drive atherosclerosis remain poorly understood. As a disease that depends on multiple factors operating on different length scales, the natural framework to apply to atherosclerosis is mathematical and computational modelling. A computational model provides an integrated description of the disease and serves as an in silico experimental system from which we can learn about the disease and develop therapeutic hypotheses. Although the work completed in this area to date has been limited, there are clear signs that interest is growing and that a nascent field is establishing itself. This article discusses the current state of modelling in this area, bringing together many recent results for the first time. We review the work that has been done, discuss its scope and highlight the gaps in our understanding that could yield future opportunities. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Combination therapy for treatment or prevention of atherosclerosis: Focus on the lipid-RAAS interaction☆

    PubMed Central

    Koh, Kwang Kon; Han, Seung Hwan; Oh, Pyung Chun; Shin, Eak Kyun; Quon, Michael J.

    2010-01-01

    Large clinical trials demonstrate that control of blood pressure or hyperlipidemia reduces risk for cardiovascular events by ~30%. Factors that may further reduce remaining risk are not definitively established. One potential target is atherosclerosis, a crucial feature in the pathogenesis of cardiovascular diseases whose development is determined by multiple mechanism including complex interactions between endothelial dysfunction and insulin resistance. Reciprocal relationships between endothelial dysfunction and insulin resistance as well as cross-talk between hyperlipidemia and the rennin–angiotensin–aldosterone system may contribute to development of atherosclerosis. Therefore, one appealing strategy for prevention or treatment of atherosclerosis may be to simultaneously address several risk factors with combination therapies that target multiple pathogenic mechanisms. Combination therapy with statins, peroxisome proliferators-activated receptor agonists, and rennin–angiotensin–aldosterone system blockers demonstrate additive beneficial effects on endothelial dysfunction and insulin resistance when compared with monotherapies in patients with cardiovascular risk factors. Additive beneficial effects of combined therapy are mediated by both distinct and interrelated mechanisms, consistent with both pre-clinical and clinical investigations. Thus, combination therapy may be an important concept in developing more effective strategies to treat and prevent atherosclerosis, coronary heart disease, and co-morbid metabolic disorders characterized by endothelial dysfunction and insulin resistance. PMID:19800624

  4. Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta

    PubMed Central

    You, Amanda Y. F.; Bergholt, Mads S.; St-Pierre, Jean-Philippe; Kit-Anan, Worrapong; Pence, Isaac J.; Chester, Adrian H.; Yacoub, Magdi H.; Bertazzo, Sergio; Stevens, Molly M.

    2017-01-01

    Medial calcification in the human aorta accumulates during aging and is known to be aggravated in several diseases. Atherosclerosis, another major cause of cardiovascular calcification, shares some common aggravators. However, the mechanisms of cardiovascular calcification remain poorly understood. To elucidate the relationship between medial aortic calcification and atherosclerosis, we characterized the cross-sectional distributions of the predominant minerals in aortic tissue, apatite and whitlockite, and the associated extracellular matrix. We also compared the cellular changes between atherosclerotic and nonatherosclerotic human aortic tissues. This was achieved through the development of Raman spectroscopy imaging methods that adapted algorithms to distinguish between the major biomolecules present within these tissues. We present a relationship between apatite, cholesterol, and triglyceride in atherosclerosis, with the relative amount of all molecules concurrently increased in the atherosclerotic plaque. Further, the increase in apatite was disproportionately large in relation to whitlockite in the aortic media directly underlying a plaque, indicating that apatite is more pathologically significant in atherosclerosis-aggravated medial calcification. We also discovered a reduction of β-carotene in the whole aortic intima, including a plaque in atherosclerotic aortic tissues compared to nonatherosclerotic tissues. This unprecedented biomolecular characterization of the aortic tissue furthers our understanding of pathological and physiological cardiovascular calcification events in humans. PMID:29226241

  5. Prevention and treatment of atherosclerosis with flaxseed-derived compound secoisolariciresinol diglucoside.

    PubMed

    Prasad, Kailash; Jadhav, Ashok

    2016-01-01

    Atherosclerosis is the primary cause of coronary artery disease, heart attack, strokes, and peripheral vascular disease. Alternative/complimentary medicines, although are unacceptable by medical community, may be of great help in suppression, slowing of progression and regression of atherosclerosis. Numerous natural products are in use for therapy in spite of lack of evidence. This paper discusses the basic mechanism of atherosclerosis, risk factors for atherosclerosis, and prevention, slowing of progression and regression of atherosclerosis with flaxseed-derived secoisolariciresinol diglucoside (SDG). SDG content of flaxseed varies from 6mg/g to 18 mg/g. Flaxseed is the richest source of SDG. SDG possesses antioxidant, antihypertensive, antidiabetic, hypolipidemic, anti-inflammatory and antiatherogenic activities. SDG content of some commonly used food has been described. SDG in very low dose (15 mg/ kg) suppressed the development of hypercholesterolemic atherosclerosis by 73 % and this effect was associated with reduction in serum total cholesterol, LDL-C, and oxidative stress, and an increase in the levels HDL-C. A summary of the effects of flaxseed and its components on hypercholesterolemic atherosclerosis has been provided. Reduction in hypercholesterolemic atherosclerosis by flaxseed, CDC-flaxseed, flaxseed oil, flax lignan complex and SDG are 46 %, 69 %, 0 %, 34 % and 73 % respectively in dietary cholesterol -induced rabbit model of atherosclerosis. SDG slows the progression of atherosclerosis in animal model. Long-term use of SDG regresses hypercholesterolemic atherosclerosis. It is interesting that regular diet following high cholesterol diet accelerates in this animal model of atherosclerosis. In conclusion SDG suppresses, slow the progression and regresses the atherosclerosis. It could serve as an alternative medicine for the prevention, slowing of progression and regression of atherosclerosis and hence for the treatment of coronary artery disease, stroke and peripheral arterial vascular diseases.

  6. Atherosclerosis is associated with erectile function and lower urinary tract symptoms, especially nocturia, in middle-aged men.

    PubMed

    Tsujimura, Akira; Hiramatsu, Ippei; Aoki, Yusuke; Shimoyama, Hirofumi; Mizuno, Taiki; Nozaki, Taiji; Shirai, Masato; Kobayashi, Kazuhiro; Kumamoto, Yoshiaki; Horie, Shigeo

    2017-06-01

    Atherosclerosis is a systematic disease in which plaque builds up inside the arteries that can lead to serious problems related to quality of life (QOL). Lower urinary tract symptoms (LUTS), erectile dysfunction (ED), and late-onset hypogonadism (LOH) are highly prevalent in aging men and are significantly associated with a reduced QOL. However, few questionnaire-based studies have fully examined the relation between atherosclerosis and several urological symptoms. The study comprised 303 outpatients who visited our clinic with symptoms of LOH. Several factors influencing atherosclerosis, including serum concentrations of triglyceride, fasting blood sugar, and total testosterone measured by radioimmunoassay, were investigated. We also measured brachial-ankle pulse wave velocity (baPWV) and assessed symptoms by specific questionnaires, including the Sexual Health Inventory for Men (SHIM), Erection Hardness Score (EHS), International Prostate Symptom Score (IPSS), QOL index, and Aging Male Symptoms rating scale (AMS). Stepwise associations between the ratio of measured/age standard baPWV and clinical factors including laboratory data and the scores of the questionnaires were compared using the Jonckheere-Terpstra test for trend. The associations between the ratio of measured/age standard baPWV and each IPSS score were assessed in a multivariate linear regression model after adjustment for serum triglyceride, fasting blood sugar, and total testosterone. Regarding ED, a higher level of the ratio of measured/age standard baPWV was associated with a lower EHS, whereas no association was found with SHIM. Regarding LUTS, a higher ratio of measured/age standard baPWV was associated with a higher IPSS and QOL index. However, there was no statistically significant difference between the ratio of measured/age standard baPWV and AMS. A multivariate linear regression model showed only nocturia to be associated with the ratio of measured/age standard baPWV for each IPSS score. Atherosclerosis is associated with erectile function and LUTS, especially nocturia.

  7. A Clinical and Histological Analysis of Mesenchymal Stem Cells in Amputation

    ClinicalTrials.gov

    2017-08-08

    Ischemia; Peripheral Arterial Disease; Peripheral Vascular Disease; Vascular Disease; Arterial Occlusive Disease; Arteriosclerosis; Atherosclerosis; Cardiovascular Disease; Pathologic Processes; Orthopedic Procedures; Amputation

  8. Protective role of parnaparin in reducing systemic inflammation and atherosclerotic plaque formation in ApoE-/- mice.

    PubMed

    Artico, Marco; Riganò, Rachele; Buttari, Brigitta; Profumo, Elisabetta; Ionta, Brunella; Bosco, Sandro; Rasile, Manuela; Bianchi, Enrica; Bruno, Moira; Fumagalli, Lorenzo

    2011-04-01

    Atherosclerosis is a degenerative disease whose role in the onset and development of cardiovascular pathologies and complications is of importance. Due to its silent but progressive development, and considering the endothelial, immunological and inflammatory processes that are involved in its clinical course, this still relatively unknown pathological condition has been and continues to be a matter of investigation worldwide. Our experience with previous studies on atherosclerosis led us to investigate the possible influence of a low molecular weight heparin (LMWH) - Parnaparin® on the development and clinical course of atherosclerosis in double knock-out laboratory animals (ApoE-/- mice). Our experiments demonstrated a possible role of Parnaparin (PNP) in the control of atherogenic disease. In fact, in treated mice vs. untreated ones, PNP reduced the number and the size of atherosclerotic lesions in the aortic wall, as well as the development of liver steatosis, which was massive in untreated animals and moderate in treated ones. These preliminary observations require further clinical studies, but demonstrate a possible role of Parnaparin in the control of the development and clinical evolution of atherosclerosis and liver steatosis in laboratory animals.

  9. Genetic Evidence Supports a Major Role for Akt1 in VSMCs During Atherogenesis

    PubMed Central

    Rotllan, Noemi; Wanschel, Amarylis C.; Fernandez-Hernando, Ana; Salerno, Alessandro G.; Offermanns, Stefan; Sessa, William C.; Fernández-Hernando, Carlos

    2015-01-01

    Rationale Coronary artery disease (CAD), the direct result of atherosclerosis, is the most common cause of death in Western societies. Vascular smooth muscle cell (VSMC) apoptosis occurs during the progression of atherosclerosis and in advanced lesions, promotes plaque necrosis, a common feature of high-risk/vulnerable atherosclerotic plaques. Akt1, a serine-threonine protein kinase, regulates several key endothelial cell (EC) and VSMC functions including cell growth, migration, survival and vascular tone. While global deficiency of Akt1 results in impaired angiogenesis and massive atherosclerosis, the specific contribution of VSMC Akt1 remains poorly characterized. Objective To investigate the contribution of VSMC Akt1 during atherogenesis and in established atherosclerotic plaques. Methods and Results We generated two mouse models in which Akt1 expression can be suppressed specifically in VSCMs before (Apoe−/−Akt1fl/flSm22αCRE) and after (Apoe−/−Akt1fl/flSM-MHC-CreERT2E) the formation of atherosclerotic plaques. This approach allows us to interrogate the role of Akt1 during the initial and late steps of atherogenesis. Absence of Akt1 in VSMCs during the progression of atherosclerosis results in larger atherosclerotic plaques characterized by bigger necrotic core areas, enhanced VSMC apoptosis and reduced fibrous cap and collagen content. In contrast, VSMC Akt1 inhibition in established atherosclerotic plaques does not influence lesion size but markedly reduces the relative fibrous cap area in plaques and increases VSMC apoptosis. Conclusions Akt1 expression in VSMCs influences early and late stages of atherosclerosis. Absence of Akt1 in VSMCs induces features of plaque vulnerability including fibrous cap thinning and extensive necrotic core areas. These observations suggest that interventions enhancing Akt1 expression specifically in VSMCs may lessen plaque progression. PMID:25868464

  10. Dihydromyricetin ameliorates atherosclerosis in LDL receptor deficient mice.

    PubMed

    Liu, Ting Ting; Zeng, Yi; Tang, Kun; Chen, XueMeng; Zhang, Wei; Xu, Xiao Le

    2017-07-01

    Dihydromyricetin, the most abundant flavonoid in Ampelopsis grossedentata, exerts numerous pharmacological activities, including anti-inflammatory, antioxidant, hepatoprotective, and lipid regulatory activities; however, its protective effect against atherosclerosis remains poorly understood. The aim of the present study was to evaluate the effects of dihydromyricetin on high fat diet (HFD)-induced atherosclerosis using LDL receptor deficient (LDLr -/- ) mice. Blood samples were collected for determination of serum lipid profiles, oxidized LDL (ox-LDL) and pro-inflammatory cytokines. Histology, hepatic lipid content, quantification of atherosclerosis, assessment of oxidative stress and inflammation were performed on liver and aorta samples by molecular biology methods. The effects of dihydromyricetin on ox-LDL-induced human umbilical vein endothelial cells (HUVECs) dysfunction and foam cell formation were further studied. (1) Dihydromyricetin ameliorated hyperlipidemia, reduced serum ox-LDL, IL-6 and TNF-α levels in HFD-fed LDLr -/- mice. Moreover, (2) dihydromyricetin suppressed hepatic lipid accumulation and increased protein expressions of PPARα, LXRα and ABCA1. (3) It inhibited atherosclerotic lesion formation and favoured features of plaque stability. (4) Dihydromyricetin prevented hepatic and aortic inflammation as evidenced by the reduced IL-6 and TNF-α mRNA expression; (5) it prevented hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in the liver and suppressing reactive oxygen species generation and NOX2 protein expression in both liver and aorta; (6) it inhibited oxLDL-induced injury, monocytes adhesion and oxidative stress in HUVECs and (7) inhibited macrophage foam cell formation and enhanced cholesterol efflux. These findings suggest that dihydromyricetin could reduce atherosclerosis via its pleiotropic effects, including improvement of endothelial dysfunction, inhibition of macrophage foam cell formation, amelioration of lipid profiles, anti-inflammatory action and anti-oxidative effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Association between Serum Uric Acid Level and Carotid Atherosclerosis in Chinese Individuals Aged 75 Years or Older: A Hospital-Based Case-Control Study.

    PubMed

    Feng, L; Hua, C; Sun, H; Qin, L-Y; Niu, P-P; Guo, Z-N; Yang, Y

    2018-01-01

    To investigate the association between serum uric acid level and the presence and progression of carotid atherosclerosis in Chinese individuals aged 75 years or older. Case-control study. In a teaching hospital. Five hundred and sixty-four elderlies (75 years or above) who underwent general health screening in our hospital were enrolled. The detailed carotid ultrasound results, physical examination information, medical history, and laboratory test results including serum uric acid level were recorded, these data were used to analyze the relationship between serum uric acid level and carotid atherosclerosis. Then, subjects who underwent the second carotid ultrasound 1.5-2 years later were further identified to analyzed the relationship between serum uric acid and the progression of carotid atherosclerosis. A total of 564 subjects were included, carotid plaque was found in 482 (85.5%) individuals. Logistic regression showed that subjects with elevated serum uric acid (expressed per 1 standard deviation change) had significantly higher incidence of carotid plaque (odds ratio, 1.37; 95% confidence interval, 1.07-1.75; P= 0.012) after controlling for other factors. A total of 236 subjects underwent the follow-up carotid ultrasound. Linear regression showed that serum uric acid level (expressed per 1 standard deviation change; 1 standard deviation = 95.5 μmol/L) was significantly associated with percentage of change of plaque score (P = 0.008). Multivariable linear regression showed that 1 standard deviation increase in serum uric acid levels was expected to increase 0.448% of plaque score (P = 0.023). The elevated serum uric acid level may be independently and significantly associated with the presence and progression of carotid atherosclerosis in Chinese individuals aged 75 years or older.

  12. Malondialdehyde epitopes as targets of immunity and the implications for atherosclerosis

    PubMed Central

    Binder, Christoph J.

    2018-01-01

    Accumulating evidence suggests that oxidation-specific epitopes (OSEs) constitute a novel class of damage-associated molecular patterns (DAMPs) generated during high oxidative stress but also in the physiological process of apoptosis. To deal with the potentially harmful consequences of such epitopes, the immune system has developed several mechanisms to protect from OSEs and to orchestrate their clearance, including IgM natural antibodies and both cellular and membrane-bound receptors. Here, we focus on malondialdehyde (MDA) epitopes as prominent examples of OSEs that trigger both innate and adaptive immune responses. First, we review the mechanism of MDA generation, the different types of adducts on various biomolecules and provide relevant examples for physiological carriers of MDA such as apoptotic cells, microvesicles (MV) or oxidized low-density lipoproteins (LDL). Based on recent insights, we argue that MDA epitopes contribute to the maintenance of homeostatic functions by acting as markers of elevated oxidative stress and tissue damage. We discuss multiple lines of evidence that MDA epitopes are pro-inflammatory and thus important targets of innate and adaptive immune responses. Finally, we illustrate the relevance of MDA epitopes in human pathologies by describing their capacity to drive inflammatory processes in atherosclerosis and highlighting protective mechanisms of immunity that could be exploited for therapeutic purposes. PMID:27235680

  13. Complement Activation: An Emerging Player in the Pathogenesis of Cardiovascular Disease

    PubMed Central

    Carter, Angela M.

    2012-01-01

    A wealth of evidence indicates a fundamental role for inflammation in the pathogenesis of cardiovascular disease (CVD), contributing to the development and progression of atherosclerotic lesion formation, plaque rupture, and thrombosis. An increasing body of evidence supports a functional role for complement activation in the pathogenesis of CVD through pleiotropic effects on endothelial and haematopoietic cell function and haemostasis. Prospective and case control studies have reported strong relationships between several complement components and cardiovascular outcomes, and in vitro studies and animal models support a functional effect. Complement activation, in particular, generation of C5a and C5b-9, influences many processes involved in the development and progression of atherosclerosis, including promotion of endothelial cell activation, leukocyte infiltration into the extracellular matrix, stimulation of cytokine release from vascular smooth muscle cells, and promotion of plaque rupture. Complement activation also influences thrombosis, involving components of the mannose-binding lectin pathway, and C5b-9 in particular, through activation of platelets, promotion of fibrin formation, and impairment of fibrinolysis. The participation of the complement system in inflammation and thrombosis is consistent with the physiological role of the complement system as a rapid effector system conferring protection following vessel injury. However, in the context of CVD, these same processes contribute to development of atherosclerosis, plaque rupture, and thrombosis. PMID:24278688

  14. Molecular intravascular imaging approaches for atherosclerosis.

    PubMed

    Press, Marcella Calfon; Jaffer, Farouc A

    2014-10-01

    Coronary artery disease (CAD) is an inflammatory process that results in buildup of atherosclerosis, typically lipid-rich plaque in the arterial wall. Progressive narrowing of the vessel wall and subsequent plaque rupture can lead to myocardial infarction and death. Recent advances in intravascular fluorescence imaging techniques have provided exciting coronary artery-targeted platforms to further characterize the molecular changes that occur within the vascular wall as a result of atherosclerosis and following coronary stent-induced vascular injury. This review will summarize exciting recent developments in catheter-based imaging of coronary arterial-sized vessels; focusing on two-dimensional near-infrared fluorescence imaging (NIRF) molecular imaging technology as an approach to specifically identify inflammation and fibrin directly within coronary artery-sized vessels. Intravascular NIRF is anticipated to provide new insights into the in vivo biology underlying high-risk plaques, as well as high-risks stents prone to stent restenosis or stent thrombosis.

  15. Ultrasonographic measurements of subclinical carotid atherosclerosis in prediction of ischemic stroke.

    PubMed

    Mathiesen, E B; Johnsen, S H

    2009-01-01

    Carotid intima-media thickness (IMT) and plaque measurements are widely used to quantify atherosclerosis and assess the risk of future stroke, and are used as surrogate endpoints for clinical disease. In recent years, it has become clear that carotid IMT and plaque reflect biologically and genetically different aspects of the atherosclerotic process, and are differentially related to risk factors and cardiovascular disease. Plaques are focal manifestations of atherosclerosis while increased IMT represents mainly hypertensive medial hypertrophy. Several prospective studies have showed that IMT and plaque measurements, such as total plaque area and plaque number, are predictive of future stroke. Plaque echogenicity predicts future stroke independent of plaque size. The contribution of IMT and plaque measurements in individual stroke risk prediction in the general population seems to be limited, but may be useful as a tool for individual stratification of high-risk patients.

  16. Molecular imaging of inflammation in the ApoE -/- mouse model of atherosclerosis with IodoDPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foss, Catherine A., E-mail: cfoss1@jhmi.edu; Bedja, Djahida; Faculty of Medicine and Health Sciences, Macquarie University, Sydney

    Background: Atherosclerosis is a common and serious vascular disease predisposing individuals to myocardial infarction and stroke. Intravascular plaques, the pathologic lesions of atherosclerosis, are largely composed of cholesterol-laden luminal macrophage-rich infiltrates within a fibrous cap. The ability to detect those macrophages non-invasively within the aorta, carotid artery and other vessels would allow physicians to determine plaque burden, aiding management of patients with atherosclerosis. Methods and results: We previously developed a low-molecular-weight imaging agent, [{sup 125}I]iodo-DPA-713 (iodoDPA), which selectively targets macrophages. Here we use it to detect both intravascular macrophages and macrophage infiltrates within the myocardium in the ApoE -/- mousemore » model of atherosclerosis using single photon emission computed tomography (SPECT). SPECT data were confirmed by echocardiography, near-infrared fluorescence imaging and histology. SPECT images showed focal uptake of radiotracer at the aortic root in all ApoE -/- mice, while the age-matched controls were nearly devoid of radiotracer uptake. Focal radiotracer uptake along the descending aorta and within the myocardium was also observed in affected animals. Conclusions: IodoDPA is a promising new imaging agent for atherosclerosis, with specificity for the macrophage component of the lesions involved. - Highlights: • [{sup 125}I]iodoDPA SPECT detects atherosclerotic plaques in ApoE -/- mice with high contrast. • Plaques are detected in ApoE -/- mice regardless of diet with iodoDPA. • iodoDPA has very low uptake in healthy tissue including healthy TSPO + tissues at 24 h.« less

  17. Activities of red blood cell anti-oxidative enzymes (SOD, GPx) and total anti-oxidative capacity of serum (TAS) in men with coronary atherosclerosis and in healthy pilots.

    PubMed

    Zawadzka-Bartczak, Ewelina

    2005-09-01

    Reactive oxygen species (ROS) have been proposed to play important pathogenic roles, especially in harmful oxidative modifications of low-density cholesterol. Redox balance within the organism is largely determined by the activities of anti-oxidative enzymes of red blood cells and by the total anti-oxidative capacity of the serum (TAS). SOD and GPx activities and TAS in 13 men aged 42-65 years with coronary atherosclerosis (group I) were compared with those of both 15 clinically healthy pilots matched for age and lipid abnormalities (cholesterol and triglycerides) (group II) and 14 age-matched pilots without lipid abnormalities (group III). There were statistically significant differences in SOD and GPx activities and in TAS between the groups. 1. SOD and GPx activities and TAS were lower in men with advanced coronary atherosclerosis that in age-matched clinically healthy men with similar dyslipidemia and were even further decreased compared with clinically healthy men without dyslipidemia. 2. The decrease in SOD and GPx activities and TAS in men with advanced coronary atherosclerosis was more pronounced than the degree of hypercholesterolemia or hypertriglyceridemia. 3. If hyperlipidemia and the activity of antioxidative enzymes and TAS were considered without reference to other risk factors of atherosclerosis, it appeared that the decreases in SOD, GPx, and TAS may play a more important role in the development of the atherosclerotic process than isolated increases in free cholesterol or triglyceride levels.

  18. Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential.

    PubMed

    Martinet, Wim; De Meyer, Guido R Y

    2009-02-13

    Autophagy is a reparative, life-sustaining process by which cytoplasmic components are sequestered in double-membrane vesicles and degraded on fusion with lysosomal compartments. A growing body of evidence suggests that autophagy is stimulated in advanced atherosclerotic plaques by oxidized lipids, inflammation, and metabolic stress conditions. However, despite the increasing interest in autophagy in various pathophysiological situations such as neurodegeneration, cancer, and cardiac myopathies, the process remains an underestimated and overlooked phenomenon in atherosclerosis. As a consequence, its role in plaque formation and stability is poorly understood. Most likely, autophagy safeguards plaque cells against cellular distress, in particular oxidative injury, by degrading damaged intracellular material. In this way, autophagy is antiapoptotic and contributes to cellular recovery in an adverse environment. An interesting observation is that basal autophagy can be intensified by specific drugs. Excessively stimulated autophagic activity is capable of destroying major proportions of the cytosol, leading finally to type II programmed cell death that lacks several hallmarks of apoptosis or necrosis. Because atherosclerosis is an inflammatory disorder of the arterial intima, pharmacological approaches could be developed to stabilize vulnerable, rupture-prone lesions through selective induction of macrophage autophagic death.

  19. Role of Platelet-Derived Microvesicles As Crosstalk Mediators in Atherothrombosis and Future Pharmacology Targets: A Link between Inflammation, Atherosclerosis, and Thrombosis

    PubMed Central

    Badimon, Lina; Suades, Rosa; Fuentes, Eduardo; Palomo, Iván; Padró, Teresa

    2016-01-01

    Reports in the last decade have suggested that the role of platelets in atherosclerosis and its thrombotic complications may be mediated, in part, by local secretion of platelet-derived microvesicles (pMVs), small cell blebs released during the platelet activation process. MVs are the most abundant cell-derived microvesicle subtype in the circulation. High concentrations of circulating MVs have been reported in patients with atherosclerosis, acute vascular syndromes, and/or diabetes mellitus, suggesting a potential correlation between the quantity of microvesicles and the clinical severity of the atherosclerotic disease. pMVs are considered to be biomarkers of disease but new information indicates that pMVs are also involved in signaling functions. pMVs evoke or promote haemostatic and inflammatory responses, neovascularization, cell survival, and apoptosis, processes involved in the pathophysiology of cardiovascular disease. This review is focused on the complex cross-talk between platelet-derived microvesicles, inflammatory cells and vascular elements and their relevance in the development of the atherosclerotic disease and its clinical outcomes, providing an updated state-of-the art of pMV involvement in atherothrombosis and pMV potential use as therapeutic agent influencing cardiovascular biomedicine in the future. PMID:27630570

  20. Evidence of extensive atherosclerosis, coronary artery disease and myocardial infarction in the ApoE-/-:Ins2+/Akita mouse fed a western diet.

    PubMed

    Venegas-Pino, Daniel E; Lagrotteria, Andrew; Wang, Pei-Wen; Morphet, Jaiya; Clapdorp, Cassaundra; Shi, Yuanyuan; Werstuck, Geoff H

    2018-05-23

    Diabetic patients with no history of cardiac infarction have a prevalence of coronary atherosclerosis and a risk of heart attack equivalent to euglycemic patients who have coronary atherosclerosis and have suffered a prior myocardial infarction. Although several murine models of diabetes have been established, none of these show indications of cardiac events. In an attempt to establish a diabetic mouse model with coronary atherosclerosis and myocardial injury, we have fed hyperglycemic ApoE -/- :Ins2 +/Akita mice a western diet to enhance the dyslipidemic phenotype. Five-week-old ApoE -/- :Ins2 +/Akita mice and ApoE -/- controls were fed a diet, 0.15% cholesterol and 21% anhydrous milk lipids, until 25 weeks of age. Changes in lifespan, clinical and metabolic parameters were evaluated as well as atherosclerosis and heart injury. In comparison to male ApoE -/- , male ApoE -/- :Ins2 +/Akita mice presented with chronic hyperglycemia (30.8 ± 1.2 mM vs. 9.3 ± 0.5 mM) accompanied by extremely high levels of total plasma cholesterol (49.3 ± 6.3 mM vs. 30.1 ± 1.5 mM) and triglycerides (11.6 ± 1.7 mM vs. 2.36 ± 0.18 mM). These mice have atherosclerosis at multiple vascular sites, including aortic sinus, ascending and descending aorta, brachiocephalic artery and coronary arteries. In addition, myocardial infarcts and a significant reduction of the lifespan (close to 20% of survival vs. other groups) were observed. Distinctively, both strains of female mice presented a parallel increase in plasma lipids, atherosclerosis, and no effects on mortality. We have established a diabetic mouse model, the western-diet-fed male ApoE -/- :Ins2 +/Akita mouse, with profound cardiovascular disease involving extensive atherosclerosis, coronary artery disease and myocardial infarct resulting in shortened lifespan. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Insights into Atherosclerosis Using Nanotechnology

    PubMed Central

    Linton, MacRae F.; Fazio, Sergio; Haselton, Frederick R.

    2010-01-01

    A developing forefront in vascular disease research is the application of nanotechnology, the engineering of devices at the molecular scale, for diagnostic and therapeutic applications in atherosclerosis. Promising research in this field over the past decade has resulted in the preclinical validation of nanoscale devices that target cellular and molecular components of the atherosclerotic plaque, including one of its prominent cell types, the macrophage. Nanoscale contrast agents targeting constituents of plaque biology have been adapted for application in multiple imaging modalities, leading toward more detailed diagnostic readouts, whereas nanoscale drug delivery devices can be tailored for site-specific therapeutic activity. This review highlights recent progress in utilizing nanotechnology for the clinical management of atherosclerosis, drawing upon recent preclinical studies relevant to diagnosis and treatment of the plaque and promising future applications. PMID:20425261

  2. The role of adiponectin and adipolin as anti-inflammatory adipokines in the formation of macrophage foam cells and their association with cardiovascular diseases.

    PubMed

    Sargolzaei, Javad; Chamani, Elham; Kazemi, Tooba; Fallah, Soudabeh; Soori, Hosna

    2018-04-01

    Obesity is one of the major public health concerns that is closely associated with obesity-related disorders such as type 2 diabetes mellitus (T2DM), hypertension, and atherosclerosis. Atherosclerosis is a chronic disease characterized by excess cholesterol deposition in the arterial intima and the formation of foam cells. Adipocytokines or adipokines are secreted by the adipose tissue as endocrine glands; adiponectin and adipolin are among these adipokines that are associated with obese and insulin-resistant phenotypes. Adipolin and adiponectin are cytokines that exert substantial impact on obesity, progression of atherosclerosis, insulin resistance, and glucose metabolism. In this paper, we review the formation of macrophage foam cells, which are associated with atherosclerosis, and the macrophage mechanism, which includes uptake, esterification, and release. We also summarize current information on adipose tissue-derived hormone and energy homeostasis in obesity. Finally, the role of adipokines, e.g., adipoline and adiponectin, in regulating metabolic, cardiovascular diseases is discussed. Copyright © 2018 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Resveratrol, Wine, and Atherosclerosis

    PubMed Central

    Prasad, Kailash

    2012-01-01

    This review emphasizes the effects of resveratrol on factors involved in the mechanism of atherosclerosis and risk factors for atherosclerosis. The effects of wine and resveratrol on atherosclerosis are also discussed. Resveratrol is a potent antioxidant and an anti-inflammatory agent. It reduces the expression of cell adhesion molecules, monocyte colony stimulating factors, matrix metalloproteinases, and growth factors; and inhibits platelet aggregation and vascular smooth muscle cell proliferation. It reduces the serum levels of total cholesterol, triglycerides (TG), and raises high-density lipoprotein cholesterol, inhibits expression of C-reactive protein and lowers the levels of advanced glycation end products and its receptor in the vascular tissue. It lowers the risk factors for plaque rupture. Epidemiological data show that moderate consumption of alcohol has an inverse association with carotid atherosclerosis while high consumption has a positive association with carotid atherosclerosis. Wine reduces the extent of atherosclerosis in animal model. The antiatherosclerotic effect of wine is mainly due to it resveratrol content. Resveratrol reduces the extent of atherosclerosis in animal model of atherosclerosis (apolipoprotein [Apo] E-deficient and Apo E−/−/low-density lipoprotein receptor-deficient mice and macrophage). In rabbit model of atherosclerosis, both reduction and acceleration of atherosclerosis have been reported with resveratrol. There are no data for regression and slowing of progression of atherosclerosis. Robust clinical trials for suppression of atherosclerosis are lacking. In conclusion, resveratrol has potential but experimental studies in depth and robust clinical trials are lacking for this agent to be of any value in the primary and secondary prevention of coronary and peripheral artery disease. PMID:23450206

  4. Role of tumour necrosis factor alpha converting enzyme (TACE/ADAM17) and associated proteins in coronary artery disease and cardiac events.

    PubMed

    Chemaly, Melody; McGilligan, Victoria; Gibson, Mark; Clauss, Matthias; Watterson, Steven; Alexander, H Denis; Bjourson, Anthony John; Peace, Aaron

    2017-12-01

    Tumour necrosis factor alpha converting enzyme (TACE/ADAM17) is a member of the A disintegrin and metalloproteinase (ADAM) family of ectodomain shedding proteinases. It regulates many inflammatory processes by cleaving several transmembrane proteins, including tumour necrosis factor alpha (TNFα) and its receptors tumour necrosis factor alpha receptor 1 and tumour necrosis factor alpha receptor 2. There is evidence that TACE is involved in several inflammatory diseases, such as ischaemia, heart failure, arthritis, atherosclerosis, diabetes and cancer as well as neurological and immune diseases. This review summarizes the latest discoveries regarding the mechanism of action and regulation of TACE. It also focuses on the role of TACE in atherosclerosis and coronary artery disease (CAD), highlighting clinical studies that have investigated its expression and protein activity. The multitude of substrates cleaved by TACE make this enzyme an attractive target for therapy and a candidate for biomarker research and development in CAD. Crown Copyright © 2017. Published by Elsevier Masson SAS. All rights reserved.

  5. BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet.

    PubMed

    Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert

    This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE -/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacological activities have been made including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory, and anti-atherosclerotic effects. To our knowledge this is the first study that combines D-tagatose and BSN723 for the treatment of hyperlipidemia and the prevention of atherosclerosis. ApoE-deficient mice were randomized into five groups with equivalent mean body weights. The mice were given the following diets for 8 weeks: Group 1 - Standard diet; Group 2 - Western diet; Group 3 - Western diet formulated with D-tagatose; Group 4 - Western diet formulated with BSN723; Group 5 - Western diet formulated with BSN723T. Mice were measured for weight gain, tissue and organ weights, total serum cholesterol and triglycerides and formation of atherosclerosis. The addition of D-tagatose, either alone or in combination with BSN723, prevented the increase in adipose tissue and weight gain brought on by the Western diet. Both D-tagatose and BSN723 alone reduced total cholesterol and the formation of atherosclerosis in the aorta compared to mice on the Western diet. Addition of BSN723 to D-tagatose (BSN723T) did not increase efficacy in prevention of increases in cholesterol or atherosclerosis compared to D-tagatose alone. Addition of either D-tagatose or BSN723 alone to a Western diet prevented weight gain, increases in total serum cholesterol and triglycerides, and the formation of atherosclerosis. However, there was no additive or synergistic effect on the measured parameters with the combination BSN723T treatment.

  6. The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shaoqing; Graduate School of Medicine, Nanchang University, Nanchang; Chen, Xia

    Inflammatory mediators and adhesion molecules have been implicated in a variety of diseases including atherosclerosis. As both the mediator-releasing and targeted cells, vascular endothelial cells play key role in pathological processes. NF-κB signaling regulates a cluster of inflammatory factors in LPS-activated vascular endothelial cells but the underlying mechanisms remain largely unknown. Here, we investigated the epigenetic regulation of LPS upon the expression of inflammatory mediators and adhesion molecules. We found that LPS treatment promoted jmjd3 expression, enhanced Jmjd3 nuclear accumulation in human vascular endothelial cells. In addition, LPS enhanced the demethylation of H3K27me3, a specific substrate of Jmjd3. LPS treatmentmore » recruited Jmjd3 and NF-κB to the promoter region of target genes, suggesting Jmjd3 synergizes with NF-κB to activate the expression of target genes. We further found that Jmjd3 attenuated the methylation status in promoter region of target genes, culminating in target gene expression. Our findings unveil epigenetic regulations of LPS upon NF-κB pathway and identify Jmjd3 as a critical modulator of NF-κB pathway and potential therapeutic target for NF-κB related diseases including atherosclerosis.« less

  7. Potential therapeutic effects of mTOR inhibition in atherosclerosis

    PubMed Central

    Kurdi, Ammar; De Meyer, Guido R. Y.

    2015-01-01

    Despite significant improvement in the management of atherosclerosis, this slowly progressing disease continues to affect countless patients around the world. Recently, the mechanistic target of rapamycin (mTOR) has been identified as a pre‐eminent factor in the development of atherosclerosis. mTOR is a constitutively active kinase found in two different multiprotein complexes, mTORC1 and mTORC2. Pharmacological interventions with a class of macrolide immunosuppressive drugs, called rapalogs, have shown undeniable evidence of the value of mTORC1 inhibition to prevent the development of atherosclerotic plaques in several animal models. Rapalog‐eluting stents have also shown extraordinary results in humans, even though the exact mechanism for this anti‐atherosclerotic effect remains elusive. Unfortunately, rapalogs are known to trigger diverse undesirable effects owing to mTORC1 resistance or mTORC2 inhibition. These adverse effects include dyslipidaemia and insulin resistance, both known triggers of atherosclerosis. Several strategies, such as combination therapy with statins and metformin, have been suggested to oppose rapalog‐mediated adverse effects. Statins and metformin are known to inhibit mTORC1 indirectly via 5' adenosine monophosphate‐activated protein kinase (AMPK) activation and may hold the key to exploit the full potential of mTORC1 inhibition in the treatment of atherosclerosis. Intermittent regimens and dose reduction have also been proposed to improve rapalog's mTORC1 selectivity, thereby reducing mTORC2‐related side effects. PMID:26551391

  8. Newer antiatherosclerosis treatment strategies.

    PubMed

    Aggarwal, Amitesh; Singh, Safal

    2011-01-01

    Atherosclerosis has been a target of much clinical and molecular research. As a result of this extensive research, it is amply clear that atherogenesis is a multifactorial process involving an interplay of metabolic, immune and inflammatory mechanisms. Antiatherosclerotic strategies are today aiming for a multipronged approach targeting each arm of this multifactorial process. The newer agents under development can be divided into three broad categories: anti-inflammatory agents, modulators of intermediary metabolism and antiatherosclerosis vaccines. Potential targets for anti-inflammatory agents include inhibition of conversion of low-density lipoprotein (LDL) to oxidised LDL, blocking or downregulation of cell adhesion molecules, chemokine modulation and macrophage receptor blockade. Beyond inhibition of plaque formation, efforts are also ongoing to develop agents which stabilise the plaque by increasing its fibrous content and inhibiting its disruption. So far as research in the sphere of intermediary metabolism is concerned, the focus is now primarily on raising high-density lipoprotein and promoting reverse cholesterol transport; potential targets include cholesteryl ester transfer protein, liver X-receptor, lecithin cholesterol acyltransferase and high-density lipoprotein mimetics. Acyl-coenzymeA: cholesterol acyltransferase is another enzyme whose selective and differential inhibition is under active investigation. The concept of immunisation against a non-communicable disease such as atherosclerosis is still in its nascent stages. However, with increasing evidence to suggest the role of antigen-specific T-cell-mediated immunity in atherogenesis, this approach is potentially promising. Possible antigens under evaluation include oxidised LDL and its subparticles, heat-shock proteins and cholesteryl ester transfer protein. With cardiovascular disease being the single leading cause of death worldwide, the development of a safe and successful antiatherosclerosis strategy (possibly employing a combination of agents acting at various levels) will indeed be a major 21st-century achievement.

  9. Atherosclerosis profile and incidence of cardiovascular events: a population-based survey.

    PubMed

    Robinson, Jennifer G; Fox, Kathleen M; Bullano, Michael F; Grandy, Susan

    2009-09-15

    Atherosclerosis is a chronic progressive disease often presenting as clinical cardiovascular disease (CVD) events. This study evaluated the characteristics of individuals with a diagnosis of atherosclerosis and estimated the incidence of CVD events to assist in the early identification of high-risk individuals. Respondents to the US SHIELD baseline survey were followed for 2 years to observe incident self-reported CVD. Respondents had subclinical atherosclerosis if they reported a diagnosis of narrow or blocked arteries/carotid artery disease without a past clinical CVD event (heart attack, stroke or revascularization). Characteristics of those with atherosclerosis and incident CVD were compared with those who did not report atherosclerosis at baseline but had CVD in the following 2 years using chi-square tests. Logistic regression model identified characteristics associated with atherosclerosis and incident events. Of 17,640 respondents, 488 (2.8%) reported having subclinical atherosclerosis at baseline. Subclinical atherosclerosis was associated with age, male gender, dyslipidemia, circulation problems, hypertension, past smoker, and a cholesterol test in past year (OR = 2.2) [all p < 0.05]. Incident CVD was twice as high in respondents with subclinical atherosclerosis (25.8%) as in those without atherosclerosis or clinical CVD (12.2%). In individuals with subclinical atherosclerosis, men (RR = 1.77, p = 0.050) and individuals with circulation problems (RR = 2.36, p = 0.003) were at greatest risk of experiencing CVD events in the next 2 years. Self-report of subclinical atherosclerosis identified an extremely high-risk group with a >25% risk of a CVD event in the next 2 years. These characteristics may be useful for identifying individuals for more aggressive diagnostic and therapeutic efforts.

  10. Emerging topics in cutaneous wound repair.

    PubMed

    Valacchi, Giuseppe; Zanardi, Iacopo; Sticozzi, Claudia; Bocci, Velio; Travagli, Valter

    2012-07-01

    The intervention strategies in various types of skin wounds include several treatment programs that depend on the identified disease. Several factors such as aging, defective nutrition, traumatism, atherosclerosis, and diabetes may contribute to the formation of a wound that has no tendency to heal due to a defective and complicated repair process. The numerous advances in the understanding of the wound-healing process in both acute and chronic lesions have been recently described. The purpose of this paper is to describe relatively new approaches as viable alternatives to current wound-healing therapies. The future challenges for both the best targeting and optimization of these potential treatments are also described. © 2012 New York Academy of Sciences.

  11. Large scale isolation and purification of soluble RAGE from lung tissue.

    PubMed

    Englert, Judson M; Ramsgaard, Lasse; Valnickova, Zuzana; Enghild, Jan J; Oury, Tim D

    2008-09-01

    The receptor for advanced glycation end-products (RAGE) has been implicated in numerous disease processes including: atherosclerosis, diabetic nephropathy, impaired wound healing and neuropathy to name a few. Treatment of animals with a soluble isoform of the receptor (sRAGE) has been shown to prevent and even reverse many disease processes. Isolating large quantities of pure sRAGE for in vitro and in vivo studies has hindered its development as a therapeutic strategy in other RAGE mediated diseases that require long-term therapy. This article provides an improvement in both yield and detail of a previously published method to obtain 10mg of pure, endotoxin free sRAGE from 65 g of lung tissue.

  12. [CHRONIC FLUORIDE INTOXICATION AS A RISK FACTOR FOR THE DEVELOPMENT OF ATHEROSCLEROSIS].

    PubMed

    Korotenko, O Yu; Panev, N I; Zakharenkov, V V; Filimonov, S N; Semenova, E A; Panev, R N

    2015-01-01

    In workers employed in the aluminum industry, the main harmful production factor is exposure to fluoride salts, which can cause chronic fluoride intoxication. For the assessment of the impact of chronic fluoride intoxication on the development of atherosclerosis, we conducted a comprehensive survey of 87 aluminum-metal makers with chronic fluoride intoxication and 43 aluminum-metal makers without occupational diseases, mean age--52.1 ± 0.4 years. There were considered the presence and severity of atherosclerosis of brachiocephalic arteries, and the arteries of the lower extremities in the studied group, there was evaluated the effect of other risk factors for atherosclerosis (smoking, presence of hypertension, diabetes, dyslipidemia). With the use of Doppler ultrasound of the arteries it was revealed that in metallurgists with chronic fluoride intoxication atherosclerosis was detected in 73.6% versus 55.8% in persons of the comparison group. The performed analysis of the prevalence of main risk factors for atherosclerosis showed that in metal makers with chronic fluoride intoxication in combination with atherosclerosis hypertension is more common (in 54.7%) than in metallurgists with chronic fluoride intoxication without atherosclerosis--only 26.1%. According to the frequency of occurrence of smoking, diabetes mellitus, hypercholesterolemia, and hypertriglyceridemia, there were no significant differences between the metallurgists with chronic fluoride intoxication, with and without atherosclerosis, and the control group, the increase in LDL cholesterol occurs significantly more often in metal-makers with chronic fluoride intoxication in combination with atherosclerosis if compared to workers without occupational diseases. Thus, chronic fluoride intoxication acts as a risk factor in the development of atherosclerosis: atherosclerosis in metal-makers with chronic fluoride intoxication occurs more frequently than in workers who do not have professional pathology. Hypertension and elevated levels of LDL cholesterol were established to increase the relative risk of developing atherosclerosis in metallurgists with chronic fluoride intoxication. At that there are no significant differences in the prevalence of common risk factors for atherosclerosis (smoking, diabetes, hypercholesterolemia, hypertriglyceridemia).

  13. Fine Particulate Air Pollution and the Progression of Carotid Intima-Medial Thickness: A Prospective Cohort Study from the Multi-Ethnic Study of Atherosclerosis and Air Pollution

    PubMed Central

    Adar, Sara D.; Sheppard, Lianne; Vedal, Sverre; Polak, Joseph F.; Sampson, Paul D.; Diez Roux, Ana V.; Budoff, Matthew; Jacobs, David R.; Barr, R. Graham; Watson, Karol; Kaufman, Joel D.

    2013-01-01

    Background Fine particulate matter (PM2.5) has been linked to cardiovascular disease, possibly via accelerated atherosclerosis. We examined associations between the progression of the intima-medial thickness (IMT) of the common carotid artery, as an indicator of atherosclerosis, and long-term PM2.5 concentrations in participants from the Multi-Ethnic Study of Atherosclerosis (MESA). Methods and Results MESA, a prospective cohort study, enrolled 6,814 participants at the baseline exam (2000–2002), with 5,660 (83%) of those participants completing two ultrasound examinations between 2000 and 2005 (mean follow-up: 2.5 years). PM2.5 was estimated over the year preceding baseline and between ultrasounds using a spatio-temporal model. Cross-sectional and longitudinal associations were examined using mixed models adjusted for confounders including age, sex, race/ethnicity, smoking, and socio-economic indicators. Among 5,362 participants (5% of participants had missing data) with a mean annual progression of 14 µm/y, 2.5 µg/m3 higher levels of residential PM2.5 during the follow-up period were associated with 5.0 µm/y (95% CI 2.6 to 7.4 µm/y) greater IMT progressions among persons in the same metropolitan area. Although significant associations were not found with IMT progression without adjustment for metropolitan area (0.4 µm/y [95% CI −0.4 to 1.2 µm/y] per 2.5 µg/m3), all of the six areas showed positive associations. Greater reductions in PM2.5 over follow-up for a fixed baseline PM2.5 were also associated with slowed IMT progression (−2.8 µm/y [95% CI −1.6 to −3.9 µm/y] per 1 µg/m3 reduction). Study limitations include the use of a surrogate measure of atherosclerosis, some loss to follow-up, and the lack of estimates for air pollution concentrations prior to 1999. Conclusions This early analysis from MESA suggests that higher long-term PM2.5 concentrations are associated with increased IMT progression and that greater reductions in PM2.5 are related to slower IMT progression. These findings, even over a relatively short follow-up period, add to the limited literature on air pollution and the progression of atherosclerotic processes in humans. If confirmed by future analyses of the full 10 years of follow-up in this cohort, these findings will help to explain associations between long-term PM2.5 concentrations and clinical cardiovascular events. Please see later in the article for the Editors' Summary PMID:23637576

  14. Strong correlation between early stage atherosclerosis and electromechanical coupling of aorta

    NASA Astrophysics Data System (ADS)

    Liu, X. Y.; Yan, F.; Niu, L. L.; Chen, Q. N.; Zheng, H. R.; Li, J. Y.

    2016-03-01

    Atherosclerosis is the underlying cause of cardiovascular diseases that are responsible for many deaths in the world, and the early diagnosis of atherosclerosis is highly desirable. The existing imaging methods, however, are not capable of detecting the early stage of atherosclerosis development due to their limited spatial resolution. Using piezoresponse force microscopy (PFM), we show that the piezoelectric response of an aortic wall increases as atherosclerosis advances, while the stiffness of the aorta shows a less evident correlation with atherosclerosis. Furthermore, we show that there is strong correlation between the coercive electric field necessary to switch the polarity of the artery and the development of atherosclerosis. Thus by measuring the electromechanical coupling of the aortic wall, it is possible to probe atherosclerosis at the early stage of its development, not only improving the spatial resolution by orders of magnitude, but also providing comprehensive quantitative information on the biomechanical properties of the artery.

  15. Effects of periodontal treatment on carotid intima-media thickness in patients with lifestyle-related diseases: Japanese prospective multicentre observational study.

    PubMed

    Kudo, Chieko; Shin, Wee Soo; Sasaki, Nobuhiro; Harai, Kazuo; Kato, Kai; Seino, Hiroaki; Goke, Eiji; Fujino, Takemasa; Kuribayashi, Nobuichi; Pearce, Youko Onuki; Taira, Masato; Matsushima, Ryoji; Minabe, Masato; Takashiba, Shogo

    2018-01-12

    Atherosclerosis, a chronic inflammatory disease in arterial blood vessels, is one of the major causes of death in worldwide. Meanwhile, periodontal disease is a chronic inflammatory disease caused by infection with periodontal pathogens such as P. gingivalis (Porphyromonas gingivalis). Several studies have reported association between periodontal infection and atherosclerosis, but direct investigation about the effects of periodontal treatment on atherosclerosis has not been reported. We have planned Japanese local clinics to determine the relationship between periodontal disease and atherosclerosis under collaborative with medical and dental care. A prospective, multicentre, observational study was conducted including 38 medical patients with lifestyle-related diseases in the stable period under consultation at participating medical clinics and 92 periodontal patients not undergoing medical treatment but who were consulting at participating dental clinics. Systemic and periodontal examinations were performed before and after periodontal treatment. At baseline, LDL-C (low-density lipoprotein cholesterol) levels and percentage (%) of mobile teeth were positively related to plasma IgG (immunoglobulin) antibody titer against P. gingivalis with multivariate analysis. Corresponding to improvements in periodontal clinical parameters after treatment, right and left max IMT (maximum intima-media thickness) levels were decreased significantly after treatment (SPT-S: start of supportive periodontal therapy, SPT-1y: at 1 year under SPT, and SPT-3y: at 3 years under SPT). The present study has clarified our previous univariate analysis results, wherein P. gingivalis infection was positively associated with progression of atherosclerosis. Thus, routine screening using plasma IgG antibody titer against P. gingivalis and periodontal treatment under collaborative with medical and dental care may prevent cardiovascular accidents caused by atherosclerosis.

  16. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE-/- mice.

    PubMed

    Chan, Yee Kwan; Brar, Manreetpal Singh; Kirjavainen, Pirkka V; Chen, Yan; Peng, Jiao; Li, Daxu; Leung, Frederick Chi-Ching; El-Nezami, Hani

    2016-11-08

    Atherosclerosis appears to have multifactorial causes - microbial component like lipopolysaccharides (LPS) and other pathogen associated molecular patterns may be plausible factors. The gut microbiota is an ample source of such stimulants, and its dependent metabolites and altered gut metagenome has been an established link to atherosclerosis. In this exploratory pilot study, we aimed to elucidate whether microbial intervention with probiotics L. rhamnosus GG (LGG) or pharmaceuticals telmisartan (TLM) could improve atherosclerosis in a gut microbiota associated manner. Atherosclerotic phenotype was established by 12 weeks feeding of high fat (HF) diet as opposed to normal chow diet (ND) in apolipoprotein E knockout (ApoE -/- ) mice. LGG or TLM supplementation to HF diet was studied. Both LGG and TLM significantly reduced atherosclerotic plaque size and improved various biomarkers including endotoxin to different extents. Colonial microbiota analysis revealed that TLM restored HF diet induced increase in Firmicutes/Bacteroidetes ratio and decrease in alpha diversity; and led to a more distinct microbial clustering closer to ND in PCoA plot. Eubacteria, Anaeroplasma, Roseburia, Oscillospira and Dehalobacteria appeared to be protective against atherosclerosis and showed significant negative correlation with atherosclerotic plaque size and plasma adipocyte - fatty acid binding protein (A-FABP) and cholesterol. LGG and TLM improved atherosclerosis with TLM having a more distinct alteration in the colonic gut microbiota. Altered bacteria genera and reduced alpha diversity had significant correlations to atherosclerotic plaque size, plasma A-FABP and cholesterol. Future studies on such bacterial functional influence in lipid metabolism will be warranted.

  17. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Hiroyuki; Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp; Ishii, Norio

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progressionmore » of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.« less

  18. Frequency of Subclinical Atherosclerosis in Brazilian HIV-Infected Patients.

    PubMed

    Salmazo, Péricles Sidnei; Bazan, Silméia Garcia Zanati; Shiraishi, Flávio Gobbis; Bazan, Rodrigo; Okoshi, Katashi; Hueb, João Carlos

    2018-04-09

    AIDS as well as atherosclerosis are important public health problems. The longer survival among HIV-infected is associated with increased number of cardiovascular events in this population, and this association is not fully understood. To identify the frequency of subclinical atherosclerosis in HIV-infected patients compared to control subjects; to analyze associations between atherosclerosis and clinical and laboratory variables, cardiovascular risk factors, and the Framingham coronary heart disease risk score (FCRS). Prospective cross-sectional case-control study assessing the presence of subclinical atherosclerosis in 264 HIV-infected patients and 279 controls. Clinical evaluation included ultrasound examination of the carotid arteries, arterial stiffness by pulse wave velocity (PWV) and augmentation index (AIx), laboratory analysis of peripheral blood, and cardiovascular risk according to FCRS criteria. The significance level adopted in the statistical analysis was p < 0.05. Plaques were found in 37% of the HIV group and 4% of controls (p < 0.001). Furthermore, carotid intima-media thickness was higher in the HIV group than in controls (p < 0.001). Patients with carotid plaque had higher fasting glucose, total cholesterol, low-density lipoprotein cholesterol, and triglycerides than those without plaques. The presence of HIV, adjusted for age, overweight/obesity, and smoking increased by almost fivefold the risk of atherosclerotic carotid plaque (OR: 4.9; 95%CI: 2.5-9.9; p < 0.001). Exposure to protease inhibitors did not influence carotid intima-media thickness, was not associated with carotid plaque frequency, and did not alter the mechanical characteristics of the arterial system (PWV and AIx). HIV-infected patients are at increased risk of atherosclerosis in association with classical cardiovascular risk factors. Treatment with protease inhibitors does not promote functional changes in the arteries, and shows no association with increased frequency of atherosclerotic plaques in carotid arteries. The FCRS may be inappropriate for this population.

  19. Aortic, carotid intima-media thickness and flow- mediated dilation as markers of early atherosclerosis in a cohort of pediatric patients with rheumatic diseases.

