Molten salt applications in materials processing
NASA Astrophysics Data System (ADS)
Mishra, Brajendra; Olson, David L.
2005-02-01
The science of molten salt electrochemistry for electrowinning of reactive metals, such as calcium, and its in situ application in pyro-reduction has been described. Calcium electrowinning has been performed in a 5 10 wt% calcium oxide calcium chloride molten salt by the electrolytic dissociation of calcium oxide. This electrolysis requires the use of a porous ceramic sheath around the anode to keep the cathodically deposited calcium and the anodic gases separate. Stainless steel cathode and graphite anode have been used in the temperature range of 850 950 °C. This salt mixture is produced as a result of the direct oxide reduction (DOR) of reactive metal oxides by calcium in a calcium chloride bath. The primary purpose of this process is to recover the expensive calcium reductant and to recycle calcium chloride. Experimental data have been included to justify the suitability as well as limitations of the electrowinning process. Transport of oxygen ions through the sheath is found to be the rate controlling step. Under the constraints of the reactor design, a calcium recovery rate of approx. 150 g/h was achieved. Feasibility of a process to produce metals by pyrometallurgical reduction, using the calcium reductant produced electrolytically within the same reactor, has been shown in a hybrid process. Several processes are currently under investigation to use this electrowon calcium for in situ reduction of metal oxides.
Perry, Jacob L.; Ramachandran, Nina K.; Utama, Budi; Hyser, Joseph M.
2015-01-01
Calcium signaling is a ubiquitous and versatile process involved in nearly every cellular process, and exploitation of host calcium signals is a common strategy used by viruses to facilitate replication and cause disease. Small molecule fluorescent calcium dyes have been used by many to examine changes in host cell calcium signaling and calcium channel activation during virus infections, but disadvantages of these dyes, including poor loading and poor long-term retention, complicate analysis of calcium imaging in virus-infected cells due to changes in cell physiology and membrane integrity. The recent expansion of genetically-encoded calcium indicators (GECIs), including blue and red-shifted color variants and variants with calcium affinities appropriate for calcium storage organelles like the endoplasmic reticulum (ER), make the use of GECIs an attractive alternative for calcium imaging in the context of virus infections. Here we describe the development and testing of cell lines stably expressing both green cytoplasmic (GCaMP5G and GCaMP6s) and red ER-targeted (RCEPIAer) GECIs. Using three viruses (rotavirus, poliovirus and respiratory syncytial virus) previously shown to disrupt host calcium homeostasis, we show the GECI cell lines can be used to detect simultaneous cytoplasmic and ER calcium signals. Further, we demonstrate the GECI expression has sufficient stability to enable long-term confocal imaging of both cytoplasmic and ER calcium during the course of virus infections. PMID:26344758
Calcium signaling in taste cells: regulation required.
Medler, Kathryn F
2010-11-01
Peripheral taste receptor cells depend on distinct calcium signals to generate appropriate cellular responses that relay taste information to the central nervous system. Some taste cells have conventional chemical synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release from stores to formulate an output signal through a hemichannel. Despite the importance of calcium signaling in taste cells, little is known about how these signals are regulated. This review summarizes recent studies that have identified 2 calcium clearance mechanisms expressed in taste cells, including mitochondrial calcium uptake and sodium/calcium exchangers (NCXs). These studies identified a unique constitutive calcium influx that contributes to maintaining appropriate calcium homeostasis in taste cells and the role of the mitochondria and exchangers in this process. The additional role of NCXs in the regulation of evoked calcium responses is also discussed. Clearly, calcium signaling is a dynamic process in taste cells and appears to be more complex than has previously been appreciated.
Silver, G.L.
1980-09-24
The present invention provides a process for decontaminating a radioactive liquid containing a radioactive element capable of forming a hydroxide. This process includes the steps of contacting the radioactive liquid with a decontaminating composition and separating the resulting radioactive sludge from the resulting liquid. The decontaminating composition contains calcium cyanamide.
Zhou, Bo; Wen, Di; Nye, Katelyn; Gilkeson, Robert C; Eck, Brendan; Jordan, David; Wilson, David L
2017-10-01
We have demonstrated the ability to identify coronary calcium, a reliable biomarker of coronary artery disease, using nongated, 2-shot, dual energy (DE) chest x-ray imaging. Here we will use digital simulations, backed up by measurements, to characterize DE calcium signals and the role of potential confounds such as beam hardening, x-ray scatter, cardiac motion, and pulmonary artery pulsation. For the DE calcium signal, we will consider quantification, as compared to CT calcium score, and visualization. We created stylized and anatomical digital 3D phantoms including heart, lung, coronary calcium, spine, ribs, pulmonary artery, and adipose. We simulated high and low kVp x-ray acquisitions with x-ray spectra, energy dependent attenuation, scatter, ideal detector, and automatic exposure control (AEC). Phantoms allowed us to vary adipose thickness, cardiac motion, etc. We used specialized dual energy coronary calcium (DECC) processing that includes corrections for scatter and beam hardening. Beam hardening over a wide range of adipose thickness (0-30 cm) reduced the change in intensity of a coronary artery calcification (ΔI CAC ) by < 3% in DECC images. Scatter correction errors of ±50% affected the calcium signal (ΔI CAC ) in DECC images ±9%. If a simulated pulmonary artery fills with blood between exposures, it can give rise to a residual signal in DECC images, explaining pulmonary artery visibility in some clinical images. Residual misregistration can be mostly compensated by integrating signals in an enlarged region encompassing registration artifacts. DECC calcium score compared favorably to CT mass and volume scores over a number of phantom perturbations. Simulations indicate that proper DECC processing can faithfully recover coronary calcium signals. Beam hardening, errors in scatter estimation, cardiac motion, calcium residual misregistration etc., are all manageable. Simulations are valuable as we continue to optimize DE coronary calcium image processing and quantitative analysis. © 2017 American Association of Physicists in Medicine.
A method to investigate the diffusion properties of nuclear calcium.
Queisser, Gillian; Wittum, Gabriel
2011-10-01
Modeling biophysical processes in general requires knowledge about underlying biological parameters. The quality of simulation results is strongly influenced by the accuracy of these parameters, hence the identification of parameter values that the model includes is a major part of simulating biophysical processes. In many cases, secondary data can be gathered by experimental setups, which are exploitable by mathematical inverse modeling techniques. Here we describe a method for parameter identification of diffusion properties of calcium in the nuclei of rat hippocampal neurons. The method is based on a Gauss-Newton method for solving a least-squares minimization problem and was formulated in such a way that it is ideally implementable in the simulation platform uG. Making use of independently published space- and time-dependent calcium imaging data, generated from laser-assisted calcium uncaging experiments, here we could identify the diffusion properties of nuclear calcium and were able to validate a previously published model that describes nuclear calcium dynamics as a diffusion process.
Wen, Di; Nye, Katelyn; Zhou, Bo; Gilkeson, Robert C; Gupta, Amit; Ranim, Shiraz; Couturier, Spencer; Wilson, David L
2018-03-01
We have developed a technique to image coronary calcium, an excellent biomarker for atherosclerotic disease, using low cost, low radiation dual energy (DE) chest radiography, with potential for widespread screening from an already ordered exam. Our dual energy coronary calcium (DECC) processing method included automatic heart silhouette segmentation, sliding organ registration and scatter removal to create a bone-image-like, coronary calcium image with significant reduction in motion artifacts and improved calcium conspicuity compared to standard, clinically available DE processing. Experiments with a physical dynamic cardiac phantom showed that DECC processing reduced 73% of misregistration error caused by cardiac motion over a wide range of heart rates and x-ray radiation exposures. Using the functional measurement test (FMT), we determined significant image quality improvement in clinical images with DECC processing (p < 0.0001), where DECC images were chosen best in 94% of human readings. Comparing DECC images to registered and projected CT calcium images, we found good correspondence between the size and location of calcification signals. In a very preliminary coronary calcium ROC study, we used CT Agatston calcium score >50 as the gold standard for an actual positive test result. AUC performance was significantly improved from 0.73 ± 0.14 with standard DE to 0.87 ± 0.10 with DECC (p = 0.0095) for this limited set of surgical patient data biased towards heavy calcifications. The proposed DECC processing shows good potential for coronary calcium detection in DE chest radiography, giving impetus for a larger clinical evaluation. Copyright © 2018. Published by Elsevier Ltd.
Expression of voltage-activated calcium channels in the early zebrafish embryo.
Sanhueza, Dayán; Montoya, Andro; Sierralta, Jimena; Kukuljan, Manuel
2009-05-01
Increases in cytosolic calcium concentrations regulate many cellular processes, including aspects of early development. Calcium release from intracellular stores and calcium entry through non-voltage-gated channels account for signalling in non-excitable cells, whereas voltage-gated calcium channels (CaV) are important in excitable cells. We report the expression of multiple transcripts of CaV, identified by its homology to other species, in the early embryo of the zebrafish, Danio rerio, at stages prior to the differentiation of excitable cells. CaV mRNAs and proteins were detected as early as the 2-cell stages, which indicate that they arise from both maternal and zygotic transcription. Exposure of embryos to pharmacological blockers of CaV does not perturb early development significantly, although late effects are appreciable. These results suggest that CaV may have a role in calcium homeostasis and control of cellular process during early embryonic development.
Acidosis and Urinary Calcium Excretion: Insights from Genetic Disorders
Cordat, Emmanuelle; Chambrey, Régine; Dimke, Henrik; Eladari, Dominique
2016-01-01
Metabolic acidosis is associated with increased urinary calcium excretion and related sequelae, including nephrocalcinosis and nephrolithiasis. The increased urinary calcium excretion induced by metabolic acidosis predominantly results from increased mobilization of calcium out of bone and inhibition of calcium transport processes within the renal tubule. The mechanisms whereby acid alters the integrity and stability of bone have been examined extensively in the published literature. Here, after briefly reviewing this literature, we consider the effects of acid on calcium transport in the renal tubule and then discuss why not all gene defects that cause renal tubular acidosis are associated with hypercalciuria and nephrocalcinosis. PMID:27468975
Calcium as a signal integrator in developing epithelial tissues.
Brodskiy, Pavel A; Zartman, Jeremiah J
2018-05-16
Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.
A Mechanism of Intracellular P2X Receptor Activation*
Sivaramakrishnan, Venketesh; Fountain, Samuel J.
2012-01-01
P2X receptors (P2XRs) are ATP-activated calcium-permeable ligand-gated ion channels traditionally viewed as sensors of extracellular ATP during diverse physiological processes including pain, inflammation, and taste. However, in addition to a cell surface residency P2XRs also populate the membranes of intracellular compartments, including mammalian lysosomes, phagosomes, and the contractile vacuole (CV) of the amoeba Dictyostelium. The function of intracellular P2XRs is unclear and represents a major gap in our understanding of ATP signaling. Here, we exploit the genetic versatility of Dictyostelium to investigate the effects of physiological concentrations of ATP on calcium signaling in isolated CVs. Within the CV, an acidic calcium store, P2XRs are orientated to sense luminal ATP. Application of ATP to isolated vacuoles leads to luminal translocation of ATP and release of calcium. Mechanisms of luminal ATP translocation and ATP-evoked calcium release share common pharmacology, suggesting that they are linked processes. The ability of ATP to mobilize stored calcium is reduced in vacuoles isolated from P2XAR knock-out amoeba and ablated in cells devoid of P2XRs. Pharmacological inhibition of luminal ATP translocation or depletion of CV calcium attenuates CV function in vivo, manifesting as a loss of regulatory cell volume decrease following osmotic swelling. We propose that intracellular P2XRs regulate vacuole activity by acting as calcium release channels, activated by translocation of ATP into the vacuole lumen. PMID:22736763
Calcium sensitivity of dicarboxylate transport in cultured proximal tubule cells
Schiro, Faith R.; Pajor, Ana M.; Hamm, L. Lee
2011-01-01
Urinary citrate is an important inhibitor of calcium nephrolithiasis and is primarily determined by proximal tubule reabsorption. The major transporter to reabsorb citrate is Na+-dicarboxylate cotransporter (NaDC1), which transports dicarboxylates, including the divalent form of citrate. We previously found that opossum kidney (OK) proximal tubule cells variably express either divalent or trivalent citrate transport, depending on extracellular calcium. The present studies were performed to delineate the mechanism of the effect of calcium on citrate and succinate transport in these cells. Transport was measured using isotope uptake assays. In some studies, NaDC1 transport was studied in Xenopus oocytes, expressing either the rabbit or opossum ortholog. In the OK cell culture model, lowering extracellular calcium increased both citrate and succinate transport by more than twofold; the effect was specific in that glucose transport was not altered. Citrate and succinate were found to reciprocally inhibit transport at low extracellular calcium (<60 μM), but not at normal calcium (1.2 mM); this mutual inhibition is consistent with dicarboxylate transport. The inhibition varied progressively at intermediate levels of extracellular calcium. In addition to changing the relative magnitude and interaction of citrate and succinate transport, decreasing calcium also increased the affinity of the transport process for various other dicarboxylates. Also, the affinity for succinate, at low concentrations of substrate, was increased by calcium removal. In contrast, in oocytes expressing NaDC1, calcium did not have a similar effect on transport, indicating that NaDC1 could not likely account for the findings in OK cells. In summary, extracellular calcium regulates constitutive citrate and succinate transport in OK proximal tubule cells, probably via a novel transport process that is not NaDC1. The calcium effect on citrate transport parallels in vivo studies that demonstrate the regulation of urinary citrate excretion with urinary calcium excretion, a process that may be important in decreasing urinary calcium stone formation. PMID:21123491
Calcium in the pathomechanism of amyotrophic lateral sclerosis - Taking center stage?
Patai, Roland; Nógrádi, Bernát; Engelhardt, József I; Siklós, László
2017-02-19
Amyotrophic lateral sclerosis is an incurable, relentlessly progressive disease primarily affecting motor neurons. The cause of the disease, except for the mutations identified in a small fraction of patients, is unknown. The major mechanisms contributing to the degeneration of motor neurons have already been disclosed and characterized, including excitotoxicity, oxidative stress, mitochondrial dysfunction, and immune/inflammatory processes. During the progression of the disease these toxic processes are not discrete, but each facilitates the deleterious effect of the other. However, due to their common reciprocal calcium dependence, calcium ions may act as a common denominator and through a positive feedback loop may combine the individual pathological processes into a unified escalating mechanism of neuronal destruction. This mini-review provides an overview of the mutual calcium dependence of the major toxic mechanisms associated with amyotrophic lateral sclerosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Process for removing sulfur from sulfur-containing gases: high calcium fly-ash
Rochelle, Gary T.; Chang, John C. S.
1991-01-01
The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accordance with the present invention include preparing an aqueous slurry composed of a calcium alkali source and a source of reactive silica and/or alumina, heating the slurry to above-ambient temperatures for a period of time in order to facilitate the formation of sulfur-absorbing calcium silicates or aluminates, and treating the gas with the heat-treated slurry components. Examples disclosed herein demonstrate the utility of these processes in achieving improved sulfur-absorbing capabilities. Additionally, disclosure is provided which illustrates preferred configurations for employing the present processes both as a dry sorbent injection and for use in conjunction with a spray dryer and/or bagfilter. Retrofit application to existing systems is also addressed.
Total body calcium analysis using the Ca-12(n, alpha) Ar-37 reaction
NASA Technical Reports Server (NTRS)
Lewellen, T. K.; Nelp, W. B.
1977-01-01
A low dose neutron activation technique was developed to measure total body calcium in vivo. The effort had included development of irradiation and processing facilities and conduction of human studies to determine the accuracy and precision of measurement attainable with the systems.
Current challenges and future directions for bacterial self-healing concrete.
Lee, Yun Suk; Park, Woojun
2018-04-01
Microbially induced calcium carbonate precipitation (MICP) has been widely explored and applied in the field of environmental engineering over the last decade. Calcium carbonate is naturally precipitated as a byproduct of various microbial metabolic activities. This biological process was brought into practical use to restore construction materials, strengthen and remediate soil, and sequester carbon. MICP has also been extensively examined for applications in self-healing concrete. Biogenic crack repair helps mitigate the high maintenance costs of concrete in an eco-friendly manner. In this process, calcium carbonate precipitation (CCP)-capable bacteria and nutrients are embedded inside the concrete. These bacteria are expected to increase the durability of the concrete by precipitating calcium carbonate in situ to heal cracks that develop in the concrete. However, several challenges exist with respect to embedding such bacteria; harsh conditions in concrete matrices are unsuitable for bacterial life, including high alkalinity (pH up to 13), high temperatures during manufacturing processes, and limited oxygen supply. Additionally, many biological factors, including the optimum conditions for MICP, the molecular mechanisms involved in MICP, the specific microorganisms suitable for application in concrete, the survival characteristics of the microorganisms embedded in concrete, and the amount of MICP in concrete, remain unclear. In this paper, metabolic pathways that result in conditions favorable for calcium carbonate precipitation, current and potential applications in concrete, and the remaining biological challenges are reviewed.
Structural dynamics of the cell nucleus
Wiegert, Simon; Bading, Hilmar
2011-01-01
Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons. PMID:21738832
Bone nutrients for vegetarians.
Mangels, Ann Reed
2014-07-01
The process of bone mineralization and resorption is complex and is affected by numerous factors, including dietary constituents. Although some dietary factors involved in bone health, such as calcium and vitamin D, are typically associated with dairy products, plant-based sources of these nutrients also supply other key nutrients involved in bone maintenance. Some research suggests that vegetarian diets, especially vegan diets, are associated with lower bone mineral density (BMD), but this does not appear to be clinically significant. Vegan diets are not associated with an increased fracture risk if calcium intake is adequate. Dietary factors in plant-based diets that support the development and maintenance of bone mass include calcium, vitamin D, protein, potassium, and soy isoflavones. Other factors present in plant-based diets such as oxalic acid and phytic acid can potentially interfere with absorption and retention of calcium and thereby have a negative effect on BMD. Impaired vitamin B-12 status also negatively affects BMD. The role of protein in calcium balance is multifaceted. Overall, calcium and protein intakes in accord with Dietary Reference Intakes are recommended for vegetarians, including vegans. Fortified foods are often helpful in meeting recommendations for calcium and vitamin D. Plant-based diets can provide adequate amounts of key nutrients for bone health. © 2014 American Society for Nutrition.
Queisser, Gillian; Wiegert, Simon; Bading, Hilmar
2011-01-01
Neuronal morphology plays an essential role in signal processing in the brain. Individual neurons can undergo use-dependent changes in their shape and connectivity, which affects how intracellular processes are regulated and how signals are transferred from one cell to another in a neuronal network. Calcium is one of the most important intracellular second messengers regulating cellular morphologies and functions. In neurons, intracellular calcium levels are controlled by ion channels in the plasma membrane such as NMDA receptors (NMDARs), voltage-gated calcium channels (VGCCs) and certain α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as well as by calcium exchange pathways between the cytosol and internal calcium stores including the endoplasmic reticulum and mitochondria. Synaptic activity and the subsequent opening of ligand and/or voltage-gated calcium channels can initiate cytosolic calcium transients which propagate towards the cell soma and enter the nucleus via its nuclear pore complexes (NPCs) embedded in the nuclear envelope. We recently described the discovery that in hippocampal neurons the morphology of the nucleus affects the calcium dynamics within the nucleus. Here we propose that nuclear infoldings determine whether a nucleus functions as an integrator or detector of oscillating calcium signals. We outline possible ties between nuclear mophology and transcriptional activity and discuss the importance of extending the approach to whole cell calcium signal modeling in order to understand synapse-to-nucleus communication in healthy and dysfunctional neurons.
Verdus, Marie-Claire; Le Sceller, Lois; Norris, Victor; Thellier, Michel
2007-01-01
Information about abiotic conditions is stored for long periods in plants and, in flax seedlings, can lead to the production of meristems. To investigate the underlying mechanism, flax seedlings were given abiotic stimuli that included a mechanical stimulus (by manipulation), one or two cold shocks, a slow cold treatment and a drought stress and, if these seedlings were then subjected to a temporary (1 to 3 days) depletion of calcium, epidermal meristems were produced in the seedling hypocotyls. This production was inhibited by the addition to the nutrient media of EGTA, ruthenium red, lanthanum or gadolinium that affect calcium availability or calcium transport. Use of these agents revealed a period of vulnerability in information processing that was less than two min for mechanical stimuli and over five min for other abiotic stimuli, consistent with information about mechanical stimuli being stored particularly fast. We propose that external calcium is needed for the transduction/storage of the information for meristem production whilst a temporary depletion of external calcium is needed for the actual production of meristems. Such roles for calcium would be consistent with a mechanism based on ion condensation on charged polymers. PMID:19516991
Verdus, Marie-Claire; Le Sceller, Lois; Norris, Victor; Thellier, Michel; Ripoll, Camille
2007-07-01
Information about abiotic conditions is stored for long periods in plants and, in flax seedlings, can lead to the production of meristems. To investigate the underlying mechanism, flax seedlings were given abiotic stimuli that included a mechanical stimulus (by manipulation), one or two cold shocks, a slow cold treatment and a drought stress and, if these seedlings were then subjected to a temporary (1 to 3 days) depletion of calcium, epidermal meristems were produced in the seedling hypocotyls. This production was inhibited by the addition to the nutrient media of EGTA, ruthenium red, lanthanum or gadolinium that affect calcium availability or calcium transport. Use of these agents revealed a period of vulnerability in information processing that was less than two min for mechanical stimuli and over five min for other abiotic stimuli, consistent with information about mechanical stimuli being stored particularly fast. We propose that external calcium is needed for the transduction/storage of the information for meristem production whilst a temporary depletion of external calcium is needed for the actual production of meristems. Such roles for calcium would be consistent with a mechanism based on ion condensation on charged polymers.
Mukherjee, Sreya; Karolak, Aleksandra; Debant, Marjolaine; Buscaglia, Paul; Renaudineau, Yves; Mignen, Olivier; Guida, Wayne C; Brooks, Wesley H
2017-02-27
Calcium is involved in important intracellular processes, such as intracellular signaling from cell membrane receptors to the nucleus. Typically, calcium levels are kept at less than 100 nM in the nucleus and cytosol, but some calcium is stored in the endoplasmic reticulum (ER) lumen for rapid release to activate intracellular calcium-dependent functions. Stromal interacting molecule 1 (STIM1) plays a critical role in early sensing of changes in the ER's calcium level, especially when there is a sudden release of stored calcium from the ER. Inactive STIM1, which has a bound calcium ion, is activated upon ion release. Following activation of STIM1, there is STIM1-assisted initiation of extracellular calcium entry through channels in the cell membrane. This extracellular calcium entering the cell then amplifies intracellular calcium-dependent actions. At the end of the process, ER levels of stored calcium are reestablished. The main focus of this work was to study the conformational changes accompanying homo- or heterodimerization of STIM1. For this purpose, the ER luminal portion of STIM1 (residues 58-236), which includes the sterile alpha motif (SAM) domain plus the calcium-binding EF-hand domains 1 and 2 attached to the STIM1 transmembrane region (TM), was modeled and embedded in a virtual membrane. Next, molecular dynamics simulations were performed to study the conformational changes that take place during STIM1 activation and subsequent protein-protein interactions. Indeed, the simulations revealed exposure of residues in the EF-hand domains, which may be important for dimerization steps. Altogether, understanding conformational changes in STIM1 can help in drug discovery when targeting this key protein in intracellular calcium functions.
Biomineralizations: insights and prospects from crustaceans
Luquet, Gilles
2012-01-01
Abstract For growing, crustaceans have to molt cyclically because of the presence of a rigid exoskeleton. Most of the crustaceans harden their cuticle not only by sclerotization, like all the arthropods, but also by calcification. All the physiology of crustaceans, including the calcification process, is then linked to molting cycles. This means for these animals to find regularly a source of calcium ions quickly available just after ecdysis. The sources of calcium used are diverse, ranging from the environment where the animals live to endogenous calcium deposits cyclically elaborated by some of them. As a result, crustaceans are submitted to an important and energetically demanding calcium turnover throughout their life. The mineralization process occurs by precipitation of calcium carbonate within an organic matrix network of chitin-proteins fibers. Both crystalline and stabilized amorphous polymorphs of calcium carbonate are found in crustacean biominerals. Furthermore, Crustacea is the only phylum of animals able to elaborate and resorb periodically calcified structures. Notably for these two previous reasons, crustaceans are more and more extensively studied and considered as models of choice in the biomineralization research area. PMID:22536102
Intestinal absorption and renal reabsorption of calcium throughout postnatal development
Beggs, Megan R
2017-01-01
Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving optimal bone mineral density in early adulthood, thereby lowering the lifetime risk of osteoporosis. PMID:28346014
Calcium and aluminum impacts on sugar maple physiology in a northern hardwood forest
Joshua M. Halman; Paul G. Schaberg; Gary J. Hawley; Linda H. Pardo; Timothy J. Fahey
2013-01-01
Forests of northeastern North America have been exposed to anthropogenic acidic inputs for decades, resulting in altered cation relations and disruptions to associated physiological processes in multiple tree species, including sugar maple (Acer saccharum Marsh.). In the current study, the impacts of calcium (Ca) and aluminum (Al) additions on mature...
A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.
Marken, John P; Halleran, Andrew D; Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C; Golino, Caroline A; Kemper, Peter; Saha, Margaret S
2016-01-01
Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.
Early events in geotropism of seedling shoots
NASA Technical Reports Server (NTRS)
Pickard, B. G.
1985-01-01
Developments during the first ten minutes of geotropic stimulation in plant seedling shoots are reviewed. Topics include induction and curvature; early processes; the relationship between auxin, electric field, calcium, and differential growth; gravity reception leading to Went-Cholodny transport; and comparison of root and shoot. Early processes reviewed are sedimentation of amyloplasts, release of ethylene, rise of electrical and auxin asymmetry, redistribution of calcium, asymmetric vascular transport, increase in tendency to deposit callose, and simulation of putative exocytotic voltage transients.
Extracellular Calcium Has Multiple Targets to Control Cell Proliferation.
Capiod, Thierry
2016-01-01
Calcium channels and the two G-protein coupled receptors sensing extracellular calcium, calcium-sensing receptor (CaSR) and GPRC6a, are the two main means by which extracellular calcium can signal to cells and regulate many cellular processes including cell proliferation, migration and invasion of tumoral cells. Many intracellular signaling pathways are sensitive to cytosolic calcium rises and conversely intracellular signaling pathways can modulate calcium channel expression and activity. Calcium channels are undoubtedly involved in the former while the CaSR and GPRC6a are most likely to interfere with the latter. As for neurotransmitters, calcium ions use plasma membrane channels and GPCR to trigger cytosolic free calcium concentration rises and intracellular signaling and regulatory pathways activation. Calcium sensing GPCR, CaSR and GPRC6a, allow a supplemental degree of control and as for metabotropic receptors, they not only modulate calcium channel expression but they may also control calcium-dependent K+ channels. The multiplicity of intracellular signaling pathways involved, their sensitivity to local and global intracellular calcium increase and to CaSR and GPRC6a stimulation, the presence of membrane signalplex, all this confers the cells the plasticity they need to convert the effects of extracellular calcium into complex physiological responses and therefore determine their fate.
Aberrant Subcellular Neuronal Calcium Regulation in Aging and Alzheimer’s Disease
Camandola, Simonetta; Mattson, Mark P.
2010-01-01
In this mini-review/opinion article we describe evidence that multiple cellular and molecular alterations in Alzheimer’s disease (AD) pathogenesis involve perturbed cellular calcium regulation, and that alterations in synaptic calcium handling may be early and pivotal events in the disease process. With advancing age neurons encounter increased oxidative stress and impaired energy metabolism, which compromise the function of proteins that control membrane excitability and subcellular calcium dynamics. Altered proteolytic cleavage of the β-amyloid precursor protein (APP) in response to the aging process in combination with genetic and environmental factors results in the production and accumulation of neurotoxic forms of amyloid β-peptide (Aβ ). Aβ undergoes a self-aggregation process and concomitantly generates reactive oxygen species that can trigger membrane-associated oxidative stress which, in turn, impairs the functions of ion-motive ATPases and glutamate and glucose transporters thereby rendering neurons vulnerable to excitotoxicity and apoptosis. Mutations in presenilin-1 that cause early-onset AD increase Aβ production, but also result in an abnormal increase in the size of endoplasmic reticulum calcium stores. Some of the events in the neurodegenerative cascade can be counteracted in animal models by manipulations that stabilize neuronal calcium homeostasis including dietary energy restriction, agonists of glucagon-like peptide 1 receptors and drugs that activate mitochondrial potassium channels. Emerging knowledge of the actions of calcium upstream and downstream of Aβ provides opportunities to develop novel preventative and therapeutic interventions for AD. PMID:20950656
Jay Renew
2016-02-06
Results from a nanofiltration study utilizing simulated geothermal brines. The data includes a PDF documenting the process used to remove Calcium, Magnesium, Sodium, Silica, Lithium, Chlorine, and Sulfate from simulated geothermal brines. Three different membranes were evaluated. The results were analyzed using inductively coupled plasma mass spectrometry (ICP-MS).
A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series
Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C.; Golino, Caroline A.; Kemper, Peter; Saha, Margaret S.
2016-01-01
Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features. PMID:27977764
Special features of the technology of boronizing steel in a calcium chloride melt
NASA Astrophysics Data System (ADS)
Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.
1999-12-01
A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.
CBL-CIPK network for calcium signaling in higher plants
NASA Astrophysics Data System (ADS)
Luan, Sheng
Plants sense their environment by signaling mechanisms involving calcium. Calcium signals are encoded by a complex set of parameters and decoded by a large number of proteins including the more recently discovered CBL-CIPK network. The calcium-binding CBL proteins specifi-cally interact with a family of protein kinases CIPKs and regulate the activity and subcellular localization of these kinases, leading to the modification of kinase substrates. This represents a paradigm shift as compared to a calcium signaling mechanism from yeast and animals. One example of CBL-CIPK signaling pathways is the low-potassium response of Arabidopsis roots. When grown in low-K medium, plants develop stronger K-uptake capacity adapting to the low-K condition. Recent studies show that the increased K-uptake is caused by activation of a specific K-channel by the CBL-CIPK network. A working model for this regulatory pathway will be discussed in the context of calcium coding and decoding processes.
Drago, Ilaria; Davis, Ronald L
2016-09-06
The uptake of cytoplasmic calcium into mitochondria is critical for a variety of physiological processes, including calcium buffering, metabolism, and cell survival. Here, we demonstrate that inhibiting the mitochondrial calcium uniporter in the Drosophila mushroom body neurons (MBn)-a brain region critical for olfactory memory formation-causes memory impairment without altering the capacity to learn. Inhibiting uniporter activity only during pupation impaired adult memory, whereas the same inhibition during adulthood was without effect. The behavioral impairment was associated with structural defects in MBn, including a decrease in synaptic vesicles and an increased length in the axons of the αβ MBn. Our results reveal an in vivo developmental role for the mitochondrial uniporter complex in establishing the necessary structural and functional neuronal substrates for normal memory formation in the adult organism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Wang, Ya-Li; Wang, Jian-Gang; Guo, Fang-Li; Gao, Xia-Huan; Zhao, Dan-Dan; Zhang, Lin; Wang, Jian-Zhi; Lu, Cheng-Biao
2017-09-01
Intracellular calcium is a key factor in most cellular processes, including cell growth, differentiation, proliferation and neurotransmitter release. Dopamine (DA) mediates synaptic transmission by regulating the intracellular calcium content. It is not clear, however, which specific subunit of the DA receptor contributes to DA modulation of intracellular calcium content changes. Through the traditional technique of Fura-2 calcium imaging, this study demonstrated that the DA can induce transient calcium in cultured hippocampal neurons and that this response can be mimicked by a selective dopamine receptor 4 (DR4) agonist PD168077 (PD). PD-induced calcium transience can be blocked by a calcium chelator, such as BAPTA-AM, or by pre-treatment of neurons with thapsigargin, a IP 3 receptor antagonist, or a micromolar concentration of ryanodine, a ryanodine receptor (RyR) antagonist. However PD-induced calcium transience cannot be blocked by pre-treatment of neurons with a free-calcium medium or a cocktail of NMDA receptor, L-type calcium channel and alpha7 nicotinic acetylcholine receptor blockers. These results indicate that the calcium response induced by DR4 activation is mainly through activation of IP 3 receptor in internal stores, which is likely to contribute to the DA modulation of synaptic transmission and cognitive function. Copyright © 2017. Published by Elsevier B.V.
Li, Lu; Stefan, Melanie I.; Le Novère, Nicolas
2012-01-01
NMDA receptor dependent long-term potentiation (LTP) and long-term depression (LTD) are two prominent forms of synaptic plasticity, both of which are triggered by post-synaptic calcium elevation. To understand how calcium selectively stimulates two opposing processes, we developed a detailed computational model and performed simulations with different calcium input frequencies, amplitudes, and durations. We show that with a total amount of calcium ions kept constant, high frequencies of calcium pulses stimulate calmodulin more efficiently. Calcium input activates both calcineurin and Ca2+/calmodulin-dependent protein kinase II (CaMKII) at all frequencies, but increased frequencies shift the relative activation from calcineurin to CaMKII. Irrespective of amplitude and duration of the inputs, the total amount of calcium ions injected adjusts the sensitivity of the system to calcium input frequencies. At a given frequency, the quantity of CaMKII activated is proportional to the total amount of calcium. Thus, an input of a small amount of calcium at high frequencies can induce the same activation of CaMKII as a larger amount, at lower frequencies. Finally, the extent of activation of CaMKII signals with high calcium frequency is further controlled by other factors, including the availability of calmodulin, and by the potency of phosphatase inhibitors. PMID:22962589
Calcium phosphate stabilization of fly ash with chloride extraction.
Nzihou, Ange; Sharrock, Patrick
2002-01-01
Municipal solid waste incinerator by products include fly ash and air pollution control residues. In order to transform these incinerator wastes into reusable mineral species, soluble alkali chlorides must be separated and toxic trace elements must be stabilized in insoluble form. We show that alkali chlorides can be extracted efficiently in an aqueous extraction step combining a calcium phosphate gel precipitation. In such a process, sodium and potassium chlorides are obtained free from calcium salts, and the trace metal ions are immobilized in the calcium phosphate matrix. Moderate calcination of the chemically treated fly ash leads to the formation of cristalline hydroxylapatite. Fly ash spiked with copper ions and treated by this process shows improved stability of metal ions. Leaching tests with water or EDTA reveal a significant drop in metal ion dissolution. Hydroxylapatite may trap toxic metals and also prevent their evaporation during thermal treatments. Incinerator fly ash together with air pollution control residues, treated by the combined chloride extraction and hydroxylapatite formation process may be considered safe to use as a mineral filler in value added products such as road base or cement blocks.
Cell-type-specific modelling of intracellular calcium signalling: a urothelial cell model.
Appleby, Peter A; Shabir, Saqib; Southgate, Jennifer; Walker, Dawn
2013-09-06
Calcium signalling plays a central role in regulating a wide variety of cell processes. A number of calcium signalling models exist in the literature that are capable of reproducing a variety of experimentally observed calcium transients. These models have been used to examine in more detail the mechanisms underlying calcium transients, but very rarely has a model been directly linked to a particular cell type and experimentally verified. It is important to show that this can be achieved within the general theoretical framework adopted by these models. Here, we develop a framework designed specifically for modelling cytosolic calcium transients in urothelial cells. Where possible, we draw upon existing calcium signalling models, integrating descriptions of components known to be important in this cell type from a number of studies in the literature. We then add descriptions of several additional pathways that play a specific role in urothelial cell signalling, including an explicit ionic influx term and an active pumping mechanism that drives the cytosolic calcium concentration to a target equilibrium. The resulting one-pool model of endoplasmic reticulum (ER)-dependent calcium signalling relates the cytosolic, extracellular and ER calcium concentrations and can generate a wide range of calcium transients, including spikes, bursts, oscillations and sustained elevations in the cytosolic calcium concentration. Using single-variate robustness and multivariate sensitivity analyses, we quantify how varying each of the parameters of the model leads to changes in key features of the calcium transient, such as initial peak amplitude and the frequency of bursting or spiking, and in the transitions between bursting- and plateau-dominated modes. We also show that, novel to our urothelial cell model, the ionic and purinergic P2Y pathways make distinct contributions to the calcium transient. We then validate the model using human bladder epithelial cells grown in monolayer cell culture and show that the model robustly captures the key features of the experimental data in a way that is not possible using more generic calcium models from the literature.
Mechanochemical processing for metals and metal alloys
Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith
2001-01-01
A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kleyboecker, A.; Liebrich, M.; Kasina, M.