    PubMed

    Del Giudice, Emanuela; Dilillo, Anna; Tromba, Luciana; La Torre, Giuseppe; Blasi, Sara; Conti, Fabrizio; Viola, Franca; Cucchiara, Salvatore; Duse, Marzia

    2018-06-01

    The aims of this study were to identify the presence of endothelial dysfunction as a marker of early atherosclerosis by measuring aortic and carotid intimal-medial thickness (aIMT and cIMT) and flow-mediated dilation (FMD) and their correlation with traditional and no traditional risk factors for atherosclerosis in children with rheumatic diseases. Thirty-nine patients (mean age 15.3 ± 5.7 years), 23 juvenile idiopathic arthritis, 9 juvenile spondyloarthropathies, 7 connective tissue diseases (mean disease duration and onset respectively 5 ± 3.6 and 10 ± 5 years), and 52 healthy children matched for sex and age were enrolled. Demographic data (age, sex, familiarity for cardiovascular disease), traditional risk factors for atherosclerosis (BMI, active and passive smoking, dyslipidemia), activity disease indexes (reactive count protein, erythrocyte sedimentation rate) autoantibodies, and complement tests were collected. aIMT, cIMT, and FMD were assessed following a standardized protocol by high-resolution ultrasonography. Patients resulted significantly more exposed to passive smoking and had a lower BMI and higher homocysteine level than controls. cIMT and aIMT were significantly higher in patients than controls (p < 0.001) and correlated with age at diagnosis (p < 0.001 r 0.516 and 0.706, respectively) but not with mean disease duration. FMD % was significantly reduced in patients compared to controls (p < 0.001). Subclinical atherosclerosis occurs in pediatric rheumatic diseases, mainly in early onset forms, and aIMT is an earlier marker of preclinical atherosclerosis. Premature endothelial dysfunction could be included in the follow-up of children with rheumatic disorders to plan prevention strategies of cardiovascular disease already in pediatrics.

  20. Flow-mediated dilation and exercise blood pressure in healthy adolescents

    USDA-ARS?s Scientific Manuscript database

    Objectives: Atherosclerosis is a process that begins in youth. The endothelium plays an essential role in regulating blood flow and protecting against progression of the initial stages of the atherosclerotic process. Few studies have investigated the relationship between aerobic fitness and exerc...

  1. Molecular magnetic resonance imaging of atherosclerotic vessel wall disease.

    PubMed

    Nörenberg, Dominik; Ebersberger, Hans U; Diederichs, Gerd; Hamm, Bernd; Botnar, René M; Makowski, Marcus R

    2016-03-01

    Molecular imaging aims to improve the identification and characterization of pathological processes in vivo by visualizing the underlying biological mechanisms. Molecular imaging techniques are increasingly used to assess vascular inflammation, remodeling, cell migration, angioneogenesis and apoptosis. In cardiovascular diseases, molecular magnetic resonance imaging (MRI) offers new insights into the in vivo biology of pathological vessel wall processes of the coronary and carotid arteries and the aorta. This includes detection of early vascular changes preceding plaque development, visualization of unstable plaques and assessment of response to therapy. The current review focuses on recent developments in the field of molecular MRI to characterise different stages of atherosclerotic vessel wall disease. A variety of molecular MR-probes have been developed to improve the non-invasive detection and characterization of atherosclerotic plaques. Specifically targeted molecular probes allow for the visualization of key biological steps in the cascade leading to the development of arterial vessel wall lesions. Early detection of processes which lead to the development of atherosclerosis and the identification of vulnerable atherosclerotic plaques may enable the early assessment of response to therapy, improve therapy planning, foster the prevention of cardiovascular events and may open the door for the development of patient-specific treatment strategies. Targeted MR-probes allow the characterization of atherosclerosis on a molecular level. Molecular MRI can identify in vivo markers for the differentiation of stable and unstable plaques. Visualization of early molecular changes has the potential to improve patient-individualized risk-assessment.

  2. Ultrasound Imaging for Risk Assessment in Atherosclerosis

    PubMed Central

    Steinl, David C.; Kaufmann, Beat A.

    2015-01-01

    Atherosclerosis and its consequences like acute myocardial infarction or stroke are highly prevalent in western countries, and the incidence of atherosclerosis is rapidly rising in developing countries. Atherosclerosis is a disease that progresses silently over several decades before it results in the aforementioned clinical consequences. Therefore, there is a clinical need for imaging methods to detect the early stages of atherosclerosis and to better risk stratify patients. In this review, we will discuss how ultrasound imaging can contribute to the detection and risk stratification of atherosclerosis by (a) detecting advanced and early plaques; (b) evaluating the biomechanical consequences of atherosclerosis in the vessel wall; (c) assessing plaque neovascularization and (d) imaging the expression of disease-relevant molecules using molecular imaging. PMID:25938969

  3. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis.

    PubMed

    Winkel, Leah C; Hoogendoorn, Ayla; Xing, Ruoyu; Wentzel, Jolanda J; Van der Heiden, Kim

    2015-07-01

    Atherosclerosis is a chronic inflammatory disease of the arterial tree that develops at predisposed sites, coinciding with locations that are exposed to low or oscillating shear stress. Manipulating flow velocity, and concomitantly shear stress, has proven adequate to promote endothelial activation and subsequent plaque formation in animals. In this article, we will give an overview of the animal models that have been designed to study the causal relationship between shear stress and atherosclerosis by surgically manipulating blood flow velocity profiles. These surgically manipulated models include arteriovenous fistulas, vascular grafts, arterial ligation, and perivascular devices. We review these models of manipulated blood flow velocity from an engineering and biological perspective, focusing on the shear stress profiles they induce and the vascular pathology that is observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Positron emission tomography of the vulnerable atherosclerotic plaque in man – a contemporary review

    PubMed Central

    Pedersen, Sune F; Hag, Anne Mette F; Klausen, Thomas L; Ripa, Rasmus S; Bodholdt, Rasmus P; Kjær, Andreas

    2014-01-01

    Atherosclerosis is the primary underlying cause of cardiovascular disease (CVD). It is the leading cause of morbidity and mortality in the Western world today and is set to become the prevailing disease and major cause of death worldwide by 2020. In the 1950s surgical intervention was introduced to treat symptomatic patients with high-grade carotid artery stenosis due to atherosclerosis – a procedure known as carotid endarterectomy (CEA). By removing the atherosclerotic plaque from the affected carotid artery of these patients, CEA is beneficial by preventing subsequent ipsilateral ischemic stroke. However, it is known that patients with low to intermediate artery stenosis may still experience ischemic events, leading clinicians to consider plaque composition as an important feature of atherosclerosis. Today molecular imaging can be used for characterization, visualization and quantification of cellular and subcellular physiological processes as they take place in vivo; using this technology we can obtain valuable information on atherosclerostic plaque composition. Applying molecular imaging clinically to atherosclerotic disease therefore has the potential to identify atherosclerotic plaques vulnerable to rupture. This could prove to be an important tool for the selection of patients for CEA surgery in a health system increasingly focused on individualized treatment. This review focuses on current advances and future developments of in vivo atherosclerosis PET imaging in man. PMID:24289282

  5. Therapeutic modulation of the natural history of coronary atherosclerosis: lessons learned from serial imaging studies.

    PubMed

    Andrews, Jordan; Puri, Rishi; Kataoka, Yu; Nicholls, Stephen J; Psaltis, Peter J

    2016-08-01

    Despite advances in risk prediction, preventive and therapeutic strategies, atherosclerotic cardiovascular disease remains a major public health challenge worldwide, carrying considerable morbidity, mortality and health economic burden. There continues to be a need to better understand the natural history of this disease to guide the development of more effective treatment, integral to which is the rapidly evolving field of coronary artery imaging. Various imaging modalities have been refined to enable detailed visualization of the pathological substrate of atherosclerosis, providing accurate and reproducible measures of coronary plaque burden and composition, including the presence of high-risk characteristics. The serial application of such techniques, including coronary computed tomography angiography (CTA), intravascular ultrasound (IVUS) and optical coherence tomography (OCT) have uncovered important insights into the progression of coronary plaque over time in patients with stable and unstable coronary artery disease (CAD), and its responsiveness to therapeutic interventions. Here we review the use of different imaging modalities for the surveillance of coronary atherosclerosis and the lessons they have provided about the modulation of CAD by both traditional and experimental therapies.

  6. Is atherosclerosis fundamental to human aging? Lessons from ancient mummies.

    PubMed

    Clarke, Emily M; Thompson, Randall C; Allam, Adel H; Wann, L Samuel; Lombardi, Guido P; Sutherland, M Linda; Sutherland, James D; Cox, Samantha L; Soliman, Muhammad Al-Tohamy; Abd el-Maksoud, Gomaa; Badr, Ibrahem; Miyamoto, Michael I; Frohlich, Bruno; Nur el-din, Abdel-Halim; Stewart, Alexandre F R; Narula, Jagat; Zink, Albert R; Finch, Caleb E; Michalik, David E; Thomas, Gregory S

    2014-05-01

    Case reports from Johan Czermak, Marc Ruffer, and others a century or more ago demonstrated ancient Egyptians had atherosclerosis three millennia ago. The Horus study team extended their findings, demonstrating that atherosclerosis was prevalent among 76 ancient Egyptian mummies and among 61 mummies from each of the ancient cultures of Peru, the American Southwest, and the Aleutian Islands. These findings challenge the assumption that atherosclerosis is a modern disease caused by present day risk factors. An extensive autopsy of an ancient Egyptian teenage male weaver named Nakht found that he was infected with four parasites: Schistosoma haematobium, Taenia species, Trichinella spiralis, and Plasmodium falciparum. Modern day patients with chronic inflammatory disease such as rheumatoid arthritis, systemic lupus erythematosus, and human immunodeficiency virus experience premature atherosclerosis. Could the burden of chronic inflammatory disease have been a risk factor for atherosclerosis in these ancient cultures? The prevalence of atherosclerosis in four diverse ancient cultures is consistent with atherosclerosis being fundamental to aging. The impact of risk factors in modern times, and potentially in ancient times, suggests a strong gene-environmental interplay: human genes provide a vulnerability to atherosclerosis, the environment determines when and if atherosclerosis becomes manifest clinically. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  7. Endotoxin, Toll-like Receptor-4, and Atherosclerotic Heart Disease

    PubMed Central

    Horseman, Michael A.; Surani, Salim; Bowman, John D.

    2017-01-01

    Background: Endotoxin is a lipopolysaccharide (LPS) constituent of the outer membrane of most gram negative bacteria. Ubiquitous in the environment, it has been implicated as a cause or con-tributing factor in several disparate disorders from sepsis to heatstroke and Type II diabetes mellitus. Starting at birth, the innate immune system develops cellular defense mechanisms against environmen-tal microbes that are in part modulated through a series of receptors known as toll-like receptors. Endo-toxin, often referred to as LPS, binds to toll-like receptor 4 (TLR4)/ myeloid differentiation protein 2 (MD2) complexes on various tissues including cells of the innate immune system, smooth muscle and endothelial cells of blood vessels including coronary arteries, and adipose tissue. Entry of LPS into the systemic circulation ultimately leads to intracellular transcription of several inflammatory mediators. The subsequent inflammation has been implicated in the development and progression atherosclerosis and subsequent coronary artery disease and heart failure. Objective: The potential roles of endotoxin and TLR4 are reviewed regarding their role in the pathogen-esis of atherosclerotic heart disease. Conclusion: Atherosclerosis is initiated by inflammation in arterial endothelial and subendothelial cells, and inflammatory processes are implicated in its progression to clinical heart disease. Endotoxin and TLR4 play a central role in the inflammatory process, and represent potential targets for therapeutic intervention. Therapy with HMG-CoA inhibitors may reduce the expression of TLR4 on monocytes. Other therapeutic interventions targeting TLR4 expression or function may prove beneficial in athero-sclerotic disease prevention and treatment.

  8. Prevalence and clinical characteristics of carotid atherosclerosis in newly diagnosed patients with ketosis-onset diabetes: a cross-sectional study

    PubMed Central

    2013-01-01

    Background The features of carotid atherosclerosis in ketosis-onset diabetes have not been investigated. Our aim was to evaluate the prevalence and clinical characteristics of carotid atherosclerosis in newly diagnosed Chinese diabetic patients with ketosis but without islet-associated autoantibodies. Methods In total, 423 newly diagnosed Chinese patients with diabetes including 208 ketosis-onset diabetics without islet-associated autoantibodies, 215 non-ketotic type 2 diabetics and 79 control subjects without diabetes were studied. Carotid atherosclerosis was defined as the presence of atherosclerotic plaques in any of the carotid vessel segments. Carotid intima-media thickness (CIMT), carotid atherosclerotic plaque formation and stenosis were assessed and compared among the three groups based on Doppler ultrasound examination. The clinical features of carotid atherosclerotic lesions were analysed, and the risk factors associated with carotid atherosclerosis were evaluated using binary logistic regression in patients with diabetes. Results The prevalence of carotid atherosclerosis was significantly higher in the ketosis-onset diabetic group (30.80%) than in the control group (15.2%, p=0.020) after adjusting for age- and sex-related differences, but no significant difference was observed in comparison to the non-ketotic diabetic group (35.8%, p=0.487). The mean CIMT of the ketosis-onset diabetics (0.70±0.20 mm) was markedly higher than that of the control subjects (0.57±0.08 mm, p<0.001), but no significant difference was found compared with the non-ketotic type 2 diabetics (0.73±0.19 mm, p=0.582) after controlling for differences in age and sex. In both the ketosis-onset and the non-ketotic diabetes, the prevalence of carotid atherosclerosis was markedly increased with age (both p<0.001) after controlling for sex, but no sex difference was observed (p=0.479 and p=0.707, respectively) after controlling for age. In the ketosis-onset diabetics, the presence of carotid atherosclerosis was significantly associated with age, hypertension, low-density lipoprotein cholesterol and mean CIMT. Conclusions The prevalence and risk of carotid atherosclerosis were significantly higher in the ketosis-onset diabetics than in the control subjects but similar to that in the non-ketotic type 2 diabetics. The characteristics of carotid atherosclerotic lesions in the ketosis-onset diabetics resembled those in the non-ketotic type 2 diabetics. Our findings support the classification of ketosis-onset diabetes as a subtype of type 2 diabetes. PMID:23324539

  9. Artificial Limbs

    MedlinePlus

    ... a number of reasons. Common ones include Circulation problems from atherosclerosis or diabetes. They may cause you to need an amputation. Traumatic injuries, including from traffic accidents and military combat Cancer Birth defects If you are missing ...

  10. Rate of atherosclerosis progression in ApoE-/- mice long after discontinuation of cola beverage drinking.

    PubMed

    Otero-Losada, Matilde; Cao, Gabriel; Mc Loughlin, Santiago; Rodríguez-Granillo, Gastón; Ottaviano, Graciela; Milei, José

    2014-01-01

    This study was conducted in order to evaluate the effect of cola beverages drinking on atherosclerosisand test the hypothesis whether cola beverages consumption at early life stages might affect the development and progression of atherosclerosis later in life. ApoE-/- C57BL/6J mice (8 week-old) were randomized in 3 groups (n = 20 each) according to free accessto water (W), sucrose sweetened carbonated cola drink(C) or aspartame-acesulfame K sweetened carbonated 'light' cola drink (L)for the next 8 weeks. Drinking treatment was ended by switching C and L groups to drinking water. Four mice per group and time were sequentially euthanized: before treatment (8 weeks-old), at the end of treatment (16 weeks-old) and after treatment discontinuation (20 weeks-old, 24 weeks-old, 30 week-old mice). Aortic roots and livers were harvested, processed for histology and serial cross-sections were stained. Aortic plaque area was analyzed and plaque/media-ratio was calculated. Early consumption of cola drinks accelerated atherosclerotic plaque progression favoring the interaction between macrophages and myofibroblasts, without the participation of either T lymphocytes or proliferative activity. Plaque/media-ratio varied according to drink treatment (F2,54 = 3.433, p<0.04) and mice age (F4,54 = 5.009, p<0.03) and was higher in C and L groups compared with age-matched W group (p<0.05 at 16 weeks and 20 weeks, p<0.01 at 24 weeks and 30 weeks). Natural evolution of atherosclerosis in ApoE-/- mice (W group) evidenced atherosclerosis acceleration in parallel with a rapid increase in liver inflammation around the 20 weeks of age. Cola drinking within the 8-16 weeks of age accelerated atherosclerosis progression in ApoE-/- mice favoring aortic plaque enlargement (inward remodeling) over media thinning all over the study time. Data suggest that cola drinking at early life stages may predispose to atherosclerosis progression later in life in ApoE-/- mice.

  11. Suppression of proatherogenic leukocyte interactions by MCS-18--Impact on advanced atherosclerosis in ApoE-deficient mice.

    PubMed

    Kuehn, Constanze; Tauchi, Miyuki; Stumpf, Christian; Daniel, Christoph; Bäuerle, Tobias; Schwarz, Marc; Kerek, Franz; Steinkasserer, Alexander; Zinser, Elisabeth; Achenbach, Stephan; Dietel, Barbara

    2016-02-01

    Atherosclerosis is associated with chronic inflammatory responses of the arterial blood vessels. The previously observed protective effect of the MCS-18 substance against the initiation of atherosclerosis in a murine model was explained by its pronounced anti-inflammatory activity. Here, we investigated its impact on murine plaque progression in advanced atherosclerosis and on proatherogenic processes. ApoE-deficient mice were fed a high-fat diet for 12 weeks to induce atherosclerosis, followed by normal chow and intraperitoneal injections of either MCS-18 (500 μg, n = 10) or saline (n = 10) twice a week for another 12 weeks. Plaque size was reduced in MCS-18 treated mice compared to controls (p = 0.001), which was associated with a reduced size of the lipid core (p = 0.01). There was a decrease in apoptotic cells (p = 0.02), endothelial ICAM-1 expression (p < 0.001), and macrophage density (p = 0.01) in the MCS-18 group. In addition, human and murine dendritic cells (DCs) and human umbilical vein endothelial cells (HUVECs) were treated with MCS-18 (50-200 μg/ml) to analyze cell migration and adhesion under flow conditions. MCS-18 reduced human (p = 0.01) and murine (p = 0.006) DC migration. Furthermore, adhesion of MCS-18-treated DCs to a HUVEC monolayer was decreased (p < 0.001). Compared to controls, CD209 (p < 0.001) and CCR7 (p = 0.003) expression was decreased in MCS-18-treated DCs, while in HUVECs lower levels of ICAM-1 (p < 0.001) and of phosphorylated NF-κB-p65 (p = 0.002) were observed. Blocking of ICAM-1 reduced DC adhesion (p < 0.001). MCS-18 exhibits interesting therapeutic effects when applied in advanced murine atherosclerosis. Its antiatherogenic impact might be associated with a suppressed adhesion to the endothelium due to down-regulation of endothelial ICAM-1 expression. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. PDGF-DD, a novel mediator of smooth muscle cell phenotypic modulation, is upregulated in endothelial cells exposed to atherosclerosis-prone flow patterns.

    PubMed

    Thomas, James A; Deaton, Rebecca A; Hastings, Nicole E; Shang, Yueting; Moehle, Christopher W; Eriksson, Ulf; Topouzis, Stavros; Wamhoff, Brian R; Blackman, Brett R; Owens, Gary K

    2009-02-01

    Platelet-derived growth factor (PDGF)-BB is a well-known smooth muscle (SM) cell (SMC) phenotypic modulator that signals by binding to PDGF alphaalpha-, alphabeta-, and betabeta-membrane receptors. PDGF-DD is a recently identified PDGF family member, and its role in SMC phenotypic modulation is unknown. Here we demonstrate that PDGF-DD inhibited expression of multiple SMC genes, including SM alpha-actin and SM myosin heavy chain, and upregulated expression of the potent SMC differentiation repressor gene Kruppel-like factor-4 at the mRNA and protein levels. On the basis of the results of promoter-reporter assays, changes in SMC gene expression were mediated, at least in part, at the level of transcription. Attenuation of the SMC phenotypic modulatory activity of PDGF-DD by pharmacological inhibitors of ERK phosphorylation and by a small interfering RNA to Kruppel-like factor-4 highlight the role of these two pathways in this process. PDGF-DD failed to repress SM alpha-actin and SM myosin heavy chain in mouse SMCs lacking a functional PDGF beta-receptor. Importantly, PDGF-DD expression was increased in neointimal lesions in the aortic arch region of apolipoprotein C-deficient (ApoE(-/-)) mice. Furthermore, human endothelial cells exposed to an atherosclerosis-prone flow pattern, as in vascular regions susceptible to the development of atherosclerosis, exhibited a significant increase in PDGF-DD expression. These findings demonstrate a novel activity for PDGF-DD in SMC biology and highlight the potential contribution of this molecule to SMC phenotypic modulation in the setting of disturbed blood flow.

  13. IQ in childhood and atherosclerosis in middle-age: 40 Year follow-up of the Newcastle Thousand Families Cohort Study.

    PubMed

    Roberts, Beverly A; Batty, G David; Gale, Catharine R; Deary, Ian J; Parker, Louise; Pearce, Mark S

    2013-12-01

    Carotid intima-media thickness (IMT) is a known precursor to coronary heart disease (CHD) and other relevant health outcomes such as stroke and cognitive impairment. In addition, higher childhood intelligence has been associated with lower risk of coronary heart disease events in later life, although the mechanisms of effect are unclear. We therefore examined the association between childhood intelligence and atherosclerosis using carotid IMT as a marker of the atherosclerotic process. Participants were 412 members of the Newcastle Thousand Families Study, a prospective cohort study of all 1142 births in the city of Newcastle in May and June 1947, who took an IQ test and English and arithmetic tests at age 11 years. Study members participated in a medical examination and lifestyle assessment at age 49-51 years during which IMT was measured using ultrasound techniques. Individuals with higher childhood IQ score had a lower mean IMT in middle-age. A standard deviation higher score in childhood overall IQ was associated with a 0.053 mm (95% CI -0.102, -0.004) lower IMT in men and a 0.039 mm (95% CI -0.080, -0.002) lower IMT in women. Similar levels of association were found for the English and arithmetic tests. After adjustment for a range of covariates including education, the size of effect was undiminished in men but increased in women. In the present study, higher childhood IQ scores were associated with a lower degree of atherosclerosis by middle-age. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Postural changes may influence popliteal atherosclerosis by modifying local circumferential wall tension.

    PubMed

    Gemignani, Tiago; Matos-Souza, José R; Coelho, Otávio R; Franchini, Kleber G; Nadruz, Wilson

    2008-11-01

    Atherosclerosis of peripheral arteries typically affects vessels of the lower limbs, suggesting that local hemodynamic stimuli play a role in this process. Our study evaluated the effects of body postural changes on carotid and popliteal blood pressure, circumferential wall tension (CWT) and arterial strain, and investigated the relationship between such hemodynamic parameters and intima-media thickness (IMT) of these arteries. One hundred seventeen nondiabetic, nonhypertensive, nonsmoker subjects (48 men and 69 women) were enrolled and had their blood pressure measured in the arm and calf in supine and orthostatic positions. Echo-doppler analysis evaluated the common carotid and popliteal arteries after blood pressure measurements, while CWT was calculated according to Laplace's law. The results showed that changing from supine to orthostatic posture increased blood pressure and CWT in popliteal but not in carotid arteries. Partial correlation analysis adjusted for age and body mass index revealed no major relationship between IMT of the studied vessels and local blood pressure or arterial strain. Conversely, supine and orthostatic CWT exhibited comparable correlation coefficients with carotid IMT, while orthostatic CWT displayed a stronger relationship with popliteal IMT than with supine CWT. These results were confirmed by multiple linear regression analysis that included age, sex, body mass index, lipid fractions and glucose as independent variables. Overall, our results indicate that orthostatic CWT is a stronger hemodynamic predictor of popliteal IMT than supine CWT, suggesting that erectile posture may be a potential risk factor for popliteal atherosclerosis because it increases the local hemodynamic burden. (Hypertens Res 2008; 31: 2059-2064).

  15. Genetic architecture of atherosclerosis dissected by QTL analyses in three F2 intercrosses of apolipoprotein E-null mice on C57BL6/J, DBA/2J and 129S6/SvEvTac backgrounds

    PubMed Central

    Makhanova, Natalia; Morgan, Andrew P.; Kayashima, Yukako; Makhanov, Andrei; Hiller, Sylvia; Zhilicheva, Svetlana; Xu, Longquan; Pardo-Manuel de Villena, Fernando; Maeda, Nobuyo

    2017-01-01

    Quantitative trait locus (QTL) analyses of intercross populations between widely used mouse inbred strains provide a powerful approach for uncovering genetic factors that influence susceptibility to atherosclerosis. Epistatic interactions are common in complex phenotypes and depend on genetic backgrounds. To dissect genetic architecture of atherosclerosis, we analyzed F2 progeny from a cross between apolipoprotein E-null mice on DBA/2J (DBA-apoE) and C57BL/6J (B6-apoE) genetic backgrounds and compared the results with those from two previous F2 crosses of apolipoprotein E-null mice on 129S6/SvEvTac (129-apoE) and DBA-apoE backgrounds, and B6-apoE and 129-apoE backgrounds. In these round-robin crosses, in which each parental strain was crossed with two others, large-effect QTLs are expected to be detectable at least in two crosses. On the other hand, observation of QTLs in one cross only may indicate epistasis and/or absence of statistical power. For atherosclerosis at the aortic arch, Aath4 on chromosome (Chr)2:66 cM follows the first pattern, with significant QTL peaks in (DBAx129)F2 and (B6xDBA)F2 mice but not in (B6x129)F2 mice. We conclude that genetic variants unique to DBA/2J at Aath4 confer susceptibility to atherosclerosis at the aortic arch. A similar pattern was observed for Aath5 on chr10:35 cM, verifying that the variants unique to DBA/2J at this locus protect against arch plaque development. However, multiple loci, including Aath1 (Chr1:49 cM), and Aath2 (Chr1:70 cM) follow the second type of pattern, showing significant peaks in only one of the three crosses (B6-apoE x 129-apoE). As for atherosclerosis at aortic root, the majority of QTLs, including Ath29 (Chr9:33 cM), Ath44 (Chr1:68 cM) and Ath45 (Chr2:83 cM), was also inconsistent, being significant in only one of the three crosses. Only the QTL on Chr7:37 cM was consistently suggestive in two of the three crosses. Thus QTL analysis of round-robin crosses revealed the genetic architecture of atherosclerosis. PMID:28837567

  16. Advanced atherosclerosis is associated with increased medial degeneration in sporadic ascending aortic aneurysms.

    PubMed

    Albini, Paul T; Segura, Ana Maria; Liu, Guanghui; Minard, Charles G; Coselli, Joseph S; Milewicz, Dianna M; Shen, Ying H; LeMaire, Scott A

    2014-02-01

    The pathogenesis of non-familial, sporadic ascending aortic aneurysms (SAAA) is poorly understood, and the relationship between ascending aortic atherosclerosis and medial degeneration is unclear. We evaluated the prevalence and severity of aortic atherosclerosis and its association with medial degeneration in SAAA. Atherosclerosis was characterized in ascending aortic tissues collected from 68 SAAA patients (mean age, 62.9 ± 12.0 years) and 15 controls (mean age, 56.6 ± 11.4 years [P = 0.07]) by using a modified American Heart Association classification system. Upon histologic examination, 97% of SAAA patients and 73% of controls showed atherosclerotic changes. Most SAAA samples had intermediate (types 2 and 3, 35%) or advanced atherosclerosis (types ≥ 4; 40%), whereas most control samples showed minimal atherosclerosis (none or type 1, 80%; P < 0.001 after adjusting for age). In a separate analysis, we examined the total incidence and grade distribution of medial degenerative changes among SAAA samples according to atherosclerosis grade. Advanced atherosclerosis was associated with higher grades of smooth muscle cell depletion (P < 0.001), elastic fiber depletion (P = 0.02), elastic fiber fragmentation (P < 0.001), and mucopolysaccharide accumulation (P = 0.04). Aortic diameter was larger in SAAA patients with advanced atherosclerosis than in patients with minimal (P = 0.04) or intermediate atherosclerosis (P = 0.04). Immunostaining showed marked CD3+ T-cell and CD68+ macrophage infiltration, MMP-2 and MMP-9 production, and cryopyrin expression in the medial layer adjacent to atherosclerotic plaque. SAAA tissues exhibited advanced atherosclerosis that was associated with severe medial degeneration and increased aortic diameter. Our findings suggest a role for atherosclerosis in the progression of sporadic ascending aortic aneurysms. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Apolipoprotein-containing lipoprotein subclasses and subclinical atherosclerosis in systemic lupus erythematosus.

    PubMed

    Kiani, Adnan N; Fang, Hong; Akhter, Ehtisham; Quiroga, Carmen; Simpson, Nancy; Alaupovic, Petar; Magder, Laurence S; Petri, Michelle

    2015-03-01

    Traditional classification of hyperlipidemia using high-density lipoprotein, low-density lipoprotein (LDL), and very low-density lipoprotein does not provide information on lipoprotein function. Apolipoproteins (Apos), which are protein components of plasma lipoproteins (including A, B, C, D, E) with their different composition, metabolic, and atherogenic properties, provide insight on lipoprotein functioning. In particular, the Apo B/A-I ratio is associated with atherogenic LDL and development of cardiovascular disease. We explored the baseline association between these nontraditional risk factors with subclinical measures of atherosclerosis (coronary artery calcification [CAC] and carotid intima-media thickness [IMT]) in systemic lupus erythematosus (SLE). A total of 58 SLE patients (97% women, 58% white, 40% African American, and 2% other, mean ± SD age 44 ± 11 years) had measurement of Apo and lipoproteins by immunoturbidimetric procedures, electroimmunoassays, and immunoprecipitation. CAC was measured by helical computed tomography and carotid IMT by carotid duplex. This study was based on the baseline assessment of subclinical atherosclerosis in the Lupus Atherosclerosis Prevention Study. The measurement of the lipoproteins was made on sera collected at the same time. There was no association between cardioprotective Apos (Apo A-I, LpA-I, LpA-I:A-II) and CAC (P < 0.15, P < 0.41, and P < 0.39, respectively) or carotid IMT (P < 0.97, P < 0.53, and P < 0.76, respectively). CAC and carotid IMT did not associate with atherogenic Apos either, including LpB:E+LpB:C:E, Apo B, LpB, LpB:C, Apo C-III, Apo C-III-HS, Apo C-III-HP, Apo C-III-R, LpA-II:B:C:D:E, and Apo B/Apo A-I. Measures of disease activity, including physician's global assessment and Systemic Lupus Erythematosus Disease Activity Index, were not associated with CAC or carotid IMT. Neither cardioprotective nor atherogenic lipoproteins were associated with measures of subclinical atherosclerosis in this series of SLE patients. Further studies with a larger sample size are warranted to confirm our findings.

  18. Possible roles of platelet-derived microparticles in atherosclerosis.

    PubMed

    Wang, Zhi-Ting; Wang, Zi; Hu, Yan-Wei

    2016-05-01

    Platelets and platelet-derived microparticles (PMPs) play important roles in cardiovascular diseases, especially atherosclerosis. Continued research has revealed that PMPs have numerous functions in atherosclerosis, not only in thrombosis formation, but also by induction of inflammation. PMPs also induce formation of foam cells. Recent evidence strongly indicates a significant role of PMPs in atherosclerosis. Here, current research on the function of PMPs in atherosclerosis is reviewed. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Impaired SIRT1 promotes the migration of vascular smooth muscle cell-derived foam cells.

    PubMed

    Zhang, Ming-Jie; Zhou, Yi; Chen, Lei; Wang, Xu; Pi, Yan; Long, Chun-Yan; Sun, Meng-Jiao; Chen, Xue; Gao, Chang-Yue; Li, Jing-Cheng; Zhang, Li-Li

    2016-07-01

    The formation of fat-laden foam cells, contributing to the fatty streaks of the plaques of atheroma, is the critical early process in atherosclerosis. The previous study demonstrated that vascular smooth muscle cells (VSMCs) contain a much larger burden of the excess cholesterol in comparison with monocyte-derived macrophages in human coronary atherosclerosis, as the main origin of foam cells. It is noteworthy that VSMC-derived foam cells are deposited in subintima but not media, where VSMCs normally deposit in. Therefore, migration from media to intima is an indispensable step for a VSMC to accrue neutral lipids and form foam cell. Whether this migration occurs paralleled with or prior to the formation of foam cell is still unclear. Herein, the present study was designed to test the VSMC migratory capability in the process of foam cell formation induced by oxidized low-density lipoprotein (oxLDL). In conclusion, we provide evidence that oxLDL induces the VSMC-derived foam cells formation with increased migration ability and MMP-9 expression, which were partly attributed to the impaired SIRT1 and enhanced nuclear factor-kappa B (NF-κB) activity. As activation of transient receptor potential vanilloid type 1 (TRPV1) has been reported to have anti-atherosclerotic effects, we investigated its role in oxLDL-treated VSMC migration. It is found that activating TRPV1 by capsaicin inhibits VSMC foam cell formation and the accompanied migration through rescuing the SIRT1 and suppressing NF-κB signaling. The present study provides evidence that SIRT1 may be a promising intervention target of atherosclerosis, and raises the prospect of TRPV1 in prevention and treatment of atherosclerosis.

  20. Platelet adhesion via glycoprotein IIb integrin is critical for atheroprogression and focal cerebral ischemia: an in vivo study in mice lacking glycoprotein IIb.

    PubMed

    Massberg, Steffen; Schürzinger, Katrin; Lorenz, Michael; Konrad, Ildiko; Schulz, Christian; Plesnila, Nikolaus; Kennerknecht, Elisabeth; Rudelius, Martina; Sauer, Susanne; Braun, Siegmund; Kremmer, Elisabeth; Emambokus, Nikla R; Frampton, Jon; Gawaz, Meinrad

    2005-08-23

    The platelet glycoprotein (GP) IIb/IIIa integrin binds to fibrinogen and thereby mediates platelet aggregation. Here, we addressed the role of GP IIb for platelet adhesion and determined the relevance of platelet GP IIb for the processes of atherosclerosis and cerebral ischemia-reperfusion (I/R) injury. GP IIb(-/-) mice were generated and bred with ApoE(-/-) animals to create GP IIb(-/-)ApoE(-/-) mice. Platelet adhesion to the mechanically injured or atherosclerotic vessel wall was monitored by in vivo video fluorescence microscopy. In the presence of GP IIb, vascular injury and early atherosclerosis induced platelet adhesion in the carotid artery (CA). In contrast, platelet adhesion was significantly reduced in the absence of GP IIb integrin (P<0.05). To address the contribution of platelet GP IIb to atheroprogression, we determined atherosclerotic lesion formation in the CA and aortic arch (AA) of GP IIb(+/+)ApoE(-/-) or GP IIb(-/-)ApoE(-/-) mice. Interestingly, the absence of GP IIb attenuated lesion formation in CA and AA, indicating that platelets, via GP IIb, contribute substantially to atherosclerosis. Next, we assessed the implication of GP IIb for cerebral I/R injury. We observed that after occlusion of the middle cerebral artery, the cerebral infarct size was drastically reduced in mice lacking GP IIb compared with wild-types. These findings show for the first time in vivo that GP IIb not only mediates platelet aggregation but also triggers platelet adhesion to exposed extracellular matrices and dysfunctional endothelial cells. In a process strictly involving GP IIb, platelets, which are among the first blood cells to arrive at the scene of endothelial dysfunction, contribute essentially to atherosclerosis and cerebral I/R injury.

  1. Cerebrovascular Accident Incidence in the NASA Astronaut Population

    NASA Technical Reports Server (NTRS)

    LaPelusa, Michael B.; Charvat, Jacqueline M.; Lee, Lesley R.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    The development of atherosclerosis is strongly associated with an increased risk for cerebrovascular accidents (CVA), including stroke and transient ischemic attacks (TIA). Certain unique occupational exposures that individuals in the NASA astronaut corps face, specifically high-performance aircraft training, SCUBA training, and spaceflight, are hypothesized to cause changes to the cardiovascular system. These changes, which include (but are not limited to) oxidative damage as a result of radiation exposure and circadian rhythm disturbance, increased arterial stiffness, and increased carotid-intima-media thickness (CIMT), may contribute to the development of atherosclerosis and subsequent CVA. The purpose of this study was to review cases of CVA in the NASA astronaut corps and describe the comorbidities and occupational exposures associated with CVA.

  2. Dietary Cocoa Powder Improves Hyperlipidemia and Reduces Atherosclerosis in apoE Deficient Mice through the Inhibition of Hepatic Endoplasmic Reticulum Stress.

    PubMed

    Guan, Hua; Lin, Yan; Bai, Liang; An, Yingfeng; Shang, Jianan; Wang, Zhao; Zhao, Sihai; Fan, Jianglin; Liu, Enqi

    2016-01-01

    Cocoa powder is rich in flavonoids, which have many beneficial effects on human health, including antioxidative and anti-inflammatory effects. The aim of our study was to investigate whether the intake of cocoa powder has any influence on hyperlipidemia and atherosclerosis and examine the underlying molecular mechanisms. We fed apoE knockout mice a Western diet supplemented with either 0.2% (low group) or 2% (high group) cocoa powder for 12 weeks. The groups fed dietary cocoa powder showed a significant reduction in both plasma cholesterol levels and aortic atherosclerosis compared to the control group. Analysis of mRNA profiling of aortic atherosclerotic lesions revealed that the expression of several genes related to apoptosis, lipid metabolism, and inflammation was significantly reduced, while the antiapoptotic gene Bcl2 was significantly increased in the cocoa powder group compared to the control. RT-PCR analysis along with Western blotting revealed that a diet containing cocoa powder inhibited the expression of hepatic endoplasmic reticulum stress. These data suggest that cocoa powder intake improves hyperlipidemia and atherosclerosis, and such beneficial effects are possibly mediated through the suppression of hepatic endoplasmic reticulum stress.

  3. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    PubMed Central

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  4. [Values of computed tomography angiogram in non-cardiac surgery planning and cardiac risk assessment of coronary atherosclerosis during perioperative period].

    PubMed

    Chang, Rui-ping; Ju, Hai-yue; Zhang, Xing-hua; Wu, Jian; Zhang, Fan; Mi, Wei-dong; Cao, Xiu-tang; Gao, Chang-qing; Yang, Li

    2013-02-19

    To explore the values of detecting coronary atherosclerosis by computed tomography angiogram (CTA) on non-cardiac surgery planning and cardiac risk assessment of coronary atherosclerosis during perioperative period. A total of 89 patients with suspected coronary heart disease (CHD) scheduled for non-cardiac surgery underwent coronary CTA to evaluate luminal stenosis and calculate calcification score. There were 56 males and 33 females with a mean age of 65.1 years. Operative sites included chests (n = 29), abdomens and pelvis (n = 26), large vessels (n = 3), bones and joints (n = 19) and other regions (n = 12). Reasons of abandoned or postponed surgery were documented to analyze the influence of CTA results on surgery planning. Cardiac events were recorded to assess the correlation with coronary atherosclerosis. Among them, 75 patients (84.27%) were diagnosed as atherosclerosis while 10 patients (11.24%) were negative; 2 patients had coronary artery bypass and another 2 had stent implantation. According to the results of CTA, 12 operations (13.48%) were canceled and 8 (8.98%) postponed after interventions. Severe stenosis of coronary lumen had significant effects on surgery planning (P = 0.003) while calcification score did not. In patients undergoing surgery as scheduled or after intervention, 1 had atrial fibrillation at post-operation. For the patients with suspected CHD scheduled for non-cardiac surgery, severity of coronary stenosis may greatly influence surgery planning. Preoperative coronary CTA may decrease the incidence of cardiac events during perioperative period.

  5. Synergistic effect of atorvastatin and Cyanidin-3-glucoside on angiotensin II-induced inflammation in vascular smooth muscle cells.

    PubMed

    Pantan, Rungusa; Tocharus, Jiraporn; Suksamrarn, Apichart; Tocharus, Chainarong

    2016-03-15

    Statins have often been used in atherosclerosis treatment because of its pleiotropic effects on inflammation. However, some adverse effects of high doses of statin show reverse effects after withdrawal. Cyanidin-3-glucoside (C3G) is a powerful anti-inflammation and antioxidant that has been of interest for use in combination with low doses of statin, which may be alternative treatment for atherosclerosis. The objective is to investigate the synergistic effect of atorvastatin and C3G in angiotensin II (Ang II)-induced inflammation in vascular smooth muscle cells. Human aortic smooth muscle cells (HASMCs) were exposed to Ang II with or without atorvastatin and C3G alone, or in combination. The results revealed that the combination of atorvastatin and C3G produces synergism against inflammation and oxidative stress. The mechanism of the combination of atorvastatin and C3G suppressed the translocation of the p65 subunit of NF-κB from cytosol to nucleus, and attenuated the expression of proteins including inducible nitric oxide synthase, intracellular adhesion molecule 1(ICAM-1), and vascular cell adhesion molecule 1(VCAM-1), in addition to nitric oxide (NO) production. Moreover, C3G exerts the antioxidative properties of atorvastatin through down-regulating NOX1 and promoting the activity of the Nrf2(-)ARE signaling pathway and downstream proteins including heme oxygenase (HO-1), NAD(P)H:quinoneoxidoreductase 1 (NQO-1), and glutamate-cysteine ligase catalytic subunit (γ-GCLC), besides increasing the activity of superoxide dismutase (SOD) enzymes. Taken together, these results suggest that a combination of low dose statins and C3G might serve as a potential regulator of the atherosclerosis process which is mediated by attenuating oxidative stress, thereby inhibiting NF-κB and activating Nrf2 signaling pathways induced by Ang II. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Factors Significantly Associated With the Increased Prevalence of Carotid Atherosclerosis in a Northeast Chinese Middle-aged and Elderly Population: A Cross-sectional Study.

    PubMed

    Pan, Xi-Feng; Lai, Ya-Xin; Gu, Jian-Qiu; Wang, Hao-Yu; Liu, Ai-Hua; Shan, Zhong-Yan

    2016-04-01

    Carotid atherosclerosis is associated with many serious cardiovascular diseases; hence, it is necessary to identify factors related to its occurrence in order to develop preventive and therapeutic strategies. This study was conducted to identify risk factors associated with carotid atherosclerosis among the population residing in Northeast China.This epidemiological survey was conducted in a representative group of relatively healthy community residents. All participants answered questions about their medical histories and underwent physical examination, blood biochemical analysis, and ultrasonography examinations of their necks and abdomens. The prevalence rates of carotid atherosclerosis under different factors and conditions were then analyzed.The results of this study showed that age, gender, and diabetes significantly affected the prevalence of carotid atherosclerosis in this Northeast Chinese population. In addition, gender-based subgroup analysis revealed additional factors correlated with the prevalence of carotid atherosclerosis in men or women, although their correlations were not significant in the overall population. While high serum TC and LDL-C levels were risk factors for carotid atherosclerosis in men, it showed no clear correlation with the prevalence of carotid atherosclerosis in women. In contrast, the prevalence of carotid atherosclerosis in female participants with high serum TG level, hypertension, obesity and nonalcoholic fatty liver disease were higher than that of the control population, a trend not observed in male participants.Older age, male sex, and diabetes were independently associated with increased risk of carotid atherosclerosis in Northeast China. These findings could lead to improved screening for carotid atherosclerosis for better disease management.

  7. Dynamics of Receptor-Mediated Nanoparticle Internalization into Endothelial Cells

    PubMed Central

    Gonzalez-Rodriguez, David; Barakat, Abdul I.

    2015-01-01

    Nanoparticles offer a promising medical tool for targeted drug delivery, for example to treat inflamed endothelial cells during the development of atherosclerosis. To inform the design of such therapeutic strategies, we develop a computational model of nanoparticle internalization into endothelial cells, where internalization is driven by receptor-ligand binding and limited by the deformation of the cell membrane and cytoplasm. We specifically consider the case of nanoparticles targeted against ICAM-1 receptors, of relevance for treating atherosclerosis. The model computes the kinetics of the internalization process, the dynamics of binding, and the distribution of stresses exerted between the nanoparticle and the cell membrane. The model predicts the existence of an optimal nanoparticle size for fastest internalization, consistent with experimental observations, as well as the role of bond characteristics, local cell mechanical properties, and external forces in the nanoparticle internalization process. PMID:25901833

  8. Imaging of coronary atherosclerosis and identification of the vulnerable plaque

    PubMed Central

    de Feyter, P.J.; Serruys, P. W.; Nieman, K.; Mollet, N.; Cademartiri, F.; van Geuns, R. J.; Slager, C.; van der Steen, A.F.W.; Krams, R.; Schaar, J.A.; Wielopolski, P.; Pattynama, P.M.T.; Arampatzis, A.; van der Lugt, A.; Regar, E.; Ligthart, J.; Smits, P.

    2003-01-01

    Identification of the vulnerable plaque responsible for the occurrence of acute coronary syndromes and acute coronary death is a prerequisite for the stabilisation of this vulnerable plaque. Comprehensive coronary atherosclerosis imaging in clinical practice should involve visualisation of the entire coronary artery tree and characterisation of the plaque, including the three-dimensional morphology of the plaque, encroachment of the plaque on the vessel lumen, the major tissue components of the plaque, remodelling of the vessel and presence of inflammation. Obviously, no single diagnostic modality is available that provides such comprehensive imaging and unfortunately no diagnostic tool is available that unequivocally identifies the vulnerable plaque. The objective of this article is to discuss experience with currently available diagnostic modalities for coronary atherosclerosis imaging. In addition, a number of evolving techniques will be briefly discussed. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7 PMID:25696244

  9. Applications and Limitations of Mouse Models for Understanding Human Atherosclerosis

    PubMed Central

    von Scheidt, Moritz; Zhao, Yuqi; Kurt, Zeyneb; Pan, Calvin; Zeng, Lingyao; Yang, Xia; Schunkert, Heribert; Lusis, Aldons J.

    2017-01-01

    Most of the biological understanding of mechanisms underlying coronary artery disease (CAD) derives from studies of mouse models. The identification of multiple CAD loci and strong candidate genes in large human genome-wide association studies (GWAS) presented an opportunity to examine the relevance of mouse models for the human disease. We comprehensively reviewed the mouse literature, including 827 literature-derived genes, and compared it to human data. First, we observed striking concordance of risk factors for atherosclerosis in mice and humans. Second, there was highly significant overlap of mouse genes with human genes identified by GWAS. In particular, of the 46 genes with strong association signals in CAD-GWAS that were studied in mouse models all but one exhibited consistent effects on atherosclerosis-related phenotypes. Third, we compared 178 CAD-associated pathways derived from human GWAS with 263 from mouse studies and observed that over 50% were consistent between both species. PMID:27916529

  10. Defining the Relationship Between Biomarkers of Oxidation and Inflammatory Stress and the Risk for Atherosclerosis in Astronauts During and After Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Lee, Stuart M. C.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis.

  11. Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models

    PubMed Central

    2017-01-01

    Chemokine-induced leukocyte migration into the vessel wall is an early pathological event in the progression of atherosclerosis, the underlying cause of myocardial infarction. The immune-inflammatory response, mediated by both the innate and adaptive immune cells, is involved in the initiation, recruitment, and resolution phases of cardiovascular disease progression. Activation of leukocytes via inflammatory mediators such as chemokines, cytokines, and adhesion molecules is instrumental in these processes. In this review, we highlight leukocyte activation with the main focus being on the mechanisms of chemokine-mediated recruitment in atherosclerosis and the response postmyocardial infarction with key examples from experimental models of cardiovascular inflammation. PMID:28465628

  12. Leukocyte Trafficking in Cardiovascular Disease: Insights from Experimental Models.

    PubMed

    Jones, Daniel P; True, Harry D; Patel, Jyoti

    2017-01-01

    Chemokine-induced leukocyte migration into the vessel wall is an early pathological event in the progression of atherosclerosis, the underlying cause of myocardial infarction. The immune-inflammatory response, mediated by both the innate and adaptive immune cells, is involved in the initiation, recruitment, and resolution phases of cardiovascular disease progression. Activation of leukocytes via inflammatory mediators such as chemokines, cytokines, and adhesion molecules is instrumental in these processes. In this review, we highlight leukocyte activation with the main focus being on the mechanisms of chemokine-mediated recruitment in atherosclerosis and the response postmyocardial infarction with key examples from experimental models of cardiovascular inflammation.

  13. BSN723T Prevents Atherosclerosis and Weight Gain in ApoE Knockout Mice Fed a Western Diet

    PubMed Central

    Williams, Jarrod; Ensor, Charles; Gardner, Scott; Smith, Rebecca; Lodder, Robert

    2016-01-01

    Objective This study tests the hypothesis that BSN723T can prevent the development of hyperlipidemia and atherosclerosis in ApoE-/- knockout mice fed a Western (high fat, high cholesterol, and high sucrose) diet. BSN723T is a combination drug therapy consisting of D-tagatose and dihydromyricetin (BSN723). Background D-tagatose has an antihyperglycemic effect in animal and human studies and shows promise as a treatment for type 2 diabetes and obesity. Many claims regarding BSN723's pharmacological activities have been made including anti-cancer, anti-diabetic, anti-hypertensive, anti-inflammatory, and anti-atherosclerotic effects. To our knowledge this is the first study that combines D-tagatose and BSN723 for the treatment of hyperlipidemia and the prevention of atherosclerosis. Methods ApoE-deficient mice were randomized into five groups with equivalent mean body weights. The mice were given the following diets for 8 weeks: Group 1 - Standard diet; Group 2 - Western diet; Group 3 - Western diet formulated with D-tagatose; Group 4 - Western diet formulated with BSN723; Group 5 - Western diet formulated with BSN723T. Mice were measured for weight gain, tissue and organ weights, total serum cholesterol and triglycerides and formation of atherosclerosis. Results The addition of D-tagatose, either alone or in combination with BSN723, prevented the increase in adipose tissue and weight gain brought on by the Western diet. Both D-tagatose and BSN723 alone reduced total cholesterol and the formation of atherosclerosis in the aorta compared to mice on the Western diet. Addition of BSN723 to D-tagatose (BSN723T) did not increase efficacy in prevention of increases in cholesterol or atherosclerosis compared to D-tagatose alone. Conclusion Addition of either D-tagatose or BSN723 alone to a Western diet prevented weight gain, increases in total serum cholesterol and triglycerides, and the formation of atherosclerosis. However, there was no additive or synergistic effect on the measured parameters with the combination BSN723T treatment. PMID:27683620

  14. Effect of Angiotensin II Type I Receptor Blockade with Valsartan on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo (EFFERVESCENT).

    PubMed

    Ramadan, Ronnie; Dhawan, Saurabh S; Binongo, José Nilo G; Alkhoder, Ayman; Jones, Dean P; Oshinski, John N; Quyyumi, Arshed A

    2016-04-01

    Progression of atherosclerosis is associated with a greater risk for adverse outcomes. Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis. We aimed to investigate the effects of angiotensin II type-1 receptor blockade with Valsartan on carotid wall atherosclerosis, with the hypothesis that Valsartan will reduce progression of atherosclerosis. Subjects (n = 120) with carotid intima-media thickness >0.65 mm by ultrasound were randomized (2:1) in a double-blind manner to receive either Valsartan or placebo for 2 years. Bilateral T2-weighted black-blood carotid magnetic resonance imaging was performed at baseline, 12 and 24 months. Changes in the carotid bulb vessel wall area and wall thickness were primary endpoints. Secondary endpoints included changes in carotid plaque thickness, plasma levels of aminothiols, C-reactive protein, fibrinogen, and endothelium-dependent and -independent vascular function. Over 2 years, the carotid bulb vessel wall area decreased with Valsartan (-6.7, 95% CI [-11.6, -1.9] mm(2)) but not with placebo (3.4, 95% CI [-2.8, 9.6] mm(2)), P = .01 between groups. Similarly, mean wall thickness decreased with Valsartan (-0.18, 95% CI [-0.30, -0.06] mm), but not with placebo (0.08, 95% CI [-0.07, 0.23] mm), P = .009 between groups. Furthermore, plaque thickness decreased with Valsartan (-0.35, 95% CI [-0.63, -0.08] mm) but was unchanged with placebo (+0.28, 95% CI [-0.11, 0.69] mm), P = .01 between groups. These findings were unaffected by statin therapy or changes in blood pressure. Notably, there were significant improvements in the aminothiol cysteineglutathione disulfide, and trends to improvements in fibrinogen levels and endothelium-independent vascular function. In subjects with carotid wall thickening, angiotensin II type-1 receptor blockade was associated with regression in carotid atherosclerosis. Whether these effects translate into improved outcomes in subjects with subclinical atherosclerosis warrants investigation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effect of Angiotensin II Type I Receptor Blockade with Valsartan on Carotid Artery Atherosclerosis: A Double Blind Randomized Clinical Trial Comparing Valsartan and Placebo (EFFERVESCENT)

    PubMed Central

    Ramadan, Ronnie; Dhawan, Saurabh S.; Binongo, José Nilo G.; Alkhoder, Ayman; Jones, Dean P.; Oshinski, John N.; Quyyumi, Arshed A.

    2016-01-01

    Background Progression of atherosclerosis is associated with a greater risk for adverse outcomes. Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis. We aimed to investigate the effects of Angiotensin II type-1 receptor (AT1R) blockade with Valsartan on carotid wall atherosclerosis, with the hypothesis that Valsartan will reduce progression of atherosclerosis. Methods Subjects (n= 120) with carotid intima-media thickness >0.65mm by ultrasound were randomized (2:1) in a double-blind manner to receive either Valsartan or placebo for 2 years. Bilateral T2-weighted black-blood carotid magnetic resonance imaging was performed at baseline, 12 and 24 months. Changes in the carotid bulb vessel wall area (VWA) and wall thickness (WT) were primary endpoints. Secondary endpoints included changes in carotid plaque thickness, plasma levels of aminothiols, C-reactive protein, fibrinogen, and endothelium-dependent and -independent vascular function. Results Over 2 years, the carotid bulb VWA decreased with Valsartan (−6.7, 95% CI: (−11.6,−1.9) mm2) but not with placebo (3.4, 95% CI: (−2.8,9.6) mm2)), p=0.01 between groups. Similarly, mean WT decreased with Valsartan (−0.18, 95% CI: (−0.30,−0.06) mm), but not with placebo (0.08, 95% CI: (−0.07,0.23) mm),), p=0.009 between groups. Furthermore, plaque thickness decreased with Valsartan (−0.35, 95% CI: (−0.63,−0.08) mm) but was unchanged with placebo (+0.28, 95% CI: (−0.11,0.69) mm), p=0.01 between groups. These findings were unaffected by statin therapy or changes in blood pressure. Notably, there were significant improvements in the aminothiol cysteineglutathione disulfide, and trends to improvements in fibrinogen levels and endothelium–independent vascular function. Conclusions In subjects with carotid wall thickening, AT1R blockade was associated with regression in carotid atherosclerosis. Whether these effects translate into improved outcomes in subjects with subclinical atherosclerosis warrants investigation. PMID:26995372

  16. Crossroads between peripheral atherosclerosis, western-type diet and skeletal muscle pathophysiology: emphasis on apolipoprotein E deficiency and peripheral arterial disease.

    PubMed

    Sfyri, Peggy; Matsakas, Antonios

    2017-07-08

    Atherosclerosis is a chronic inflammatory process that, in the presence of hyperlipidaemia, promotes the formation of atheromatous plaques in large vessels of the cardiovascular system. It also affects peripheral arteries with major implications for a number of other non-vascular tissues such as the skeletal muscle, the liver and the kidney. The aim of this review is to critically discuss and assimilate current knowledge on the impact of peripheral atherosclerosis and its implications on skeletal muscle homeostasis. Accumulating data suggests that manifestations of peripheral atherosclerosis in skeletal muscle originates in a combination of increased i)-oxidative stress, ii)-inflammation, iii)-mitochondrial deficits, iv)-altered myofibre morphology and fibrosis, v)-chronic ischemia followed by impaired oxygen supply, vi)-reduced capillary density, vii)- proteolysis and viii)-apoptosis. These structural, biochemical and pathophysiological alterations impact on skeletal muscle metabolic and physiologic homeostasis and its capacity to generate force, which further affects the individual's quality of life. Particular emphasis is given on two major areas representing basic and applied science respectively: a)-the abundant evidence from a well-recognised atherogenic model; the Apolipoprotein E deficient mouse and the role of a western-type diet and b)-on skeletal myopathy and oxidative stress-induced myofibre damage from human studies on peripheral arterial disease. A significant source of reactive oxygen species production and oxidative stress in cardiovascular disease is the family of NADPH oxidases that contribute to several pathologies. Finally, strategies targeting NADPH oxidases in skeletal muscle in an attempt to attenuate cellular oxidative stress are highlighted, providing a better understanding of the crossroads between peripheral atherosclerosis and skeletal muscle pathophysiology.