2012-06-15
Highlights: Black-Right-Pointing-Pointer Mechanism of process recovery with calcium oxide. Black-Right-Pointing-Pointer Formation of insoluble calcium salts with long chain fatty acids and phosphate. Black-Right-Pointing-Pointer Adsorption of VFAs by the precipitates resulting in the formation of aggregates. Black-Right-Pointing-Pointer Acid uptake and phosphate release by the phosphate-accumulating organisms. Black-Right-Pointing-Pointer Microbial degradation of volatile fatty acids in the aggregates. - Abstract: Following a process failure in a full-scale biogas reactor, different counter measures were undertaken to stabilize the process of biogas formation, including the reduction of the organic loading rate, the addition of sodium hydroxide (NaOH), and the introduction of calcium oxide (CaO). Correspondingmore » to the results of the process recovery in the full-scale digester, laboratory experiments showed that CaO was more capable of stabilizing the process than NaOH. While both additives were able to raise the pH to a neutral milieu (pH > 7.0), the formation of aggregates was observed particularly when CaO was used as the additive. Scanning electron microscopy investigations revealed calcium phosphate compounds in the core of the aggregates. Phosphate seemed to be released by phosphorus-accumulating organisms, when volatile fatty acids accumulated. The calcium, which was charged by the CaO addition, formed insoluble salts with long chain fatty acids, and caused the precipitation of calcium phosphate compounds. These aggregates were surrounded by a white layer of carbon rich organic matter, probably consisting of volatile fatty acids. Thus, during the process recovery with CaO, the decrease in the amount of accumulated acids in the liquid phase was likely enabled by (1) the formation of insoluble calcium salts with long chain fatty acids, (2) the adsorption of volatile fatty acids by the precipitates, (3) the acid uptake by phosphorus-accumulating organisms and (4) the degradation of volatile fatty acids in the aggregates. Furthermore, this mechanism enabled a stable process performance after re-activation of biogas production. In contrast, during the counter measure with NaOH aggregate formation was only minor resulting in a rapid process failure subsequent the increase of the organic loading rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cau Dit Coumes, Celine; Courtois, Simone; Peysson, Sandrine
Investigations were carried out in order to solidify in cement a low-level radioactive waste of complex chemistry obtained by mixing two process streams, a slurry produced by ultra-filtration and an evaporator concentrate with a salinity of 600 gxL{sup -1}. Direct cementation with Portland cement (OPC) was not possible due to a very long setting time of cement resulting from borates and phosphates contained in the waste. According to a classical approach, this difficulty could be solved by pre-treating the waste to reduce adverse cement-waste interactions. A two-stage process was defined, including precipitation of phosphates and sulfates at 60 deg. Cmore » by adding calcium and barium hydroxide to the waste stream, and encapsulation with a blend of OPC and calcium aluminate cement (CAC) to convert borates into calcium quadriboroaluminate. The material obtained with a 30% waste loading complied with specifications. However, the pre-treatment step made the process complex and costly. A new alternative was then developed: the direct encapsulation of the waste with a blend of OPC and calcium sulfoaluminate cement (CSA) at room temperature. Setting inhibition was suppressed, which probably resulted from the fact that, when hydrating, CSA cement formed significant amounts of ettringite and calcium monosulfoaluminate hydrate which incorporated borates into their structure. As a consequence, the waste loading could be increased to 56% while keeping acceptable properties at the laboratory scale.« less
Calcium and ROS: A mutual interplay
Görlach, Agnes; Bertram, Katharina; Hudecova, Sona; Krizanova, Olga
2015-01-01
Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders. PMID:26296072
Luoma, Jessie I; Stern, Christopher M; Mermelstein, Paul G.
2011-01-01
Progesterone is being utilized as a therapeutic means to ameliorate neuron loss and cognitive dysfunction following traumatic brain injury Although there have been numerous attempts to determine the means by which progesterone exerts neuroprotective effects, studies describing the underlying molecular mechanisms are lacking What has become clear, however, is the notion that progesterone can thwart several physiological processes that are detrimental to neuron function and survival, including inflammation, edema, demyelination and excitotoxicity One clue regarding the means by which progesterone has restorative value comes from the notion that these aforementioned biological processes all share the common theme of eliciting pronounced increases in intracellular calcium. Thus, we propose the hypothesis that progesterone regulation of calcium signaling underlies its ability to mitigate these cellular insults, ultimately leading to neuroprotection. Further, we describe recent findings that indicate neuroprotection is achieved via progesterone block of voltage-gated calcium channels, although additional outcomes may arise from blockade of various other ion channels and neurotransmitter receptors. PMID:22101209
A Monte Carlo Simulation of Vesicle Exocytosis in the Buffered Diffusion of Calcium Channel Currents
NASA Astrophysics Data System (ADS)
Dimcovic, Z.; Eagan, T. P.; Brown, R. W.; Petschek, R. G.; Eppell, S. J.; Yunker, A. M. R.; Sharp, A. H.; McEnery, M. W.
2001-04-01
The voltage-dependent opening of calcium channels results in an influx of calcium ions that leads to the fusion of synaptic vesicles with the cell membrane, resulting in the release of neurotransmitters. This allows nerve impulses to be transmitted from one neuron to another. A Monte Carlo model of the three-dimensional diffusion of calcium following a channel opening is employed to estimate the space and time dependence of the calcium density. The effects of fixed and mobile calcium buffers are included, and a tethered nearby vesicle is considered. The importance of the size and location of the vesicle is studied. When the vesicle is ignored, these results are compared with the analytical calculations of Naraghi and Neher and the Monte Carlo calculations of Bennett et al. The finite-vesicle-size analysis offers new insights into the process of neurosecretion. Support: NIH MH55747, AHA 96001250, NSF 0086643, and CWRU Presidential Research Initiative grants.
Synergy of cAMP and calcium signaling pathways in CFTR regulation
Bozoky, Zoltan; Ahmadi, Saumel; Milman, Tal; Kim, Tae Hun; Du, Kai; Di Paola, Michelle; Pasyk, Stan; Pekhletski, Roman; Keller, Jacob P.; Bear, Christine E.; Forman-Kay, Julie D.
2017-01-01
Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, leading to defective apical chloride transport. Patients also experience overactivation of inflammatory processes, including increased calcium signaling. Many investigations have described indirect effects of calcium signaling on CFTR or other calcium-activated chloride channels; here, we investigate the direct response of CFTR to calmodulin-mediated calcium signaling. We characterize an interaction between the regulatory region of CFTR and calmodulin, the major calcium signaling molecule, and report protein kinase A (PKA)-independent CFTR activation by calmodulin. We describe the competition between calmodulin binding and PKA phosphorylation and the differential effects of this competition for wild-type CFTR and the major F508del mutant, hinting at potential therapeutic strategies. Evidence of CFTR binding to isolated calmodulin domains/lobes suggests a mechanism for the role of CFTR as a molecular hub. Together, these data provide insights into how loss of active CFTR at the membrane can have additional consequences besides impaired chloride transport. PMID:28242698
A coated-wire ion-selective electrode for ionic calcium measurements
NASA Technical Reports Server (NTRS)
Hines, John W.; Arnaud, Sara; Madou, Marc; Joseph, Jose; Jina, Arvind
1991-01-01
A coated-wire ion-selective electrode for measuring ionic calcium was developed, in collaboration with Teknektron Sensor Development Corporation (TSDC). This coated wire electrode sensor makes use of advanced, ion-responsive polyvinyl chloride (PVC) membrane technology, whereby the electroactive agent is incorporated into a polymeric film. The technology greatly simplifies conventional ion-selective electrode measurement technology, and is envisioned to be used for real-time measurement of physiological and environment ionic constituents, initially calcium. A primary target biomedical application is the real-time measurement of urinary and blood calcium changes during extended exposure to microgravity, during prolonged hospital or fracture immobilization, and for osteoporosis research. Potential advanced life support applications include monitoring of calcium and other ions, heavy metals, and related parameters in closed-loop water processing and management systems. This technology provides a much simplified ionic calcium measurement capability, suitable for both automated in-vitro, in-vivo, and in-situ measurement applications, which should be of great interest to the medical, scientific, chemical, and space life sciences communities.
Mortadi, A; Chahid, El G; Nasrellah, H; Cherkaoui, O; El Moznine, R
2017-09-28
The analysis of the complex permittivity, electrical complex modulus and the hopping conductivity have been employed in order to investigate the impacts of calcium oxide during sludge treatment in textile such as coagulation process. In this context, impedance measurement was performed on five samples, including raw sludge and four compositions containing different amounts of calcium oxide: 2%, 3%, 4% and 5% (w/w). The dielectric spectra of each composition were described by the summation of a power law and a Cole-Cole relaxation model. The relaxation time and the magnitude of the dielectric relaxation obtained from the analysis of dielectric properties showed an increase up to 3% of these parameters with the addition of calcium oxide. Above this critical value, both parameters showed a very small change, suggesting that the aggregation became more stable. In addition, the evolution of the hopping conductivity reached a minimum value at this critical amount (3%). This evolution was well described by a double power law, which allowed us to estimate the optimal amount of the calcium oxide to achieve coagulation process. The analysis of the dielectric properties was found useful in monitoring aggregation processes that occur during the coagulation mechanism in textile sludge.
Purinergic signalling in the enteric nervous system (An overview of current perspectives).
King, Brian F
2015-09-01
Purinergic Signalling in the Enteric Nervous System involves the regulated release of ATP (or a structurally-related nucleotide) which activates an extensive suite of membrane-inserted receptors (P2X and P2Y subtypes) on a variety of cell types in the gastrointestinal tract. P2X receptors are gated ion-channels permeable to sodium, potassium and calcium. They depolarise cells, act as a pathway for calcium influx to activate calcium-dependent processes and initiate gene transcription, interact at a molecular level as a form of self-regulation with lipids within the cell wall (e.g. PIP2) and cross-react with other membrane-inserted receptors to regulate their activity (e.g. nAChRs). P2Y receptors are metabotropic receptors that couple to G-proteins. They may release calcium ions from intracellular stores to activate calcium-dependent processes, but also may activate calcium-independent signalling pathways and influence gene transcription. Originally ATP was a candidate only for NANC neurotransmission, for inhibitory motoneurons supplying the muscularis externa of the gastrointestinal tract and bringing about the fast IJP. Purinergic signalling later included neuron-neuron signalling in the ENS, via the production of either fast or slow EPSPs. Later still, purinergic signalling included the neuro-epithelial synapse-for efferent signalling to epithelia cells participating in secretion and absorption, and afferent signalling for chemoreception and mechanoreception at the surface of the mucosa. Many aspects of purinergic signalling have since been addressed in a series of highly-focussed and authoritative reviews. In this overview however, the current focus is on key aspects of purinergic signalling where there remains uncertainty and ambiguity, with the view to stimulating further research in these areas. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Yang; Li, Qi; Hong, Qiang; Lin, Yichun; Mao, Wang; Zhou, Shumin
2018-05-01
Programmed cell death (PCD) plays a positive role in the systemic response of plants to pathogen resistance. It has been confirmed that local tobacco mosaic virus (TMV) infecting tomato leaves can induce systemic PCD process in root-tip tissues. But up to now the underlying physiological mechanisms are poorly understood. This study focused on the detailed investigation of the physiological responses of root-tip cells during the initiation of systemic PCD. Physiological, biochemical examination and cytological observation showed that 1 day post-inoculation (dpi) of TMV inoculation there was an increase in calcium fluorescence intensity in root tip tissue cells. Then at 2 dpi, 4 dpi, 8 dpi and 15 dpi, the fluorescence intensity of calcium ion continued to increase. However, at 5 dpi, the reactive oxygen species (ROS) began to accumulate in the root-tip cells. And finally at 20 dpi, the obvious PCD reaction was detected. In addition, the experimental results also showed that the above process involved the elevation of two types of intracellular Ca 2+ , including cytoplasmic calcium ([Ca 2+ ] cyt ) and nuclear calcium ([Ca 2+ ] nuc ). The [Ca 2+ ] cyt , as a pilot signal could lead to the subsequent elevation of intracellular ROS concentration. Then, the high levels of ROS stimulated an increase of [Ca 2+ ] nuc and eventually caused PCD reactions in the root-tip tissues. In particular, the high level of nuclear calcium is an essential mediator in systemic PCD of plants. Copyright © 2018 Elsevier B.V. All rights reserved.
Takahara, Terunao; Inoue, Kuniko; Arai, Yumika; Kuwata, Keiko; Shibata, Hideki; Maki, Masatoshi
2017-10-13
Mobilization of intracellular calcium is essential for a wide range of cellular processes, including signal transduction, apoptosis, and vesicular trafficking. Several lines of evidence have suggested that apoptosis-linked gene 2 (ALG-2, also known as PDCD6 ), a calcium-binding protein, acts as a calcium sensor linking calcium levels with efficient vesicular trafficking, especially at the endoplasmic reticulum (ER)-to-Golgi transport step. However, how ALG-2 regulates these processes remains largely unclear. Here, we report that M APK1- i nteracting and s pindle- s tabilizing (MISS)- l ike (MISSL), a previously uncharacterized protein, interacts with ALG-2 in a calcium-dependent manner. Live-cell imaging revealed that upon a rise in intracellular calcium levels, GFP-tagged MISSL (GFP-MISSL) dynamically relocalizes in a punctate pattern and colocalizes with ALG-2. MISSL knockdown caused disorganization of the components of the ER exit site, the ER-Golgi intermediate compartment, and Golgi. Importantly, knockdown of either MISSL or ALG-2 attenuated the secretion of se creted a lkaline p hosphatase (SEAP), a model secreted cargo protein, with similar reductions in secretion by single- and double-protein knockdowns, suggesting that MISSL and ALG-2 act in the same pathway to regulate the secretion process. Furthermore, ALG-2 or MISSL knockdown delayed ER-to-Golgi transport of procollagen type I. We also found that ALG-2 and MISSL interact with microtubule-associated protein 1B (MAP1B) and that MAP1B knockdown reverts the reduced secretion of SEAP caused by MISSL or ALG-2 depletion. These results suggest that a change in the intracellular calcium level plays a role in regulation of the secretory pathway via interaction of ALG-2 with MISSL and MAP1B. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Acoustic and Hydrodynamic Cavitations for Nano CaCO3 Synthesis
NASA Astrophysics Data System (ADS)
Sonawane, Shirish H.; Kulkarni, Ravindra D.
Calcium carbonate is a common inorganic compound known as limestone. Calcium carbonate has many applications in industries such as medicine, agriculture, paint plastic and surface coatings etc. The vast majority of calcium carbonate used in industry is extracted by mining process. Pure calcium carbonate (e.g. for food or pharmaceutical use), is synthesized by passing carbon dioxide into a solution of calcium hydroxide slurry. In this process calcium carbonate precipitates out, and this grade of product is referred to as precipitate calcium carbonate (abbreviated as PCC).
The crustacean cuticle: structure, composition and mineralization.
Nagasawa, Hiromichi
2012-01-01
Crustaceans have a rigid exoskeleton, which is made of a layered cuticle, covering the soft body parts for protection from conspecific competitors and/or interspecific predators. Calcium carbonate adds rigidity to the crustacean cuticle, which consequently means that growth only occur at each molt. The current study presents a review of existing literature on crustacean exoskeleton cuticle physiology and biochemistry in relation to the molting process with special reference to calcification. As a result, research matter where knowledge remains limited has been identified during the molting process, including 1) whether the same or different epithelial cells are responsible for the decomposition and/or reconstruction of chitin and proteins, 2) how calcium carbonate levels are regulated at the cellular level during transfer between the cuticle and body organs, and 3) what factors maintain the amorphous state of calcium carbonate following deposition in the exoskeleton and temporary storage organs. The identification of these areas of focus provides a basis on which targeted future research may be developed, and potentially applied to other invertebrate or even vertebrate processes.
Localization of the Calcium Regulated Citrate Transport Process in Proximal Tubule Cells
Hering-Smith, Kathleen S.; Mao, Weibo; Schiro, Faith R.; Coleman-Barnett, Joycelynn; Pajor, Ana M.; Hamm, L. Lee
2014-01-01
Urinary citrate is an important inhibitor of calcium stone formation. Most of citrate reabsorption in the proximal tubule is thought to occur via a dicarboxylate transporter NaDC1 located in the apical membrane. OK cells, an established opossum kidney proximal tubule cell line, transport citrate but the characteristics change with extracellular calcium such that low calcium solutions stimulate total citrate transport as well as increase the apparent affinity for transport. The present studies address several fundamental properties of this novel process: the polarity of the transport process, the location of the calcium-sensitivity and whether NaDC1 is present in OK cells. OK cells grown on permeable supports exhibited apical > basolateral citrate transport. Apical transport of both citrate and succinate was sensitive to extracellular calcium whereas basolateral transport was not. Apical calcium, rather than basolateral, was the predominant determinant of changes in transport. Also 2,3-dimethylsuccinate, previously identified as an inhibitor of basolateral dicarboxylate transport, inhibited apical citrate uptake. Although the calcium-sensitive transport process in OK cells is functionally not typical NaDC1, NaDC1 is present in OK cells by Western blot and PCR. By immunolocalization studies, NaDC1 was predominantly located in discrete apical membrane or subapical areas. However by biotinylation, apical NaDC1 decreases in the apical membrane with lowering calcium. In sum, OK cells express a calcium-sensitive/regulated dicarboxylate process at the apical membrane which responds to variations in apical calcium. Despite the functional differences of this process compared to NaDC1, NaDC1 is present in these cells, but predominantly in subapical vesicles. PMID:24652587
Interactions between calcium precipitation and the polyphosphate-accumulating bacteria metabolism.
Barat, R; Montoya, T; Borrás, L; Ferrer, J; Seco, A
2008-07-01
A sequencing batch reactor that is operated for biological phosphorus removal has been operated under different influent calcium concentrations to study the precipitation process and the possible effects of phosphorus precipitation in the biological phosphorus removal process. Four experiments were carried out under different influent calcium concentrations ranging from 10 to 90 g Ca m(-3). The experimental results and the equilibrium study, which are based on the saturation index calculation, confirm that the process controlling the calcium behaviour is the calcium phosphate precipitation. This precipitation takes place at two stages: initially, precipitation of the amorphous calcium phosphate, and later crystallization of hydroxyapatite. Also the accumulation of phosphorus precipitated was observed when the influent calcium concentration was increased. In all the experiments, the influent wastewater ratio P/COD was kept constant. It has been observed that, at high calcium concentration, the ratio between phosphate release and acetate uptake (P(rel)/Ac(uptake)) decreases. Changes in the polyphosphate-accumulating organism (PAO) population and in the glycogen-accumulating organism (GAO) population during the experimental period were ruled out by means of fluorescence in situ hybridization. These results could suggest that PAO are able to change their metabolic pathways based on external conditions, such as influent calcium concentration. The accumulation of phosphorus precipitated as calcium phosphate at high influent calcium concentration throughout the experimental period confirmed that phosphate precipitation is a process that can affect the PAO metabolism.
Pacheco Compaña, Francisco Javier; Midón Míguez, José; de Toro Santos, Francisco Javier
2017-11-01
Calcium gluconate extravasation is a process, which, while not common, occurs more frequently in neonatal intensive care units. The aim of this study is to present a number of cases of calcium gluconate extravasation, which have occurred in our hospital, and to carry out a review of those clinical cases published in the literature to obtain relevant epidemiological data. Data were gathered on the medical histories of 5 patients who presented lesions secondary to calcium gluconate extravasation in our center. A review of the literature was also performed to include clinical cases of calcium gluconate extravasation already published. Data were collected on 60 cases published in 37 articles. Most patients (55%) were neonates. The average age of these neonates was 8 days. The commonest location of injuries was the back of the hand and wrist (42%). The 2 most frequent symptoms were the appearance of erythema (65%) and swelling/edema (48%) followed by the appearance of skin necrosis (47%), indurated skin (33%), and yellow-white plaques or papules (33%). Most cases are cured within a period of 3 to 6 months. Fifty percent of patients required surgery, and in 13% of cases, skin grafts were performed. The most frequent histological finding was the presence of calcium deposits. Other histological findings described were the presence of necrosis, lymphohistiocytic infíltrate, and granulomas. Most histological findings were located in the dermis. Most x-rays showing calcium deposits had been performed at 3 to 4 weeks. Calcium gluconate extravasation is a process, which, although infrequent, is associated with serious skin and soft-tissue lesions, mainly affecting infants. Further studies are needed to determine possible specific procedures to be carried out in these cases.
Dysregulation of cellular calcium homeostasis in Alzheimer's disease: bad genes and bad habits.
Mattson, M P; Chan, S L
2001-10-01
Calcium is one of the most important intracellular messengers in the brain, being essential for neuronal development, synaptic transmission and plasticity, and the regulation of various metabolic pathways. The findings reviewed in the present article suggest that calcium also plays a prominent role in the pathogenesis of Alzheimer's disease (AD). Associations between the pathological hallmarks ofAD (neurofibrillary tangles [NFT] and amyloid plaques) and perturbed cellular calcium homeostasis have been established in studies of patients, and in animal and cell culture models of AD. Studies of the effects of mutations in the beta-amyloid precursor protein (APP) and presenilins on neuronal plasticity and survival have provided insight into the molecular cascades that result in synaptic dysfunction and neuronal degeneration in AD. Central to the neurodegenerative process is the inability of neurons to properly regulate intracellular calcium levels. Increased levels of amyloid beta-peptide (Abeta) induce oxidative stress, which impairs cellular ion homeostasis and energy metabolism and renders neurons vulnerable to apoptosis and excitotoxicity. Subtoxic levels of Abeta may induce synaptic dysfunction by impairing multiple signal transduction pathways. Presenilin mutations perturb calcium homeostasis in the endoplasmic reticulum in a way that sensitizes neurons to apoptosis and excitotoxicity; links between aberrant calcium regulation and altered APP processing are emerging. Environmental risk factors for AD are being identified and may include high calorie diets, folic acid insufficiency, and a low level of intellectual activity (bad habits); in each case, the environmental factor impacts on neuronal calcium homeostasis. Low calorie diets and intellectual activity may guard against AD by stimulating production of neurotrophic factors and chaperone proteins. The emerging picture of the cell and molecular biology of AD is revealing novel preventative and therapeutic strategies for eradicating this growing epidemic of the elderly.
CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, ...
CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING IN CENTER, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT WITH SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY
Vitamin D and intestinal calcium transport after bariatric surgery.
Schafer, Anne L
2017-10-01
Bariatric surgery is a highly effective treatment for obesity, but it may have detrimental effects on the skeleton. Skeletal effects are multifactorial but mediated in part by nutrient malabsorption. While there is increasing interest in non-nutritional mechanisms such as changes in fat-derived and gut-derived hormones, nutritional factors are modifiable and thus represent potential opportunities to prevent and treat skeletal complications. This review begins with a discussion of normal intestinal calcium transport, including recent advances in our understanding of its regulation by vitamin D, and areas of continued uncertainty. Human and animal studies of vitamin D and intestinal calcium transport after bariatric surgery are then summarized. In humans, even with optimized 25-hydroxyvitamin D levels and recommended calcium intake, fractional calcium absorption decreased dramatically after Roux-en-Y gastric bypass (RYGB). In rats, intestinal calcium absorption was lower after RYGB than after sham surgery, despite elevated 1,25-dihyroxyvitamin D levels and intestinal gene expression evidence of vitamin D responsiveness. Such studies have the potential to shed new light on the physiology of vitamin D and intestinal calcium transport. Moreover, understanding the effects of bariatric surgery on these processes may improve the clinical care of bariatric surgery patients. Published by Elsevier Ltd.
Protein arginine deiminase 2 binds calcium in an ordered fashion: Implications for inhibitor design
Slade, Daniel J.; Fang, Pengfei; Dreyton, Christina J.; ...
2015-01-26
Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ionsmore » that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.« less
Protein Arginine Deiminase 2 Binds Calcium in an Ordered Fashion: Implications for Inhibitor Design
2015-01-01
Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ions that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs. PMID:25621824
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slade, Daniel J.; Fang, Pengfei; Dreyton, Christina J.
Protein arginine deiminases (PADs) are calcium-dependent histone-modifying enzymes whose activity is dysregulated in inflammatory diseases and cancer. PAD2 functions as an Estrogen Receptor (ER) coactivator in breast cancer cells via the citrullination of histone tail arginine residues at ER binding sites. Although an attractive therapeutic target, the mechanisms that regulate PAD2 activity are largely unknown, especially the detailed role of how calcium facilitates enzyme activation. To gain insights into these regulatory processes, we determined the first structures of PAD2 (27 in total), and through calcium-titrations by X-ray crystallography, determined the order of binding and affinity for the six calcium ionsmore » that bind and activate this enzyme. These structures also identified several PAD2 regulatory elements, including a calcium switch that controls proper positioning of the catalytic cysteine residue, and a novel active site shielding mechanism. Additional biochemical and mass-spectrometry-based hydrogen/deuterium exchange studies support these structural findings. The identification of multiple intermediate calcium-bound structures along the PAD2 activation pathway provides critical insights that will aid the development of allosteric inhibitors targeting the PADs.« less
[Cognitive Function and Calcium. Structures and functions of Ca2+-permeable channels].
Kaneko, Shuji
2015-02-01
Calcium is essential for living organisms where the increase in intracellular Ca2+ concentration functions as a second messenger for many cellular processes including synaptic transmission and neural plasticity. The cytosolic concentration of Ca2+ is finely controlled by many Ca2+-permeable ion channels and transporters. The comprehensive view of their expression, function, and regulation will advance our understanding of neural and cognitive functions of Ca2+, which leads to the future drug discovery.
Process for converting magnesium fluoride to calcium fluoride
Kreuzmann, A.B.; Palmer, D.A.
1984-12-21
This invention is a process for the conversion of magnesium fluoride to calcium fluoride whereby magnesium fluoride is decomposed by heating in the presence of calcium carbonate, calcium oxide or calcium hydroxide. Magnesium fluoride is a by-product of the reduction of uranium tetrafluoride to form uranium metal and has no known commercial use, thus its production creates a significant storage problem. The advantage of this invention is that the quality of calcium fluoride produced is sufficient to be used in the industrial manufacture of anhydrous hydrogen fluoride, steel mill flux or ceramic applications.
Sukumaran, Pramod; Löf, Christoffer; Kemppainen, Kati; Kankaanpää, Pasi; Pulli, Ilari; Näsman, Johnny; Viitanen, Tero; Törnquist, Kid
2012-01-01
Mammalian non-selective transient receptor potential cation channels (TRPCs) are important in the regulation of cellular calcium homeostasis. In thyroid cells, including rat thyroid FRTL-5 cells, calcium regulates a multitude of processes. RT-PCR screening of FRTL-5 cells revealed the presence of TRPC2 channels only. Knockdown of TRPC2 using shRNA (shTRPC2) resulted in decreased ATP-evoked calcium peak amplitude and inward current. In calcium-free buffer, there was no difference in the ATP-evoked calcium peak amplitude between control cells and shTRPC2 cells. Store-operated calcium entry was indistinguishable between the two cell lines. Basal calcium entry was enhanced in shTRPC2 cells, whereas the level of PKCβ1 and PKCδ, the activity of sarco/endoplasmic reticulum Ca2+-ATPase, and the calcium content in the endoplasmic reticulum were decreased. Stromal interaction molecule (STIM) 2, but not STIM1, was arranged in puncta in resting shTRPC2 cells but not in control cells. Phosphorylation site Orai1 S27A/S30A mutant and non-functional Orai1 R91W attenuated basal calcium entry in shTRPC2 cells. Knockdown of PKCδ with siRNA increased STIM2 punctum formation and enhanced basal calcium entry but decreased sarco/endoplasmic reticulum Ca2+-ATPase activity in wild-type cells. Transfection of a truncated, non-conducting mutant of TRPC2 evoked similar results. Thus, TRPC2 functions as a major regulator of calcium homeostasis in rat thyroid cells. PMID:23144458
Impregnating Coal With Calcium Carbonate
NASA Technical Reports Server (NTRS)
Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.
1991-01-01
Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.
Petrou, Terry; Olsen, Hervør L.; Thrasivoulou, Christopher; Masters, John R.; Ashmore, Jonathan F.
2017-01-01
Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds. PMID:27980039
CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, ...
CALCIUM CHLORIDE PLANT LOOKING EAST. CALCIUM CHLORIDE BUILDING ON LEFT, CALCIUM CHLORIDE STORAGE BUILDING ON RIGHT OF CENTER WITH TOP OF SA (SODA ASH) BUILDING IN RIGHT BACKGROUND. - Solvay Process Company, Calcium Chloride Plant, Between Willis & Milton Avenues, Solvay, Onondaga County, NY
Kim, Min-Soo; Jin, Shun-Ji; Kim, Jeong-Soo; Park, Hee Jun; Song, Ha-Seung; Neubert, Reinhard H H; Hwang, Sung-Joo
2008-06-01
In this work, amorphous atorvastatin calcium nanoparticles were successfully prepared using the supercritical antisolvent (SAS) process. The effect of process variables on particle size and distribution of atorvastatin calcium during particle formation was investigated. Solid state characterization, solubility, intrinsic dissolution, powder dissolution studies and pharmacokinetic study in rats were performed. Spherical particles with mean particle size ranging between 152 and 863 nm were obtained by varying process parameters such as precipitation vessel pressure and temperature, drug solution concentration and feed rate ratio of CO2/drug solution. XRD, TGA, FT-IR, FT-Raman, NMR and HPLC analysis indicated that atorvastatin calcium existed as anhydrous amorphous form and no degradation occurred after SAS process. When compared with crystalline form (unprocessed drug), amorphous atorvastatin calcium nanoparticles were of better performance in solubility and intrinsic dissolution rate, resulting in higher solubility and faster dissolution rate. In addition, intrinsic dissolution rate showed a good correlation with the solubility. The dissolution rates of amorphous atorvastatin calcium nanoparticles were highly increased in comparison with unprocessed drug by the enhancement of intrinsic dissolution rate and the reduction of particle size resulting in an increased specific surface area. The absorption of atorvastatin calcium after oral administration of amorphous atorvastatin calcium nanoparticles to rats was markedly increased.
A link between eumelanism and calcium physiology in the barn owl
NASA Astrophysics Data System (ADS)
Roulin, Alexandre; Dauwe, Tom; Blust, Ronny; Eens, Marcel; Beaud, Michel
2006-09-01
In many animals, melanin-based coloration is strongly heritable and is largely insensitive to the environment and body condition. According to the handicap principle, such a trait may not reveal individual quality because the production of different melanin-based colorations often entails similar costs. However, a recent study showed that the production of eumelanin pigments requires relatively large amounts of calcium, potentially implying that melanin-based coloration is associated with physiological processes requiring calcium. If this is the case, eumelanism may be traded-off against other metabolic processes that require the same elements. We used a correlative approach to examine, for the first time, this proposition in the barn owl, a species in which individuals vary in the amount, size, and blackness of eumelanic spots. For this purpose, we measured calcium concentration in the left humerus of 85 dead owls. Results showed that the humeri of heavily spotted individuals had a higher concentration of calcium. This suggests either that plumage spottiness signals the ability to absorb calcium from the diet for both eumelanin production and storage in bones, or that lightly spotted individuals use more calcium for metabolic processes at the expense of calcium storage in bones. Our study supports the idea that eumelanin-based coloration is associated with a number of physiological processes requiring calcium.
Endothelium as a transducing surface.
Ryan, U S
1989-02-01
Endothelial cells responses to a variety of agonists include release of endothelium dependent vasodilators, such as endothelium dependent relaxing factor (EDRF) and prostacyclin (PGI2). These substances act on vascular smooth muscle to cause relaxation and also have potent anti-aggregatory effects on platelets. A study of the mechanisms of signal transduction involved in these processes was undertaken. An investigation of intracellular calcium using FURA-2 and INDO-1 loaded endothelial cells shows transient elevation in response to vasodilator agonists. The calcium content of endothelial cells calculated using 45Ca flux techniques is increased in response to bradykinin and thrombin. Receptor activation leads to increased phosphoinositide turnover in endothelial cells and activates protein kinase C, the latter may be involved in feedback regulation. Patch clamp studies have demonstrated receptor-operated ionic channels in the endothelial cell membrane. Thus, intracellular calcium concentration is elevated in response to receptor activation, both as a result of liberation of calcium from intracellular stores and calcium entry from extracellular sources. Endothelial cells also respond to particulate stimuli. They can selectively bind and phagocytize bacteria. Phagocytosis leads to generation of superoxide aionin, a process which also seems to be controlled by elevation of intracellular calcium and activation of protein kinase C. In addition phagocytosis activates endothelial cells resulting in increased migration, division and further phagocytosis. All in all, the plethora of different endothelial responses to a variety of stimuli suggests a complex and multipotent cell type.(ABSTRACT TRUNCATED AT 250 WORDS)
Peng, Xiong-Bo; Sun, Meng-Xiang; Yang, Hong-Yuan
2009-08-01
Double fertilization is a key process of sexual reproduction in higher plants. The role of calcium in the activation of female sex cells through fertilization has recently received a great deal of attention. The establishment of a Ca(2+)-imaging technique for living, single, female sex cells is a difficult but necessary prerequisite for evaluating the role of Ca(2+) in the transduction of external stimuli, including the fusion with the sperm cell, to internal cellular processes. The present study describes the use of Fluo-3 for reporting the Ca(2+) signal in isolated, single, female sex cells, egg cells and central cells, of tobacco plants. A suitable loading protocol was optimized by loading the cells at pH 5.6 with 2 microM Fluo-3 for 30 min at 30 degrees C. Under these conditions, several key factors related to in vitro fertilization were also investigated in order to test their possible effects on the [Ca(2+)](cyt) of the female sex cells. The results indicated that the bovine serum albumin-fusion system was superior to the polyethlene glycol-fusion system for detecting calcium fluctuations in female sex cells during fertilization. The central cell was fertilized with the sperm cell in bovine serum albumin; however, no evident calcium dynamic was detected, implying that a transient calcium rise might be a specific signal for egg cell fertilization.
Off Label Antiviral Therapeutics for Henipaviruses: New Light Through Old Windows
Aljofan, Mohamad; Lo, Michael K.; Rota, Paul A.; Michalski, Wojtek P.; Mungall, Bruce A.
2010-01-01
Hendra and Nipah viruses are recently emerged zoonotic paramyxoviruses for which there is no vaccine or protective therapy available. While a number of experimental therapeutics and vaccines have recently been reported, all of these will require lengthy approval processes, limiting their usefulness in the short term. To address the urgent need for henipavirus therapeutics, a number of currently licensed pharmaceuticals have been evaluated for off label efficacy against henipavirus replication in vitro. Initially it was observed that compounds which released intracellular calcium stores induced a potent inhibition of henipaviruses replication, prompting the evaluation of known drugs with a similar effect on calcium mobilisation. Of the eight compounds randomly selected based on existing literature, seven inhibited virus replication in the micromolar range while the remaining compound also inhibited virus replication but only at millimolar concentrations. Pretreatment experiments with various calcium chelators, channel antagonists or endoplasmic reticulum release inhibitors supported a calcium mediated mechanism of action for five of these compounds. The mechanism of antiviral action for the remaining three compounds is currently unknown. Additionally, a number of other modulators of calcium flux, including calcium channel and calmodulin antagonists also exhibited potent antiviral activity in vitro providing a broad range of potential therapeutic options for the treatment of henipavirus infections. Importantly, as many of these compounds are currently licensed drugs, regulatory approval should be a much more streamlined process, with the caveat that appropriate in vivo efficacy can be demonstrated in animal models. PMID:20668647
... grams) processed cheese Healthy dairy choices include: Low-fat or nonfat milk or yogurt. Avoid yogurt with added sugar or artificial sweeteners. Dairy products are a great source of protein, calcium, and phosphorus. PROTEIN (MEAT, FISH, DRY BEANS, ...
McIntyre, Irene; O'Sullivan, Michael; O'Riordan, Dolores
2017-12-15
Calcium and protein solubilisation during small-scale manufacture of semi-solid casein-based food matrices was investigated and found to be very different in the presence or absence of calcium chelating salts. Calcium concentrations in the dispersed phase increased and calcium-ion activity (A Ca ++ ) decreased during manufacture of the matrices containing calcium chelating salts; with ∼23% of total calcium solubilised by the end of manufacture. In the absence of calcium chelating salts, these concentrations were significantly lower at equivalent processing times and remained unchanged as did A Ca ++ , throughout manufacture. The protein content of the dispersed phase was low (≤3% of total protein), but was significantly higher for matrices containing calcium chelating salts. This study elucidates the critical role of calcium chelating salts in modulating casein hydration and dispersion and gives an indication of the levels of soluble calcium and protein required to allow matrix formation during manufacture of casein-based food structures e.g. processed and analogue cheese. Copyright © 2017 Elsevier Ltd. All rights reserved.
Balaji Raghavendran, Hanumantha Rao; Pingguan-Murphy, Belinda; Abbas, Azlina A.; Merican, Azhar M.; Kamarul, Tunku
2017-01-01
The role for mechanical stimulation in the control of cell fate has been previously proposed, suggesting that there may be a role of mechanical conditioning in directing mesenchymal stromal cells (MSCs) towards specific lineage for tissue engineering applications. Although previous studies have reported that calcium signalling is involved in regulating many cellular processes in many cell types, its role in managing cellular responses to tensile loading (mechanotransduction) of MSCs has not been fully elucidated. In order to establish this, we disrupted calcium signalling by blocking stretch-activated calcium channel (SACC) in human MSCs (hMSCs) in vitro. Passaged-2 hMSCs were exposed to cyclic tensile loading (1 Hz + 8% for 6, 24, 48, and 72 hours) in the presence of the SACC blocker, gadolinium. Analyses include image observations of immunochemistry and immunofluorescence staining from extracellular matrix (ECM) production, and measuring related tenogenic and apoptosis gene marker expression. Uniaxial tensile loading increased the expression of tenogenic markers and ECM production. However, exposure to strain in the presence of 20 μM gadolinium reduced the induction of almost all tenogenic markers and ECM staining, suggesting that SACC acts as a mechanosensor in strain-induced hMSC tenogenic differentiation process. Although cell death was observed in prolonged stretching, it did not appear to be apoptosis mediated. In conclusion, the knowledge gained in this study by elucidating the role of calcium in MSC mechanotransduction processes, and that in prolonged stretching results in non-apoptosis mediated cell death may be potential useful for regenerative medicine applications. PMID:28654695
Calcium phosphates: what is the evidence?