  17. The association between local atherosclerosis of the prostatic artery and benign prostatic enlargement in humans: Putative mechanism of chronic ischemia for prostatic enlargement.

    PubMed

    Haga, Nobuhiro; Akaihata, Hidenori; Hata, Junya; Aikawa, Ken; Yanagida, Tomohiko; Matsuoka, Kanako; Koguchi, Tomoyuki; Hoshi, Seiji; Ogawa, Soichiro; Kataoka, Masao; Sato, Yuichi; Ishibashi, Kei; Suzuki, Osamu; Hashimoto, Yuko; Kojima, Yoshiyuki

    2018-05-21

    To investigate the possible pathogenesis of the benign prostatic enlargement (BPE) induced by local atherosclerosis, the association between local atherosclerosis and prostatic enlargement was investigated, and molecular biological analyses were performed using human prostatectomy specimens. A total of 69 consecutive patients who underwent robot-assisted radical prostatectomy (RARP) participated in this prospective study. To evaluate actual local atherosclerosis, prostatic arteries were removed during RARP. Microscopic assessment of local atherosclerosis was classified as one of three degrees of narrowing (minimal, moderate, and severe) according to the degree of obstruction of the inner cavity of the prostatic artery. The expressions of several mediators related to chronic ischemia and cell proliferation of the prostate were investigated by immunohistochemistry. The median age of the present cohort was 68 (range: 55-75) years. Although there was no relationship between local atherosclerosis and lower urinary symptoms evaluated by questionnaires, local atherosclerosis was significantly more severe in patients who had a history of treatment for benign prostatic hyperplasia (P = 0.02). Prostate size was significantly larger in the severe local atherosclerosis group than in the minimal and moderate local atherosclerosis groups (P < 0.001 and P = 0.03, respectively). Thepositive expression rates of hypoxia-inducible factor (HIF)-1α, malondialdehyde (MDA), transforming growth factor (TGF)-β 1 , and basic fibroblast growth factor (bFGF) in the prostate were significantly higher in patients with local atherosclerosis than in patients without local atherosclerosis (all P < 0.01, respectively). In human surgical specimens, there is evidence that local atherosclerosis of the prostatic artery is significantly associated with prostate size. Given the molecular evidence provided in this study, the putative mechanism for this relationship is that chronic ischemia induced upregulation of oxidative stress pathways, leading to BPE. © 2018 Wiley Periodicals, Inc.

  18. Relation between playing position and coronary artery calcium scores in retired National Football League players.

    PubMed

    Basra, Sukhdeep Singh; Pokharel, Yashashwi; Hira, Ravi S; Bandeali, Salman J; Nambi, Vijay; Deswal, Anita; Nasir, Khurram; Martin, Seth S; Vogel, Robert A; Roberts, Arthur J; Ballantyne, Christie M; Virani, Salim S

    2014-12-15

    Retired National Football League (NFL) linemen have an increased prevalence of risk factors for atherosclerosis and have an increased risk of cardiovascular death compared with nonlinemen and the general population. We evaluated whether playing in lineman position is independently associated with an increased risk of the presence and severity of subclinical atherosclerosis. Players were categorized as linemen if they reported playing on the offensive or defensive line during their careers. Subclinical atherosclerosis was assessed using coronary artery calcium (CAC) scores in 931 retired NFL players (310 linemen, 621 nonlinemen). CAC scores were evaluated for absence of subclinical atherosclerosis (CAC = 0), presence of mild subclinical atherosclerosis (CAC 1 to 100), and moderate to severe subclinical atherosclerosis (CAC ≥100). We performed multivariate logistic regression to determine whether the lineman position is independently associated with the presence and severity of subclinical atherosclerosis. Linemen were noted to have a lesser likelihood of absence of subclinical atherosclerosis (CAC = 0, 33.8% vs 41.7%, p = 0.02), a similar likelihood of mild subclinical atherosclerosis (CAC 1 to 100, 33.2% vs 31.8%, p = 0.7), and a greater likelihood of moderate to severe subclinical atherosclerosis (CAC >100, 32.9% vs 26.4%, p = 0.04) compared with nonlinemen. Adjusting for demographic and metabolic covariates, lineman status remained independently associated with mild subclinical atherosclerosis (CAC 1 to 100, odds ratio [OR] 1.41, 95% confidence interval [CI] 1.05 to 2.2, p = 0.04) and moderate to severe subclinical atherosclerosis (CAC ≥100, OR 1.67, 95% CI 1.05 to 2.2). The association was attenuated after adjustment for race (CAC 1 to 100, OR 1.24, 95% CI 0.82 to 1.8; CAC >100, OR 1.59, 95% CI 1.01 to 2.49). In conclusion, lineman status in retired NFL players is associated with presence and severity of subclinical atherosclerosis, which is partly explained by race. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Impact of Gut Microbiota and Diet on the Development of Atherosclerosis in Apoe-/- Mice.

    PubMed

    Lindskog Jonsson, Annika; Caesar, Robert; Akrami, Rozita; Reinhardt, Christoph; Fåk Hållenius, Frida; Borén, Jan; Bäckhed, Fredrik

    2018-06-14

    To investigate the effect of gut microbiota and diet on atherogenesis. Here, we investigated the interaction between the gut microbiota and diet on atherosclerosis by feeding germ-free or conventionally raised Apoe -/- mice chow or Western diet alone or supplemented with choline (which is metabolized by the gut microbiota and host enzymes to trimethylamine N-oxide) for 12 weeks. We observed smaller aortic lesions and lower plasma cholesterol levels in conventionally raised mice compared with germ-free mice on a chow diet; these differences were not observed in mice on a Western diet. Choline supplementation increased plasma trimethylamine N-oxide levels in conventionally raised mice but not in germ-free mice. However, this treatment did not affect the size of aortic lesions or plasma cholesterol levels. Gut microbiota composition was analyzed by sequencing of 16S rRNA genes. As expected, the global community structure and relative abundance of many taxa differed between mice fed chow or a Western diet. Choline supplementation had minor effects on the community structure although the relative abundance of some taxa belonging to Clostridiales was altered. In conclusion, the impact of the gut microbiota on atherosclerosis is dietary dependent and is associated with plasma cholesterol levels. Furthermore, the microbiota was required for trimethylamine N-oxide production from dietary choline, but this process could not be linked to increased atherosclerosis in this model. © 2018 The Authors.

  20. Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation.

    PubMed

    Yan, Dan; He, Yujuan; Dai, Jun; Yang, Lili; Wang, Xiaoyan; Ruan, Qiurong

    2017-06-30

    Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF 165 ) displayed a high capability to alter their phenotype and function into ELCs in vitro Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation. © 2017 The Author(s).

  1. The role of fibroblast growth factor 21 in atherosclerosis.

    PubMed

    Kokkinos, John; Tang, Shudi; Rye, Kerry-Anne; Ong, Kwok Leung

    2017-02-01

    The metabolic properties of the endocrine fibroblast growth factor 21 (FGF21) have been extensively studied in the past decade. Previous studies have demonstrated the lipid-lowering, anti-inflammatory and anti-oxidant properties of FGF21. FGF21 is mainly secreted in the liver and adipose tissue in response to a range of physiological and pathological stimuli. In animal and in vitro studies, FGF21 has been shown to improve lipid profiles and inhibit key processes in the pathogenesis of atherosclerosis. It exerts its effects on the cardiovascular system via adiponectin dependent and independent mechanisms. However, the signalling pathways by which FGF21 exerts its effects on endothelial cells remains unknown and needs to be further investigated. The elevation of circulating FGF21 levels in cardiovascular disease has also raised questions as to whether FGF21 can be used as a biomarker to predict subclinical atherosclerosis and cardiovascular events. Recent findings from population studies must be validated in independent cohorts before FGF21 can be used as a biomarker in the clinical setting. The anti-atherosclerotic effects of FGF21 have been investigated in two recent clinical trials, where treatment with an FGF21 analog significantly improved the cardiometabolic profile in obese patients with type 2 diabetes. This review will evaluate recent advances that suggest there may be a role for FGF21 in atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The role of T and B cells in human atherosclerosis and atherothrombosis

    PubMed Central

    Ammirati, E; Moroni, F; Magnoni, M; Camici, P G

    2015-01-01

    Far from being merely a passive cholesterol accumulation within the arterial wall, the development of atherosclerosis is currently known to imply both inflammation and immune effector mechanisms. Adaptive immunity has been implicated in the process of disease initiation and progression interwined with traditional cardiovascular risk factors. Although the body of knowledge regarding the correlation between atherosclerosis and immunity in humans is growing rapidly, a relevant proportion of it derives from studies carried out in animal models of cardiovascular disease (CVD). However, while the mouse is a well-suited model, the results obtained therein are not fully transferrable to the human setting due to intrinsic genomic and environmental differences. In the present review, we will discuss mainly human findings, obtained either by examination of post-mortem and surgical atherosclerotic material or through the analysis of the immunological profile of peripheral blood cells. In particular, we will discuss the findings supporting a pro-atherogenic role of T cell subsets, such as effector memory T cells or the potential protective function of regulatory T cells. Recent studies suggest that traditional T cell-driven B2 cell responses appear to be atherogenic, while innate B1 cells appear to exert a protective action through the secretion of naturally occurring antibodies. The insights into the immune pathogenesis of atherosclerosis can provide new targets in the quest for novel therapeutic targets to abate CVD morbidity and mortality. PMID:25352024

  3. [Ideas of I.I Mechnikov and contemporary microecology of human intestine].

    PubMed

    Bondarenko, V M; Likhoded, V G

    2008-01-01

    Contemporary state of microecology of human gut was considered in light of ideas of I.I Mechnikov. It was shown that many ideas of our great countryman, which were expressed as far back as in the beginning of previous century, were confirmed in studies conducted in the last decades. It was calculated that total gene pool of microflora present in human organism which was named "microbiom", consists from 400,000 genes that is 12 times higher of human genome size. Such wide spectrum determines also huge functional activity of microorganisms, which participate in regulation of many physiological and immune reactions that provide protection of an organism from diseases, including infectious. Conception about fundamental role of facultative microflora in development of chronic inflammatory diseases of gastrointestinal tract was confirmed; the role of Gram-negative bacteria endotoxin in the development of atherosclerosis was established. Processes of interaction between products of intestinal microflora and pattern-recognizing Toll-like receptors (TLR), particularly TLR4, which recognizes endotoxins (lypopolysaccharides of Gram-negative microflora), were considered. It was shown that loss of TLR4 induced by mutation results in lowering of the risk of atherosclerosis.

  4. The Interaction Between IGF-1, Atherosclerosis and Vascular Aging

    PubMed Central

    Higashi, Yusuke; Quevedo, Henry C.; Tiwari, Summit; Sukhanov, Sergiy; Shai, Shaw-Yung; Anwar, Asif; Delafontaine, Patrice

    2014-01-01

    The process of vascular aging encompasses alterations in the function of endothelial (EC) and vascular smooth muscle cells (VSMCs) via oxidation, inflammation, cell senescence and epigenetic modifications, increasing the probability of atherosclerosis. Aged vessels exhibit decreased endothelial antithrombogenic properties, increased reactive oxygen species (ROS) generation and inflammatory signaling, increased migration of VSMCs to the subintimal space, impaired angiogenesis and increased elastin degradation. The key initiating step in atherogenesis is subendothelial accumulation of apolipoprotein-B containing low density lipoproteins resulting in activation of endothelial cells and recruitment of monocytes. Activated endothelial cells secrete “chemokines” that interact with cognate chemokine receptors on monocytes and promote directional migration. Recruitment of immune cells establishes a pro-inflammatory status, further causing elevated oxidative stress, which in turn triggers a series of events including apoptotic or necrotic death of vascular and non-vascular cells. Increased oxidative stress is also considered to be a key factor in mechanisms of aging-associated changes in tissue integrity and function. Experimental evidence indicates that insulin-like growth factor-1 (IGF-1) exerts anti-oxidant, anti-inflammatory and pro-survival effects on the vasculature, reducing atherosclerotic plaque burden and promoting features of atherosclerotic plaque stability. PMID:24943302

  5. Vagus-brain communication in atherosclerosis-related inflammation: a neuroimmunomodulation perspective of CAD.

    PubMed

    Gidron, Yori; Kupper, Nina; Kwaijtaal, Martijn; Winter, Jobst; Denollet, Johan

    2007-12-01

    The current understanding of the pathophysiology of atherosclerosis leading to coronary artery disease (CAD) emphasizes the role of inflammatory mediators. Given the bidirectional communication between the immune and central nervous systems, an important question is whether the brain can be "informed" about and modulate CAD-related inflammation. A candidate communicator and modulator is the vagus nerve. Until now, the vagus nerve has received attention in cardiology mainly due to its role in the parasympathetic cardiovascular response. However, the vagus nerve can also "inform" the brain about peripheral inflammation since its paraganglia have receptors for interleukin-1. Furthermore, its efferent branch has a local anti-inflammatory effect. These effects have not been considered in research on the vagus nerve in CAD or in vagus nerve stimulation trials in CAD. In addition, various behavioural interventions, including relaxation, may influence CAD prognosis by affecting vagal activity. Based on this converging evidence, we propose a neuroimmunomodulation approach to atherogenesis. In this model, the vagus nerve "informs" the brain about CAD-related cytokines; in turn, activation of the vagus (via vagus nerve stimulation, vagomimetic drugs or relaxation) induces an anti-inflammatory response that can slow down the chronic process of atherogenesis.

  6. Ambulatory versus home versus clinic blood pressure: the association with subclinical cerebrovascular diseases: the Ohasama Study.

    PubMed

    Hara, Azusa; Tanaka, Kazushi; Ohkubo, Takayoshi; Kondo, Takeo; Kikuya, Masahiro; Metoki, Hirohito; Hashimoto, Takanao; Satoh, Michihiro; Inoue, Ryusuke; Asayama, Kei; Obara, Taku; Hirose, Takuo; Izumi, Shin-Ichi; Satoh, Hiroshi; Imai, Yutaka

    2012-01-01

    The usefulness of ambulatory, home, and casual/clinic blood pressure measurements to predict subclinical cerebrovascular diseases (silent cerebrovascular lesions and carotid atherosclerosis) was compared in a general population. Data on ambulatory, home, and casual/clinic blood pressures and brain MRI to detect silent cerebrovascular lesions were obtained in 1007 subjects aged ≥55 years in a general population of Ohasama, Japan. Of the 1007 subjects, 583 underwent evaluation of the extent of carotid atherosclerosis. Twenty-four-hour, daytime, and nighttime ambulatory and home blood pressure levels were closely associated with the risk of silent cerebrovascular lesions and carotid atherosclerosis (all P<0.05). When home and one of the ambulatory blood pressure values were simultaneously included in the same regression model, each of the ambulatory blood pressure values remained a significant predictor of silent cerebrovascular lesions, whereas home blood pressure lost its predictive value. Of the ambulatory blood pressure values, nighttime blood pressure was the strongest predictor of silent cerebrovascular lesions. The home blood pressure value was more closely associated with the risk of carotid atherosclerosis than any of the ambulatory blood pressure values when home and one of the ambulatory blood pressure values were simultaneously included in the same regression model. The casual/clinic blood pressure value had no significant association with the risk of subclinical cerebrovascular diseases. Although the clinical indications for ambulatory blood pressure monitoring and home blood pressure measurements may overlap, the clinical significance of each method for predicting target organ damage may differ for different target organs.

  7. Asymptomatic cervicocerebral atherosclerosis, intracranial vascular resistance and cognition: the AsIA-neuropsychology study.

    PubMed

    López-Olóriz, Jorge; López-Cancio, Elena; Arenillas, Juan F; Hernández, María; Jiménez, Marta; Dorado, Laura; Barrios, Maite; Soriano-Raya, Juan José; Miralbell, Júlia; Cáceres, Cynthia; Forés, Rosa; Pera, Guillem; Dávalos, Antoni; Mataró, Maria

    2013-10-01

    Carotid atherosclerosis has emerged as a relevant contributor to cognitive impairment and dementia whereas the role of intracranial stenosis and vascular resistance in cognition remains unknown. This study aims to assess the association of asymptomatic cervicocerebral atherosclerosis and intracranial vascular resistance with cognitive performance in a large dementia-free population. The Barcelona-AsIA (Asymptomatic Intracranial Atherosclerosis) Neuropsychology Study included 747 Caucasian subjects older than 50 with a moderate-high vascular risk (assessed by REGICOR score) and without history of neither symptomatic vascular disease nor dementia. Extracranial and transcranial color-coded duplex ultrasound examination was performed to assess carotid intima-media thickness (IMT), presence of carotid plaques (ECAD group), intracranial stenosis (ICAD group), and middle cerebral artery pulsatility index (MCA-PI) as a measure of intracranial vascular resistance. Neuropsychological assessment included tests in three cognitive domains: visuospatial skills and speed, verbal memory and verbal fluency. In univariate analyses, carotid IMT, ECAD and MCA-PI were associated with lower performance in almost all cognitive domains, and ICAD was associated with poor performance in some visuospatial and verbal cognitive tests. After adjustment for age, sex, vascular risk score, years of education and depressive symptoms, ECAD remained associated with poor performance in the three cognitive domains and elevated MCA-PI with worse performance in visuospatial skills and speed. Carotid plaques and increased intracranial vascular resistance are independently associated with low cognitive functioning in Caucasian stroke and dementia-free subjects. We failed to find an independent association of intracranial large vessel stenosis with cognitive performance. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Monocytes from HIV+ individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration

    PubMed Central

    MAISA, Anna; HEARPS, Anna C.; ANGELOVICH, Thomas A.; PEREIRA, Candida F.; ZHOU, Jingling; SHI, Margaret D.Y.; PALMER, Clovis S.; MULLER, William A.; CROWE, Suzanne M.; JAWOROWSKI, Anthony

    2016-01-01

    Design HIV+ individuals have an increased risk of atherosclerosis and cardiovascular disease which is independent of antiretroviral therapy and traditional risk factors. Monocytes play a central role in the development of atherosclerosis, and HIV-related chronic inflammation and monocyte activation may contribute to increased atherosclerosis, but the mechanisms are unknown. Methods Using an in vitro model of atherosclerotic plaque formation, we measured the transendothelial migration of purified monocytes from age-matched HIV+ and uninfected donors and examined their differentiation into foam cells. Cholesterol efflux and the expression of cholesterol metabolism genes were also assessed. Results Monocytes from HIV+ individuals showed increased foam cell formation compared to controls (18.9% vs 0% respectively, p=0.004) and serum from virologically suppressed HIV+ individuals potentiated foam cell formation by monocytes from both uninfected and HIV+ donors. Plasma TNF levels were increased in HIV+ vs control donors (5.9 vs 3.5 pg/ml, p=0.02) and foam cell formation was inhibited by blocking antibodies to TNF receptors, suggesting a direct effect on monocyte differentiation to foam cells. Monocytes from virologically suppressed HIV+ donors showed impaired cholesterol efflux and decreased expression of key genes regulating cholesterol metabolism, including the cholesterol transporter ABCA1 (p=0.02). Conclusions Monocytes from HIV+ individuals show impaired cholesterol efflux and are primed for foam cell formation following trans-endothelial migration. Factors present in HIV+ serum, including elevated TNF levels, further enhance foam cell formation. The pro-atherogenic phenotype of monocytes persists in virologically suppressed HIV+ individuals and may contribute mechanistically to increased atherosclerosis in this population. PMID:26244384

  9. Claudication

    MedlinePlus

    ... limbs are damaged, usually as a result of atherosclerosis. Atherosclerosis can develop in any of your arteries, especially those in your heart. When atherosclerosis affects your arms and legs, it's called peripheral ...

  10. Hypercholesterolemia potentiates aortic endothelial response to inhaled diesel exhaust

    PubMed Central

    Maresh, J. Gregory; Campen, Matthew J.; Reed, Matthew D.; Darrow, April L.; Shohet, Ralph V.

    2012-01-01

    Background Inhalation of diesel exhaust induces vascular effects including impaired endothelial function and increased atherosclerosis. Objective To examine the in vivo effects of subchronic diesel exhaust exposure on endothelial cell transcriptional responses in the presence of hypercholesterolemia. Methods ApoE (−/−) and ApoE (+/+) mice inhaled diesel exhaust diluted to particulate matter levels of 300 or 1000 μg/m3 vs. filtered air. After 30 days, endothelial cells were harvested from dispersed aortic cells by fluorescent-activated cell sorting (FACS). Relative mRNA abundance was evaluated by microarray analysis to measure strain-specific transcriptional responses in mice exposed to dilute diesel exhaust vs. filtered air. Results Forty-nine transcripts were significantly dysregulated by >2.8-fold in the endothelium of ApoE (−/−) mice receiving diesel exhaust at 300 or 1000 μg/m3. These included transcripts with roles in plasminogen activation, endothelial permeability, inflammation, genomic stability, and atherosclerosis; similar responses were not observed in ApoE (+/+) mice. Conclusions The potentiation of diesel exhaust-related endothelial gene regulation by hypercholesterolemia helps to explain air pollution-induced vascular effects in animals and humans. The observed regulated transcripts implicate pathways important in the acceleration of atherosclerosis by air pollution. PMID:21222557

  11. Interaction between allergic asthma and atherosclerosis

    PubMed Central

    Liu, Conglin; Zhang, Jingying; Shi, Guo-Ping

    2015-01-01

    Prior studies have established an essential role of mast cells in allergic asthma and atherosclerosis. Mast cell deficiency or inactivation protects mice from allergen-induced airway hyper-responsiveness and diet-induced atherosclerosis, suggesting that mast cells share pathologic activities in both diseases. Allergic asthma and atherosclerosis are inflammatory diseases that contain similar sets of elevated numbers of inflammatory cells in addition to mast cells in the airway and arterial wall, such as macrophages, monocytes, T cells, eosinophils, and smooth muscle cells. Emerging evidence from experimental models and human studies points to a potential interaction between the two seemingly unrelated diseases. Patients or mice with allergic asthma have a high risk of developing atherosclerosis or vice versa, despite the fact that asthma is a Th2-oriented disease, whereas Th1 immunity promotes atherosclerosis. In addition to the preferred Th1/Th2 responses that may differentiate the two diseases, mast cells and many other inflammatory cells also contribute to their pathogenesis by much more than just T cell immunity. Here we summarize the different roles of airway and arterial wall inflammatory cells and vascular cells in asthma and atherosclerosis, and propose an interaction between the two diseases, although limited investigations are available to delineate the molecular and cellular mechanisms by which one disease increases the risk of the other. Results from mouse allergic asthma and atherosclerosis models and from human population studies lead to the hypothesis that patients with atherosclerosis may benefit from anti-asthmatic medications, or that the therapeutic regimens targeting atherosclerosis may also alleviate allergic asthma. PMID:26608212

  12. Intima-Media Thickness in the Carotid and Femoral Arteries for Detection of Arteriosclerosis in Human Immunodeficiency Virus-Positive Individuals.

    PubMed

    Godoi, Emmanuelle Tenório Albuquerque Madruga; Brandt, Carlos Teixeira; Lacerda, Heloisa Ramos; Godoi, Jocelene Tenório Albuquerque Madruga; Oliveira, Dinaldo Cavalcanti de; Costa, Gabriela Farias Araujo Sousa; Santos Junior, Gerson Gomes Dos; Leite, Kaliene Maria Estevão; Godoi, Juannicelle Tenório Albuquerque Madruga; Vasconcelos, Adriana Ferraz de

    2017-01-01

    The prevalence of atherosclerosis is higher in HIV-positive people, who also experience it earlier than the general population. To assess and compare the prevalence of atherosclerosis evaluated by the intima-media thickness of carotid and femoral arteries, and by the ankle-brachial pressure index (ABPI) in HIV patients treated or not treated with protease inhibitors (PIs) and controls. Eighty HIV+ subjects (40 using PIs and 40 not using PIs) and 65 controls were included in the study. Atherosclerosis was diagnosed by (carotid and femoral) ITM measurement and ABPI. Classical risk factors for atherosclerosis and HIV were compared between the groups by statistical tests. A p ≤ 0.05 was considered significant. An IMT > P75 or the presence of plaque was higher in the HIV+ than in the control group (37.5% vs 19%, p = 0.04). Comparative analysis showed a significant difference (p=0.014) in carotid IMT between HIV+ with PIs (0.71 ± 0.28 mm), without PIs 0.63 ± 0.11 mm and, and controls (0.59 ± 0.11 mm). There was no significant difference in femoral IMT between the groups or in ABPI between HIV+ subjects and controls. However, a significant difference (p=0.015) was found between HIV+ patients not treated with PIs (1.17 [1.08 - 1.23]), and controls 1.08 [1.07 - 1.17]). In HIV patients, atherosclerosis is more prevalent and seems to occur earlier with particular characteristics compared with HIV-negative subjects.

  13. Citrullus lanatus 'sentinel' (watermelon) extract reduces atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Poduri, Aruna; Rateri, Debra L; Saha, Shubin K; Saha, Sibu; Daugherty, Alan

    2013-05-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar 'sentinel,' on hypercholesterolemia-induced atherosclerosis in mice. Male low-density lipoprotein receptor-deficient mice at 8 weeks old were given either C. lanatus 'sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water while being fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus 'sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus 'sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake and in urine output between the two groups. C. lanatus 'sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate-/low-density lipoprotein cholesterol. Plasma concentrations of monocyte chemoattractant protein-1 and interferon-gamma were decreased and those of interleukin-10 were increased in mice consuming C. lanatus 'sentinel' extract. Intake of C. lanatus 'sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus 'sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Erythrocyte membrane n-3 fatty acid levels and carotid atherosclerosis in Chinese men and women.

    PubMed

    Dai, Xiao-wei; Zhang, Bo; Wang, Ping; Chen, Chao-gang; Chen, Yu-ming; Su, Yi-xiang

    2014-01-01

    Prospective studies have supported the beneficial effects of n-3 fatty acid consumption on cardiac deaths, but limited data focused on atherosclerosis. We investigated the associations between n-3 fatty acids in erythrocytes and atherosclerosis in middle-aged and older Chinese. 847 subjects (285 men and 562 women), aged 40-65 years, from Guangzhou, China were included in this community-based cross-sectional study between December 2005 and January 2008. The levels of α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in erythrocytes were measured by gas chromatography. Carotid ultrasound examination was conducted to obtain intima-media thickness of the common carotid artery and the carotid bifurcation. Dietary data and other covariates were collected using interviewer-administered questionnaires. After adjustment for age, sex, and other confounders, negative dose-response associations between the contents of individual n-3 polyunsaturated fatty acids in the erythrocyte membrane and the prevalence of carotid artery wall thickening and plaque were observed. A comparison in the highest and lowest tertiles gave odds ratios (95% confidence interval) for thickening in the walls of the common carotid artery of 0.58 (0. 34-0.97; P-trend = 0. 037) for DHA, and 0.39 (0.23-0.67; P-trend < 0.001) for ALA. However, EPA was not significantly associated with carotid atherosclerosis. Similar results were found for thickening at the carotid bifurcation and the occurrence of carotid artery plaque. Higher levels of DHA and ALA in the erythrocyte membrane were significantly associated with a lower burden of subclinical atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Inverse association between hyperthymic affective temperament and coronary atherosclerosis: A coronary computed tomography angiography study.

    PubMed

    Nemcsik, János; Vecsey-Nagy, Milán; Szilveszter, Bálint; Kolossváry, Márton; Karády, Júlia; László, Andrea; Kőrösi, Beáta; Nemcsik-Bencze, Zsófia; Gonda, Xénia; Merkely, Béla; Rihmer, Zoltán; Maurovich-Horvat, Pál

    2017-12-01

    A bidirectional relationship exists between psychiatric disorders and cardiovascular diseases, however less is known with regards to personality traits. Accumulating data suggest that affective temperaments are both associated with psychiatric and somatic diseases. The aim of our study was to evaluate the associations between different affective temperaments and the presence of coronary atherosclerosis. 200 consecutive patients referred to coronary computed tomography angiography (CCTA) due to suspected coronary artery disease (CAD) were included in our study. Medical history and demographic parameters were recorded and all patients completed the Temperament Evaluation of Memphis, Pisa, Paris, and San Diego Autoquestionnaire (TEMPS-A) and the Beck Depression Inventory (BDI). The presence of coronary artery disease was evaluated based on the CCTA images. 39 patients were free of any coronary atherosclerosis (CCTA-) and 161 had coronary atherosclerosis (CCTA+). Hyperthymic affective temperament score was higher in CCTA- subjects as compared to CCTA+ (13.1±3.0 vs 11.5±4.6, p=0.010, respectively). Hyperthymic affective temperament score showed a significant independent, inverse relationship with coronary atherosclerosis (OR: 0.91 CI: 0.82-0.99, p=0.04). Our results suggest that hyperthymic affective temperament is independently associated with the absence of CAD. It requires further research to delineate the mechanism mediating the effect of hyperthymia on better coronary artery health and establishing potential biochemical or behavioral factors, both of which could be exploited for prevention and treatment purposes. But it is plausible, that the evaluation of affective temperaments have importance both in relation with psychiatric and cardiovascular disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Salusin-α attenuates hepatic steatosis and atherosclerosis in high fat diet-fed low density lipoprotein receptor deficient mice.

    PubMed

    Tang, Kun; Wang, Fei; Zeng, Yi; Chen, XueMeng; Xu, XiaoLe

    2018-07-05

    Salusin-α is an endogenous bioactive peptide and likely to prevent atherosclerosis. But its protective effect against atherosclerosis in vivo remains poorly understood. The aim of the present study was to determine the potential effects of salusin-α on atherosclerosis and its associated metabolic disorders in high fat diet (HFD)-fed low density lipoprotein receptor deficient (LDLr -/- ) mice, and also explore the possible underlying mechanisms involved. Our data showed that after 12 weeks treatment, salusin-α ameliorated HFD-induced weight gain, hyperlipidemia, and serum levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Salusin-α suppressed HFD-induced hepatic steatosis and regulated gene expression of fatty acid synthase, acetyl coenzyme A carboxylase-α, peroxisome proliferator-activated receptor-α, camitine palmitoyltransferase-1α and CYP7A1 in liver. Salusin-α reduced atherosclerotic plaque area and macrophage foam cell formation. Salusin-α prevented hepatic and aortic inflammation as evidenced by the reduced macrophage recruitment and mRNA expression of IL-6 and TNF-α in both liver and aorta. Salusin-α also reduced hepatic and aortic oxidative stress by normalizing activities of antioxidant enzymes in liver and suppressing reactive oxygen species generation and protein expressions of NADPH-oxidase (NOX) 2 and NOX4 in both liver and aorta. Our present data suggest that salusin-α could reduce hepatic steatosis and atherosclerosis via its pleiotropic effects, including amelioration of lipid profiles, regulation of some key molecules involved in lipid metabolism in liver, anti-oxidative effect and anti-inflammatory action. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Evaluation of Selected Atherosclerosis Risk Factors in Women with Subclinical Hypothyroidism Treated with L-Thyroxine.

    PubMed

    Adamarczuk-Janczyszyn, Maria; Zdrojowy-Wełna, Aleksandra; Rogala, Natalia; Zatońska, Katarzyna; Bednarek-Tupikowska, Grażyna

    2016-01-01

    Subclinical hypothyroidism (SCH) is a common endocrine disorder, probably increasing cardiovascular (CV) risk. However, the relation between SCH and atherosclerosis risk factors remains unclear. The aim of the study was to evaluate selected atherosclerosis risk factors in women with SCH in comparison to a group of healthy women and women with overt hypothyroidism, as well as to investigate the influence of L-thyroxine replacement on those risk factors. The study group consisted of 187 obese women aged between 50 and 70 years: 100 women with SCH, 45 women with overt hypothyroidism and 42 women with TSH level in reference ranges. Anthropometric parameters were evaluated. Laboratory tests included thyroid hormones concentrations, lipid profile with apolipoproteins, CRP, homocysteine. Atherosclerotic indexes were calculated: LDL C/HDL C ratio, apoA1/apoB ratio and Castelli risk index. Women with hypothyroidism were given L-thyroxine treatment and after 6 months in euthyroidism the evaluation was repeated. Total cholesterol, LDL-cholesterol and triglycerides concentrations as well as LDL-C/HDL-C ratio and Castelli index were higher in SCH than in controls and decreased after L-thyroxin substitution. All of the calculated atherosclerosis indexes showed significant positive correlations with TSH concentration in SCH group. Also in this group the systolic and diastolic blood pressure decreased significantly after treatment. Dyslipidemia in obese SCH women is not severe, but if untreated for many years, it may lead to atherosclerosis. Substitution therapy improves the lipid profile, changing the relations between protective and proatherogenic fractions of serum lipids, and optimises blood pressure.

  18. Circulating angiotensin converting enzyme 2 activity as a biomarker of silent atherosclerosis in patients with chronic kidney disease.

    PubMed

    Anguiano, Lidia; Riera, Marta; Pascual, Julio; Valdivielso, José Manuel; Barrios, Clara; Betriu, Angels; Clotet, Sergi; Mojal, Sergi; Fernández, Elvira; Soler, María José

    2016-10-01

    Circulating Angiotensin Converting Enzyme 2 (ACE2) activity in chronic kidney disease (CKD) patients without previous history of cardiovascular disease (CVD) has been associated with classical risk factors (older age, diabetes and male gender). Furthermore, silent atherosclerosis has been described as a pathological link between CKD and CVD. We analyzed baseline ACE2 activity in non-dialysis CKD stages 3-5 (CKD3-5) patients as a biomarker of renal progression, silent atherosclerosis and CV events after 2 years of follow-up. Prospective study of 1458 CKD3-5 subjects without any previous CV event included in the Spanish multicenter NEFRONA study. Association between baseline circulating ACE2 activity and renal parameters, carotid/femoral echography, atheromatous disease, ankle-brachial index, intima-media thickness, need of renal replacement therapy, cardiovascular events and mortality at 24 months of follow-up were analyzed. Patients with an increase in the number of territories with plaques at 24 months showed significantly higher levels of baseline ACE2 activity as compared to stable patients (29.6 (20.6-47.6)RFU/μL/h versus 35.7 (24.5-56), p < 0.001). Multivariate linear regression analysis showed that male gender, pathological ankle-brachial index and progressive silent atherosclerosis defined as an increased number of territories with plaques at 24 months were associated with increased baseline ACE2 activity. Male gender, older age, diabetes, smoking and increased baseline circulating ACE2 were independent predictors of atherosclerosis at 24 months of follow-up. In CKD3-5 patients, higher circulating ACE2 activity at baseline is associated with higher risk for silent atherosclerosis, suggesting that ACE2 may serve as a biomarker to predict CV risk before CVD is established. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. [Biochemical markers and physiological tests of atherosclerosis--changes and usefulness of markers in anti-atherosclerotic therapy].

    PubMed

    Kanoh, Yuhsaku

    2011-01-01

    As a result of the aging of the Japanese population and westernization of the diet, atherosclerotic diseases such as ischemic heart diseases and cerebrovascular disorders are now the leading causes (2nd and 3rd, respectively) of death in Japan. Furthermore, advances in medical technology have made Japanese some of the longest-lived citizens in the world, and increasing health care costs have become an object of public concern. Therefore, the prevention and treatment of atherosclerosis that causes these ischemic organ dysfunctions is indispensable. In Japan, diagnostic criteria were established for metabolic syndrome as one of the health care cost-containment policies, and the importance of controlling the blood lipid and glucose levels and blood pressure was defined in 2005. Furthermore, persons enrolled in the health insurance system aged between 40 and 74 years have been obliged to receive a specified health check for the prevention of metabolic syndrome since April 2008. The health check includes: a medical interview; anthropometry (height, body weight, BMI, and abdominal circumference); physical examination; blood pressure; and 8 laboratory tests (neutral fat, HDL-cholesterol, LDL-cholesterol, AST, ALT, gamma-GT, fasting blood glucose [or HbAlc], and urinary protein and glucose). In fact, the specified health check is becoming one of the enlightening activities concerning the maintenance and promotion of health for staff of Kitasato University Hospital. Recently, on the other hand, the mechanism in which inflammatory reactions are involved in atherosclerosis has been elucidated, and atherosclerosis is thought to be a chronic inflammatory disease. Furthermore, the advances in laboratory test methods have made the measurement of various sensitive markers for inflammation possible. In this presentation, we would like to explain the efficient application of biochemical markers and rapid physiological tests for the pathological diagnosis of atherosclerosis. We would also like to explain changes in anti-thrombotic therapy aiming at the primary prevention of atherosclerosis and its usefulness.

  20. MicroRNA-9 Inhibits NLRP3 Inflammasome Activation in Human Atherosclerosis Inflammation Cell Models through the JAK1/STAT Signaling Pathway.

    PubMed

    Wang, Yue; Han, Zhihua; Fan, Yuqi; Zhang, Junfeng; Chen, Kan; Gao, Lin; Zeng, Huasu; Cao, Jiatian; Wang, Changqian

    2017-01-01

    MicroRNA-9 (miR-9) is involved in inflammatory reaction in atherosclerosis; however, its function and regulatory mechanisms remain unclear. We aimed to uncover the exact roles of miR-9 and downstream signaling pathways using in vitro human atherosclerosis models. We used oxidized low-density lipoprotein (oxLDL)-stimulated human THP-1 derived macrophages, oxLDL-stimulated human primary peripheral blood monocytes and lipopolysaccharides (LPS) or Alum-stimulated human THP-1 derived macrophages as in vitro atherosclerosis inflammation models. Transient transfection of over-expression vectors, small interference RNAs (siRNAs) or antisense oligonucleotides was used to regulate intracellular protein or miR-9 levels. Cell responses and signal transduction were detected by multiple assays including Western blotting, enzyme-linked immunosorbent assay (ELISA) and luciferase reporter assay. MiR-9 inhibited while anti-miR-9 antisense oligonucleotides induced interleukin-1 beta (IL-1β) and NLRP3 inflammasome activation in all in vitro models. Janus kinase 1 (JAK1) and matrix metalloproteinase 13 (MMP-13) were identified as the target genes of miR-9. In oxLDL-stimulated human THP-1 derived macrophages, knockdown of JAK1 by siRNA blocked the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and mimicked the effects of miR-9. In the same model, JAK1 knockdown blocked the phosphorylation of NF-κB p65 in the nuclei and the phosphorylation of NF-κB IκBα in the cytoplasm. Our study demonstrated that miR-9 could inhibit activation of the NLRP3 inflammasome and attenuate atherosclerosis-related inflammation, likely through the JAK1/STAT1 signaling pathway. Therefore, miR-9 may serve as a potential therapeutic target for atherosclerosis. © 2017 The Author(s)Published by S. Karger AG, Basel.

  1. Atherosclerosis (image)

    MedlinePlus

    Atherosclerosis is a disease of the arteries in which fatty material is deposited in the vessel wall, ... muscle leads to symptoms such as chest pain. Atherosclerosis shows no symptoms until a complication occurs.

  2. Is zinc deficiency a risk factor for atherosclerosis?

    PubMed

    Beattie, John H; Kwun, In-Sook

    2004-02-01

    The development of atherosclerosis is influenced by genetic, lifestyle and nutritional risk factors. Zn and metallothionein deficiency can enhance oxidative-stress-related signalling processes in endothelial cells, and since changes in available plasma Zn may affect the Zn status of the endothelium, Zn deficiency could be a risk factor for IHD. Although the association of Zn with many proteins is essential for their function, three key signalling processes are highlighted as being principal targets for the effect of Zn deficiency: the activation of NF-kappaB, the activation of caspase enzymes and the signalling of NO. The need to develop a reliable indicator of Zn status is critical to any epidemiological approach for studying the relationship between Zn status and disease incidence. Studies using appropriate animal models and investigating how the plasma Zn pool influences endothelial intracellular labile Zn would be helpful in appreciating the importance of Zn deficiency in atherogenesis.

  3. 4-phenylbutyrate and valproate treatment attenuates the progression of atherosclerosis and stabilizes existing plaques.

    PubMed

    Huang, Aric; Young, Tayler L; Dang, Vi T; Shi, Yuanyuan; McAlpine, Cameron S; Werstuck, Geoff H

    2017-11-01

    Recent evidence suggests that endoplasmic reticulum (ER) stress signaling through glycogen synthase kinase (GSK)-3α/β is involved in the activation of pro-atherosclerotic processes. In this study, we examined the effects of small molecules that interfere with ER stress-GSK3α/β signaling on the progression and regression of atherosclerosis in a mouse model. To examine atherosclerotic progression, low-density lipoprotein receptor deficient (Ldlr -/- ) mice were placed on a high-fat diet (HFD) and treated with the chemical chaperone, 4-phenylbutyrate (4PBA, 3.8  g/L drinking water), or the GSK3α/β inhibitor, valproate (VPA, 625 mg VPA/kg diet), for 10 weeks. To examine potential effects on atherosclerotic regression, 4 week old Ldlr -/- mice were placed on a HFD for 16 weeks. Subsets of mice were harvested at this time or switched to a chow (low fat) diet, or a chow diet with 4PBA or VPA treatment for 4 weeks. In the progression model, the 4PBA- and VPA-treated mice had significantly reduced lesion and necrotic core size. Treatments had no effect on metabolic parameters, including plasma and hepatic lipid levels, or plaque composition. In the regression model, mice with 4PBA or VPA treatment showed no alterations in lesion size, but the lesions had significantly smaller necrotic cores, increased vascular smooth muscle cell content, and increased collagen content. These features are consistent with more stable plaques. The pharmacological attenuation of ER stress or inhibition of GSK3α/β impedes the development of atherosclerosis in Ldlr -/- mice and appears to promote the stabilization of existing lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparative gene expression analysis between coronary arteries and internal mammary arteries identifies a role for the TES gene in endothelial cell functions relevant to coronary artery disease.

    PubMed

    Archacki, Stephen R; Angheloiu, George; Moravec, Christine S; Liu, Hui; Topol, Eric J; Wang, Qing Kenneth

    2012-03-15

    Coronary artery disease (CAD) is the leading cause of death worldwide. It has been established that internal mammary arteries (IMA) are resistant to the development of atherosclerosis, whereas left anterior descending (LAD) coronary arteries are athero-prone. The contrasting properties of these two arteries provide an innovative strategy to identify the genes that play important roles in the development of atherosclerosis. We carried out microarray analysis to identify genes differentially expressed between IMA and LAD. Twenty-nine genes showed significant differences in their expression levels between IMA and LAD, which included the TES gene encoding Testin. The role of TES in the cardiovascular system is unknown. Here we show that TES is involved in endothelial cell (EC) functions relevant to atherosclerosis. Western blot analysis showed higher TES expression in IMA than in LAD. Reverse transcription polymerase chain reaction and western blot analyses showed that TES was consistently and markedly down-regulated by more than 6-fold at both mRNA and protein levels in patients with CAD compared with controls without CAD (P= 0.000049). The data suggest that reduced TES expression is associated with the development of CAD. Knockdown of TES expression by small-interfering RNA promoted oxidized-LDL-mediated monocyte adhesion to ECs, EC migration and the transendothelial migration of monocytes, while the over-expression of TES in ECs blunted these processes. These results demonstrate association between reduced TES expression and CAD, establish a novel role for TES in EC functions and raise the possibility that reduced TES expression increases susceptibility to the development of CAD.

  5. MiR-216a: a link between endothelial dysfunction and autophagy

    PubMed Central

    Menghini, R; Casagrande, V; Marino, A; Marchetti, V; Cardellini, M; Stoehr, R; Rizza, S; Martelli, E; Greco, S; Mauriello, A; Ippoliti, A; Martelli, F; Lauro, R; Federici, M

    2014-01-01

    Endothelial dysfunction and impaired autophagic activity have a crucial role in aging-related diseases such as cardiovascular dysfunction and atherosclerosis. We have identified miR-216a as a microRNA that is induced during endothelial aging and, according to the computational analysis, among its targets includes two autophagy-related genes, Beclin1 (BECN1) and ATG5. Therefore, we have evaluated the role of miR-216a as a molecular component involved in the loss of autophagic function during endothelial aging. The inverse correlation between miR-216a and autophagic genes was conserved during human umbilical vein endothelial cells (HUVECs) aging and in vivo models of human atherosclerosis and heart failure. Luciferase experiments indicated BECN1, but not ATG5 as a direct target of miR-216a. HUVECs were transfected in order to modulate miR-216a expression and stimulated with 100 μg/ml oxidized low-density lipoprotein (ox-LDL) to induce a stress repairing autophagic process. We found that in young HUVECs, miR-216a overexpression repressed BECN1 and ATG5 expression and the ox-LDL induced autophagy, as evaluated by microtubule-associated protein 1 light chain 3 (LC3B) analysis and cytofluorimetric assay. Moreover, miR-216a stimulated ox-LDL accumulation and monocyte adhesion in HUVECs. Conversely, inhibition of miR-216a in old HUVECs rescued the ability to induce a protective autophagy in response to ox-LDL stimulus. In conclusion, mir-216a controls ox-LDL induced autophagy in HUVECs by regulating intracellular levels of BECN1 and may have a relevant role in the pathogenesis of cardiovascular disorders and atherosclerosis. PMID:24481443

  6. Hepatic JAK2 protects against atherosclerosis through circulating IGF-1

    PubMed Central

    Sivasubramaniyam, Tharini; Schroer, Stephanie A.; Li, Angela; Luk, Cynthia T.; Shi, Sally Yu; Besla, Rickvinder; Metherel, Adam H.; Kitson, Alex P.; Brunt, Jara J.; Lopes, Joshua; Wagner, Kay-Uwe; Bazinet, Richard P.; Bendeck, Michelle P.; Robbins, Clinton S.

    2017-01-01

    Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2’s essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection. PMID:28724798

  7. Regulating intestinal function to reduce atherogenic lipoproteins.

    PubMed

    Hussain, M Mahmood; Leung, Tung Ming; Zhou, Liye; Abu-Merhi, Sarah

    2013-08-01

    Significant knowledge regarding different molecules involved in the transport of dietary fat into the circulation has been garnered. Studies point to the possibility that accumulation of intestine-derived lipoproteins in the plasma could contribute to atherosclerosis. This article provides a brief overview of dietary lipid metabolism and studies in mice supporting the hypothesis that intestinal lipoproteins contribute to atherosclerosis. Deficiencies in lipoprotein lipase and Gpihbp1, and overexpression of heparanse in mice, are associated with increases in atherosclerosis, suggesting that defects in catabolism of larger lipoproteins in the plasma contribute to atherosclerosis. Furthermore, inositol-requiring enzyme 1β-deficient mice that produce more intestinal lipoproteins also develop more atherosclerosis. Thus, increases in plasma intestinal lipoproteins due to either overproduction or reduced catabolism result in augmented atherosclerosis. Intestinal lipoproteins tend to adhere strongly to subendothelial proteoglycans, elicit an inflammatory response by endothelial cells and activate macrophages, contributing to the initiation and progression of the disease. Thus, molecules that reduce intestinal lipid absorption can be useful in lowering atherosclerosis.

  8. National lipid association recommendations for patient-centered management of dyslipidemia: part 1--full report.

    PubMed

    Jacobson, Terry A; Ito, Matthew K; Maki, Kevin C; Orringer, Carl E; Bays, Harold E; Jones, Peter H; McKenney, James M; Grundy, Scott M; Gill, Edward A; Wild, Robert A; Wilson, Don P; Brown, W Virgil

    2015-01-01

    The leadership of the National Lipid Association convened an Expert Panel to develop a consensus set of recommendations for patient-centered management of dyslipidemia in clinical medicine. An Executive Summary of those recommendations was previously published. This document provides support for the recommendations outlined in the Executive Summary. The major conclusions include (1) an elevated level of cholesterol carried by circulating apolipoprotein B-containing lipoproteins (non-high-density lipoprotein cholesterol and low-density lipoprotein cholesterol [LDL-C], termed atherogenic cholesterol) is a root cause of atherosclerosis, the key underlying process contributing to most clinical atherosclerotic cardiovascular disease (ASCVD) events; (2) reducing elevated levels of atherogenic cholesterol will lower ASCVD risk in proportion to the extent that atherogenic cholesterol is reduced. This benefit is presumed to result from atherogenic cholesterol lowering through multiple modalities, including lifestyle and drug therapies; (3) the intensity of risk-reduction therapy should generally be adjusted to the patient's absolute risk for an ASCVD event; (4) atherosclerosis is a process that often begins early in life and progresses for decades before resulting a clinical ASCVD event. Therefore, both intermediate-term and long-term or lifetime risk should be considered when assessing the potential benefits and hazards of risk-reduction therapies; (5) for patients in whom lipid-lowering drug therapy is indicated, statin treatment is the primary modality for reducing ASCVD risk; (6) nonlipid ASCVD risk factors should also be managed appropriately, particularly high blood pressure, cigarette smoking, and diabetes mellitus; and (7) the measurement and monitoring of atherogenic cholesterol levels remain an important part of a comprehensive ASCVD prevention strategy. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  9. REV-ERB and ROR nuclear receptors as drug targets

    PubMed Central

    Kojetin, Douglas J.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERB (consisting of REV-ERBα and REV-ERBβ) and retinoic acid receptor-related orphan receptors (RORs; consisting of RORα, RORβ and RORγ) are involved in many physiological processes, including regulation of metabolism, development and immunity as well as the circadian rhythm. The recent characterization of endogenous ligands for these former orphan nuclear receptors has stimulated the development of synthetic ligands and opened up the possibility of targeting these receptors to treat several diseases, including diabetes, atherosclerosis, autoimmunity and cancer. This Review focuses on the latest developments in ROR and REV-ERB pharmacology indicating that these nuclear receptors are druggable targets and that ligands targeting these receptors may be useful in the treatment of several disorders. PMID:24577401

  10. Genetic Basis of Atherosclerosis: Insights from Mice and Humans

    PubMed Central

    Stylianou, Ioannis M.; Bauer, Robert C.; Reilly, Muredach P.; Rader, Daniel J.

    2012-01-01

    Atherosclerosis is a complex and heritable disease involving multiple cell types and the interactions of many different molecular pathways. The genetic and molecular mechanisms of atherosclerosis have in part been elucidated by mouse models; at least 100 different genes have been shown to influence atherosclerosis in mice. Importantly, unbiased genome-wide association studies have recently identified a number of novel loci robustly associated with atherosclerotic coronary artery disease (CAD). Here we review the genetic data elucidated from mouse models of atherosclerosis, as well as significant associations for human CAD. Furthermore, we discuss in greater detail some of these novel human CAD loci. The combination of mouse and human genetics has the potential to identify and validate novel genes that influence atherosclerosis, some of which may be candidates for new therapeutic approaches. PMID:22267839

  11. Porphyromonas gingivalis Accelerates Inflammatory Atherosclerosis in the Innominate Artery of ApoE Deficient Mice

    PubMed Central

    Hayashi, Chie; Viereck, Jason; Hua, Ning; Phinikaridou, Alkystis; Madrigal, Andres G.; Gibson, Frank C.; Hamilton, James A.; Genco, Caroline A.

    2011-01-01

    Objective Studies in humans support a role for the oral pathogen Porphyromonas gingivalis in the development of inflammatory atherosclerosis. The goal of this study was to determine if P. gingivalis infection accelerates inflammation and atherosclerosis in the innominate artery of mice, an artery which has been reported to exhibit many features of human atherosclerotic disease, including plaque rupture. Methods and Results Apolipoprotein E-deficient (ApoE−/−) mice were orally infected with P. gingivalis, and Magnetic Resonance Imaging (MRI) was used to monitor the progression of atherosclerosis in live mice. P. gingivalis infected mice exhibited a statistically significant increase in atherosclerotic plaque in the innominate artery as compared to uninfected mice. Polarized light microscopy and immunohistochemistry revealed that the innominate arteries of infected mice had increased lipids, macrophages and T cells as compared to uninfected mice. Increases in plaque, total cholesterol esters and cholesterol monohydrate crystals, macrophages, and T cells were prevented by immunization with heat-killed P. gingivalis prior to pathogen exposure. Conclusions These are the first studies to demonstrate progression of inflammatory plaque accumulation in the innominate arteries by in-vivo MRI analysis following pathogen exposure, and to document protection from plaque progression in the innominate artery via immunization. PMID:21251656

  12. Oxidative stress and triglycerides as predictors of subclinical atherosclerosis in prediabetes.

    PubMed

    Al-Aubaidy, Hayder A; Jelinek, Herbert F

    2014-03-01

    The role of triglycerides in early preclinical atherosclerosis is controversial. Antioxidant markers may be associated with triglyceride levels in early preclinical atherosclerosis especially when fasting plasma glucose is raised. This cross-sectional study included 127 participants attending the Diabetes Screening Clinic, Charles Sturt University, Australia. Serum 8-hydroxy-2-deoxy-guanosine (8-OHdG) was significantly greater in the impaired fasting glucose (IFG) group compared with the control group (536.7 pg/ml ± 249.8 versus 171.4 pg/ml ± 96.9, respectively). The increase in 8-OHdG was associated with a mildly non-significant elevation in low-density lipoprotein level (3.2 ± 1.1 mmol/l) and a poor level of high-density lipoprotein (1.31 ± 0.3 mmol/l) in the IFG group. However, a significant increase in triglycerides (1.6 ± 0.97 mmol/l; P < 0.05) in the IFG group was observed. Erythrocyte reduced glutathione (GSH) levels in the IFG group, although increased, were also not significantly different to control. A significant increase in 8-OHdG is associated with increased levels of triglycerides in the absence of significant changes in reduced GSH and normal levels of cholesterol in the IFG cohort, suggesting that oxidative stress may be present and indicative of subclinical atherosclerosis.

  13. Association of Scavenger Receptor Class B Type I Polymorphisms with Subclinical Atherosclerosis: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Naj, Adam C.; West, Michael; Rich, Stephen S.; Post, Wendy; Kao, W.H. Linda; Wasserman, Bruce A.; Herrington, David M.; Rodriguez, Annabelle

    2012-01-01

    Background Little is known regarding the association of scavenger receptor class B type I (SCARB1) single nucleotide polymorphisms (SNPs) and subclinical atherosclerosis (SCA), particularly in subjects of different racial/ethnic backgrounds. We examined this relationship in the Multi-Ethnic Study of Atherosclerosis (MESA). Methods and Results Forty-three SCARB1 tagging SNPs were genotyped. Baseline examinations included fasting lipids and SCA phenotypes (coronary artery calcium [CAC], and common and internal carotid artery thickness [CCIMT and ICIMT]). Examining SNP associations with different SCA phenotypes across multiple racial/ethnic groups with adjustment for multiple covariates, we found the C allele of SNP rs10846744 was associated with higher CCIMT in African American (P=0.03), Chinese (P=0.02), European American (P=0.05), and Hispanic participants (P=0.03), and was strongly associated in pooled analyses (P=0.0002). The results also showed that the association of this SNP with CCIMT was independent of lipids and other well-established cardiovascular risk factors. Stratifying by sex, there appeared to be a strong association of rs10846744 with CCIMT in females, but no genotype-sex interactions were observed. Conclusions Variation in SCARB1 at rs10846744 was significantly associated with CCIMT across racial/ethnic groups in MESA. PMID:20160195

  14. Gender differences in the association between socioeconomic status and subclinical atherosclerosis.

    PubMed

    Grimaud, Olivier; Lapostolle, Annabelle; Berr, Claudine; Helmer, Catherine; Dufouil, Carole; Kihal, Wahida; Alpérovitch, Annick; Chauvin, Pierre

    2013-01-01

    This study explored the pattern of associations between socioeconomic status (SES) and atherosclerosis progression (as indicated by carotid intima media thickness, CIMT) across gender. Cross-sectional analysis of a sample of 5474 older persons (mean age 73 years) recruited between 1999 and 2001 in the 3C study (France). We fitted linear regression models including neighborhood SES, individual SES and cardiovascular risk factors. CIMT was on average 24 µm higher in men (95% CI: 17 to 31). Neighborhood SES was inversely associated with CIMT in women only (highest versus lowest tertiles: -12.2 µm, 95%CI -22 to -2.4). This association persisted when individual SES and risk factors were accounted for. High individual education was associated with lower CIMT in men (-21.4 µm 95%CI -37.5 to -5.3) whereas high professional status was linked to lower CIMT among women (-15.7 µm 95%CI: -29.2 to -2.2). Adjustment for cardiovascular risk factors resulted in a slightly more pronounced reduction of the individual SES-CIMT association observed in men than in women. In this sample, neighborhood and individual SES displayed different patterns of associations with subclinical atherosclerosis across gender. This suggests that the causal pathways leading to SES variations in atherosclerosis may differ among men and women.

  15. Rate of Atherosclerosis Progression in ApoE−/− Mice Long After Discontinuation of Cola Beverage Drinking

    PubMed Central

    Otero-Losada, Matilde; Cao, Gabriel; Mc Loughlin, Santiago; Rodríguez-Granillo, Gastón; Ottaviano, Graciela; Milei, José

    2014-01-01

    This study was conducted in order to evaluate the effect of cola beverages drinking on atherosclerosisand test the hypothesis whether cola beverages consumption at early life stages might affect the development and progression of atherosclerosis later in life. ApoE−/− C57BL/6J mice (8 week-old) were randomized in 3 groups (n = 20 each) according to free accessto water (W), sucrose sweetened carbonated cola drink(C) or aspartame-acesulfame K sweetened carbonated ‘light’ cola drink (L)for the next 8 weeks. Drinking treatment was ended by switching C and L groups to drinking water. Four mice per group and time were sequentially euthanized: before treatment (8weeks-old), at the end of treatment (16 weeks-old) and after treatment discontinuation (20 weeks-old, 24 weeks-old, 30 week-old mice). Aortic roots and livers were harvested, processed for histology and serial cross-sections were stained. Aortic plaque area was analyzed and plaque/media-ratio was calculated. Early consumption of cola drinks accelerated atherosclerotic plaque progression favoring the interaction between macrophages and myofibroblasts, without the participation of either T lymphocytes or proliferative activity. Plaque/media-ratio varied according to drink treatment (F2,54 = 3.433, p<0.04) and mice age (F4,54 = 5.009, p<0.03) and was higher in C and L groups compared with age-matched W group (p<0.05 at 16 weeks and 20 weeks, p<0.01 at 24 weeks and 30 weeks). Natural evolution of atherosclerosis in ApoE−/− mice (W group) evidenced atherosclerosis acceleration in parallel with a rapid increase in liver inflammation around the 20 weeks of age. Cola drinking within the 8–16 weeks of age accelerated atherosclerosis progression in ApoE−/− mice favoring aortic plaque enlargement (inward remodeling) over media thinning all over the study time. Data suggest that cola drinking at early life stages may predispose to atherosclerosis progression later in life in ApoE−/− mice. PMID:24670925

  16. Use of ultrasmall superparamagnetic iron oxide particles for imaging carotid atherosclerosis.

    PubMed

    Usman, Ammara; Sadat, Umar; Patterson, Andrew J; Tang, Tjun Y; Varty, Kevin; Boyle, Jonathan R; Armon, Mathew P; Hayes, Paul D; Graves, Martin J; Gillard, Jonathan H

    2015-10-01

    Based on the results of histopathological studies, inflammation within atherosclerotic tissue is now widely accepted as a key determinant of the disease process. Conventional imaging methods can highlight the location and degree of luminal stenosis but not the inflammatory activity of the plaque. Iron oxide-based MRI contrast media particularly ultrasmall supermagnetic particles of iron oxide have shown potential in assessing atheromatous plaque inflammation and in determining efficacy of antiatherosclerosis pharmacological treatments. In this paper, we review current data on the use of ultrasmall superparamagnetic iron oxides in atherosclerosis imaging with focus on ferumoxtran-10 and ferumoxytol. The basic chemistry, pharmacokinetics and dynamics, potential applications, limitations and future perspectives of these contrast media nanoparticles are discussed.

  17. S100A12 and the S100/Calgranulins - Emerging Biomarkers for Atherosclerosis and Possibly Therapeutic Targets

    PubMed Central

    Oesterle, Adam; Hofmann Bowman, Marion A

    2016-01-01

    Atherosclerosis is mediated by local and systematic inflammation. The multi-ligand receptor for advanced glycation end products (RAGE) has been studied in animals and humans, and is an important mediator of inflammation and atherosclerosis. This review focuses on S100/calgranulin proteins (S100A8, S100A9, and S100A12) and their receptor RAGE in mediating vascular inflammation. Mice lack the gene for S100A12, which in humans is located on chromosome 3 between S100A8 and S100A9. Transgenic mice with smooth muscle cell targeted expression of S100A12 demonstrate increased coronary and aortic calcification as well as increased plaque vulnerability. Serum S100A12 has recently been shown to predict future cardiovascular events in a longitudinal population study, underscoring a role for S100A12 as a potential biomarker for coronary artery disease. Genetic ablation of S100A9 or RAGE in atherosclerosis susceptible Apolipoprotein E (ApoE) null mice results in reduced atherosclerosis. Importantly, S100A12 and the RAGE axis can be modified pharmacologically. For example, soluble RAGE reduces murine atherosclerosis and vascular inflammation. Additionally, a class of compounds currently in phase III clinical trials for multiple sclerosis and rheumatologic conditions, the Quinoline-3-carboxamides, reduce atherosclerotic plaque burden and complexity in transgenic S100A12 ApoE null mice, but have not been tested with regards to human atherosclerosis. The RAGE axis is an important mediator for inflammation-induced atherosclerosis and S100A12 has emerged as biomarker for human atherosclerosis. Decreasing inflammation by inhibiting S100/calgranulin-mediated activation of RAGE attenuates murine atherosclerosis, and future studies in patients with coronary artery disease are warranted to confirm S100/RAGE as therapeutic target for atherosclerosis. PMID:26515415

  18. Subclinical carotid atherosclerosis and hyperuricemia in relation to renal impairment in a rural Japanese population: the Nagasaki Islands study.

    PubMed

    Shimizu, Yuji; Sato, Shimpei; Koyamatsu, Jun; Yamanashi, Hirotomo; Tamai, Mami; Kadota, Koichiro; Arima, Kazuhiko; Yamasaki, Hironori; Takamura, Noboru; Aoyagi, Kiyoshi; Maeda, Takahiro

    2014-04-01

    The influence of hyperuricemia on atherosclerosis is controversial. Subclinical carotid atherosclerosis can be defined in two ways in terms of mean and maximum carotid intima-media thickness (CIMT): one with mean CIMT≥1.1 mm and the other with maximum CIMT≥1.1 mm. However, no studies have been reported of the association between hyperuricemia and subclinical carotid atherosclerosis while taking the two different ways of classification into account. We conducted a cross-sectional study of 4133 subjects (1492 men and 2641 women) aged 30-89 years undergoing general health check-ups. For analysis of various associations, we calculated the multivariable odds ratios (ORs) for the two ways classifications of subclinical carotid atherosclerosis in relation to hyperuricemia. Hyperuricemia-related renal impairment constitutes a significant marker for subclinical carotid atherosclerosis with mean CIMT≥1.1 mm for both men and women, while hyperuricemia per se was found to be beneficially associated with risk of subclinical carotid atherosclerosis with maximum CIMT≥1.1 mm for men. The classical cardiovascular risk factors without adjustment for glomerular filtration rate (GFR) of ORs for subclinical carotid atherosclerosis (mean CIMT≥1.1 mm) and subclinical carotid atherosclerosis (maximum CIMT≥1.1 mm) were 2.20(1.10-4.22) and 0.84(0.63-1.13) for men and 2.12(1.02-4.38) and 0.92(0.66-1.27) for women. After further adjustment for GFR, the corresponding values were 1.54(0.74-3.20) and 0.67(0.49-0.92) for men and 1.32(0.61-2.88) and 0.80(0.57-1.12) for women. Hyperuricemia-related renal impairment is a significant marker for subclinical carotid atherosclerosis for both men and women, while hyperuricemia per se may be inversely associated with subclinical carotid atherosclerosis for men as seen in a rural community-dwelling Japanese population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Ox-LDL increases OX40L in endothelial cells through a LOX-1-dependent mechanism

    PubMed Central

    Dong, Q.; Xiang, R.; Zhang, D.Y.; Qin, S.

    2013-01-01

    Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of atherosclerosis, and it can stimulate the expression of a variety of inflammatory signals. As a new and highly sensitive inflammation index, OX40L may be a key to understanding the mechanisms that regulate interactions between cells within the vessel wall and inflammatory mediators during the development of atherosclerosis. To investigate whether Ox-LDL regulates OX40L expression through an oxidized LDL-1 receptor (LOX-1)-mediated mechanism, we investigated the effect of different concentrations of Ox-LDL (50, 100, 150 µg/mL) on endothelial cell proliferation and apoptosis. Stimulation with Ox-LDL increased OX40L protein 1.44-fold and mRNA 4.0-fold in endothelial cells, and these effects were inhibited by blocking LOX-1. These results indicate that LOX-1 plays an important role in the chronic inflammatory process in blood vessel walls. Inhibiting LOX-1 may reduce blood vessel inflammation and provide a therapeutic option to limit atherosclerosis progression. PMID:24068192

  20. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis.

    PubMed

    Gössl, Mario; Mödder, Ulrike I; Atkinson, Elizabeth J; Lerman, Amir; Khosla, Sundeep

    2008-10-14

    This study was designed to test whether patients with coronary atherosclerosis have increases in circulating endothelial progenitor cells (EPCs) expressing an osteogenic phenotype. Increasing evidence indicates a link between bone and the vasculature, and bone marrow and circulating osteogenic cells have been identified by staining for the osteoblastic marker, osteocalcin (OCN). Endothelial progenitor cells contribute to vascular repair, but repair of vascular injury may result in calcification. Using cell surface markers (CD34, CD133, kinase insert domain receptor [KDR]) to identify EPCs, we examined whether patients with coronary atherosclerosis had increases in the percentage of EPCs expressing OCN. We studied 72 patients undergoing invasive coronary assessment: control patients (normal coronary arteries and no endothelial dysfunction, n = 21) versus 2 groups with coronary atherosclerosis-early coronary atherosclerosis (normal coronary arteries but with endothelial dysfunction, n = 22) and late coronary atherosclerosis (severe, multivessel coronary artery disease, n = 29). Peripheral blood mononuclear cells were analyzed using flow cytometry. Compared with control patients, patients with early or late coronary atherosclerosis had significant increases (approximately 2-fold) in the percentage of CD34+/KDR+ and CD34+/CD133+/KDR+ cells costaining for OCN. Even larger increases were noted in the early and late coronary atherosclerosis patients in the percentage of CD34+/CD133-/KDR+ cells costaining for OCN (5- and 2-fold, p < 0.001 and 0.05, respectively). A higher percentage of EPCs express OCN in patients with coronary atherosclerosis compared with subjects with normal endothelial function and no structural coronary artery disease. These findings have potential implications for the mechanisms of vascular calcification and for the development of novel markers for coronary atherosclerosis.

  1. Salivary inflammatory cytokines may be novel markers of carotid atherosclerosis in a Japanese general population: the Suita study.

    PubMed

    Kosaka, Takayuki; Kokubo, Yoshihiro; Ono, Takahiro; Sekine, Shinichi; Kida, Momoyo; Kikui, Miki; Yamamoto, Masaaki; Watanabe, Makoto; Amano, Atsuo; Maeda, Yoshinobu; Miyamoto, Yoshihiro

    2014-11-01

    Salivary biomarkers have been recently useful of periodontal disease, which is also risk factor of atherosclerosis. However, there are few studies of the association between salivary inflammatory cytokines and carotid atherosclerosis. We aimed to clarify the association between salivary inflammatory cytokines and periodontal disease and carotid atherosclerosis in a general urban population. We studied 608 Japanese men and women (mean age: 65.4 years) in the Suita study. Carotid atherosclerosis was evaluated by high-resolution ultrasonography with atherosclerotic indexes of intima-media thickness (IMT). Periodontal status was evaluated by the Community Periodontal Index (CPI). Salivary levels of interleukin-1β, interleukin-6, tumor necrosis factor-α (TNF-α), and prostaglandin E2 (PGE2) were measured by enzyme linked immunosorbent assay. The risks of carotid atherosclerosis (≥75th percentiles of mean- [0.88 mm] and Max-IMT [1.50 mm]) according to the quartiles of salivary inflammatory cytokines were compared using of adjusted-logistic regression models. All salivary inflammatory cytokines were positively associated with CPI. The adjusted odds ratios for carotid atherosclerosis of mean-IMT in the highest quartile of interleukin-6 and TNF-α were higher than those in the lowest quartiles (OR = 2.32 and 2.88; 95% confidence intervals = 1.19-4.51 and 1.51-5.49, respectively). The adjusted odds ratio for carotid atherosclerosis of mean-IMT in the highest quartile of PGE2 was greater than those in the lowest quartile in women (OR = 2.78; 95% confidence intervals = 1.11-6.95). In conclusion, higher levels of salivary inflammatory cytokines were associated with both periodontal disease and carotid atherosclerosis. Selected salivary inflammatory cytokines may be useful screening markers for periodontal disease and carotid atherosclerosis. Copyright © 2014. Published by Elsevier Ireland Ltd.

  2. Evaluation of Chlamydophila psittaci infection and other risk factors for atherosclerosis in pet psittacine birds.

    PubMed

    Pilny, Anthony A; Quesenberry, Katherine E; Bartick-Sedrish, Tracey E; Latimer, Kenneth S; Berghaus, Roy D

    2012-06-15

    To determine whether the presence of Chlamydophila psittaci antigen, plasma cholesterol concentration, diet, sex, species, and age are risk factors for the development of atherosclerosis in pet psittacine birds. Retrospective case-control study. 31 psittacine birds with atherosclerosis (study birds) and 31 psittacine birds without atherosclerosis (control birds). Necropsy reports were reviewed, birds with a histopathologic diagnosis of atherosclerosis were identified, and available medical records were reviewed. Signalment, history, clinicopathologic findings, and other relevant data were recorded and evaluated. Control birds did not have atherosclerosis and were chosen by both convenience sampling and population demographics. Histologic sections of great vessels from all birds (study and control birds) were reviewed and then submitted for immunohistochemical staining for the presence of C psittaci antigen. Result of immunohistochemical staining for C psittaci antigen in blood vessels was significantly associated with atherosclerosis. After adjusting for age, species origin, and type of illness, the odds of atherosclerosis was 7 times as high for birds with positive immunohistochemical staining for C psittaci antigen, compared with that of birds with negative immunohistochemical staining. Study birds and control birds differed significantly only with respect to plasma cholesterol concentrations. The median plasma cholesterol concentration of study birds (421 mg/dL) was significantly higher than that of control birds (223 mg/dL). Infection with C psittaci and a high plasma cholesterol concentration may be risk factors for developing atherosclerosis in pet psittacine birds.

  3. [25 year experience with using surgical correction of dislipidemia in treatment of patients with atherosclerosis].

    PubMed

    Sedov, V M; Mirchuk, K K; Sedletskiĭ, Iu I

    2011-01-01

    An analysis of results of using partial ileoshunting for the treatment of dislipidemia in 159 patients with atherosclerosis has shown that operation of partial ileoshunting has an obligatory, pronounced and lifelong lipidcorrecting effect. An antiatherogenic effect of the operation of partial ileoshunting is manifested as the improvement of the clinical course of the disease caused by atherosclerosis, by less number of thrombotic complications of atherosclerosis and less lethality from cardio-vascular diseases. At a longer follow-up period, the efficiency of partial ileoshunting as a means of secondary prophylactics of atherosclerosis is confirmed but in case of liquidation after operation of dislipoproteidemia.

  4. Management of Dyslipidemia in Patients with Hypertension, Diabetes, and Metabolic Syndrome.

    PubMed

    Srikanth, Sundararajan; Deedwania, Prakash

    2016-10-01

    The purpose of this review is to discuss dyslipidemia in the various common clinical conditions including hypertension, diabetes mellitus, and metabolic syndrome and review the current therapeutic strategy in these settings. Dyslipidemias are common in patients with hypertension, diabetes mellitus, and metabolic syndrome. Epidemiologic studies have shown a strong correlation between serum lipid levels and risk of atherosclerotic cardiovascular disease. Multifactorial intervention strategies aimed at controlling lipids, blood pressure, and blood glucose simultaneously achieve maximal reductions in cardiovascular risk. Dyslipidemia and metabolic abnormalities are strongly associated with atherosclerosis and worse cardiovascular outcomes. While pharmacotherapy with statins has been proven to be beneficial for dyslipidemia, lifestyle modification emphasizing weight loss and regular exercise is an essential component of the interventional strategy. The common thread underlying atherosclerosis and metabolic abnormalities is endothelial dysfunction. Improved understanding of the role of endothelium in health and disease can potentially lead to novel therapies that may preempt development of atherosclerosis and its complications.

  5. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice.

    PubMed

    Fuster, José J; MacLauchlan, Susan; Zuriaga, María A; Polackal, Maya N; Ostriker, Allison C; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A B; Cooper, Matthew A; Andrés, Vicente; Hirschi, Karen K; Martin, Kathleen A; Walsh, Kenneth

    2017-02-24

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2 -mutant cells in atherosclerosis-prone, low-density lipoprotein receptor-deficient ( Ldlr -/- ) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome-mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. Copyright © 2017, American Association for the Advancement of Science.

  6. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice

    PubMed Central

    Fuster, José J.; MacLauchlan, Susan; Zuriaga, María A.; Polackal, Maya N.; Ostriker, Allison C.; Chakraborty, Raja; Wu, Chia-Ling; Sano, Soichi; Muralidharan, Sujatha; Rius, Cristina; Vuong, Jacqueline; Jacob, Sophia; Muralidhar, Varsha; Robertson, Avril A. B.; Cooper, Matthew A.; Andrés, Vicente; Hirschi, Karen K.; Martin, Kathleen A.; Walsh, Kenneth

    2017-01-01

    Human aging is associated with an increased frequency of somatic mutations in hematopoietic cells. Several of these recurrent mutations, including those in the gene encoding the epigenetic modifier enzyme TET2, promote expansion of the mutant blood cells. This clonal hematopoiesis correlates with an increased risk of atherosclerotic cardiovascular disease. We studied the effects of the expansion of Tet2-mutant cells in atherosclerosis-prone, low-density lipoprotein receptor–deficient (Ldlr−/−) mice. We found that partial bone marrow reconstitution with TET2-deficient cells was sufficient for their clonal expansion and led to a marked increase in atherosclerotic plaque size. TET2-deficient macrophages exhibited an increase in NLRP3 inflammasome–mediated interleukin-1β secretion. An NLRP3 inhibitor showed greater atheroprotective activity in chimeric mice reconstituted with TET2-deficient cells than in nonchimeric mice. These results support the hypothesis that somatic TET2 mutations in blood cells play a causal role in atherosclerosis. PMID:28104796

  7. The regulation of immune cells by Lactobacilli: a potential therapeutic target for anti-atherosclerosis therapy

    PubMed Central

    Ding, Ya-Hui; Qian, Lin-Yan; Pang, Jie; Lin, Jing-Yang; Xu, Qiang; Wang, Li-Hong; Huang, Dong-Sheng; Zou, Hai

    2017-01-01

    Atherosclerosis is an inflammatory disease regulated by several immune cells including lymphocytes, macrophages and dendritic cells. Gut probiotic bacteria like Lactobacilli have been shown immunomodificatory effects in the progression of atherogenesis. Some Lactobacillus stains can upregulate the activity of regulatory T-lymphocytes, suppress T-lymphocyte helper (Th) cells Th1, Th17, alter the Th1/Th2 ratio, influence the subsets ratio of M1/M2 macrophages, inhibit foam cell formation by suppressing macrophage phagocytosis of oxidized low-density lipoprotein, block the activation of the immune system with dendritic cells, which are expected to suppress the atherosclerosis-related inflammation. However, various strains can have various effects on inflammation. Some other Lactobacillus strains were found have potential pro-atherogenic effect through promote Th1 cell activity, increase pro-inflammatory cytokines levels as well as decrease anti-inflammatory cytokines levels. Thus, identifying the appropriate strains is essential to the therapeutic potential of Lactobacilli as an anti-atherosclerotic therapy. PMID:28938693

  8. Polymorphisms of apolipoprotein E and angiotensin-converting enzyme genes and carotid atherosclerosis in heavy drinkers.

    PubMed

    Bednarska-Makaruk, Małgorzata; Rodo, Maria; Markuszewski, Cezary; Rozenfeld, Anna; Swiderska, Malgorzata; Habrat, Bogusław; Wehr, Hanna

    2005-01-01

    To investigate the influence of apolipoprotein E (APOE) and angiotensin-converting enzyme (ACE) gene polymorphisms on carotid artery atherosclerosis in alcoholism. Polymorphism of both genes was identified by DNA analysis in 130 male alcohol-dependent patients. Intima-media thickness (IMT) was measured ultrasonographically. Multivariate regression analysis showed that of all the known risk factors the greatest impact on carotid atherosclerosis in alcoholics was exerted by age, hypertension, LDL cholesterol and fasting plasma glucose levels. Subjects carrying the APO E epsilon4 allele were more liable to develop atherosclerotic changes in carotid arteries compared with subjects with the epsilon3/3 genotype, which showed statistical significance in patients under 50 years of age. No association was shown between ACE I/D polymorphism and carotid atherosclerosis. APO E polymorphism can increase the risk of carotid atherosclerosis development in an alcoholic subject. The association of the APO E epsilon4 allele with carotid atherosclerosis was significant in younger patients. Since the elevated carotid IMT is considered to be a good marker of increased risk of generalized atherosclerosis the consequences could involve both cardiac and cerebrovascular events.

  9. The Effect of Low-Dose Proteasome Inhibition on Pre-Existing Atherosclerosis in LDL Receptor-Deficient Mice

    PubMed Central

    Wilck, Nicola; Fechner, Mandy; Dan, Cristian; Stangl, Verena; Stangl, Karl; Ludwig, Antje

    2017-01-01

    Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in atherosclerosis development. However, the nature of UPS dysfunction has been proposed to be specific to certain stages of atherosclerosis development, which has implications for proteasome inhibition as a potential treatment option. Recently, low-dose proteasome inhibition with bortezomib has been shown to attenuate early atherosclerosis in low-density lipoprotein receptor-deficient (LDLR−/−) mice. The present study investigates the effect of low-dose proteasome inhibition with bortezomib on pre-existing advanced atherosclerosis in LDLR−/− mice. We found that bortezomib treatment of LDLR−/− mice with pre-existing atherosclerosis does not alter lesion burden. Additionally, macrophage infiltration of aortic root plaques, total plasma cholesterol levels, and pro-inflammatory serum markers were not influenced by bortezomib. However, plaques of bortezomib-treated mice exhibited larger necrotic core areas and a significant thinning of the fibrous cap, indicating a more unstable plaque phenotype. Taking recent studies on favorable effects of proteasome inhibition in early atherogenesis into consideration, our data support the hypothesis of stage-dependent effects of proteasome inhibition in atherosclerosis. PMID:28387708

  10. Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression.

    PubMed

    Pavlatou, M G; Remaley, A T; Gold, P W

    2016-08-30

    Klotho is a hormone secreted into human cerebrospinal fluid (CSF), plasma and urine that promotes longevity and influences the onset of several premature senescent phenotypes in mice and humans, including atherosclerosis, cardiovascular disease, stroke and osteoporosis. Preliminary studies also suggest that Klotho possesses tumor suppressor properties. Klotho's roles in these phenomena were first suggested by studies demonstrating that a defect in the Klotho gene in mice results in a significant decrease in lifespan. The Klotho-deficient mouse dies prematurely at 8-9 weeks of age. At 4-5 weeks of age, a syndrome resembling human ageing emerges consisting of atherosclerosis, osteoporosis, cognitive disturbances and alterations of hippocampal architecture. Several deficits in Klotho-deficient mice are likely to contribute to these phenomena. These include an inability to defend against oxidative stress in the central nervous system and periphery, decreased capacity to generate nitric oxide to sustain normal endothelial reactivity, defective Klotho-related mediation of glycosylation and ion channel regulation, increased insulin/insulin-like growth factor signaling and a disturbed calcium and phosphate homeostasis accompanied by altered vitamin D levels and ectopic calcification. Identifying the mechanisms by which Klotho influences multiple important pathways is an emerging field in human biology that will contribute significantly to understanding basic physiologic processes and targets for the treatment of complex diseases. Because many of the phenomena seen in Klotho-deficient mice occur in depressive illness, major depression and bipolar disorder represent illnesses potentially associated with Klotho dysregulation. Klotho's presence in CSF, blood and urine should facilitate its study in clinical populations.

  11. Addition of a novel, protective family history category allows better profiling of cardiovascular risk and atherosclerotic burden in the general population. The Asklepios Study.

    PubMed

    Van daele, Caroline M; De Meyer, Tim; De Buyzere, Marc L; Gillebert, Thierry C; Denil, Simon L I J; Bekaert, Sofie; Chirinos, Julio A; Segers, Patrick; De Backer, Guy G; De Bacquer, Dirk; Rietzschel, Ernst R

    2013-01-01

    Whereas the importance of family history (FH) is widely recognized in cardiovascular risk assessment, its full potential could be underutilized, when applied with its current simple guidelines-based definition (cFH): presence of premature cardiovascular disease (CVD) in a first-degree relative. We tested the added value of a new, extended family history definition (eFH), also taking into account later onset of disease, second-degree relatives and number of affected relatives, on profiling cardiovascular risk and atherosclerotic burden in the general population. Longitudinal population study. Random, representative population sample from Erpe-Mere and Nieuwerkerken (Belgium, primary care). 2524 male/female volunteers, aged 35-55 years, free from overt CVD. Subjects were extensively phenotyped including presence of atherosclerosis (ultrasound) and a newly developed FH questionnaire (4 generations). Compared to cFH, eFH was superior in predicting an adverse risk profile (glycemic state, elevated blood pressure, lipid abnormalities, presence of metabolic syndrome components) and presence of atherosclerosis (all age & sex-adjusted p<0.05). Unlike cFH, eFH remained a significant predictor of subclinical atherosclerosis after adjusting for confounders. Most relations with eFH were not graded but showed clear informational breakpoints, with absence of CVD (including late onset) in any first-degree relative being a negative predictor of atherosclerosis, and a particularly interesting phenotype for further study. A novel, extended FH definition is superior to the conventional definition in profiling cardiovascular risk and atherosclerotic burden in the general population. There remain clear opportunities to refine and increase the performance and informational content of this simple, readily-available inexpensive tool.

  12. MAOA promoter methylation and susceptibility to carotid atherosclerosis: role of familial factors in a monozygotic twin sample

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample. Methods We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors. Results When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association. Conclusions The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease. PMID:23116433

  13. Cardiovascular system diseases in patients with polycystic ovary syndrome - the role of inflammation process in this pathology and possibility of early diagnosis and prevention.

    PubMed

    Marciniak, Aleksandra; Nawrocka Rutkowska, Jolanta; Brodowska, Agnieszka; Wiśniewska, Berenika; Starczewski, Andrzej

    2016-12-23

    Polycystic ovary syndrome is a disorder which affects 5-10% of women in reproductive age. PCOS is a cause of hyperandrogenism, menstrual disorders and infertility. The most common clinical symptoms are hirsutism, acne and obesity. Patients often suffer from metabolic disorders: insulin resistance, hyperinsulinemia, dislipidemia, leading to atherosclerosis and others irregularities of the metabolic syndrome. Patients are in the high risk group for cardiovascular diseases (CVD) development because of the metabolic abnormalities. Obesity is observed in 35-60% of women with PCOS. Lean women with PCOS are also exposed to a greater risk of glucose intolerance development and abnormalities in lipid profile than women without PCOS with comparable BMI. Adipocytes are the source of many compounds of the paracrine and endocrine activity. Some of them are also markers and mediators of inflammation. Increased levels of proinflammatory cytokines in blood can promote atherosclerosis and cardiovascular disease. Markers: IL-18, TNF, IL-6 and hs-CRP are often elevated in patients with polycystic ovary syndrome. An increase in inflammatory markers may be an early indicator of the risk of developing insulin resistance and atherosclerosis, and may become a useful prognostic and therapeutic tool for monitoring patients with PCOS: lean and those with overweight and obesity. Assessment of the concentrations of inflammatory markers may become a very useful test in evaluating the risk of developing atherosclerosis and cardiovascular disease, long before their clinical manifestation. It will also allow for the appropriate prophylaxis.

  14. MAOA promoter methylation and susceptibility to carotid atherosclerosis: role of familial factors in a monozygotic twin sample.

    PubMed

    Zhao, Jinying; Forsberg, Christopher W; Goldberg, Jack; Smith, Nicholas L; Vaccarino, Viola

    2012-11-02

    Atherosclerosis is a complex process involving both genetic and epigenetic factors. The monoamine oxidase A (MAOA) gene regulates the metabolism of key neurotransmitters and has been associated with cardiovascular risk factors. This study investigates whether MAOA promoter methylation is associated with atherosclerosis, and whether this association is confounded by familial factors in a monozygotic (MZ) twin sample. We studied 84 monozygotic (MZ) twin pairs drawn from the Vietnam Era Twin Registry. Carotid intima-media thickness (IMT) was measured by ultrasound. DNA methylation in the MAOA promoter region was quantified by bisulfite pyrosequencing using genomic DNA isolated from peripheral blood leukocytes. The association between DNA methylation and IMT was first examined by generalized estimating equation, followed by matched pair analyses to determine whether the association was confounded by familial factors. When twins were analyzed as individuals, increased methylation level was associated with decreased IMT at four of the seven studied CpG sites. However, this association substantially reduced in the matched pair analyses. Further adjustment for MAOA genotype also considerably attenuated this association. The association between MAOA promoter methylation and carotid IMT is largely explained by familial factors shared by the twins. Because twins reared together share early life experience, which may leave a long-lasting epigenetic mark, aberrant MAOA methylation may represent an early biomarker for unhealthy familial environment. Clarification of familial factors associated with DNA methylation and early atherosclerosis will provide important information to uncover clinical correlates of disease.

  15. Bone mineral density and atherosclerosis: The Multi-Ethnic Study of Atherosclerosis, Abdominal Aortic Calcium Study

    PubMed Central

    Hyder, Joseph A; Allison, Matthew A; Barrett-Connor, Elizabeth; Detrano, Robert; Wong, Nathan D; Sirlin, Claude; Gapstur, Susan M; Ouyang, Pamela; Carr, J Jeffrey; Criqui, Michael H

    2009-01-01

    Context Molecular and cell biology studies have demonstrated an association between bone and arterial wall disease, but the significance of a population-level association is less clear and potentially confounded by inability to account for shared risk factors. Objective To test population-level associations between atherosclerosis types and bone integrity. Main Outcome Measures Volumetric trabecular lumbar bone mineral density (vBMD), ankle-brachial index (ABI), intima-media thickness of the common carotid (CCA-IMT) and internal carotid (ICA-IMT) arteries, and carotid plaque echogenicity. Design, Setting and Participants A random subset of participants from the Multi-Ethnic Study of Atherosclerosis (MESA) assessed between 2002 and 2005. Results 904 post-menopausal female (62.4 years; 62% non-white; 12% ABI<1; 17% CCA-IMT>1mm; 33% ICA-IMT>1mm) and 929 male (61.4 years; 58% non-white; 6% ABI<1; 25% CCA-IMT>1mm; 40% ICA-IMT>1mm) were included. In serial, sex-specific regression models adjusting for age, ethnicity, body mass index, dyslipidemia, hypertension, smoking, alcohol consumption, diabetes, homocysteine, interleukin-6, sex hormones, and renal function, lower vBMD was associated with lower ABI in men (p for trend <0.01) and greater ICA-IMT in men (p for trend <0.02). CCA-IMT was not associated with vBMD in men or women. Carotid plaque echogenicity was independently associated with lower vBMD in both men (trend p=0.01) and women (trend p<0.04). In all models, adjustment did not materially affect results. Conclusions Lower vBMD is independently associated with structural and functional measures of atherosclerosis in men and with more advanced and calcified carotid atherosclerotic plaques in both sexes. PMID:19819456

  16. Nuclear magnetic resonance lipoprotein abnormalities in newly-diagnosed type 2 diabetes and their association with preclinical carotid atherosclerosis.

    PubMed

    Amor, Antonio J; Catalan, Marta; Pérez, Antonio; Herreras, Zoe; Pinyol, Montserrat; Sala-Vila, Aleix; Cofán, Montserrat; Gilabert, Rosa; Ros, Emilio; Ortega, Emilio

    2016-04-01

    Atherogenic dyslipidemia is common in type 2 diabetes (T2DM) and predicts cardiovascular disease, but information on the association of its components with atherosclerosis is scarce. We aimed to assess differences in the lipoprotein profile in newly-diagnosed T2DM and matched control individuals and their associations with preclinical carotid atherosclerosis. In a case-control study, we evaluated lipoprotein profiles by nuclear magnetic resonance (NMR) spectroscopy and determined carotid intima-media thickness (IMT) and plaque presence (IMT ≥1.5 mm) by B-mode ultrasonography. We assessed 96 T2DM patients (median age 63 years, 44% women, 19% smokers, 54% hypertension, 38% dyslipidemia) and 90 non-diabetic controls matched for age, sex, and cardiovascular risk factors. In T2DM VLDL-particles (mainly large and enriched in cholesterol and triglycerides) were increased, and large HDL-particles (enriched in triglycerides and depleted in cholesterol) were reduced (p < 0.05; all comparisons). Regarding associations with preclinical atherosclerosis, VLDL triglyceride content (odds ratio [OR], 8.975; 95% confidence interval [CI], 2.330-34.576), total number of VLDL particles (OR, 2.713; CI, 1.601-4.598) and VLDL size (OR, 2.044; CI, 1.320-3.166), and the ratio cholesterol/triglycerides in HDL (OR, 0.638; CI, 0.477-0.852) were associated with plaque burden (≥3 plaques) independently of confounders, including conventional lipid levels. NMR-assessed advanced lipoprotein profile identifies lipid abnormalities associated with newly-diagnosed T2DM and preclinical atherosclerosis that are not captured by the traditional lipid profile. At this early stage of diabetes, NMR lipoproteins could be useful to identify candidates for a more comprehensive cardiovascular risk prevention strategy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Urinary Sodium and Potassium Excretion and Carotid Atherosclerosis in Chinese Men and Women

    PubMed Central

    Dai, Xiao-Wei; Wang, Cheng; Xu, Ying; Guan, Ke; Su, Yi-Xiang; Chen, Yu-Ming

    2016-01-01

    Limited studies have examined the association between sodium (Na) and potassium (K) levels and the risk of atherosclerosis. This study examined whether higher Na and Na/K levels and low K levels were independent risk factors for atherosclerosis. This community-based cross-sectional study included 3290 subjects (1067 men and 2223 women) 40 to 75 years of age in Guangzhou, China, between 2011 and 2013. Urinary excretion of Na and K were measured from the first morning void, and creatinine-adjusted values were used. The intima-media thickness (IMT) of the carotid common artery and the carotid bifurcation was measured with high-resolution B-mode ultrasonography. Dietary K and Na intake and other covariates were obtained by face-to-face interviews. A significant positive association was seen between urinary Na excretion and carotid atherosclerosis after adjustment for age, sex, and other lifestyle covariates. The odds ratios (OR) and 95% confidence interval (CI) of the highest (vs. lowest) quartile of urinary Na were 1.32 (1.04–1.66) for carotid plaques, 1.48 (1.18–1.87) for increased common carotid artery IMT, and 1.55 (1.23–1.96) for increased carotid bifurcation IMT (all p-trend < 0.01). A similar positive association was observed between urinary Na/K levels and carotid plaque and increased IMT, and between dietary Na intake and increased bifurcation IMT. Regarding potassium data, we only found a significantly lower presence of carotid plaque (OR 0.72, 95% CI 0.57–0.91) for quartile 2 (vs. 1) of urinary K. Our findings suggest that higher levels of urinary excretion Na and Na/K are significantly associated with greater presence of carotid atherosclerosis in Chinese adults. PMID:27706075

  18. MicroRNA-19b/221/222 induces endothelial cell dysfunction via suppression of PGC-1α in the progression of atherosclerosis.

    PubMed

    Xue, Yunxing; Wei, Zhe; Ding, Hanying; Wang, Qiang; Zhou, Zhen; Zheng, Shasha; Zhang, Yujing; Hou, Dongxia; Liu, Yuchen; Zen, Ke; Zhang, Chen-Yu; Li, Jing; Wang, Dongjin; Jiang, Xiaohong

    2015-08-01

    Peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a master regulator of cellular energy metabolism that is associated with many cardiovascular diseases, including atherosclerosis. However, the role and underling regulatory mechanisms of PGC-1α in the pathogenesis of atherosclerosis are not completely understood. Here, we identified the microRNAs that post-transcriptionally regulate PGC-1α production and their roles in the pathogenesis of atherosclerosis. A significant down-regulation of PGC-1α protein was observed in human atherosclerotic vessel samples. Using microarray and bioinformatics analyses, PGC-1α was identified as a common target gene of miR-19b-3p, miR-221-3p and miR-222-3p, which are mainly located in the intima of atherosclerotic vessels. In vitro induction of miR-19b-3p, miR-221-3p and miR-222-3p by the inflammatory cytokines TNFα and IFNγ may affect PGC-1α protein production and consequently result in mitochondrial dysfunction in Human Aortic Endothelial Cells (HAECs). The overexpression of miR-19b-3p, miR-221-3p and miR-222-3p in HAECs caused intracellular ROS accumulation, which led to cellular apoptosis. Taken together, these results demonstrate that PGC-1α plays a protective role against the vascular complications of atherosclerosis. Moreover, the posttranscriptional regulation of PGC-1α by miR-19b/221/222 was unveiled, which provides a novel mechanism in which a panel of microRNAs can modulate endothelial cell apoptosis via the regulation mitochondrial function. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Association Between Coronary Artery Disease Genetic Variants and Subclinical Atherosclerosis: An Association Study and Meta-analysis.

    PubMed

    Zabalza, Michel; Subirana, Isaac; Lluis-Ganella, Carla; Sayols-Baixeras, Sergi; de Groot, Eric; Arnold, Roman; Cenarro, Ana; Ramos, Rafel; Marrugat, Jaume; Elosua, Roberto

    2015-10-01

    Recent studies have identified several genetic variants associated with coronary artery disease. Some of these genetic variants are not associated with classical cardiovascular risk factors and the mechanism of such associations is unclear. The aim of the study was to determine whether these genetic variants are related to subclinical atherosclerosis measured by carotid intima media thickness, carotid stiffness, and ankle brachial index. A cross-sectional study nested in the follow-up of the REGICOR cohort was undertaken. The study included 2667 individuals. Subclinical atherosclerosis measurements were performed with standardized methods. Nine genetic variants were genotyped to assess associations with subclinical atherosclerosis, individually and in a weighted genetic risk score. A systematic review and meta-analysis of previous studies that analyzed these associations was undertaken. Neither the selected genetic variants nor the genetic risk score were significantly associated with subclinical atherosclerosis. In the meta-analysis, the rs1746048 (CXCL12; n = 10581) risk allele was directly associated with carotid intima-media thickness (β = 0.008; 95% confidence interval, 0.001-0.015), whereas the rs6725887 (WDR12; n = 7801) risk allele was inversely associated with this thickness (β = -0.013; 95% confidence interval, -0.024 to -0.003). The analyzed genetic variants seem to mediate their association with coronary artery disease through different mechanisms. Our results generate the hypothesis that the CXCL12 variant appears to influence coronary artery disease risk through arterial remodeling and thickening, whereas the WDR12 risk variant could be related to higher plaque vulnerability. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  20. Ambient Air Pollution and Atherosclerosis in Los Angeles

    PubMed Central

    Künzli, Nino; Jerrett, Michael; Mack, Wendy J.; Beckerman, Bernardo; LaBree, Laurie; Gilliland, Frank; Thomas, Duncan; Peters, John; Hodis, Howard N.

    2005-01-01

    Associations have been found between long-term exposure to ambient air pollution and cardiovascular morbidity and mortality. The contribution of air pollution to atherosclerosis that underlies many cardiovascular diseases has not been investigated. Animal data suggest that ambient particulate matter (PM) may contribute to atherogenesis. We used data on 798 participants from two clinical trials to investigate the association between atherosclerosis and long-term exposure to ambient PM up to 2.5 μm in aerodynamic diameter (PM2.5). Baseline data included assessment of the carotid intima-media thickness (CIMT), a measure of subclinical atherosclerosis. We geocoded subjects’ residential areas to assign annual mean concentrations of ambient PM2.5. Exposure values were assigned from a PM2.5 surface derived from a geostatistical model. Individually assigned annual mean PM2.5 concentrations ranged from 5.2 to 26.9 μg/m3 (mean, 20.3). For a cross-sectional exposure contrast of 10 μg/m3 PM2.5, CIMT increased by 5.9% (95% confidence interval, 1–11%). Adjustment for age reduced the coefficients, but further adjustment for covariates indicated robust estimates in the range of 3.9–4.3% (p-values, 0.05–0.1). Among older subjects (≥60 years of age), women, never smokers, and those reporting lipid-lowering treatment at baseline, the associations of PM2.5 and CIMT were larger with the strongest associations in women ≥60 years of age (15.7%, 5.7–26.6%). These results represent the first epidemiologic evidence of an association between atherosclerosis and ambient air pollution. Given the leading role of cardiovascular disease as a cause of death and the large populations exposed to ambient PM2.5, these findings may be important and need further confirmation. PMID:15687058

  1. Subclinical carotid atherosclerosis in patients with chronic obstructive pulmonary disease: a meta-analysis of literature studies.

    PubMed

    Ambrosino, Pasquale; Lupoli, Roberta; Cafaro, Giovanni; Iervolino, Salvatore; Carone, Mauro; Pappone, Nicola; Di Minno, Matteo Nicola Dario

    2017-09-01

    Chronic obstructive pulmonary disease (COPD) patients have an increased cardiovascular (CV) morbidity and mortality. Common carotid intima-media thickness (CCA-IMT) and carotid plaques are surrogate markers of subclinical atherosclerosis and predictors of CV events. We performed a meta-analysis to evaluate the association between COPD and subclinical atherosclerosis. Studies evaluating the impact of COPD on CCA-IMT and on the prevalence of carotid plaques were systematically searched. Twenty studies (2082 COPD patients and 4844 controls) were included, 12 studies with data on CCA-IMT (13 data-sets on 1180 COPD patients and 2312 controls) and 12 studies reporting on the prevalence of carotid plaques (1231 COPD patients and 4222 controls). Compared to controls, COPD patients showed a significantly higher CCA-IMT (mean difference [MD]: 0.201 mm; 95%CI: 0.142, 0.260; p < .001), and an increased prevalence of carotid plaques (Odds Ratio [OR]: 2.503; 95%CI: 1.333, 2.175; p < .0001). Meta-regression models showed a direct association between disease severity [as expressed by Global Initiative for Chronic Obstructive Lung Disease (GOLD) class] and the difference in the risk of carotid plaques presence between COPD patients and controls. COPD is significantly associated with subclinical atherosclerosis. These findings may be useful to plan adequate CV prevention strategies. Key messages COPD patients show a higher CCA-IMT and an increased prevalence of carotid plaques compared with controls. A more severe pulmonary disease is associated with a higher prevalence of carotid plaques in COPD patients. Screening for subclinical atherosclerosis may be worthy in COPD patients to plan specific prevention strategies.

  2. An exploratory factor analysis of inflammatory and coagulation markers associated with femoral artery atherosclerosis in the San Diego Population Study.

    PubMed

    Egnot, Natalie Suder; Barinas-Mitchell, Emma; Criqui, Michael H; Allison, Matthew A; Ix, Joachim H; Jenny, Nancy S; Wassel, Christina L

    2018-04-01

    Several biomarkers of inflammation and coagulation have been implicated in lower extremity atherosclerosis. We utilized an exploratory factor analysis (EFA) to identify distinct factors derived from circulating inflammatory and coagulation biomarkers then examined the associations of these factors with measures of lower extremity subclinical atherosclerosis, including the ankle-brachial index (ABI), common and superficial femoral intima-media thickness (IMT), and atherosclerotic plaque presence, burden, and characteristics. The San Diego Population Study (SDPS) is a prospective, community-living, multi-ethnic cohort of 1103 men and women averaged age 70. Regression analysis was used to assess cross-sectional associations between the identified groupings of biomarkers (factors) and the ABI and femoral artery atherosclerosis measurements. Two biomarker factors emerged from the factor analysis. Factor 1 consisting of C-reactive protein (CRP), interleukin (IL)-6, and fibrinogen was significantly associated with higher odds (OR = 1.99, p < 0.01) of a borderline ABI value (0.91-0.99), while Factor 2 containing D-dimer and pentraxin (PTX)-3 was significantly associated with higher common femoral artery (CFA) IMT (β = 0.23, p < 0.01) and lower ABI (β = -0.03, p < 0.01). Two groupings of biomarkers were identified via EFA of seven circulating biomarkers of inflammation and coagulation. These distinct groups are differentially associated with markers of lower extremity subclinical atherosclerosis. Our findings suggest that high inflammatory and coagulation burden were better markers of more severe lower-extremity disease as indicated by low ABI rather than early atherosclerotic lesion development in the femoral artery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Angiogenesis in symptomatic intracranial atherosclerosis: predominance of the inhibitor endostatin is related to a greater extent and risk of recurrence.

    PubMed

    Arenillas, Juan F; Alvarez-Sabín, José; Montaner, Joan; Rosell, Anna; Molina, Carlos A; Rovira, Alex; Ribó, Marc; Sánchez, Esther; Quintana, Manuel

    2005-01-01

    Angiogenesis may be beneficial in chronic myocardial and limb ischemia, but its role in intracranial atherosclerosis remains unknown. We aimed to investigate the relationship between the pro-angiogenic vascular endothelial growth factor (VEGF) and the anti-angiogenic endostatin, and the extent and risk of recurrence of symptomatic intracranial atherosclerosis. Of a total of 94 consecutive patients with symptomatic intracranial stenoses, 40 fulfilled all inclusion criteria. Intracranial stenoses were confirmed by magnetic resonance angiography. Magnetic resonance imaging (MRI) including diffusion-weighted sequences was conducted. Plasmatic VEGF and endostatin were determined from blood samples obtained 3 months after stroke onset, and patients were followed-up thereafter. A total of 144 intracranial stenoses were confirmed (median number per patient=3). Endostatin/VEGF ratio gradually augmented with the increasing number of intracranial stenoses (r=0.35, P=0.02). Diabetes mellitus (OR, 6.04; CI, 1.1 to 32.2; P=0.03) and a higher endostatin/VEGF ratio (OR, 15.7; CI, 2.2 to 112.3; P=0.006) were independently associated with a greater extent of intracranial atherosclerosis. During a median follow-up of 13 months, 8 patients (20%) experienced a new cerebral ischemic event. A higher baseline endostatin concentration was an independent predictor of new events (hazard ratio, 7.24; CI, 1.6 to 33.8; P=0.011) in a Cox regression model after adjustment for age, sex, number of stenotic vessels, and risk factors. Patients with a higher endostatin level had a lower survival free of new events (P=0.01, log-rank test). A predominance of the inhibitor endostatin within the endogenous angiogenic response is associated with a greater extent and risk of recurrence of symptomatic intracranial atherosclerosis, suggesting that angiogenesis may be beneficial in this condition.

  4. Biological signatures of asymptomatic extra- and intracranial atherosclerosis: the Barcelona-AsIA (Asymptomatic Intracranial Atherosclerosis) study.

    PubMed

    López-Cancio, Elena; Galán, Amparo; Dorado, Laura; Jiménez, Marta; Hernández, María; Millán, Mónica; Reverté, Silvia; Suñol, Anna; Barallat, Jaume; Massuet, Anna; Alzamora, Maria Teresa; Dávalos, Antonio; Arenillas, Juan Francisco

    2012-10-01

    Intracranial atherosclerotic disease (ICAD) remains a challenge for stroke primary and secondary prevention. Molecular pathways involved in the development of ICAD from its asymptomatic stages are largely unknown. In our population-based study, we aimed to compare the risk factor and biomarker profiles associated with intracranial and extracranial asymptomatic cerebral atherosclerosis. The Asymptomatic Intracranial Atherosclerosis (AsIA) study cohort includes a random sample population of 933 white subjects >50 years with a moderate to high vascular risk (based on REGICOR score) and without a history of stroke (64% males; mean age, 66 years). Carotid and intracranial atherosclerosis were screened by cervical and transcranial color-coded Duplex ultrasound, being moderate to severe stenoses confirmed by MR angiography. We registered clinical and anthropometric data and created a biobank with blood samples at baseline. A panel of biomarkers involved in atherothrombogenesis was determined: C-reactive protein, asymmetric-dimethylarginine, resistin, and plasminogen activator inhibitor-1. Insulin resistance was quantified by Homeostasis Model Assessment index. After multinomial regression analyses, male sex, hypertension, smoking, and alcoholic habits were independent risk factors of isolated extracranial atherosclerotic disease. Diabetes and metabolic syndrome conferred a higher risk for ICAD than for extracranial atherosclerotic disease. Moreover, metabolic syndrome and insulin resistance were independent risk factors of moderate to severe ICAD but were not risk factors of moderate to severe extracranial atherosclerotic disease. Regarding biomarkers, asymmetric-dimethylarginine was independently associated with isolated ICAD and resistin with combined ICAD-extracranial atherosclerotic disease. Our findings show distinct clinical and biological profiles in subclinical ICAD and extracranial atherosclerotic disease. Insulin resistance emerged as an important molecular pathway involved in the development of ICAD from its asymptomatic stage.

  5. Low CD4+ T cell count as a major atherosclerosis risk factor in HIV-infected women and men

    PubMed Central

    Kaplan, Robert C; Kingsley, Lawrence A; Gange, Stephen J; Benning, Lorie; Jacobson, Lisa P; Lazar, Jason; Anastos, Kathryn; Tien, Phyllis C; Sharrett, A Richey; Hodis, Howard N

    2009-01-01

    Objective To assess the association of HIV infection, HIV disease parameters (including CD4+ T-cell counts, HIV viral load, and AIDS) and antiretroviral medication use with subclinical carotid artery atherosclerosis. Design Cross-sectional study nested within a prospective cohort study Methods Among participants in the Women's Interagency HIV Study (1,331 HIV-infected women, 534 HIV-uninfected women) and Multicenter AIDS Cohort Study (600 HIV-infected men, 325 HIV-uninfected men), we measured subclinical carotid artery lesions and common carotid artery intima-media thickness (CIMT) using B-mode ultrasound. We estimated adjusted mean CIMT differences and prevalence ratios (PRs) for carotid lesions associated with HIV-related disease and treatments, with multivariate adjustment to control for possible confounding variables. Results Among HIV-infected individuals, a low CD4+ T cell count was independently associated with an increased prevalence of carotid lesions. Compared to the reference group of HIV-uninfected individuals, the adjusted PR for lesions among HIV-infected individuals with CD4+ T-cell count <200 cells/mm3 was 2.00 (95% confidence interval 1.22, 3.28) in women and 1.74 (95% confidence interval 1.04, 2.93) in men. No consistent association of antiretroviral medications with carotid atherosclerosis was observed, except for a borderline significant association between protease inhibitor use and carotid lesions in men (with no association among women). History of clinical AIDS and HIV viral load were not significantly associated with carotid atherosclerosis. Conclusions Beyond traditional cardiovascular disease risk factors, low CD4+ T-cell count is the most robust risk factor for increased subclinical carotid atherosclerosis in HIV-infected women and men. PMID:18670221

  6. Prevention of atherosclerosis with dietary antioxidants: fact or fiction?

    PubMed

    Duell, P B

    1996-04-01

    The notion that oxidation of lipids and lipoproteins may contribute to the pathogenesis of atherosclerosis is supported by a large body of evidence. It is hypothesized that dietary antioxidants may help prevent development and progression of atherosclerosis. The available evidence helps substantiate this hypothesis but is not yet conclusive. The results of several ongoing large randomized intervention trials will provide valuable information about the efficacy and safety of supplemental dietary antioxidants in prevention of atherosclerosis.

  7. Function of CD147 in atherosclerosis and atherothrombosis

    PubMed Central

    Wang, Cuiping; Jin, Rong; Zhu, Xiaolei; Yan, Jinchuan; Guohong, Li

    2015-01-01

    CD147, a member of the immunoglobulin super family, is a well-known potent inducer of extracellular matrix metalloproteinases. Studies show that CD147 is upregulated in inflammatory diseases. Atherosclerosis is a chronic inflammatory disease of the artery wall. Further understanding of the functions of CD147 in atherosclerosis and atherothrombosis may provide a new strategy for preventing and treating cardiovascular disease. In this review, we discuss how CD147 contributes to atherosclerosis and atherothrombosis. PMID:25604960

  8. Biomarkers and degree of atherosclerosis are independently associated with incident atherosclerotic cardiovascular disease in a primary prevention cohort: The ARIC study

    PubMed Central

    Agarwala, Anandita; Virani, Salim; Couper, David; Chambless, Lloyd; Boerwinkle, Eric; Astor, Brad C.; Hoogeveen, Ron C.; Coresh, Joe; Sharrett, A. Richey; Folsom, Aaron R; Mosley, Tom; Ballantyne, Christie M.; Nambi, Vijay

    2016-01-01

    Background and aims Biomarkers and atherosclerosis imaging have been studied individually for association with incident cardiovascular disease (CVD); however, limited data exist on whether the biomarkers are associated with events with a similar magnitude in the presence of atherosclerosis. In this study, we assessed whether the presence of atherosclerosis as measured by carotid intima media thickness (cIMT) affects the association between biomarkers known to be associated with coronary heart disease (CHD) and incident cardiovascular disease (CVD) in a primary prevention cohort. Methods 8,127 participants from the ARIC study (4th visit, 1996–1998) were stratified as having minimal, mild, or substantial atherosclerosis by cIMT. Levels of C-reactive protein, lipoprotein-associated phospholipase A2, cardiac troponin T, N-terminal pro-brain natriuretic peptide, lipoprotein(a), cystatin C, and urine albumin to creatinine ratio were measured in each participant. Hazard ratios were used to determine the relationship between the biomarkers and incident CHD, stroke, and CVD in each category of atherosclerosis. Results While each of the biomarkers was significantly associated with risk of events overall, we found no significant differences noted in the strength of association of biomarkers with CHD, stroke, and CVD when analyzed by degree of atherosclerosis. Conclusions These findings suggest that the level of atherosclerosis does not significantly influence the association between biomarkers and CVD. PMID:27665201

  9. Biomarkers and degree of atherosclerosis are independently associated with incident atherosclerotic cardiovascular disease in a primary prevention cohort: The ARIC study.