Larsson, Sune
2010-03-01
A number of different calcium phosphate compounds such as calcium phosphate cements and solid beta-tricalcium phosphate products have been introduced during the last decade. The chemical composition mimics the mineral phase of bone and as a result of this likeness, the materials seem to be remodeled as for normal bone through a cell-mediated process that involves osteoclastic activity. This is a major difference when compared with, for instance, calcium sulphate compounds that after implantation dissolve irrespective of the new bone formation rate. Calcium phosphates are highly biocompatible and in addition, they act as synthetic osteoconductive scaffolds after implantation in bone. When placed adjacent to bone, osteoid is formed directly on the surface of the calcium phosphate with no soft tissue interposed. Remodeling is slow and incomplete, but by adding more and larger pores, like in ultraporous beta-tricalcium phosphate, complete or nearly complete resorption can be achieved. The indications explored so far include filling of metaphyseal fracture voids or bone cysts, a volume expander in conjunction with inductive products, and as a carrier for various growth factors and antibiotics. Calcium phosphate compounds such as calcium phosphate cement and beta-tricalcium phosphate will most certainly be part of the future armamentarium when dealing with fracture treatment. It is reasonable to believe that we have so far only seen the beginning when it comes to clinical applications.
Van Den Hende, Sofie; Rodrigues, André; Hamaekers, Helen; Sonnenholzner, Stanislaus; Vervaeren, Han; Boon, Nico
2017-10-25
Treatment of upflow anaerobic sludge blanket (UASB) effluent from a paper mill in aerated activated sludge reactors involves high aeration costs. Moreover, this calcium-rich effluent leads to problematic scale formation. Therefore, a novel strategy for the aerobic treatment of paper mill UASB effluent in microalgal bacterial floc sequencing batch reactors (MaB-floc SBRs) is proposed, in which oxygen is provided via photosynthesis, and calcium is removed via bio-mineralization. Based on the results of batch experiments in the course of this study, a MaB-floc SBR was operated at an initial neutral pH. This SBR removed 58±21% organic carbon, 27±8% inorganic carbon, 77±5% nitrogen, 73±2% phosphorus, and 27±11% calcium. MaB-flocs contained 10±3% calcium, including biologically-influenced calcite crystals. The removal of calcium and inorganic carbon by MaB-flocs significantly decreased when inhibiting extracellular carbonic anhydrase (CA), an enzyme that catalyses the hydration and dehydration of CO 2 . This study demonstrates the potential of MaB-floc SBRs for the alternative treatment of calcium-rich paper mill effluent, and highlights the importance of extracellular CA in this treatment process. Copyright © 2017 Elsevier B.V. All rights reserved.
Seasonal Variations in Mercury's Dayside Calcium Exosphere
NASA Technical Reports Server (NTRS)
Burger, Matthew H.; Killen, Rosemary M.; McClintock, William E.; Merkel, Aimee W.; Vervack, Ronald J., Jr.; Cassidy, Timothy A.; Sarantos, Menelaos
2014-01-01
The Mercury Atmospheric and Surface Composition Spectrometer on the MESSENGER spacecraft has observed calcium emission in Mercury's exosphere on a near-daily basis since March 2011. During MESSENGER's primary and first extended missions (March 2011 - March 2013) the dayside calcium exosphere was measured over eight Mercury years. We have simulated these data with a Monte Carlo model of exospheric source processes to show that (a) there is a persistent source of energetic calcium located in the dawn equatorial region, (b) there is a seasonal dependence in the calcium source rate, and (c) there are no obvious year-to-year variations in the near-surface dayside calcium exosphere. Although the precise mechanism responsible for ejecting the calcium has not yet been determined, the most likely process is the dissociation of Ca-bearing molecules produced in micrometeoroid impact plumes to form energetic, escaping calcium atoms.
NASA Astrophysics Data System (ADS)
Ren, T.; Gao, X. R.; Zheng, T.; Wang, P.
2016-08-01
There are problems with treating acidic waste water containing high concentration fluorine by chemical precipitation, including the low sludge setting velocity and the high difficulty of reaching the criterion. In Heilongjiang province, a graphite factory producing high-purity graphite generates acidic waste water with a high concentration of fluorine. In this paper, the effect of removals on the concentration of fluoride with the combined treatment of calcium oxide and calcium chloride were discussed with regard to acid waste water. The study improved the sludge characteristics by using polyacrylamide (PAM) and polymeric aluminum chloride (PAC). The effect of different coagulants on sludge was evaluated by the sludge settlement ratio (SV), sludge volume index (SVI) and sludge moisture content. The results showed that the optimal combination for 100 ml waste water was calcium oxide addition amount of 14 g, a calcium chloride addition amount of 2.5 g, a PAM addition amount of 350 mg/L, and the effluent fluoride concentration was below 6 mg/L. PAM significantly improved the sludge settling velocity. The sludge settlement ratio reduced from 87.6% to 60%. The process for wastewater treatment was easily operated and involved low expenditure.
Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina
2016-01-01
Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca2+ after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca2+, and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca2+ was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca2+ homeostasis in mesophyll cells. PMID:26957564
NASA Astrophysics Data System (ADS)
Rodgers, Allen L.; Jackson, Graham E.
2017-04-01
Chondroitin sulfate (CS) occurs in human urine. It has several potential binding sites for calcium and as such may play an inhibitory role in calcium oxalate and calcium phosphate (kidney stone disease by reducing the supersaturation (SS) and crystallization of these salts. Urinary magnesium is also a role player in determining speciation in stone forming processes. This study was undertaken to determine the thermodynamic parameters for binding of the disaccharide unit of two different CS isomers with calcium and magnesium. These included the binding constant K. Experiments were performed using an isothermal titration calorimeter (ITC) at 3 different pH levels in the physiological range in human urine. Data showed that interactions between the CS isomers and calcium and magnesium occur via one binding site, thought to be sulfate, and that log K values are 1.17-1.93 and 1.77-1.80 for these two metals respectively. Binding was significantly stronger in Mg-CS than in Ca-CS complexes and was found to be dependent on pH in the latter but not in the former. Furthermore, binding in Ca-CS complexes was dependent on the location of the sulfate binding site. This was not the case in the Mg-CS complexes. Interactions were shown to be entropy driven and enthalpy unfavourable. These findings can be used in computational modeling studies to predict the effects of the calcium and magnesium CS complexes on the speciation of calcium and the SS of calcium salts in real urine samples.
Zhao, Jing; Xiong, Youling L
2012-07-01
Calcium is a mineral naturally present in water and may be included into meat products during processing thereby influencing meat quality. Phosphates improve myofibril swelling and meat water-holding capacity (WHC) but can be sensitive to calcium precipitation. In this study, pork shoulder meat was used to investigate the impact of calcium at 0, 250, and 500 ppm and phosphate type [sodium pyrophosphate (PP), tripolyphosphate (TPP), and hexametaphopshate (HMP)] at 10 mM on nitrite-cured protein extract color at various pH levels (5.5, 6.0, and 6.5) and crude myofibril WHC at pH 6.0. Neither calcium nor phosphates present in the curing brines significantly affected the cured color. Increasing the pH tended to promote the formation of metmyoglobin instead of nitrosylmyoglobin. The ability of PP to enhance myofibril WHC was hampered (P < 0.05) by increasing the calcium concentration due to PP precipitation. Calcium also decreased the solubility of TPP but did not influence its enhancement of WHC. On the other hand, HMP was more tolerant of calcium but the soluble Ca-HMP complex was less effective than free HMP to promote water binding by myofibrils. The depressed muscle fiber swelling responding to added calcium as evidenced by phase contrast microscopy substantiated, to a certain extent, the deleterious effect of calcium, suggesting that hardness of curing water can significantly affect the quality of cured meat products. Although not affecting nitrite-cured color, calcium hampers the efficacy of phosphates to promote water binding by muscle proteins, underscoring the importance of water quality for brine-enhanced meat products. © 2012 Institute of Food Technologists®
Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb
Ma, Jie; Lowe, Graeme
2007-01-01
Glomeruli are functional units of the olfactory bulb responsible for early processing of odor information encoded by single olfactory receptor genes. Glomerular neural circuitry includes numerous external tufted (ET) cells whose rhythmic burst firing may mediate synchronization of bulbar activity with the inhalation cycle. Bursting is entrained by glutamatergic input from olfactory nerve terminals, so specific properties of ionotropic glutamate receptors on ET cells are likely to be important determinants of olfactory processing. Particularly intriguing is recent evidence that α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors of juxta-glomerular neurons may permeate calcium. This could provide a novel pathway for regulating ET cell signaling. We tested the hypothesis that ET cells express functional calcium-permeable AMPA receptors. In rat olfactory bulb slices, excitatory postsynaptic currents (EPSCs) in ET cells were evoked by olfactory nerve shock, and by uncaging glutamate. We found attenuation of AMPA/kainate EPSCs by 1-naphthyl acetyl-spermine (NAS), an open-channel blocker specific for calcium permeable AMPA receptors. Cyclothiazide strongly potentiated EPSCs, indicating a major contribution from AMPA receptors. The current-voltage (I-V) relation of uncaging EPSCs showed weak inward rectification which was lost after > ~ 10 min of whole-cell dialysis, and was absent in NAS. In kainate-stimulated slices, Co2+ ions permeated cells of the glomerular layer. Large AMPA EPSCs were accompanied by fluorescence signals in fluo-4 loaded cells, suggesting calcium permeation. Depolarizing pulses evoked slow tail currents with pharmacology consistent with involvement of calcium permeable AMPA autoreceptors. Tail currents were abolished by Cd2+ and NBQX, and were sensitive to NAS block. Glutamate autoreceptors were confirmed by uncaging intracellular calcium to evoke a large inward current. Our results provide evidence that calcium permeable AMPA receptors reside on ET cells, and are divided into at least two functionally distinct pools – postsynaptic receptors at olfactory nerve synaptic terminals, and autoreceptors sensitive to glutamate released from dendrodendritic synapses. PMID:17156930
Technology for recovery of phosphorus from animal wastewater through calcium phosphate precipitation
USDA-ARS?s Scientific Manuscript database
A wastewater treatment process was developed for removal of phosphorus from livestock wastewater. The phosphorus is recovered as calcium phosphate with addition of only small quantities of liquid lime. The process is based on the distinct chemical equilibrium between phosphorus and calcium ions when...
Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity
Luo, Yuhuan; Yu, Xiafei; Ma, Cheng; Luo, Jianhong; Yang, Wei
2018-01-01
As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2) channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.
Conversion coatings prepared or treated with calcium hydroxide solutions
NASA Technical Reports Server (NTRS)
Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor); Minevski, Zoran (Inventor); Clarke, Eric (Inventor)
2002-01-01
A conversion coating process that forms a stable and corrosion-resistant oxide layer on metal or metal oxide substrates or layers. Particularly, the conversion coating process involves contacting the metal or metal oxide substrate or layer with the aqueous calcium hydroxide solutions in order to convert the surface of the substrate to a stable metal oxide layer or coating. According to the present invention, the calcium hydroxide solution is prepared by removing carbon dioxide from water or an aqueous solution before introducing the calcium hydroxide. In this manner, formation of calcium carbonate particles is avoided and the porosity of the conversion coating produced by the calcium hydroxide solution is reduced to below about 1%.
Monitoring Calcium in Trout Eggs Exposed to Hydrazine.
1981-07-10
differentiation processes (Chapman, 1980). The high level of calcium in the notochord can be attributed to poor circulation which is characteristic of this...healthy muscle of the same individual. The notochord of the 8.0 mg/P group showed a higher calcium level than the control group. The chorion did not...calcium can alter the process . The above would suggest that even if some hydrazine is converted to N2 and thereby produce the gas bubble disease
PROCESS OF PRODUCING SHAPED PLUTONIUM
Anicetti, R.J.
1959-08-11
A process is presented for producing and casting high purity plutonium metal in one step from plutonium tetrafluoride. The process comprises heating a mixture of the plutonium tetrafluoride with calcium while the mixture is in contact with and defined as to shape by a material obtained by firing a mixture consisting of calcium oxide and from 2 to 10% by its weight of calcium fluoride at from 1260 to 1370 deg C.
Engineered biosealant producing inorganic and organic biopolymers
USDA-ARS?s Scientific Manuscript database
Microbiologically induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has shown its potential in remediation of a wide range of structural damages including concrete cracks. MICCP involves sequential microbiological and chemical reactions, such as urea h...
Distant homologs of anti-apoptotic factor HAX1 encode parvalbumin-like calcium binding proteins.
Kokoszyńska, Katarzyna; Rychlewski, Leszek; Wyrwicz, Lucjan S
2010-07-15
Apoptosis is a highly ordered and orchestrated multiphase process controlled by the numerous cellular and extra-cellular signals, which executes the programmed cell death via release of cytochrome c alterations in calcium signaling, caspase-dependent limited proteolysis and DNA fragmentation. Besides the general modifiers of apoptosis, several tissue-specific regulators of this process were identified including HAX1 (HS-1 associated protein X-1) - an anti-apoptotic factor active in myeloid cells. Although HAX1 was the subject of various experimental studies, the mechanisms of its action and a functional link connected with the regulation of apoptosis still remains highly speculative. Here we provide the data which suggests that HAX1 may act as a regulator or as a sensor of calcium. On the basis of iterative similarity searches, we identified a set of distant homologs of HAX1 in insects. The applied fold recognition protocol gives us strong evidence that the distant insects' homologs of HAX1 are novel parvalbumin-like calcium binding proteins. Although the whole three EF-hands fold is not preserved in vertebrate our analysis suggests that there is an existence of a potential single EF-hand calcium binding site in HAX1. The molecular mechanism of its action remains to be identified, but the risen hypothesis easily translates into previously reported lines of various data on the HAX1 biology as well as, provides us a direct link to the regulation of apoptosis. Moreover, we also report that other family of myeloid specific apoptosis regulators - myeloid leukemia factors (MLF1, MLF2) share the homologous C-terminal domain and taxonomic distribution with HAX1. Performed structural and active sites analyses gave new insights into mechanisms of HAX1 and MLF families in apoptosis process and suggested possible role of HAX1 in calcium-binding, still the analyses require further experimental verification.
Distant homologs of anti-apoptotic factor HAX1 encode parvalbumin-like calcium binding proteins
2010-01-01
Background Apoptosis is a highly ordered and orchestrated multiphase process controlled by the numerous cellular and extra-cellular signals, which executes the programmed cell death via release of cytochrome c alterations in calcium signaling, caspase-dependent limited proteolysis and DNA fragmentation. Besides the general modifiers of apoptosis, several tissue-specific regulators of this process were identified including HAX1 (HS-1 associated protein X-1) - an anti-apoptotic factor active in myeloid cells. Although HAX1 was the subject of various experimental studies, the mechanisms of its action and a functional link connected with the regulation of apoptosis still remains highly speculative. Findings Here we provide the data which suggests that HAX1 may act as a regulator or as a sensor of calcium. On the basis of iterative similarity searches, we identified a set of distant homologs of HAX1 in insects. The applied fold recognition protocol gives us strong evidence that the distant insects' homologs of HAX1 are novel parvalbumin-like calcium binding proteins. Although the whole three EF-hands fold is not preserved in vertebrate our analysis suggests that there is an existence of a potential single EF-hand calcium binding site in HAX1. The molecular mechanism of its action remains to be identified, but the risen hypothesis easily translates into previously reported lines of various data on the HAX1 biology as well as, provides us a direct link to the regulation of apoptosis. Moreover, we also report that other family of myeloid specific apoptosis regulators - myeloid leukemia factors (MLF1, MLF2) share the homologous C-terminal domain and taxonomic distribution with HAX1. Conclusions Performed structural and active sites analyses gave new insights into mechanisms of HAX1 and MLF families in apoptosis process and suggested possible role of HAX1 in calcium-binding, still the analyses require further experimental verification. PMID:20633251
Yamagishi, Yuya; Tessier-Lavigne, Marc
2015-01-01
Calcium is a key regulator of axon degeneration caused by trauma and disease, but its specific spatial and temporal dynamics in injured axons remain unclear. To clarify the function of calcium in axon degeneration, we observed calcium dynamics in single injured neurons in live zebrafish larvae and tested the temporal requirement for calcium in zebrafish neurons and cultured mouse DRG neurons. Using laser axotomy to induce Wallerian degeneration (WD) in zebrafish peripheral sensory axons, we monitored calcium dynamics from injury to fragmentation, revealing two stereotyped phases of axonal calcium influx. First, axotomy triggered a transient local calcium wave originating at the injury site. This initial calcium wave only disrupted mitochondria near the injury site and was not altered by expression of the protective WD slow (WldS) protein. Inducing multiple waves with additional axotomies did not change the kinetics of degeneration. In contrast, a second phase of calcium influx occurring minutes before fragmentation spread as a wave throughout the axon, entered mitochondria, and was abolished by WldS expression. In live zebrafish, chelating calcium after the first wave, but before the second wave, delayed the progress of fragmentation. In cultured DRG neurons, chelating calcium early in the process of WD did not alter degeneration, but chelating calcium late in WD delayed fragmentation. We propose that a terminal calcium wave is a key instructive component of the axon degeneration program. SIGNIFICANCE STATEMENT Axon degeneration resulting from trauma or neurodegenerative disease can cause devastating deficits in neural function. Understanding the molecular and cellular events that execute axon degeneration is essential for developing treatments to address these conditions. Calcium is known to contribute to axon degeneration, but its temporal requirements in this process have been unclear. Live calcium imaging in severed zebrafish neurons and temporally controlled pharmacological treatments in both zebrafish and cultured mouse sensory neurons revealed that axonal calcium influx late in the degeneration process regulates axon fragmentation. These findings suggest that temporal considerations will be crucial for developing treatments for diseases associated with axon degeneration. PMID:26558774
Process development for production of coal/sorbent agglomerates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, D.M.
1991-01-01
The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less
Effect of calcium source on structure and properties of sol-gel derived bioactive glasses.
Yu, Bobo; Turdean-Ionescu, Claudia A; Martin, Richard A; Newport, Robert J; Hanna, John V; Smith, Mark E; Jones, Julian R
2012-12-18
The aim was to determine the most effective calcium precursor for synthesis of sol-gel hybrids and for improving homogeneity of sol-gel bioactive glasses. Sol-gel derived bioactive calcium silicate glasses are one of the most promising materials for bone regeneration. Inorganic/organic hybrid materials, which are synthesized by incorporating a polymer into the sol-gel process, have also recently been produced to improve toughness. Calcium nitrate is conventionally used as the calcium source, but it has several disadvantages. Calcium nitrate causes inhomogeneity by forming calcium-rich regions, and it requires high temperature treatment (>400 °C) for calcium to be incorporated into the silicate network. Nitrates are also toxic and need to be burnt off. Calcium nitrate therefore cannot be used in the synthesis of hybrids as the highest temperature used in the process is typically 40-60 °C. Therefore, a different precursor is needed that can incorporate calcium into the silica network and enhance the homogeneity of the glasses at low (room) temperature. In this work, calcium methoxyethoxide (CME) was used to synthesize sol-gel bioactive glasses with a range of final processing temperatures from 60 to 800 °C. Comparison is made between the use of CME and calcium chloride and calcium nitrate. Using advanced probe techniques, the temperature at which Ca is incorporated into the network was identified for 70S30C (70 mol % SiO(2), 30 mol % CaO) for each of the calcium precursors. When CaCl(2) was used, the Ca did not seem to enter the network at any of the temperatures used. In contrast, Ca from CME entered the silica network at room temperature, as confirmed by X-ray diffraction, (29)Si magic angle spinning nuclear magnetic resonance spectroscopy, and dissolution studies. CME should be used in preference to calcium salts for hybrid synthesis and may improve homogeneity of sol-gel glasses.
Putting out the fire: what terminates calcium-induced calcium release in cardiac muscle?
Stern, Michael D; Cheng, Heping
2004-06-01
The majority of contractile calcium in cardiac muscle is released from stores in the sarcoplasmic reticulum (SR), by a process of calcium-induced calcium release (CICR) through ryanodine receptors. Because CICR is intrinsically self-reinforcing, the stability of and graded regulation of cardiac EC coupling appear paradoxical. It is now well established that this gradation results from the stochastic recruitment of varying numbers of elementary local release events, which may themselves be regenerative, and which can be directly observed as calcium sparks. Ryanodine receptors (RyRs) are clustered in dense lattices, and most calcium sparks are now believed to involve activation of multiple RyRs. This implies that local CICR is regenerative, requiring a mechanism to terminate it. It was initially assumed that this mechanism was inactivation of the RyR, but during the decade since the discovery of sparks, no sufficiently strong inactivation mechanism has been demonstrated in vitro and all empirically determined gating schemes for the RyR give unstable EC coupling in Monte Carlo simulations. We consider here possible release termination mechanisms. Stochastic attrition is the spontaneous decay of active clusters due to random channel closure; calculations show that it is much too slow unless assisted by another process. Calcium-dependent RyR inactivation involving third-party proteins remains a viable but speculative mechanism; current candidates include calmodulin and sorcin. Local depletion of SR release terminal calcium could terminate release, however calculations and measurements leave it uncertain whether a sufficient diffusion resistance exists within the SR to sustain such depletion. Depletion could be assisted by dependence of RyR activity on SR lumenal [Ca(2+)]. There is substantial evidence for such lumenal activation, but it is not clear if it is a strong enough effect to account for the robust termination of sparks. The existence of direct interactions among clustered RyRs might account for the discrepancy between the inactivation properties of isolated RyRs and intact clusters. Such coupled gating remains controversial. Determining the mechanism of release termination is the outstanding unsolved problem of cardiac EC coupling, and will probably require extensive genetic manipulation of the EC coupling apparatus in its native environment to unravel the solution.
Is the renal kallikrein-kinin system a factor that modulates calciuria?
Negri, Armando Luis
Renal tubular calcium reabsorption is one of the principal factors that determine serum calcium concentration and calcium excretion. Calcium excretion is regulated by the distal convoluted tubule and connecting tubule, where the epithelial calcium channel TRPV5 can be found, which limits the rate of transcellular calcium transport. The dynamic presence of the TRPV5 channel on the surface of the tubular cell is mediated by an endosomal recycling process. Different intrarenal factors are involved in calcium channel fixation in the apical membrane, including the anti-ageing hormone klotho and tissue kallikrein (TK). Both proteins are synthesised in the distal tubule and secreted in the tubular fluid. TK stimulates active calcium reabsorption through the bradykinin receptor B2 that compromises TRPV5 activation through the protein kinase C pathway. TK-deficient mice show hypercalciuria of renal origin comparable to that seen in TRPV5 knockout mice. There is a polymorphism with loss of function of the human TK gene R53H (allele H) that causes a marked decrease in enzymatic activity. The presence of the allele H seems to be common at least in the Japanese population (24%). These individuals have a tendency to greater calcium and sodium excretion in urine that is more evident during furosemide infusion. Future studies should analyse if manipulating the renal kallikrein-kinin system can correct idiopathic hypercalciuria with drugs other than thiazide diuretics. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Ramchandran, Lata; Luo, XiaoXia; Vasiljevic, Todor
2017-11-01
Modulating conditions during ultrafiltration of skim milk appears to be a feasible strategy to obtain milk protein concentrates (MPC) with tailored functionalities. Adjustment of pH and process temperature attenuated properties of casein micelle resulting in enhanced emulsification capacity. Additional pre-treatment options such as addition of calcium chelators can further impact on the functionality of MPC by modifying the calcium distribution and casein micelle integrity. The objective of the project was to establish effects of pre-treating skim milk with calcium chelators (EDTA or citrate) in concentrations between 10 to 30 mm prior to UF on the physical properties of the feed, corresponding retentates and dried MPC, including particle size, zeta potential and calcium distribution in skim milk and the corresponding retentates, as well as the physical functionalities such as solubility, heat stability and emulsifying properties. Addition of calcium chelators (EDTA or citrate), at levels 20-30 mm concentrations reduced casein micelle size as well as total, soluble and ionic calcium contents that resulted in MPC with enhanced solubility and heat stability. The emulsion capacity was, however, improved only with EDTA at 10 mm concentration. The enhanced functionality is attributed to the reduced particle size resulting from the removal of calcium from the retentate that could modify micellar casein to an extent sufficient to cause such improvements.
Zhang, Sheng-Jia; Zou, Ming; Lu, Li; Lau, David; Ditzel, Désirée A. W.; Delucinge-Vivier, Celine; Aso, Yoshinori; Descombes, Patrick; Bading, Hilmar
2009-01-01
Synaptic activity can boost neuroprotection through a mechanism that requires synapse-to-nucleus communication and calcium signals in the cell nucleus. Here we show that in hippocampal neurons nuclear calcium is one of the most potent signals in neuronal gene expression. The induction or repression of 185 neuronal activity-regulated genes is dependent upon nuclear calcium signaling. The nuclear calcium-regulated gene pool contains a genomic program that mediates synaptic activity-induced, acquired neuroprotection. The core set of neuroprotective genes consists of 9 principal components, termed Activity-regulated Inhibitor of Death (AID) genes, and includes Atf3, Btg2, GADD45β, GADD45γ, Inhibin β-A, Interferon activated gene 202B, Npas4, Nr4a1, and Serpinb2, which strongly promote survival of cultured hippocampal neurons. Several AID genes provide neuroprotection through a common process that renders mitochondria more resistant to cellular stress and toxic insults. Stereotaxic delivery of AID gene-expressing recombinant adeno-associated viruses to the hippocampus confers protection in vivo against seizure-induced brain damage. Thus, treatments that enhance nuclear calcium signaling or supplement AID genes represent novel therapies to combat neurodegenerative conditions and neuronal cell loss caused by synaptic dysfunction, which may be accompanied by a deregulation of calcium signal initiation and/or propagation to the cell nucleus. PMID:19680447
Łabuz, Justyna; Samardakiewicz, Sławomir; Hermanowicz, Paweł; Wyroba, Elżbieta; Pilarska, Maria; Gabryś, Halina
2016-06-01
Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Cardiac basal metabolism: energetic cost of calcium withdrawal in the adult rat heart.
Bonazzola, P; Takara, D
2010-07-01
Cardiac basal metabolism upon extracellular calcium removal and its relationship with intracellular sodium and calcium homeostasis was evaluated. A mechano-calorimetric technique was used that allowed the simultaneous and continuous measurement of both heat rate and resting pressure in arterially perfused quiescent adult rat hearts. Using pharmacological tools, the possible underlying mechanisms related to sodium and calcium movements were investigated. Resting heat rate (expressed in mW g(-1)(dry wt)) increased upon calcium withdrawal (+4.4 +/- 0.2). This response was: (1) unaffected by the presence of tetrodotoxin (+4.3 +/- 0.6), (2) fully blocked by both, the decrease in extracellular sodium concentration and the increase in extracellular magnesium concentration, (3) partially blocked by the presence of either nifedipine (+2.8 +/- 0.4), KB-R7943 (KBR; +2.5 +/- 0.2), clonazepam (CLO; +3.1 +/- 0.3) or EGTA (+1.9 +/- 0.3). The steady heat rate under Ca(2+)-free conditions was partially reduced by the addition of Ru360 (-1.1 +/- 0.2) but not CLO in the presence of EGTA, KBR or Ru360. Energy expenditure for resting state maintenance upon calcium withdrawal depends on the intracellular rise in both sodium and calcium. Our data are consistent with a mitochondrial Ca(2+) cycling, not detectable under normal calcium diastolic levels. The experimental condition here analysed, partially simulates findings reported under certain pathological situations including heart failure in which mildly increased levels of both diastolic sodium and calcium have also been found. Therefore, under such pathological conditions, hearts should distract chemical energy to fuel processes associated with sodium and calcium handling, making more expensive the maintenance of their functions.
Masters or slaves? Vesicle release machinery and the regulation of presynaptic calcium channels.
Jarvis, Scott E; Zamponi, Gerald W
2005-05-01
Calcium entry through presynaptic voltage-gated calcium channels is essential for neurotransmitter release. The two major types of presynaptic calcium channels contain a synaptic protein interaction site that physically interacts with synaptic vesicle release proteins. This is thought to tighten the coupling between the sources of calcium entry and the neurotransmitter release machinery. Conversely, the binding of synaptic proteins to presynaptic calcium channels regulates calcium channel activity. Hence, presynaptic calcium channels act not only as the masters of the synaptic release process, but also as key targets for feedback inhibition.
Aggarwal, Kanu Priya; Narula, Shifa; Kakkar, Monica
2013-01-01
Urinary stone disease is an ailment that has afflicted human kind for many centuries. Nephrolithiasis is a significant clinical problem in everyday practice with a subsequent burden for the health system. Nephrolithiasis remains a chronic disease and our fundamental understanding of the pathogenesis of stones as well as their prevention and cure still remains rudimentary. Regardless of the fact that supersaturation of stone-forming salts in urine is essential, abundance of these salts by itself will not always result in stone formation. The pathogenesis of calcium oxalate stone formation is a multistep process and essentially includes nucleation, crystal growth, crystal aggregation, and crystal retention. Various substances in the body have an effect on one or more of the above stone-forming processes, thereby influencing a person's ability to promote or prevent stone formation. Promoters facilitate the stone formation while inhibitors prevent it. Besides low urine volume and low urine pH, high calcium, sodium, oxalate and urate are also known to promote calcium oxalate stone formation. Many inorganic (citrate, magnesium) and organic substances (nephrocalcin, urinary prothrombin fragment-1, osteopontin) are known to inhibit stone formation. This review presents a comprehensive account of the mechanism of renal stone formation and the role of inhibitors/promoters in calcium oxalate crystallisation. PMID:24151593
Synthesis of Calcite Nano Particles from Natural Limestone assisted with Ultrasonic Technique
NASA Astrophysics Data System (ADS)
Handayani, M.; Sulistiyono, E.; Firdiyono, F.; Fajariani, E. N.
2018-03-01
This article represents a precipitation method assisted with ultrasonic process to synthesize precipitated calcium carbonate nano particles from natural limestone. The synthesis of nanoparticles material of precipitated calcium carbonate from commercial calcium carbonate was done for comparison. The process was performed using ultrasonic waves at optimum condition, that is, at temperature of 80oC for 10 minutes with various amplitudes. Synthesized precipitated calcium carbonate nanoparticles were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Particle Size Analyzer (PSA). The result of PSA measurements showed that precipitated calcium carbonate nano particles was obtained with the average size of 109 nm.
[The Role of Calcium in the Conformational Changes of the Recombinant S100A8/S100A9].
Gheibi, N; Asghari, H; Chegini, K G; Sahmani, M; Moghadasi, M
2016-01-01
Calprotectin is a member of the EF-hand proteins, composed of two subunits, S100A8 (MRP8) and S100A9 (MRP14). These proteins are involved in important processes including cell signaling, regulation of inflammatory responses, cell cycle control, differentiation, regulation of ion channel activity and defense against microbial agents in a calcium dependent manner. In the present study, recombinant S100A8 and S100A9 were expressed in E. coli BL21 and then purified using Ni-NTA affinity chromatography. The structure of the S100A8/A9 complex in the presence and absence of calcium was assessed by circular dichroism and fluorescence spectroscopy. The intrinsic fluorescence emission spectra of the S100A8/A9 complex in the presence of calcium showed a reduction in fluorescence intensity, reflecting conformational changes within the protein with the exposure of aromatic residues to the protein surface. The far ultraviolet-circular dichroism spectra of the complex in the presence of calcium revealed minor changes in the regular secondary structure of the complex. Also, increased thermal stability of the S100A8/A9 complex in the presence of calcium was indicated.
Arrabal-Polo, Miguel Ángel; del Carmen Cano-García, María; Arrabal-Martín, Miguel
2016-04-01
To determine the importance of fasting calcium/creatinine ratio in patients with calcium stones and its relation with hypercalciuria and phospho-calcium metabolism. Cross-sectional study including 143 patients divided into two groups according to fasting calcium/creatinine. Group 1: 66 patients (calcium/ creatinine<0.11); Group 2: 77 patients (calcium/ creatinine>0.11). A comparative study is performed between groups including phospho-calcium metabolism parameters and excretion of urinary lithogenic markers. Linear correlation studying calciuria and fasting calcium/ creatinine was performed. SPSS 17.0 statistical analysis software was used, considering p≤0.05. It is noteworthy that group 2 had increased 24 h urine calcium excretion in comparison to group 1 (229.3 vs 158.1; p=0.0001) and calcium/citrate (0.47 vs 0.34; p=0.001). There is a positive and significant correlation between calcium levels in 24 h urine and fasting calcium/creatinine (R=0.455; p=0.0001) and a cutoff is set at 0.127 (sensitivity 72%, specificity 66%) to determine hypercalciuria (>260 mg in 24 h). Increased fasting calcium/creatinine determines increased 24 hours calcium excretion, although the sensitivity and specificity to determine hypercalciuria is not high.
ALTERATIONS IN CALCIUM ION ACTIVITY BY ELF AND RF ELECTROMAGNETIC FIELDS
Alterations in calcium ion activity by ELF and RF electromagnetic fields
Introduction
Calcium ions play many important roles in biological systems. For example, calcium ion activity can be used as an indicator of second-messenger signal-transduction processe...
Quality of cucumbers commercially fermented in calcium chloride brine without sodium salts
USDA-ARS?s Scientific Manuscript database
Commercial cucumber fermentation produces large volumes of salty wastewater. This study evaluated the quality of fermented cucumbers produced commercially using an alternative calcium chloride brining process. Fermentation conducted in calcium brines (0.1M calcium chloride, 6mM potassium sorbate, eq...
Conversion of alkali metal sulfate to the carbonate
Sheth, A.C.
1979-10-01
A process is described for converting potassium sulfate to potassium carbonate in which a mixture of potassium sulfate and calcium oxide are reacted at a temperature in the range of between about 700/sup 0/C and about 800/sup 0/C with a gaseous mixture having a minor amount of hydrogen and/or carbon monoxide in a diluent with the calcium oxide being present in an amount not greater than about 20 percent by weight of the potassium sulfate to produce an aqueous mixture of potassium sulfide, potassium bisulfide, potassium hydroxide and calcium sulfide and a gaseous mixture of steam and hydrogen sulfide. The potassium and calcium salts are quenched to produce an aqueous slurry of soluble potassium salts and insoluble calcium salts and a gaseous mixture of steam and hydrogen sulfide. The insoluble calcium salts are then separated from the aqueous solution of soluble potassium salts. The calcium salts are dried to produce calcium sulfide, calcium bisulfide and steam, and then, the calcium sulfide and calcium bisulfide are converted to the oxide and recycled. The soluble potassium salts are carbonated to produce potassium carbonate which is concentrated and the precipitated crystals separated. the sulfur-containing compounds are further treated. This process was developed for desulfurization and reprocessing of spent seed from open-cycle coal-fired MHD generators for reuse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rapp, D.M.
1991-12-31
The goal of this work was to develop a process flow diagram to economically produce a clean-burning fuel from fine Illinois coal. To accomplish this, the process of pelletizing fine coal with calcium hydroxide, a sulfur capturing sorbent, was investigated. Carbonation, which is the reaction of calcium hydroxide with carbon dioxide (in the presence of moisture) to produce a bonding matrix of calcium carbonate, was investigated as a method for improving pellet quality and reducing binder costs. Proper moisture level is critical to allow the reaction to occur. If too much moisture is present in a pellet, the pore spacesmore » are filled and carbon dioxide must diffuse through the water to reach the calcium hydroxide and react. This severely slows or stops the reaction. The ideal situation is when there is just enough moisture to coat the calcium hydroxide allowing for the reaction to proceed. The process has been successfully demonstrated on a pilot-scale as a method of hardening iron ore pellets (Imperato, 1966). Two potential combustion options are being considered for the coal/calcium hydroxide pellets: fluidized bed combustors and industrial stoker boilers.« less
Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.
Zhang, Yang; Piccard, Sarah; Zhou, Wen
2015-11-01
The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.
New approaches to enhanced remineralization of tooth enamel.
Cochrane, N J; Cai, F; Huq, N L; Burrow, M F; Reynolds, E C
2010-11-01
Dental caries is a highly prevalent diet-related disease and is a major public health problem. A goal of modern dentistry is to manage non-cavitated caries lesions non-invasively through remineralization in an attempt to prevent disease progression and improve aesthetics, strength, and function. Remineralization is defined as the process whereby calcium and phosphate ions are supplied from a source external to the tooth to promote ion deposition into crystal voids in demineralized enamel, to produce net mineral gain. Recently, a range of novel calcium-phosphate-based remineralization delivery systems has been developed for clinical application. These delivery systems include crystalline, unstabilized amorphous, or stabilized amorphous formulations of calcium phosphate. These systems are reviewed, and the technology with the most scientific evidence to support its clinical use is the remineralizing system utilizing casein phosphopeptides to stabilize and deliver bioavailable calcium, phosphate, and fluoride ions. The recent clinical evidence for this technology is presented and the mechanism of action discussed. Biomimetic approaches to stabilization of bioavailable calcium, phosphate, and fluoride ions and the localization of these ions to non-cavitated caries lesions for controlled remineralization show promise for the non-invasive management of dental caries.
Circadian oscillations of cytosolic and chloroplastic free calcium in plants
NASA Technical Reports Server (NTRS)
Johnson, C. H.; Knight, M. R.; Kondo, T.; Masson, P.; Sedbrook, J.; Haley, A.; Trewavas, A.