    PubMed

    Agarwala, Anandita; Virani, Salim; Couper, David; Chambless, Lloyd; Boerwinkle, Eric; Astor, Brad C; Hoogeveen, Ron C; Coresh, Joe; Sharrett, A Richey; Folsom, Aaron R; Mosley, Tom; Ballantyne, Christie M; Nambi, Vijay

    2016-10-01

    Biomarkers and atherosclerosis imaging have been studied individually for association with incident cardiovascular disease (CVD); however, limited data exist on whether the biomarkers are associated with events with a similar magnitude in the presence of atherosclerosis. In this study, we assessed whether the presence of atherosclerosis as measured by carotid intima media thickness (cIMT) affects the association between biomarkers known to be associated with coronary heart disease (CHD) and incident cardiovascular disease (CVD) in a primary prevention cohort. 8127 participants from the ARIC study (4th visit, 1996-1998) were stratified as having minimal, mild, or substantial atherosclerosis by cIMT. Levels of C-reactive protein, lipoprotein-associated phospholipase A2, cardiac troponin T, N-terminal pro-brain natriuretic peptide, lipoprotein(a), cystatin C, and urine albumin to creatinine ratio were measured in each participant. Hazard ratios were used to determine the relationship between the biomarkers and incident CHD, stroke, and CVD in each category of atherosclerosis. While each of the biomarkers was significantly associated with risk of events overall, we found no significant differences noted in the strength of association of biomarkers with CHD, stroke, and CVD when analyzed by degree of atherosclerosis. These findings suggest that the level of atherosclerosis does not significantly influence the association between biomarkers and CVD. Published by Elsevier Ireland Ltd.

  10. Effect of Cocoa and Its Flavonoids on Biomarkers of Inflammation: Studies of Cell Culture, Animals and Humans

    PubMed Central

    Goya, Luis; Martín, María Ángeles; Sarriá, Beatriz; Ramos, Sonia; Mateos, Raquel; Bravo, Laura

    2016-01-01

    Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts. PMID:27070643

  11. Effect of Cocoa and Its Flavonoids on Biomarkers of Inflammation: Studies of Cell Culture, Animals and Humans.

    PubMed

    Goya, Luis; Martín, María Ángeles; Sarriá, Beatriz; Ramos, Sonia; Mateos, Raquel; Bravo, Laura

    2016-04-09

    Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts.

  12. Response to statin therapy in obstructive sleep apnea syndrome: a multicenter randomized controlled trial.

    PubMed

    Joyeux-Faure, Marie; Tamisier, Renaud; Baguet, Jean-Philippe; Dias-Domingos, Sonia; Perrig, Stephen; Leftheriotis, Georges; Janssens, Jean-Paul; Trzepizur, Wojciech; Launois, Sandrine H; Stanke-Labesque, Françoise; Lévy, Patrick A; Gagnadoux, Frédéric; Pepin, Jean-Louis

    2014-01-01

    Accumulated evidence implicates sympathetic activation as inducing oxidative stress and systemic inflammation, which in turn lead to hypertension, endothelial dysfunction, and atherosclerosis in obstructive sleep apnea (OSA). Statins through their pleiotropic properties may modify inflammation, lipid profile, and cardiovascular outcomes in OSA. This multicenter, randomized, double-blind study compared the effects of atorvastatin 40 mg/day versus placebo over 12 weeks on endothelial function (the primary endpoint) measured by peripheral arterial tone (PAT). Secondary endpoints included office blood pressure (BP), early carotid atherosclerosis, arterial stiffness measured by pulse wave velocity (PWV), and metabolic parameters. 51 severe OSA patients were randomized. Key demographics for the study population were age 54 ± 11 years, 21.6% female, and BMI 28.5 ± 4.5 kg/m(2). In intention to treat analysis, mean PAT difference between atorvastatin and placebo groups was 0.008 (-0.29; 0.28), P = 0.979. Total and LDL cholesterol significantly improved with atorvastatin. Systolic BP significantly decreased with atorvastatin (mean difference: -6.34 mmHg (-12.68; -0.01), P = 0.050) whereas carotid atherosclerosis and PWV were unchanged compared to the placebo group. In OSA patients, 3 months of atorvastatin neither improved endothelial function nor reduced early signs of atherosclerosis although it lowered blood pressure and improved lipid profile. This trial is registered with NCT00669695.

  13. Is systemic lupus erithematosus a new risk factor for atherosclerosis?

    PubMed

    Freire, Beatriz Funayama Alvarenga; da Silva, Rogério Cardoso; Fabro, Alexandre Todorovic; dos Santos, Daniela Cristina

    2006-09-01

    To evaluate the prevalence of cardiovascular events (CVE) secondary to atherosclerosis in lupus patients and correlate them to the traditional risk factors, disease duration and drug therapy used. A retrospective study was carried out based on data obtained from patients charts. Patients included were those who had a lupus diagnosis confirmed at least two years before inclusion in the study and had been followed since 1992. CVE were characterized as MI, angina pectoris and stroke non-related to lupus activity. Risk factors and drugs used for treatment were recorded. Seventy-one charts were analyzed. Patients mean age was 34.2+/-12.7 years; 68 were women and three were men; 58 were Caucasian (81.6%). Ten (14.08%) presented CVE. Patients in whom CVE were observed were older (42.7 vs. 32.8 years p=0.0021) and presented longer disease duration (10.8 vs. 7.2 years p=0.011). The traditional risk factors, daily and cumulative doses of steroids, immunosuppressive drugs and antimalarial drugs were not significant when patients with and without CVE were compared. The prevalence of CVE secondary to atherosclerosis in systemic lupus erythematosus (SLE) was 14.08%. The traditional risk factors were not associated with the development of CVE in lupus patients. Patients that presented cardiovascular events were older and presented longer disease duration. It is a premature conclusion to establish SLE as an independent risk factor for atherosclerosis development.

  14. Determining the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients.

    PubMed

    Bozoglan, Alihan; Ertugrul, Abdullah Seckin; Taspınar, Mehmet; Yuzbasioglu, Betul

    2017-05-01

    The aim of this study is to determine the relationship between atherosclerosis and periodontopathogenic microorganisms in chronic periodontitis patients following periodontal treatment. A total of 40 patients were included in the study. 20 of these patients diagnosed with atherosclerosis and chronic periodontitis formed the test group. The remaining 20 patients were systemically healthy patients diagnosed with chronic periodontitis and formed the control group. All patients had nonsurgical periodontal treatment. The periodontopathogenic microorganism levels were determined at baseline and at 6 months in microbial dental plaque samples and WBC, LDL, HDL, PLT, fibrinogen, creatinine and hs-CRP levels were determined by blood samples. Statistically significant reduction has been achieved in clinical periodontal parameters following non-surgical periodontal treatment in test and control groups. Following periodontal treatment, WBC, LDL, PLT, fibrinogen, creatinine and hs-CRP levels significantly decreased and HDL levels significantly increased in both test and control groups. Similarly, the periodontopathogenic microorganism levels significantly decreased following periodontal treatment in the test and control groups. A statistically significant positive correlation has been determined between the periodontopathogenic microorganism levels and WBC, LDL, PLT, fibrinogen, creatinine, and hs-CRP levels in the test group. The association between hs-CRP, WBC, LDL, PLT, fibrinogen, creatinine, and the amount of periodontopathogenic microorganisms indicates the possibility that periodontal treatment could decrease the risk atherosclerosis. More studies must be conducted in order for these results to be supported.

  15. Manifestation of Coronary Atherosclerosis in Klang Valley, Malaysia: An Autopsy Study

    PubMed Central

    Rahimi, Razuin; Singh, Mansharan Kaur Chainchel; Noor, Norizal Mohd; Omar, Effat; Noor, Shahidan Md; Mahmood, Mohd Shah; Abdullah, Nurliza; Nawawi, Hapizah Mohd

    2018-01-01

    Aims: The present study aimed to determine the epidemiological aspects of medico-legal autopsies and manifestation of coronary atherosclerosis. Methods: This was a cross sectional study involving 222 cases recruited from National Institute of Forensic Medicine (NIFM) Hospital Kuala Lumpur (HKL) and Department of Forensic Medicine Hospital Sungai Buloh (HSgB) for a period of 15 months, from December 2012 to April 2014. Sociodemographic and autopsy findings, including the cause and manner of death were documented. Results: Male and female subjects aged 18–70 years were recruited. Males contributed to 86% of the total subjects and comprised 61% of young adults. Road traffic accidents were the primary cause of death, contributing almost 50% of the subjects. One third of the cases comprised of death due to natural causes, wherein almost 75% of the subjects within this category succumbed to sudden cardiac death. Coronary artery disease (CAD) contributed to 60% of the sudden cardiac death (SCD). Single and double-vessel diseases were the most common pattern of atherosclerosis. In almost 80% of CAD cases, atherosclerosis affected the left anterior descending artery (LAD). Conclusion: Cardiovascular diseases were the most significant natural cause of sudden death with a staggering figure of 75%. CAD was the single most commonly encountered pathology within the SCD. Most cases presented with single and double-vessel diseases, observed in all subjects, as well as the young adult population. PMID:29118310

  16. Is serum Klotho protective against atherosclerosis in patients with type 1 diabetes mellitus?

    PubMed

    Keles, Nursen; Dogan, Burcu; Kalcik, Macit; Caliskan, Mustafa; Keles, Necibe Nur; Aksu, Feyza; Bulut, Mustafa; Kostek, Osman; Isbilen, Banu; Yilmaz, Yusuf; Oguz, Aytekin

    2016-01-01

    Klotho deficiency is associated with several metabolic disorders. Two dimensional (2D) longitudinal strain (LS) of left ventricle (LV), carotid artery intima-media thickness (CIMT), flow-mediated dilation (FMD) of brachial artery and epicardial fat thickness (EFT) have been reported to be early predictors of atherosclerosis. We aimed to investigate the relationship between serum Klotho levels and these early predictors of atherosclerosis in patients with type 1 diabetes mellitus (DM). The study included 45 type 1 diabetic patients and 35 controls. Serum Klotho levels were determined by ELISA method. The patient group was also divided into two subgroups according to serum Klotho levels: high (HK) and low Klotho (LK) groups. EFT, CIMT and FMD were measured according to appropriate recommendations. Speckle tracking analysis was performed using the Echopac software. The patient group had significantly lower serum Klotho (p=0.001), FMD (p<0.001) and LS of LV (p<0.001) values, but larger EFT (p<0.001) and CIMT (p<0.001) values than controls. LK subgroup had also significantly lower FMD (p<0.001) and LS of LV (p<0.001) but larger EFT (p=0.002) and CIMT (p<0.001) values than HK subgroup. Serum Klotho may have a protective effect against atherosclerosis and endothelial dysfunction in type 1 DM. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Exercise ameliorates endoplasmic reticulum stress-mediated vascular dysfunction in mesenteric arteries in atherosclerosis.

    PubMed

    Hong, Junyoung; Kim, Kwangchan; Park, Eunkyung; Lee, Jonghae; Markofski, Melissa M; Marrelli, Sean P; Park, Yoonjung

    2018-05-21

    Endoplasmic reticulum (ER) stress is closely associated with atherosclerosis, but the effects of exercise on ER stress-mediated endothelial dysfunction in atherosclerosis is not yet fully understood. We assessed endothelium-dependent vasodilation in isolated mesenteric arteries from wild type (WT), WT with exercise (WT-EX), ApoE knockout (ApoE KO), and ApoE KO mice with exercise (ApoE KO-EX). Vasodilation to acetylcholine (ACh) was elicited in the presence of inhibitors of ER stress, eNOS, caspase-1, and UCP-2 (Tudca, L-NAME, AC-YVARD-cmk, and Genipin, respectively) and the ER stress inducer (Tunicamycin). Immunofluorescence was used to visualize the expression of CHOP, as an indicator of ER stress, in superior mesenteric arteries (SMA). Dilation to ACh was attenuated in ApoE KO but was improved in ApoE KO-EX. Incubation of Tudca and AC-YVARD-cmk improved ACh-induced vasodilation in ApoE KO. L-NAME, tunicamycin, and Genipin attenuated vasodilation in WT, WT-EX and ApoE KO-EX, but not in ApoE KO. Exercise training reversed the increase in CHOP expression in the endothelium of SMA of ApoE KO mice. We conclude that ER stress plays a significant role in endothelial dysfunction of resistance arteries in atherosclerosis and that exercise attenuates ER stress and regulates its critical downstream signaling pathways including eNOS, UCP-2 and caspase-1.

  18. Targeted disruption of LDLR causes hypercholesterolemia and atherosclerosis in Yucatan miniature pigs.

    PubMed

    Davis, Bryan T; Wang, Xiao-Jun; Rohret, Judy A; Struzynski, Jason T; Merricks, Elizabeth P; Bellinger, Dwight A; Rohret, Frank A; Nichols, Timothy C; Rogers, Christopher S

    2014-01-01

    Recent progress in engineering the genomes of large animals has spurred increased interest in developing better animal models for diseases where current options are inadequate. Here, we report the creation of Yucatan miniature pigs with targeted disruptions of the low-density lipoprotein receptor (LDLR) gene in an effort to provide an improved large animal model of familial hypercholesterolemia and atherosclerosis. Yucatan miniature pigs are well established as translational research models because of similarities to humans in physiology, anatomy, genetics, and size. Using recombinant adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer, male and female LDLR+/- pigs were generated. Subsequent breeding of heterozygotes produced LDLR-/- pigs. When fed a standard swine diet (low fat, no cholesterol), LDLR+/- pigs exhibited a moderate, but consistent increase in total and LDL cholesterol, while LDLR-/- pigs had considerably elevated levels. This severe hypercholesterolemia in homozygote animals resulted in atherosclerotic lesions in the coronary arteries and abdominal aorta that resemble human atherosclerosis. These phenotypes were more severe and developed over a shorter time when fed a diet containing natural sources of fat and cholesterol. LDLR-targeted Yucatan miniature pigs offer several advantages over existing large animal models including size, consistency, availability, and versatility. This new model of cardiovascular disease could be an important resource for developing and testing novel detection and treatment strategies for coronary and aortic atherosclerosis and its complications.

  19. Chronic oral infection with major periodontal bacteria Tannerella forsythia modulates systemic atherosclerosis risk factors and inflammatory markers.

    PubMed

    Chukkapalli, Sasanka S; Rivera-Kweh, Mercedes F; Velsko, Irina M; Chen, Hao; Zheng, Donghang; Bhattacharyya, Indraneel; Gangula, Pandu R; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2015-04-01

    Tannerella forsythia is a Gram-negative anaerobic organism that inhabits the subgingival cavity and initiates connective tissue destruction and alveolar bone resorption in periodontal disease (PD). PD is a chronic immunoinflammatory disease and has been linked to several systemic diseases including atherosclerosis. This study evaluated the effects of a chronic oral infection with T. forsythia ATCC 43037 on the induction of PD, inflammatory markers and atherosclerosis risk factors in hyperlipidemic ApoE(null) mice. Mice were orally infected for 12 and 24 weeks prior to euthanasia. Bacterial colonization of the oral cavity and bacteremia was confirmed via isolation of genomic DNA from oral plaque and tissues. Oral infection elicited significantly elevated levels of serum IgG and IgM antibodies and alveolar bone resorption compared to control mice. Tannerella forsythia-infected mice had increased serum amyloid A, and significantly reduced serum nitric oxide when compared to controls. Tannerella forsythia chronic infection also significantly increased serum lipoproteins suggesting altered cholesterol metabolism and potential for aortic inflammation. Despite enhanced acute phase reactants and altered lipid profiles, T. forsythia infection was associated with decreased aortic plaque. This study investigates the potential of a known periodontal bacterial pathogen found in atherosclerotic plaque in humans to accelerate atherosclerosis in hyperlipdemic mice. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. [Clinical peculiarities of atherosclerosis of peripheral arteries in patients with abdominal aortic calcification].

    PubMed

    Mel'nikov, M V; Zelinskiĭ, V A

    The authors analysed clinical peculiarities of atherosclerosis of peripheral arteries (hereinafter referred to as APA) in patients presenting with abdominal aortic calcification (AAC). In order to determine the incidence rate of AAC in the population of patients with APA we analysed medical records of a total of 1,800 patients. The study itself included a total of 193 patients with APA further subdivided into two groups: 108 patients with AAC (Study Group) and 85 patients without AAC. Beside general clinical examination all patients were subjected to transthoracic echocardiography, duplex scanning of the aorta and lower-limb arteries, extended lipidogram and coagulogram. AAC was verified by means of computed tomography. It was determined that in one third of cases AAC was combined with abdominal aortic calcification, with APA on the background of AAC having certain peculiarities, i.e., high incidence of multisegmental lesions (68%) with predominant localization of the process in the aortoiliac and femoropopliteal segments (43%); frequent involvement of the terminal portion of the aorta and pelvic arteries. Patients with AAC also were noted to have a series of peculiarities in the indices of lipid metabolism, as well as signs of procoagulant syndrome and alterations of the structural and functional characteristics of the myocardium. It was stated that peculiarities of APA on the background of AAC should be taken into consideration while working out the program of diagnosis, treatment (including surgical), and rehabilitation of patients.

  1. The Therapeutic Potential of Anti-Inflammatory Exerkines in the Treatment of Atherosclerosis

    PubMed Central

    Yu, Megan; Tsai, Sheng-Feng; Kuo, Yu-Min

    2017-01-01

    Although many cardiovascular (CVD) medications, such as antithrombotics, statins, and antihypertensives, have been identified to treat atherosclerosis, at most, many of these therapeutic agents only delay its progression. A growing body of evidence suggests physical exercise could be implemented as a non-pharmacologic treatment due to its pro-metabolic, multisystemic, and anti-inflammatory benefits. Specifically, it has been discovered that certain anti-inflammatory peptides, metabolites, and RNA species (collectively termed “exerkines”) are released in response to exercise that could facilitate these benefits and could serve as potential therapeutic targets for atherosclerosis. However, much of the relationship between exercise and these exerkines remains unanswered, and there are several challenges in the discovery and validation of these exerkines. This review primarily highlights major anti-inflammatory exerkines that could serve as potential therapeutic targets for atherosclerosis. To provide some context and comparison for the therapeutic potential of exerkines, the anti-inflammatory, multisystemic benefits of exercise, the basic mechanisms of atherosclerosis, and the limited efficacies of current anti-inflammatory therapeutics for atherosclerosis are briefly summarized. Finally, key challenges and future directions for exploiting these exerkines in the treatment of atherosclerosis are discussed. PMID:28608819

  2. Combined therapy of dietary fish oil and stearoyl-CoA desaturase 1 inhibition prevents the metabolic syndrome and atherosclerosis.

    PubMed

    Brown, J Mark; Chung, Soonkyu; Sawyer, Janet K; Degirolamo, Chiara; Alger, Heather M; Nguyen, Tam M; Zhu, Xuewei; Duong, My-Ngan; Brown, Amanda L; Lord, Caleb; Shah, Ramesh; Davis, Matthew A; Kelley, Kathryn; Wilson, Martha D; Madenspacher, Jennifer; Fessler, Michael B; Parks, John S; Rudel, Lawrence L

    2010-01-01

    Stearoyl-CoA desaturase 1 (SCD1) is a critical regulator of energy metabolism and inflammation. We have previously reported that inhibition of SCD1 in hyperlipidemic mice fed a saturated fatty acid (SFA)-enriched diet prevented development of the metabolic syndrome, yet surprisingly promoted severe atherosclerosis. In this study we tested whether dietary fish oil supplementation could prevent the accelerated atherosclerosis caused by SCD1 inhibition. LDLr(-/-), ApoB(100/100) mice were fed diets enriched in saturated fat or fish oil in conjunction with antisense oligonucleotide (ASO) treatment to inhibit SCD1. As previously reported, in SFA-fed mice, SCD1 inhibition dramatically protected against development of the metabolic syndrome, yet promoted atherosclerosis. In contrast, in mice fed fish oil, SCD1 inhibition did not result in augmented macrophage inflammatory response or severe atherosclerosis. In fact, the combined therapy of dietary fish oil and SCD1 ASO treatment effectively prevented both the metabolic syndrome and atherosclerosis. SCD1 ASO treatment in conjunction with dietary fish oil supplementation is an effective combination therapy to comprehensively combat the metabolic syndrome and atherosclerosis in mice.

  3. Current siRNA Targets in Atherosclerosis and Aortic Aneurysm

    PubMed Central

    Pradhan-Nabzdyk, Leena; Huang, Chenyu; Logerfo, Frank W.; Nabzdyk, Christoph S.

    2014-01-01

    Atherosclerosis (ATH) and aortic aneurysms (AA) remain challenging chronic diseases that confer high morbidity and mortality despite advances in medical, interventional, and surgical care. RNA interference represents a promising technology that may be utilized to silence genes contributing to ATH and AA. Despite positive results in preclinical and some clinical feasibility studies, challenges such as target/sequence validation, tissue specificity, transfection efficiency, and mitigation of unwanted off-target effects remain to be addressed. In this review the most current targets and some novel approaches in siRNA delivery are being discussed. Due to the plethora of investigated targets, only studies published between 2010 and 2014 were included. PMID:24882715

  4. L-Arginine and Alzheimer's Disease

    PubMed Central

    Yi, Jing; Horky, Laura L.; Friedlich, Avi L.; Shi, Ying; Rogers, Jack T.; Huang, Xudong

    2009-01-01

    Alzheimer's disease (AD), the most common form of dementia, is characterized by progressive neurodegeneration and loss of cognitive and memory functions. Although the exact causes of AD are still unclear, evidence suggests that atherosclerosis, redox stress, inflammation, neurotransmitter dysregulation, and impaired brain energy metabolism may all be associated with AD pathogenesis. Herein, we explore a possible role for L-arginine (L-arg) in AD, taking into consideration known functions for L-arg in atherosclerosis, redox stress and the inflammatory process, regulation of synaptic plasticity and neurogenesis, and modulation of glucose metabolism and insulin activity. L-arg, a precursor of nitric oxide and polyamine, exhibits multiple functions in human health and may play a prominent role in age-related degenerative diseases such as AD. PMID:19079617

  5. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner

    NASA Astrophysics Data System (ADS)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping

    2012-07-01

    We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.

  6. Macrophage Mitochondrial Oxidative Stress Promotes Atherosclerosis and NF-κB-Mediated Inflammation in Macrophages

    PubMed Central

    Wang, Ying; Wang, Gary Z.; Rabinovitch, Peter S.; Tabas, Ira

    2014-01-01

    Rationale Mitochondrial oxidative stress (mitoOS) has been shown to correlate with the progression of human atherosclerosis. However, definitive cell-type specific causation studies in vivo are lacking, and the molecular mechanisms of potential pro-atherogenic effects remain to be determined. Objective To assess the importance of macrophage mitoOS in atherogenesis and explore the underlying molecular mechanisms. Methods & Results We first validated Western-type diet-fed Ldlr-/- mice as a model of human mitoOS-atherosclerosis association by showing that a marker of mitoOS in lesional macrophages, non-nuclear oxidative DNA damage, correlates with aortic root lesion development. To investigate the importance of macrophage-mitoOS, we used a genetic engineering strategy in which the OS suppressor catalase was ectopically expressed in mitochondria (mCAT) in macrophages. MitoOS in lesional macrophages was successfully suppressed in these mice, and this led to a significant reduction in aortic root lesional area. The mCAT lesions had less monocyte-derived cells, less Ly6chi monocyte infiltration into lesions, and lower levels of the monocyte chemotactic protein-1 (MCP-1). The decrease in lesional MCP-1 was associated with suppression of other markers of inflammation and with decreased phosphorylation of RelA (NF-κB p65), indicating decreased activation of the pro-inflammatory NF-κB pathway. Using models of mitoOS in cultured macrophages, we showed that mCAT suppressed MCP-1 expression by decreasing activation of the Iκ-kinase-RelA NF-κB pathway. Conclusions MitoOS in lesional macrophages amplifies atherosclerotic lesion development by promoting NF-κB-mediated entry of monocytes and other inflammatory processes. In view of the mitoOS-atherosclerosis link in human atheromata, these findings reveal a potentially new therapeutic target to prevent the progression of atherosclerosis. PMID:24297735

  7. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages.

    PubMed

    Wang, Ying; Wang, Gary Z; Rabinovitch, Peter S; Tabas, Ira

    2014-01-31

    Mitochondrial oxidative stress (mitoOS) has been shown to correlate with the progression of human atherosclerosis. However, definitive cell type-specific causation studies in vivo are lacking, and the molecular mechanisms of potential proatherogenic effects remain to be determined. Our aims were to assess the importance of macrophage mitoOS in atherogenesis and to explore the underlying molecular mechanisms. We first validated Western diet-fed Ldlr(-/-) mice as a model of human mitoOS-atherosclerosis association by showing that non-nuclear oxidative DNA damage, a marker of mitoOS in lesional macrophages, correlates with aortic root lesion development. To investigate the importance of macrophage mitoOS, we used a genetic engineering strategy in which the OS suppressor catalase was ectopically expressed in mitochondria (mCAT) in macrophages. MitoOS in lesional macrophages was successfully suppressed in these mice, and this led to a significant reduction in aortic root lesional area. The mCAT lesions had less monocyte-derived cells, less Ly6c(hi) monocyte infiltration into lesions, and lower levels of monocyte chemotactic protein-1. The decrease in lesional monocyte chemotactic protein-1 was associated with the suppression of other markers of inflammation and with decreased phosphorylation of RelA (NF-κB p65), indicating decreased activation of the proinflammatory NF-κB pathway. Using models of mitoOS in cultured macrophages, we showed that mCAT suppressed monocyte chemotactic protein-1 expression by decreasing the activation of the IκB-kinase β-RelA NF-κB pathway. MitoOS in lesional macrophages amplifies atherosclerotic lesion development by promoting NF-κB-mediated entry of monocytes and other inflammatory processes. In view of the mitoOS-atherosclerosis link in human atheromata, these findings reveal a potentially new therapeutic target to prevent the progression of atherosclerosis.

  8. [Atherosclerosis in inflammatory diseases].

    PubMed

    Páramo, José A; Rodríguez, José A; Orbe, Josune

    2007-05-19

    The recognition that inflammation is a hallmark of atherosclerotic disease and its complications has led to a series of studies reporting high prevalence of atherosclerosis in chronic inflammatory diseases. Indeed, chronic immune diseases, such as systemic lupus erythematosus and rheumatoid arthritis, are associated with proinflammation, accelerated atherosclerosis and increased incidence of cardiovascular disease. Since the susceptibility towards cardiovascular events cannot be explained by classical risk factors, disease-specific pathways have been put forward as additional risk factors, potentially important for future prevention and treatment of atherosclerosis associated with chronic inflammatory diseases.

  9. Atherosclerosis associated with pericardial effusion in a central bearded dragon (Pogona vitticeps).

    PubMed

    Schilliger, Lionel; Lemberger, Karin; Chai, Norin; Bourgeois, Aude; Charpentier, Maud

    2010-09-01

    Atherosclerosis is a common disease in pet birds, particularly in psittacines, and is frequently found when performing postmortem examinations on adult and old dogs, in which it is mainly associated with endocrine diseases, such as hypothyroidism and diabetes mellitus. However, atherosclerosis is poorly documented in reptiles and consequently poorly understood. In the current case report, atherosclerosis and pericardial effusion were diagnosed in a 2-year-old male central bearded dragon (Pogona vitticeps) based on ultrasound visualization, necropsy, and histologic examination.

  10. Relationship between adult height and body weight and risk of carotid atherosclerosis assessed in terms of carotid intima-media thickness: The Nagasaki Islands study

    PubMed Central

    2013-01-01

    Background Previous studies have reported an inverse association between height and risk of cardiovascular disease. However, evidence is limited for the association between risk of atherosclerosis and height. Further, although the association between atherosclerosis and body mass index (BMI) is reportedly positive, there have been no reports of studies on associations between height and atherosclerosis in relation to BMI. Methods We conducted a cross-sectional study of Japanese men aged 30 to 89 years undergoing general health check-ups. Results Of the 1,337 men, 312 were diagnosed with carotid atherosclerosis (carotid intima-media thickness (CIMT) ≥ 1.1 mm), but no significant association was found between height and carotid atherosclerosis for the entire study group. Stratification by BMI status of those analytical findings disclosed a significant inverse association between height and carotid atherosclerosis among overweight (BMI ≥ 25 kg/m2) but not among non-overweight (BMI < 25 kg/m2) men. The classical cardiovascular risk factors-adjusted odds ratio (OR) and 95% confidence interval (CI) of carotid atherosclerosis for an increment of one SD (standard deviation) in height (6.70 cm) were 0.71 (0.54 to 0.94) for overweight (BMI ≥ 25 kg/m2) and 1.05 (0.87 to 1.27) for non-overweight (BMI < 25 kg/m2) men. Conclusion Independent from classical cardiovascular risk factors, height was found to be inversely associated with carotid atherosclerosis for overweight but not for non-overweight men. PMID:24180493

  11. Exogenous hydrogen sulfide protects human umbilical vein endothelial cells against high glucose‑induced injury by inhibiting the necroptosis pathway.

    PubMed

    Lin, Jiaqiong; Chen, Meiji; Liu, Donghong; Guo, Ruixian; Lin, Kai; Deng, Haiou; Zhi, Ximei; Zhang, Weijie; Feng, Jianqiang; Wu, Wen

    2018-03-01

    Hyperglycemia is a key factor in the development of diabetic complications, including the processes of atherosclerosis. Receptor‑interacting protein 3 (RIP3), a mediator of necroptosis, is implicated in atherosclerosis development. Additionally, hydrogen sulfide (H2S) protects the vascular endothelium against hyperglycemia‑induced injury and attenuates atherosclerosis. On the basis of these findings, the present study aimed to confirm the hypothesis that necroptosis mediates high glucose (HG)‑induced injury in human umbilical vein endothelial cells (HUVECs), and that the inhibition of necroptosis contributes to the protective effect of exogenous H2S against this injury. The results revealed that exposure of HUVECs to 40 mM HG markedly enhanced the expression level of RIP3, along with multiple injuries, including a decrease in cell viability, an increase in the number of apoptotic cells, an increase in the expression level of cleaved caspase‑3, generation of reactive oxygen species (ROS), as well as dissipation of the mitochondrial membrane potential (MMP). Treatment of the cells with sodium hydrogen sulfide (NaHS; a donor of H2S) prior to exposure to HG significantly attenuated the increased RIP3 expression and the aforementioned injuries by HG. Notably, treatment of cells with necrostatin‑1 (Nec‑1), an inhibitor of necroptosis, prior to exposure to HG ameliorated the HG‑induced injuries, leading to a decrease in ROS generation and a loss of MMP. However, pre‑treatment of the cells with Nec‑1 enhanced the HG‑induced increase in the expression levels of cleaved caspases‑3 and ‑9. By contrast, pre‑treatment with Z‑VAD‑FMK, a pan ‑caspase inhibitor, promoted the increased expression of RIP3 by HG. Taken together, the findings of the present study have demonstrated, to the best of our knowledge for the first time, that exogenous H2S protects HUVECs against HG‑induced injury through inhibiting necroptosis. The present study has also provided novel evidence that there is a negative interaction between necroptosis and apoptosis in the HG‑treated HUVECs.

  12. Protein carbamylation predicts mortality in ESRD.

    PubMed

    Koeth, Robert A; Kalantar-Zadeh, Kamyar; Wang, Zeneng; Fu, Xiaoming; Tang, W H Wilson; Hazen, Stanley L

    2013-04-01

    Traditional risk factors fail to explain the increased risk for cardiovascular morbidity and mortality in ESRD. Cyanate, a reactive electrophilic species in equilibrium with urea, posttranslationally modifies proteins through a process called carbamylation, which promotes atherosclerosis. The plasma level of protein-bound homocitrulline (PBHCit), which results from carbamylation, predicts major adverse cardiac events in patients with normal renal function, but whether this relationship is similar in ESRD is unknown. We quantified serum PBHCit in a cohort of 347 patients undergoing maintenance hemodialysis with 5 years of follow-up. Kaplan-Meier analyses revealed a significant association between elevated PBHCit and death (log-rank P<0.01). After adjustment for patient characteristics, laboratory values, and comorbid conditions, the risk for death among patients with PBHCit values in the highest tertile was more than double the risk among patients with values in the middle tertile (adjusted hazard ratio [HR], 2.4; 95% confidence interval [CI], 1.5-3.9) or the lowest tertile (adjusted HR, 2.3; 95% CI, 1.5-3.7). Including PBHCit significantly improved the multivariable model, with a net reclassification index of 14% (P<0.01). In summary, serum PBHCit, a footprint of protein carbamylation, predicts increased cardiovascular risk in patients with ESRD, supporting a mechanistic link among uremia, inflammation, and atherosclerosis.

  13. [Dynamics of the emotional state of patients with atherosclerosis of lower limb arteries undergoing surgical treatment].

    PubMed

    Dmitrieva, A A; Dubinina, E A

    2016-01-01

    The study was aimed at determining the dynamics of the emotional state and factors influencing thereupon in patients presenting with atherosclerosis of lower limb arteries and undergoing surgical treatment. The study included a total of sixty-five 36-to-90-year-old patients (53 men and 12 women) subjected to examination twice - prior to surgery and before discharge by means of semi-structured interview, self-assessment scale of feeling and mood, methods "Integrative test of anxiety" and "Type of attitude towards the disease" (TOBOL), questionnaire for assessing health-related quality of life SF-36 and Krantz questionnaire in order to determine the position in the therapeutic process. After surgery (on postoperative day 7-10 of hospital stay) the patients demonstrated a decrease in the degree of anxiety and somatic complaints. Women (p=0.037), patients with the duration of the disease from 1 to 8 years (p=0.033), with signs of personality anxiety (p≤0.045), disadaptive variants of attitude to disease and treatment (p≤0.05), as well as clearly manifesting mistrust for medical recommendations (p=0.014) belong to a group of risk of emotional stress at the postoperative stage. Clinical and socio-demographic determinants are comparatively less important in formation of pronounced anxiety of postoperative period than the patient's personality.

  14. What We Have Learned from the Recent Meta-analyses on Diagnostic Methods for Atherosclerotic Plaque Regression.

    PubMed

    Biondi-Zoccai, Giuseppe; Mastrangeli, Simona; Romagnoli, Enrico; Peruzzi, Mariangela; Frati, Giacomo; Roever, Leonardo; Giordano, Arturo

    2018-01-17

    Atherosclerosis has major morbidity and mortality implications globally. While it has often been considered an irreversible degenerative process, recent evidence provides compelling proof that atherosclerosis can be reversed. Plaque regression is however difficult to appraise and quantify, with competing diagnostic methods available. Given the potential of evidence synthesis to provide clinical guidance, we aimed to review recent meta-analyses on diagnostic methods for atherosclerotic plaque regression. We identified 8 meta-analyses published between 2015 and 2017, including 79 studies and 14,442 patients, followed for a median of 12 months. They reported on atherosclerotic plaque regression appraised with carotid duplex ultrasound, coronary computed tomography, carotid magnetic resonance, coronary intravascular ultrasound, and coronary optical coherence tomography. Overall, all meta-analyses showed significant atherosclerotic plaque regression with lipid-lowering therapy, with the most notable effects on echogenicity, lipid-rich necrotic core volume, wall/plaque volume, dense calcium volume, and fibrous cap thickness. Significant interactions were found with concomitant changes in low density lipoprotein cholesterol, high density lipoprotein cholesterol, and C-reactive protein levels, and with ethnicity. Atherosclerotic plaque regression and conversion to a stable phenotype is possible with intensive medical therapy and can be demonstrated in patients using a variety of non-invasive and invasive imaging modalities.

  15. Atherogenic index of plasma: a useful marker for subclinical atherosclerosis in ankylosing spondylitis : AIP associate with cIMT in AS.

    PubMed

    Cure, Erkan; Icli, Abdullah; Uslu, Ali Ugur; Sakiz, Davut; Cure, Medine Cumhur; Baykara, Rabia Aydogan; Yavuz, Fatma; Arslan, Sevket; Kucuk, Adem

    2018-05-01

    Ankylosing spondylitis (AS) is associated with an increased risk of atherosclerotic cardiovascular disease (ACD). The atherogenic index of plasma (AIP), which is the logarithmic transformation of the plasma triglyceride (TG) level to the high-density lipoprotein level (HDL) ratio, has been suggested to be a novel marker in the identification of atherosclerosis risk. Therefore, this study aims to determine if the AIP can act as an accurate marker for the detection of subclinical atherosclerosis. Fifty-two male patients with AS and 52 age-, gender-, and body mass index (BMI)-matched healthy control subjects were included in the study. For each patient, AIP and total cholesterol (TC)/HDL values were calculated and carotid artery intima-media thickness (cIMT) was measured. The mean (SD) cIMT and median (range) AIP values for AS patients were higher than that of the healthy control subjects (0.60 ± 0.18 vs. 0.51 ± 0.10, p = 0.003 and 0.23 [- 0.32 to 0.85] vs. 0.09 [- 0.53 to 0.49], p = 0.007, respectively). A positive correlation was found between the patients' cIMT and AIP values (r = 0.307, p = 0.002) and TC/HDL values (r = 0.241, p = 0.014). Regression analysis revealed an independent association between the subclinical atherosclerosis and AIP (beta [β] = 0.309, p = 0.002). There were no independent correlations between subclinical atherosclerosis and TC (β = 0.245, p = 0.065), TG (β = 0.185, p = 0.515), HDL (β = 0.198, p = 0.231), TC/HDL (β = 0.032, p = 0.862), and low-density lipoprotein (LDL) (β = 0.151, p = 0.246). A strong and independent correlation exists between AIP and cIMT values. Therefore, the AIP could serve as a better marker than the TC/HDL ratio for the detection of subclinical atherosclerosis in AS patients.

  16. Lipid profiling following intake of the omega 3 fatty acid DHA identifies the peroxidized metabolites F4-neuroprostanes as the best predictors of atherosclerosis prevention.

    PubMed

    Gladine, Cécile; Newman, John W; Durand, Thierry; Pedersen, Theresa L; Galano, Jean-Marie; Demougeot, Céline; Berdeaux, Olivier; Pujos-Guillot, Estelle; Mazur, Andrzej; Comte, Blandine

    2014-01-01

    The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR(-/-)) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R(2) = 0.97, p = 0.02), triglyceridemia (R(2) = 0.97, p = 0.01) and cholesterolemia (R(2) = 0.96, p<0.01). Targeted lipidomic analyses revealed that both the profiles of EPA and DHA and their corresponding oxygenated metabolites were substantially modulated in plasma and liver. Notably, the hepatic level of F4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (p<0.001) and along with plasma EPA-derived diols was an important mathematical positive predictor of atherosclerosis prevention. Thus, oxygenated n-3 PUFAs, and F4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA, further in vitro investigations are needed to confirm such a contention and to decipher the molecular mechanisms of action.

  17. Cardiovascular disease in autoimmune rheumatic diseases.

    PubMed

    Hollan, Ivana; Meroni, Pier Luigi; Ahearn, Joseph M; Cohen Tervaert, J W; Curran, Sam; Goodyear, Carl S; Hestad, Knut A; Kahaleh, Bashar; Riggio, Marcello; Shields, Kelly; Wasko, Mary C

    2013-08-01

    Various autoimmune rheumatic diseases (ARDs), including rheumatoid arthritis, spondyloarthritis, vasculitis and systemic lupus erythematosus, are associated with premature atherosclerosis. However, premature atherosclerosis has not been uniformly observed in systemic sclerosis. Furthermore, although experimental models of atherosclerosis support the role of antiphospholipid antibodies in atherosclerosis, there is no clear evidence of premature atherosclerosis in antiphospholipid syndrome (APA). Ischemic events in APA are more likely to be caused by pro-thrombotic state than by enhanced atherosclerosis. Cardiovascular disease (CVD) in ARDs is caused by traditional and non-traditional risk factors. Besides other factors, inflammation and immunologic abnormalities, the quantity and quality of lipoproteins, hypertension, insulin resistance/hyperglycemia, obesity and underweight, presence of platelets bearing complement protein C4d, reduced number and function of endothelial progenitor cells, apoptosis of endothelial cells, epigenetic mechanisms, renal disease, periodontal disease, depression, hyperuricemia, hypothyroidism, sleep apnea and vitamin D deficiency may contribute to the premature CVD. Although most research has focused on systemic inflammation, vascular inflammation may play a crucial role in the premature CVD in ARDs. It may be involved in the development and destabilization of both atherosclerotic lesions and of aortic aneurysms (a known complication of ARDs). Inflammation in subintimal vascular and perivascular layers appears to frequently occur in CVD, with a higher frequency in ARD than in non-ARD patients. It is possible that this inflammation is caused by infections and/or autoimmunity, which might have consequences for treatment. Importantly, drugs targeting immunologic factors participating in the subintimal inflammation (e.g., T- and B-cells) might have a protective effect on CVD. Interestingly, vasa vasorum and cardiovascular adipose tissue may play an important role in atherogenesis. Inflammation and complement depositions in the vessel wall are likely to contribute to vascular stiffness. Based on biopsy findings, also inflammation in the myocardium and small vessels may contribute to premature CVD in ARDs (cardiac ischemia and heart failure). There is an enormous need for an improved CVD prevention in ARDs. Studies examining the effect of DMARDs/biologics on vascular inflammation and CV risk are warranted. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Relation of cerebral vessel disease to Alzheimer's disease dementia and cognitive function in elderly people: a cross-sectional study.

    PubMed

    Arvanitakis, Zoe; Capuano, Ana W; Leurgans, Sue E; Bennett, David A; Schneider, Julie A

    2016-08-01

    Few data on the pathology of cerebral vessel disease, dementia, and cognition are available. We examined the association of cerebral atherosclerosis and arteriolosclerosis neuropathology with probable and possible Alzheimer's disease dementia and cognitive function. This cross-sectional study included men and women aged 65 years or older who had yearly clinical assessments and had agreed to brain autopsy at the time of death, as part of one of two cohort studies of ageing (The Religious Orders Study and the Rush Memory and Aging Project). Individuals without dementia or with Alzheimer's disease dementia, and with complete neuropathological data, are included in our analyses. We used neuropsychological data proximate to death to create summary measures of global cognition and cognitive domains. Clinical data recorded between 1994 and 2015 were used to determine presence of Alzheimer's disease dementia. Systematic neuropathological assessments documented the severity of cerebral large vessel (atherosclerosis) and small vessel (arteriolosclerosis) disease. By use of regression analyses adjusted for demographics, gross and microscopic infarcts, and Alzheimer's disease pathology, we examined associations of vessel disease severity (mild, moderate, and severe) with odds of probable and possible Alzheimer's disease dementia and cognitive function. Study enrolment began in January, 1994, and two cohort studies are ongoing. 1143 individuals were included in our analyses (median age at death 88·8 years; 478 [42%] with Alzheimer's disease dementia). Moderate-to-severe atherosclerosis was present in 445 (39%) individuals, and arteriolosclerosis in 401 (35%) individuals. Each level increase in the severity of atherosclerosis or arteriolosclerosis was associated with significantly higher odds of Alzheimer's disease dementia (odds ratio [OR] for atherosclerosis 1·33, 95% CI 1·11-1·58; OR for arteriolosclerosis 1·20, 1·04-1·40). Atherosclerosis was associated with lower scores for global cognition (estimate -0·10 [SE 0·04], p=0·0096) and four cognitive domains (episodic memory -0·10 [0·04], p=0·017; semantic memory -0·11 [0·05], p=0·018; perceptual speed -0·14 [0·04], p=0·00080; and visuospatial abilities -0·13 [0·04], p=0·0080), but not working memory (-0·05 [0·04], p=0·21). Arteriolosclerosis was associated with lower scores for global cognition (estimate -0·10 [0·03], p=0·0015) and four domains (episodic memory -0·12 [0·04], p=0·00090; semantic memory -0·10 [0·04], p=0·013; working memory -0·07 [0·03], p=0·045; perceptual speed -0·12 [0·04], p=0·0012), and a non-significant association was noted for visuospatial abilities (-0·07 [0·03], p=0·052). Findings were unchanged in analyses controlling for the presence of APOE ε4 allele or vascular risk factors. Cerebral atherosclerosis and arteriolosclerosis are associated with Alzheimer's disease dementia, and are also associated with low scores in most cognitive domains. Cerebral vessel pathology might be an under-recognised risk factor for Alzheimer's disease dementia. US National Institutes of Health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Prevalence and Correlates of Subclinical Atherosclerosis in Alaskan Eskimos

    PubMed Central

    Cutchins, Alexis; Roman, Mary J.; Devereux, Richard B.; Ebbesson, Sven O.E.; Umans, Jason G.; Zhu, Jianhui; Weissman, Neil J.; Howard, Barbara V.

    2009-01-01

    Background and Purpose The recent increase in clinical cardiovascular disease in Alaska Eskimos suggests that changes in traditional lifestyle may have adverse public health consequences. This study examines the prevalence of subclinical vascular disease and its relation to risk factors in Alaska Eskimos. Methods Participants in the population-based Genetics of Coronary Artery Disease in Alaska Natives (GOCADAN) Study underwent evaluation of cardiovascular disease risk factors and carotid ultrasound. Outcome variables were carotid intimal-medial thickness and presence and extent of atherosclerosis. Results In multivariate analyses, intimal-medial thickness and presence and extent of atherosclerosis were all associated with traditional cardiovascular disease risk factors but not dietary intake of omega-3 fatty acids. Rates of carotid atherosclerosis were higher than those reported in 2 large population-based US studies. Conclusions Alaska Eskimos have similar traditional risk factors for carotid atherosclerosis as other ethnic and racial populations but have higher prevalences of atherosclerosis, possibly attributable to higher rates of smoking. PMID:18617652

  20. Immune cell screening of a nanoparticle library improves atherosclerosis therapy

    PubMed Central

    Baxter, Samantha; Menon, Arjun; Alaarg, Amr; Sanchez-Gaytan, Brenda L.; Fay, Francois; Zhao, Yiming; Ouimet, Mireille; Braza, Mounia S.; Longo, Valerie A.; Abdel-Atti, Dalya; Duivenvoorden, Raphael; Calcagno, Claudia; Storm, Gert; Tsimikas, Sotirios; Moore, Kathryn J.; Swirski, Filip K.; Nahrendorf, Matthias; Fisher, Edward A.; Pérez-Medina, Carlos; Fayad, Zahi A.; Reiner, Thomas; Mulder, Willem J. M.

    2016-01-01

    Immunological complexity in atherosclerosis warrants targeted treatment of specific inflammatory cells that aggravate the disease. With the initiation of large phase III trials investigating immunomodulatory drugs for atherosclerosis, cardiovascular disease treatment enters a new era. We here propose a radically different approach: implementing and evaluating in vivo a combinatorial library of nanoparticles with distinct physiochemical properties and differential immune cell specificities. The library’s nanoparticles are based on endogenous high-density lipoprotein, which can preferentially deliver therapeutic compounds to pathological macrophages in atherosclerosis. Using the apolipoprotein E-deficient (Apoe−/−) mouse model of atherosclerosis, we quantitatively evaluated the library’s immune cell specificity by combining immunological techniques and in vivo positron emission tomography imaging. Based on this screen, we formulated a liver X receptor agonist (GW3965) and abolished its liver toxicity while still preserving its therapeutic function. Screening the immune cell specificity of nanoparticles can be used to develop tailored therapies for atherosclerosis and other inflammatory diseases. PMID:27791119

  1. Cyanotic congenital heart disease and atherosclerosis.

    PubMed

    Tarp, Julie Bjerre; Jensen, Annette Schophuus; Engstrøm, Thomas; Holstein-Rathlou, Niels-Henrik; Søndergaard, Lars

    2017-06-01

    Improved treatment options in paediatric cardiology and congenital heart surgery have resulted in an ageing population of patients with cyanotic congenital heart disease (CCHD). The risk of acquired heart disease such as atherosclerosis increases with age.Previous studies have speculated whether patients with CCHD are protected against atherosclerosis. Results have shown that the coronary arteries of patients with CCHD are free from plaques and stenosis. Decreased carotid intima-media thickness and low total plasma cholesterol may indicate a reduced risk of later development of atherosclerosis. However, the evidence is still sparse and questionable, and a reasonable explanation for the decreased risk of developing atherosclerosis in patients with CCHD is still missing.This review provides an overview of what is known about the prevalence and potential causes of the reduced risk of atherosclerosis in patients with CCHD. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Testing the iron hypothesis in a mouse model of atherosclerosis

    PubMed Central

    Kautz, Léon; Gabayan, Victoria; Wang, Xuping; Wu, Judy; Onwuzurike, James; Jung, Grace; Qiao, Bo; Lusis, Aldons J.; Ganz, Tomas; Nemeth, Elizabeta

    2013-01-01

    SUMMARY Hepcidin, the iron-regulatory hormone and acute phase reactant, is proposed to contribute to the pathogenesis of atherosclerosis by promoting iron accumulation in plaque macrophages, leading to increased oxidative stress and inflammation in the plaque (the “iron hypothesis”). Hepcidin and iron may thus represent modifiable risk factors in atherosclerosis. We measured hepcidin expression in Apoe−/− mice with varying diets and ages. To assess the role of macrophage iron in atherosclerosis, we generated Apoe−/− mice with macrophage-specific iron accumulation by introducing the ferroportin ffe mutation. Macrophage iron loading was also enhanced by intravenous iron injection. Contrary to the iron hypothesis, we found that hepatic hepcidin expression was not increased at any stage of the atherosclerosis progression in Apoe−/− or Apoe/ffe mice and the atherosclerotic plaque size was not increased in mice with elevated macrophage iron. Our results strongly argue against any significant role of macrophage iron in atherosclerosis progression in mice. PMID:24316081

  3. THE INFLUENCE OF INTRAVENOUSLY ADMINISTERED SURFACE-ACTIVE AGENTS ON THE DEVELOPMENT OF EXPERIMENTAL ATHEROSCLEROSIS IN RABBITS

    PubMed Central

    Kellner, Aaron; Correll, James W.; Ladd, Anthony T.

    1951-01-01

    A study was made of the relationship of blood lipids to the development of experimental atherosclerosis. Rabbits fed a diet containing cholesterol were found to develop hyperlipemia characterized by a great increase in blood cholesterol and a much lesser increase in blood phospholipids; after several weeks they manifested conspicuous atherosclerosis of the aorta, as has often been observed by others. Comparable rabbits fed the same diets containing added cholesterol were given in addition repeated intravenous injections of the surface-active agents Tween 80 and Triton A20; these animals developed hyperlipemia which was characterized by a great increase in blood cholesterol and an equivalent or even greater increase in phospholipids, and they had much less atherosclerosis than did the control rabbits fed cholesterol alone. In further experiments it was observed that repeated intravenous injections of Tween 80 did not result in resorption of previously induced atherosclerosis in rabbits. The findings are discussed in relation to the pathogenesis of natural and experimental atherosclerosis. PMID:14824410

  4. Paraoxonase: The Universal Factor of Antioxidant Defense in Human Body.

    PubMed

    Borovkova, E I; Antipova, N V; Komeenko, T V; Shakhparonov, M I; Borovkov, I M

    The paraoxonase (PON) gene family includes three members: PON1, PON2, and PON3 aligned in tandem on chromosome 7 in humans. All PON proteins share considerable structural homology and have the capacity to protect cells from oxidative stress; therefore, they have been implicated in the pathogenesis of several inflammatory diseases, particularly atherosclerosis. Increased production of reactive oxygen species as a result of decreased activities of mitochondrial electron transport chain complexes plays a role in the development of many inflammatory diseases, including atherosclerosis. PON1 and PON3 proteins can be detected in plasma and reside in the high-density lipoprotein fraction and protect against oxidative stress by hydrolyzing certain oxidized lipids in lipoproteins, macrophages, and atherosclerotic lesions. Paraoxonase 2 (PON2) possesses antiatherogenic properties and is associated with lower ROS levels. PON2 is involved in the antioxidative and anti-inflammatory response in intestinal epithelial cells. In contrast to PON1 and PON3, PON2 is cell-associated and is not found in plasma. It is widely expressed in a variety of tissues, including the kidney, and protects against cellular oxidative stress. Overexpression of PON2 reduces oxidative status, prevents apoptosis in vascular endothelial cells, and inhibits cell-mediated low density lipoprotein oxidation. PON2 also inhibits the development of atherosclerosis, via mechanisms involving the reduction of oxidative stress. In this review we explore the physiological roles of PON in disease development and modulation of PONs by infective (bacterial, viral) agents.

  5. Association of body flexibility and carotid atherosclerosis in Japanese middle-aged men: a cross-sectional study

    PubMed Central

    Imoto, Takayuki; Kida, Akira; Yokochi, Takashi; Iwase, Mitsunori; Kozawa, Kenji

    2018-01-01

    Objective This study examined the associations of body flexibility with carotid arterial remodelling, including intima–media thickness (IMT) and plaque formation in middle-aged men. Methods The subjects of this cross-sectional study included 1354 Japanese men aged 35–59 years without histories of stroke or cardiac diseases. The arm extensibility test, which can estimate flexibility of the upper extremity (composed of shoulder external rotation and forearm supination), and the sit-and-reach test were performed. Common carotid IMT and plaque formation (≥1.1 mm) were estimated by ultrasound. Results The proportion of subjects who fully completed the arm extensibility test was 55.0%, and who had plaques in the common carotid artery was 37.8%. IMT was associated with poor arm extensibility (β=–0.073, 95% CI –0.02224 to –0.00041, P=0.004), while plaque formation was associated with poor sit-and-reach (OR 0.98579, 95% CI 0.97257 to 0.99919, P=0.038) after adjustment by all covariates. Conclusions This study demonstrated that poor upper extremity and trunk flexibility were associated with characteristics of early onset of atherosclerosis. Furthermore, these associations were independent of covariates such as age, blood pressure, blood lipids glucose levels and abdominal fat accumulation, handgrip strength and lifestyle, including sleeping, drinking, exercise and smoking habits. Poor flexibility may reflect subclinical atherosclerosis in middle-aged men. PMID:29306892

  6. Influence of coronary artery disease and subclinical atherosclerosis related polymorphisms on the risk of atherosclerosis in rheumatoid arthritis.

    PubMed

    López-Mejías, Raquel; Corrales, Alfonso; Vicente, Esther; Robustillo-Villarino, Montserrat; González-Juanatey, Carlos; Llorca, Javier; Genre, Fernanda; Remuzgo-Martínez, Sara; Dierssen-Sotos, Trinidad; Miranda-Filloy, José A; Huaranga, Marco A Ramírez; Pina, Trinitario; Blanco, Ricardo; Alegre-Sancho, Juan J; Raya, Enrique; Mijares, Verónica; Ubilla, Begoña; Ferraz-Amaro, Iván; Gómez-Vaquero, Carmen; Balsa, Alejandro; López-Longo, Francisco J; Carreira, Patricia; González-Álvaro, Isidoro; Ocejo-Vinyals, J Gonzalo; Rodríguez-Rodríguez, Luis; Fernández-Gutiérrez, Benjamín; Castañeda, Santos; Martín, Javier; González-Gay, Miguel A

    2017-01-06

    A genetic component influences the development of atherosclerosis in the general population and also in rheumatoid arthritis (RA). However, genetic polymorphisms associated with atherosclerosis in the general population are not always involved in the development of cardiovascular disease (CVD) in RA. Accordingly, a study in North-American RA patients did not show the association reported in the general population of coronary artery disease with a series of relevant polymorphisms (TCF21, LPA, HHIPL1, RASD1-PEMT, MRPS6, CYP17A1-CNNM2-NT5C2, SMG6-SRR, PHACTR1, WDR12 and COL4A1-COL4A2). In the present study, we assessed the potential association of these polymorphisms with CVD in Southern European RA patients. We also assessed if polymorphisms implicated in the increased risk of subclinical atherosclerosis in non-rheumatic Caucasians (ZHX2, PINX1, SLC17A4, LRIG1 and LDLR) may influence the risk for CVD in RA. 2,609 Spanish patients were genotyped by TaqMan assays. Subclinical atherosclerosis was determined in 1,258 of them by carotid ultrasonography (assessment of carotid intima media thickness and presence/absence of carotid plaques). No statistically significant differences were found when each polymorphism was assessed according to the presence/absence of cardiovascular events and subclinical atherosclerosis, after adjustment for potential confounder factors. Our results do not show an association between these 15 polymorphisms and atherosclerosis in RA.

  7. Influence of coronary artery disease and subclinical atherosclerosis related polymorphisms on the risk of atherosclerosis in rheumatoid arthritis

    PubMed Central

    López-Mejías, Raquel; Corrales, Alfonso; Vicente, Esther; Robustillo-Villarino, Montserrat; González-Juanatey, Carlos; Llorca, Javier; Genre, Fernanda; Remuzgo-Martínez, Sara; Dierssen-Sotos, Trinidad; Miranda-Filloy, José A.; Huaranga, Marco A. Ramírez; Pina, Trinitario; Blanco, Ricardo; Alegre-Sancho, Juan J.; Raya, Enrique; Mijares, Verónica; Ubilla, Begoña; Ferraz-Amaro, Iván; Gómez-Vaquero, Carmen; Balsa, Alejandro; López-Longo, Francisco J.; Carreira, Patricia; González-Álvaro, Isidoro; Ocejo-Vinyals, J. Gonzalo; Rodríguez-Rodríguez, Luis; Fernández-Gutiérrez, Benjamín; Castañeda, Santos; Martín, Javier; González-Gay, Miguel A.

    2017-01-01

    A genetic component influences the development of atherosclerosis in the general population and also in rheumatoid arthritis (RA). However, genetic polymorphisms associated with atherosclerosis in the general population are not always involved in the development of cardiovascular disease (CVD) in RA. Accordingly, a study in North-American RA patients did not show the association reported in the general population of coronary artery disease with a series of relevant polymorphisms (TCF21, LPA, HHIPL1, RASD1-PEMT, MRPS6, CYP17A1-CNNM2-NT5C2, SMG6-SRR, PHACTR1, WDR12 and COL4A1-COL4A2). In the present study, we assessed the potential association of these polymorphisms with CVD in Southern European RA patients. We also assessed if polymorphisms implicated in the increased risk of subclinical atherosclerosis in non-rheumatic Caucasians (ZHX2, PINX1, SLC17A4, LRIG1 and LDLR) may influence the risk for CVD in RA. 2,609 Spanish patients were genotyped by TaqMan assays. Subclinical atherosclerosis was determined in 1,258 of them by carotid ultrasonography (assessment of carotid intima media thickness and presence/absence of carotid plaques). No statistically significant differences were found when each polymorphism was assessed according to the presence/absence of cardiovascular events and subclinical atherosclerosis, after adjustment for potential confounder factors. Our results do not show an association between these 15 polymorphisms and atherosclerosis in RA. PMID:28059143

  8. Induction of atherosclerosis in mice and hamsters without germline genetic engineering.

    PubMed

    Bjørklund, Martin Maeng; Hollensen, Anne Kruse; Hagensen, Mette Kallestrup; Dagnaes-Hansen, Frederik; Christoffersen, Christina; Mikkelsen, Jacob Giehm; Bentzon, Jacob Fog

    2014-05-23

    Atherosclerosis can be achieved in animals by germline genetic engineering, leading to hypercholesterolemia, but such models are constrained to few species and strains, and they are difficult to combine with other powerful techniques involving genetic manipulation or variation. To develop a method for induction of atherosclerosis without germline genetic engineering. Recombinant adeno-associated viral vectors were engineered to encode gain-of-function proprotein convertase subtilisin/kexin type 9 mutants, and mice were given a single intravenous vector injection followed by high-fat diet feeding. Plasma proprotein convertase subtilisin/kexin type 9 and total cholesterol increased rapidly and were maintained at high levels, and after 12 weeks, mice had atherosclerotic lesions in the aorta. Histology of the aortic root showed progression of lesions to the fibroatheromatous stage. To demonstrate the applicability of this method for rapid analysis of the atherosclerosis susceptibility of a mouse strain and for providing temporal control over disease induction, we demonstrated the accelerated atherosclerosis of mature diabetic Akita mice. Furthermore, the versatility of this approach for creating atherosclerosis models also in nonmurine species was demonstrated by inducing hypercholesterolemia and early atherosclerosis in Golden Syrian hamsters. Single injections of proprotein convertase subtilisin/kexin type 9-encoding recombinant adeno-associated viral vectors are a rapid and versatile method to induce atherosclerosis in animals. This method should prove useful for experiments that are high-throughput or involve genetic techniques, strains, or species that do not combine well with current genetically engineered models. © 2014 American Heart Association, Inc.

  9. Atherogenesis and iron: from epidemiology to cellular level

    PubMed Central

    Vinchi, Francesca; Muckenthaler, Martina U.; Da Silva, Milene C.; Balla, György; Balla, József; Jeney, Viktória

    2014-01-01

    Iron accumulates in human atherosclerotic lesions but whether it is a cause or simply a downstream consequence of the atheroma formation has been an open question for decades. According to the so called “iron hypothesis,” iron is believed to be detrimental for the cardiovascular system, thus promoting atherosclerosis development and progression. Iron, in its catalytically active form, can participate in the generation of reactive oxygen species and induce lipid-peroxidation, triggering endothelial activation, smooth muscle cell proliferation and macrophage activation; all of these processes are considered to be proatherogenic. On the other hand, the observation that hemochromatotic patients, affected by life-long iron overload, do not show any increased incidence of atherosclerosis is perceived as the most convincing evidence against the “iron hypothesis.” Epidemiological studies and data from animal models provided conflicting evidences about the role of iron in atherogenesis. Therefore, more careful studies are needed in which issues like the source and the compartmentalization of iron will be addressed. This review article summarizes what we have learnt about iron and atherosclerosis from epidemiological studies, animal models and cellular systems and highlights the rather contributory than innocent role of iron in atherogenesis. PMID:24847266

  10. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis.

    PubMed

    Canfrán-Duque, Alberto; Rotllan, Noemi; Zhang, Xinbo; Fernández-Fuertes, Marta; Ramírez-Hidalgo, Cristina; Araldi, Elisa; Daimiel, Lidia; Busto, Rebeca; Fernández-Hernando, Carlos; Suárez, Yajaira

    2017-09-01

    Atherosclerosis, the major cause of cardiovascular disease, is a chronic inflammatory disease characterized by the accumulation of lipids and inflammatory cells in the artery wall. Aberrant expression of microRNAs has been implicated in the pathophysiological processes underlying the progression of atherosclerosis. Here, we define the contribution of miR-21 in hematopoietic cells during atherogenesis. Interestingly, we found that miR-21 is the most abundant miRNA in macrophages and its absence results in accelerated atherosclerosis, plaque necrosis, and vascular inflammation. miR-21 expression influences foam cell formation, sensitivity to ER-stress-induced apoptosis, and phagocytic clearance capacity. Mechanistically, we discovered that the absence of miR-21 in macrophages increases the expression of the miR-21 target gene, MKK3, promoting the induction of p38-CHOP and JNK signaling. Both pathways enhance macrophage apoptosis and promote the post-translational degradation of ABCG1, a transporter that regulates cholesterol efflux in macrophages. Altogether, these findings reveal a major role for hematopoietic miR-21 in atherogenesis. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Postprandial endothelial dysfunction: role of glucose, lipids and insulin.

    PubMed

    Nitenberg, A; Cosson, E; Pham, I

    2006-09-01

    Endothelium plays a key role in the regulation of vascular tone and development of atherosclerosis. Endothelial function is impaired early in patients with risk factors and endothelial dysfunction is a strong and independent predictor of cardiovascular events. Because in normal subjects blood concentrations of glucose, lipids and insulin are increased after each meals, and postprandial changes last a long time after the meals, these changes might be of importance in the process of atherosclerosis initiation and development. Experimental and human studies have shown that a transient increase of blood concentrations of glucose, triglycerides and fatty acids, and insulin are able to depress endothelium-dependent vasodilation in healthy subjects and that hyperglycemia, hypertriglyceridemia and hyperinsulinemia are generator of reactive oxygen species at the origin of a cascade of pathophysiological events resulting in the activation of nuclear factor-kappaB. Nuclear factor-kappaB is an ubiquitous transcription factor controlling the expression of numerous genes and is involved in immunity, inflammation, regulation of cell proliferation and growth and apoptosis. These mechanisms may be involved in the development of atherosclerosis in normal subjects when food intake is chronically modified towards glucids and lipids with cumulative effects both on depression of endothelium dependent dilation and oxidative stress.

  12. Cross-talk between iNKT cells and monocytes triggers an atheroprotective immune response in SLE patients with asymptomatic plaque.

    PubMed

    Smith, Edward; Croca, Sara; Waddington, Kirsty E; Sofat, Reecha; Griffin, Maura; Nicolaides, Andrew; Isenberg, David A; Torra, Ines Pineda; Rahman, Anisur; Jury, Elizabeth C

    2016-12-02

    Accelerated atherosclerosis is a complication of the autoimmune rheumatic disease systemic lupus erythematosus (SLE). We questioned the role played by invariant natural killer T (iNKT) cells in this process because they not only are defective in autoimmunity but also promote atherosclerosis in response to CD1d-mediated lipid antigen presentation. iNKT cells from SLE patients with asymptomatic plaque (SLE-P) had increased proliferation and interleukin-4 production compared with those from SLE patients with no plaque. The anti-inflammatory iNKT cell phenotype was associated with dyslipidemia and was driven by altered monocyte phospholipid expression and CD1d-mediated cross-talk between iNKT cells and monocytes but not B cells. Healthy iNKT cells differentiated in the presence of healthy monocytes and SLE-P serum polarized macrophages toward an anti-inflammatory M2 phenotype. Conversely, patients with clinical cardiovascular disease had unresponsive iNKT cells and increased proinflammatory monocytes. iNKT cell function could link immune responses, lipids, and cardiovascular disease in SLE patients and, together with serum lipid taxonomy, help predict preclinical atherosclerosis in SLE patients. Copyright © 2016, American Association for the Advancement of Science.

  13. Atherosclerosis, cholesterol, nutrition, and statins – a critical review

    PubMed Central

    Gebbers, Jan-Olaf

    2007-01-01

    Atherosclerosis, which causes approximately half of all deaths of adults over age 60 in industrialized nations, is a pandemic among inappropriately nourished and/or physically hypoactive children, adolescents, and adults world wide. Although nowadays statins are widely prescribed to middle age and elderly adults with high blood lipid levels as pharmacological prevention for the late complications of atherosclerosis, from a critical point of view statins seem not to solve the problem, especially when compared with certain natural ingredients of our nutrition like micronutrients as alternative strategy. Statin ingestion is associated with lowering of serum cholesterol and low-density lipoprotein concentrations; some prospective studies have shown statistical associations with subsequent modest reduction of mortality from cardiovascular disease. However, specific biochemical pathways and pharmacological roles of statins in prevention of atherosclerosis, if any, are unknown. Moreover, there have been no systematic cost-benefit analyses of life-style prophylaxis versus statin prophylaxis versus combined life-style plus statin prophylaxis versus neither life-style nor statin prophylaxis for clinically significant complications of cardiovascular diseases in the elderly. Further, in the trials of effectiveness statins were not compared with management of nutrition, which is the most appropriate alternative intervention. Such studies seem to be important, as the ever increasing world population, especially in developing countries, now demand expensive statins, which may be unaffordable for mitigating the pandemic. Studies of this kind are necessary to identify more precisely those patients for whom cardiovascular benefits will outweigh the risks and costs of the statin treatment in comparison with nutritional interventions. Against the background of the current pathogenetic concept of atherogenesis some of its possible risk factors, particularly the roles of cholesterol and homocysteine, and the effects of statins versus nutritional (micronutrients) interventions in prevention and treatment of the disease are discussed. The prevailing opinion that serum cholesterol as a mediator of the disease is increased by eating saturated fats and decreased by eating polyunsaturated fats is being challenged. Evidently, the beneficial effects of statins in atherosclerosis are not mainly due to its cholesterol lowering effect, rather than to its “pleiotropic effects”. Other pathogenetic factors in atherosclerosis are involved, like inflammatory and immunologic processes, that can be modulated by statins as well as by other drugs or by the Mediterranean-style nutrition and by micronutrients (folate, B-vitamins). PMID:19675712

  14. Endothelium Preserving Microwave Treatment for Atherosclerosis

    NASA Technical Reports Server (NTRS)

    Fink, Patrick; Arndt, G. D.; Ngo, Phong

    2003-01-01

    This slide presentation reviews the use of microwave technology for treating Atherosclerosis while preserving the endothelium. The system uses catheter antennas as part of the system that is intended to treat atherosclerosis. The concept is to use a microwave catheter for heating the atherosclerotic lesions, and reduce constriction in the artery.

  15. Hypolipidemic and anti-inflammatory effects of aorta and heart tissues of cattle and pigs in the atherosclerosis rat model.

    PubMed

    Chernukha, Irina M; Fedulova, Liliya V; Kotenkova, Elena A; Takeda, Shiro; Sakata, Ryoichi

    2018-05-01

    The aim of this study was to investigate the effects of aorta and heart tissues obtained from cattle and pigs on atherosclerosis disorders. Atherosclerosis model rats were provided with the respective diets consisting of aorta and heart tissues. Administration of each tissue suppressed body weight gain as compared to that of the control. In particular, the aorta tissues of pigs and cattle demonstrated significant suppressions in body weight gain in the model rats. The aorta tissues of pigs and cattle showed a significant increase and decrease in the serum high-density lipoproteins and atherogenic index, respectively, which was correlated with the increase in apolipoprotein A1. Hematological analysis revealed that aorta tissues of pigs and cattle clearly reduced the ratio of granulocytes/lymphocytes in the atherosclerosis rats. Serum vascular cellular adhesion molecule-1 levels in the atherosclerosis rats, which were administered these aorta tissues, were also significantly reduced. Additionally, there was an increase in von Willebrand factor in the rat serum. Based on the results obtained, the aorta tissues of pigs and cattle, in particular, demonstrated positive effects in the atherosclerosis rats due to the alteration of lipid metabolism and reduction in inflammation related to atherosclerosis. © 2018 Japanese Society of Animal Science.

  16. Uncomplicating the Macrovascular Complications of Diabetes: The 2014 Edwin Bierman Award Lecture

    PubMed Central

    2015-01-01

    The risk of cardiovascular events in humans increases in the presence of type 1 or type 2 diabetes mellitus, in large part due to exacerbated atherosclerosis. Genetically engineered mouse models have begun to elucidate cellular and molecular mechanisms responsible for diabetes-exacerbated atherosclerosis. Research on these mouse models has revealed that diabetes independently accelerates initiation and progression of lesions of atherosclerosis and also impairs the regression of lesions following aggressive lipid lowering. Myeloid cell activation in combination with proatherogenic changes allowing for increased monocyte recruitment into arteries of diabetic mice has emerged as an important mediator of the effects of diabetes on the three stages of atherosclerosis. The effects of diabetes on atherosclerosis appear to be dependent on an interplay between glucose and lipids, as well as other factors, and result in increased recruitment of monocytes into both progressing and regressing lesions of atherosclerosis. Importantly, some of the mechanisms revealed by mouse models are now being studied in human subjects. This Perspective highlights new mechanistic findings based on mouse models of diabetes-exacerbated atherosclerosis and discusses the relevance to humans and areas in which more research is urgently needed in order to lessen the burden of macrovascular complications of type 1 and type 2 diabetes mellitus. PMID:26207031

  17. Autophagic Regulation of Lipid Homeostasis in Cardiometabolic Syndrome.

    PubMed

    Yang, Mingjie; Zhang, Yingmei; Ren, Jun

    2018-01-01

    As an important protein quality control process, autophagy is essential for the degradation and removal of long-lived or injured cellular components and organelles. Autophagy is known to participate in a number of pathophysiological processes including cardiometabolic syndrome. Recent findings have shown compelling evidence for the intricate interplay between autophagy and lipid metabolism. Autophagy serves as a major regulator of lipid homeostasis while lipid can also influence autophagosome formation and autophagic signaling. Lipophagy is a unique form of selective autophagy and functions as a fundamental mechanism for clearance of lipid excess in atherosclerotic plaques. Ample of evidence has denoted a novel therapeutic potential for autophagy in deranged lipid metabolism and management of cardiometabolic diseases such as atherosclerosis and diabetic cardiomyopathy. Here we will review the interplays between cardiac autophagy and lipid metabolism in an effort to seek new therapeutic options for cardiometabolic diseases.

  18. Management of Uveitis in Spondyloarthropathy: Current Trends

    PubMed Central

    Gupta, Nikhil; Agarwal, Aditi

    2018-01-01

    Spondyloarthritis is a chronic inflammatory disease predominantly affecting joints of the axial skeleton. However, as many as 50% of patients with this disease may have extra-articular manifestations, which include uveitis; psoriasis; inflammatory bowel disease such as Crohn disease or ulcerative colitis; cardiovascular manifestations in the form of conduction abnormalities, atherosclerosis, or valvular heart disease; pulmonary involvement; and rarely renal involvement. Uveitis occurs in 25% to 40% of patients with spondyloarthritis. Management of uveitis is crucial to prevent morbidity caused by vision loss and secondary complications. Treatment ranges from local therapies to systemic drugs and varies depending on the severity and response to treatment. Categories of medical treatment include nonsteroidal anti-inflammatory agents, corticosteroids, and steroid-sparing agents. Biologic therapies such as antitumor necrosis factor agents act early in the disease process and have revolutionized the field of rheumatology, including management of uveitis. This review will focus on the management of ophthalmic manifestations in spondyloarthropathies. PMID:29272246

  19. Potential Technology Transfer to the DoD Unmanned Ground Vehicle Program.

    DTIC Science & Technology

    1996-10-01

    Germany. This process combines x-ray lithography, galvanic casting, and micromolding technology and can be used to produce a variety of sensors and...whether circulation is being obstructed by atherosclerosis . Finally, work is being done at the University of Minnesota on a microrobotic device

  20. Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus.

    PubMed

    Yahagi, Kazuyuki; Kolodgie, Frank D; Lutter, Christoph; Mori, Hiroyoshi; Romero, Maria E; Finn, Aloke V; Virmani, Renu

    2017-02-01

    The continuing increase in the prevalence of diabetes mellitus in the general population is predicted to result in a higher incidence of cardiovascular disease. Although the mechanisms of diabetes mellitus-associated progression of atherosclerosis are not fully understood, at clinical and pathological levels, there is an appreciation of increased disease burden and higher levels of arterial calcification in these subjects. Plaques within the coronary arteries of patients with diabetes mellitus generally exhibit larger necrotic cores and significantly greater inflammation consisting mainly of macrophages and T lymphocytes relative to patients without diabetes mellitus. Moreover, there is a higher incidence of healed plaque ruptures and positive remodeling in hearts from subjects with type 1 diabetes mellitus and type 2 diabetes mellitus, suggesting a more active atherogenic process. Lesion calcification in the coronary, carotid, and other arterial beds is also more extensive. Although the role of coronary artery calcification in identifying cardiovascular disease and predicting its outcome is undeniable, our understanding of how key hormonal and physiological alterations associated with diabetes mellitus such as insulin resistance and hyperglycemia influence the process of vascular calcification continues to grow. Important drivers of atherosclerotic calcification in diabetes mellitus include oxidative stress, endothelial dysfunction, alterations in mineral metabolism, increased inflammatory cytokine production, and release of osteoprogenitor cells from the marrow into the circulation. Our review will focus on the pathophysiology of type 1 diabetes mellitus- and type 2 diabetes mellitus-associated vascular disease with particular focus on coronary and carotid atherosclerotic calcification. © 2016 American Heart Association, Inc.

  1. An Overview of the Chemistry and Biology of Reactive Aldehydes

    PubMed Central

    Fritz, Kristofer S.; Petersen, Dennis R.

    2012-01-01

    The non-enzymatic free radical generation of reactive aldehydes is known to contribute to diseases of sustained oxidative stress including rheumatoid arthritis, atherosclerosis, neurodegenerative and a number of liver diseases. At the same time, the accumulation of lipid electrophiles has been demonstrated to play a role in cell signaling events through modification of proteins critical for cellular homeostasis. Given the broad scope of reactivity profiles and the ability to modify numerous proteomic and genomic processes, new emphasis is being placed on a systems-based analysis of the consequences of electrophilic adduction. This review focuses on the generation and chemical reactivity of lipid-derived aldehydes with a special focus on the homeostatic responses to electrophilic stress. PMID:22750507

  2. A Correlational Study on Cerebral Microbleeds and Carotid Atherosclerosis in Patients with Ischemic Stroke.

    PubMed

    Zhao, Fang-Fang; Gao, Hao-Yuan; Gao, Yuan; Zhao, Zhuan; Li, Juan; Ning, Fang-Bo; Zhang, Xin-Na; Wang, Zhi-Gao; Yu, Ai-Ling; Guo, Yan-Yong; Sun, Bao-Liang

    2018-05-11

    This study aimed to investigate the correlation between cerebral microbleeds and carotid atherosclerosis in patients with ischemic stroke. Patients with ischemic stroke treated in a hospital in China from 2016 to 2017 were enrolled in the study. Based on the results from susceptibility-weighted imaging, the patients were divided into cerebral microbleed and noncerebral microbleed groups. The degree of carotid atherosclerosis was assessed with carotid intima-media thickness (CIMB) and Crouse score of carotid plaque. The details of patients' demographic information, cerebrovascular disease-related risk factors, carotid atherosclerosis indices, cerebral microbleed distribution, and grading were recorded, compared, and analyzed. Logistic regression analysis of the 198 patients showed that CIMB and Crouse score were significantly correlated with the occurrence of cerebral microbleeds. The CIMB thickening group (P = .03) and the plaque group (P = .01) were more susceptible to cerebral microbleeds. In the distribution of cerebral microbleed sites, Crouse scores were the highest in the mixed group and showed a statistically significant difference (P < .01). As the degree of carotid atherosclerosis increased, the average number of cerebral microbleeds also increased (P < .01). The receiver operating characteristic curve analysis of the carotid atherosclerosis indices showed a statistically significant difference. The CIMB value combined with the Crouse score was the best indicator (P < .01). In patients with ischemic stroke, cerebral microbleeds are closely related to carotid atherosclerosis. Active control of carotid atherosclerosis is important to prevent cerebral microbleeds in patients with ischemic stroke. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  3. Platelet and leukocyte activation, atherosclerosis and inflammation in European and South Asian men.

    PubMed

    Dotsenko, O; Chaturvedi, N; Thom, S A McG; Wright, A R; Mayet, J; Shore, A; Schalkwijk, C; Hughes, A D

    2007-10-01

    Increased platelet activation occurs in ischemic heart disease (IHD), but increased platelet activation is also seen in cerebrovascular atherosclerosis and peripheral artery disease. It is not clear therefore whether platelet activation is an indicator of IHD or a marker of generalized atherosclerosis and inflammation. South Asian subjects are at high risk of IHD, but little is known regarding differences in platelet and leukocyte function between European and South Asian subjects. Fifty-four male subjects (age 49-79 years) had coronary artery calcification measured by multislice computed tomography (CT), aortic atherosclerosis assessed by measurement of carotid-femoral pulse wave velocity (aortic PWV), and femoral and carotid atherosclerosis measured by B-mode ultrasound. Platelet and leukocyte activation was assessed by flow cytometry of platelet-monocyte complexes (PMC), platelet expression of PAC-1 binding site and CD62P, and expression of L-selectin on leukocytes. Elevated circulating PMC correlated significantly with elevated aortic PWV and PMC were higher in subjects with femoral plaques. In contrast PMC did not differ by increasing coronary artery calcification category or presence of carotid plaques. Higher numbers of PMC were independently related to elevated levels of C-reactive protein (CRP), higher aortic PWV, hypertension and smoking in a multivariate model. Markers of platelet and leukocyte activation did not differ significantly by ethnicity. Increased PMC are related to the extent of aortic and femoral atherosclerosis rather than coronary or carotid atherosclerosis. The association between elevated CRP and increased PMC suggests that inflammation in relation to generalized atherosclerosis may play an important role in PMC activation.

  4. CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-gamma production, and macrophage accumulation in the aortic wall.

    PubMed

    Galkina, Elena; Harry, Brian L; Ludwig, Andreas; Liehn, Elisa A; Sanders, John M; Bruce, Anthony; Weber, Christian; Ley, Klaus

    2007-10-16

    T lymphocytes are thought to be important in atherosclerosis, but very little is known about the mechanisms of lymphocyte recruitment into atherosclerosis-prone aortas. In this study we tested the hypothesis that CXCR6, a chemokine receptor that is expressed on a subset of CD4+ T helper 1 cells and natural killer T cells, is involved in lymphocyte homing into the aortic wall and modulates the development and progression of atherosclerosis. To investigate the role of CXCR6 in the development and progression of atherosclerosis, we bred CXCR6-deficient (CXCR6(GFP/GFP)) mice with apolipoprotein E-deficient (ApoE(-/-)) mice. We found that CXCR6(GFP/GFP)/ApoE(-/-) mice fed a Western diet for 17 weeks or a chow diet for 56 weeks had decreased atherosclerosis compared with ApoE(-/-) controls. Flow cytometry analysis of the aortas from CXCR6(GFP/GFP)/ApoE(-/-) mice showed that the reduction of atherosclerosis was accompanied by a decreased percentage of CXCR6+ T cells within the aortas. Short-term homing experiments demonstrated that CXCR6 is involved in the recruitment of CXCR6+ leukocytes into the atherosclerosis-prone aortic wall. The reduced percentage of CXCR6+ T cells within the aortas resulted in significantly diminished production of interferon-gamma and reduction of CD11b+/CD68+ macrophages in the aorta. These data provide evidence for a proatherosclerotic role of CXCR6. Absence of CXCR6 alters the recruitment of CXCR6+ leukocytes and modulates the local immune response within the aortic wall.

  5. Predictive value of apolipoprotein for coronary atherosclerosis in asymptomatic non-diabetic population.

    PubMed

    Song, Xiang; Tian, Shu-ping; Ju, Hai-yue; Zhang, Fan; Li, Ying-na; Wu, Fang; Yang, Li

    2015-02-01

    To explore the potential correlation between apolipoprotein (Apo) levels and coronary atherosclerosis and investigate its predictive value for coronary artery lesions in asymptomatic population without diabetes. We performed a retrospective analysis of data collected from 401 asymptomatic patients who took health check-ups. They were divided into atherosclerosis group (n=224)and control group (n=177) based on the outcome of CT angiography and blood biochemical findings. The risk factors, lipid profiles, and Apo levels were compared between these two groups. The best biochemical indicators for predicting the coronary atherosclerosis were explored. The levels of ApoB, ApoC2,ApoC3,and ApoE and ApoB/ApoA1 ratio were significantly higher in the atherosclerosis group than in the control group (all P<0.01), whereas the ApoA1,ApoA2, and lipoprotein a levels showed no such significant difference (all P>0.05). Logistic regression analysis revealed that age, male, hypertension,ApoC3(OR=1.572,95%CI 1.200-2.061) and ApoB/ApoA1 ratio (OR=1.767,95% CI 1.335-2.338) were independently correlated with coronary atherosclerosis (all P<0.01). In the prediction of the presence of plaque, ApoB had the largest area under curves, and the optimal cutoff point was 1.005 g/L. ApoC3 is closely associated with subclinical coronary atherosclerosis,while the decrease of ApoA1 level is not obvious during this period. Compared with other lipid indicators, ApoB is the strongest predictor for coronary atherosclerosis in asymptomatic non-diabetic population.

  6. A novel photoacoustic nanoprobe of ICG@PEG-Ag2S for atherosclerosis targeting and imaging in vivo

    NASA Astrophysics Data System (ADS)

    Wu, Chenxin; Zhang, Yejun; Li, Zhen; Li, Chunyan; Wang, Qiangbin

    2016-06-01

    Atherosclerosis is a major cause of cardiovascular and cerebrovascular diseases that have high mortality and disability rates. Because of its unclear pathogenic mechanism and heterogeneous distribution feature, it is still a big challenge to achieve precise diagnosis and therapy of atherosclerosis at its early stage in vivo. Herein, we fabricated a new ICG@PEG-Ag2S nanoprobe by a simple self-assembly of DT-Ag2S QDs, amphipathic C18/PEG polymer molecules and ICG. The ICG@PEG-Ag2S nanoprobe showed relatively long blood retention and was selectively accumulated in the region of atherosclerotic plaque due to the lipophilicity of the C18 chain to the atherosclerosis microenvironment, and thus the atherosclerosis was real-time monitored by high contrast-enhanced photoacoustic (PA) imaging of ICG. Combining the high signal-to-noise ratio (SNR) and high spatial resolution fluorescence imaging of Ag2S QDs in the second near-infrared window (NIR-II) and related histological assessment in vitro, the feasibility of this new nanoprobe for atherosclerosis targeting in an Apoe-/- mouse model was verified. Additionally, hemolysis and coagulation assays of the ICG@PEG-Ag2S revealed its decent hemocompatibility and no histological changes were observed in the main organs of the mouse. Such a simple, multifunctional nanoprobe for targeting and PA imaging of atherosclerosis will have a great potential for future clinical applications.Atherosclerosis is a major cause of cardiovascular and cerebrovascular diseases that have high mortality and disability rates. Because of its unclear pathogenic mechanism and heterogeneous distribution feature, it is still a big challenge to achieve precise diagnosis and therapy of atherosclerosis at its early stage in vivo. Herein, we fabricated a new ICG@PEG-Ag2S nanoprobe by a simple self-assembly of DT-Ag2S QDs, amphipathic C18/PEG polymer molecules and ICG. The ICG@PEG-Ag2S nanoprobe showed relatively long blood retention and was selectively accumulated in the region of atherosclerotic plaque due to the lipophilicity of the C18 chain to the atherosclerosis microenvironment, and thus the atherosclerosis was real-time monitored by high contrast-enhanced photoacoustic (PA) imaging of ICG. Combining the high signal-to-noise ratio (SNR) and high spatial resolution fluorescence imaging of Ag2S QDs in the second near-infrared window (NIR-II) and related histological assessment in vitro, the feasibility of this new nanoprobe for atherosclerosis targeting in an Apoe-/- mouse model was verified. Additionally, hemolysis and coagulation assays of the ICG@PEG-Ag2S revealed its decent hemocompatibility and no histological changes were observed in the main organs of the mouse. Such a simple, multifunctional nanoprobe for targeting and PA imaging of atherosclerosis will have a great potential for future clinical applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00060f

  7. Prevention of Coronary Atherosclerosis: The Role of a College Health Service.

    ERIC Educational Resources Information Center

    Manchester, Ralph A.; Greenland, Philip

    1987-01-01

    This paper reviews the concept of behavioral risk factors for atherosclerosis which become entrenched in adolescence or young adulthood. Evidence favoring intervention in the adolescent years and a screening program at the University of Rochester Health Service are described. A preliminary strategy for prevention of atherosclerosis on campus is…

  8. 76 FR 35480 - Notice of Intent To Grant Partially Exclusive License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ..., Endothelium Preserving Microwave Treatment For Atherosclerosis, NASA Case No. MSC- 22724-1, USPN 6,226,553, Endothelium Preserving Microwave Treatment For Atherosclerosis, NASA Case No. MSC-22724-2, USPN 6,223,086, Endothelium Preserving Microwave Treatment For Atherosclerosis, NASA Case No. MSC- 22724-3, and USPN 6,496,736...

  9. RIP3-dependent necrosis induced inflammation exacerbates atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Lingjun, E-mail: menglingjun@nibs.ac.cn; National Institute of Biological Sciences, Beijing 102206; Jin, Wei

    Atherothrombotic vascular disease is already the leading cause of mortality worldwide. Atherosclerosis shares features with diseases caused by chronic inflammation. More attention should concentrates on the innate immunity effect atherosclerosis progress. RIP3 (receptor-interacting protein kinase 3) act through the transcription factor named Nr4a3 (Nuclear orphan receptors) to regulate cytokine production. Deletion RIP3 decreases IL-1α production. Injection of anti-IL-1α antibody protects against the progress of atherosclerosis in ApoE −/− mice. RIP3 as a molecular switch in necrosis, controls macrophage necrotic death caused inflammation. Inhibiting necrosis will certainly reduce atherosclerosis through limit inflammation. Necrotic cell death caused systemic inflammation exacerbated cardiovascular disease. Inhibitionmore » of necrosis may yield novel therapeutic targets for treatment in years to come. - Highlights: • RIP3 regulate the Nr4a3 to control cytokine production. • Deletion RIP3 decreases IL-1a production. • Injection anti-IL-1a antibody protects against the progress of atherosclerosis. • RIP3 controls macrophage necrotic dead caused inflammation.« less

  10. Association between diabetic retinopathy and subclinical atherosclerosis in China: Results from a community-based study.

    PubMed

    Liu, Yu; Teng, Xiangyu; Zhang, Wei; Zhang, Ruifeng; Liu, Wei

    2015-09-01

    To evaluate the association of diabetic retinopathy with subclinical atherosclerosis in middle-aged and elderly Chinese with type 2 diabetes. A cross-sectional community-based study was performed among 1607 patients aged 40 years or older in Shanghai. Non-mydriatic digital fundus photography examination was used in diabetic retinopathy detection. Presence of elevated carotid intima-media thickness or carotid plaque was defined as subclinical atherosclerosis. The prevalence of diabetic retinopathy was 15.1% in total patients. Patients with diabetic retinopathy were more likely to have elevated carotid intima-media thickness, carotid plaque and subclinical atherosclerosis than those without diabetic retinopathy (37.9% vs 30.7%, 57.6% vs 49.6% and 64.6% vs 57.1%, respectively). The presence of diabetic retinopathy was significantly associated with increased odds of subclinical atherosclerosis (odds ratio = 1.93, 95% confidence interval = 1.03-3.60) after full adjustments. The presence of diabetic retinopathy was significantly associated with subclinical atherosclerosis in middle-aged and elderly patients with type 2 diabetics in China. © The Author(s) 2015.

  11. Anti-inflammatory effects of vinpocetine in atherosclerosis and ischemic stroke: a review of the literature.

    PubMed

    Zhang, Linjie; Yang, Li

    2014-12-26

    Immune responses play an important role in the pathophysiology of atherosclerosis and ischemic stroke. Atherosclerosis is a common condition that increases the risk of stroke. Hyperlipidemia damages endothelial cells, thus initiating chemokine pathways and the release of inflammatory cytokines-this represents the first step in the inflammatory response to atherosclerosis. Blocking blood flow in the brain leads to ischemic stroke, and deprives neurons of oxygen and energy. Damaged neurons release danger-associated molecular patterns, which promote the activation of innate immune cells and the release of inflammatory cytokines. The nuclear factor κ-light-chain-enhancer of activated B cells κB (NF-κB) pathway plays a key role in the pathogenesis of atherosclerosis and ischemic stroke. Vinpocetine is believed to be a potent anti-inflammatory agent and has been used to treat cerebrovascular disorders. Vinpocetine improves neuronal plasticity and reduces the release of inflammatory cytokines and chemokines from endothelial cells, vascular smooth muscle cells, macrophages, and microglia, by inhibiting the inhibitor of the NF-κB pathway. This review clarifies the anti-inflammatory role of vinpocetine in atherosclerosis and ischemic stroke.

  12. Influence of the extent of westernization of lifestyle on the progression of preclinical atherosclerosis in Japanese subjects.

    PubMed

    Egusa, Genshi; Watanabe, Hiroshi; Ohshita, Kayo; Fujikawa, Rumi; Yamane, Kiminori; Okubo, Masamichi; Kohno, Nobuoki

    2002-01-01

    To clarify the influence of a westernized lifestyle on the risk factors for atherosclerosis and preclinical atherosclerosis in Japanese subjects, we surveyed a Japanese population and Japanese immigrants in the United States. Based on the extent of westernization of their lifestyle, the subjects were classified as Japanese (J), first generation Japanese-Americans (JA-I), and second or later generation Japanese-Americans (JA-II). The consumption of animal fat and simple carbohydrates increased in the order of J, JA-I, and JA-II, while the subjects with strenuous physical activity decreased in the same order. The waist-hip ratio, fasting insulin level, serum cholesterol and triglyceride levels, and prevalence of hypertension increased in the same order as the dietary changes. The carotid intima-media wall thickness and the plaque size, which are indices of preclinical atherosclerosis, also increased in the order of J, JA-I, and JA-II. These data indicate that a westernized lifestyle aggravates the risk factors for atherosclerosis and influences the progression of preclinical atherosclerosis, in correspondence with the extent of westernization.

  13. C-reactive protein in relation to early atherosclerosis and periodontitis.

    PubMed

    Yakob, Maha; Meurman, Jukka H; Jogestrand, Tomas; Nowak, Jacek; Söder, Per-Östen; Söder, Birgitta

    2012-02-01

    Periodontitis may affect atherosclerosis via the chronic inflammation. We investigated high-sensitivity C-reactive protein (hsCRP) in relation to early vascular atherosclerotic changes in non-symptomatic subjects with and without long-term periodontitis. Carotid ultrasonography with calculation of common carotid artery intima-media area (cIMA) was performed, and hsCRP and atherosclerosis risk factors were analysed in randomly chosen 93 patients with periodontitis and 41 controls. The relationship between hsCRP, cIMA and atherosclerosis risk factors was evaluated with multiple logistic regression analysis. Women displayed lower hsCRP (p < 0.05) and higher serum HDL (p < 0.001) than men. In all patients with periodontitis, cIMA values were higher than in controls. Periodontitis appeared to be a major predictor for increased cIMA (odds ratio, 3.82; 95% confidence interval, 1.19-12.26). Neither of these factors was significantly associated with hsCRP which thus appeared not sensitive enough to be a marker for periodontitis or atherosclerosis. Hence, irrespective of low hsCRP levels, periodontitis appeared to increase the risk for atherosclerosis.

  14. Emerging Roles of GPER in Diabetes and Atherosclerosis

    PubMed Central

    Barton, Matthias; Prossnitz, Eric R.

    2015-01-01

    G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth, as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings of its roles in obesity, diabetes, and atherosclerosis, including the GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed. PMID:25767029

  15. Neurologic dysfunction in hypothyroid, hyperlipidemic Labrador Retrievers.

    PubMed

    Vitale, Christina L; Olby, Natasha J

    2007-01-01

    Hypothyroidism has been associated with a variety of neurologic signs, but the mechanism for this association is not completely understood. Hypothyroidism also is associated with hyperlipidemia that predisposes to atherosclerosis, increased blood viscosity, and thromboembolic events. The objective is to characterize neurologic signs potentially associated with hyperlipidemia and atherosclerosis in canine hypothyroidism. This study used dogs referred to North Carolina State University Veterinary Teaching Hospital for evaluation of neurologic signs. A retrospective study was conducted in which medical records of dogs with neurologic signs and a diagnosis of hypothyroidism and hyperlipidemia were reviewed. Details of the history, presenting signs, results of routine blood tests, thyroid tests, cerebrospinal fluid (CSF) analysis and diagnostic imaging, and response to therapy were compiled. Three Labrador Retrievers and one Labrador Retriever cross fit the inclusion criteria. All dogs were hypothyroid and severely hyperlipidemic. Neurologic signs included tetraparesis, central and peripheral vestibular signs, facial paralysis, and paraparesis. Two dogs had an acute history and rapid resolution of signs consistent with an infarct, the presence of which was confirmed in 1 of the dogs by magnetic resonance imaging. Two dogs had chronic histories of cranial neuropathies and paraparesis. One of these dogs had evidence of iliac thrombosis and atherosclerosis on ultrasound examination. All dogs improved with thyroid hormone supplementation. Labrador Retrievers may be predisposed to the development of severe hyperlipidemia in association with hypothyroidism. One possible consequence of severe hyperlipidemia is the development of neurologic signs due to atherosclerosis and thromboembolic events.

  16. The Relationship of Cerebral Vessel Pathology to Brain Microinfarcts

    PubMed Central

    Arvanitakis, Zoe; Capuano, Ana W.; Leurgans, Sue E.; Buchman, Aron S.; Bennett, David A.; Schneider, Julie A.

    2016-01-01

    The relationship of cerebral vessel pathology to brain microinfarcts is not fully understood. We examined associations of cerebral vessel pathology with microinfarcts among community-dwelling persons who came to autopsy. Brain specimens were derived from 1,066 deceased subjects (mean age-at-death = 88 years, 65% women) participating in a cohort study of aging. Microinfarcts were classified by number, age, and location. Severity of vessel pathologies was graded semi-quantitatively. Almost a third of subjects (n=300; 28%) had at least one chronic microinfarct, including 128 cortical only, 120 subcortical only, and 47 with both. Moderate-to-severe atherosclerosis was present in 430 (41%) subjects, arteriolosclerosis in 382 (36%), and amyloid angiopathy in 374 (35%). The odds of one or multiple microinfarct(s) was increased for more severe atherosclerosis (OR =1.22; 95%CI: 1.03–1.45), arteriolosclerosis (OR =1.18; 95%CI: 1.02–1.37), and amyloid angiopathy (OR =1.13; 95%CI: 1.00–1.28). Separately, the odds of subcortical microinfarct(s) was increased for atherosclerosis (OR =1.49; 95%CI: 1.20–1.84) and arteriolosclerosis (OR =1.39; 95%CI: 1.16–1.67) but not amyloid angiopathy; whereas the odds of cortical microinfarct(s) was increased for amyloid angiopathy (OR =1.26; 95%CI: 1.09–1.46) only. While cerebral vessel pathologies are associated with microinfarct burden, atherosclerosis and arteriolosclerosis are associated with subcortical microinfarcts, and amyloid angiopathy with cortical microinfarcts. PMID:26844934

  17. Design and Modular Construction of A Polymeric Nanoparticle for Targeted Atherosclerosis Positron Emission Tomography Imaging: A Story of 25% 64Cu-CANF-Comb

    PubMed Central

    Woodard, Pamela K.; Liu, Yongjian; Pressly, Eric D.; Luehmann, Hannah P.; Detering, Lisa; Sultan, Deborah; Laforest, Richard; McGrath, Alaina J.; Gropler, Robert J.; Hawker, Craig J.

    2016-01-01

    Purpose To assess the physicochemical properties, pharmacokinetic profiles, and in vivo positron emission tomography (PET) imaging of natriuretic peptide clearance receptors (NPRC) expressed on atherosclerotic plaque of a series of targeted, polymeric nanoparticles. Methods To control their structure, non-targeted and targeted polymeric (comb) nanoparticles, conjugated with various amounts of c-atrial natriuretic peptide (CANF, 0, 5, 10 and 25%), were synthesized by controlled and modular chemistry. In vivo pharmacokinetic evaluation of these nanoparticles was performed in wildtype (WT) C57BL/6 mice after 64Cu radiolabeling. PET imaging was performed on an apolipoprotein E–deficient (ApoE−/−) mouse atherosclerosis model to assess the NPRC targeting efficiency. For comparison, an in vivo blood metabolism study was carried out in WT mice. Results All three 64Cu-CANF-comb nanoparticles showed improved biodistribution profiles, including significantly reduced accumulation in both liver and spleen, compared to the non-targeted 64Cu-comb. Of the three nanoparticles, the 25% 64Cu-CANF-comb demonstrated the best NPRC targeting specificity and sensitivity in ApoE−/− mice. Metabolism studies showed that the radiolabeled CANF-comb was stable in blood up to 9 days. Histopathological analyses confirmed the up-regulation of NPRC along the progression of atherosclerosis. Conclusion The 25% 64Cu-CANF-comb demonstrated its potential as a PET imaging agent to detect atherosclerosis progression and status. PMID:27286872

  18. Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice.

    PubMed

    Grainger, Andrew T; Jones, Michael B; Li, Jing; Chen, Mei-Hua; Manichaikul, Ani; Shi, Weibin

    2016-11-01

    Recent genome-wide association studies (GWAS) have identified over 50 significant loci containing common variants associated with coronary artery disease. However, these variants explain only 26% of the genetic heritability of the disease, suggesting that many more variants remain to be discovered. Here, we examined the genetic basis underlying the marked difference between SM/J-Apoe -/- and BALB/cJ-Apoe -/- mice in atherosclerotic lesion formation. 206 female F 2 mice generated from an intercross between the two Apoe -/- strains were fed 12 weeks of western diet. Atherosclerotic lesion sizes in the aortic root were measured and 149 genetic markers genotyped across the entire genome. A significant locus, named Ath49 (LOD score: 4.18), for atherosclerosis was mapped to the H2 complex [mouse major histocompatibility complex (MHC)] on chromosome 17. Bioinformatic analysis identified 12 probable candidate genes, including Tnfrsf21, Adgrf1, Adgrf5, Mep1a, and Pla2g7. Corresponding human genomic regions of Ath49 showed significant association with coronary heart disease. Five suggestive loci on chromosomes 1, 4, 5, and 8 for atherosclerosis were also identified. Atherosclerotic lesion sizes were significantly correlated with HDL but not with non-HDL cholesterol, triglyceride or glucose levels in the F 2 cohort. We have identified the MHC as a major genetic determinant of atherosclerosis, highlighting the importance of inflammation in atherogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Epicardial adipose tissue as a predictor of coronary artery disease in asymptomatic subjects.

    PubMed

    Bachar, Gil N; Dicker, Dror; Kornowski, Ran; Atar, Eli

    2012-08-15

    This study sought to elucidate the relation between epicardial adipose tissue (EAT) thickness measured by multidetector computed tomography and presence of coronary artery atherosclerosis. Recent studies have suggested that fat disposition in visceral organs and epicardial tissue could serve as a predictor of coronary artery disease (CAD). The sample included 190 asymptomatic subjects with ≥ 1 cardiovascular risk factor who were referred for cardiac computed tomographic angiography. Body mass index, blood pressure, fasting glucose level, and lipid profile were measured. Multidetector computed tomographic results were analyzed for atherosclerosis burden, calcium Agatston score, and EAT thickness: mean EAT values were 3.54 ± 1.59 mm in patients with atherosclerosis and 1.85 ± 1.28 mm in patients without atherosclerosis (p <0.001). On receiver operating characteristic analysis, an EAT value ≥ 2.4 mm predicted the presence of significant (>50% diameter) coronary artery stenosis. There was a significant difference in EAT values between patients with and without metabolic syndrome (2.58 ± 1.63 vs 2.04 ± 1.46 mm, p <0.05) and between patients with a calcium score >400 and <400 (3.38 ± 1.58 vs 2.02 ± 1.42 mm, p <0.0001). In conclusion, asymptomatic patients with CAD have significantly more EAT than patients without CAD. An EAT thickness of 2.4 mm is the optimal cutoff for prediction of presence of significant CAD. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Basic mechanisms in intracranial large-artery atherosclerosis: advances and challenges.

    PubMed

    Arenillas, Juan F; Alvarez-Sabín, José

    2005-01-01

    Intracranial large-artery atherosclerosis is a major cause of ischemic stroke worldwide. Patients affected by this disease are at a high risk of suffering recurrent ischemic events despite antithrombotic therapy. Progression and a greater extent of intracranial atherosclerosis imply a higher risk for recurrence. Studies performed by our group in patients with symptomatic intracranial large-artery atherosclerosis have shown that: (1) C-reactive protein predicts its progression and recurrence, suggesting that inflammation may play a deleterious role in this condition; (2) a high level of the anti-angiogenic endostatin is also associated with a progressive and recurrent intracranial atherosclerosis, which might support a beneficial role for angiogenesis in this group of patients; and (3) elevated lipoprotein(a) concentration and diabetes mellitus characterize those patients with a higher number of intracranial stenoses. 2005 S. Karger AG, Basel

  1. Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis.

    PubMed

    Mulvihill, Erin E; Burke, Amy C; Huff, Murray W

    2016-07-17

    Citrus flavonoids are polyphenolic compounds with significant biological properties. This review summarizes recent advances in understanding the ability of citrus flavonoids to modulate lipid metabolism, other metabolic parameters related to the metabolic syndrome, and atherosclerosis. Citrus flavonoids, including naringenin, hesperitin, nobiletin, and tangeretin, have emerged as potential therapeutics for the treatment of metabolic dysregulation. Epidemiological studies reveal an association between the intake of citrus flavonoid-containing foods and a decreased incidence of cardiovascular disease. Studies in cell culture and animal models, as well as a limited number of clinical studies, reveal the lipid-lowering, insulin-sensitizing, antihypertensive, and anti-inflammatory properties of citrus flavonoids. In animal models, supplementation of rodent diets with citrus flavonoids prevents hepatic steatosis, dyslipidemia, and insulin resistance primarily through inhibition of hepatic fatty acid synthesis and increased fatty acid oxidation. Citrus flavonoids blunt the inflammatory response in metabolically important tissues including liver, adipose, kidney, and the aorta. The mechanisms underlying flavonoid-induced metabolic regulation have not been completely established, although several potential targets have been identified. In mouse models, citrus flavonoids show marked suppression of atherogenesis through improved metabolic parameters as well as through direct impact on the vessel wall. Recent studies support a role for citrus flavonoids in the treatment of dyslipidemia, insulin resistance, hepatic steatosis, obesity, and atherosclerosis. Larger human studies examining dose, bioavailability, efficacy, and safety are required to promote the development of these promising therapeutic agents.

  2. Hematocrit is associated with carotid atherosclerosis in men but not in women.

    PubMed

    Irace, Concetta; Ciamei, Monica; Crivaro, Andrea; Fiaschi, Elio; Madia, Angela; Cortese, Claudio; Gnasso, Agostino

    2003-06-01

    It is known that blood and plasma viscosities are associated with clinical manifestations of atherosclerosis, though evidence is not conclusive particularly in women. To verify whether hematocrit and blood and plasma viscosities are independently associated with carotid atherosclerosis and whether their measurement can improve the definition of the global coronary heart disease (CHD) risk. Eight hundred and ninety-two participants in a cardiovascular disease prevention campaign were examined with regard to conventional CHD risk factors (age, blood pressure, lipids, glucose, body mass index, waist/hip ratio, cigarette smoking and diabetes), hematocrit and blood and plasma viscosities. According to the degree of carotid atherosclerosis, investigated by echo-Doppler, participants were divided in three groups: those without atherosclerosis, those with a low degree of atherosclerosis and those with a high degree of atherosclerosis. In men, age, blood pressure, intima-media thickness (IMT), hematocrit (47.4+/-3.7%, 47.8+/-3.7%, 48.4+/-3.7%, P<0.05) and blood viscosity (4.69+/-0.51 cP, 4.77+/-0.55 cP, 4.82+/-0.51 cP, P=0.05) increased with increasing degree of carotid atherosclerosis. In women, age, blood pressure, total cholesterol and low-density lipoprotein-cholesterol, IMT and plasma viscosity (1.42+/-0.12 cP, 1.44+/-0.11 cP, 1.46+/-0.13 cP, P<0.05) increased with increasing carotid score. Analysis of covariance (ANCOVA) showed that after adjusting for hematocrit, blood viscosity was no longer different in the three groups. In discriminant analysis, hematocrit, among the hemorheological variables investigated, was independently associated with carotid score in men (F=3.66, P<0.05). Neither hematocrit nor blood and plasma viscosities were significantly associated with carotid score in women. These findings suggest that in men, both hematocrit and blood viscosity are related to carotid atherosclerosis but hematocrit would appear to have an independent effect over and above that mediated by viscosity.

  3. CD8{sup +}CD25{sup +} T cells reduce atherosclerosis in apoE(−/−) mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jianchang; Dimayuga, Paul C.; Zhao, Xiaoning

    2014-01-17

    Highlights: •The role of a sub-population of CD8{sup +} T cells with suppressor functions was investigated in atherosclerosis. •CD8{sup +}CD25{sup +} T cells from adult apoE(−/−) mice had phenotype characteristics of T suppressor cells. •These CD8{sup +}CD25{sup +} T cells reduced CD4{sup +} T cell proliferation and CD8{sup +} cytotoxic activity in vitro. •Adoptive transfer of CD8{sup +}CD25{sup +} T cells significantly reduced atherosclerosis. •CD8{sup +}CD25{sup +} T cells have a suppressive function in atherosclerosis. -- Abstract: Background: It is increasingly evident that CD8{sup +} T cells are involved in atherosclerosis but the specific subtypes have yet to be defined.more » CD8{sup +}CD25{sup +} T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis were investigated in this study. Methods and results: CD8{sup +}CD25{sup +} T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8{sup +}CD25{sup +} T cells from apoE(−/−) mice. Depletion of CD8{sup +}CD25{sup +} from total CD8{sup +} T cells rendered higher cytolytic activity of the remaining CD8{sup +}CD25{sup −} T cells. Adoptive transfer of CD8{sup +}CD25{sup +} T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4{sup +} T cells and significantly reduced atherosclerosis in recipient mice. Conclusions: Our study has identified an athero-protective role for CD8{sup +}CD25{sup +} T cells in experimental atherosclerosis.« less

  4. The cis-9,trans-11 isomer of conjugated linoleic acid (CLA) lowers plasma triglyceride and raises HDL cholesterol concentrations but does not suppress aortic atherosclerosis in diabetic apoE-deficient mice.

    PubMed

    Nestel, Paul; Fujii, Akihiko; Allen, Terri

    2006-12-01

    Reduction in atherosclerosis has been reported in experimental animals fed mixtures of conjugated linoleic acid (CLA). In this study, the major naturally occurring CLA isomer (cis-9,trans-11) was tested in an atherosclerosis-prone mouse model. In a model of insulin deficient apoE deficient mice, 16 animals were fed for 20 weeks with supplemental CLA (09.%, w/w) and compared with a similar number of mice of this phenotype. A control comparison was made of metabolic changes in non-diabetic apoE deficient mice that develop little atherosclerosis over 20 weeks. At 20 weeks, plasma lipids were measured and aortic atherosclerosis quantified by Sudan staining in the arch, thoracic and abdominal segments. The diabetic apoE deficient mice developed marked dyslipidemia, primarily as cholesterol-enriched chylomicron and VLDL-sized lipoproteins and atherosclerosis in the aortic arch. However, there were no significant differences between CLA fed and non-CLA fed mice in either phenotype in plasma cholesterol concentration (in diabetic: 29.4+/-7.7 and 29.5+/-5.9 mmol/L, respectively) or in the area of aortic arch atherosclerosis (in diabetic: 24.8+/-10.3 and 27.6+/-7.7%, respectively). However, among diabetic mice the triglyceride concentration in triglyceride-rich lipoproteins was significantly lower in those fed CLA (for plasma 2.2+/-0.8 to 1.1+/-0.3 mmol/L; P<0.001), a significant difference that was seen also in the non-diabetic mice in which HDL cholesterol increased significantly with CLA (0.35+/-0.12-0.56+/-0.15 mmol/L). In this atherosclerosis-prone model, the diabetic apoE deficient mouse, supplemental 0.9% CLA (cis-9,trans-11) failed to reduce the severity of aortic atherosclerosis, although plasma triglyceride concentration was substantially lowered and HDL cholesterol raised.