1995-01-01
Tobacco and Arabidopsis plants, expressing a transgene for the calcium-sensitive luminescent protein apoaequorin, revealed circadian oscillations in free cytosolic calcium that can be phase-shifted by light-dark signals. When apoaequorin was targeted to the chloroplast, circadian chloroplast calcium rhythms were likewise observed after transfer of the seedlings to constant darkness. Circadian oscillations in free calcium concentrations can be expected to control many calcium-dependent enzymes and processes accounting for circadian outputs. Regulation of calcium flux is therefore fundamental to the organization of circadian systems.
Niksirat, Hamid; Kouba, Antonín
2016-04-01
The freshly ejaculated spermatophore of crayfish undergoes a hardening process during post-mating storage on the body surface of female. The ultrastructural distribution of calcium deposits were studied and compared in freshly ejaculated and post-mating noble crayfish spermatophores, using the oxalate-pyroantimonate technique, to determine possible roles of calcium in post-mating spermatophore hardening and spermatozoon maturation. Small particles of sparsely distributed calcium deposits were visible in the wall of freshly ejaculated spermatophore. Also, large amount of calcium deposits were visible in the membranes of the freshly ejaculated spermatozoon. Five minutes post-ejaculation, granules in the spermatophore wall appeared as porous formations with numerous electron lucent spaces. Calcium deposits were visible within the spaces and scattered in the spermatophore wall matrix, where smaller calcium deposits combined to form globular calcium deposits. Large numbers of the globular calcium deposits were visible in the wall of the post-mating spermatophore. Smaller calcium deposits were detected in the central area of post-mating spermatophore, which contains the sperm mass, and in the extracellular matrix and capsule. While the density of calcium deposits decreased in the post-mating spermatozoon membranes, numerous small calcium deposits appeared in the subacrosomal zone and nucleus. Substantial changes in calcium deposit distribution in the crayfish spermatophore during post-mating storage on the body of female may be involved in the processes of the spermatophore hardening and spermatozoon maturation. © 2016 Wiley Periodicals, Inc.
Bisphenol A stimulates human prostate cancer cell migration via remodelling of calcium signalling.
Derouiche, Sandra; Warnier, Marine; Mariot, Pascal; Gosset, Pierre; Mauroy, Brigitte; Bonnal, Jean-Louis; Slomianny, Christian; Delcourt, Philippe; Prevarskaya, Natalia; Roudbaraki, Morad
2013-12-01
Bisphenol A (BPA), the principal constituent of reusable water bottles, metal cans, and plastic food containers, has been shown to be involved in human prostate cancer (PCa) cell proliferation. The aim of the present study was to explore the effect of BPA on PCa cell migration and the pathways involved in these processes. Using the transwell technique, we clearly show for the first time that the pre-treatment of the cells with BPA (1-10 nM) induces human PCa cell migration. Using a calcium imaging technique, we show that BPA pre-treatment induces an amplification of Store-Operated Calcium Entry (SOCE) in LNCaP cells. RT-PCR and Western blot experiments allowed the identification of the ion channel proteins which are up-regulated by BPA pre-treatments. These include the Orai1 protein, which is known as an important SOCE actor in various cell systems, including human PCa cells. Using a siRNA strategy, we observed that BPA-induced amplification of SOCE was Orai1-dependent. Interestingly, the BPA-induced PCa cell migration was suppressed when the calcium entry was impaired by the use of SOCE inhibitors (SKF96365, BTP2), or when the extracellular calcium was chelated. Taken together, the results presented here show that BPA induces PCa cells migration via a modulation of the ion channel protein expression involved in calcium entry and in cancer cell migration. The present data provide novel insights into the molecular mechanisms involved in the effects of an environmental factor on cancer cells and suggest both the necessity of preventive measures and the possibility of targeting ion channels in the treatment of PCa cell metastasis.
Interactions of endoplasmic reticulum and mitochondria Ca2+ stores with capacitative calcium entry
Huang, Hsueh-Meei; Chen, Huan-Lian; Gibson, Gary E.
2014-01-01
Thiamine dependent enzymes are diminished in Alzheimer’s disease (AD). Thiamine deficiency in vitro and in rodents is a useful model of this reduction. Thiamine interacts with cellular calcium stores. To directly test the relevance of the thiamine dependent changes to dynamic processes in AD, the interactions must be studied in cells from patients with AD. These studies employed fibroblasts. Mitochondrial dysfunction including reductions in thiamine dependent enzymes and abnormalities in calcium homeostasis and oxidative processes occur in fibroblasts from Alzheimer’s Disease (AD) patients. Bombesin-releasable calcium stores (BRCS) from the endoplasmic reticulum (ER) are exaggerated in fibroblasts from patients with AD bearing a presenilin-1 (PS-1) mutation and in control fibroblasts treated with oxidants. ER calcium regulates calcium entry into the cell through capacitative calcium entry (CCE), which is reduced in fibroblasts and neurons from mice bearing PS-1 mutations. Under physiological conditions, mitochondria and ER play important and interactive roles in the regulation of Ca2+ homeostasis. Thus, the interactions of mitochondria and oxidants with CCE were tested. Inhibition of ER Ca2+-ATPase by cyclopiazonic acid (CPA) stimulates CCE. CPA-induced CCE was diminished by inhibition of mitochondrial Ca2+ export (−60%) or import (−40%). Different aspects of mitochondrial Ca2+ coupled to CPA-induced-CCE were sensitive to select oxidants. The effects were very different when CCE was examined in the presence of InsP3, a physiological regulator of ER calcium release, and subsequent CCE. CCE under these conditions was only mildly reduced (20–25%) by inhibition of mitochondrial Ca2+ export, and inhibition of mitochondrial Ca2+ uptake exaggerated CCE (+53%). However, t-BHP reversed both abnormalities. The results suggest that in the presence of InsP3, mitochondria buffer the local Ca2+ released from ER following rapid activation of InsP3R and serve as a negative feedback to the CCE. The results suggest that mitochondrial Ca2+ modifies the depletion and refilling mechanism of ER Ca2+ stores. PMID:24748364
Process for detoxifying coal tars
Longwell, John P.; Peters, William A.
1983-01-01
A process for treating liquid hydrocarbons to remove toxic, mutagenic and/or carcinogenic aromatic hydrocarbons comprises feeding the hydrocarbons into a reactor where vapors are thermally treated in contact with a catalyst consisting essentially of calcium oxide or a calcium oxide containing mineral. Thermally treating liquid hydrocarbons in contact with calcium oxide preferentially increases the cracking of aromatics thus producing a product having a reduced amount of aromatic compounds.
Nguyen, Christelle; Bazin, Dominique; Daudon, Michel; Chatron-Colliet, Aurore; Hannouche, Didier; Bianchi, Arnaud; Côme, Dominique; So, Alexander; Busso, Nathalie; Busso, Nathalie; Lioté, Frédéric; Ea, Hang-Korng
2013-01-01
Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.
Selective laser sintering of calcium phosphate materials for orthopedic implants
NASA Astrophysics Data System (ADS)
Lee, Goonhee
Two technologies, Solid Freeform Fabrication (SFF) and bioceramics are combined in this work to prepare bone replacement implants with complex geometry. SFF has emerged as a crucial technique for rapid prototyping in the last decade. Selective Laser Sintering (SLS) is one of the established SFF manufacturing processes that can build three-dimensional objects directly from computer models without part-specific tooling or human intervention. Meanwhile, there have been great efforts to develop implantable materials that can assist in regeneration of bone defects and injuries. However, little attention has been focused in shaping bones from these materials. The main thrust of this research was to develop a process that can combine those two separate efforts. The specific objective of this research is to develop a process that can construct bone replacement material of complex geometry from synthetic calcium phosphate materials by using the SLS process. The achievement of this goal can have a significant impact on the quality of health care in the sense that complete custom-fit bone and tooth structures suitable for implantation can be prepared within 24--48 hours of receipt of geometric information obtained either from patient Computed Tomographic (CT) data, from Computer Aided Design (CAD) software or from other imaging systems such as Magnetic Resonance Imaging (MRI) and Holographic Laser Range Imaging (HLRI). In this research, two different processes have been developed. First is the SLS fabrication of porous bone implants. In this effort, systematic procedures have been established and calcium phosphate implants were successfully fabricated from various sources of geometric information. These efforts include material selection and preparation, SLS process parameter optimization, and development of post-processing techniques within the 48-hour time frame. Post-processing allows accurate control of geometry and of the chemistry of calcium phosphate, as well as control of micro and macro pore structure, to maximize bone healing and provide sufficient mechanical strength. It also permits the complete removal of the polymeric binders that are resided in the SLS process. In collaboration with the University of Texas Health Science Center at San Antonio and BioMedical Enterprises, Inc., porous implants based on anatomical geometry have been successfully implanted in rabbits and dogs. These histologic animal studies reveal excellent biocompatibility and show its great potential for commercial custom-fit implant manufacture. The second research effort involves fabrication of fully dense bone for application in dental restoration and load-bearing orthopedic functions. Calcium phosphate glass melts, proven to be biocompatible in the first effort, were cast into carbon molds. Processes were developed for preparing the molds. These carbon molds of anatomic shape can be prepared from either Computer Numerical Control (CNC) milling of slab stock or SLS processing of thermoset-coated graphite powder. The CNC milling method provides accurate dimension of the molds in a short period of time, however, the capable geometries are limited; generally two pieces of molds are required for complex shapes. The SLS method provides very complex shape green molds. However, they need to go through pyrolysis of thermoset binder to provide the high temperature capability reached at calcium phosphate melt temperatures (1100°C) and noticeable shrinkage was observed during pyrolysis. The cast glass was annealed to develop polycrystalline calcium phosphate. This process also exhibits great potential.
Physiology of Calcium, Phosphate, Magnesium and Vitamin D.
Allgrove, Jeremy
2015-01-01
The physiology of calcium and the other minerals involved in its metabolism is complex and intimately linked to the physiology of bone. Five principal humoral factors are involved in maintaining plasma concentrations of calcium, magnesium and phosphate and in coordinating the balance between their content in bone. The transmembrane transport of these elements is dependent on a series of complex mechanisms that are partly controlled by these hormones. The plasma concentration of calcium is initially sensed by a calcium-sensing receptor, which then sets up a cascade of events that initially determines parathyroid hormone secretion and eventually results in a specific action within the target organs, mainly bone and kidney. This chapter describes the physiology of these humoral factors and relates them to the pathological processes that give rise to disorders of calcium, phosphate and magnesium metabolism as well as of bone metabolism. This chapter also details the stages in the calcium cascade, describes the effects of calcium on the various target organs, gives details of the processes by which phosphate and magnesium are controlled and summarises the metabolism of vitamin D. The pathology of disorders of bone and calcium metabolism is described in detail in the relevant chapters. © 2015 S. Karger AG, Basel.
Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lendrum, Conrad D.; Ingham, Bridget; Lin, Binhua
2012-02-06
2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position {alpha} to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of {approx}6. Themore » role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.« less
Zhang, Cheng; Zhu, Xuedong; Wu, Liang; Li, Qingtao; Liu, Jianyong; Qian, Guangren
2017-09-01
Municipal solid wastes incineration (MSWI) flue gas was employed as the carbon source for in-situ calcium removal from MSWI leachate. Calcium removal efficiency was 95-97% with pH of 10.0-11.0 over 100min of flue gas aeration, with both bound Ca and free Ca being removed effectively. The fluorescence intensity of tryptophan, protein-like and humic acid-like compounds increased after carbonation process. The decrease of bound Ca with the increase of precipitate indicated that calcium was mainly converted to calcium carbonate precipitate. It suggested that the interaction between dissolved organic matter and Ca 2+ was weakened. Moreover, 10-16% of chemical oxygen demand removal and the decrease of ultraviolet absorption at 254nm indicated that some organics, especially aromatic compound decreased via adsorption onto the surface of calcium carbonate. The results indicate that introduce of waste incineration flue gas could be a feasible way for calcium removal from leachate. Copyright © 2017 Elsevier Ltd. All rights reserved.
Echeverría, Cesar; Montorfano, Ignacio; Hermosilla, Tamara; Armisén, Ricardo; Velásquez, Luis A; Cabello-Verrugio, Claudio; Varela, Diego; Simon, Felipe
2014-01-01
The pathogenesis of systemic inflammatory diseases, including endotoxemia-derived sepsis syndrome, is characterized by endothelial dysfunction. It has been demonstrated that the endotoxin lipopolysaccharide (LPS) induces the conversion of endothelial cells (ECs) into activated fibroblasts through endothelial-to-mesenchymal transition mechanism. Fibrogenesis is highly dependent on intracellular Ca2+ concentration increases through the participation of calcium channels. However, the specific molecular identity of the calcium channel that mediates the Ca2+ influx during endotoxin-induced endothelial fibrosis is still unknown. Transient receptor potential melastatin 7 (TRPM7) is a calcium channel that is expressed in many cell types, including ECs. TRPM7 is involved in a number of crucial processes such as the conversion of fibroblasts into activated fibroblasts, or myofibroblasts, being responsible for the development of several characteristics of them. However, the role of the TRPM7 ion channel in endotoxin-induced endothelial fibrosis is unknown. Thus, our aim was to study whether the TRPM7 calcium channel participates in endotoxin-induced endothelial fibrosis. Using primary cultures of ECs, we demonstrated that TRPM7 is a crucial protein involved in endotoxin-induced endothelial fibrosis. Suppression of TRPM7 expression protected ECs from the fibrogenic process stimulated by endotoxin. Downregulation of TRPM7 prevented the endotoxin-induced endothelial markers decrease and fibrotic genes increase in ECs. In addition, TRPM7 downregulation abolished the endotoxin-induced increase in ECM proteins in ECs. Furthermore, we showed that intracellular Ca2+ levels were greatly increased upon LPS challenge in a mechanism dependent on TRPM7 expression. These results demonstrate that TRPM7 is a key protein involved in the mechanism underlying endotoxin-induced endothelial fibrosis.
O'Brien, Darragh P; Perez, Ana Cristina Sotomayor; Karst, Johanna; Cannella, Sara E; Enguéné, Véronique Yvette Ntsogo; Hessel, Audrey; Raoux-Barbot, Dorothée; Voegele, Alexis; Subrini, Orso; Davi, Marilyne; Guijarro, J Inaki; Raynal, Bertrand; Baron, Bruno; England, Patrick; Hernandez, Belen; Ghomi, Mahmoud; Hourdel, Véronique; Malosse, Christian; Chamot-Rooke, Julia; Vachette, Patrice; Durand, Dominique; Brier, Sébastien; Ladant, Daniel; Chenal, Alexandre
2018-07-01
The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the diversity of calcium concentrations it is exposed to in the successive environments encountered in the course of the intoxication process. Copyright © 2018 Elsevier Ltd. All rights reserved.
Role of claudins in renal calcium handling.
Negri, Armando Luis
2015-01-01
Paracellular channels occurring in tight junctions play a major role in transepithelial ionic flows. This pathway includes a high number of proteins, such as claudins. Within renal epithelium, claudins result in an ionic selectivity in tight junctions. Ascending thick limb of loop of Henle (ATLH) is the most important segment for calcium reabsorption in renal tubules. Its cells create a water-proof barrier, actively transport sodium and chlorine through a transcellular pathway, and provide a paracellular pathway for selective calcium reabsorption. Several studies have led to a model of paracellular channel consisting of various claudins, particularly claudin-16 and 19. Claudin-16 mediates cationic paracellular permeability in ATLH, whereas claudin-19 increases cationic selectivity of claudin-16 by blocking anionic permeability. Recent studies have shown that claudin-14 promoting activity is only located in ATLH. When co-expressed with claudin-16, claudin-14 inhibits the permeability of claudin-16 and reduces paracellular permeability to calcium. Calcium reabsorption process in ATLH is closely regulated by calcium sensor receptor (CaSR), which monitors circulating Ca levels and adjusts renal excretion rate accordingly. Two microRNA, miR-9 and miR-374, are directly regulated by CaSR. Thus, miR-9 and miR-374 suppress mRNA translation for claudin-14 and induce claudin-14 decline. Copyright © 2015 The Author. Published by Elsevier España, S.L.U. All rights reserved.
Impaired Calcium Entry into Cells Is Associated with Pathological Signs of Zinc Deficiency12
O’Dell, Boyd L.; Browning, Jimmy D.
2013-01-01
Zinc is an essential trace element whose deficiency gives rise to specific pathological signs. These signs occur because an essential metabolic function is impaired as the result of failure to form or maintain a specific metal-ion protein complex. Although zinc is a component of many essential metalloenzymes and transcription factors, few of these have been identified with a specific sign of incipient zinc deficiency. Zinc also functions as a structural component of other essential proteins. Recent research with Swiss murine fibroblasts, 3T3 cells, has shown that zinc deficiency impairs calcium entry into cells, a process essential for many cell functions, including proliferation, maturation, contraction, and immunity. Impairment of calcium entry and the subsequent failure of cell proliferation could explain the growth failure associated with zinc deficiency. Defective calcium uptake is associated with impaired nerve transmission and pathology of the peripheral nervous system, as well as the failure of platelet aggregation and the bleeding tendency of zinc deficiency. There is a strong analogy between the pathology of genetic diseases that result in impaired calcium entry and other signs of zinc deficiency, such as decreased and cyclic food intake, taste abnormalities, abnormal water balance, skin lesions, impaired reproduction, depressed immunity, and teratogenesis. This analogy suggests that failure of calcium entry is involved in these signs of zinc deficiency as well. PMID:23674794
MESSENGER MASCS/UVVS Observations of Cold Exospheric Calcium
NASA Astrophysics Data System (ADS)
Cassidy, T. A.
2018-05-01
Exospheric calcium is primarily ejected by a high energy process on the dawn hemisphere. UVVS data also show a sporadic cold component at low altitudes. Its temperature is consistent with laboratory measurements of photodesorption of calcium sulfide.
Koshiba, T; Tsumoto, K; Masaki, K; Kawano, K; Nitta, K; Kumagai, I
1998-08-01
During the process of evolution, ancestral lysozymes evolved into calcium-binding lysozymes by acquiring three critical aspartate residues at positions 86, 91 and 92. To investigate the process of the acquisition of calcium-binding ability, two of the aspartates were partially introduced into human lysozyme at positions 86, 91 and 92. These mutants (HLQ86D, HLA92D and HLQ86D/D91Q/A92D), having two critical aspartates in calcium-binding sites, were expressed in Escherichia coli as non-active inclusion bodies. For the preparation of lysozyme samples, a refolding system using thioredoxin was established. This system allowed for effective refolding of wild-type and mutant lysozymes, and 100% of activity was recovered within 4 days. The calcium ion dependence of the melting temperature (Tm) of wild-type and mutant lysozymes was investigated by differential scanning calorimetry at pH 4.5. The Tm values of wild-type, HLQ86D and HLA92D mutants were not dependent on calcium ion concentration. However, the Tm of HLQ86D/D91Q/A92D was 4 degrees higher in the presence of 50 mM CaCl2 than in its absence, and the calcium-binding constant of this mutant was estimated to be 2.25(+/-0.25)x10(2) M(-1) at pH 4.5. Moreover, the calcium-binding ability of this mutant was confirmed by the result using Sephadex G-25 gel chromatography. These results indicate that it is indispensable to have at least two aspartates at positions 86 and 92 for acquisition of calcium-binding ability. The process of the acquisition of calcium-binding site during evolution of calcium-binding lysozyme is discussed.
Loaiza, Anitsi; Carretta, María D; Taubert, Anja; Hermosilla, Carlos; Hidalgo, María A; Burgos, Rafael A
2016-02-25
Nonesterified fatty acids (NEFAs) are involved in proinflammatory processes in cattle, including in the increased expression of adhesion molecules in endothelial cells. However, the mechanisms underlying these effects are still unknown. The aim of this study was to assess the effects of NEFAs on the intracellular calcium (Ca(2+) i) influx, nitric oxide production, and ICAM-1 and IL-8 expression in primary bovine umbilical vein endothelial cells (BUVECs). Myristic (MA), palmitic (PA), stearic (SA), oleic (OA) and linoleic acid (LA) rapidly increased Ca(2+) i. The calcium response to all tested NEFAs showed an extracellular calcium dependence and only the LA response was significantly inhibited until the intracellular calcium was chelated. The EC50 values for MA and LA were 125 μM and 37 μM, respectively, and the MA and LA effects were dependent on calcium release from the endoplasmic reticulum stores and on the L-type calcium channels. Only the calcium response to MA was significantly reduced by GW1100, a selective G-protein-coupled free fatty acid receptor (GPR40) antagonist. We also detected a functional FFAR1/GPR40 protein in BUVECs by using western blotting and the FFAR1/GPR40 agonist TAK-875. Only LA increased the cellular nitric oxide levels in a calcium-dependent manner. LA stimulation but not MA stimulation increased ICAM-1 and IL-8-expression in BUVECs. This effect was inhibited by GW1100, an antagonist of FFAR1/GPR40, but not by U-73122, a phospholipase C inhibitor. These findings strongly suggest that each individual NEFA stimulates endothelial cells in a different way, with clearly different effects on intracellular calcium mobilization, NO production, and IL-8 and ICAM-1 expression in primary BUVECs. These findings not only extend our understanding of NEFA-mediated diseases in ruminants, but also provide new insight into the different molecular mechanisms involved during endothelial cell activation by NEFAs.
Aggarwal, Abhishek; Schulz, Herbert; Manhardt, Teresa; Bilban, Martin; Thakker, Rajesh V; Kallay, Enikö
2017-06-01
Colorectal cancer is one of the most common cancers in industrialised societies. Epidemiological studies, animal experiments, and randomized clinical trials have shown that dietary factors can influence all stages of colorectal carcinogenesis, from initiation through promotion to progression. Calcium is one of the factors with a chemoprophylactic effect in colorectal cancer. The aim of this study was to understand the molecular mechanisms of the anti-tumorigenic effects of extracellular calcium ([Ca 2+ ] o ) in colon cancer cells. Gene expression microarray analysis of colon cancer cells treated for 1, 4, and 24h with 2mM [Ca 2+ ] o identified significant changes in expression of 1571 probe sets (ANOVA, p<10 -5 ). The main biological processes affected by [Ca 2+ ] o were DNA replication, cell division, and regulation of transcription. All factors involved in DNA replication-licensing were significantly downregulated by [Ca 2+ ] o . Furthermore, we show that the calcium-sensing receptor (CaSR), a G protein-coupled receptor is a mediator involved in this process. To test whether these results were physiologically relevant, we fed mice with a standard diet containing low (0.04%), intermediate (0.1%), or high (0.9%) levels of dietary calcium. The main molecules regulating replication licensing were inhibited also in vivo, in the colon of mice fed high calcium diet. We show that among the mechanisms behind the chemopreventive effect of [Ca 2+ ] o is inhibition of replication licensing, a process often deregulated in neoplastic transformation. Our data suggest that dietary calcium is effective in preventing replicative stress, one of the main drivers of cancer and this process is mediated by the calcium-sensing receptor. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Baev, Artyom Y; Negoda, Alexander; Abramov, Andrey Y
2017-02-01
Inorganic polyphosphate (polyP) is a biopolymer of phosphoanhydride-linked orthophosphate residues. PolyP is involved in multiple cellular processes including mitochondrial metabolism and cell death. We used artificial membranes and isolated mitochondria to investigate the role of the polyP in mitochondrial ion transport and in activation of PTP. Here, we found that polyP can modify ion permeability of de-energised mitochondrial membranes but not artificial membranes. This permeability was selective for Ba 2+ and Ca 2+ but not for other monovalent and bivalent cations and can be blocked by inhibitors of the permeability transition pore - cyclosporine A or ADP. Lower concentrations of polyP modulate calcium dependent permeability transition pore opening. Increase in polyP concentrations and elongation chain length of the polymer causes calcium independent swelling in energized conditions. Physiologically relevant concentrations of inorganic polyP can regulate calcium dependent as well calcium independent mitochondrial permeability transition pore opening. This raises the possibility that cytoplasmic polyP can be an important contributor towards regulation of the cell death.
... A calcium-rich diet (including dairy, nuts, leafy greens and fish) helps to build and protect your bones. Calcium is a mineral that is necessary for life. In addition to building bones and keeping them healthy, calcium enables our ...
Ueda, Yukari; Taira, Zenei
2013-01-01
We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2':2,3'-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium.
Ueda, Yukari; Taira, Zenei
2013-01-01
We studied the absolute bioavailability of calcium from calcium L-lactate in mice using pharmacokinetics, and reviewed the absolute bioavailability of calcium from three other calcium salts in mice previously studied: calcium chloride, calcium acetate, and calcium ascorbate. The results showed that calcium metabolism is linear between intravenous administration of 15 mg/kg and 30 mg/kg, and is not affected by anions. Results after oral calcium administration of 150 mg/kg showed that the intestinal absorption process was significantly different among the four calcium salts. The rank of absolute bioavailability of calcium was calcium ascorbate > calcium L-lactate ≥ calcium acetate > calcium chloride. The mean residence time (MRTab) of calcium from calcium ascorbate (32.2 minutes) in the intestinal tract was much longer than that from calcium L-lactate (9.5 minutes), calcium acetate (15.0 minutes) and calcium chloride (13.6 minutes). Furthermore, the foods di-D-fructo-furanose-1,2′:2,3′-dianhydride, sudachi (Citrus sudachi) juice, and moromi-su (a Japanese vinegar) increased the absolute bioavailability of calcium from calcium chloride by 2.46-fold, 2.86-fold, and 1.23-fold, respectively, and prolonged MRTab by 48.5 minutes, 43.1 minutes, and 44.9 minutes, respectively. In conclusion, the prolonged MRTab of calcium in the intestinal tract by anion or food might cause the increased absorbability of calcium. PMID:27186137
21 CFR 172.410 - Calcium silicate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...
21 CFR 172.410 - Calcium silicate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...
21 CFR 172.410 - Calcium silicate.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...
21 CFR 172.410 - Calcium silicate.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Calcium silicate. 172.410 Section 172.410 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely...
21 CFR 172.410 - Calcium silicate.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Calcium silicate. 172.410 Section 172.410 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Anticaking Agents § 172.410 Calcium silicate. Calcium silicate, including synthetic calcium silicate, may be safely used in food in accordance with the...
The Incredible, Embryological Egg: Calcium and Strontium Isotopes Recapitulate Ontogeny
NASA Astrophysics Data System (ADS)
Gordon, G. W.; Skulan, J. L.
2011-12-01
Embryological development reflects evolutionary history. Understanding the processes of fetal growth is important for curing human birth defects and predicting damage to ecosystems from environmental insults. Tracing enzymatic and hormonal gradients during development, and correlating them to genetic cues dominate modern embryology. Previous work done tracing the mass transfer of elements has generally been limited to isotope spikes in vitro. Natural mass-dependent Ca and Sr isotopic ratios and radiogenic Sr isotopes have the potential to reveal both source and biochemical mechanism information about processes in vivo, but have not previously been extensively explored. The process when a hen lays a fertilized egg that becomes a chick includes formation and dissolution of calcium phosphate (bone) and calcium carbonate (shell). Skulan and DePaolo (1999) showed that chickens have 2% δ44/42Ca between a hen's bones and an egg white; this span represents more than 80% of the entire range of natural Ca isotope variation and illustrates there is significant variation to investigate. A striking feature of archosaurian development that also occurs in many mammals, including humans, is mass transfer of calcium from mother to embryo. The yolk of the domestic hen matures over 7-9 days, but the albumen, shell membranes and shell form in less than 20 hours. Domestic laying hens are at the physiological limit of egg production and selective breeding is no longer an effective method of increasing egg production. 60-75% of the shell's ~1.5 g of calcium comes from dietary sources, while 25-40% comes from the hen's medullary bone. Medullary bone is spicules formed in the marrow of long bones, and is a store of dietary calcium rapidly available for eggshell secretion. During in ovo development, the embryo's skeleton is formed from calcium in the yolk and by bulk dissolution of the eggshell's inner aspect via carbonic anhydrase in a process that has an effect on bone density similar to that caused by osteoporosis in humans. For both mass-dependent Ca and Sr isotopes, the isotopic value of the albumen is the highest natural value yet measured. The offset between the δ88/86Sr values of the albumen and shell is 0.45%, less than half that of the δ44/42Ca offset value (1.29%), as predicted by the relative mass differences. However, the yolk is 0.35% heavier than the shell in δ44/42Ca but 0.70% lighter in δ88/86Sr. In addition, the 87Sr/86Sr value of the shell (0.70854 ±0.000012, 2σ) is statistically the same as the albumen (0.70856 ±0.000018), but slightly offset from the yolk (0.70830 ±0.000014). The apparent decoupling of Ca and Sr, and the radiogenic offset between yolk and shell, may reflect differences in the residence time of calcium and strontium in different reproductive organs, as well as the contribution of medullary bone to shell formation. In addition, it may also reflect differential discrimination against Sr versus Ca in oviduct and uterus. Further studies could extend to thinning eggshells in wild avian populations, biochemical mechanisms of bone formation, and the mechanism of strontium ranelate in the treatment of osteoporosis.
Biomineralization of the spicules of sea urchin embryos.
Wilt, Fred H
2002-03-01
The formation of calcareous skeletal elements by various echinoderms, especially sea urchins, offers a splendid opportunity to learn more about some processes involved in the formation of biominerals. The spicules of larvae of euechinoids have been the focus of considerable work, including their developmental origins. The spicules are composed of a single optical crystal of high magnesium calcite and variable amounts of amorphous calcium carbonate. Occluded within the spicule is a proteinaceous matrix, most of which is soluble; this matrix constitutes about 0.1% of the mass. The spicules are also enclosed by an extracellular matrix and are almost completely surrounded by cytoplasmic cords. The spicules are deposited by primary mesenchyme cells (PMCs), which accumulate calcium and secrete calcium carbonate. A number of proteins specific, or highly enriched, in PMCs, have been cloned and studied. Recent work supports the hypothesis that proteins found in the extracellular matrix of the spicule are important for biomineralization.
Calcium alloy as active material in secondary electrochemical cell
Roche, Michael F.; Preto, Sandra K.; Martin, Allan E.
1976-01-01
Calcium alloys such as calcium-aluminum and calcium-silicon, are employed as active material within a rechargeable negative electrode of an electrochemical cell. Such cells can use a molten salt electrolyte including calcium ions and a positive electrode having sulfur, sulfides, or oxides as active material. The calcium alloy is selected to prevent formation of molten calcium alloys resulting from reaction with the selected molten electrolytic salt at the cell operating temperatures.
Calcium homeostasis in intraerythrocytic malaria parasites.
Garcia, C R; Dluzewski, A R; Catalani, L H; Burting, R; Hoyland, J; Mason, W T
1996-12-01
The fluorescent indicator, fura-2, AM, was used to measure free calcium concentrations in the intraerythrocytic malaria parasites of Plasmodium chabaudi and Plasmodium falciparum. In both species the free cytosolic calcium concentration was maintained at low levels (between 40 and 100 nM throughout the maturation process. Digital image analysis of the indicator fluorescence was performed on parasites and evaluated with the aid of a calibration of the calcium response, based on permeabilized parasites, exposed to calcium buffers. This again revealed that free calcium concentrations in the intact parasite are maintained at a predetermined level, regardless of the free calcium in the surrounding milieu. Both species of parasites are thus capable of regulating their internal free calcium levels with high precision, presumably by means of calcium pump ATPases. A small but significant elevation of the cytosolic free calcium concentration by the tumor promoter, thapsigargin, may be taken to reflect the presence of calcium stores in the endoplasmic reticulum in P. falciparum.
NASA Technical Reports Server (NTRS)
Hepler, P.
1983-01-01
Although the mechanism of calcium regulation is not understood, there is evidence that calcium plays a role in mitosis. Experiments conducted show that: (1) the spindle apparatus contains a highly developed membrane system that has many characteristics of sarcoplasmic reticulum of muscle; (2) this membrane system contains calcium; and (3) there are ionic fluxes occurring during mitosis which can be seen by a variety of fluorescence probes. Whether the process of mitosis can be modulated by experimentally modulating calcium is discussed.
Salahshoor, M; Li, C; Liu, Z Y; Fang, X Y; Guo, Y B
2018-02-01
Biodegradable magnesium-calcium (MgCa) alloy is a very attractive orthopedic biomaterial compared to permanent metallic alloys. However, the critical issue is that MgCa alloy corrodes too fast in the human organism. Compared to dry cutting, the synergistic dry cutting-finish burnishing can significantly improve corrosion performance of MgCa0.8 (wt%) alloy by producing a superior surface integrity including good surface finish, high compressive hook-shaped residual stress profile, extended strain hardening in subsurface, and little change of grain size. A FEA model was developed to understand the plastic deformation of MgCa materials during burnishing process. The measured polarization curves, surface micrographs, and element distributions of the corroded surfaces by burnishing show an increasing and uniform corrosion resistance to simulated body fluid. Copyright © 2017 Elsevier Ltd. All rights reserved.
Influence of solution conditions on deposition of calcium phosphate on titanium by NaOH-treatment
NASA Astrophysics Data System (ADS)
Feng, Q. L.; Cui, F. Z.; Wang, H.; Kim, T. N.; Kim, J. O.
2000-03-01
The present paper demonstrated a biomimetic method to coat calcium phosphate (Ca-P) on the surface of titanium induced by NaOH-treatment from a simple supersaturated hydroxyapatite solution (SHS). The influence of pH value and calcium ions concentration on the precipitation process was investigated. It is necessary for the solution to be supersaturated than the critical concentration of octacalcium phosphate (OCP) to get Ca-P coatings on titanium surface. In the precipitating process, it seems that amorphous calcium phosphate (ACP) precipitated first, then OCP, and finally hydroxyapatite (HA). The system was in continuous evolution and the phase transitions occurred in sequence.
Ramkumar, C; Singh, H; Munro, P A; Singh, A M
2000-05-01
Oil-in-water emulsions (4 wt % soy oil) containing 4 wt % whey protein hydrolysate (WPH) (27% degree of hydrolysis) and different levels of calcium, magnesium, or potassium chloride were prepared in a two-stage homogenizer. Other emulsions containing 4 wt % WPH but including 0.35 wt % hydroxylated lecithin and different levels of the above minerals were similarly prepared. The formation and stability of these emulsions were determined by measuring oil droplet size distributions using laser light scattering and by confocal scanning laser microscopy and a gravity creaming test. Both lecithin-free and lecithin-containing emulsions showed no change in droplet size distributions with increasing concentration of potassium in the range 0-37.5 mM. In contrast, the diameter of emulsion droplets increased with increasing calcium or magnesium concentration >12.5 mM. Emulsions containing hydroxylated lecithin were more sensitive to the addition of calcium or magnesium than the lecithin-free emulsions. Storage of emulsions at 20 degrees C for 24 h further increased the diameter of droplets and resulted in extensive creaming in emulsions containing >25 mM calcium or magnesium. It appears that both flocculation and coalescence processes were involved in the destabilization of emulsions induced by the addition of divalent cations.
Jang, Min Jee; Nam, Yoonkey
2015-01-01
Abstract. Optical recording facilitates monitoring the activity of a large neural network at the cellular scale, but the analysis and interpretation of the collected data remain challenging. Here, we present a MATLAB-based toolbox, named NeuroCa, for the automated processing and quantitative analysis of large-scale calcium imaging data. Our tool includes several computational algorithms to extract the calcium spike trains of individual neurons from the calcium imaging data in an automatic fashion. Two algorithms were developed to decompose the imaging data into the activity of individual cells and subsequently detect calcium spikes from each neuronal signal. Applying our method to dense networks in dissociated cultures, we were able to obtain the calcium spike trains of ∼1000 neurons in a few minutes. Further analyses using these data permitted the quantification of neuronal responses to chemical stimuli as well as functional mapping of spatiotemporal patterns in neuronal firing within the spontaneous, synchronous activity of a large network. These results demonstrate that our method not only automates time-consuming, labor-intensive tasks in the analysis of neural data obtained using optical recording techniques but also provides a systematic way to visualize and quantify the collective dynamics of a network in terms of its cellular elements. PMID:26229973
Kevin T. Smith; Walter C. Shortle; Jon H. Connolly; Rakesh Minocha; Jody Jellison
2009-01-01
Calcium cycling plays a key role in the health and productivity of red spruce forests in the northeastern US. A portion of the flowpath of calcium within forests includes translocation as Ca2+ in sapwood and accumulation as crystals of calcium oxalate in foliage. Concentrations of Ca in these tree tissues have been used as markers of...
Lee, Sang Eun; Lee, Seung Hun
2018-06-01
Epidermal barrier formation and the maintenance of barrier homeostasis are essential to protect us from the external environments and organisms. Moreover, impaired keratinocytes differentiation and dysfunctional skin barrier can be the primary causes or aggravating factors for many inflammatory skin diseases including atopic dermatitis and psoriasis. Therefore, understanding the regulation mechanisms of keratinocytes differentiation and skin barrier homeostasis is important to understand many skin diseases and establish an effective treatment strategy. Calcium ions (Ca 2+ ) and their concentration gradient in the epidermis are essential in regulating many skin functions, including keratinocyte differentiation, skin barrier formation, and permeability barrier homeostasis. Recent studies have suggested that the intracellular Ca 2+ stores such as the endoplasmic reticulum (ER) are the major components that form the epidermal calcium gradient and the ER calcium homeostasis is crucial for regulating keratinocytes differentiation, intercellular junction formation, antimicrobial barrier, and permeability barrier homeostasis. Thus, both Ca 2+ release from intracellular stores, such as the ER and Ca 2+ influx mechanisms are important in skin barrier. In addition, growing evidences identified the functional existence and the role of many types of calcium channels which mediate calcium flux in keratinocytes. In this review, the origin of epidermal calcium gradient and their role in the formation and regulation of skin barrier are focused. We also focus on the role of ER calcium homeostasis in skin barrier. Furthermore, the distribution and role of epidermal calcium channels, including transient receptor potential channels, store-operated calcium entry channel Orai1, and voltage-gated calcium channels in skin barrier are discussed.
Spectral Quantitation Of Hydroponic Nutrients
NASA Technical Reports Server (NTRS)
Schlager, Kenneth J.; Kahle, Scott J.; Wilson, Monica A.; Boehlen, Michelle
1996-01-01
Instrument continuously monitors hydroponic solution by use of absorption and emission spectrometry to determine concentrations of principal nutrients, including nitrate, iron, potassium, calcium, magnesium, phosphorus, sodium, and others. Does not depend on extraction and processing of samples, use of such surrograte parameters as pH or electrical conductivity for control, or addition of analytical reagents to solution. Solution not chemically altered by analysis and can be returned to hydroponic process stream after analysis.
Uzhachenko, Roman; Boyd, Kelli; Olivares-Villagomez, Danyvid; Zhu, Yueming; Goodwin, J Shawn; Rana, Tanu; Shanker, Anil; Tan, Winston J T; Bondar, Tanya; Medzhitov, Ruslan; Ivanova, Alla V
2017-03-26
Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response.Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies.
Uzhachenko, Roman; Boyd, Kelli; Olivares-Villagomez, Danyvid; Zhu, Yueming; Goodwin, J. Shawn; Rana, Tanu; Shanker, Anil; Tan, Winston J.T.; Bondar, Tanya; Medzhitov, Ruslan; Ivanova, Alla V.
2017-01-01
Decreased energy production and increased oxidative stress are considered to be major contributors to aging and aging-associated pathologies. The role of mitochondrial calcium homeostasis has also been highlighted as an important factor affecting different pathological conditions. Here, we present evidence that loss of a small mitochondrial protein Fus1 that maintains mitochondrial homeostasis results in premature aging, aging-associated pathologies, and decreased survival. We showed that Fus1KO mice develop multiple early aging signs including lordokyphosis, lack of vigor, inability to accumulate fat, reduced ability to tolerate stress, and premature death. Other prominent pathological changes included low sperm counts, compromised ability of adult stem cells to repopulate tissues, and chronic inflammation. At the molecular level, we demonstrated that mitochondria of Fus1 KO cells have low reserve respiratory capacity (the ability to produce extra energy during sudden energy demanding situations), and show significantly altered dynamics of cellular calcium response. Our recent studies on early hearing and memory loss in Fus1 KO mice combined with the new data presented here suggest that calcium and energy homeostasis controlled by Fus1 may be at the core of its aging-regulating activities. Thus, Fus1 protein and Fus1-dependent pathways and processes may represent new tools and targets for anti-aging strategies. PMID:28351997
Thomas, Charlotte M; Timson, David J
2018-05-17
The trematode Schistosoma mansoni is a causative agent of schistosomiasis, the second most common parasitic disease of humans after malaria. Calcium homeostasis and calcium-mediated signalling pathways are of particular interest in this species. The drug of choice for treating schistosomiasis, praziquantel, disrupts the regulation of calcium uptake and there is interest in exploiting calcium-mediated processes for future drug discovery. Calmodulin is a calcium sensing protein, present in most eukaryotes. It is a critical regulator of processes as diverse as muscle contraction, cell division and, partly through interaction with voltage-gated calcium channels, intra-cellular calcium concentrations. S. mansoni expresses two highly similar calmodulins - SmCaM1 and SmCaM2. Both proteins interact with calcium, manganese, cadmium (II), iron (II) and lead ions in native gel electrophoresis. These ions also cause conformational changes in the proteins resulting in the exposure of a more hydrophobic surface (as demonstrated by anilinonaphthalene-8-sulfonate fluorescence assays). The proteins are primarily dimeric in the absence of calcium ions, but monomeric in the presence of this ion. Both SmCaM1 and SmCaM2 interact with a peptide corresponding to an IQ-motif derived from the α-subunit of the voltage-gated calcium channel SmCa v 1B (residues 1923-1945). Both proteins bound with slightly higher affinity in the presence of calcium ions. However, there was no difference between the affinities of the two proteins for the peptide. This interaction could be antagonised by chlorpromazine and trifluoperazine, but not praziquantel or thiamylal. Interestingly no interaction could be detected with the other three IQ-motifs identified in S. mansoni voltage-gated ion calcium channels. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lattice model for calcium dynamics
NASA Astrophysics Data System (ADS)
Guisoni, Nara; de Oliveira, Mario José
2005-06-01
We present a simplified lattice model to study calcium dynamics in the endoplasmic reticulum membrane. Calcium channels and calcium ions are placed in two interpenetrating square lattices which are connected in two ways: (i) via calcium release and (ii) because transitions between channel states are calcium dependent. The opening or closing of a channel is a stochastic process controlled by two functions which depend on the calcium density on the channel neighborhood. The model is studied through mean field calculations and simulations. We show that the critical behavior of the model changes drastically depending on the opening/closing functions. For certain choices of these functions, all channels are closed at very low and high calcium densities and the model presents one absorbing state.
Hybrid calcium phosphate coatings for implants
NASA Astrophysics Data System (ADS)
Malchikhina, Alena I.; Shesterikov, Evgeny V.; Bolbasov, Evgeny N.; Ignatov, Viktor P.; Tverdokhlebov, Sergei I.
2016-08-01
Monophasic biomaterials cannot provide all the necessary functions of bones or other calcined tissues. It is necessary to create for cancer patients the multiphase materials with the structure and composition simulating the natural bone. Such materials are classified as hybrid, obtained by a combination of chemically different components. The paper presents the physical, chemical and biological studies of coatings produced by hybrid technologies (HT), which combine primer layer and calcium phosphate (CaP) coating. The first HT type combines the method of vacuum arc titanium primer layer deposition on a stainless steel substrate with the following micro-arc oxidation (MAO) in phosphoric acid solution with addition of calcium compounds to achieve high supersaturated state. MAO CaP coatings feature high porosity (2-8%, pore size 5-7 µm) and surface morphology with the thickness greater than 5 µm. The thickness of Ti primer layer is 5-40 µm. Amorphous MAO CaP coating micro-hardness was measured at maximum normal load Fmax = 300 mN. It was 3.1 ± 0.8 GPa, surface layer elasticity modulus E = 110 ± 20 GPa, roughness Ra = 0.9 ± 0.1 µm, Rz = 7.5 ± 0.2 µm, which is less than the titanium primer layer roughness. Hybrid MAO CaP coating is biocompatible, able to form calcium phosphates from supersaturated body fluid (SBF) solution and also stimulates osteoinduction processes. The second HT type includes the oxide layer formation by thermal oxidation and then CaP target radio frequency magnetron sputtering (RFMS). Oxide-RFMS CaP coating is a thin dense coating with good adhesion to the substrate material, which can be used for metal implants. The RFMS CaP coating has thickness 1.6 ± 0.1 µm and consists of main target elements calcium and phosphorus and Ca/P ratio 2.4. The second HT type can form calcium phosphates from SBF solution. In vivo study shows that hybrid RFMS CaP coating is biocompatible and produces fibrointegration processes.
Vrdoljak, Ivica; Panjkota Krbavčić, Ines; Bituh, Martina; Vrdoljak, Tea; Dujmić, Zoran
2015-05-01
To analyze how different thermal processing methods affect the protein, calcium, and phosphorus content of hospital food served to dialysis patients and to generate recommendations for preparing menus that optimize nutritional content while minimizing the risk of hyperphosphatemia. Standard Official Methods of Analysis (AOAC) methods were used to determine dry matter, protein, calcium, and phosphorus content in potatoes, fresh and frozen carrots, frozen green beans, chicken, beef and pork, frozen hake, pasta, and rice. These levels were determined both before and after boiling in water, steaming, stewing in oil or water, or roasting. Most of the thermal processing methods did not significantly reduce protein content. Boiling increased calcium content in all foodstuffs because of calcium absorption from the hard water. In contrast, stewing in oil containing a small amount of water decreased the calcium content of vegetables by 8% to 35% and of chicken meat by 12% to 40% on a dry weight basis. Some types of thermal processing significantly reduced the phosphorus content of the various foodstuffs, with levels decreasing by 27% to 43% for fresh and frozen vegetables, 10% to 49% for meat, 7% for pasta, and 22.8% for rice on a dry weight basis. On the basis of these results, we modified the thermal processing methods used to prepare a standard hospital menu for dialysis patients. Foodstuffs prepared according to the optimized menu were similar in protein content, higher in calcium, and significantly lower in phosphorus than foodstuffs prepared according to the standard menu. Boiling in water and stewing in oil containing some water significantly reduced phosphorus content without affecting protein content. Soaking meat in cold water for 1 h before thermal processing reduced phosphorus content even more. These results may help optimize the design of menus for dialysis patients. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Calcium-regulated in vivo protein phosphorylation in Zea mays L. root tips
NASA Technical Reports Server (NTRS)
Raghothama, K. G.; Reddy, A. S.; Friedmann, M.; Poovaiah, B. W.
1987-01-01
Calcium dependent protein phosphorylation was studied in corn (Zea mays L.) root tips. Prior to in vivo protein phosphorylation experiments, the effect of calcium, ethyleneglycol-bis-(beta-aminoethyl ether)-N-N' -tetraacetic acid (EGTA) and calcium ionophore (A-23187) on phosphorus uptake was studied. Calcium increased phosphorus uptake, whereas EGTA and A-23187 decreased it. Consequently, phosphorus concentration in the media was adjusted so as to attain similar uptake in different treatments. Phosphoproteins were analyzed by two-dimensional gel electrophoresis. Distinct changes in phosphorylation were observed following altered calcium levels. Calcium depletion in root tips with EGTA and A-23187 decreased protein phosphorylation. However, replenishment of calcium following EGTA and ionophore pretreatment enhanced phosphorylation of proteins. Preloading of the root tips with 32P in the presence of EGTA and A-23187 followed by a ten minute calcium treatment, resulted in increased phosphorylation indicating the involvement of calcium, calcium and calmodulin-dependent kinases. Calmodulin antagonist W-7 was effective in inhibiting calcium-promoted phosphorylation. These studies suggest a physiological role for calcium-dependent phosphorylation in calcium-mediated processes in plants.
Protection of Dentate Hilar Cells from Prolonged Stimulation by Intracellular Calcium Chelation
NASA Astrophysics Data System (ADS)
Scharfman, Helen E.; Schwartzkroin, Philip A.
1989-10-01
Prolonged afferent stimulation of the rat dentate gyrus in vivo leads to degeneration only of those cells that lack immunoreactivity for the calcium binding proteins parvalbumin and calbindin. In order to test the hypothesis that calcium binding proteins protect against the effects of prolonged stimulation, intracellular recordings were made in hippocampal slices from cells that lack immunoreactivity for calcium binding proteins. Calcium binding protein--negative cells showed electrophysiological signs of deterioration during prolonged stimulation; cells containing calcium binding protein did not. When neurons without calcium binding proteins were impaled with microelectrodes containing the calcium chelator BAPTA, and BAPTA was allowed to diffuse into the cells, these cells showed no deterioration. These results indicate that, in a complex tissue of the central nervous system, an activity-induced increase in intracellular calcium can trigger processes leading to cell deterioration, and that increasing the calcium binding capacity of a cell decreases its vulnerability to damage.
FUNDAMENTAL PROCESSES INVOLVED IN SO2 CAPTURE BY CALCIUM-BASED ADSORBENTS
The paper discusses the fundamental processes in sulfur dioxide (SO2) capture by calcium-based adsorbents for upper furnace, duct, and electrostatic precipitator (ESP) reaction sites. It examines the reactions in light of controlling mechanisms, effect of sorbent physical propert...
Induced calcium carbonate precipitation using Bacillus species.
Seifan, Mostafa; Samani, Ali Khajeh; Berenjian, Aydin
2016-12-01
Microbially induced calcium carbonate precipitation is an emerging process for the production of self-healing concrete. This study was aimed to investigate the effects and optimum conditions on calcium carbonate biosynthesis. Bacillus licheniformis, Bacillus sphaericus, yeast extract, urea, calcium chloride and aeration were found to be the most significant factors affecting the biomineralization of calcium carbonate. It was noticed that the morphology of microbial calcium carbonate was mainly affected by the genera of bacteria (cell surface properties), the viscosity of the media and the type of electron acceptors (Ca 2+ ). The maximum calcium carbonate concentration of 33.78 g/L was achieved at the optimum conditions This value is the highest concentration reported in the literature.
Factors that influence properties of FOG deposits and their formation in sewer collection systems.
Iasmin, Mahbuba; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J
2014-02-01
Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages that leads to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer systems displayed strong similarities with calcium-based fatty acid salts as a result of a saponification reaction. The objective of this study was to quantify the factors that may affect the formation of FOG deposits and their chemical and rheological properties. These factors included the types of fats used in FSEs, environmental conditions (i.e. pH and temperature), and the source of calcium in sewer systems. The results of this study showed that calcium content in the calcium based salts seemed to depend on the solubility limit of the calcium source and influenced by pH and temperature conditions. The fatty acid profile of the calcium-based fatty acid salts produced under alkali driven hydrolysis were identical to the profile of the fat source and did not match the profile of field FOG deposits, which displayed a high fraction of palmitic, a long chain saturated fatty acid. It is hypothesized that selective microbial metabolism of fats and/or biologically induced hydrogenation may contribute to the FOG deposit makeup in sewer system. Therefore, selective removal of palmitic in pretreatment processes may be necessary prior to the discharge of FSE wastes into the sewer collection system. Copyright © 2013 Elsevier Ltd. All rights reserved.
... Your health care provider may order a calcium test if you have a pre-existing condition that may affect your calcium levels. These include: Kidney disease Thyroid disease Malnutrition Certain types of cancer What happens during a calcium blood test? A health care professional will take a blood ...
APPARATUS FOR THE PURIFICATION OF CALCIUM
Burnett, R.L.
1953-08-25
The present patent claims and describes an apparatus adapted to carry out a new process for the purification of calcium containing an alkali metal as impurity. The process consists of distilling the impure caldium in the presence of an inert gas and at a reduced pressure, condensing substantially pure calcium on a condensing surface of iron or a ferrous alloy and condensing the alkali metal on a separate surface, the two condensing surfaces being maintained at suitable temperatures by separate cooling means.
Influence of hard water ions on the growth of salmonella in poultry processing water
USDA-ARS?s Scientific Manuscript database
The influence of magnesium and calcium ions in process water on the growth of Salmonella was evaluated and related to the contamination in process wastewater. Salmonella typhimurium was grown in the laboratory and exposed to 500 mg/kg and 1000 mg/kg of magnesium and calcium ions to simulate hard pr...
Calcium regulation in crustaceans during the molt cycle: a review and update.
Ahearn, Gregory A; Mandal, Prabir K; Mandal, Anita
2004-02-01
Epithelial cells of the gut, gills, antennal glands and integument regulate calcium concentrations in crustaceans during the molt cycle. A cellular calcium transport model has been proposed suggesting the presence of calcium pumps, cation antiporters and calcium channels in transporting epithelial membranes that regulate the movements of this cation across the cell layer. Basolateral calcium transport during postmolt appears mainly regulated by the low affinity NCX antiporter, while calcium regulating 'housekeeping' activities of these cells in intermolt are controlled by the high affinity calcium ATPase (PMCA). A model is proposed for the involvement of the epithelial ER in the massive transepithelial calcium fluxes that occur during premolt and postmolt. This model involves the endoplasmic reticulum SERCA and RyR proteins and proposed cytoplasmic unstirred layers adjacent to apical and basolateral plasma membranes where calcium activities may largely exceed those in the bulk cytoplasmic phase. A result of the proposed transepithelial calcium transport model is that large quantities of calcium can be moved through these cells by these processes without affecting the low, and carefully controlled, bulk cytoplasmic calcium activities.
Preparation and biological efficacy of haddock bone calcium tablets
NASA Astrophysics Data System (ADS)
Huo, Jiancong; Deng, Shanggui; Xie, Chao; Tong, Guozhong
2010-03-01
To investigate the possible use of waste products obtained after processing haddock, the present study prepared haddock bone calcium powder by NaOH and ethanol soaking (alkalinealcohol method) and prepared haddock bone calcium tablets using the powder in combination with appropriate excipients. The biological efficacy of the haddock bone calcium tablets was investigated using Wistar rats as an experiment model. Results show that the optimal parameters for the alkalinealcohol method are: NaOH concentration 1 mol/L, immersion time 30 h; ethanol concentration 60%, immersion time 15 h. A mixture of 2% polyvinylpyrrolidone in ethanol was used as an excipient at a ratio of 1:2 to full-cream milk powder, without the use of a disintegrating agent. This process provided satisfactory tablets in terms of rigidity and taste. Animal studies showed that the haddock bone calcium tablets at a dose of 2 g·kg-1·d-1 or 5g·kg-1·d-1 significantly increased blood calcium and phosphorus levels and bone calcium content in rats. Therefore, these tablets could be used for calcium supplementation and prevent osteoporosis. Although the reasons of high absorption in the rats fed with haddock bone calcium tablets are unclear, it is suggested that there are some factors, such as treatment with method of alkaline-alcohol or the added milk, may play positive roles in increasing absorption ratio.
Wu, Wenfei; Li, Bafang; Hou, Hu; Zhang, Hongwei; Zhao, Xue
2017-12-13
A calcium-chelating peptide is considered to have the ability to improve calcium absorption. In this study, Pacific cod skin gelatin hydrolysates treated with trypsin for 120 min exhibited higher calcium-chelating activity. Sequential chromatography, involving hydroxyapatite affinity chromatography and reversed phase high performance liquid chromatography, was used for the purification of calcium-chelating peptides. Two novel peptides with the typical characteristics of collagen were sequenced as GDKGESGEAGER and GEKGEGGHR based on LC-HRMS/MS, which showed a high affinity to calcium. Calcium-peptide complexation was further characterized by ESI-MS (MS and MS/MS) and FTIR spectroscopy. The results showed that the complexation of the two peptides with calcium was conducted mainly at the ratio of 1 : 1. The amino terminal group and the peptide bond of the peptide backbone as well as the amino group of the lysine side chain and the carboxylate of the glutamate side chain were the possible calcium binding sites for the two peptides. Meanwhile, several amino acid side chain groups, including the hydroxyl (Ser) and carboxylate (Asp) of GDKGESGEAGER and the imine (His) of GEKGEGGHR, were crucial in the complexation. The arginine residue in GEKGEGGHR also participated in the calcium coordination. Additionally, several active fragments with calcium-chelating activity were obtained using MS/MS spectra, including GDKGESGEAGE, GEAGER, GEK, EKG and KGE. This study suggests that gelatin-derived peptides have the potential to be used as a calcium-chelating ingredient to combat calcium deficiency.
Calcium Intake in Elderly Australian Women Is Inadequate
Meng, Xingqiong; Kerr, Deborah A.; Zhu, Kun; Devine, Amanda; Solah, Vicky; Binns, Colin W.; Prince, Richard L.
2010-01-01
The role of calcium in the prevention of bone loss in later life has been well established but little data exist on the adequacy of calcium intakes in elderly Australian women. The aim of this study was to compare the dietary intake including calcium of elderly Australian women with the Australian dietary recommendation, and to investigate the prevalence of calcium supplement use in this population. Community-dwelling women aged 70–80 years were randomly recruited using the Electoral Roll for a 2-year protein intervention study in Western Australia. Dietary intake was assessed at baseline by a 3-day weighed food record and analysed for energy, calcium and other nutrients. A total of 218 women were included in the analysis. Mean energy intake was 7,140 ± 1,518 kJ/day and protein provided 19 ± 4% of energy. Mean dietary calcium intake was 852 ± 298 mg/day, which is below Australian recommendations. Less than one quarter of women reported taking calcium supplements and only 3% reported taking vitamin D supplements. Calcium supplements by average provided calcium 122 ± 427 mg/day and when this was taken into account, total calcium intake increased to 955 ± 504 mg/day, which remained 13% lower than the Estimated Average Requirement (EAR, 1,100 mg/day) for women of this age group. The women taking calcium supplements had a higher calcium intake (1501 ± 573 mg) compared with the women on diet alone (813 ± 347 mg). The results of this study indicate that the majority of elderly women were not meeting their calcium requirements from diet alone. In order to achieve the recommended dietary calcium intake, better strategies for promoting increased calcium, from both diet and calcium supplements appears to be needed. PMID:22254072
Calcium-based biomaterials for diagnosis, treatment, and theranostics.
Qi, Chao; Lin, Jing; Fu, Lian-Hua; Huang, Peng
2018-01-22
Calcium-based (CaXs) biomaterials including calcium phosphates, calcium carbonates, calcium silicate and calcium fluoride have been widely utilized in the biomedical field owing to their excellent biocompatibility and biodegradability. In recent years, CaXs biomaterials have been strategically integrated with imaging contrast agents and therapeutic agents for various molecular imaging modalities including fluorescence imaging, magnetic resonance imaging, ultrasound imaging or multimodal imaging, as well as for various therapeutic approaches including chemotherapy, gene therapy, hyperthermia therapy, photodynamic therapy, radiation therapy, or combination therapy, even imaging-guided therapy. Compared with other inorganic biomaterials such as silica-, carbon-, and gold-based biomaterials, CaXs biomaterials can dissolve into nontoxic ions and participate in the normal metabolism of organisms. Thus, they offer safer clinical solutions for disease theranostics. This review focuses on the state-of-the-art progress in CaXs biomaterials, which covers from their categories, characteristics and preparation methods to their bioapplications including diagnosis, treatment, and theranostics. Moreover, the current trends and key problems as well as the future prospects and challenges of CaXs biomaterials are also discussed at the end.
The potential of tetrandrine as a protective agent for ischemic stroke.
Chen, Yun; Tsai, Ya-Hui; Tseng, Sheng-Hong
2011-09-16
Stroke is one of the leading causes of mortality, with a high incidence of severe morbidity in survivors. The treatment to minimize tissue injury after stroke is still unsatisfactory and it is mandatory to develop effective treatment strategies for stroke. The pathophysiology of ischemic stroke is complex and involves many processes including energy failure, loss of ion homeostasis, increased intracellular calcium level, platelet aggregation, production of reactive oxygen species, disruption of blood brain barrier, and inflammation and leukocyte infiltration, etc. Tetrandrine, a bisbenzylisoquinoline alkaloid, has many pharmacologic effects including anti-inflammatory and cytoprotective effects. In addition, tetrandrine has been found to protect the liver, heart, small bowel and brain from ischemia/reperfusion injury. It is a calcium channel blocker, and can inhibit lipid peroxidation, reduce generation of reactive oxygen species, suppress the production of cytokines and inflammatory mediators, inhibit neutrophil recruitment and platelet aggregation, which are all devastating factors during ischemia/reperfusion injury of the brain. Because tetrandrine can counteract these important pathophysiological processes of ischemic stroke, it has the potential to be a protective agent for ischemic stroke.
Gravity, Calcium, And Bone: Update, 1989
NASA Technical Reports Server (NTRS)
Arnaud, Sara B.; Morey-Holton, Emily
1992-01-01
Report reviews short-term flight and ground-based experiments on effects of 1 g and 0 g on skeletal adaptation, calcium metabolism, and growth processes. Results indicate two principal components of calcium metabolism-calcium endocrine system and bone - respond within days to changes in orientation of body in gravitation and to weightlessness. Effects of spaceflight or bed rest on biomechanics of bones more severe than on total body bone mass.
Role of calcium activated kinases and phosphatases in heat shock factor-1 activation.
Soncin, F; Asea, A; Zhang, X; Stevenson, M A; Calderwood, S K
2000-12-01
HSF-1 is regulated at multiple molecular levels through intra- and intermolecular protein-protein interactions as well as by post-translational modification through phosphorylation. We have found that elevating intracellular calcium ion levels by exposure to the ionophore A23187 or thapsigargin inhibits the conversion of HSF-1 from a latent cytoplasmic form to its nuclear/DNA binding form. To examine a role for calcium/calmodulin regulated enzymes in this process, we examined the ability of specific inhibitors to abrogate the effects of calcium elevation. While the inhibitor of calmodulin dependent kinase II, KCN62 enhanced activation of HSF-1 during heat shock, it failed to block the inhibitory effects of calcium increase. By contrast, the immunosuppresant drugs cyclosporin A and FK506 abolished the effects of calcium elevation on HSF-1 activation. As the biological effects of the drugs are effected through inhibition of the calcium/calmodulin regulated phosphatase calcineurin, this suggests a role for calcineurin in antagonizing HSF-1 activity. The experiments suggest the existence of phosphorylated residue(s) in HSF-1 important in one or more of the processes that lead to activation (trimerization, nuclear localization, DNA binding) and which becomes dephosphorylated due to the activation of a calcium/calmodulin/calcineurin complex.
Processing treatments for mitigating acrylamide formation in sweetpotato French fries.
Truong, Van-Den; Pascua, Yvette T; Reynolds, Rong; Thompson, Roger L; Palazoğlu, T Koray; Mogol, Burce Atac; Gökmen, Vural
2014-01-08
Acrylamide formation in sweetpotato French fries (SPFF) is likely a potential health concern as there is an increasing demand for good-quality fries from carotene-rich sweetpotatoes (SP). This is the first report on acrylamide formation in SPFF as affected by processing methods. Acrylamide levels in SPFF from untreated SP strips fried at 165 °C for 2, 3, and 5 min were 124.9, 255.5, and 452.0 ng/g fresh weight, which were reduced by about 7 times to 16.3, 36.9, and 58.3 ng/g, respectively, when the strips were subjected to processing that included water blanching and soaking in 0.5% sodium acid pyrophosphate before frying. An additional step of strip soaking in 0.4% calcium chloride solution before par-frying increased the calcium content from 0.2 to 0.8 mg/g and decreased the acrylamide levels to 6.3, 17.6, and 35.4 ng/g, respectively. SPFF with acrylamide level of <100 ng/g or several times lower than that of white potato French fries can be obtained by integrating processing treatments commonly used in the food industry.
Reigada, David; Navarro-Ruiz, Rosa María; Caballero-López, Marcos Javier; Del Águila, Ángela; Muñoz-Galdeano, Teresa; Maza, Rodrigo M; Nieto-Díaz, Manuel
2017-03-01
Reducing cell death during the secondary injury is a major priority in the development of a cure for traumatic spinal cord injury (SCI). One of the earliest processes that follow SCI is the excitotoxicity resulting from the massive release of excitotoxicity mediators, including ATP, which induce an excessive and/or prolonged activation of their receptors and a deregulation of the calcium homeostasis. Diadenosine tetraphosphate (Ap 4 A) is an endogenous purinergic agonist, present in both extracellular and intracellular fluids, with promising cytoprotective effects in different diseases including neurodegenerative processes. In a search for efficient neuroprotective strategies for SCI, we have tested the capability of Ap 4 A to reduce the excitotoxic death mediated by the ATP-induced deregulation of calcium homeostasis and its consequences on tissue preservation and functional recovery in a mouse model of moderate contusive SCI. Our analyses with the murine neural cell line Neuro2a demonstrate that treatment with Ap 4 A reduces ATP-dependent excitotoxic death by both lowering the intracellular calcium response and decreasing the expression of specific purinergic receptors. Follow-up analyses in a mouse model of contusive SCI showed that acute administration of Ap 4 A following SCI reduces tissue damage and improves motor function recovery. These results suggest that Ap 4 A cytoprotection results from a decrease of the purinergic tone preventing the effects of a massive release of ATP after SCI, probably together with a direct induction of anti-apoptotic and pro-survival pathways via activation of P2Y 2 proposed in previous studies. In conclusion, Ap 4 A may be a good candidate for an SCI therapy, particularly to reduce excitotoxicity in combination with other modulators and/or inhibitors of the excitotoxic process that are being tested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulchaey, John S.; Kollmeier, Juna A.; Kasliwal, Mansi M., E-mail: mulchaey@obs.carnegiescience.edu
X-ray measurements suggest that the abundance of calcium in the intracluster medium is higher than can be explained using favored models for core-collapse and Type Ia supernovae alone. We investigate whether the ''calcium conundrum'' in the intracluster medium can be alleviated by including a contribution from the recently discovered subclass of supernovae known as calcium-rich gap transients. Although the calcium-rich gap transients make up only a small fraction of all supernovae events, we find that their high calcium yields are sufficient to reproduce the X-ray measurements found for nearby rich clusters. We find the χ{sup 2} goodness-of-fit metric improves frommore » 84 to 2 by including this new class. Moreover, calcium-rich supernovae preferentially occur in the outskirts of galaxies making it easier for the nucleosynthesis products of these events to be incorporated in the intracluster medium via ram-pressure stripping. The discovery of calcium-rich gap transients in clusters and groups far from any individual galaxy suggests that supernovae associated with intracluster stars may play an important role in enriching the intracluster medium. Calcium-rich gap transients may also help explain anomalous calcium abundances in many other astrophysical systems including individual stars in the Milky Way, the halos of nearby galaxies, and the circumgalactic medium. Our work highlights the importance of considering the diversity of supernovae types and corresponding yields when modeling the abundance of the intracluster medium and other gas reservoirs.« less
Role of calcium permeable channels in dendritic cell migration.
Sáez, Pablo J; Sáez, Juan C; Lennon-Duménil, Ana-María; Vargas, Pablo
2018-06-01
Calcium ion (Ca 2+ ) is an essential second messenger involved in multiple cellular and subcellular processes. Ca 2+ can be released and sensed globally or locally within cells, providing complex signals of variable amplitudes and time-scales. The key function of Ca 2+ in the regulation of acto-myosin contractility has provided a simple explanation for its role in the regulation of immune cell migration. However, many questions remain, including the identity of the Ca 2+ stores, channels and upstream signals involved in this process. Here, we focus on dendritic cells (DCs), because their immune sentinel function heavily relies on their capacity to migrate within tissues and later on between tissues and lymphoid organs. Deciphering the mechanisms by which cytoplasmic Ca 2+ regulate DC migration should shed light on their role in initiating and tuning immune responses. Copyright © 2018 Elsevier Ltd. All rights reserved.
The human NAD metabolome: Functions, metabolism and compartmentalization
Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias
2015-01-01
Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229
Moradi, Maryam; Varasteh, Elham
2016-01-01
Coronary artery calcification (CAC) is a specific indicator of and a sensitive marker for the atherosclerotic disease process. However, calcium scoring may miss noncalcified plaques with clinical importance. The present study aimed to identify the presence and extent of coronary plaques in computed tomography coronary angiography (CTCA) in patients with a zero CAC score and the secondary endpoint was to evaluate the association between coronary risk factors and the presence of noncalcified plaques. In a retrospective descriptive-analytic study, a total of 2000 consecutive patients who undergone CTCA between September 2012 and September 2014 at Alzahra Hospital in Isfahan, Iran were analyzed. Three hundred and eighty-five patients with a zero calcium score were included in the study. The demographic information and coronary artery disease (CAD), risk factors including diabetes mellitus (DM), hypertension, hyperlipidemia, smoking, and family history of CAD, were obtained from the questionnaire. Furthermore, the presence of plaques and extent of stenosis were evaluated in patients with zero CAC score. Of the 385 patients with a zero calcium score, 16 (4.2%) had atherosclerotic plaques. Among them, 6 (1.6%) had significant (>50%) coronary stenosis, and 10 (2.6%) had no significant (<50%) coronary stenosis. Hyperlipidemia, DM, and smoking were significantly associated with obstructive CAD. Furthermore, in patients with zero calcium score, DM, hyperlipidemia, and smoking had odds ratios of 5.9, 14, and 32.5 for the development of coronary artery plaques, respectively. Although, CAC scoring is a noninvasive and valuable method to evaluate CAD; but zero CAC score does not absolutely exclude the CAD, especially in the presence of risk factors such as diabetes, hyperlipidemia, and smoking.
Ganesan, Vishnu; De, Shubha; Shkumat, Nicholas; Marchini, Giovanni; Monga, Manoj
2018-02-01
Preoperative determination of uric acid stones from computerized tomography imaging would be of tremendous clinical use. We sought to design a software algorithm that could apply data from noncontrast computerized tomography to predict the presence of uric acid stones. Patients with pure uric acid and calcium oxalate stones were identified from our stone registry. Only stones greater than 4 mm which were clearly traceable from initial computerized tomography to final composition were included in analysis. A semiautomated computer algorithm was used to process image data. Average and maximum HU, eccentricity (deviation from a circle) and kurtosis (peakedness vs flatness) were automatically generated. These parameters were examined in several mathematical models to predict the presence of uric acid stones. A total of 100 patients, of whom 52 had calcium oxalate and 48 had uric acid stones, were included in the final analysis. Uric acid stones were significantly larger (12.2 vs 9.0 mm, p = 0.03) but calcium oxalate stones had higher mean attenuation (457 vs 315 HU, p = 0.001) and maximum attenuation (918 vs 553 HU, p <0.001). Kurtosis was significantly higher in each axis for calcium oxalate stones (each p <0.001). A composite algorithm using attenuation distribution pattern, average attenuation and stone size had overall 89% sensitivity, 91% specificity, 91% positive predictive value and 89% negative predictive value to predict uric acid stones. A combination of stone size, attenuation intensity and attenuation pattern from conventional computerized tomography can distinguish uric acid stones from calcium oxalate stones with high sensitivity and specificity. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Plant calcium oxalate crystal formation, function, and its impact on human health
USDA-ARS?s Scientific Manuscript database
Crystals of calcium oxalate have been observed among members from most taxonomic groups of photosynthetic organisms ranging from the smallest algae to the largest trees. The biological roles for calcium oxalate crystal formation in plant growth and development include high capacity calcium regulatio...
40 CFR 180.547 - Prohexadione calcium; tolerances for residues.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Prohexadione calcium; tolerances for... § 180.547 Prohexadione calcium; tolerances for residues. (a) General. Tolerances are established for residues of the growth regulator, prohexadione calcium, including its metabolites and degradates, in or on...
40 CFR 180.547 - Prohexadione calcium; tolerances for residues.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Prohexadione calcium; tolerances for... § 180.547 Prohexadione calcium; tolerances for residues. (a) General. Tolerances are established for residues of the growth regulator, prohexadione calcium, including its metabolites and degradates, in or on...
40 CFR 180.547 - Prohexadione calcium; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Prohexadione calcium; tolerances for... § 180.547 Prohexadione calcium; tolerances for residues. (a) General. Tolerances are established for residues of the growth regulator, prohexadione calcium, including its metabolites and degradates, in or on...
Gibson, Gary E.; Thakkar, Ankita
2017-01-01
Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer’s Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets. PMID:28181072
Gibson, Gary E; Thakkar, Ankita
2017-06-01
Decades of research suggest that alterations in calcium are central to the pathophysiology of Alzheimer's Disease (AD). Highly reproducible changes in calcium dynamics occur in cells from patients with both genetic and non-genetic forms of AD relative to controls. The most robust change is an exaggerated release of calcium from internal stores. Detailed analysis of these changes in animal and cell models of the AD-causing presenilin mutations reveal robust changes in ryanodine receptors, inositol tris-phosphate receptors, calcium leak channels and store activated calcium entry. Similar anomalies in calcium result when AD-like changes in mitochondrial enzymes or oxidative stress are induced experimentally. The calcium abnormalities can be directly linked to the altered tau phosphorylation, amyloid precursor protein processing and synaptic dysfunction that are defining features of AD. A better understanding of these changes is required before using calcium abnormalities as therapeutic targets.
NASA Astrophysics Data System (ADS)
Jones, Brian
2009-07-01
Calcitic speleothems from a cave located on the north central coast of Grand Cayman commonly include corrosion surfaces that developed when calcite precipitation ceased and corrosion mediated by condensates became the operative process. Dissolution features associated with these surfaces, including etched crystal surfaces, microcavities, and solution-widened boundaries between crystals, are commonly occupied by microbes and microbial mats that have been replaced by calcium phosphate and/or coated with calcium phosphate. No mineralized microbes were found in the calcite crystals that form the speleothems. The morphology of the mineralized hyphae (eight morphotypes) and spores (nine morphotypes) are indicative of actinomycetes, a group of microbes that are ideally adapted to life in oligotrophic cave environs. Superb preservation of the delicate hyphae, aerial hyphae, and delicate ornamentation on the hyphae and spores indicate that the microbes underwent rapid mineralized while close to their original life positions. Although these actinomycetes were extremely susceptible to replacement by calcium phosphate, there is no evidence that they directly or indirectly controlled precipitation. Nevertheless, the association between the P-rich precipitates and microbes shows that the use of phosphorus as a proxy for seasonal climate changes in paleoclimate analyses must be treated with caution.
[Calcium and vitamin D in bone metabolism: Clinical importance for fracture treatment].
Amling, M
2015-12-01
A balanced calcium homeostasis is of critical importance not only for bone remodeling, the physiological process of bone resorption and bone formation that constantly renews bone throughout life but also for normal fracture healing. Given that disturbances of calcium homeostasis are present in 50 % of the German population and that this might result in delayed fracture healing after correct surgical treatment, this paper focusses on calcium and vitamin D in the daily practice in orthopedics and trauma surgery. To ensure the required enteral calcium uptake the following three conditions are required: (1) sufficient calcium intake via the nutrition, (2) a 25-hydroxyvitamin D serum level > 30 µg/l and (3) the presence of sufficient gastric acidification. Given the endemic vitamin D deficiency in Germany as well as the constantly increasing number of people using proton pump inhibitors on a regular basis, it is necessary to closely connect trauma orthopedic surgery and osteological treatment. The first issue to be dealt with is to control and if needed normalize calcium homeostasis in order to allow a normal undisturbed fracture healing process after both conservative as well as operative treatment of fractures.