  5. 78 FR 26791 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... 301-435-0103. Stapled Peptides for Treatment of Cardiovascular Diseases and Inflammation Description... inflammation and cardiovascular diseases, including hyperlipidemia, atherosclerosis, restenosis, and acute...-stapled Apolipoprotein Peptide Mimetics for the Treatment of Cardiovascular Diseases and Inflammation. For...

  6. No effect of C-reactive protein on early atherosclerosis development in apolipoprotein E*3-leiden/human C-reactive protein transgenic mice.

    PubMed

    Trion, A; de Maat, M P M; Jukema, J W; van der Laarse, A; Maas, M C; Offerman, E H; Havekes, L M; Szalai, A J; Princen, H M G; Emeis, J J

    2005-08-01

    C-reactive protein (CRP) has been associated with risk of cardiovascular disease. It is not clear whether CRP is causally involved in the development of atherosclerosis. Mouse CRP is not expressed at high levels under normal conditions and increases in concentration only several-fold during an acute phase response. Because the dynamic range of human CRP is much larger, apolipoprotein E*3-Leiden (E3L) transgenic mice carrying the human CRP gene offer a unique model to study the role(s) of CRP in atherosclerosis development. Atherosclerosis development was studied in 15 male and 15 female E3L/CRP mice; E3L transgenic littermates were used as controls. The mice were fed a hypercholesterolemic diet to induce atherosclerosis development. Cholesterol exposure did not differ between E3L/CRP and E3L mice. Plasma CRP levels were on average 10.2+/-6.5 mg/L in male E3L/CRP mice, 0.2+/-0.1 mg/L in female E3L/CRP mice, and undetectable in E3L mice. Quantification of atherosclerosis showed that lesion area in E3L/CRP mice was not different from that in E3L mice. This study demonstrates that mildly elevated levels of CRP in plasma do not contribute to the development of early atherosclerosis in hypercholesterolemic E3L/CRP mice.

  7. Serum levels of matrix metalloproteinase-10 are associated with the severity of atherosclerosis in patients with chronic kidney disease.

    PubMed

    Coll, Blai; Rodríguez, Jose A; Craver, Lourdes; Orbe, Josune; Martínez-Alonso, Montserrat; Ortiz, Alberto; Díez, Javier; Beloqui, Oscar; Borras, Merce; Valdivielso, Jose M; Fernández, Elvira; Páramo, José A

    2010-12-01

    Cardiovascular disease is the leading cause of mortality in chronic kidney disease (CKD). As matrix metalloproteinases have a major role in atherosclerosis, we hypothesized that alterations in metalloproteinases-8, -10 and their tissue inhibitor-1 can be associated with the severity of atherosclerosis in patients with kidney disease. This was evaluated in a cross-sectional, observational study of 111 patients with stages I-V kidney disease, 217 patients on dialysis and 50 healthy controls. The severity of atherosclerosis was estimated with the atherosclerosis score (AS), combining the results of ankle-brachial index and carotid ultrasound. Serum levels of the two metalloproteinases and tissue inhibitor-1 were measured by enzyme-linked immunosorbent assay and were significantly increased in patients with kidney disease compared with the healthy controls, and higher in patients on dialysis than in earlier stages of CKD. The severity of the AS was also more prevalent in the dialysis group, in which serum levels of both metalloproteinases and tissue inhibitor-1 were significantly higher. After multivariate analysis, metalloproteinase-10, dialysis, C-reactive protein, age, and male gender were associated with increased risk of atherosclerosis. Thus, patients with CKD exhibit elevated levels of circulating metalloproteinase-10, and this was independently associated with the severity of atherosclerosis and may represent a new biomarker of atherosclerotic diseases.

  8. Marked Acceleration of Atherosclerosis following Lactobacillus casei induced Coronary Arteritis in a Mouse Model of Kawasaki Disease

    PubMed Central

    Chen, Shuang; Lee, Young Ho; Crother, Timothy R.; Fishbein, Michael; Zhang, Wenxuan; Yilmaz, Atilla; Shimada, Kenichi; Schulte, Danica J; Lehman, Thomas J.A.; Shah, Prediman K.; Arditi, Moshe

    2012-01-01

    Objective To investigate if Lactobacillus casei cell wall extract (LCWE)-induced Kawasaki Disease (KD) accelerates atherosclerosis in hypercholesterolemic mice. Method and Resuslts Apoe−/− or Ldlr−/− mice were injected with LCWE (KD mice) or PBS, fed high fat diet for 8 weeks, and atherosclerotic lesions in aortic sinuses (AS), arch (AC) and whole aorta were assessed. KD mice had larger, more complex aortic lesions with abundant collagen, and both extracellular and intracellular lipid and foam cells, compared to lesions in control mice despite similar cholesterol levels. Both Apoe−/− KD and Ldlr−/− KD mice showed dramatic acceleration in atherosclerosis vs. controls, with increases in en face aortic atherosclerosis and plaque size in both the AS and AC plaques. Accelerated atherosclerosis was associated with increased circulating IL-12p40, IFN-γ, TNF-α, and increased macrophage, DC, and T cell recruitment in lesions. Furthermore, daily injections of the IL-1Ra, which inhibits LCWE induced KD vasculitis, prevented the acceleration of atherosclerosis. Conclusions Our results suggest an important pathophysiologic link between coronary arteritis/vasculitis in the KD mouse model and subsequent atherosclerotic acceleration, supporting the concept that a similar relation may also be present in KD patients. These results also suggest that KD in childhood may predispose to accelerated and early atherosclerosis as adults. PMID:22628430

  9. Vinpocetine attenuates lipid accumulation and atherosclerosis formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Yujun; Li, Jian-Dong; Yan, Chen, E-mail: Chen_Yan@urmc.rochester.edu

    Highlights: •Vinpocetine attenuates hyperlipidemia-induced atherosclerosis in a mouse model. •Vinpocetine antagonizes ox-LDL uptake and accumulation in macrophages. •Vinpocetine blocks the induction of ox-LDL receptor LOX-1 in vitro and in vivo. -- Abstract: Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatorymore » agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis.« less

  10. Clinical usefulness of metabolic risk factors to identify young asymptomatic women adults with subclinical atherosclerosis: A cross-sectional study.

    PubMed

    Qin, Guangming; Chen, Zhihao; Su, Weiwei; Geng, Xiaoge; Chen, Xiaojun; Xu, Xiang; Pan, Wensheng

    2017-03-01

    Interventions of cardiovascular disease should be implemented in early ages. But most studies were performed in middle aged or elderly adults because of the low prevalence in young, especially for women. We investigate the association between metabolic risk factors and subclinical atherosclerosis in young asymptomatic women adults, using carotid intima-media thickness (CIMT) as a marker of the atherosclerotic process.We performed a cross-sectional study of 950 Chinese young asymptomatic women adults (37.28 ± 5.16 years) who underwent a routine health screening examination. Triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), fasting blood glucose (FBG), homocysteine (HCY), gamma glutamyltransferase (GGT), uric acid, and CIMT were measured.Out of 950 subjects, 16 (1.7%) were detected with increased CIMT. Significant differences existed in the indicators including age, body mass index (BMI), TC, TG, LDL-C, LDL-C/HDL-C, non-HDL-C, and TC/HDL-C. Although TG, LDL-C, non-HDL-C, TC/HDL-C, and TG/HDL-C were the significant indicators when adjusted for age only, age, LDL-C/HDL-C, FBG, and GGT were the only independent relative indicators of increased CMIT that entered the multivariate model. The area under receiver operating characteristic curve for a linear combination of age, LDL-C/HDL-C, FBG, and GGT was 0.809 (95% confidence interval = 0.712-0.906), superior to any of the variables taken alone (age, AUC = 0.707; FBG, AUC = 0.710; LDL-C/HDL-C, AUC = 0.695; GGT, AUC = 0.648).The combined assessment of age, LDL-C/HDL-C, FBG, and GGT contributes to an early detection for subclinical atherosclerosis, providing guidance to clinicians for women's early interventions of latent cardiovascular disease. Neither of the above four individual indicators is qualified alone.

  11. Time of exposure to night work and carotid atherosclerosis: a structural equation modeling approach using baseline data from ELSA-Brasil.

    PubMed

    Silva-Costa, Aline; Guimarães, Joanna; Chor, Dora; de Jesus Mendes da Fonseca, Maria; Bensenor, Isabela; Santos, Itamar; Barreto, Sandhi; Griep, Rosane Härter

    2018-07-01

    The study of cardiovascular diseases (CVD) associated with night work is difficult due to the long period required for conditions to manifest and the healthy-worker effect. Analyzing asymptomatic pre-clinical changes in the atherosclerotic process is a way to assess the pathways between exposure to night work and CVD. To evaluate the associations between night work and subclinical atherosclerosis measured by carotid intima-media thickness (CIMT) using baseline data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). We conducted cross-sectional analyses using baseline data (2008-2010) from 9785 civil servants, aged 35-74 years. The associations between time of exposure to night work and mean CIMT were examined using a structural equation model. The sample included 4259 men and 5526 women, mean age of 51.6 years. A total of 1778 (18.2%) individuals were exposed to night work (594 current and 1184 former night workers), and the mean years of night work exposed was 11.47 (SD = 9.45) years. On average, mean CIMT was 0.606 (SD = 0.130) mm. Among men, the increase in exposure to night work was significantly associated with an increase in BMI and CIMT. Among women, night work was not associated with increased CIMT. In relation to the indirect associations, results suggest a possible mediation by BMI, diabetes and hypertension on the association between the years of night work and mean CIMT only among men. Night work was associated with increased CIMT only among men. These findings add to the knowledge of the possible pathways that link night work and carotid atherosclerosis. Additionally, these results contribute to the recognition of work schedules as a public health problem that should be addressed by the medical community and policy makers.

  12. [Study on action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis based on techniques of gene expression profile and molecular fingerprint].

    PubMed

    Zhou, Wei; Song, Xiang-gang; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang

    2015-08-01

    Action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis were discussed based on gene expression profile and molecular fingerprint in this paper. First, gene expression profiles of atherosclerotic carotid artery tissues and histologically normal tissues in human body were collected, and were screened using significance analysis of microarray (SAM) to screen out differential gene expressions; then differential genes were analyzed by Gene Ontology (GO) analysis and KEGG pathway analysis; to avoid some genes with non-outstanding differential expression but biologically importance, Gene Set Enrichment Analysis (GSEA) were performed, and 7 chemical ingredients with higher negative enrichment score were obtained by Cmap method, implying that they could reversely regulate the gene expression profiles of pathological tissues; and last, based on the hypotheses that similar structures have similar activities, 336 ingredients of compound Danshen dripping pills were compared with 7 drug molecules in 2D molecular fingerprints method. The results showed that 147 differential genes including 60 up-regulated genes and 87 down regulated genes were screened out by SAM. And in GO analysis, Biological Process ( BP) is mainly concerned with biological adhesion, response to wounding and inflammatory response; Cellular Component (CC) is mainly concerned with extracellular region, extracellular space and plasma membrane; while Molecular Function (MF) is mainly concerned with antigen binding, metalloendopeptidase activity and peptide binding. KEGG pathway analysis is mainly concerned with JAK-STAT, RIG-I like receptor and PPAR signaling pathway. There were 10 compounds, such as hexadecane, with Tanimoto coefficients greater than 0.85, which implied that they may be the active ingredients (AIs) of compound Danshen dripping pills in treatment of carotid atherosclerosis (CAs). The present method can be applied to the research on material base and molecular action mechanism of TCM.

  13. Non-invasive detection of aortic and coronary atherosclerosis in homozygous familial hypercholesterolemia by 64 slice multi-detector row computed tomography angiography

    USDA-ARS?s Scientific Manuscript database

    Homozygous familial hypercholesterolemia (HoFH) is a rare disorder characterized by the early onset of atherosclerosis, often at the ostia of coronary arteries. In this study we document for the first time that aortic and coronary atherosclerosis can be detected using 64 slice multiple detector row ...

  14. Impact of Thyroid Hormone Therapy on Atherosclerosis in the Elderly with Subclinical Hypothyroidism: A Randomized Trial.

    PubMed

    Blum, Manuel R; Gencer, Baris; Adam, Luise; Feller, Martin; Collet, Tinh-Hai; da Costa, Bruno R; Moutzouri, Elisavet; Dopheide, Jörn; Depairon, Michèle; Sykiotis, Gerasimos P; Kearney, Patricia; Gussekloo, Jacobijn; Westendorp, Rudi; Stott, David J; Bauer, Douglas C; Rodondi, Nicolas

    2018-05-28

    Subclinical hypothyroidism (SHypo) has been associated with atherosclerosis, but no conclusive clinical trials assessing the levothyroxine impact on carotid atherosclerosis exist. To assess the impact of treatment of SHypo with levothyroxine on carotid atherosclerosis. Randomized, double-blind, placebo-controlled trial nested within the TRUST trial. Participants aged ≥65 years with SHypo (thyroid-stimulating hormone, TSH, 4.60-19.99 mIU/L; free thyroxine level within reference range). Levothyroxine dose-titrated to achieve TSH normalization, or placebo including mock titrations. Carotid intima media thickness (CIMT), maximum plaque thickness measured with ultrasound. 185 participants (mean age 74.1 years, 47% women, 96 randomized to levothyroxine) underwent carotid ultrasound. Overall mean TSH±SD was 6.35±1.95 mIU/L at baseline and decreased to 3.55±2.14 mIU/L with levothyroxine, as compared to 5.29±2.21 mIU/L with placebo (p<0.001). After a median treatment of 18.4 months (interquartile range 12.2-30.0 months), mean CIMT was 0.85±0.14 mm under levothyroxine and 0.82±0.13 mm under placebo (between-group difference=0.02 mm, 95% confidence interval (CI)-0.01 to 0.06, p=0.30). Proportion of carotid plaque was similar (n=135, 70.8% under levothyroxine and 75.3% under placebo, p=0.46). Maximum carotid plaque thickness was 2.38±0.92 mm under levothyroxine and 2.37±0.91 mm under placebo (between-group difference -0.03, 95%CI -0.34 to 0.29, p=0.86). There were no significant interactions between levothyroxine treatment and mean CIMT according to sex, baseline TSH (categories 4.6-6.9, 7.0-9.9, and ≥10mmol/L) or established cardiovascular disease (all p for interaction ≥0.14). Normalization of TSH with levothyroxine was associated with no difference in CIMT and carotid atherosclerosis in older persons with SHypo.

  15. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice

    PubMed Central

    Merkel, Martin; Velez-Carrasco, Wanda; Hudgins, Lisa C.; Breslow, Jan L.

    2001-01-01

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway. PMID:11606787

  16. Associations between bone mineral density and subclinical atherosclerosis: a cross-sectional study of a Chinese population.

    PubMed

    Liang, Dong-Ke; Bai, Xiao-Juan; Wu, Bing; Han, Lu-Lu; Wang, Xiao-Nan; Yang, Jun; Chen, Xiang-Mei

    2014-02-01

    The significance of associations between bone mineral density (BMD) and atherosclerosis in the Asian population is less clear. The aim of this study was to explore the population-level associations between BMD and subclinical atherosclerosis. This was a community-based cross-sectional study conducted in Shenyang, China. A total of 385 Chinese women and men aged 37-87 years were studied. The BMD was measured at the total hip and lumbar spine using dual-energy x-ray absorptiometry. The ankle-brachial index (ABI), pulse wave velocity (PWV), and carotid intima-media thickness (CIMT) were measured to assess atherosclerosis. Multiple regression analysis was applied to study the associations. Multicolinearity was examined using the variance inflation factor, condition index, and variance proportions. Factor analysis and principal component regression were used to remove the problem of multicolinearity. The differences of ABI, PWV, and CIMT among the normal BMD, osteopenia, and osteoporosis groups were not found. Total hip BMD was correlated with ABI in women after adjustment for age (r = 0.156). Sex-specific regression models included adjustment for age, body mass index, cigarette smoking, alcohol consumption, menopausal status (women), systolic blood pressure, diastolic blood pressure, triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, fasting blood glucose, serum uric acid, estimated glomerular filtration rate, high-sensitivity C-reactive protein, and fibrinogen. Total hip BMD was associated with ABI in women after adjustment for age (per SD decrease in ABI: -0.130 g/cm(2), P = .022), but the association was borderline significant after full adjustment (P = .045). Total hip BMD and lumbar spine BMD were not associated with ABI, PWV, and CIMT after full adjustment in participants without a fracture history. The risk of osteoporosis was not associated with ABI, PWV, and CIMT. Low BMD is not associated with subclinical atherosclerosis as assessed by ABI, PWV, and CIMT.

  17. Reflection magnitude as a predictor of mortality: the Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Zamani, Payman; Jacobs, David R; Segers, Patrick; Duprez, Daniel A; Brumback, Lyndia; Kronmal, Richard A; Lilly, Scott M; Townsend, Raymond R; Budoff, Matthew; Lima, Joao A; Hannan, Peter; Chirinos, Julio A

    2014-11-01

    Arterial wave reflections have been associated with mortality in an ethnically homogenous Asian population. It is unknown whether this association is present in a multiethnic population or whether it is independent of subclinical atherosclerosis. We hypothesized that reflection magnitude (defined as the ratio of the amplitude of the backward wave [Pb] to that of the forward wave [Pf]) is associated with all-cause mortality in a large multiethnic adult community-based sample. We studied 5984 participants enrolled in the Multi-Ethnic Study of Atherosclerosis who had analyzable arterial tonometry waveforms. During 9.8±1.7 years of follow-up, 617 deaths occurred, of which 134 (22%) were adjudicated cardiovascular deaths. In Cox proportional hazards models, each 10% increase in reflection magnitude was associated with a 31% increased risk for all-cause mortality (hazard ratio [HR]=1.31; 95% confidence interval [CI]=1.11-1.55; P=0.001). This relationship persisted after adjustment for various confounders and for markers of subclinical atherosclerosis (HR=1.23; 95% CI=1.01-1.51; P=0.04), including the coronary calcium score, ankle-brachial index, common carotid intima-media thickness, and ascending thoracic aortic Agatston score. Pb was independently associated with all-cause mortality in a similarly adjusted model (HR per 10 mm Hg increase in P(b)=2.18; 95% CI=1.21-3.92; P=0.009). Reflection magnitude (HR=1.71; 95% CI=1.06-2.77; P=0.03) and P(b) (HR=5.02; 95% CI=1.29-19.42; P=0.02) were mainly associated with cardiovascular mortality. In conclusion, reflection magnitude is independently associated with all-cause mortality in a multiethnic population initially free of clinically evident cardiovascular disease. This relationship persists after adjustment for a comprehensive set of markers of subclinical atherosclerosis. © 2014 American Heart Association, Inc.

  18. Compared with saturated fatty acids, dietary monounsaturated fatty acids and carbohydrates increase atherosclerosis and VLDL cholesterol levels in LDL receptor-deficient, but not apolipoprotein E-deficient, mice.

    PubMed

    Merkel, M; Velez-Carrasco, W; Hudgins, L C; Breslow, J L

    2001-11-06

    Heart-healthy dietary recommendations include decreasing the intake of saturated fatty acids (SFA). However, the relative benefit of replacing SFA with monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), or carbohydrates (CARB) is still being debated. We have used two mouse models of atherosclerosis, low density lipoprotein receptor-deficient (LDLRKO) and apolipoprotein E-deficient (apoEKO) mice to measure the effects of four isocaloric diets enriched with either SFA, MUFA, PUFA, or CARB on atherosclerotic lesion area and lipoprotein levels. In LDLRKO mice, compared with the SFA diet, the MUFA and CARB diets significantly increased atherosclerosis in both sexes, but the PUFA diet had no effect. The MUFA and CARB diets also increased very low density lipoprotein-cholesterol (VLDL-C) and LDL-cholesterol (LDL-C) in males and VLDL-C levels in females. Analysis of data from LDLRKO mice on all diets showed that atherosclerotic lesion area correlated positively with VLDL-C levels (males: r = 0.47, P < 0.005; females: r = 0.52, P < 0.001). In contrast, in apoEKO mice there were no significant dietary effects on atherosclerosis in either sex. Compared with the SFA diet, the CARB diet significantly decreased VLDL-C in males and the MUFA, PUFA, and CARB diets decreased VLDL-C and the CARB diet decreased LDL-C in females. In summary, in LDLRKO mice the replacement of dietary SFA by either MUFA or CARB causes a proportionate increase in both atherosclerotic lesion area and VLDL-C. There were no significant dietary effects on atherosclerotic lesion area in apoEKO mice. These results are surprising and suggest that, depending on the underlying genotype, dietary MUFA and CARB can actually increase atherosclerosis susceptibility, probably by raising VLDL-C levels through a non-LDL receptor, apoE-dependent pathway.

  19. Combined Vitamin C and Vitamin E Deficiency Worsens Early Atherosclerosis in ApoE-Deficient Mice

    PubMed Central

    Babaev, Vladimir R.; Li, Liying; Shah, Sanket; Fazio, Sergio; Linton, MacRae F.; May, James M.

    2010-01-01

    Objective Atherosclerosis is an inflammatory condition associated with oxidative stress, but controversy persists regarding whether antioxidants such as vitamins C and E are preventative. To assess the role of combined deficiencies of vitamins C and E on the earliest stages of atherosclerosis, four combinations of vitamin supplementation (Low C/Low E, Low C/High E, High C/Low E, High C/High E) were studied in atherosclerosis-prone apolipoprotein E (apoE)-deficient mice also unable to synthesize their own vitamin C (gulo−/−). The effect of a more severe depletion of vitamin C alone was evaluated in a second experiment using gulo−/− mice carrying the hemizygous deletion of SVCT2, the vitamin C transporter. Methods and Results After 8 weeks on a high-fat diet (16% lard, 0.2% cholesterol), atherosclerosis developed in the aortic sinus areas of mice in all diet groups. Each vitamin-deficient diet significantly decreased liver and brain contents of the corresponding vitamin. Combined deficiency of both vitamins increased lipid peroxidation, doubled plaque size, and increased plaque macrophage content by 2-3-fold in males, although only plaque macrophage content was increased in females. A more severe deficiency of vitamin C in gulo−/− mice with defective cellular uptake of vitamin C increased both oxidative stress and atherosclerosis in apoE−/− mice compared to littermates on a diet replete in vitamin C, again most clearly in males. Conclusion Combined vitamin E and C deficiencies are required to worsen early atherosclerosis in an apoE-deficient mouse model. However, a more severe cellular deficiency of vitamin C alone promotes atherosclerosis when vitamin E is replete. PMID:20558818

  20. Prevention of oxLDL uptake leads to decreased atherosclerosis in hematopoietic NPC1-deficient Ldlr-/- mice.

    PubMed

    Jeurissen, Mike L J; Walenbergh, Sofie M A; Houben, Tom; Gijbels, Marion J J; Li, Jieyi; Hendrikx, Tim; Oligschlaeger, Yvonne; van Gorp, Patrick J; Binder, Christoph J; Donners, Marjo M P C; Shiri-Sverdlov, Ronit

    2016-12-01

    Atherosclerosis is a chronic inflammatory disease of medium and large vessels and is typically characterized by the predominant accumulation of low-density lipoprotein (LDL)-cholesterol inside macrophages that reside in the vessel walls. Previous studies clearly demonstrated an association specifically between the oxidized type of LDL (oxLDL) and atherosclerotic lesion formation. Further observations revealed that these atherosclerotic lesions displayed enlarged, lipid-loaded lysosomes. By increasing natural antibodies against oxLDL, pneumococcal vaccination has been shown to reduce atherosclerosis in LDL receptor knockout (Ldlr -/- ) mice. Relevantly, loss of the lysosomal membrane protein Niemann-Pick Type C1 (NPC1) led to lysosomal accumulation of various lipids and promoted atherosclerosis. Yet, the importance of lysosomal oxLDL accumulation inside macrophages, compared to non-modified LDL, in atherosclerosis has never been established. By transplanting NPC1 bone marrow into lethally irradiated Ldlr -/- mice, a hematopoietic mouse model for lysosomal cholesterol accumulation was created. Through injections with heat-inactivated pneumococci, we aimed to demonstrate the specific contribution of lysosomal oxLDL accumulation inside macrophages in atherosclerosis development. While there were no differences in plaque morphology, a reduction in plaque size and plaque inflammation was found in immunized NPC1 mut -transplanted mice, compared to non-immunized NPC1 mut -transplanted mice. Lysosomal oxLDL accumulation within macrophages contributes to murine atherosclerosis. Future intervention strategies should focus specifically on preventing oxLDL, unlike non-modified LDL, from being internalized into lysosomes. Such an intervention can have an additive effect to current existing treatments against atherosclerosis. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  1. Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis

    PubMed Central

    Patel, Kevin M.; Strong, Alanna; Tohyama, Junichiro; Jin, Xueting; Morales, Carlos R.; Billheimer, Jeffery; Millar, John; Kruth, Howard; Rader, Daniel J.

    2015-01-01

    Rationale Non-coding gene variants at the SORT1 locus are strongly associated with LDL-C levels as well as with coronary artery disease (CAD). SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apoB-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown. Objective To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis. Methods and Results We crossed Sort1−/− mice onto a ‘humanized’ Apobec1−/−; hAPOB Tg background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. In order to test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1−/−;LDLR−/− or Sort1+/+;LDLR−/− bone marrow into Ldlr−/− mice and observed a similar reduction in atherosclerosis in mice lacking hematopoetic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoetic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or LPS-induced cytokine release in vivo. In contrast, sortilin deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation. Conclusions Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development. PMID:25593281

  2. MicroRNA-30c Mimic Mitigates Hypercholesterolemia and Atherosclerosis in Mice*

    PubMed Central

    Irani, Sara; Pan, Xiaoyue; Peck, Bailey C. E.; Iqbal, Jahangir; Sethupathy, Praveen; Hussain, M. Mahmood

    2016-01-01

    High plasma cholesterol levels are a major risk factor for atherosclerosis. Plasma cholesterol can be reduced by inhibiting lipoprotein production; however, this is associated with steatosis. Previously we showed that lentivirally mediated hepatic expression of microRNA-30c (miR-30c) reduced hyperlipidemia and atherosclerosis in mice without causing hepatosteatosis. Because viral therapy would be formidable, we examined whether a miR-30c mimic can be used to mitigate hyperlipidemia and atherosclerosis without inducing steatosis. Delivery of a miR-30c mimic to the liver diminished diet-induced hypercholesterolemia in C57BL/6J mice. Reductions in plasma cholesterol levels were significantly correlated with increases in hepatic miR-30c levels. Long term dose escalation studies showed that miR-30c mimic caused sustained reductions in plasma cholesterol with no obvious side effects. Furthermore, miR-30c mimic significantly reduced hypercholesterolemia and atherosclerosis in Apoe−/− mice. Mechanistic studies showed that miR-30c mimic had no effect on LDL clearance but reduced lipoprotein production by down-regulating microsomal triglyceride transfer protein expression. MiR-30c had no effect on fatty acid oxidation but reduced lipid synthesis. Additionally, whole transcriptome analysis revealed that miR-30c mimic significantly down-regulated hepatic lipid synthesis pathways. Therefore, miR-30c lowers plasma cholesterol and mitigates atherosclerosis by reducing microsomal triglyceride transfer protein expression and lipoprotein production and avoids steatosis by diminishing lipid syntheses. It mitigates atherosclerosis most likely by reducing lipoprotein production and plasma cholesterol. These findings establish that increasing hepatic miR-30c levels is a viable treatment option for reducing hypercholesterolemia and atherosclerosis. PMID:27365390

  3. MicroRNA-30c Mimic Mitigates Hypercholesterolemia and Atherosclerosis in Mice.

    PubMed

    Irani, Sara; Pan, Xiaoyue; Peck, Bailey C E; Iqbal, Jahangir; Sethupathy, Praveen; Hussain, M Mahmood

    2016-08-26

    High plasma cholesterol levels are a major risk factor for atherosclerosis. Plasma cholesterol can be reduced by inhibiting lipoprotein production; however, this is associated with steatosis. Previously we showed that lentivirally mediated hepatic expression of microRNA-30c (miR-30c) reduced hyperlipidemia and atherosclerosis in mice without causing hepatosteatosis. Because viral therapy would be formidable, we examined whether a miR-30c mimic can be used to mitigate hyperlipidemia and atherosclerosis without inducing steatosis. Delivery of a miR-30c mimic to the liver diminished diet-induced hypercholesterolemia in C57BL/6J mice. Reductions in plasma cholesterol levels were significantly correlated with increases in hepatic miR-30c levels. Long term dose escalation studies showed that miR-30c mimic caused sustained reductions in plasma cholesterol with no obvious side effects. Furthermore, miR-30c mimic significantly reduced hypercholesterolemia and atherosclerosis in Apoe(-/-) mice. Mechanistic studies showed that miR-30c mimic had no effect on LDL clearance but reduced lipoprotein production by down-regulating microsomal triglyceride transfer protein expression. MiR-30c had no effect on fatty acid oxidation but reduced lipid synthesis. Additionally, whole transcriptome analysis revealed that miR-30c mimic significantly down-regulated hepatic lipid synthesis pathways. Therefore, miR-30c lowers plasma cholesterol and mitigates atherosclerosis by reducing microsomal triglyceride transfer protein expression and lipoprotein production and avoids steatosis by diminishing lipid syntheses. It mitigates atherosclerosis most likely by reducing lipoprotein production and plasma cholesterol. These findings establish that increasing hepatic miR-30c levels is a viable treatment option for reducing hypercholesterolemia and atherosclerosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Effect of atherosclerosis on endothelium-dependent inhibition of platelet activation in humans.

    PubMed

    Diodati, J G; Dakak, N; Gilligan, D M; Quyyumi, A A

    1998-07-07

    We investigated whether luminal release of nitric oxide (NO) contributes to inhibition of platelet activation and whether these effects are reduced in patients with atherosclerosis. Femoral blood flow velocity and ex vivo whole blood platelet aggregation by impedance aggregometry were measured in femoral venous blood during femoral arterial infusion of acetylcholine (ACh; 30 microg/min) in 30 patients, 19 of whom had angiographic atherosclerosis. Measurements were repeated with sodium nitroprusside (40 microg/min), L-arginine (160 micromol/min), and N(G)-monomethyl-L-arginine (L-NMMA; 16 micromol/min). There was significant inhibition of collagen-induced platelet aggregation with ACh (45+/-9.5% lower, P<0.001), and this inhibition was greater in patients without atherosclerosis (68.7+/-10.4% reduction) than in those with atherosclerosis (32.5+/-8.1%, P=0.04). The magnitude of inhibition correlated with vasodilation with ACh, indicating an association between the smooth muscle and antiplatelet effects of endothelium-dependent stimulation. Neither L-NMMA nor sodium nitroprusside altered platelet aggregation. L-Arginine inhibited platelet aggregation equally in vitro (34+/-8% reduction, P<0.01) and in vivo (37+/-13% reduction, P<0.01). Stimulation of NO release into the vascular lumen with ACh inhibits platelet aggregation, an effect that is attenuated in patients with atherosclerosis and endothelial dysfunction. Basal NO release does not appear to contribute to platelet passivation in vivo. L-Arginine inhibited platelet aggregation by its direct action on platelets. These findings provide a pathophysiological basis for the observed increase in thrombotic events in atherosclerosis. Use of L-arginine and other strategies to improve endothelial NO activity may impact favorably on thrombotic events in atherosclerosis.

  5. Effects of long- and short-term darbepoetin-α treatment on oxidative stress, inflammation and endothelial injury in ApoE knockout mice.

    PubMed

    Özdemir, Evrim Dursun; Hanikoglu, Aysegul; Cort, Aysegul; Ozben, Beste; Suleymanlar, Gultekin; Ozben, Tomris

    2017-07-01

    Atherosclerosis and atherosclerosis-related complications are the main cause of death in the world. Vascular injury in response to inflammation and enhanced oxidant stress promotes endothelial dysfunction and leads to atherosclerotic lesions. Low-dose treatment with darbepoetin-α may be a potential therapeutic tool for endothelial injury and atherosclerosis. In order to study the effect of darbepoetin-α on endothelial injury and atherosclerosis, we used ApoE-/- mice as the atherosclerotic mice model. We monitored atherosclerosis and plaque formation histochemically in ApoE knockout mice at early and late stages of atherosclerosis. Darbepoetin-α was injected intraperitoneally at a dose of 0.1 μg/kg to ApoE-/- mice. The results of 2 ApoE-/- mice groups injected with darbepoetin-α (early and late stages of atherosclerosis) were compared to the results of the corresponding saline injected ApoE-/- mice groups and the control (C57BL/6) mice. Lipid profile (total cholesterol, triglyceride), inflammation (CRP, IL-6, histamine), endothelial injury (ICAM-1, selectin) and oxidative stress markers (lipid peroxidation, protein oxidation) were significantly increased in 4 atherosclerotic groups compared to the control group. Short-term darbepoetin-α had no marked effects on indicators of inflammation and endothelial injury in the ApoE knockout mice groups compared to the ApoE knockout mice not treated with darbepoetin-α, however, darbepoetin-α significantly decreased 8-isoprostane and protein carbonyl content. Long term darbepoetin-α treatment reduced oxidative stress in ApoE-/- mice. This study contributes to understanding and elucidating the biochemical changes occurring during early and late stages of atherosclerosis development regarding lipid profile, inflammation, endothelial injury and oxidative stress markers.

  6. The population-based Barcelona-Asymptomatic Intracranial Atherosclerosis Study (ASIA): rationale and design.

    PubMed

    López-Cancio, Elena; Dorado, Laura; Millán, Mónica; Reverté, Silvia; Suñol, Anna; Massuet, Anna; Mataró, María; Galán, Amparo; Alzamora, Maite; Pera, Guillem; Torán, Pere; Dávalos, Antoni; Arenillas, Juan F

    2011-02-17

    Large-artery intracranial atherosclerosis may be the most frequent cause of ischemic stroke worldwide. Traditional approaches have attempted to target the disease when it is already symptomatic. However, early detection of intracranial atherosclerosis may allow therapeutic intervention while the disease is still asymptomatic. The prevalence and natural history of asymptomatic intracranial atherosclerosis in Caucasians remain unclear. The aims of the Barcelona-ASymptomatic Intracranial Atherosclerosis (ASIA) study are (1) to determine the prevalence of ASIA in a moderate-high vascular risk population, (2) to study its prognostic impact on the risk of suffering future major ischemic events, and (3) to identify predictors of the development, progression and clinical expression of this condition. Cross-over and cohort, population-based study. A randomly selected representative sample of 1,503 subjects with a mild-moderate-high vascular risk (as defined by a REGICOR score ≥ 5%) and with neither a history of cerebrovascular nor ischemic heart disease will be studied. At baseline, all individuals will undergo extracranial and transcranial Color-Coded Duplex (TCCD) ultrasound examinations to detect presence and severity of extra and intracranial atherosclerosis. Intracranial stenoses will be assessed by magnetic resonance angiography (MRA). Clinical and demographic variables will be recorded and blood samples will be drawn to investigate clinical, biological and genetic factors associated with the presence of ASIA. A long-term clinical and sonographic follow-up will be conducted thereafter to identify predictors of disease progression and of incident vascular events. The Barcelona-ASIA is a population-based study aiming to evaluate the prevalence and clinical importance of asymptomatic intracranial large-artery atherosclerosis in Caucasians. The ASIA project may provide a unique scientific resource to better understand the dynamics of intracranial atherosclerosis from its early stages and to identify new potential therapeutic targets for this condition.

  7. Association of body flexibility and carotid atherosclerosis in Japanese middle-aged men: a cross-sectional study.

    PubMed

    Suwa, Masataka; Imoto, Takayuki; Kida, Akira; Yokochi, Takashi; Iwase, Mitsunori; Kozawa, Kenji

    2018-01-05

    This study examined the associations of body flexibility with carotid arterial remodelling, including intima-media thickness (IMT) and plaque formation in middle-aged men. The subjects of this cross-sectional study included 1354 Japanese men aged 35-59 years without histories of stroke or cardiac diseases. The arm extensibility test, which can estimate flexibility of the upper extremity (composed of shoulder external rotation and forearm supination), and the sit-and-reach test were performed. Common carotid IMT and plaque formation (≥1.1 mm) were estimated by ultrasound. The proportion of subjects who fully completed the arm extensibility test was 55.0%, and who had plaques in the common carotid artery was 37.8%. IMT was associated with poor arm extensibility (β=-0.073, 95% CI -0.02224 to - 0.00041, P=0.004), while plaque formation was associated with poor sit-and-reach (OR 0.98579, 95% CI 0.97257 to 0.99919, P=0.038) after adjustment by all covariates. This study demonstrated that poor upper extremity and trunk flexibility were associated with characteristics of early onset of atherosclerosis. Furthermore, these associations were independent of covariates such as age, blood pressure, blood lipids glucose levels and abdominal fat accumulation, handgrip strength and lifestyle, including sleeping, drinking, exercise and smoking habits. Poor flexibility may reflect subclinical atherosclerosis in middle-aged men. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Pediatric Origins of Nephrolithiasis-Associated Atherosclerosis.

    PubMed

    Kusumi, Kirsten; Smith, Sally; Barr-Beare, Evan; Saxena, Vijay; Schober, Megan S; Moore-Clingenpeel, Melissa; Schwaderer, Andrew L

    2015-11-01

    To determine if nephrolithiasis-associated atherosclerosis has pediatric origins and to consider possible association between kidney stones and atherosclerosis-related proteins. We matched children aged 12-17 years with kidney stones and without kidney stones. Carotid artery intima-media thickness (cIMT) was measured by ultrasound. Participants' urine was investigated by enzyme-linked immunosorbent assay for the atherosclerosis-related proteins fibronectin 1, macrophage scavenger receptor 1, osteopontin, and vascular cell adhesion molecule 1 levels, and normalized to urine creatinine levels. Subjects with nephrolithiasis had higher cIMT in the right common carotid artery and overall mean measurement. Urine osteopontin and fibronectin 1 were significant predictors of cIMT. We have provided initial preliminary evidence that nephrolithiasis-associated atherosclerosis has pediatric origins and performed studies that begin to identify potential reasons for the association of nephrolithiasis and vascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. [Epigenetics in atherosclerosis].

    PubMed

    Guardiola, Montse; Vallvé, Joan C; Zaina, Silvio; Ribalta, Josep

    2016-01-01

    The association studies based on candidate genes carried on for decades have helped in visualizing the influence of the genetic component in complex diseases such as atherosclerosis, also showing the interaction between different genes and environmental factors. Even with all the knowledge accumulated, there is still some way to go to decipher the individual predisposition to disease, and if we consider the great influence that environmental factors play in the development and progression of atherosclerosis, epigenetics is presented as a key element in trying to expand our knowledge on individual predisposition to atherosclerosis and cardiovascular disease. Epigenetics can be described as the discipline that studies the mechanisms of transcriptional regulation, independent of changes in the sequence of DNA, and mostly induced by environmental factors. This review aims to describe what epigenetics is and how epigenetic mechanisms are involved in atherosclerosis. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  10. Increased atherosclerosis in mice with increased vascular biglycan content.

    PubMed

    Thompson, Joel C; Tang, Tao; Wilson, Patricia G; Yoder, Meghan H; Tannock, Lisa R

    2014-07-01

    The response to retention hypothesis of atherogenesis proposes that atherosclerosis is initiated via the retention of atherogenic lipoproteins by vascular proteoglycans. Co-localization studies suggest that of all the vascular proteoglycans, biglycan is the one most closely co-localized with LDL. The goal of this study was to determine if over-expression of biglycan in hyperlipidemic mice would increase atherosclerosis development. Transgenic mice were developed by expressing biglycan under control of the smooth muscle actin promoter, and were crossed to the LDL receptor deficient (C57BL/6 background) atherosclerotic mouse model. Biglycan transgenic and non-transgenic control mice were fed an atherogenic Western diet for 4-12 weeks. LDL receptor deficient mice overexpressing biglycan under control of the smooth muscle alpha actin promoter had increased atherosclerosis development that correlated with vascular biglycan content. Increased vascular biglycan content predisposes to increased lipid retention and increased atherosclerosis development. Published by Elsevier Ireland Ltd.

  11. Effects of catechins and caffeine on the development of atherosclerosis in mice.

    PubMed

    Liu, Litong; Nagai, Izumi; Gao, Ying; Matsushima, Yoshibumi; Kawai, Yoshichika; Sayama, Kazutoshi

    2017-10-01

    Atherosclerosis is one of the diseases related to metabolic syndrome which is caused by obesity. Previous reports have shown that green tea and its components have anti-obesity effect. We examined whether catechins and caffeine can prevent the development of atherosclerosis by oral administration, singly or in combination to the atherosclerosis model mice. Results demonstrated that the number of atherosclerotic regions in the aorta was significantly reduced by the combined treatment, and the atherosclerotic area was also improved. Serum HDL-C increased by caffeine single treatment, but no effect on the TG and TC by any treatments. Moreover, ECG illuviated to atheromatous lesions in aorta and the illuviation was enhanced by caffeine. The mRNA expression levels of LOX-1 and TNF-α showed a tendency to suppress by the combined treatment. These results indicated that the combined administration of catechins and caffeine has the inhibitory effect on the development of atherosclerosis in mice.

  12. Sleep quality and risk factors of atherosclerosis in predialysis chronic kidney disease.

    PubMed

    Guney, Ibrahim; Akgul, Yavuz S S; Gencer, Vedat; Aydemir, Harun; Aslan, Uysaler; Ecirli, Samil

    2017-01-13

    Chronic kidney disease (CKD) patients have more frequent sleep disorders and cardiovascular disease than normals. Since arterial stiffness as a risk factor of atherosclerosis can be evaluated with pulse wave velocity (PWV), we aimed to investigate the prevalance of sleep quality (SQ) and the relationship between SQ and risk factors of atherosclerosis and whether there is a relationship between SQ and PWV (the indicator of arterial stiffness) in predialysis CKD patients. This cross-sectional study was carried out in CKD patients followed at the Nephrology Department in Konya, Turkey, between November 2014 and March 2015. A total of 484 CKD patients were screened. Of the 484 patients, 285 patients were excluded. The remaining 199 CKD patients without cardiovascular disease at stage 3, 4, and 5 (predialysis) were included in the final study. The SQ of the patients was evaluated by the Pittsburgh Sleep Quality Index (PSQI). PWV was measured by using a single-cuff arteriography device (Mobil-O-Graph PWA, a model pulse wave analysis device; IEM). A total of 199 predialysis CKD patients were included in the study, 73 of whom (36.7 %) were 'poor sleepers' (global PSQI >5). Patients with poor SQ were older than those with good SQ (p = 0.077). SQ was worse in female patients compered to male patients (p = 0.001). SQ was worse in obese patients. As laboratory parameters, serum phosphorus, LDL cholesterol, and triglycerides levels correlated positively with SQ (respectively; r = 0.245, p&0.001; r = 0.142, p = 0.049; r = 0.142, p = 0.048). The indicator of arterial stiffness, PWV, was higher in patients with poor SQ (p = 0.033). Hyperphosphatemia and female gender are determined as risk factors for poor SQ in multivariate analysis (p = 0.049, ExpB = 1.477; p = 0.009, ExpB = 0,429, respectively). Our study showed for the first time that there is a relationship between SQ and risk factors of atherosclerosis in predialysis CKD patients.

  13. Intake of antioxidants and B vitamins is inversely associated with ischemic stroke and cerebral atherosclerosis

    PubMed Central

    Choe, Hansaem; Hwang, Ji-Yun; Yun, Jin A; Kim, Ji-Myung; Song, Tae-Jin; Chang, Namsoo; Kim, Yong-Jae

    2016-01-01

    BACKGROUND/OBJECTIVES This study was conducted to examine relationships between dietary habits and intakes of antioxidants and B vitamins and the risk of ischemic stroke, and to compare dietary factors according to the presence of cerebral artery atherosclerosis and stroke subtypes. SUBJECTS/METHODS A total of 147 patients and 144 control subjects were recruited consecutively in the metropolitan area of Seoul, Korea. Sixty participants each in the case and control groups were included in analyses after 1:1 frequency matching. In addition, 117 acute ischemic stroke patients were classified into subtypes according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) guidelines. Dietary intake was measured using a semi-quantitative food frequency questionnaire composed of 111 food items and plasma lipid and homocysteine levels were analyzed. RESULTS When compared with control subjects, stroke patients had unfavorable dietary behaviors and lower intakes of fruits (73.1 ± 83.2 g vs. 230.9 ± 202.1 g, P < 0.001), vegetables (221.1 ± 209.0 g vs. 561.7 ± 306.6 g, P < 0.001), and antioxidants, including vitamins C, E, B6, β-carotene, and folate. The intakes of fruits, vegetables, vitamin C, and folate were inversely associated with the risk of ischemic stroke after adjusting for confounding factors. Intakes of vegetables, vitamins C, B6, B12, and folate per 1,000 kcal were lower in ischemic stroke with cerebral atherosclerosis than in those without. Overall vitamin B12 intake per 1,000 kcal differed according to the TOAST classification (P = 0.004), but no differences among groups existed based on the post-hoc test. CONCLUSIONS When compared with control subjects, ischemic stroke patients, particularly those with cerebral atherosclerosis, had unfavorable dietary intake, which may have contributed to the development of ischemic stroke. These results indicate that proper dietary recommendations are important for the prevention of ischemic stroke. PMID:27698959

  14. Intake of antioxidants and B vitamins is inversely associated with ischemic stroke and cerebral atherosclerosis.

    PubMed

    Choe, Hansaem; Hwang, Ji-Yun; Yun, Jin A; Kim, Ji-Myung; Song, Tae-Jin; Chang, Namsoo; Kim, Yong-Jae; Kim, Yuri

    2016-10-01

    This study was conducted to examine relationships between dietary habits and intakes of antioxidants and B vitamins and the risk of ischemic stroke, and to compare dietary factors according to the presence of cerebral artery atherosclerosis and stroke subtypes. A total of 147 patients and 144 control subjects were recruited consecutively in the metropolitan area of Seoul, Korea. Sixty participants each in the case and control groups were included in analyses after 1:1 frequency matching. In addition, 117 acute ischemic stroke patients were classified into subtypes according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) guidelines. Dietary intake was measured using a semi-quantitative food frequency questionnaire composed of 111 food items and plasma lipid and homocysteine levels were analyzed. When compared with control subjects, stroke patients had unfavorable dietary behaviors and lower intakes of fruits (73.1 ± 83.2 g vs. 230.9 ± 202.1 g, P < 0.001), vegetables (221.1 ± 209.0 g vs. 561.7 ± 306.6 g, P < 0.001), and antioxidants, including vitamins C, E, B 6 , β-carotene, and folate. The intakes of fruits, vegetables, vitamin C, and folate were inversely associated with the risk of ischemic stroke after adjusting for confounding factors. Intakes of vegetables, vitamins C, B 6 , B 12 , and folate per 1,000 kcal were lower in ischemic stroke with cerebral atherosclerosis than in those without. Overall vitamin B 12 intake per 1,000 kcal differed according to the TOAST classification ( P = 0.004), but no differences among groups existed based on the post-hoc test. When compared with control subjects, ischemic stroke patients, particularly those with cerebral atherosclerosis, had unfavorable dietary intake, which may have contributed to the development of ischemic stroke. These results indicate that proper dietary recommendations are important for the prevention of ischemic stroke.

  15. Endothelial cell metabolism: A novel player in atherosclerosis? Basic principles and therapeutic opportunities.

    PubMed

    Pircher, Andreas; Treps, Lucas; Bodrug, Natalia; Carmeliet, Peter

    2016-10-01

    Atherosclerosis is a leading cause of morbidity and mortality in Western society. Despite improved insight into disease pathogenesis and therapeutic options, additional treatment strategies are required. Emerging evidence highlights the relevance of endothelial cell (EC) metabolism for angiogenesis, and indicates that EC metabolism is perturbed when ECs become dysfunctional to promote atherogenesis. In this review, we overview the latest insights on EC metabolism and discuss current knowledge on how atherosclerosis deregulates EC metabolism, and how maladaptation of deregulated EC metabolism can contribute to atherosclerosis progression. We will also highlight possible therapeutic avenues, based on targeting EC metabolism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Characteristics of erythrocyte-derived microvesicles and its relation with atherosclerosis.

    PubMed

    Li, Kai-Yin; Zheng, Lei; Wang, Qian; Hu, Yan-Wei

    2016-12-01

    Microvesicles are formed under many circumstances, especially in atheromatous plaques. Erythrocyte-derived microvesicles (ErMVs) have been proved to promote atherosclerosis by promoting hypercoagulation, mediating inflammation and inducing cell adhesion. Several clinical studies have reported potential roles of ErMVs in cardiovascular disease diagnosis, but the current understanding of ErMVs remains insufficient. In this paper, we will review current research on the formation and degradation of ErMVs and the possible effects of ErMVs in atherosclerosis, discuss potential clinical applications in cardiovascular disease, and hope to raise awareness of the relation with atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. A Protocol for Diagnosis and Management of Aortic Atherosclerosis in Cardiac Surgery Patients

    PubMed Central

    Brandon Bravo Bruinsma, George J.; Van 't Hof, Arnoud W. J.; Grandjean, Jan G.; Nierich, Arno P.

    2017-01-01

    In patients undergoing cardiac surgery, use of perioperative screening for aortic atherosclerosis with modified TEE (A-View method) was associated with lower postoperative mortality, but not stroke, as compared to patients operated on without such screening. At the time of clinical implementation and validation, we did not yet standardize the indications for modified TEE and the changes in patient management in the presence of aortic atherosclerosis. Therefore, we designed a protocol, which combined the diagnosis of atherosclerosis of thoracic aorta and the subsequent considerations with respect to the intraoperative management and provides a systematic approach to reduce the risk of cerebral complications. PMID:28852575

  18. Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet.

    PubMed

    Zhang, Xinsheng; Zhang, Yong; Liu, Yinghua; Wang, Jin; Xu, Qing; Yu, Xiaoming; Yang, Xueyan; Liu, Zhao; Xue, Changyong

    2016-09-01

    We previously observed that medium-chain triglycerides (MCTs) could reduce body fat mass and improve the metabolism of cholesterol. We hypothesized that MCTs can improve atherosclerosis by promoting the reverse cholesterol transport (RCT) process. Therefore, the objective of this study was to investigate the roles of MCTs in macrophage RCT and the progression of atherosclerosis. To test this hypothesis, 30 4-week-old ApoE-deficient (ApoE(-/-)) mice were randomly divided into 2 groups and fed a diet of 2% MCTs or long-chain triglycerides (LCTs) for 16 weeks. Ten age- and sex-matched C57BL/6J mice were fed a diet of 2% LCTs as the control. Macrophage-to-feces RCT was assessed in vivo by intraperitoneal injection of RAW 264.7 macrophages containing (3)H-labeled cholesterol, and atherosclerotic plaques were measured. The mRNA and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. There was a greater decrease in body fat mass, atherosclerotic plaques, and an improvement in serum lipid profiles. In addition, the MCT mice group showed an increase in (3)H-tracer in the feces and a decrease in the liver. Significantly higher levels of mRNA and protein expression of hepatic ATP-binding cassette transporter A1, ATP-binding cassette transporter G5, cholesterol 7α-hydroxylase, and intestinal ATP-binding cassette transporter G8, as well as lower levels of expression of intestinal Niemann-Pick C1-like 1, were found in the MCT group. These results suggest that MCTs could obviously promote macrophage RCT and improve atherosclerosis in ApoE(-/-) mice, indicating that MCTs have the potential to prevent cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Decreased OxLDL uptake and cholesterol efflux in THP1 cells elicited by cortisol and by cortisone through 11β-hydroxysteroid dehydrogenase type 1.

    PubMed

    Ledda, Angelo; González, Marina; Gulfo, José; Díaz Ludovico, Ivo; Ramella, Nahuel; Toledo, Juan; Garda, Horacio; Grasa, Mar; Esteve, Montserrat

    2016-07-01

    Data about glucocorticoids role in the development of atherosclerosis are controversial showing different effects in human than in experimental animal models. Atherosclerosis is the result of a chronic inflammatory response to an injured endothelium where an uncontrolled uptake of OxLDL by macrophages triggers the development of foam cells, the main component of fatty streaks in atherosclerotic plaque. There are few data about the direct effect of glucocorticoids in macrophages of atherosclerotic plaque. The aim of the study was to elucidate the role of glucocorticoids in the development of foam cells in atherosclerosis initiation. For this purpose we used THP1 cells differentiated to macrophages with phorbol esters and incubated with OxLDL alone or with cortisol or cortisone. THP1 cells were also incubated with cortisone plus an inhibitor of 11β-hydroxysteroid dehydrogenase 1 (11βHSD1) activity to determine the role of this enzyme on glucocorticoid action in this process. Ours results showed that cortisol and cortisone decreased significantly the inflammation promoted by OxLDL, and also diminished the expression of genes involved in influx and efflux of cholesterol resulting in a reduced lipid accumulation. Likewise cortisol and cortisone decreased 11βHSD1 expression in THP1 cells. The presence of the inhibitor of 11βHSD1 abolished all the effects elicited by cortisone. Our results indicate a direct effect of glucocorticoids on macrophages braking atherosclerosis initiation, reducing pro-inflammatory markers and OxLDL uptake and cholesterol re-esterification, but also inhibiting cholesterol output. These effects appear to be mediated, at least in part, by 11βHSD1 activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Cyclic phosphatidic acid inhibits the secretion of vascular endothelial growth factor from diabetic human coronary artery endothelial cells through peroxisome proliferator-activated receptor gamma.

    PubMed

    Tsukahara, Tamotsu; Tsukahara, Ryoko; Haniu, Hisao; Matsuda, Yoshikazu; Murakami-Murofushi, Kimiko

    2015-09-05

    Atherosclerosis is a disease characterized by building up plaques formation and leads to a potentially serious condition in which arteries are clogged by fatty substances such as cholesterol. Increasing evidence suggests that atherosclerosis is accelerated in type 2 diabetes. Recent study reported that high level of alkyl glycerophosphate (AGP) was accumulated in atherosclerotic lesions. The presence of this phospholipid in mildly oxidized low-density lipoprotein (LDL) is likely to be involved in atherogenesis. It has been reported that the activation of peroxisome proliferator-activated receptor gamma plays a key role in developing atherosclerosis. Our previous result indicates that cyclic phosphatidic acid (cPA), one of bioactive lipids, potently suppresses neointima formation by inhibiting the activation of peroxisome proliferator-activated receptor gamma (PPARγ). However, the detailed mechanism is still unclear. In this study, to elucidate the mechanism of the cPA-PPARγ axis in the coronary artery endothelium, especially in patients with type 2 diabetes, we investigated the proliferation, migration, and secretion of VEGF in human coronary artery endothelial cells from diabetes patients (D-HCAECs). AGP induced cell growth and migration; however, cPA suppressed the AGP-elicited growth and migration in D-HCAECs. Moreover, AGP increased VEGF secretion from D-HCAECs, and this event was attenuated by cPA. Taken together, these results suggest that cPA suppresses VEGF-stimulated growth and migration in D-HCAECs. These findings could be important for regulatory roles of PPARγ and VEGF in the vascular processes associated with diabetes and atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. STAT4 deficiency reduces the development of atherosclerosis in mice.