Cheng, Huaixu; Luo, Zhidan; Lu, Mingsheng; Gao, Song; Wang, Shujun
2017-05-01
The hyperthermophilic α-amylase from Thermococcus sp. HJ21 does not require exogenous calcium ions for thermostability, and is a promising alternative to commercially available α-amylases to increase the efficiency of industrial processes like the liquefaction of starch. We analyzed the amino acid sequence of this α-amylase by sequence alignments and structural modeling, and found that this α-amylase closely resembles the α-amylase from Pyrococcus woesei. The gene of this α-amylase was cloned in Escherichia coli and the recombinant α-amylase was overexpressed and purified with a combined renaturation-purification procedure. We confirmed thermostability and exogenous calcium ion independency of the recombinant α-amylase and further investigated the mechanism of the independency using biochemical approaches. The results suggested that the α-amylase has a high calcium ion binding affinity that traps a calcium ion that would not dissociate at high temperatures, providing a direct explanation as to why the addition of calcium ions is not required for thermostability. Understanding of the mechanism offers a strong base on which to further engineer properties of this α-amylase for better potential applications in industrial processes.
Serum calcium and incident diabetes: an observational study and meta-analysis.
Sing, C W; Cheng, V K F; Ho, D K C; Kung, A W C; Cheung, B M Y; Wong, I C K; Tan, K C B; Salas-Salvadó, J; Becerra-Tomas, N; Cheung, C L
2016-05-01
The study aimed to prospectively evaluate if serum calcium is related to diabetes incidence in Hong Kong Chinese. The results showed that serum calcium has a significant association with increased risk of diabetes. The result of meta-analysis reinforced our findings. This study aimed to evaluate the association of serum calcium, including serum total calcium and albumin-corrected calcium, with incident diabetes in Hong Kong Chinese. We conducted a retrospective cohort study in 6096 participants aged 20 or above and free of diabetes at baseline. Serum calcium was measured at baseline. Incident diabetes was determined from several electronic databases. We also searched relevant databases for studies on serum calcium and incident diabetes and conducted a meta-analysis using fixed-effect modeling. During 59,130.9 person-years of follow-up, 631 participants developed diabetes. Serum total calcium and albumin-corrected calcium were associated with incident diabetes in the unadjusted model. After adjusting for demographic and clinical variables, the association remained significant only for serum total calcium (hazard ratio (HR), 1.32 (95 % confidence interval (CI), 1.02-1.70), highest vs. lowest quartile). In a meta-analysis of four studies including the current study, both serum total calcium (pooled risk ratio (RR), 1.38 (95 % CI, 1.15-1.65); I (2) = 5 %, comparing extreme quantiles) and albumin-corrected calcium (pooled RR, 1.29 (95 % CI, 1.03-1.61); I (2) = 0 %, comparing extreme quantiles) were associated with incident diabetes. Penalized regression splines showed that the association of incident diabetes with serum total calcium and albumin-correlated calcium was non-linear and linear, respectively. Elevated serum calcium concentration is associated with incident diabetes. The mechanism underlying this association warrants further investigation.
Measuring calcium dynamics in living cells with Genetically Encodable Calcium Indicators
McCombs, Janet E.
2008-01-01
Genetically encoded calcium indicators (GECIs) allow researchers to measure calcium dynamics in specific targeted locations within living cells. Such indicators enable dissection of the spatial and temporal control of calcium signaling processes. Here we review recent progress in the development of GECIs, highlighting which indicators are most appropriate for measuring calcium in specific organelles and localized domains in mammalian tissue culture cells. An overview of recent approaches that have been undertaken to ensure that the GECIs are minimally perturbed by the cellular environment is provided. Additionally, the procedures for introducing GECIs into mammalian cells, conducting calcium imaging experiments, and analyzing data are discussed. Because organelle-targeted indicators often pose an additional challenge, we underscore strategies for calibrating GECIs in these locations. PMID:18848629
Calcium movements and the cellular basis of gravitropism
NASA Astrophysics Data System (ADS)
Roux, S. J.; Biro, R. L.; Hale, C. C.
An early gravity-transduction event in oat coleoptiles which precedes any noticeable bending is the accumulation of calcium on their prospective slower-growing side. Sub-cellular calcium localization studies indicate that the gravity-stimulated redistribution of calcium results in an increased concentration of calcium in the walls of responding cells. Since calcium can inhibit the extension growth of plant cell walls, this selective accumulation of calcium in walls may play a role in inducing the asymmetry of growth which characterizes gravitropism. The active transport of calcium from cells into walls is performed by a calcium-dependent ATPase localized in the plasma membrane. Evidence is presented in support of the hypothesis that this calcium pump is regulated by a feed-back mechanism which includes the participation of calmodulin.
Zhang, Guohua; Dong, Yuanlin; Zhang, Bin; Ichinose, Fumito; Wu, Xu; Culley, Deborah J.; Crosby, Gregory
2008-01-01
Increasing evidence indicates that caspase activation and apoptosis are associated with a variety of neurodegenerative disorders, including Alzheimer's disease. We reported that anesthetic isoflurane can induce apoptosis, alter processing of the amyloid precursor protein (APP), and increase amyloid-β protein (Aβ) generation. However, the mechanism by which isoflurane induces apoptosis is primarily unknown. We therefore set out to assess effects of extracellular calcium concentration on isoflurane-induced caspase-3 activation in H4 human neuroglioma cells stably transfected to express human full-length APP (H4-APP cells). In addition, we tested effects of RNA interference (RNAi) silencing of IP3 receptor, NMDA receptor, and endoplasmic reticulum (ER) calcium pump, sacro-/ER calcium ATPase (SERCA1). Finally, we examined the effects of the NMDA receptor partial antagonist, memantine, in H4-APP cells and brain tissue of naive mice. EDTA (10 mm), BAPTA (10 μm), and RNAi silencing of IP3 receptor, NMDA receptor, or SERCA1 attenuated capase-3 activation. Memantine (4 μm) inhibited isoflurane-induced elevations in cytosolic calcium levels and attenuated isoflurane-induced caspase-3 activation, apoptosis, and cell viability. Memantine (20 mg/kg, i.p.) reduced isoflurane-induced caspase-3 activation in brain tissue of naive mice. These results suggest that disruption of calcium homeostasis underlies isoflurane-induced caspase activation and apoptosis. We also show for the first time that the NMDA receptor partial antagonist, memantine, can prevent isoflurane-induced caspase-3 activation and apoptosis in vivo and in vitro. These findings, indicating that isoflurane-induced caspase activation and apoptosis are dependent on cytosolic calcium levels, should facilitate the provision of safer anesthesia care, especially for Alzheimer's disease and elderly patients. PMID:18434534
Basso, Daniela; Gnatta, Elisa; Padoan, Andrea; Fogar, Paola; Furlanello, Sara; Aita, Ada; Bozzato, Dania; Zambon, Carlo-Federico; Arrigoni, Giorgio; Frasson, Chiara; Franchin, Cinzia; Moz, Stefania; Brefort, Thomas; Laufer, Thomas; Navaglia, Filippo; Pedrazzoli, Sergio; Basso, Giuseppe; Plebani, Mario
2017-10-17
Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4 , deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4 -dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3- SMAD4 +) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3- SMAD4 +, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs ( p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4- associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4 -associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3- SMAD4 + Exo. PDAC-derived Exo from cells with , but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4 -related differentially expressed miRNAs and proteins.
Basso, Daniela; Gnatta, Elisa; Padoan, Andrea; Fogar, Paola; Furlanello, Sara; Aita, Ada; Bozzato, Dania; Zambon, Carlo-Federico; Arrigoni, Giorgio; Frasson, Chiara; Franchin, Cinzia; Moz, Stefania; Brefort, Thomas; Laufer, Thomas; Navaglia, Filippo; Pedrazzoli, Sergio; Basso, Giuseppe; Plebani, Mario
2017-01-01
Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4, deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4-dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3-SMAD4+) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3-SMAD4+, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs (p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4-associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4-associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3-SMAD4+ Exo. Conclusion: PDAC-derived Exo from cells with, but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4-related differentially expressed miRNAs and proteins. PMID:29156694
Tansley Review No. 104, Calcium Physiology and Terrestrial Ecosystem Processes
S.B. McLaughlin; R. Wimmer
1999-01-01
Calcium occupies a unique position among plant nutrients both chemically and functionally. Its chemical properties allow it to exist in a wide range of binding states and to serve in both structural and messenger roles. Despite its importance in many plant processes, Ca mobility is low, making Ca uptake and distribution rate a limiting process for many key plant...
Physiology of Calcium and Phosphate Metabolism: 1980 Refresher Course, Syllabus.
ERIC Educational Resources Information Center
Knox, Franklyn G., Ed.
1980-01-01
This syllabus reviews information concerning calcium and phosphate regulation. Topics of interest include the following: calcium metabolism, phosphorus metabolism, bone, parathyroid hormone, calcitonin, and vitamin D. (CS)
Sohn, H Y; Kim, Byung-Su
2002-07-01
Nonferrous smelters and coal gasification processes generate environmentally harmful sulfur dioxide streams, most of which are treated to produce sulfuric acid with the accompanying problems of market shortage and transportation difficulties. Some sulfur dioxide streams are scrubbed with an alkali solution or a solid substance such as limestone or dolomite, which in turn generates wastes that pose other pollution problems. While the conversion of sulfur dioxide to elemental sulfur has many environmental advantages, no processes exist that are environmentally acceptable and economically viable. A new method for converting sulfur dioxide to elemental sulfur by a cyclic process involving calcium sulfide and calcium sulfate without generating solid wastes has been developed. In this process, calcium sulfate pellets as the starting raw material are reduced by a suitable reducing agent such as hydrogen to produce calcium sulfide pellets, which are used to reduce sulfur dioxide producing elemental sulfur vapor and calcium sulfate. The latter is then reduced to regenerate calcium sulfide. Thermodynamic analysis and experimental results indicated that the CaS-SO2 reaction produces mainly sulfur vapor and solid calcium sulfate and that the gaseous product from the CaSO4-H2 reaction is mainly water vapor. The rates of the two reactions are reasonably rapid in the temperature range 1000-1100 K, and, importantly, the physical strengths and reactivities of the pellets are maintained largely unchanged up to the tenth cycle, the last cycle tested in this work. Sulfur dioxide-containing streams from certain sources, such as the regenerator off-gas from an integrated gasification combined cycle desulfurization unit and new sulfide smelting plants, contain much higher partial pressures of SO2. In these cases, the rate of the first reaction is expected to be proportionally higher than in the test conditions reported in this paper.
The Plasma Membrane Calcium Pump
NASA Technical Reports Server (NTRS)
Rasmussen, H.
1983-01-01
Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.
Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO 2 from Flue Gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devenney, Martin; Gilliam, Ryan; Seeker, Randy
The objective of this project was to demonstrate an innovative process to mineralize CO 2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO 2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO 2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This final report details all development, analysis, design and testing of the project. Also included in the final report are an updatedmore » Techno-Economic Analysis and CO 2 Lifecycle Analysis. The subsystems included in the pilot demonstration plant are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant was proven to be capable of capturing CO 2 from various sources (gas and coal) and mineralizing it into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The final report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. The report also discusses the results of the fully integrated operation of the facility. Fiber cement boards have been produced in this facility exclusively using reactive calcium carbonate from captured CO 2 from flue gas. These boards meet all US and China appropriate acceptance standards. Use demonstrations for these boards are now underway.« less
Pawlos, Małgorzata; Znamirowska, Agata; Szajnar, Katarzyna; Kalicka, Dorota
2016-01-01
In the process of enrichment of dairy products a priority element is the proper selection of compounds that are a mineral carrier. Calcium bisglycinate is better absorbed by the body than inorganic forms of calcium. Moreover, the lactic acid which is produced in kefir fermentation and the presence of lactose have also a positive effect on the improvement of absorption of calcium. The aim of the present study was to determine the influence of the applied dose of calcium in the form of calcium bisglycinate on the physicochemical and sensory properties and texture of kefirs during 21-day period of cold storage. Processed cow milk was enriched with 0, 5, 10, 15, 20, 25 and 30 mg of calcium (for 100 g of milk), repasteurized (72°C, 1 min), cooled down (26°C), inoculated with Commercial VITAL kefir culture (Danisco, Poland) and fermented for 16 hours (26°C). The assessment of the influence of addition of calcium bisglycinate on acidity, syneresis, texture and sensory characteristics (1-9 points) of kefirs was conducted at four fixed dates (after 1 day, 7 days, 14 days and 21 days of storage). During successive weeks of cold storage in all experimental groups there was observed a tendency to decrease general acidity. On the 1st and 7th days of cold storage reduced whey leakage was observed in kefirs enriched with 25 mg and 30 mg Ca/100 g of milk. With increasing doses of enrichment with calcium both the hardness, adhesiveness and gumminess of kefirs decreased. The applied doses of calcium did not cause changes in the sensory characteristics such as colour and consistency of the fermented beverages. Calcium bisglycinate may be used to enrich kefirs with calcium even with 30 mg of calcium in 100 g of milk without the modification of the product's parameters.
Cermet crucible for metallurgical processing
Boring, Christopher P.
1995-01-01
A cermet crucible for metallurgically processing metals having high melting points comprising a body consisting essentially of a mixture of calcium oxide and erbium metal, the mixture comprising calcium oxide in a range between about 50 and 90% by weight and erbium metal in a range between about 10 and 50% by weight.
Tuckwell, Henry C
2013-06-01
Serotonergic neurons of the dorsal raphe nuclei, with their extensive innervation of nearly the whole brain have important modulatory effects on many cognitive and physiological processes. They play important roles in clinical depression and other psychiatric disorders. In order to quantify the effects of serotonergic transmission on target cells it is desirable to construct computational models and to this end these it is necessary to have details of the biophysical and spike properties of the serotonergic neurons. Here several basic properties are reviewed with data from several studies since the 1960s to the present. The quantities included are input resistance, resting membrane potential, membrane time constant, firing rate, spike duration, spike and afterhyperpolarization (AHP) amplitude, spike threshold, cell capacitance, soma and somadendritic areas. The action potentials of these cells are normally triggered by a combination of sodium and calcium currents which may result in autonomous pacemaker activity. We here analyse the mechanisms of high-threshold calcium spikes which have been demonstrated in these cells the presence of TTX (tetrodotoxin). The parameters for calcium dynamics required to give calcium spikes are quite different from those for regular spiking which suggests the involvement of restricted parts of the soma-dendritic surface as has been found, for example, in hippocampal neurons. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The remineralisation of enamel: a review of the literature.
Li, Xiaoke; Wang, Jinfang; Joiner, Andrew; Chang, Jiang
2014-06-01
The purpose of this paper is to review current knowledge and technologies for tooth remineralisation. The literature was searched using the "Scopus" and "Web of Knowledge" database from the year 1971, with principal key words of *miner*, teeth and enamel. Language was restricted to English. Original studies and reviews were included. Conference papers and posters were excluded. The importance of oral health for patients and consumers has seen a steady increase in the number of tooth remineralisation agents, products and procedures over recent years. Concomitantly, there has been continued publication of both in vivo and in vitro tooth remineralisation and demineralisation studies. It is clear that fluoride treatments are generally effective in helping to protect the dental enamel from demineralisation and enhancing remineralisation. Continued efforts to increase the efficacy of fluoride have been made, in particular, by the addition of calcium salts or calcium containing materials to oral care products which may enhance the delivery and retention of fluoride into the oral cavity. In addition, the calcium salts or materials may act as additional sources of calcium to promote enamel remineralisation or reduce demineralisation processes. Inspired by the concept of bioactive materials for bone repair and regeneration, bioglass and in particular calcium silicate type materials show potential for enamel health benefits and is a growing area of research. © 2014 Elsevier Ltd. All rights reserved.
Shi, Haitao; Ye, Tiantian; Zhong, Bao; Liu, Xun; Chan, Zhulong
2014-11-01
As an important second messenger, calcium is involved in plant cold stress response, including chilling (<20 °C) and freezing (<0 °C). In this study, exogenous application of calcium chloride (CaCl2 ) improved both chilling and freezing stress tolerances, while ethylene glycol-bis-(β-aminoethyl) ether-N,N,N,N-tetraacetic acid (EGTA) reversed CaCl2 effects in bermudagrass (Cynodon dactylon (L.) Pers.). Physiological analyses showed that CaCl2 treatment alleviated the reactive oxygen species (ROS) burst and cell damage triggered by chilling stress, via activating antioxidant enzymes, non-enzymatic glutathione antioxidant pool, while EGTA treatment had the opposite effects. Additionally, comparative proteomic analysis identified 51 differentially expressed proteins that were enriched in redox, tricarboxylicacid cycle, glycolysis, photosynthesis, oxidative pentose phosphate pathway, and amino acid metabolisms. Consistently, 42 metabolites including amino acids, organic acids, sugars, and sugar alcohols were regulated by CaCl2 treatment under control and cold stress conditions, further confirming the common modulation of CaCl2 treatment in carbon metabolites and amino acid metabolism. Taken together, this study reported first evidence of the essential and protective roles of endogenous and exogenous calcium in bermudagrass response to cold stress, partially via activation of the antioxidants and modulation of several differentially expressed proteins and metabolic homeostasis in the process of cold acclimation. © 2014 Institute of Botany, Chinese Academy of Sciences.
Berk, B C; Corson, M A; Peterson, T E; Tseng, H
1995-12-01
Fluid shear stress regulates endothelial cell function, but the signal transduction mechanisms involved in mechanotransduction remain unclear. Recent findings demonstrate that several intracellular kinases are activated by mechanical forces. In particular, members of the mitogen-activated protein (MAP) kinase family are stimulated by hyperosmolarity, stretch, and stress such as heat shock. We propose a model for mechanotransduction in endothelial cells involving calcium-dependent and calcium-independent protein kinase pathways. The calcium-dependent pathway involves activation of phospholipase C, hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), increases in intracellular calcium and stimulation of kinases such as calcium-calmodulin and C kinases (PKC). The calcium-independent pathway involves activation of a small GTP-binding protein and stimulation of calcium-independent PKC and MAP kinases. The calcium-dependent pathway mediates the rapid, transient response to fluid shear stress including activation of nitric oxide synthase (NOS) and ion transport. In contrast, the calcium-independent pathway mediates a slower response including the sustained activation of NOS and changes in cell morphology and gene expression. We propose that focal adhesion complexes link the calcium-dependent and calcium-independent pathways by regulating activity of phosphatidylinositol 4-phosphate (PIP) 5-kinase (which regulates PIP2 levels) and p125 focal adhesion kinase (FAK, which phosphorylates paxillin and interacts with cytoskeletal proteins). This model predicts that dynamic interactions between integrin molecules present in focal adhesion complexes and membrane events involved in mechanotransduction will be integrated by calcium-dependent and calcium-independent kinases to generate intracellular signals involved in the endothelial cell response to flow.
Process for reducing aromatic compounds in ethylenediamine with calcium
Benkeser, Robert A.; Laugal, James A.; Rappa, Angela
1985-01-01
Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.
Process for reducing aromatic compounds in ethylenediamine with calcium
Benkeser, R.A.; Laugal, J.A.; Rappa, A.
1985-08-06
Olefins are produced by containing an organic compound having at least one benzene ring with ethylenediamine and calcium metal, the calcium metal being used in large excess or alternatively in conjunction with an inert abrasive particulate substance. Substantially all of the organic compounds are converted to corresponding cyclic olefins, largely mono-olefins.
Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke
2016-01-01
The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil. PMID:27681911
Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke
2016-03-17
The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil.
Growth control in colon epithelial cells: gadolinium enhances calcium-mediated growth regulation.
Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K; Varani, James
2012-12-01
Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1-5 μM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet.
Niksirat, Hamid; Steinbach, Christoph
2018-05-24
Detection of patterns of subcellular calcium distribution in the cardiovascular system can contribute to understanding its role in cardiac and blood function. The present study localized calcium in heart atrium, ventricle, and bulbus arteriosus as well as in erythrocytes of zebrafish Danio rerio using an oxalate-pyroantimonate technique combined with transmission electron microscopy. Intracellular calcium stores were detected in caveolae, mitochondria, and the nuclei of several zebrafish cardiac cell types. Melanin pigmentation containing calcium stores was detected in the pericardial cavity. Melanin might be an extracellular source of calcium for heart beating and/or a lubricant to prevent friction during beating process. Calcium deposits were also detected in the plasma membrane, cytoplasm and nucleus of erythrocytes as well as in blood plasma. Possible exchange of calcium between erythrocytes and blood plasma was observed. Interactions of such calcium stores and possible contribution of extracellular calcium stores such as melanin pigmentation to supply calcium for vital functions of heart cells should be addressed in future studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Calcium Signaling in Taste Cells
Medler, Kathryn F.
2014-01-01
The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977
Process for changing caking coals to noncaking coals
Beeson, Justin L.
1980-01-01
Caking coals are treated in a slurry including alkaline earth metal hydroxides at moderate pressures and temperatures in air to form noncaking carbonaceous material. Hydroxides such as calcium hydroxide, magnesium hydroxide or barium hydroxide are contemplated for slurrying with the coal to interact with the agglomerating constituents. The slurry is subsequently dewatered and dried in air at atmospheric pressure to produce a nonagglomerating carbonaceous material that can be conveniently handled in various coal conversion and combustion processes.
Application of Calcium Phosphate Materials in Dentistry
Al-Sanabani, Jabr S.; Al-Sanabani, Fadhel A.
2013-01-01
Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1) application of calcium phosphate into various fields in dentistry; (2) improving mechanical properties of calcium phosphate; (3) biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields. PMID:23878541
Aksoy, Duygu; Güveli, Betül Tekin; Ak, Pelin Doğan; Sarı, Hüseyin; Ataklı, Dilek; Arpacı, Baki
2016-02-29
The primary objective of the present study was to further elucidate the effects of oxcarbazepine (OXC) and levetiracetam (LEV) monotherapies on the bone health status of patients with epilepsy. This study included 48 patients who attended our epilepsy outpatient clinic, had a diagnosis of epilepsy, and were undergoing either OXC or LEV monotherapy and 42 healthy control subjects. The demographic and clinical features of the patients, including gender, age, onset of disease, daily drug dosage, and duration of disease, were noted. Additionally, the calcium, ionized calcium, and 25-OH vitamin-D3 levels of the participants were prospectively evaluated. The 25-OH vitamin-D3, calcium, and ionized calcium levels of the patients taking OXC were significantly lower than those of the control group. These levels did not significantly differ between the patients taking LEV and the control group, but there was a significant negative relationship between daily drug dose and ionized calcium levels in the LEV patients. In the present study, anti-epileptic drugs altered the calcium, ionized calcium, and 25-OH vitamin-D3 levels of epilepsy patients and resulted in bone loss, abnormal mineralization, and fractures. These findings suggest that the calcium, ionized calcium, and 25-OH vitamin-D3 levels of patients with epilepsy should be regularly assessed.
Block copolymers for biomimetic composites
NASA Astrophysics Data System (ADS)
Calvert, Paul D.; Oner, Mualla; Burdon, Jeremy; Rieke, Peter C.; Farmer, Kelly
1993-07-01
Mineralized biological tissues can be regarded as composites where a fine reinforcement is laid down in a very controlled fashion within a tough polymeric matrix. Such materials include bone, antler, tooth enamel, mollusc shell, and crustacean shell. We have been exploring ways of forming similar structures by synthetic routes involving precipitation of reinforcing particles directly into a polymeric matrix. Part of this biomimetic approach requires polymer matrices which can exert a high degree of control over the mineralization process. Polymer gels have been formed from cross-linked methacrylates with various types of functionality within the gel. By incorporating calcium binding groups we have been producing gels which lead to preferential mineralization of the gel when it is incubated in a supersaturated solution of calcium oxalate or calcium carbonate. Similarly we have been incorporating silane groups within the gel in order to promote the deposition of silica in a gel body when it is immersed in a metastable solution of partly hydrolysed silicon alkoxides.
Measurement of Intracellular Ionized Calcium in a Free-living Soil Nematode, Caenorhabditis elegans.
Kawaii, S; Yoshizawa, Y; Mizutani, J
1993-01-01
A calcium chelating fluorescence indicator, fura-2, was used to measure intracellular ionized calcium in Caenorhabditis elegans. The indicator loading process was harmless to the nematode, and completed within 2-3 h. Fura-2 was loaded mainly at its intestinal tract. The effects of DOPA on locomotion and the level of intracellular calcium were investigated and measured by using a microfluorometer. The addition of DOPA temporarily increased [Ca(2+)]i for several minutes.
Natural Catalysts for Molten Cellulose Pyrolysis to Targeted Bio-Oils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dauenhauer, Paul J.
2017-06-02
Catalysis of biomass biopolymer cellulose by alkaline earth metals is a fundamental chemistry relevant to energy processes including combustion, pyrolysis and gasification. In this work, the catalytic decomposition of cellulose by calcium ions was evaluated at high temperature (400-500°C) to elucidate the chemical mechanisms leading to the formation of volatile organic compounds.
Redox regulation of neuronal voltage-gated calcium channels.
Todorovic, Slobodan M; Jevtovic-Todorovic, Vesna
2014-08-20
Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain.
Lactose maldigestion, calcium intake and osteoporosis in African-, Asian-, and Hispanic-Americans.
Jackson, K A; Savaiano, D A
2001-04-01
Dietary calcium is critical for the development of the human skeleton and likely plays an important role in the prevention of osteoporosis. Dairy products provide approximately three-fourths of calcium consumed in the diet and are the most concentrated sources of this essential nutrient. One obstacle that likely interferes with calcium consumption among many ethnic groups is lactose maldigestion. The real or perceived occurrence of intolerance symptoms after dairy food consumption may cause maldigesters to avoid dairy products. Several investigators have observed a relationship between lactose maldigestion, dietary calcium and osteoporosis in Caucasian populations. Research on ethnically diverse populations is necessary to better understand how lactose maldigestion influences the risk for osteoporosis. Low calcium intakes, a greater than previously thought potential for low bone density and extensive lactose maldigestion among Hispanic-American and Asian-American populations may create an elevated risk for osteoporosis. Dietary management strategies for lactose maldigesters to increase calcium consumption include consuming (1) dairy foods with meals, (2) yogurts, (3) calcium-fortified foods, (4) using lactose digestive aids and (5) including dairy foods daily in the diet to enhance colonic metabolism of lactose.
Svirskis, Gytis; Baranauskas, Gytis; Svirskiene, Natasa; Tkatch, Tatiana
2015-01-01
The superior colliculus in mammals or the optic tectum in amphibians is a major visual information processing center responsible for generation of orientating responses such as saccades in monkeys or prey catching avoidance behavior in frogs. The conserved structure function of the superior colliculus the optic tectum across distant species such as frogs, birds monkeys permits to draw rather general conclusions after studying a single species. We chose the frog optic tectum because we are able to perform whole-cell voltage-clamp recordings fluorescence imaging of tectal neurons while they respond to a visual stimulus. In the optic tectum of amphibians most visual information is processed by pear-shaped neurons possessing long dendritic branches, which receive the majority of synapses originating from the retinal ganglion cells. Since the first step of the retinal input integration is performed on these dendrites, it is important to know whether this integration is enhanced by active dendritic properties. We demonstrate that rapid calcium transients coinciding with the visual stimulus evoked action potentials in the somatic recordings can be readily detected up to the fine branches of these dendrites. These transients were blocked by calcium channel blockers nifedipine CdCl2 indicating that calcium entered dendrites via voltage-activated L-type calcium channels. The high speed of calcium transient propagation, >300 μm in <10 ms, is consistent with the notion that action potentials, actively propagating along dendrites, open voltage-gated L-type calcium channels causing rapid calcium concentration transients in the dendrites. We conclude that such activation by somatic action potentials of the dendritic voltage gated calcium channels in the close vicinity to the synapses formed by axons of the retinal ganglion cells may facilitate visual information processing in the principal neurons of the frog optic tectum.
Regeneration of sulfated metal oxides and carbonates
Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.
1978-03-28
Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.
Waadt, Rainer; Krebs, Melanie; Kudla, Jörg; Schumacher, Karin
2017-10-01
Calcium signals occur in specific spatio-temporal patterns in response to various stimuli and are coordinated with, for example, hormonal signals, for physiological and developmental adaptations. Quantification of calcium together with other signalling molecules is required for correlative analyses and to decipher downstream calcium-decoding mechanisms. Simultaneous in vivo imaging of calcium and abscisic acid has been performed here to investigate the interdependence of the respective signalling processes in Arabidopsis thaliana roots. Advanced ratiometric genetically encoded calcium indicators have been generated and in vivo calcium calibration protocols were established to determine absolute calcium concentration changes in response to auxin and ATP. In roots, abscisic acid induced long-term basal calcium concentration increases, while auxin triggered rapid signals in the elongation zone. The advanced ratiometric calcium indicator R-GECO1-mTurquoise exhibited an increased calcium signal resolution compared to commonly used Förster resonance energy transfer-based indicators. Quantitative calcium measurements in Arabidopsis root tips using R-GECO1-mTurquoise revealed detailed maps of absolute calcium concentration changes in response to auxin and ATP. Calcium calibration protocols using R-GECO1-mTurquoise enabled high-resolution quantitative imaging of resting cytosolic calcium concentrations and their dynamic changes that revealed distinct hormonal and ATP responses in roots. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Assessment of Dephosphorization During Vanadium Extraction Process in Converter
NASA Astrophysics Data System (ADS)
Chen, Lian; Diao, Jiang; Wang, Guang; Xie, Bing
2018-06-01
Dephosphorization during the vanadium extraction process in the converter was studied. The effects of the slag basicity and FeO content on the dephosphorization and the mineral phases in the phosphorus-containing vanadium slag are discussed. The results show that removal of phosphorus from the hot metal during the vanadium extraction process can be achieved by adding lime into the vanadium extraction converter. The highest dephosphorization rate was obtained at slag basicity of 1.93. The phosphorus distribution ratio increased with increasing FeO content up to 16-18% but decreased thereafter. Vanadium was present in the slag only as spinels rather than calcium vanadate. Phosphorus was still present in the form of calcium phosphate eutectic in calcium silicate. The present work proves that the vanadium extraction and dephosphorization processes are nonconflicting reactions.
NASA Astrophysics Data System (ADS)
Yu, Wei-Tai; Chiu, Yi-Ching; Lee, Chih-Hung; Yoshioka, Tohru; Yu, Hsin-Su
2013-11-01
Endemic contamination of artesian water for drinking by arsenic is known to cause several human cancers, including cancers of the skin, bladder, and lungs. In skin, multiple arsenic-induced Bowen's disease (As-BD) can develop into invasive cancers after decades of arsenic exposure. The characteristic histological features of As-BD include full-layer epidermal dysplasia, apoptosis, and abnormal proliferation. Calcium propagation is an essential cellular event contributing to keratinocyte differentiation, proliferation, and apoptosis, all of which occur in As-BD. This study investigated how arsenic interferes calcium propagation of skin keratinocytes through ROS production and whether hydrogen-enriched water would restore arsenic-impaired calcium propagation. Arsenic was found to induce oxidative stress and inhibit ATP- and thapsigaragin-induced calcium propagation. Pretreatment of arsenic-treated keratinocytes by hydrogen-enriched water or beta-mercaptoethanol with potent anti-oxidative effects partially restored the propagation of calcium by ATP and by thapsigaragin. It was concluded that arsenic may impair calcium propagation, likely through oxidative stress and interactions with thiol groups in membrane proteins.
Regulation of calcium signals in the nucleus by a nucleoplasmic reticulum
Echevarría, Wihelma; Leite, M. Fatima; Guerra, Mateus T.; Zipfel, Warren R.; Nathanson, Michael H.
2013-01-01
Calcium is a second messenger in virtually all cells and tissues1. Calcium signals in the nucleus have effects on gene transcription and cell growth that are distinct from those of cytosolic calcium signals; however, it is unknown how nuclear calcium signals are regulated. Here we identify a reticular network of nuclear calcium stores that is continuous with the endoplasmic reticulum and the nuclear envelope. This network expresses inositol 1,4,5-trisphosphate (InsP3) receptors, and the nuclear component of InsP3-mediated calcium signals begins in its locality. Stimulation of these receptors with a little InsP3 results in small calcium signals that are initiated in this region of the nucleus. Localized release of calcium in the nucleus causes nuclear protein kinase C (PKC) to translocate to the region of the nuclear envelope, whereas release of calcium in the cytosol induces translocation of cytosolic PKC to the plasma membrane. Our findings show that the nucleus contains a nucleoplasmic reticulum with the capacity to regulate calcium signals in localized subnuclear regions. The presence of such machinery provides a potential mechanism by which calcium can simultaneously regulate many independent processes in the nucleus. PMID:12717445
Cermet crucible for metallurgical processing
Boring, C.P.
1995-02-14
A cermet crucible is disclosed for metallurgically processing metals having high melting points comprising a body consisting essentially of a mixture of calcium oxide and erbium metal, the mixture comprising calcium oxide in a range between about 50 and 90% by weight and erbium metal in a range between about 10 and 50% by weight.
Randall, D G; Mohamed, R; Nathoo, J; Rossenrode, H; Lewis, A E
2013-01-01
A novel low temperature crystallization process called eutectic freeze crystallization (EFC) can produce both salt(s) and ice from a reverse osmosis (RO) stream by operating at the eutectic temperature of a solution. The EFC reject stream, which is de-supersaturated with respect to the scaling component, can subsequently be recycled back to the RO process for increased water recovery. This paper looks at the feasibility of using EFC to remove calcium sulfate from an RO retentate stream and compares the results to recovery rates at 0 and 20 °C. The results showed that there was a greater yield of calcium sulfate obtained at 0 °C as compared with 20 °C. Operation under eutectic conditions, with only a 20% ice recovery, resulted in an even greater yield of calcium sulfate (48%) when compared with yields obtained at operating temperatures of 0 and 20 °C (15% at 0 °C and 13% at 20 °C). The theoretical calcium recoveries were found to be 75 and 70% at 0 and 20 °C respectively which was higher than the experimentally determined values. The EFC process has the added advantage of producing water along with a salt.
Chemico-Genetic Identification of Drebrin as a Regulator of Calcium Responses
Mercer, Jason C.; Qi, Qian; Mottram, Laurie F.; Law, Mankit; Bruce, Danny; Iyer, Archana; Morales, J. Luis; Yamazaki, Hiroyuki; Shirao, Tomoaki; Peterson, Blake R.; August, Avery
2009-01-01
Store-operated calcium channels are plasma membrane Ca2+ channels that are activated by depletion of intracellular Ca2+ stores, resulting in an increase in intracellular Ca2+ concentration, which is maintained for prolonged periods in some cell types. Increases in intracellular Ca2+ concentration serve as signals that activate a number of cellular processes, however, little is known about the regulation of these channels. We have characterized the immuno-suppressant compound BTP, which blocks store-operated channel mediated calcium influx into cells. Using an affinity purification scheme to identify potential targets of BTP, we identified the actin reorganizing protein, drebrin, and demonstrated that loss of drebrin protein expression prevents store-operated channel mediated Ca2+ entry, similar to BTP treatment. BTP also blocks actin rearrangements induced by drebrin. While actin cytoskeletal reorganization has been implicated in store-operated calcium channel regulation, little is known about actin binding proteins that are involved in this process, or how actin regulates channel function. The identification of drebrin as a mediator of this process should provide new insight into the interaction between actin rearrangement and tore-operated channel mediated calcium influx. PMID:19948240
Kartnaller, Vinicius; Venâncio, Fabrício; F do Rosário, Francisca; Cajaiba, João
2018-04-10
To avoid gas hydrate formation during oil and gas production, companies usually employ thermodynamic inhibitors consisting of hydroxyl compounds, such as monoethylene glycol (MEG). However, these inhibitors may cause other types of fouling during production such as inorganic salt deposits (scale). Calcium carbonate is one of the main scaling salts and is a great concern, especially for the new pre-salt wells being explored in Brazil. Hence, it is important to understand how using inhibitors to control gas hydrate formation may be interacting with the scale formation process. Multiple regression and design of experiments were used to mathematically model the calcium carbonate scaling process and its evolution in the presence of MEG. It was seen that MEG, although inducing the precipitation by increasing the supersaturation ratio, actually works as a scale inhibitor for calcium carbonate in concentrations over 40%. This effect was not due to changes in the viscosity, as suggested in the literature, but possibly to the binding of MEG to the CaCO₃ particles' surface. The interaction of the MEG inhibition effect with the system's variables was also assessed, when temperature' and calcium concentration were more relevant.
Calcium ionization balance and argon/calcium abundance in solar flares
NASA Astrophysics Data System (ADS)
Antonucci, E.; Marocchi, D.; Gabriel, A. H.; Doschek, G. A.
1987-12-01
An earlier analysis of solar flare calcium spectra from XRP and P78-1 aimed at measuring the calcium ionization balance resulted in an ambiguity due to a line blend between the calcium q line and an Ar XVII line. In the present work the calcium line 'r' is included in the analysis in order to resolve this problem. It is shown that the correct calcium ionization balance is that indicated in the earlier paper as corresponding to an argon/calcium abundance ratio of 0.2. The argon/calcium abundance ratio in the group of solar flares studied is shown to be 0.2 + or - 0.2. It is further argued that while the abundance of heavy elements may be enhanced in energetic flare events, this enhancement is less for argon than for calcium, leading to an argon/calcium ratio smaller than that present in the quiet sun.
Cell adhesion to borate glasses by colloidal probe microscopy.
Wiederhorn, Sheldon M; Chae, Young-Hun; Simon, Carl G; Cahn, Jackson; Deng, Yan; Day, Delbert
2011-05-01
The adhesion of osteoblast-like cells to silicate and borate glasses was measured in cell growth medium using colloidal probe microscopy. The probes consisted of silicate and borate glass spheres, 25-50 μm in diameter, attached to atomic force microscope cantilevers. Variables of the study included glass composition and time of contact of the cell to the glasses. Increasing the time of contact from 15 to 900 s increased the force of adhesion. The data could be plotted linearly on a log-log plot of adhesive force versus time. Of the seven glasses tested, five had slopes close to 0.5, suggesting a square root dependence of the adhesive force on the contact time. Such behavior can be interpreted as a diffusion limited process occurring during the early stages of cell attachment. We suggest that the rate limiting step in the adhesion process is the diffusion of integrins resident in the cell membrane to the area of cell attachment. Data presented in this paper support the hypothesis of Hench et al. that strong adhesion depends on the formation of a calcium phosphate reaction layer on the surfaces of the glass. Glasses that did not form a calcium phosphate layer exhibited a weaker adhesive force relative to those glasses that did form a calcium phosphate layer. Published by Elsevier Ltd.
Calcium hydroxide as a processing base in alkali-aided pH-shift protein recovery process.
Paker, Ilgin; Jaczynski, Jacek; Matak, Kristen E
2017-02-01
Protein may be recovered by using pH shifts to solubilize and precipitate protein. Typically, sodium hydroxide is used as the processing base; however, this has been shown to significantly increase sodium in the final recovered protein. Protein was extracted from black bullhead catfish (Ameiurus melas) using a pH-shift method. Protein was solubilized using either sodium hydroxide (NaOH) or calcium hydroxide (Ca(OH) 2 ) and precipitated at pH 5.5 using hydrochloric acid (HCl). Protein solubility was greater when Ca(OH) 2 was used compared to NaOH during this process. Using Ca(OH) 2 as the processing base yielded the greatest lipid recovery (P < 0.05) at 77 g 100 g -1 , whereas the greatest (P < 0.05) protein recovery yield was recorded as 53 g 100 g -1 protein using NaOH. Protein solubilized with Ca(OH) 2 had more (P < 0.05) calcium in the protein fraction, whereas using NaOH increased (P < 0.05) sodium content. Results of our study showed that protein solubility was increased and the recovered protein had significantly more calcium when Ca(OH) 2 was used as the processing base. Results showed both NaOH and Ca(OH) 2 to be an effective processing base for pH-shift protein recovery processes. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Mortadi, A; El Melouky, A; Chahid, E; Nasrellah, H; Bakasse, M; Zradba, A; Cherkaoui, O; El Moznine, R
2018-01-01
Analyses of rheological properties and electrical conductivity (σ dc ) at direct current have been employed in order to investigate the effects of calcium oxide on the coagulation process during sludge treatment in the textile industry. In this context, rheological and electrical measurements were performed on five samples - one that contained raw sludge and the other four that were prepared from the raw sludge and different amounts of calcium oxide: 2, 3, 4, 5% (w/w). Rheological behavior of these samples was analyzed using the Herschel-Bulkley modified model. The influence of calcium oxide content on the rheological parameters such as infinite viscosity, the yield stress, the consistency coefficient, and the consistency index, are presented and discussed. The impact of the calcium oxide content on pH and conductivity were also examined. Similar behaviors have been seen in the evolution of conductivity and infinite viscosity as a function of the calcium oxide content. These latter characteristics were modeled by an equation using two power laws. This equation was able to fit very well the evolution of electrical conductivity and also the viscosity versus the percentage of calcium oxide to predict the optimal amount of calcium oxide (3%) to achieve the coagulation step during sludge treatment.
Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities
NASA Technical Reports Server (NTRS)
Caldwell, C.
1983-01-01
The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.
Kim, Jeonghwan; Shan, Wenqian; Davies, Simon H R; Baumann, Melissa J; Masten, Susan J; Tarabara, Volodymyr V
2009-07-15
The combined effect of pH and calcium on the interactions of nonozonated and ozonated natural organic matter (NOM) with nanoscale TiO2 was investigated. The approach included characterization of TiO2 nanoparticles and NOM, extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) modeling of NOM-TiO2 and NOM-NOM interactions, batch study on the NOM adsorption onto TiO2 surface, and bench-scale study on the treatment of NOM-containing feed waters using a hybrid process that combines ozonation and ultrafiltration with a 5 kDa ceramic (TiO2 surface) membrane. It was demonstrated that depending on pH and TiO2 loading, the adsorption of NOM species is controlled by either the availability of divalent cations or by preozonation of NOM. XDLVO surface energy analysis predicts NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short-range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of electrostatic forces was relatively insignificant. Ozonation increased the surface energy of NOM, contributing to the hydrophilic repulsion component of the NOM-NOM and NOM-TiO2 interactions. In the calcium-controlled regime, neither NOM-TiO2 nor NOM-NOM interaction controlled adsorption. Non-XDLVO interactions such as intermolecular bridging by calcium were hypothesized to be responsible for the observed adsorption behavior. Adsorption data proved to be highly predictive of the permeate flux performance.
Isotopic evidence for variations in the marine calcium cycle over the Cenozoic.
De La Rocha, C L; DePaolo, D J
2000-08-18
Significant variations in the isotopic composition of marine calcium have occurred over the last 80 million years. These variations reflect deviations in the balance between inputs of calcium to the ocean from weathering and outputs due to carbonate sedimentation, processes that are important in controlling the concentration of carbon dioxide in the atmosphere and, hence, global climate. The calcium isotopic ratio of paleo-seawater is an indicator of past changes in atmospheric carbon dioxide when coupled with determinations of paleo-pH.
NASA Astrophysics Data System (ADS)
Lauchnor, E. G.; Schultz, L.; Mitchell, A.; Cunningham, A. B.; Gerlach, R.
2013-12-01
The process of ureolytically-induced calcium carbonate mineralization has been shown in laboratory studies to be effective in co-precipitation of heavy metals and radionuclides. During this process, the microbially catalyzed hydrolysis of urea increases alkalinity and pH, thus promoting CaCO3 precipitation in the presence of dissolved calcium. One proposed application of biomineralization includes the remediation of radionuclides such as strontium, which can be co-precipitated in situ within calcite. Strontium is of concern at several US DOE sites where it is a radioactive product of uranium fission and groundwater contaminant. Our research focuses on promoting attached bacteria, or biofilms, in subsurface environments where they serve as immobilized catalysts in biomineralization and can aide in co-precipitation of some contaminants. In this work, flat plate reactors with 1 mm etched flow channels designed to mimic a porous medium environment were used. Reactors were inoculated with the model ureolytic bacterium Sporosarcina pasteurii and addition of urea, calcium and strontium containing fluid was performed to induce biomineralization. Continuous flow and stopped-flow injection strategies were investigated to evaluate differences in strontium co-precipitation efficiency. During stopped-flow experiments, injection of cementation fluid containing urea, Ca2+ and Sr2+ was alternated with growth nutrients for stimulation of microbial activity. Control parameters such as urea and calcium concentration and injection flow rate are currently being varied to optimize rate and efficiency of strontium co-precipitation. Ureolytically induced calcite precipitation and strontium incorporation in the calcite was verified by chemical and mineralogical analyses, including X-ray diffraction and ICP-MS. Strontium co-precipitation efficiency was similar under different injection strategies. Alternating calcium-containing fluid with growth nutrients allowed for continued viability of the ureolytic biofilms and also insured that bacterially-induced mineralization was still occurring after 60 days of operation. Batch rate experiments demonstrated the effective use of alternative sources of substrates for biomineralization, which are economical for use in field-scale remediation. Fertilizer has been shown to be an effective urea source and several economical carbon and nutrient sources such as molasses and whey are being evaluated for stimulating ureolytic microorganisms. This research demonstrates on a bench scale the use of different injection strategies to control precipitation of calcium carbonate, as well as the feasibility of strontium co-precipitation in porous media. The ongoing optimization of strontium co-precipitation will lead to additional work on potential remediation of other heavy metal groundwater contaminants.
Kaneko, Kiyoko; Matsuta, Yosuke; Moriyama, Manabu; Yasuda, Makoto; Chishima, Noriharu; Yamaoka, Noriko; Fukuuchi, Tomoko; Miyazawa, Katsuhito; Suzuki, Koji
2014-03-01
The objective of the present study was to investigate the matrix protein of a rare urinary stone that contained calcium carbonate. A urinary stone was extracted from a 34-year-old male patient with metabolic alkalosis. After X-ray diffractometry and infrared analysis of the stone, proteomic analysis was carried out. The resulting mass spectra were evaluated with protein search software, and matrix proteins were identified. X-ray diffraction and infrared analysis confirmed that the stone contained calcium carbonate and calcium oxalate dihydrate. Of the identified 53 proteins, 24 have not been previously reported from calcium oxalate- or calcium phosphate-containing stones. The protease inhibitors and several proteins related to cell adhesion or the cytoskeleton were identified for the first time. We analyzed in detail a rare urinary stone composed of calcium carbonate and calcium oxalate dihydrate. Considering the formation of a calcium carbonate stone, the new identified proteins should play an important role on the urolithiasis process in alkaline condition. © 2013 The Japanese Urological Association.
Model of Inclusion Evolution During Calcium Treatment in the Ladle Furnace
NASA Astrophysics Data System (ADS)
Tabatabaei, Yousef; Coley, Kenneth S.; Irons, Gordon A.; Sun, Stanley
2018-04-01
Calcium treatment of steel is typically employed to modify alumina inclusions to liquid calcium aluminates. However, injected calcium also reacts with the dissolved sulfur to form calcium sulfide. The current work aims to develop a kinetic model for the evolution of oxide and sulfide inclusions in Al-killed alloyed steel during Ca treatment in the ladle refining process. The model considers dissolution of the calcium from the calcium bubbles into the steel and reduction of calcium oxide in the slag to dissolved calcium. A steel-inclusion kinetic model is used for mass transfer to the inclusion interface and diffusion within the calcium aluminate phases formed on the inclusion. The inclusion-steel kinetic model is then coupled with a previously developed steel-slag kinetic model. The coupled inclusion-steel-slag kinetic model is applied to the chemical composition changes in molten steel, slag, and evolution of inclusions in the ladle. The result of calculations is found to agree well with an industrial heat for species in the steel as well as inclusions during Ca treatment.
The Long and Arduous Road to CRAC
Vig, Monika; Kinet, Jean-Pierre
2007-01-01
Store-operated calcium (SOC) entry is the major route of calcium influx in non-excitable cells, especially immune cells. The best characterized store operated current, ICRAC, is carried by calcium release activated calcium (CRAC) channels. The existence of the phenomenon of store-operated calcium influx was proposed almost two decades ago. However, in spite of rigorous research by many laboratories, the identity of the key molecules participating in the process has remained a mystery. In all these years, multiple different approaches have been adopted by countless researchers to identify the molecular players in this fundamental process. Along the way many crucial discoveries have been made, some of which have been summarized here. The last couple of years have seen significant breakthroughs in the field–identification of STIM1 as the store Ca2+ sensor and CRACM1 (Orai1) as the pore forming subunit of the CRAC channel. The field is now actively engaged in deciphering the gating mechanism of CRAC channels. We summarize here the latest progress in this direction. PMID:17517435
Variations in Urine Calcium Isotope: Composition Reflect Changes in Bone Mineral Balance in Humans
NASA Technical Reports Server (NTRS)
Skulan, Joseph; Anbar, Ariel; Bullen, Thomas; Puzas, J. Edward; Shackelford, Linda; Smith, Scott M.
2004-01-01
Changes in bone mineral balance cause rapid and systematic changes in the calcium isotope composition of human urine. Urine from subjects in a 17 week bed rest study was analyzed for calcium isotopic composition. Comparison of isotopic data with measurements of bone mineral density and metabolic markers of bone metabolism indicates the calcium isotope composition of urine reflects changes in bone mineral balance. Urine calcium isotope composition probably is affected by both bone metabolism and renal processes. Calcium isotope. analysis of urine and other tissues may provide information on bone mineral balance that is in important respects better than that available from other techniques, and illustrates the usefulness of applying geochemical techniques to biomedical problems.
Preparation of Lentinula edodes polysaccharide-calcium complex and its immunoactivity.
Cui, Yujiao; Yan, Huidan; Zhang, Xuewu
2015-01-01
Polysaccharide is a major bioactive component of mushrooms. In this study, for the first time, starting from a new Lentinula edodes polysaccharide L2, we prepared a novel L2-calcium complex and the process was optimized. Scanning electron microscopy and Fourier Transform infrared spectrometry were used for characterization. The immunostimulating activities of L2 and L2-calcium complex were measured by enhancing the production of two cytokines TNF-α and IL-6 in RAW264.7 cells. While L2-calcium complex significantly stimulates the secretions of TNF-α and IL-6 compared with the control, complex with calcium ion decreased the secretion of them. These facts indicate that calcium ion can modulate immune stimulating activity of Lentinula edodes polysaccharide L2.
Zhou, Xin; Zhou, Xuelian; Tang, Xiusheng; Xu, Yong
2018-08-01
One of the major obstacles in process of lignocellulosic biorefinery is the utilization of pre-hydrolysate from pre-treatment. Although lignocellulosic pre-hydrolysate can serve as an economic starting material for xylonic acid production, the advancement of xylonic acid or xylonate is still limited by further commercial value or applications. In the present study, xylose in the high concentration wheat straw pre-hydrolysate was first in-situ biooxidized to xylonate by Gluconobacter oxydans. To meet the needs of commercialization, crude powdered calcium xylonate was prepared by drying process and calcium xylonate content in the prepared crude product was more than 70%. Then, the calcium xylonate product was evaluated as concrete admixture without any complex purification steps and the results demonstrated that xylonate could improve the performance of concrete. Overall, the crude xylonate product directly produced from low-cost wheat straw pre-hydrolysate can potentially be developed as retarding reducer, which could subsequently benefit lignocellulosic biorefinery. Copyright © 2018 Elsevier Ltd. All rights reserved.
de Beer, M; Maree, J P; Liebenberg, L; Doucet, F J
2014-11-01
The production of elemental sulphur and calcium carbonate (CaCO3) from gypsum waste can be achieved by thermally reducing the waste into calcium sulphide (CaS), which is then subjected to a direct aqueous carbonation step for the generation of hydrogen sulphide (H2S) and CaCO3. H2S can subsequently be converted to elemental sulphur via the commercially available chemical catalytic Claus process. This study investigated the carbonation of CaS by examining both the solution chemistry of the process and the properties of the formed carbonated product. CaS was successfully converted into CaCO3; however, the reaction yielded low-grade carbonate products (i.e. <90 mass% as CaCO3) which comprised a mixture of two CaCO3 polymorphs (calcite and vaterite), as well as trace minerals originating from the starting material. These products could replace the Sappi Enstra CaCO3 (69 mass% CaCO3), a by-product from the paper industry which is used in many full-scale AMD neutralisation plants but is becoming insufficient. The insight gained is now also being used to develop and optimize an indirect aqueous CaS carbonation process for the production of high-grade CaCO3 (i.e. >99 mass% as CaCO3) or precipitated calcium carbonate (PCC). Copyright © 2014 Elsevier Ltd. All rights reserved.
Optimising calcium monitoring post thyroid and parathyroid surgery
Rayner, Eleanor; Williams, Nerida; Dunn, Julie
2014-01-01
There is a risk of hypocalcaemia following total thyroidectomy and parathyroidectomy surgery, with the nadir being two to five days post operatively.[1] This project examined and improved the post-operative monitoring of serum calcium in patients undergoing these procedures at the Royal Devon and Exeter (RD&E) Hospital over a ten month period in 2013. A retrospective audit was undertaken, identifying whether serum calcium was monitored according to guideline; ie measured within the first 24 hours of surgery and daily thereafter until the patient was normocalcaemic.[2–3] The audit showed an overall compliance in 79% (n = 34) of cases. Of the non-compliant cases (n=9), seven also suffered hypocalcaemia. The current process was mapped by a flow chart and used as a basis for discussing experiences and identifying areas for improvement. Interventions implemented included a patient leaflet, a process flow chart displayed in the team office and in the weekend handover book, standard text for use in discharge summaries describing the process to GPs, the issuing of prescriptions or actual supplements for patients felt to be at high risk of hypocalcaemia, and finally education to the wider surgical junior doctor team. Percentage compliance with guidelines was compared before and after intervention with a re-audit undertaken in April 2014. Significant improvement was shown, with 100% of re-audit cases compliant (n=41), and all seven cases of hypocalcaemia were managed in full compliance with guideline. PMID:26732097
Growth Control in Colon Epithelial Cells: Gadolinium Enhances Calcium-Mediated Growth Regulation
Attili, Durga; Jenkins, Brian; Aslam, Muhammad Nadeem; Dame, Michael K.
2013-01-01
Gadolinium, a member of the lanthanoid family of transition metals, interacts with calcium-binding sites on proteins and other biological molecules. The overall goal of the present investigation was to determine if gadolinium could enhance calcium-induced epithelial cell growth inhibition in the colon. Gadolinium at concentrations as low as 1–5 µM combined with calcium inhibits proliferation of human colonic epithelial cells more effectively than calcium alone. Gadolinium had no detectable effect on calcium-induced differentiation in the same cells based on change in cell morphology, induction of E-cadherin synthesis, and translocation of E-cadherin from the cytosol to the cell surface. When the colon epithelial cells were treated with gadolinium and then exposed to increased calcium concentrations, movement of extracellular calcium into the cell was suppressed. In contrast, gadolinium treatment had no effect on ionomycin-induced release of stored intracellular calcium into the cytoplasm. Whether these in vitro observations can be translated into an approach for reducing abnormal proliferation in the colonic mucosa (including polyp formation) is not known. These results do, however, provide an explanation for our recent findings that a multi-mineral supplement containing all of the naturally occurring lanthanoid metals including gadolinium are more effective than calcium alone in preventing colon polyp formation in mice on a high-fat diet. PMID:23008064
Mercury's exosphere: observations during MESSENGER's First Mercury flyby.
McClintock, William E; Bradley, E Todd; Vervack, Ronald J; Killen, Rosemary M; Sprague, Ann L; Izenberg, Noam R; Solomon, Sean C
2008-07-04
During MESSENGER's first Mercury flyby, the Mercury Atmospheric and Surface Composition Spectrometer measured Mercury's exospheric emissions, including those from the antisunward sodium tail, calcium and sodium close to the planet, and hydrogen at high altitudes on the dayside. Spatial variations indicate that multiple source and loss processes generate and maintain the exosphere. Energetic processes connected to the solar wind and magnetospheric interaction with the planet likely played an important role in determining the distributions of exospheric species during the flyby.
[Does carbonate originate from carbonate-calcium crystal component of the human urinary calculus?].
Yuzawa, Masayuki; Nakano, Kazuhiko; Kumamaru, Takatoshi; Nukui, Akinori; Ikeda, Hitoshi; Suzuki, Kazumi; Kobayashi, Minoru; Sugaya, Yasuhiro; Morita, Tatsuo
2008-09-01
It gives important information in selecting the appropriate treatment for urolithiasis to confirm the component of urinary calculus. Presently component analysis of the urinary calculus is generally performed by infrared spectroscopy which is employed by companies providing laboratory testing services in Japan. The infrared spectroscopy determines the molecular components from the absorption spectra in consequence of atomic vibrations. It has the drawback that an accurate crystal structure cannot be analyzed compared with the X-ray diffraction method which analyzes the crystal constituent based on the diffraction of X-rays on crystal lattice. The components of the urinary calculus including carbonate are carbonate apatite and calcium carbonate such as calcite. Although the latter is reported to be very rare component in human urinary calculus, the results by infrared spectroscopy often show that calcium carbonate is included in calculus. The infrared spectroscopy can confirm the existence of carbonate but cannot determine whether carbonate is originated from carbonate apatite or calcium carbonate. Thus, it is not clear whether calcium carbonate is included in human urinary calculus component in Japan. In this study, we examined human urinary calculus including carbonate by use of X-ray structural analysis in order to elucidate the origin of carbonate in human urinary calculus. We examined 17 human calculi which were reported to contain calcium carbonate by infrared spectroscopy performed in the clinical laboratory. Fifteen calculi were obtained from urinary tract, and two were from gall bladder. The stones were analyzed by X-ray powder method after crushed finely. The reports from the clinical laboratory showed that all urinary culculi consisted of calcium carbonate and calcium phosphate, while the gallstones consisted of calcium carbonate. But the components of all urinary calculi were revealed to be carbonate apatite by X-ray diffraction. The components of gallstones were shown to be calcium carbonate (one calcite and the other aragonite) not only by infrared spectroscopy but by X-ray diffraction. It was shown that component analysis of the calculus could be more accurately performed by adding X-ray diffraction method to infrared spectroscopy. It was shown that calcium carbonate existed in a gallstone. As for the carbonate in human urinary calculi, present study showed that it was not calcium carbonate origin but carbonate apatite origin.
REDUCTION OF FLUORIDE TO METAL
Carlson, O.N.; Schmidt, F.A.; Spedding, F.H.
1960-08-30
A process is given for making yttrium metal by reducing yttrium fluoride with calcium plus magnesium. Calcium is added in an excess of from 10 to 20% and magnesium in a quantity to yield a magnesium--yttrium alloy containing from 12 to 25% magnesium when the reaction mass is heated in an inert atmosphere at from 900 to 1106 deg C, but preferably above the melting point of the alloy. Calcium chloride may be added so as to obtain a less viscous slag containing from 30 to 60% calcium chloride. After removal of the slag the alloy is vacuum-heated at about 1100 deg C for volatilization of the magnesium and calcium.
Monitoring Endoplasmic Reticulum Calcium Homeostasis Using a Gaussia Luciferase SERCaMP.
Henderson, Mark J; Wires, Emily S; Trychta, Kathleen A; Yan, Xiaokang; Harvey, Brandon K
2015-09-06
The endoplasmic reticulum (ER) contains the highest level of intracellular calcium, with concentrations approximately 5,000-fold greater than cytoplasmic levels. Tight control over ER calcium is imperative for protein folding, modification and trafficking. Perturbations to ER calcium can result in the activation of the unfolded protein response, a three-prong ER stress response mechanism, and contribute to pathogenesis in a variety of diseases. The ability to monitor ER calcium alterations during disease onset and progression is important in principle, yet challenging in practice. Currently available methods for monitoring ER calcium, such as calcium-dependent fluorescent dyes and proteins, have provided insight into ER calcium dynamics in cells, however these tools are not well suited for in vivo studies. Our lab has demonstrated that a modification to the carboxy-terminus of Gaussia luciferase confers secretion of the reporter in response to ER calcium depletion. The methods for using a luciferase based, secreted ER calcium monitoring protein (SERCaMP) for in vitro and in vivo applications are described herein. This video highlights hepatic injections, pharmacological manipulation of GLuc-SERCaMP, blood collection and processing, and assay parameters for longitudinal monitoring of ER calcium.
Celedón, Gloria; González, Gustavo; Lissi, Eduardo; Cerda, Tania; Martinez, Diana; Soto, Carmen; Pupo, Mario; Pazos, Fabiola; Lanio, Maria E; Alvarez, Carlos
2009-11-01
Sticholysin II (St II) is a toxin from the sea anemona Stichodactyla helianthus that produces erythrocytes lysis at low concentration and its activity depends on the presence of calcium. Calcium may act modifying toxin interaction with erythrocyte membranes or activating cellular processes which may result in a modified St II lytic action. In this study we are reporting that, in the presence of external K(+), extracellular calcium decreased St II activity on erythrocytes. On the other hand an increase of intracellular calcium promotes Sty II lytic activity. The effect of intracellular calcium was specifically studied in relation to membrane lipid translocation elicited by scramblases and how this action influence St II lytic activity on erythrocytes. We used 0.5 mmol/L calcium and 10 mmol/L A23187, as calcium ionophore, for scramblases activation and found increased St II activity associated to increase of intracellular calcium. N-ethyl maleimide (activator) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (inhibitor) were used as scramblases modulators in the assays which produced an increase and a decrease of the calcium effect, respectively. Results reported suggest an improved St II membrane pore-forming capacity promoted by intracellular calcium associated to membrane phospholipids translocation.
Conversion of alkali metal sulfate to the carbonate
Sheth, Atul C.
1982-01-01
A process for converting potassium sulfate to potassium carbonate in which a mixture of potassium sulfate and calcium oxide are reacted at a temperature in the range of between about 700.degree. C. and about 800.degree. C. with a gaseous mixture having a minor amount of hydrogen and/or carbon monoxide in a diluent with the calcium oxide being present in an amount not greater than about 20 percent by weight of the potassium sulfate to produce an aqueous mixture of potassium sulfide, potassium bisulfide, potassium hydroxide and calcium sulfide and a gaseous mixture of steam and hydrogen sulfide. The potassium and calcium salts are quenched to produce an aqueous slurry of soluble potassium salts and insoluble calcium salts and a gaseous mixture of steam and hydrogen sulfide. The insoluble calcium salts are then separated from the aqueous solution of soluble potassium salts. The calcium salts are dried to produce calcium sulfide, calcium bisulfide and steam, and then, the calcium sulfide and calcium bisulfide are converted to the oxide and recycled. The soluble potassium salts are carbonated to produce potassium carbonate which is concentrated and the precipitated crystals separated. The sulfur-containing compounds are further treated.
Alfonso, A; Cabado, A G; Vieytes, M R; Botana, L M
2000-01-01
The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH4Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM.In rat mast cells, nigericin and NH4Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx.The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol.After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%.The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells. PMID:10952669
Redox Regulation of Neuronal Voltage-Gated Calcium Channels
Jevtovic-Todorovic, Vesna
2014-01-01
Abstract Significance: Voltage-gated calcium channels are ubiquitously expressed in neurons and are key regulators of cellular excitability and synaptic transmitter release. There is accumulating evidence that multiple subtypes of voltage-gated calcium channels may be regulated by oxidation and reduction. However, the redox mechanisms involved in the regulation of channel function are not well understood. Recent Advances: Several studies have established that both T-type and high-voltage-activated subtypes of voltage-gated calcium channel can be redox-regulated. This article reviews different mechanisms that can be involved in redox regulation of calcium channel function and their implication in neuronal function, particularly in pain pathways and thalamic oscillation. Critical Issues: A current critical issue in the field is to decipher precise mechanisms of calcium channel modulation via redox reactions. In this review we discuss covalent post-translational modification via oxidation of cysteine molecules and chelation of trace metals, and reactions involving nitric oxide-related molecules and free radicals. Improved understanding of the roles of redox-based reactions in regulation of voltage-gated calcium channels may lead to improved understanding of novel redox mechanisms in physiological and pathological processes. Future Directions: Identification of redox mechanisms and sites on voltage-gated calcium channel may allow development of novel and specific ion channel therapies for unmet medical needs. Thus, it may be possible to regulate the redox state of these channels in treatment of pathological process such as epilepsy and neuropathic pain. Antioxid. Redox Signal. 21, 880–891. PMID:24161125
Biomineralization processes of calcite induced by bacteria isolated from marine sediments
Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao
2015-01-01
Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10−4 mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments. PMID:26273260
Ionophore-A23187-induced cellular cytotoxicity: a cell fragment mediated process.
Nash, G S; Niedt, G W; MacDermott, R P
1980-01-01
Calcium ionophore A23187 was found to induce human white blood cells to kill human red blood cells. Optimal conditions for ionophore-induced cellular cytotoxicity (IICC) included an 18 h time period, an incubation temperature of 25 degrees, a 25:1 or 50:1 killer:target cell ratio,and a final ionophore concentration of 2 . 5 microgram/ml. WBC or granulocytes which were either frozen and thawed three times or sonicated were capable of mediating IICC. As intact cells, granulocytes (67 . 2% cytotoxicity), monocytes (34 . 8%), B cells (22 . 0%) and Null cells (19 . 3%) were effector cells but T cells (7 . 4%) were not. After fragmenting these cells, all cell types including T cells were able to mediate IICC. When cell lines (K562, Chang, and NCTC) were used as effectors, none would mediate IICC when intact. After freezing and thawing, Chang and NCTC would not mediate IICC, whereas K562 cells did. These studies may be indicative of a calcium-dependent, membrane-localized mechanism in cellular cytotoxic processes, and may provide a useful indicator system for isolation of the enzyme systems involved in cellular cytotoxicity. PMID:6773881
2011-01-01
Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface. PMID:21943229
Impact of pH on the structure and function of neural cadherin.
Jungles, Jared M; Dukes, Matthew P; Vunnam, Nagamani; Pedigo, Susan
2014-12-02
Neural (N-) cadherin is a transmembrane protein within adherens junctions that mediates cell-cell adhesion. It has 5 modular extracellular domains (EC1-EC5) that bind 3 calcium ions between each of the modules. Calcium binding is required for dimerization. N-Cadherin is involved in diverse processes including tissue morphogenesis, excitatory synapse formation and dynamics, and metastasis of cancer. During neurotransmission and tumorigenesis, fluctuations in extracellular pH occur, causing tissue acidosis with associated physiological consequences. Studies reported here aim to determine the effect of pH on the dimerization properties of a truncated construct of N-cadherin containing EC1-EC2. Since N-cadherin is an anionic protein, we hypothesized that acidification of solution would cause an increase in stability of the apo protein, a decrease in the calcium-binding affinity, and a concomitant decrease in the formation of adhesive dimer. The stability of the apo monomer was increased and the calcium-binding affinity was decreased at reduced pH, consistent with our hypothesis. Surprisingly, analytical SEC studies showed an increase in calcium-induced dimerization as solution pH decreased from 7.4 to 5.0. Salt-dependent dimerization studies indicated that electrostatic repulsion attenuates dimerization affinity. These results point to a possible electrostatic mechanism for moderating dimerization affinity of the Type I cadherin family. Extrapolating these results to cell adhesion in vivo leads to the assertion that decreased pH promotes adhesion by N-cadherin, thereby stabilizing synaptic junctions.
... and enzymes and to send messages through the nervous system. It is important to get plenty of calcium in the foods you eat. Foods rich in calcium include Dairy products such as milk, cheese, and yogurt Leafy, green vegetables Fish with soft bones that you eat, such as ...
Parathyroid-specific interaction of the calcium-sensing receptor and Gaq
Pi, Min; Chen, Ling; Huang, MinZhao; Luo, Qiang; Quarles, L. Darryl
2009-01-01
The calcium-sensing receptor regulates various parathyroid gland functions, including hormone secretion, gene transcription, and chief cell hyperplasia through Gαq- and Gαi-dependent signaling pathways. To determine the specific function of Gαq in these processes, we generated transgenic mice using the human parathyroid hormone promoter to drive overexpression of a dominant negative Gαqloop minigene to selectively disrupt Gαq function in the parathyroid gland. The Gαqloop mRNA was highly expressed in the parathyroid gland but not in other tissues of these transgenic mice. Gross appearance, body weight, bone mineral density, and survival of the transgenic mice were indistinguishable from those of their wild-type littermates. Adult transgenic mice, however, exhibited an increase in parathyroid hormone mRNA and in its basal serum level as well as in gland size. The response of the parathyroid gland to hypocalcemia was found to be reduced in sensitivity in the transgenic mice when compared to their wild-type controls. Abnormalities of the parathyroid gland function in these transgenic mice were similar to those of heterozygous Gαq+/− and calcium sensing receptor+/− mice. These studies demonstrate the feasibility of selectively targeting the parathyroid gland to investigate signaling mechanisms downstream of the calcium receptor. PMID:18813283
Gebhardt, Ronald; Takeda, Naohiro; Kulozik, Ulrich; Doster, Wolfgang
2011-03-17
Caseins form heterogeneous micelles composed of three types of disordered protein chains (α, β, κ), which include protein-bound calcium phosphate particles. We probe the stability limits of the micelle by applying hydrostatic pressure. The resulting changes of the size distribution and the average molecular weight are recorded in situ with static and dynamic light scattering. Pressure induces irreversible dissociation of the micelles into monomers above a critical value depending on their size. The critical pressure increases with temperature, pH, and calcium concentration due to the interplay of hydrophobic and electrostatic interactions. The pressure transition curves are biphasic, reflecting the equilibrium of two micelle states with different stability, average size, entropy, and calcium bound. The fast process of pressure dissociation is used to probe the slow equilibrium of the two micelle states under various conditions. Binding and release of β-casein from the micelle is suggested as the molecular mechanism of stabilization associated with the two states. In situ FTIR spectroscopy covering the P-O stretching region indicates that bound calcium phosphate particles are released from serine phosphate residues at pressures above 100 MPa. The resulting imbalance of charge triggers the complete decomposition of the micelle. © 2011 American Chemical Society
The influence of scale inhibitors on calcium oxalate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, J.S.
1999-11-01
Precipitation of calcium oxalate is a common occurrence in mammalian urinary tract deposits and in various industrial processes such as paper making, brewery fermentation, sugar evaporation, and tannin concentration. Between pH 3.5 to 4.5 the driving force for calcium oxalate precipitation increases almost by three fold. It is a complicated process to predict both the nature of a deposit and at which stage of a multi-effect evaporator a particular mineral will deposit, as this depends on temperature, pH, total solids, and kinetics of mineralization. It is quite a challenge to inhibit calcium oxalate precipitation in the pH range of 4--6.more » Al{sup 3+} ions provide excellent threshold inhibition in this pH range and can be used to augment traditional inhibitors such as polyphosphates and polycarboxylates.« less
Computational study of a calcium release-activated calcium channel
NASA Astrophysics Data System (ADS)
Talukdar, Keka; Shantappa, Anil
2016-05-01
The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.
Process for hydroliquefying coal or like carbonaceous solid materials
Malek, John Michael
1977-01-01
In this process the products of the dissolution-hydrogenation of coal or the like material in a hydrocarbon rich solvent are subjected in their slurryform fraction to an asphaltenes decomposing action of an alkali, like caustic soda or, being admixed after the gasiform fraction of the hydrogenation products has been taken off the slurryform fraction of the hydrogenation products now including the admixed alkali is subjected to a rehydrogenation by a hydrogen rich gas which after its rehydrogenating use is preferably applied, as source of hydrogen, to said dissolution-hydrogenation of coal. Optionally the admixed alkali includes minor amounts of a carboxylic acid salt of calcium.
Dorozhkin, Sergey V.
2011-01-01
The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided. PMID:23507744
Nacre-like calcium carbonate controlled by ionic liquid/graphene oxide composite template.
Yao, Chengli; Xie, Anjian; Shen, Yuhua; Zhu, Jinmiao; Li, Hongying
2015-06-01
Nacre-like calcium carbonate nanostructures have been mediated by an ionic liquid (IL)-graphene oxide (GO) composite template. The resultant crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray powder diffractometry (XRD). The results showed that either 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) or graphene oxide can act as a soft template for calcium carbonate formation with unusual morphologies. Based on the time-dependent morphology changes of calcium carbonate particles, it is concluded that nacre-like calcium carbonate nanostructures can be formed gradually utilizing [BMIM]BF4/GO composite template. During the process of calcium carbonate formation, [BMIM]BF4 acted not only as solvents but also as morphology templates for the fabrication of calcium carbonate materials with nacre-like morphology. Based on the observations, the possible mechanisms were also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Multi-Functions of Carbonated Calcium Deficient Hydroxyapatite (CDHA)
NASA Astrophysics Data System (ADS)
Zhou, Huan
Natural bone is a complex composite mainly constituted of inorganic minerals and organic collagen molecules. Calcium phosphate (CaP) based materials have been proposed as the predominant bone substitute for bone tissue engineering applications due to their chemical similarity to bone mineral. Amorphous carbonated calcium deficient hydroxyapatite (CDHA) is an important compound among CaP materials because of the amorphous crystallite structure. The presence of extra ions in its lattice structure not only influences cell attachment and proliferation of osteoblasts, but also helps in bone metabolism. Biomimetic coating approach is the most widely used approach to produce CDHA coatings to implant. It is a process using simulated body fluid (SBF) to deposit bone-like CDHA coating to various material surfaces. The CDHA formation mechanism, SBF compositions and reacting conditions of biomimetic coating have already been sufficiently studied and compared in the past 20 years. It is an attempt in this thesis to explore new applications of SBF in biomedical research, focusing on different biomaterial applications: 1) based on the low temperature reaction condition of SBF, bisphosphonate incorporated CDHA coatings were deposited onto Ti6Al4V surface for the treatment of osteoporosis; 2) amorphous calcium phosphate nanospheres with extra elements in the lattice structure were prepared by a novel microwave assisted approach, providing a new potential of CaP materials production; 3) CDHA particles formed in SBF can be used as great fillers with biopolymers for preparing biocomposites for biomedical applications; 4) based on the high activity of CDHA amorphous structure and the stabilization ability of ethanol, yttrium and europium doped calcium phosphates were prepared using CDHA as a sacrificing template. In the end, future work based on these observations in the thesis is addressed, including areas of drug delivery, biocomposite fabrication and preparation of functionalized calcium phosphate materials.