    PubMed

    Taghavie-Moghadam, Parésa L; Gjurich, Breanne N; Jabeen, Rukhsana; Krishnamurthy, Purna; Kaplan, Mark H; Dobrian, Anca D; Nadler, Jerry L; Galkina, Elena V

    2015-11-01

    Atherosclerosis is a chronic inflammatory process that leads to plaque formation in large and medium sized vessels. T helper 1 (Th1) cells constitute the majority of plaque infiltrating pro-atherogenic T cells and are induced via IFNγ-dependent activation of T-box (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (STAT4). We thus aimed to define a role for STAT4 in atherosclerosis. STAT4-deficiency resulted in a ∼71% reduction (p < 0.001) in plaque burden in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice fed chow diet and significantly attenuated atherosclerosis (∼31%, p < 0.01) in western diet fed Stat4(-/-)Apoe(-/-) mice. Surprisingly, reduced atherogenesis in Stat4(-/-)Apoe(-/-) mice was not due to attenuated IFNγ production in vivo by Th1 cells, suggesting an at least partially IFNγ-independent pro-atherogenic role of STAT4. STAT4 is expressed in T cells, but also detected in macrophages (MΦs). Stat4(-/-)Apoe(-/-)in vitro differentiated M1 or M2 MΦs had reduced cytokine production compare to Apoe(-/-) M1 and M2 MΦs that was accompanied by reduced induction of CD69, I-A(b), and CD86 in response to LPS stimulation. Stat4(-/-)Apoe(-/-) MΦs expressed attenuated levels of CCR2 and demonstrated reduced migration toward CCL2 in a transwell assay. Importantly, the percentage of aortic CD11b(+)F4/80(+)Ly6C(hi) MΦs was reduced in Stat4(-/-)Apoe(-/-) vs Apoe(-/-) mice. Thus, this study identifies for the first time a pro-atherogenic role of STAT4 that is at least partially independent of Th1 cell-derived IFNγ, and primarily involving the modulation of MΦ responses. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway.

    PubMed

    Wang, Jun; Si, Yanfang; Wu, Chen; Sun, Lu; Ma, Yudong; Ge, Aili; Li, Baomin

    2012-10-17

    Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of atherosclerosis.

  3. Lipopolysaccharide promotes lipid accumulation in human adventitial fibroblasts via TLR4-NF-κB pathway

    PubMed Central

    2012-01-01

    Background Atherosclerosis is a chronic degenerative disease of the arteries and is thought to be one of the most common causes of death globally. In recent years, the functions of adventitial fibroblasts in the development of atherosclerosis and tissue repair have gained increased interests. LPS can increase the morbidity and mortality of atherosclerosis-associated cardiovascular disease. Although LPS increases neointimal via TLR4 activation has been reported, how LPS augments atherogenesis through acting on adventitial fibroblasts is still unknown. Here we explored lipid deposition within adventitial fibroblasts mediated by lipopolysaccharide (LPS) to imitate inflammatory conditions. Results In our study, LPS enhanced lipid deposition by the up-regulated expression of adipose differentiation-related protein (ADRP) as the silencing of ADRP abrogated lipid deposition in LPS-activated adventitial fibroblasts. In addition, pre-treatment with anti-Toll-like receptor 4 (TLR4) antibody diminished the LPS-induced lipid deposition and ADRP expression. Moreover, LPS induced translocation of nuclear factor-κB (NF-κB), which could markedly up-regulate lipid deposition as pre-treatment with the NF-κB inhibitor, PDTC, significantly reduced lipid droplets. In addition, the lowering lipid accumulation was accompanied with the decreased ADRP expression. Furthermore, LPS-induced adventitial fibroblasts secreted more monocyte chemoattractant protein (MCP-1), compared with transforming growth factor-β1 (TGF-β1). Conclusions Taken together, these results suggest that LPS promotes lipid accumulation via the up-regulation of ADRP expression through TLR4 activated downstream of NF-κB in adventitial fibroblasts. Increased levels of MCP-1 released from LPS-activated adventitial fibroblasts and lipid accumulation may accelerate monocytes recruitment and lipid-laden macrophage foam cells formation. Here, our study provides a new explanation as to how bacterial infection contributes to the pathological process of atherosclerosis. PMID:23072373

  4. Epicatechin attenuates atherosclerosis and exerts anti-inflammatory effects on diet-induced human-CRP and NFκB in vivo.

    PubMed

    Morrison, Martine; van der Heijden, Roel; Heeringa, Peter; Kaijzel, Eric; Verschuren, Lars; Blomhoff, Rune; Kooistra, Teake; Kleemann, Robert

    2014-03-01

    Previous studies investigating flavanol-rich foods provide indications for potential cardioprotective effects of these foods, but the effects of individual flavanols remain unclear. We investigated whether the flavanol epicatechin can reduce diet-induced atherosclerosis, with particular emphasis on the cardiovascular risk factors dyslipidaemia and inflammation. ApoE*3-Leiden mice were fed a cholesterol-containing atherogenic diet with or without epicatechin (0.1% w/w) to study effects on early- and late-stage atherosclerosis (8 w and 20 w). In vivo effects of epicatechin on diet-induced inflammation were studied in human-CRP transgenic mice and NFκB-luciferase reporter mice. Epicatechin attenuated atherosclerotic lesion area in ApoE*3-Leiden mice by 27%, without affecting plasma lipids. This anti-atherogenic effect of epicatechin was specific to the severe lesion types, with no effect on mild lesions. Epicatechin mitigated diet-induced increases in plasma SAA (in ApoE*3-Leiden mice) and plasma human-CRP (in human-CRP transgenic mice). Microarray analysis of aortic gene expression revealed an attenuating effect of epicatechin on several diet-induced pro-atherogenic inflammatory processes in the aorta (e.g. chemotaxis of cells, matrix remodelling), regulated by NFκB. These findings were confirmed immunohistochemically by reduced lesional neutrophil content in HCE, and by inhibition of diet-induced NFκB activity in epicatechin-treated NFκB-luciferase reporter mice. Epicatechin attenuates development of atherosclerosis and impairs lesion progression from mild to severe lesions in absence of an effect on dyslipidaemia. The observed reduction of circulating inflammatory risk factors by epicatechin (e.g. SAA, human-CRP), as well as its local anti-inflammatory activity in the vessel wall, provide a rationale for epicatechin's anti-atherogenic effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Vinpocetine attenuates lipid accumulation and atherosclerosis formation.

    PubMed

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-05-10

    Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent anti-inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Vinpocetine Attenuates Lipid Accumulation and Atherosclerosis Formation

    PubMed Central

    Cai, Yujun; Li, Jian-Dong; Yan, Chen

    2013-01-01

    Atherosclerosis, the major cause of myocardial infarction and stroke, is a chronic arterial disease characterized by lipid deposition and inflammation in the vessel wall. Cholesterol, in low-density lipoprotein (LDL), plays a critical role in the pathogenesis of atherosclerosis. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. Recent study indicated that vinpocetine is a potent inflammatory agent. However, its role in the pathogenesis of atherosclerosis remains unexplored. In the present study, we show that vinpocetine significantly reduced atherosclerotic lesion formation in ApoE knockout mice fed with a high-fat diet. In cultured murine macrophage RAW264.7 cells, vinpocetine markedly attenuated oxidized LDL (ox-LDL) uptake and foam cell formation. Moreover, vinpocetine greatly blocked the induction of ox-LDL receptor 1 (LOX-1) in cultured macrophages as well as in the LOX-1 level in atherosclerotic lesions. Taken together, our data reveal a novel role of vinpocetine in reduction of pathogenesis of atherosclerosis, at least partially through suppressing LOX-1 signaling pathway. Given the excellent safety profile of vinpocetine, this study suggests vinpocetine may be a therapeutic candidate for treating atherosclerosis PMID:23583194

  7. Vascular wall shear stress in zebrafish model of early atherosclerosis

    NASA Astrophysics Data System (ADS)

    Choi, Woorak; Seo, Eunseok; Yeom, Eunseop; Lee, Sang Joon

    2016-11-01

    Although atherosclerosis is a multifactorial disease, the role of hemodynamic force has strong influence on the outbreak of the disease. Low and oscillating wall shear stress (WSS) is associated with the incidence of atherosclerosis. Many researchers have investigated relationships between WSS and the occurrence of atherosclerosis using in vitro and in vivo models. However, these models possess technological limitations in mimicking real biophysiological conditions and monitoring the temporal progression of atherosclerosis. In this study, a hypercholesterolaemic zebrafish model was established as a novel model to resolve these technical limitations. WSS in blood vessels of 15 days post-fertilisation zebrafish was measured using a micro PIV technique, and the spatial distribution of lipids inside blood vessels was quantitatively visualized using a confocal microscopy. As a result, lipids are mainly deposited in the regions of low WSS. The oscillating WSS is not induced by blood flows in the zebrafish disease model. The present hypercholesterolaemic zebrafish model would be useful for understanding the effect of WSS on the early stage of atherosclerosis. This work was supported by the National Research Foundation of Korea (NRF) under a Grant funded by the Korean government (MSIP) (No. 2008-0061991).

  8. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming

    PubMed Central

    Zimmer, Sebastian; Grebe, Alena; Bakke, Siril S.; Bode, Niklas; Halvorsen, Bente; Ulas, Thomas; Skjelland, Mona; De Nardo, Dominic; Labzin, Larisa I.; Kerksiek, Anja; Hempel, Chris; Heneka, Michael T.; Hawxhurst, Victoria; Fitzgerald, Michael L; Trebicka, Jonel; Gustafsson, Jan-Åke; Westerterp, Marit; Tall, Alan R.; Wright, Samuel D.; Espevik, Terje; Schultze, Joachim L.; Nickenig, Georg; Lütjohann, Dieter; Latz, Eicke

    2016-01-01

    Atherosclerosis is an inflammatory disease linked to elevated blood cholesterol levels. Despite ongoing advances in the prevention and treatment of atherosclerosis, cardiovascular disease remains the leading cause of death worldwide. Continuous retention of apolipoprotein B-containing lipoproteins in the subendothelial space causes a local overabundance of free cholesterol. Since cholesterol accumulation and deposition of cholesterol crystals (CCs) triggers a complex inflammatory response, we tested the efficacy of the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (CD), a compound that increases cholesterol solubility, in preventing and reversing atherosclerosis. Here we show that CD treatment of murine atherosclerosis reduced atherosclerotic plaque size and CC load, and promoted plaque regression even with a continued cholesterol-rich diet. Mechanistically, CD increased oxysterol production in both macrophages and human atherosclerotic plaques, and promoted liver X receptor (LXR)-mediated transcriptional reprogramming to improve cholesterol efflux and exert anti-inflammatory effects. In vivo, this CD-mediated LXR agonism was required for the anti-atherosclerotic and anti-inflammatory effects of CD as well as for augmented reverse cholesterol transport. Since CD treatment in humans is safe and CD beneficially affects key mechanisms of atherogenesis, it may therefore be used clinically to prevent or treat human atherosclerosis. PMID:27053774

  9. Macrophage Polarization by Angiotensin II-type 1 Receptor Aggravates Renal Injury-acceleration of Atherosclerosis

    PubMed Central

    Yamamoto, Suguru; Yancey, Patricia G.; Zuo, Yiqin; Ma, Li-Jun; Kaseda, Ryohei; Fogo, Agnes B.; Ichikawa, Iekuni; Linton, MacRae F.; Fazio, Sergio; Kon, Valentina

    2011-01-01

    Background Angiotensin II (AII) is a major determinant of atherosclerosis. Although macrophages are the most abundant cells in atherosclerotic plaques and express AII type 1 receptor (AT1), the pathophysiologic role of macrophage AT1 in atherogenesis remains uncertain. We examined the contribution of macrophage AT1 to accelerated atherosclerosis in an AII-responsive setting induced by uninephrectomy (UNx). Methods and Results AT1−/− or AT1+/+ marrow from apolipoprotein E deficient (apoE−/−) mice was transplanted into recipient apoE−/− mice with subsequent UNx or sham operation: apoE−/−/AT1+/+→apoE−/− + Sham; apoE−/−/AT1+/+→apoE−/− + UNx; apoE−/−/AT1−/−→apoE−/− + Sham; apoE−/−/AT1−/−→apoE−/− + UNx. No differences in body weight, blood pressure, lipid profile, and serum creatinine were observed between the two UNx groups. ApoE−/−/AT1+/+→apoE−/− + UNx had significantly more atherosclerosis (16907 ± 21473 vs 116071 ± 8180 μm2, p<0.05). By contrast, loss of macrophage AT1 which reduced local AT1 expression, prevented any effect of UNx on atherosclerosis (77174 ± 9947 vs 75714 ± 11333 μm2, p=NS). Although UNx did not affect total macrophage content in the atheroma, lesions in apoE−/−/AT1−/−→apoE−/− + UNx had fewer classically activated macrophage phenotype (M1) and more alternatively activated phenotype (M2). Further, UNx did not affect plaque necrosis or apoptosis in apoE−/−/AT1−/−→apoE−/− whereas it significantly increased both (by 2- and 6-fold, respectively) in apoE−/−/AT1+/+→apoE−/− mice. Instead, apoE−/−/AT1−/−→apoE−/− had 5-fold-increase in macrophage-associated apoptotic bodies, indicating enhanced efferocytosis. In vitro studies confirmed blunted susceptibility to apoptosis, especially in M2 macrophages, and a more efficient phagocytic function of AT1−/− macrophages vs AT1+/+. Conclusions AT1 receptor of bone marrow-derived macrophages worsens the extent and complexity of renal injury–induced atherosclerosis by shifting the macrophage phenotype to more M1 and less M2 through mechanisms that include increased apoptosis and impaired efferocytosis. PMID:21979434

  10. Effect of long-term dietary sphingomyelin supplementation on atherosclerosis in mice

    PubMed Central

    Chung, Rosanna W. S.; Wang, Zeneng; Bursill, Christina A.; Wu, Ben J.; Barter, Philip J.

    2017-01-01

    Sphingomyelin (SM) levels in the circulation correlate positively with atherosclerosis burden. SM is a ubiquitous component of human diets, but it is unclear if dietary SM increases circulating SM levels. Dietary choline increases atherosclerosis by raising circulating trimethylamine N-oxide (TMAO) levels in mice and humans. As SM has a choline head group, we ask in this study if dietary SM accelerates atherosclerotic lesion development by increasing circulating SM and TMAO levels. Three studies were performed: (Study 1) C57BL/6 mice were maintained on a high fat diet with or without SM supplementation for 4 weeks prior to quantification of serum TMAO and SM levels; (Study 2) atherosclerosis was studied in apoE-/- mice after 16 weeks of a high fat diet without or with SM supplementation and (Study 3) apoE-/- mice were maintained on a chow diet for 19 weeks without or with SM supplementation and antibiotic treatment prior to quantification of atherosclerotic lesions and serum TMAO and SM levels. SM consumption did not increase circulating SM levels or atherosclerosis in high fat-fed apoE-/- mice. Serum TMAO levels in C57BL/6 mice were low and had no effect atherosclerosis lesion development. Dietary SM supplementation significantly reduced atherosclerotic lesion area in the aortic arch of chow-fed apoE-/- mice. This study establishes that dietary SM does not affect circulating SM levels or increase atherosclerosis in high fat-fed apoE-/- mice, but it is anti-atherogenic in chow-fed apoE-/- mice. PMID:29240800

  11. Therapies targeting innate immunity for fighting inflammation in atherosclerosis.

    PubMed

    Mendel, Itzhak; Yacov, Niva; Harats, Dror; Breitbart, Eyal

    2015-01-01

    Atherosclerosis is a smoldering disease of the vasculature that can lead to the occlusion of the arteries, resulting in ischemia of the heart and brain. For many years, the asserted underlying mechanism of atherosclerosis, supported by its epidemiology, was based on the "cholesterol hypothesis" that people with high blood cholesterol are at higher risk of developing cardiovascular disease. This hypothesis instigated a vigorous search for treatment that yielded the generation of statins, which specifically reduce LDL cholesterol. Since then, statins have revolutionized the way people are treated for the prevention of atherosclerosis. Nonetheless, despite this potent class of drugs, cardiovascular disease continues to be the leading cause of death in many parts of the world, suggesting that additional mechanisms are involved in disease pathogenesis. Intensive research has revealed that the atherosclerotic plaque is enriched with leukocytes, and that macrophages constitute the majority of immune cells in the lesion. Monocytes/macrophages are now recognized as the prime immune cells involved in the development of atherosclerosis and are implicated to affect the size, composition and vulnerability of the atherosclerotic plaque. While many of the macrophage-derived pro-inflammatory mechanisms associated with atherogenesis have been characterized, such as cell adhesion, cytokine production and protease secretion, there is a dearth of drugs that specifically target innate immunity for treating patients with atherosclerosis. This review presents pre-clinical studies, and in most cases following clinical trials with antagonists and agonists that have been designed to counteract inflammation in atherosclerosis and associated diseases, highlighting targets expressed predominantly in monocytes.

  12. 6-mercaptopurine inhibits atherosclerosis in apolipoprotein e*3-leiden transgenic mice through atheroprotective actions on monocytes and macrophages.

    PubMed

    Pols, Thijs W H; Bonta, Peter I; Pires, Nuno M M; Otermin, Iker; Vos, Mariska; de Vries, Margreet R; van Eijk, Marco; Roelofsen, Jeroen; Havekes, Louis M; Quax, Paul H A; van Kuilenburg, André B P; de Waard, Vivian; Pannekoek, Hans; de Vries, Carlie J M

    2010-08-01

    6-Mercaptopurine (6-MP), the active metabolite of the immunosuppressive prodrug azathioprine, is commonly used in autoimmune diseases and transplant recipients, who are at high risk for cardiovascular disease. Here, we aimed to gain knowledge on the action of 6-MP in atherosclerosis, with a focus on monocytes and macrophages. We demonstrate that 6-MP induces apoptosis of THP-1 monocytes, involving decreased expression of the intrinsic antiapoptotic factors B-cell CLL/Lymphoma-2 (Bcl-2) and Bcl2-like 1 (Bcl-x(L)). In addition, we show that 6-MP decreases expression of the monocyte adhesion molecules platelet endothelial adhesion molecule-1 (PECAM-1) and very late antigen-4 (VLA-4) and inhibits monocyte adhesion. Screening of a panel of cytokines relevant to atherosclerosis revealed that 6-MP robustly inhibits monocyte chemoattractant chemokine-1 (MCP-1) expression in macrophages stimulated with lipopolysaccharide (LPS). Finally, local delivery of 6-MP to the vessel wall, using a drug-eluting cuff, attenuates atherosclerosis in hypercholesterolemic apolipoprotein E*3-Leiden transgenic mice (P<0.05). In line with our in vitro data, this inhibition of atherosclerosis by 6-MP was accompanied with decreased lesion monocyte chemoattractant chemokine-1 levels, enhanced vascular apoptosis, and reduced macrophage content. We report novel, previously unrecognized atheroprotective actions of 6-MP in cultured monocytes/macrophages and in a mouse model of atherosclerosis, providing further insight into the effect of the immunosuppressive drug azathioprine in atherosclerosis.

  13. Macrophage Phenotype and Function in Different Stages of Atherosclerosis

    PubMed Central

    Tabas, Ira; Bornfeldt, Karin E.

    2016-01-01

    The remarkable plasticity and plethora of biological functions performed by macrophages have enticed scientists to study these cells in relation to atherosclerosis for more than 50 years, and major discoveries continue to be made today. It is now understood that macrophages play important roles in all stages of atherosclerosis, from initiation of lesions and lesion expansion, to necrosis leading to rupture and the clinical manifestations of atherosclerosis, to resolution and regression of atherosclerotic lesions. Lesional macrophages are derived primarily from blood monocytes, although recent research has shown that lesional macrophage-like cells can also be derived from smooth muscle cells. Lesional macrophages take on different phenotypes depending on their environment and which intracellular signaling pathways are activated. Rather than a few distinct populations of macrophages, the phenotype of the lesional macrophage is more complex and likely changes during the different phases of atherosclerosis and with the extent of lipid and cholesterol loading, activation by a plethora of receptors, and metabolic state of the cells. These different phenotypes allow the macrophage to engulf lipids, dead cells, and other substances perceived as danger signals; efflux cholesterol to HDL; proliferate and migrate; undergo apoptosis and death; and secrete a large number of inflammatory and pro-resolving molecules. This review article, part of the Compendium on Atherosclerosis, discusses recent advances in our understanding of lesional macrophage phenotype and function in different stages of atherosclerosis. With the increasing understanding of the roles of lesional macrophages, new research areas and treatment strategies are beginning to emerge. PMID:26892964

  14. Monocyte Activation in Immunopathology: Cellular Test for Development of Diagnostics and Therapy.

    PubMed

    Ivanova, Ekaterina A; Orekhov, Alexander N

    2016-01-01

    Several highly prevalent human diseases are associated with immunopathology. Alterations in the immune system are found in such life-threatening disorders as cancer and atherosclerosis. Monocyte activation followed by macrophage polarization is an important step in normal immune response to pathogens and other relevant stimuli. Depending on the nature of the activation signal, macrophages can acquire pro- or anti-inflammatory phenotypes that are characterized by the expression of distinct patterns of secreted cytokines and surface antigens. This process is disturbed in immunopathologies resulting in abnormal monocyte activation and/or bias of macrophage polarization towards one or the other phenotype. Such alterations could be used as important diagnostic markers and also as possible targets for the development of immunomodulating therapy. Recently developed cellular tests are designed to analyze the phenotype and activity of living cells circulating in patient's bloodstream. Monocyte/macrophage activation test is a successful example of cellular test relevant for atherosclerosis and oncopathology. This test demonstrated changes in macrophage activation in subclinical atherosclerosis and breast cancer and could also be used for screening a panel of natural agents with immunomodulatory activity. Further development of cellular tests will allow broadening the scope of their clinical implication. Such tests may become useful tools for drug research and therapy optimization.

  15. Atheroprotection through SYK inhibition fails in established disease when local macrophage proliferation dominates lesion progression.

    PubMed

    Lindau, Alexandra; Härdtner, Carmen; Hergeth, Sonja P; Blanz, Kelly Daryll; Dufner, Bianca; Hoppe, Natalie; Anto-Michel, Nathaly; Kornemann, Jan; Zou, Jiadai; Gerhardt, Louisa M S; Heidt, Timo; Willecke, Florian; Geis, Serjosha; Stachon, Peter; Wolf, Dennis; Libby, Peter; Swirski, Filip K; Robbins, Clinton S; McPheat, William; Hawley, Shaun; Braddock, Martin; Gilsbach, Ralf; Hein, Lutz; von zur Mühlen, Constantin; Bode, Christoph; Zirlik, Andreas; Hilgendorf, Ingo

    2016-03-01

    Macrophages in the arterial intima sustain chronic inflammation during atherogenesis. Under hypercholesterolemic conditions murine Ly6C(high) monocytes surge in the blood and spleen, infiltrate nascent atherosclerotic plaques, and differentiate into macrophages that proliferate locally as disease progresses. Spleen tyrosine kinase (SYK) may participate in downstream signaling of various receptors that mediate these processes. We tested the effect of the SYK inhibitor fostamatinib on hypercholesterolemia-associated myelopoiesis and plaque formation in Apoe(-/-) mice during early and established atherosclerosis. Mice consuming a high cholesterol diet supplemented with fostamatinib for 8 weeks developed less atherosclerosis. Histologic and flow cytometric analysis of aortic tissue showed that fostamatinib reduced the content of Ly6C(high) monocytes and macrophages. SYK inhibition limited Ly6C(high) monocytosis through interference with GM-CSF/IL-3 stimulated myelopoiesis, attenuated cell adhesion to the intimal surface, and blocked M-CSF stimulated monocyte to macrophage differentiation. In Apoe(-/-) mice with established atherosclerosis, however, fostamatinib treatment did not limit macrophage accumulation or lesion progression despite a significant reduction in blood monocyte counts, as lesional macrophages continued to proliferate. Thus, inhibition of hypercholesterolemia-associated monocytosis, monocyte infiltration, and differentiation by SYK antagonism attenuates early atherogenesis but not established disease when local macrophage proliferation dominates lesion progression.

  16. Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population.

    PubMed

    Fadini, Gian Paolo; Coracina, Anna; Baesso, Ilenia; Agostini, Carlo; Tiengo, Antonio; Avogaro, Angelo; de Kreutzenberg, Saula Vigili

    2006-09-01

    Disruption of the endothelial layer is the first step in the atherogenic process. Experimental studies have shown that endothelial progenitor cells (EPCs) are involved in endothelial homeostasis and repair. Conversely, EPC depletion has been demonstrated in the setting of established atherosclerotic diseases. With this background, we evaluated whether variations in the number of EPCs are associated with subclinical atherosclerosis in healthy subjects. Carotid intima-media thickness (IMT), high-sensitive C-reactive protein (hsCRP), levels of circulating EPCs, and cardiovascular risk were compared in 137 healthy subjects. Six subpopulations of progenitor cells were determined by flow cytometry on the basis of the surface expression of CD34, CD133, and KDR antigens: CD34(+), CD133(+), CD34(+)CD133(+), CD34(+)KDR(+), CD133(+)KDR(+), and CD34(+)CD133(+)KDR(+). Among different antigenic profiles of EPCs, only CD34(+)KDR(+) cells were significantly reduced in subjects with increased IMT. Specifically, CD34(+)KDR(+) cells were inversely correlated with IMT, even after adjustment for hsCRP and 10-year Framingham risk and independently of other cardiovascular parameters. Depletion of CD34(+)KDR(+) EPCs is an independent predictor of early subclinical atherosclerosis in healthy subjects and may provide additional information beyond classic risk factors and inflammatory markers.

  17. Selective estrogen receptor modulators and risk for coronary heart disease.

    PubMed

    Cano, A; Hermenegildo, C; Oviedo, P; Tarín, J J

    2007-04-01

    Coronary heart disease (CHD) is the leading cause of death in women in most countries. Atherosclerosis is the main biological process determining CHD. Clinical data support the notion that CHD is sensitive to estrogens, but debate exists concerning the effects of the hormone on atherosclerosis and its complications. Selective estrogen receptor modulators (SERMs) are compounds capable of binding the estrogen receptor to induce a functional profile distinct from estrogens. The possibility that SERMs may shift the estrogenic balance on cardiovascular risk towards a more beneficial profile has generated interest in recent years. There is considerable information on the effects of SERMs on distinct areas that are crucial in atherogenesis. The complexity derived from the diversity of variables affecting their mechanism of action plus the differences between compounds make it difficult to delineate one uniform trend for SERMs. The present picture, nonetheless, is one where SERMs seem less powerful than estrogens in atherosclerosis protection, but more gentle with advanced forms of the disease. The recent publication of the Raloxifene Use for The Heart (RUTH) study has confirmed a neutral effect for raloxifene. Prothrombotic states may favor occlusive thrombi at sites occupied by atheromatous plaques. Platelet activation has received attention as an important determinant of arterial thrombogenesis. Although still sparse, available evidence globally suggests neutral or beneficial effects for SERMs.

  18. Methylated arginine analogues: their potential role in atherosclerosis and cognition using the poloxamer-407-induced mouse model of dyslipidemia.

    PubMed

    Gilinsky, Michael A; Johnston, Thomas P; Zhukova, Natalia A; Dubrovina, Nina I; Latysheva, Tatyana V; Naumenko, Sergey E; Sukhovershin, Roman A

    2016-07-25

    An experimental mouse model of dyslipidemia and atherosclerosis was utilized to study the generation of methylarginines in vivo, as well as any potential behavioral changes in mice associated with the production of excess methylarginines. Following 14 weeks of poloxamer 407 treatment, mice developed atherosclerosis and the plasma concentrations of monomethylarginine and asymmetric dimethylarginine were found to be significantly greater than corresponding concentrations in control mice. This finding may have contributed to the development of aortic atherosclerotic lesions in poloxamer-treated mice by interfering with nitric oxide availability and, hence, normal function of vascular endothelium. Poloxamer-407-treated mice also showed a significant decrease in locomotor and exploratory activity, together with signs of emotional stress and anxiety relative to controls. Passive avoidance testing to assess learning and memory provided suggestive evidence that poloxamer-treated mice could potentially be characterized as having undergone a disruption in the process of forgetting about an aversive event, specifically, a foot shock, when compared with control mice. Thus, it is also suggested that the increase in both plasma monomethylarginine and asymmetric dimethylarginine in poloxamer-407-treated mice may somehow influence learning and memory, because endothelial dysfunction caused by reduced nitric oxide availability has been hypothesized to negatively influence cognitive function.

  19. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice

    PubMed Central

    Olszanecki, Rafał; Totoń-Żurańska, Justyna; Stachowicz, Aneta; Suski, Maciej; Gębska, Anna; Gajda, Mariusz; Jawień, Jacek; Korbut, Ryszard

    2017-01-01

    Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation. PMID:28777310

  20. Anti-Atherosclerotic Action of Agmatine in ApoE-Knockout Mice.

    PubMed

    Wiśniewska, Anna; Olszanecki, Rafał; Totoń-Żurańska, Justyna; Kuś, Katarzyna; Stachowicz, Aneta; Suski, Maciej; Gębska, Anna; Gajda, Mariusz; Jawień, Jacek; Korbut, Ryszard

    2017-08-04

    Atherosclerosis is an inflammatory disease in which dysfunction of mitochondria play an important role, and disorders of lipid management intensify this process. Agmatine, an endogenous polyamine formed by decarboxylation of arginine, exerts a protective effect on mitochondria and modulates fatty acid metabolism. We investigated the effect of exogenous agmatine on the development of atherosclerosis and changes in lipid profile in apolipoprotein E knockout (apoE-/-) mice. Agmatine caused an approximate 40% decrease of atherosclerotic lesions, as estimated by en face and cross-section methods with an influence on macrophage but not on smooth muscle content in the plaques. Agmatine treatment did not changed gelatinase activity within the plaque area. What is more, the action of agmatine was associated with an increase in the number of high density lipoproteins (HDL) in blood. Real-Time PCR analysis showed that agmatine modulates liver mRNA levels of many factors involved in oxidation of fatty acid and cholesterol biosynthesis. Two-dimensional electrophoresis coupled with mass spectrometry identified 27 differentially expressed mitochondrial proteins upon agmatine treatment in the liver of apoE-/- mice, mostly proteins related to metabolism and apoptosis. In conclusion, prolonged administration of agmatine inhibits atherosclerosis in apoE-/- mice; however, the exact mechanisms linking observed changes and elevations of HDL plasma require further investigation.

  1. Bolstering cholesteryl ester hydrolysis in liver: A hepatocyte-targeting gene delivery strategy for potential alleviation of atherosclerosis

    PubMed Central

    He, Hongliang; Lancina, Michael G.; Wang, Jing; Korzun, William J.; Yang, Hu; Ghosh, Shobha

    2017-01-01

    Current atherosclerosis treatment strategies primarily focus on limiting further cholesteryl esters (CE) accumulation by reducing endogenous synthesis of cholesterol in the liver. No therapy is currently available to enhance the removal of CE, a crucial step to reduce the burden of the existing disease. Given a central role of hepatic cholesteryl ester hydrolase (CEH) in intrahepatic hydrolysis of CE and subsequent removal of the resulting free cholesterol, in this work, we applied galactose-functionalized polyamidoamine (PAMAM) dendrimer G5 (Gal-G5) for hepatocyte-specific delivery of CEH expression vector. The data presented herein show increased specific uptake of Gal-G5 by the hepatocytes in vitro and in vivo. Furthermore, the upregulated CEH expression in the hepatocytes significantly enhanced intracellular hydrolysis of HDL-CE and subsequent conversion/secretion of hydrolyzed free cholesterol (FC) as bile acids. Increased CEH expression in the liver significantly increased the flux of HDL-CE to biliary as well as fecal FC and bile acids. Meanwhile, Gal-G5 did not induce hepatic or renal toxicity. It was not immunotoxic. Because of these encouraging pre-clinical testing results, using this safe and highly efficient hepatocyte-specific gene delivery platform to enhance the hepatic processes involved in cholesterol elimination is a promising strategy for alleviation of atherosclerosis. PMID:28349866

  2. NG2 Proteoglycan Ablation Reduces Foam Cell Formation and Atherogenesis via Decreased Low-Density Lipoprotein Retention by Synthetic Smooth Muscle Cells.

    PubMed

    She, Zhi-Gang; Chang, Yunchao; Pang, Hong-Bo; Han, Wenlong; Chen, Hou-Zao; Smith, Jeffrey W; Stallcup, William B

    2016-01-01

    Obesity and hyperlipidemia are critical risk factors for atherosclerosis. Because ablation of NG2 proteoglycan in mice leads to hyperlipidemia and obesity, we investigated the impact of NG2 ablation on atherosclerosis in apoE null mice. Immunostaining indicates that NG2 expression in plaque, primarily by synthetic smooth muscle cells, increases during atherogenesis. NG2 ablation unexpectedly results in decreased (30%) plaque development, despite aggravated obesity and hyperlipidemia. Mechanistic studies reveal that NG2-positive plaque synthetic smooth muscle cells in culture can sequester low-density lipoprotein to enhance foam-cell formation, processes in which NG2 itself plays direct roles. In agreement with these observations, low-density lipoprotein retention and lipid accumulation in the NG2/ApoE knockout aorta is 30% less than that seen in the control aorta. These results indicate that synthetic smooth muscle cell-dependent low-density lipoprotein retention and foam cell formation outweigh obesity and hyperlipidemia in promoting mouse atherogenesis. Our study sheds new light on the role of synthetic smooth muscle cells during atherogenesis. Blocking plaque NG2 or altering synthetic smooth muscle cells function may be promising therapeutic strategies for atherosclerosis. © 2015 American Heart Association, Inc.

  3. [Metalloproteases, vascular remodeling and atherothrombotic syndromes].

    PubMed

    Rodríguez, José A; Orbe, Josune; Páramo, José A

    2007-09-01

    Defects in the synthesis and breakdown of the extracellular matrix (ECM) are now seen as key processes in the development of atherosclerosis and its thrombotic complications. Correlations have been observed between circulating levels of ECM biomarkers and the clinical manifestations of and risk factors for atherosclerosis. Several matrix metalloproteinases (MMPs), endopeptidases that can degrade the ECM, such as MMP-9 and MMP-10, play important roles in the pathophysiology of atherothrombosis and contribute to the expansion of abdominal aortic aneurysms. Moreover, they may also be useful biomarkers of atherosclerotic risk and serve as predictors of coronary and cerebrovascular disease recurrence. Although at present the effect of tissue inhibitors of MMPs (TIMPs) on cardiovascular disease prognosis is still uncertain, the ECM could be a promising therapeutic target in atherothrombotic disease, and several MMP inhibitors are currently undergoing clinical trials.

  4. Chlamydia pneumoniae Infection in Atherosclerotic Lesion Development through Oxidative Stress: A Brief Overview

    PubMed Central

    Di Pietro, Marisa; Filardo, Simone; De Santis, Fiorenzo; Sessa, Rosa

    2013-01-01

    Chlamydia pneumoniae, an obligate intracellular pathogen, is known as a leading cause of respiratory tract infections and, in the last two decades, has been widely associated with atherosclerosis by seroepidemiological studies, and direct detection of the microorganism within atheroma. C. pneumoniae is presumed to play a role in atherosclerosis for its ability to disseminate via peripheral blood mononuclear cells, to replicate and persist within vascular cells, and for its pro-inflammatory and angiogenic effects. Once inside the vascular tissue, C. pneumoniae infection has been shown to induce the production of reactive oxygen species in all the cells involved in atherosclerotic process such as macrophages, platelets, endothelial cells, and vascular smooth muscle cells, leading to oxidative stress. The aim of this review is to summarize the data linking C. pneumoniae-induced oxidative stress to atherosclerotic lesion development. PMID:23877837

  5. Neighborhood built environment and cognition in non-demented older adults: The Multi-Ethnic Study of Atherosclerosis.

    PubMed

    Besser, Lilah M; Rodriguez, Daniel A; McDonald, Noreen; Kukull, Walter A; Fitzpatrick, Annette L; Rapp, Stephen R; Seeman, Teresa

    2018-03-01

    Preliminary studies suggest that neighborhood social and built environment (BE) characteristics may affect cognition in older adults. Older adults are particularly vulnerable to the neighborhood environment due to a decreasing range of routine travel with increasing age. We examined if multiple neighborhood BE characteristics are cross-sectionally associated with cognition in a diverse sample of older adults, and if the BE-cognition associations vary by individual-level demographics. The sample included 4539 participants from the Multi-Ethnic Study of Atherosclerosis. Multivariable linear regression was used to examine the associations between five BE measures and four cognitive measures, and effect modification by individual-level education and race/ethnicity. In the overall sample, increasing social destination density, walking destination density, and intersection density were associated with worse overall cognition, whereas increasing proportion of land dedicated to retail was associated with better processing speed. Effect modification results suggest that the association between urban density and worse cognition may be limited to or strongest in those of non-white race/ethnicity. Although an increase in neighborhood retail destinations was associated with better cognition in the overall sample, these results suggest that certain BE characteristics in dense urban environments may have a disproportionately negative association with cognition in vulnerable populations. However, our findings must be replicated in longitudinal studies and other regional samples. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Emerging role of chemokine CC motif ligand 4 related mechanisms in diabetes mellitus and cardiovascular disease: friends or foes?

    PubMed

    Chang, Ting-Ting; Chen, Jaw-Wen

    2016-08-24

    Chemokines are critical components in pathology. The roles of chemokine CC motif ligand 4 (CCL4) and its receptor are associated with diabetes mellitus (DM) and atherosclerosis cardiovascular diseases. However, due to the complexity of these diseases, the specific effects of CCL4 remain unclear, although recent reports have suggested that multiple pathways are related to CCL4. In this review, we provide an overview of the role and potential mechanisms of CCL4 and one of its major receptors, fifth CC chemokine receptor (CCR5), in DM and cardiovascular diseases. CCL4-related mechanisms, including CCL4 and CCR5, might provide potential therapeutic targets in DM and/or atherosclerosis cardiovascular diseases.

  7. Emerging roles of GPER in diabetes and atherosclerosis.

    PubMed

    Barton, Matthias; Prossnitz, Eric R

    2015-04-01

    The G protein-coupled estrogen receptor (GPER) is a 7-transmembrane receptor implicated in rapid estrogen signaling. Originally cloned from vascular endothelial cells, GPER plays a central role in the regulation of vascular tone and cell growth as well as lipid and glucose homeostasis. This review highlights our knowledge of the physiological and pathophysiological functions of GPER in the pancreas, peripheral and immune tissues, and the arterial vasculature. Recent findings on its roles in obesity, diabetes, and atherosclerosis, including GPER-dependent regulation of lipid metabolism and inflammation, are presented. The therapeutic potential of targeting GPER-dependent pathways in chronic diseases such as coronary artery disease and diabetes and in the context of menopause is also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Computer analysis of arteriograms

    NASA Technical Reports Server (NTRS)

    Selzer, R. H.; Armstrong, J. H.; Beckenbach, E. B.; Blankenhorn, D. H.; Crawford, D. W.; Brooks, S. H.; Sanmarco, M. E.

    1977-01-01

    A computer system has been developed to quantify the degree of atherosclerosis in the human femoral artery. The analysis involves first scanning and digitizing angiographic film, then tracking the outline of the arterial image and finally computing the relative amount of roughness or irregularity in the vessel wall. The image processing system and method are described.

  9. Computer measurement of arterial disease

    NASA Technical Reports Server (NTRS)

    Armstrong, J.; Selzer, R. H.; Barndt, R.; Blankenhorn, D. H.; Brooks, S.

    1980-01-01

    Image processing technique quantifies human atherosclerosis by computer analysis of arterial angiograms. X-ray film images are scanned and digitized, arterial shadow is tracked, and several quantitative measures of lumen irregularity are computed. In other tests, excellent agreement was found between computer evaluation of femoral angiograms on living subjects and evaluation by teams of trained angiographers.

  10. IRF-1 and miRNA126 modulate inflammatory VCAM-1 expression in response to a high fat meal

    USDA-ARS?s Scientific Manuscript database

    Rationale: High-fat diets accompanied by hypertriglyceridemia increase an individual’s risk for developing atherosclerosis. An early event in this process is monocyte recruitment through binding to VCAM-1 on inflamed arterial endothelium. Diets high in polyunsaturated fatty acids (PUFAs) may provide...

  11. APP mRNA splicing is upregulated in the brain of biglycan transgenic mice.

    PubMed

    Bjelik, Annamária; Pákáski, Magdolna; Bereczki, Erika; Gonda, Szilvia; Juhász, Anna; Rimanóczy, Agnes; Zana, Marianna; Janka, Zoltán; Sántha, Miklós; Kálmán, János

    2007-01-01

    Many of the risk factors for cerebrovascular disease and atherosclerosis also increase the risk of Alzheimer's disease, characterized by the cerebral deposition of beta-amyloid plaques resulting from the abnormal processing of the transmembrane amyloid precursor protein (APP). The initiating event of cholesterol-induced atherosclerosis is the retention and accumulation of atherogenic apolipoprotein B (apoB) together with low-density lipoproteins in the vascular intima. Biglycan, a member of the small leucine-rich protein family, was suspected of contributing to this process. The individual and combined overexpressions of biglycan and apoB-100 were therefore examined on the cortical APP mRNA levels of transgenic mice by means of semiquantitative PCR. As compared with the control littermates, transgenic biglycan mice had significantly increased cortical APP695 (122%) and APP770 (157%) mRNA levels, while the double transgenic (apoB(+/-)xbiglycan(+/-)) mice did not exhibit any changes. These results provide the first experimental evidence that the atherogenic risk factor biglycan alters APP splicing and may participate in the pathogenesis of both Alzheimer and vascular dementias.

  12. In silico epigenetics of metal exposure and subclinical atherosclerosis in middle aged men: pilot results from the Aragon Workers Health Study.

    PubMed

    Riffo-Campos, Angela L; Fuentes-Trillo, Azahara; Tang, Wan Y; Soriano, Zoraida; De Marco, Griselda; Rentero-Garrido, Pilar; Adam-Felici, Victoria; Lendinez-Tortajada, Veronica; Francesconi, Kevin; Goessler, Walter; Ladd-Acosta, Christine; Leon-Latre, Montse; Casasnovas, Jose A; Chaves, F Javier; Navas-Acien, Ana; Guallar, Eliseo; Tellez-Plaza, Maria

    2018-06-05

    We explored the association of metal levels with subclinical atherosclerosis and epigenetic changes in relevant biological pathways. Whole blood DNA Infinium Methylation 450 K data were obtained from 23 of 73 middle age men without clinically evident cardiovascular disease (CVD) who participated in the Aragon Workers Health Study in 2009 (baseline visit) and had available baseline urinary metals and subclinical atherosclerosis measures obtained in 2010-2013 (follow-up visit). The median metal levels were 7.36 µg g -1 , 0.33 µg g -1 , 0.11 µg g -1 and 0.07 µg g -1 , for arsenic (sum of inorganic and methylated species), cadmium, antimony and tungsten, respectively. Urine cadmium and tungsten were associated with femoral and carotid intima-media thickness, respectively (Pearson's r = 0.27; p = 0.03 in both cases). Among nearest genes to identified differentially methylated regions (DMRs), 46% of metal-DMR genes overlapped with atherosclerosis-DMR genes ( p < 0.001). Pathway enrichment analysis of atherosclerosis-DMR genes showed a role in inflammatory, metabolic and transport pathways. In in silico protein-to-protein interaction networks among proteins encoded by 162 and 108 genes attributed to atherosclerosis- and metal-DMRs, respectively, with proteins known to have a role in atherosclerosis pathways, we observed hub proteins in the network associated with both atherosclerosis and metal-DMRs (e.g. SMAD3 and NOP56 ), and also hub proteins associated with metal-DMRs only but with relevant connections with atherosclerosis effectors (e.g. SSTR5 , HDAC4 , AP2A2 , CXCL12 and SSTR4 ). Our integrative in silico analysis demonstrates the feasibility of identifying epigenomic regions linked to environmental exposures and potentially involved in relevant pathways for human diseases. While our results support the hypothesis that metal exposures can influence health due to epigenetic changes, larger studies are needed to confirm our pilot results.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'. © 2018 The Author(s).

  13. Reverse association of omega-3/omega-6 polyunsaturated fatty acids ratios with carotid atherosclerosis in patients on hemodialysis.

    PubMed

    Umemoto, Norio; Ishii, Hideki; Kamoi, Daisuke; Aoyama, Toru; Sakakibara, Takashi; Takahashi, Hiroshi; Tanaka, Akihito; Yasuda, Yoshinari; Suzuki, Susumu; Matsubara, Tatsuaki; Murohara, Toyoaki

    2016-06-01

    Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) are widely recognized to have beneficial effects against cardiovascular disease. We investigated the association of n-3 PUFAs levels with carotid atherosclerosis in patients on hemodialysis (HD), who are at high risk for cardiovascular events. Carotid ultra-sound was performed in a total of 461 patients on HD (male 67%, age 67 ± 12years, diabetes rate 46%). Intima-media thickness (IMT) and the plaque score (PS) in carotid arteries were measured. Carotid atherosclerosis was defined as IMT >1.2 mm and/or PS > 5.0. The levels of n-6 PUFAs [dihomo-gamma-linolenic acid (DHLA) and arachidonic acid (AA)] and n-3 PUFAs [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)] were also measured prior to carotid ultra-sound. Carotid atherosclerosis was observed in 94 patients (20.4%). Individual PUFAs levels were comparable between patients with and without carotid atherosclerosis. However, the ratio of EPA/AA and that of n-3/n-6 PUFAs were significantly lower in patients with carotid atherosclerosis compared to those without (median 0.36 vs. 0.41, p = 0.031 and 0.85 vs. 0.93, p = 0.041, respectively]. After adjustment for other confounders, the ratio of EPA/AA (OR 0.30, 95% CI 0.12-0.70, p = 0.0055) and the ratio of n-3/n-6 PUFAs (OR 0.45, 95% CI 0.25-0.80, p = 0.0066) showed an independent reverse association with carotid atherosclerosis. In addition, the area under receiver-operating characteristic curves for carotid atherosclerosis was significantly greater in an established risk model with EPA/AA and n-3/n-6 ratios than in the established risk model alone. These data suggest that low ratios of both EPA/AA ratio and n-3/n-6 PUFAs were closely associated with carotid atherosclerosis in patients on HD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE-/- Mice through the ROS/MAPK/NF-κB Pathway.

    PubMed

    Xu, Zhe-Rong; Li, Jin-You; Dong, Xin-Wei; Tan, Zhong-Ju; Wu, Wei-Zhen; Xie, Qiang-Min; Yang, Yun-Mei

    2015-08-24

    In this study, we examined the effects of apple polyphenols (APs) on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE(-/-) mice were fed a western-type diet and orally treated with APs (100 mg/kg) or atorvastatin (10 mg/kg) for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL) cholesterol and markedly up-regulated the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs). Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis.

  15. Prenatal hypoxia promotes atherosclerosis via vascular inflammation in the offspring rats.

    PubMed

    Zhang, Pengjie; Zhu, Di; Chen, Xionghui; Li, Yongmei; Li, Na; Gao, Qinqin; Li, Lingjun; Zhou, Xiuwen; Lv, Juanxiu; Sun, Miao; Mao, Caiping; Xu, Zhice

    2016-02-01

    Hypoxia is a critical contributor to increased risks of cardiovascular diseases, including atherosclerosis, but the detailed mechanism that hypoxia leads to atherosclerosis remains unknown. Pregnant rats were treated with hypoxia (10.5% oxygen) during pregnancy, and HUVEC cells treated with 1% of oxygen. Blood lipids were tested at fetal stage and adult stage of offspring rats; the level of pro-inflammatory cytokines of HUVEC and offspring rats were investigated, and HIF-1α and NFκB mRNA level were also measured by Q-PCR and Elisa. We found that TC, LDL-C, ox-LDL-C, and the receptors of ox-LDL-C (lox-1) of the adult offspring were significantly higher than that of the control, while HDL-C was significantly reduced in hypoxia group. The internal elastic lamina was blocked by smooth muscle cells; and the migration of smooth muscle cells into the intima were observed in hypoxia offspring. Luciferase reporter gene experiment showed that HIF-1α activated NFκB transcription at four discrete binding sites of NFκBp65 promoter, although there was no obvious difference among the four discrete binding sites. Using transfection of pCDNA3.1-HIF-1α on HUVEC cells, HIF-1α significantly activated NFκB transcription at hypoxic conditions (1% O2), and concurrent with increased expression of IL-1β and TNF-α. Hypoxia during pregnancy activated NFκB transcription to induce pro-inflammatory cytokines, leading to the early stage of atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Apple Polyphenols Decrease Atherosclerosis and Hepatic Steatosis in ApoE−/− Mice through the ROS/MAPK/NF-κB Pathway

    PubMed Central

    Xu, Zhe-Rong; Li, Jin-You; Dong, Xin-Wei; Tan, Zhong-Ju; Wu, Wei-Zhen; Xie, Qiang-Min; Yang, Yun-Mei

    2015-01-01

    In this study, we examined the effects of apple polyphenols (APs) on hyperlipidemia, atherosclerosis, hepatic steatosis and endothelial function and investigated the potential mechanisms. ApoE−/− mice were fed a western-type diet and orally treated with APs (100 mg/kg) or atorvastatin (10 mg/kg) for 12 weeks. Hyperlipidemia and atherosclerosis in the aortic sinuses and, and hepatic lipidosis were measured. The treatment with APs or atorvastatin induced a remarkable reduction in the atherosclerotic lesions and hepatic steatosis and decreased the levels of low-density lipoprotein, triglyceride, CCL-2 and VCAM-1 levels in the plasma. Conversely, the APs significantly increased the plasma levels of high-density lipoprotein (HDL) cholesterol and markedly up-regulated the glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD) levels in liver tissues. Moreover, the APs treatment modulated lipid metabolism by up-regulating the transcription of associated hepatic genes including PPARα, while down-regulating the transcription of SCAP and its downstream genes associated with lipid synthesis in the liver. Histological assessment showed that the APs treatment also reduced the macrophage infiltration in the aortic root plaque and the inflammatory cells infiltrations to the liver tissues. Moreover, we confirmed that the APs treatment greatly reduced the ox-LDL-induced endothelial dysfunction and monocyte adhesion to rat aortic endothelial cells (RAECs). Mechanistically, the APs treatment suppressed the ROS/MAPK/NF-κB signaling pathway, and consequently, reduced CCL-2, ICAM-1 and VCAM-1 expression. Our results suggest that the APs are a beneficial nutritional supplement for the attenuation of atherosclerosis. PMID:26305254

  17. Epigenetic impact of endocrine disrupting chemicals on lipid homeostasis and atherosclerosis: a pregnane X receptor-centric view.

    PubMed

    Helsley, Robert N; Zhou, Changcheng

    2017-10-01

    Despite the major advances in developing diagnostic techniques and effective treatments, atherosclerotic cardiovascular disease (CVD) is still the leading cause of mortality and morbidity worldwide. While considerable progress has been achieved to identify gene variations and environmental factors that contribute to CVD, much less is known about the role of "gene-environment interactions" in predisposing individuals to CVD. Our chemical environment has significantly changed in the last few decades, and there are more than 100,000 synthetic chemicals in the market. Recent large-scale human population studies have associated exposure to certain chemicals including many endocrine disrupting chemicals (EDCs) with increased CVD risk, and animal studies have also confirmed that some EDCs can cause aberrant lipid homeostasis and increase atherosclerosis. However, the underlying mechanisms of how exposure to those EDCs influences CVD risk remain elusive. Numerous EDCs can activate the nuclear receptor pregnane X receptor (PXR) that functions as a xenobiotic sensor to regulate host xenobiotic metabolism. Recent studies have demonstrated the novel functions of PXR in lipid homeostasis and atherosclerosis. In addition to directly regulating transcription, PXR has been implicated in the epigenetic regulation of gene transcription. Exposure to many EDCs can also induce epigenetic modifications, but little is known about how the changes relate to the onset or progression of CVD. In this review, we will discuss recent research on PXR and EDCs in the context of CVD and propose that PXR may play a previously unrealized role in EDC-mediated epigenetic modifications that affect lipid homeostasis and atherosclerosis.

  18. PPARs and the Cardiovascular System

    PubMed Central

    Hamblin, Milton; Chang, Lin; Fan, Yanbo; Zhang, Jifeng

    2009-01-01

    Abstract Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Originally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPARγ appears to be highly expressed during atherosclerotic lesion formation, suggesting that increased PPARγ expression may be a vascular compensatory response. Also, ligand-activated PPARγ decreases the inflammatory response in cardiovascular cells, particularly in endothelial cells. PPARα, similar to PPARγ, also has pleiotropic effects in the cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPARα activation inhibits vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However, PPARδ overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPARδ ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation. Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of PPAR-dependent and -independent signaling will provide the foundation for future research on the role of PPARs in human cardiovascular biology. Antioxid. Redox Signal. 11, 1415–1452. PMID:19061437

  19. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis.

    PubMed

    Clarke, Murray C H; Figg, Nichola; Maguire, Janet J; Davenport, Anthony P; Goddard, Martin; Littlewood, Trevor D; Bennett, Martin R

    2006-09-01

    Vascular smooth muscle cell (VSMC) apoptosis occurs in many arterial diseases, including aneurysm formation, angioplasty restenosis and atherosclerosis. Although VSMC apoptosis promotes vessel remodeling, coagulation and inflammation, its precise contribution to these diseases is unknown, given that apoptosis frequently accompanies vessel injury or alterations to flow. To study the direct consequences of VSMC apoptosis, we generated transgenic mice expressing the human diphtheria toxin receptor (hDTR, encoded by HBEGF) from a minimal Tagln (also known as SM22alpha) promoter. Despite apoptosis inducing loss of 50-70% of VSMCs, normal arteries showed no inflammation, reactive proliferation, thrombosis, remodeling or aneurysm formation. In contrast, VSMC apoptosis in atherosclerotic plaques of SM22alpha-hDTR Apoe-/- mice induced marked thinning of fibrous cap, loss of collagen and matrix, accumulation of cell debris and intense intimal inflammation. We conclude that VSMC apoptosis is 'silent' in normal arteries, which have a large capacity to withstand cell loss. In contrast, VSMC apoptosis alone is sufficient to induce features of plaque vulnerability in atherosclerosis. SM22alpha-hDTR Apoe-/- mice may represent an important new model to test agents proposed to stabilize atherosclerotic plaques.

  20. Are Short Chain Fatty Acids in Gut Microbiota Defensive Players for Inflammation and Atherosclerosis?

    PubMed Central

    Tsutsui, Wao; Fujioka, Yoshio

    2017-01-01

    Intestinal flora (microbiota) have recently attracted attention among lipid and carbohydrate metabolism researchers. Microbiota metabolize resistant starches and dietary fibers through fermentation and decomposition, and provide short chain fatty acids (SCFAs) to the host. The major SCFAs acetates, propionate and butyrate, have different production ratios and physiological activities. Several receptors for SCFAs have been identified as the G-protein coupled receptor 41/free fatty acid receptor 3 (GPR41/FFAR3), GPR43/FFAR2, GPR109A, and olfactory receptor 78, which are present in intestinal epithelial cells, immune cells, and adipocytes, despite their expression levels differing between tissues and cell types. Many studies have indicated that SCFAs exhibit a wide range of functions from immune regulation to metabolism in a variety of tissues and organs, and therefore have both a direct and indirect influence on our bodies. This review will focus on SCFAs, especially butyrate, and their effects on various inflammatory mechanisms including atherosclerosis. In the future, SCFAs may provide new insights into understanding the pathophysiology of chronic inflammation, metabolic disorders, and atherosclerosis, and we can expect the development of novel therapeutic strategies for these diseases. PMID:28552897

Top