Process for the preparation of calcium superoxide
NASA Technical Reports Server (NTRS)
Ballou, E. V.; Wood, P. C.; Wydeven, T. J.; Spitze, L. A. (Inventor)
1978-01-01
Calcium superoxide is prepared in high yields by spreading a quantity of calcium peroxide diperoxyhydrate on the surface of a container, positioning said container in a vacuum chamber on a support structure through which a coolant fluid can be circulated, partially evacuating said vacuum chamber, allowing the temperature of the diperoxyhydrate to reach the range of about 0 to about 40 C; maintaining the temperature selected for a period of time sufficient to complete the disproproriation of the diperoxyhydrate to calcium superoxide, calcium hydroxide, oxygen, and water; constantly and systematically removing the water as it is formed by sweeping the reacting material with a current of dry inert gas and/or by condensation of said water on a cold surface; backfilling the chamber with a dry inert gas; and finally, recovering the calcium superoxide produced.
Gasperini, Robert J; Pavez, Macarena; Thompson, Adrian C; Mitchell, Camilla B; Hardy, Holly; Young, Kaylene M; Chilton, John K; Foa, Lisa
2017-10-01
The precision with which neurons form connections is crucial for the normal development and function of the nervous system. The development of neuronal circuitry in the nervous system is accomplished by axon pathfinding: a process where growth cones guide axons through the embryonic environment to connect with their appropriate synaptic partners to form functional circuits. Despite intense efforts over many years to understand how this process is regulated, the complete repertoire of molecular mechanisms that govern the growth cone cytoskeleton and hence motility, remain unresolved. A central tenet in the axon guidance field is that calcium signals regulate growth cone behaviours such as extension, turning and pausing by regulating rearrangements of the growth cone cytoskeleton. Here, we provide evidence that not only the amplitude of a calcium signal is critical for growth cone motility but also the source of calcium mobilisation. We provide an example of this idea by demonstrating that manipulation of calcium signalling via L-type voltage gated calcium channels can perturb sensory neuron motility towards a source of netrin-1. Understanding how calcium signals can be transduced to initiate cytoskeletal changes represents a significant gap in our current knowledge of the mechanisms that govern axon guidance, and consequently the formation of functional neural circuits in the developing nervous system. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Ranjan, Bobby; Chong, Ket Hing; Zheng, Jie
2018-04-11
Alzheimer's disease (AD) is a progressive neurological disorder, recognized as the most common cause of dementia affecting people aged 65 and above. AD is characterized by an increase in amyloid metabolism, and by the misfolding and deposition of β-amyloid oligomers in and around neurons in the brain. These processes remodel the calcium signaling mechanism in neurons, leading to cell death via apoptosis. Despite accumulating knowledge about the biological processes underlying AD, mathematical models to date are restricted to depicting only a small portion of the pathology. Here, we integrated multiple mathematical models to analyze and understand the relationship among amyloid depositions, calcium signaling and mitochondrial permeability transition pore (PTP) related cell apoptosis in AD. The model was used to simulate calcium dynamics in the absence and presence of AD. In the absence of AD, i.e. without β-amyloid deposition, mitochondrial and cytosolic calcium level remains in the low resting concentration. However, our in silico simulation of the presence of AD with the β-amyloid deposition, shows an increase in the entry of calcium ions into the cell and dysregulation of Ca 2+ channel receptors on the Endoplasmic Reticulum. This composite model enabled us to make simulation that is not possible to measure experimentally. Our mathematical model depicting the mechanisms affecting calcium signaling in neurons can help understand AD at the systems level and has potential for diagnostic and therapeutic applications.
Calcium metabolism in health and disease.
Peacock, Munro
2010-01-01
This brief review focuses on calcium balance and homeostasis and their relationship to dietary calcium intake and calcium supplementation in healthy subjects and patients with chronic kidney disease and mineral bone disorders (CKD-MBD). Calcium balance refers to the state of the calcium body stores, primarily in bone, which are largely a function of dietary intake, intestinal absorption, renal excretion, and bone remodeling. Bone calcium balance can be positive, neutral, or negative, depending on a number of factors, including growth, aging, and acquired or inherited disorders. Calcium homeostasis refers to the hormonal regulation of serum ionized calcium by parathyroid hormone, 1,25-dihydroxyvitamin D, and serum ionized calcium itself, which together regulate calcium transport at the gut, kidney, and bone. Hypercalcemia and hypocalcemia indicate serious disruption of calcium homeostasis but do not reflect calcium balance on their own. Calcium balance studies have determined the dietary and supplemental calcium requirements needed to optimize bone mass in healthy subjects. However, similar studies are needed in CKD-MBD, which disrupts both calcium balance and homeostasis, because these data in healthy subjects may not be generalizable to this patient group. Importantly, increasing evidence suggests that calcium supplementation may enhance soft tissue calcification and cardiovascular disease in CKD-MBD. Further research is needed to elucidate the risks and mechanisms of soft tissue calcification with calcium supplementation in both healthy subjects and CKD-MBD patients.
Calcium Signaling Is Required for Erythroid Enucleation
Russell, Sarah M.; Humbert, Patrick O.
2016-01-01
Although erythroid enucleation, the property of erythroblasts to expel their nucleus, has been known for 7ore than a century, surprisingly little is known regarding the molecular mechanisms governing this unique developmental process. Here we show that similar to cytokinesis, nuclear extrusion requires intracellular calcium signaling and signal transduction through the calmodulin (CaM) pathway. However, in contrast to cytokinesis we found that orthochromatic erythroblasts require uptake of extracellular calcium to enucleate. Together these functional studies highlight a critical role for calcium signaling in the regulation of erythroid enucleation. PMID:26731108
Drevet, Richard; Benhayoune, Hicham
2013-10-01
Strontium-substituted calcium phosphate coatings are synthesized by pulsed electrodeposition on titanium alloy (Ti6Al4V) substrates. Experimental conditions of the process are optimized in order to obtain a coating with a 5% atomic substitution of calcium by strontium which corresponds to the best observations on the osteoblast cells activity and on the osteoclast cells proliferation. The physical and chemical characterizations of the obtained coating are carried out by scanning electron microscopy associated to energy dispersive X-ray spectroscopy (EDXS) for X-ray microanalysis and the structural characterization of the coating is carried out by X-ray diffraction. The in vitro dissolution/precipitation properties of the coated substrates are investigated by immersion into Dulbecco's Modified Eagle Medium (DMEM) from 1h to 14 days. The calcium, phosphorus and strontium concentrations variations in the biological liquid are assessed by Induced Coupled Plasma - Atomic Emission Spectroscopy for each immersion time. The results show that under specific experimental conditions, the electrodeposition process is suitable to synthesize strontium-substituted calcium phosphate coatings. Moreover, the addition of hydrogen peroxide (H2O2) into the electrolytic solution used in the process allows us to observe a control of the strontium release during the immersion of the prosthetic materials into DMEM. © 2013.
Apo calmodulin binding to the L-type voltage-gated calcium channel Ca{sub v}1.2 IQ peptide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lian Luyun; Myatt, Daniel; Kitmitto, Ashraf
2007-02-16
The influx of calcium through the L-type voltage-gated calcium channels (LTCCs) is the trigger for the process of calcium-induced calcium release (CICR) from the sarcoplasmic recticulum, an essential step for cardiac contraction. There are two feedback mechanisms that regulate LTCC activity: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF), both of which are mediated by calmodulin (CaM) binding. The IQ domain (aa 1645-1668) housed within the cytoplasmic domain of the LTCC Ca{sub v}1.2 subunit has been shown to bind both calcium-loaded (Ca{sup 2+}CaM ) and calcium-free CaM (apoCaM). Here, we provide new data for the structural basis for the interaction ofmore » apoCaM with the IQ peptide using NMR, revealing that the apoCaM C-lobe residues are most significantly perturbed upon complex formation. In addition, we have employed transmission electron microscopy of purified LTCC complexes which shows that both apoCaM and Ca{sup 2+}CaM can bind to the intact channel.« less
Examination of the steps leading up to the physical developer process for developing fingerprints.
Wilson, Jeffrey Daniel; Cantu, Antonio A; Antonopoulos, George; Surrency, Marc J
2007-03-01
This is a systematic study that examines several acid prewashes and water rinses on paper bearing latent prints before its treatment with a silver physical developer. Specimens or items processed with this method are usually pretreated with an acid wash to neutralize calcium carbonate from the paper before the treatment with a physical developer. Two different acids at varying concentrations were tested on fingerprints. Many different types of paper were examined in order to determine which acid prewash was the most beneficial. Various wash times as well as the addition of a water rinse step before the development were also examined. A pH study was included that monitored the acidity of the solution during the wash step. Scanning electron microscopy was used to verify surface calcium levels for the paper samples throughout the experiment. Malic acid at a concentration of 2.5% proved to be an ideal acid for most papers, providing good fingerprint development with minimal background development. Water rinses were deemed unnecessary before physical development.
Microbial biosynthesis and secretion of l-malic acid and its applications.
Chi, Zhe; Wang, Zhi-Peng; Wang, Guang-Yuan; Khan, Ibrar; Chi, Zhen-Ming
2016-01-01
l-Malic acid has many uses in food, beverage, pharmaceutical, chemical and medical industries. It can be produced by one-step fermentation, enzymatic transformation of fumaric acid to l-malate and acid hydrolysis of polymalic acid. However, the process for one-step fermentation is preferred as it has many advantages over any other process. The pathways of l-malic acid biosynthesis in microorganisms are partially clear and three metabolic pathways including non-oxidative pathway, oxidative pathway and glyoxylate cycle for the production of l-malic acid from glucose have been identified. Usually, high levels of l-malate are produced under the nitrogen starvation conditions, l-malate, as a calcium salt, is secreted from microbial cells and CaCO3 can play an important role in calcium malate biosynthesis and regulation. However, it is still unclear how it is secreted into the medium. To enhance l-malate biosynthesis and secretion by microbial cells, it is very important to study the mechanisms of l-malic acid biosynthesis and secretion at enzymatic and molecular levels.
Lubricant-Coolant for Hot Working of Metals,
includes calcium acetate, sodium acetate, and polyoxyethylated alkylphenol for added effectiveness, and that its composition includes (in wt. percentage...calcium acetate 5, sodium acetate 4, polyoxyethylated alkylphenol 0.1, graphite 5, and water up to 100. (Author)
Calcium supplementation prevents endothelial cell activation: possible relevance to preeclampsia.
Chen, Qi; Tong, Mancy; Wu, Man; Stone, Peter R; Snowise, Saul; Chamley, Lawrence W
2013-09-01
Preeclampsia is a leading cause of maternal and fetal mortality and morbidity. A hallmark of preeclampsia is endothelial cell dysfunction/activation in response to 'toxins' from the placenta. Necrotic trophoblastic debris (NTD) is one possible placental toxin and other activators of endothelial cells include inflammatory cytokines. Calcium supplementation appears to protect 'at-risk' women from developing preeclampsia but how is unclear. Placental explants were cultured with interleukin-6 (IL-6) in varied concentrations of calcium. The resultant trophoblastic debris was exposed to endothelial cells. Endothelial cells were exposed to activators including NTD, IL-6, and preeclamptic sera in the presence of varied concentrations of calcium and activation monitored by quantifying cell surface markers by ELISA. Raising the levels of calcium did not prevent the IL-6-induced shedding of NTD from placental explants but did prevent the activation of endothelial cells in response to IL-6, preeclamptic sera, or NTD. Reducing the level of calcium directly induced the activation of endothelial cells. Inhibiting nitric oxide synthetase ablated the ability of high calcium levels to protect endothelial cell activation. The activity of endothelial cell nitric oxide synthetase was blocked with L-N-nitroarginine methyl ester. Our results demonstrate calcium levels do not affect the shedding of trophoblastic debris but are important to endothelial cell activation and supplemental calcium may reverse the activation of the endothelium in preeclamptic women. These results may in part explain the benefits of calcium supplementation in the reduction of risk for developing preeclampsia and provide in-vitro mechanistic support for the use of calcium supplementation in at-risk women.
Micro and colloidal stickie pacification with precipitated calcium carbonate
John H. Klungness; Roland L. Gleisner; Marguerite Sykes
2004-01-01
The colloidal stickies which build up in mill process water during pulping are problematic and difficult to remove. The USDA Forestry Service examined precipitated calcium carbonate (PCC) as a means to ameliorate process water stickies, comparing: i) the effectiveness of PCC added directly into a slurry of deinked pulp with ii) in situ precipitation of PCC by the fibre...
Micro and colloidal stickie pacification with precipitated calcium carbonate
John H. Klungness; Roland L. Gleisner; Marguerite S. Sykes
2002-01-01
Colloidal stickies that build up in mill process water during pulping are problematic and difficult to remove. We examined precipitated calcium carbonate (PCC) as a means to ameliorate process water stickies. The effectiveness of PCC added directly into a slurry of deinked pulp was compared with in situ precipitation of PCC by the fiber loading method. We found that...
Interleukin-11 binds specific EF-hand proteins via their conserved structural motifs.
Kazakov, Alexei S; Sokolov, Andrei S; Vologzhannikova, Alisa A; Permyakova, Maria E; Khorn, Polina A; Ismailov, Ramis G; Denessiouk, Konstantin A; Denesyuk, Alexander I; Rastrygina, Victoria A; Baksheeva, Viktoriia E; Zernii, Evgeni Yu; Zinchenko, Dmitry V; Glazatov, Vladimir V; Uversky, Vladimir N; Mirzabekov, Tajib A; Permyakov, Eugene A; Permyakov, Sergei E
2017-01-01
Interleukin-11 (IL-11) is a hematopoietic cytokine engaged in numerous biological processes and validated as a target for treatment of various cancers. IL-11 contains intrinsically disordered regions that might recognize multiple targets. Recently we found that aside from IL-11RA and gp130 receptors, IL-11 interacts with calcium sensor protein S100P. Strict calcium dependence of this interaction suggests a possibility of IL-11 interaction with other calcium sensor proteins. Here we probed specificity of IL-11 to calcium-binding proteins of various types: calcium sensors of the EF-hand family (calmodulin, S100B and neuronal calcium sensors: recoverin, NCS-1, GCAP-1, GCAP-2), calcium buffers of the EF-hand family (S100G, oncomodulin), and a non-EF-hand calcium buffer (α-lactalbumin). A specific subset of the calcium sensor proteins (calmodulin, S100B, NCS-1, GCAP-1/2) exhibits metal-dependent binding of IL-11 with dissociation constants of 1-19 μM. These proteins share several amino acid residues belonging to conservative structural motifs of the EF-hand proteins, 'black' and 'gray' clusters. Replacements of the respective S100P residues by alanine drastically decrease its affinity to IL-11, suggesting their involvement into the association process. Secondary structure and accessibility of the hinge region of the EF-hand proteins studied are predicted to control specificity and selectivity of their binding to IL-11. The IL-11 interaction with the EF-hand proteins is expected to occur under numerous pathological conditions, accompanied by disintegration of plasma membrane and efflux of cellular components into the extracellular milieu.
Cryptogenic Stroke and Nonstenosing Intracranial Calcified Atherosclerosis.
Kamel, Hooman; Gialdini, Gino; Baradaran, Hediyeh; Giambrone, Ashley E; Navi, Babak B; Lerario, Michael P; Min, James K; Iadecola, Costantino; Gupta, Ajay
2017-04-01
Because some cryptogenic strokes may result from large-artery atherosclerosis that goes unrecognized as it causes <50% luminal stenosis, we compared the prevalence of nonstenosing intracranial atherosclerotic plaques ipsilateral to cryptogenic cerebral infarcts versus the unaffected side using imaging biomarkers of calcium burden. In a prospective stroke registry, we identified patients with cerebral infarction limited to the territory of one internal carotid artery (ICA). We included patients with stroke of undetermined etiology and, as controls, patients with cardioembolic stroke. We used noncontrast computed tomography to measure calcification in both intracranial ICAs, including qualitative calcium scoring and quantitative scoring utilizing the Agatston-Janowitz (AJ) calcium scoring. Within subjects, the Wilcoxon signed-rank sum test for nonparametric paired data was used to compare the calcium burden in the ICA upstream of the infarction versus the ICA on the unaffected side. We obtained 440 calcium measures from 110 ICAs in 55 patients. Among 34 patients with stroke of undetermined etiology, we found greater calcium in the ICA ipsilateral to the infarction (mean Modified Woodcock Visual Scale score, 6.7 ± 4.6) compared with the contralateral side (5.4 ± 4.1) (P = .005). Among 21 patients with cardioembolic stroke, we found no difference in calcium burden ipsilateral to the infarction (6.7 ± 5.9) versus the contralateral side (7.3 ± 6.3) (P = .13). The results were similar using quantitative calcium measurements, including the AJ calcium scores. In patients with strokes of undetermined etiology, the burden of calcified intracranial large-artery plaque was associated with downstream cerebral infarction. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Apical closure of mature molar roots with the use of calcium hydroxide.
Rotstein, I; Friedman, S; Katz, J
1990-11-01
Calcium hydroxide may induce apical root closure in affected mature teeth as well as in immature teeth. Once an apical hard tissue barrier is formed, a permanent root canal filling can be safely condensed. Two cases are described in which calcium hydroxide induced apical root closure in mature molar teeth where the apical constriction was lost because of chronic inflammatory process.
Maleckar, Mary M; Edwards, Andrew G; Louch, William E; Lines, Glenn T
2017-01-01
Excitation-contraction coupling in cardiac myocytes requires calcium influx through L-type calcium channels in the sarcolemma, which gates calcium release through sarcoplasmic reticulum ryanodine receptors in a process known as calcium-induced calcium release, producing a myoplasmic calcium transient and enabling cardiomyocyte contraction. The spatio-temporal dynamics of calcium release, buffering, and reuptake into the sarcoplasmic reticulum play a central role in excitation-contraction coupling in both normal and diseased cardiac myocytes. However, further quantitative understanding of these cells' calcium machinery and the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease requires accurate knowledge of cardiac ultrastructure, protein distribution and subcellular function. As current imaging techniques are limited in spatial resolution, limiting insight into changes in calcium handling, computational models of excitation-contraction coupling have been increasingly employed to probe these structure-function relationships. This review will focus on the development of structural models of cardiac calcium dynamics at the subcellular level, orienting the reader broadly towards the development of models of subcellular calcium handling in cardiomyocytes. Specific focus will be given to progress in recent years in terms of multi-scale modeling employing resolved spatial models of subcellular calcium machinery. A review of the state-of-the-art will be followed by a review of emergent insights into calcium-dependent etiologies in heart disease and, finally, we will offer a perspective on future directions for related computational modeling and simulation efforts.
Zhang, Zhongheng; Chen, Kun; Ni, Hongying
2015-01-01
Observational studies have linked hypocalcemia with adverse clinical outcome in critically ill patients. However, calcium supplementation has never been formally investigated for its beneficial effect in critically ill patients. To investigate whether calcium supplementation can improve 28-day survival in adult critically ill patients. Secondary analysis of a large clinical database consisting over 30,000 critical ill patients was performed. Multivariable analysis was performed to examine the independent association of calcium supplementation and 28-day morality. Furthermore, propensity score matching technique was employed to investigate the role of calcium supplementation in improving survival. none. Primary outcome was the 28-day mortality. 90-day mortality was used as secondary outcome. A total of 32,551 adult patients, including 28,062 survivors and 4489 non-survivors (28-day mortality rate: 13.8 %) were included. Calcium supplementation was independently associated with improved 28-day mortality after adjusting for confounding variables (hazard ratio: 0.51; 95 % CI 0.47-0.56). Propensity score matching was performed and the after-matching cohort showed well balanced covariates. The results showed that calcium supplementation was associated with improved 28- and 90-day mortality (p < 0.05 for both Log-rank test). In adult critically ill patients, calcium supplementation during their ICU stay improved 28-day survival. This finding supports the use of calcium supplementation in critically ill patients.
Li, Yuan; Chen, YiRong; Zhang, Wei; Huang, XiaoGang; Li, WenHui; Ru, XiaoRui; Meng, Min; Xi, Xinsheng; Huang, Gang; Shi, BaoGuang; Liu, Gang; Li, WeiHua; Xu, Hui
2011-08-01
To investigate the composition changes in melamine-related urinary calculi and their clinical significance. A total of 49 melamine-related urinary calculi were included from 49 children (age 4-82 months, mean 22). The qualitative analysis of stone composition was determined using Fourier transform infrared. The quantitative analysis of the stone computed tomography (CT) attenuation value, stone uric acid level, and stone calcium level were measured using spiral CT, high-performance liquid chromatography, and flame atomic absorption spectrum, respectively. Fourier transform infrared showed that 41 (84%) of the 49 stones contained uric acid and 25 (51%) contained calcium compounds. The data from the qualitative and quantitative analysis were available for 15 stones because of sample consumption in the detection process (Fourier transform infrared, atomic absorption spectrum, and high-performance liquid chromatography). A negative correlation was observed between stone uric acid level and stone calcium level (n = 15, r = -0.629, P = .009). A positive correlation was observed between the stone calcium level and stone CT attenuation value (n = 25, r = 0.855, P = .000). Compared with the ≤1-year-age group and the 1-2-year-age group, the stone calcium level in the >2-year-age group was significantly greater (27.51% ± 12.65% vs 1.60% ± 1.68% or 10.12% ± 8.69%, P = .000 and P = .003, respectively). Compared with the alkalization-alone group, the stone calcium level in the nonalkalization-alone group was significant greater (19.83% ± 7.48% vs 1.25% ± 1.43%, n = 19, P = .000). The stones from children >2 years old were not amenable to medical treatment because they contained greater levels of calcium, which can be demonstrated by the radiologic "positive stone image" or stone CT attenuation value. We believe that surgical invention will be the best choice for such patients if extracorporeal shock wave lithotripsy has failed. Copyright © 2011 Elsevier Inc. All rights reserved.
Seurin, Danielle; Lombet, Alain; Babajko, Sylvie; Godeau, François; Ricort, Jean-Marc
2013-01-01
Background Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002) FEBS lett 527: 293–297). Methodology/Principal Findings We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6) to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells) and IGFBP-5 (in C2 cells) increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway. Conclusions Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular specificity and complexity of the IGF-independent actions of these IGF binding proteins. PMID:23527161
Chen, Wei; Zhao, Fei; Tian, Zhi Mei; Zhang, Han Xing; Ruan, Dong; Li, Yan; Wang, Shuang; Zheng, Chun Tian; Lin, Ying Cai
2015-10-01
The objective of this study was to determine the effects of dietary calcium deficiency on the process of shell formation. Four hundred and fifty female ducks (Anas platyrhynchos) at 22 weeks were randomly assigned to three groups. Ducks were fed one of two calcium-deficient diets (containing 1.8% or 0.38% calcium, respectively) or a calcium-adequate control diet (containing 3.6% calcium) for 67 days (depletion period) and then all ducks were fed a calcium-adequate diet for an additional 67 days (repletion period). Compared with the calcium-adequate control, the average shell thickness, egg shell weight, breaking strength, mammillae density and mammillary knob thickness of shell from ducks that consumed the diet with 0.38% calcium were significantly decreased (P<0.05) during the depletion period, accompanied by reduced tibia quality. The mRNA expression of both secreted phosphoprotein 1 (SPP1) and carbonic anhydrase 2 (CA2) in the uterus was decreased after feeding calcium-deficient diets (1.8% or 0.38% calcium). mRNA transcripts of calbindin 1 (CALB1), an important protein responsible for calcium transport, and the matrix protein genes ovocalyxin-32 (OCX-32) and ovocleidin-116 (OC-116) were reduced in ducks fed 0.38% calcium but not 1.8% calcium. Plasma estradiol concentration was decreased by both of the calcium-deficient diets (P<0.05). The impaired shell quality and suppressed functional proteins involved in shell formation could be reversed by repletion of dietary calcium. The results of the present study suggest that dietary calcium deficiency negatively affects eggshell quality and microarchitecture, probably by suppressing shell biomineralization. © 2015. Published by The Company of Biologists Ltd.
Continuous Modeling of Calcium Transport Through Biological Membranes
NASA Astrophysics Data System (ADS)
Jasielec, J. J.; Filipek, R.; Szyszkiewicz, K.; Sokalski, T.; Lewenstam, A.
2016-08-01
In this work an approach to the modeling of the biological membranes where a membrane is treated as a continuous medium is presented. The Nernst-Planck-Poisson model including Poisson equation for electric potential is used to describe transport of ions in the mitochondrial membrane—the interface which joins mitochondrial matrix with cellular cytosis. The transport of calcium ions is considered. Concentration of calcium inside the mitochondrion is not known accurately because different analytical methods give dramatically different results. We explain mathematically these differences assuming the complexing reaction inside mitochondrion and the existence of the calcium set-point (concentration of calcium in cytosis below which calcium stops entering the mitochondrion).
Spectroscopic study of the inhibition of calcium oxalate calculi by Larrea tridentata
NASA Astrophysics Data System (ADS)
Pinales, Luis Alonso
The causes of urolithiasis include such influences as diet, metabolic disorders, and genetic factors which have been documented as sources that aggravate urinary calculi depositions and aggregations, and, implicitly, as causes of urolithiasis. This study endeavors to detail the scientific mechanisms involved in calcium oxalate calculi formation, and, more importantly, their inhibition under growth conditions imposed by the traditional medicinal approach using the herbal extract, Larrea tridentata. The calculi were synthesized without and with Larrea tridentata infusion by employing the single diffusion gel technique. A visible decrease in calcium oxalate crystal growth with increasing amounts of Larrea tridentata herbal infusion was observed in photomicrographs, as well as a color change from white-transparent for pure crystals to light orange-brown for crystals with inhibitor. Analysis of the samples, which includes Raman, infrared absorption, scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) techniques, demonstrate an overall transition in morphology of the crystals from monohydrate without herbal extract to dihydrate with inhibitor. Furthermore, the resulting data from Raman and infrared absorption support the possibilities of the influences, in this complex process, of NDGA and its derivative compounds from Larrea tridentata, and of the bonding of the magnesium of the inhibitor with the oxalate ion on the surface of the calculi crystals. This assumption corroborates well with the micrographs obtained under higher magnification, which show that the separated small crystallites consist of darker brownish cores, which we attribute to the dominance of growth inhibition by NDGA, surrounded by light transparent thin shells, which possibly correspond to passivation of the crystals by magnesium oxalate. The SEM results reveal the transformation from the dominant monoclinic structure of the calcium oxalate crystals grown alone to the tetragonal dipyramidal crystal structure of the calcium oxalate crystals grown with Larrea tridentata. Comparison between XRD experimental and simulated data, besides corroborating with our previous results, show that each sample is a combination of different structures.
The use of flow cytometry to examine calcium signalling by TRPV1 in mixed cell populations.
Assas, Bakri M; Abdulaal, Wesam H; Wakid, Majed H; Zakai, Haytham A; Miyan, J; Pennock, J L
2017-06-15
Flow cytometric analysis of calcium mobilisation has been in use for many years in the study of specific receptor engagement or isolated cell:cell communication. However, calcium mobilisation/signaling is key to many cell functions including apoptosis, mobility and immune responses. Here we combine multiplex surface staining of whole spleen with Indo-1 AM to visualise calcium mobilisation and examine calcium signaling in a mixed immune cell culture over time. We demonstrate responses to a TRPV1 agonist in distinct cell subtypes without the need for cell separation. Multi parameter staining alongside Indo-1 AM to demonstrate calcium mobilization allows the study of real time calcium signaling in a complex environment. Copyright © 2017. Published by Elsevier Inc.
Shambharkar, Prashant B.; Bittinger, Mark; Latario, Brian; Xiong, ZhaoHui; Bandyopadhyay, Somnath; Davis, Vanessa; Lin, Victor; Yang, Yi; Valdez, Reginald; Labow, Mark A.
2015-01-01
Intracellular calcium signaling is critical for initiating and sustaining diverse cellular functions including transcription, synaptic signaling, muscle contraction, apoptosis and fertilization. Trans-membrane 203 (TMEM203) was identified here in cDNA overexpression screens for proteins capable of modulating intracellular calcium levels using activation of a calcium/calcineurin regulated transcription factor as an indicator. Overexpression of TMEM203 resulted in a reduction of Endoplasmic Reticulum (ER) calcium stores and elevation in basal cytoplasmic calcium levels. TMEM203 protein was localized to the ER and found associated with a number of ER proteins which regulate ER calcium entry and efflux. Mouse Embryonic Fibroblasts (MEFs) derived from Tmem203 deficient mice had reduced ER calcium stores and altered calcium homeostasis. Tmem203 deficient mice were viable though male knockout mice were infertile and exhibited a severe block in spermiogenesis and spermiation. Expression profiling studies showed significant alternations in expression of calcium channels and pumps in testes and concurrently Tmem203 deficient spermatocytes demonstrated significantly altered calcium handling. Thus Tmem203 is an evolutionarily conserved regulator of cellular calcium homeostasis, is required for spermatogenesis and provides a causal link between intracellular calcium regulation and spermiogenesis. PMID:25996873
Wires, Emily S; Henderson, Mark J; Yan, Xiaokang; Bäck, Susanne; Trychta, Kathleen A; Lutrey, Molly H; Harvey, Brandon K
2017-01-01
The endoplasmic reticulum (ER) is essential to many cellular processes including protein processing, lipid metabolism and calcium storage. The ability to longitudinally monitor ER homeostasis in the same organism would offer insight into progressive molecular and cellular adaptations to physiologic or pathologic states, but has been challenging. We recently described the creation of a Gaussia luciferase (GLuc)-based secreted ER calcium-modulated protein (SERCaMP or GLuc-SERCaMP) to longitudinally monitor ER calcium homeostasis. Here we describe a complementary tool to measure the unfolded protein response (UPR), utilizing a UPRE-driven secreted Nano luciferase (UPRE-secNLuc) to examine the activating transcription factor-6 (ATF6) and inositol-requiring enzyme 1 (IRE1) pathways of the UPR. We observed an upregulation of endogenous ATF6- and XBP1-regulated genes following pharmacologically-induced ER stress that was consistent with responsiveness of the UPRE sensor. Both GLuc and NLuc-based reporters have favorable properties for in vivo studies, however, they are not easily used in combination due to overlapping substrate activities. We describe a method to measure the enzymatic activities of both reporters from a single sample and validated the approach using culture medium and rat blood samples to measure GLuc-SERCaMP and UPRE-secNLuc. Measuring GLuc and NLuc activities from the same sample allows for the robust and quantitative measurement of two cellular events or cell populations from a single biological sample. This study is the first to describe the in vivo measurement of UPRE activation by sampling blood, using an approach that allows concurrent interrogation of two components of ER homeostasis.
Crutchik, D; Garrido, J M
2011-01-01
Struvite crystallization (MgNH(4)PO(4)·6H(2)O, MAP) could be an alternative for the sustainable and economical recovery of phosphorus from concentrated wastewater streams. Struvite precipitation is recommended for those wastewaters which have high orthophosphate concentration. However the presence of a cheap magnesium source is required in order to make the process feasible. For those wastewater treatment plants (WWTP) located near the seashore magnesium could be economically obtained using seawater. However seawater contains calcium ions that could interfere in the process, by promoting the precipitation of amorphous magnesium and calcium phosphates. Precipitates composition was affected by the NH(4)(+)/PO(4)(3-) molar ratio used. Struvite or magnesium and calcium phosphates were obtained when NH(4)(+)/PO(4)(3-) was fixed at 4.7 or 1.0, respectively. This study demonstrates that by manipulating the NH(4)(+)/PO(4)(3-) it is possible to obtain pure struvite crystals, instead of precipitates of amorphous magnesium and calcium phosphates. This was easily performed by using either raw or secondary treated wastewater with different ammonium concentrations.
Yanamadala, Vijay
2010-01-01
Cultural eutrophication, the process by which a lake becomes rich in dissolved nutrients as a result of point and nonpoint pollutant sources, is a major cause of the loss of natural lake ecosystems throughout the world. The process occurs naturally in all lakes, but phosphate-rich nutrient runoff from sources such as storm drains and agricultural runoff is a major cause of excess phosphate-induced eutrophication. Especially in Madrona Marsh, one of the last remaining vernal marshes in the greater Los Angeles area, California, cultural eutrophication has become a major problem. In this study, calcium carbonate was found to be an excellent phosphate binder, reducing up to 70% of the phosphates in a given sample of water, and it posed relatively negligent ecological repercussions. This study involved the testing of this principle in both the laboratory and the real ecosystem. A calcium carbonate lacing procedure was first carried out to determine its efficacy in Madrona Marsh. Through this, ammonia was found to interfere with the solubility of calcium carbonate and therefore to be a hindrance to the reduction of phosphate. Therefore, various approaches for reduction of ammonia were tested, including aeration, use of fiber growth media, and plants, mainly Caulerpa verticellata, chosen for it hardiness, primarily in an attempt to increase population of Nitrobacter and Nitrosomonas. All were successful in moderately reducing ammonia levels. In addition, soil sampling, sediment analysis, microscopic plant analysis, microorganism and macroinvertebrate identification, and rate law formulations were conducted. The effect of phosphate and ammonia reduction on the populations of enterobacteria was also an important focus of this experiment. Varying concentrations of phosphate, ammonia, and calcium carbonate in conjunction with phosphate were tested in Madrona Marsh to determine their effects on the populations of enteropathogens on nonspecific blood agar, MacConkey agar, and Hektoen agar. Initial analyses suggest a strong correlation between phosphate concentrations and bacterial populations; a 66% decrease in phosphate resulted in a 35% reduction in bacterial populations and a 45% reduction in enteropathogenic populations. Likewise, a strong correlation was shown between calcium carbonate concentrations and bacterial reduction greater than that which can be attributed to the phosphate reduction alone. This was followed by the construction of various phosphate binding calcium carbonate filters, which used the ion exchange principle, including a spring loading filter, PVC pipe filter, and a galvanized filter. All were tested with the aid of Stoke's law formulation. The experiment was extremely successful in designing a working phosphate-binding and ammonia-reducing filter, and a large-scale agitator-clarifier filter system is currently being planned for construction in Madrona Marsh; this filter will reduce phosphate and ammonia levels substantially in the following years, bringing ecological, economical, and health-related improvements to the overall ecosystem and habitat. PMID:16381147
Diagram of Calcium Movement in the Human Body
NASA Technical Reports Server (NTRS)
2002-01-01
This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.
Regulation of cardiomyocyte autophagy by calcium
Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F. G.; Hill, Joseph A.
2016-01-01
Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. PMID:26884385
Biological and medical significance of calcium phosphates.
Dorozhkin, Sergey V; Epple, Matthias
2002-09-02
The inorganic part of hard tissues (bones and teeth) of mammals consists of calcium phosphate, mainly of apatitic structure. Similarly, most undesired calcifications (i.e. those appearing as a result of various diseases) of mammals also contain calcium phosphate. For example, atherosclerosis results in blood-vessel blockage caused by a solid composite of cholesterol with calcium phosphate. Dental caries result in a replacement of less soluble and hard apatite by more soluble and softer calcium hydrogenphosphates. Osteoporosis is a demineralization of bone. Therefore, from a chemical point of view, processes of normal (bone and teeth formation and growth) and pathological (atherosclerosis and dental calculus) calcifications are just an in vivo crystallization of calcium phosphate. Similarly, dental caries and osteoporosis can be considered to be in vivo dissolution of calcium phosphates. On the other hand, because of the chemical similarity with biological calcified tissues, all calcium phosphates are remarkably biocompatible. This property is widely used in medicine for biomaterials that are either entirely made of or coated with calcium phosphate. For example, self-setting bone cements made of calcium phosphates are helpful in bone repair and titanium substitutes covered with a surface layer of calcium phosphates are used for hip-joint endoprostheses and tooth substitutes, to facilitate the growth of bone and thereby raise the mechanical stability. Calcium phosphates have a great biological and medical significance and in this review we give an overview of the current knowledge in this subject.
Abang, Sariah; Chan, Eng-Seng; Poncelet, Denis
2012-01-01
The objective of this study was to investigate the effects of process variables on the encapsulation of oil in a calcium alginate membrane using an inverse gelation technique. A dispersion of calcium chloride solution in sunflower oil (water-in-oil emulsion) was added dropwise to the alginate solution. The migration of calcium ions to the alginate solution initiates the formation of a ca-alginate membrane around the emulsion droplets. The membrane thickness of wet capsules and the elastic modulus of dry capsules increased following first-order kinetics with an increasing curing time. An increase in the calcium chloride concentration increased the membrane thickness of wet capsules and the elastic modulus of dry capsules. An increase in the alginate concentration decreased the mean diameter of wet capsules but increased the elastic modulus of dry capsules.
Calcium and lanthanum solid base catalysts for transesterification
Ng, K. Y. Simon; Yan, Shuli; Salley, Steven O.
2015-07-28
In one aspect, a heterogeneous catalyst comprises calcium hydroxide and lanthanum hydroxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In another aspect, a heterogeneous catalyst comprises a calcium compound and a lanthanum compound, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g, and a total basicity of about 13.6 mmol/g. In further another aspect, a heterogeneous catalyst comprises calcium oxide and lanthanum oxide, wherein the catalyst has a specific surface area of more than about 10 m.sup.2/g. In still another aspect, a process for preparing a catalyst comprises introducing a base precipitant, a neutral precipitant, and an acid precipitant to a solution comprising a first metal ion and a second metal ion to form a precipitate. The process further comprises calcining the precipitate to provide the catalyst.
Characterization of calcium oxalate defective (cod) 3 mutant from Medicago truncatula
USDA-ARS?s Scientific Manuscript database
Many plants invest a considerable amount of resources and energy into the formation of calcium oxalate crystals. Assigned roles for plant crystal formation include functions in defense, calcium regulation, and aluminum tolerance. From a human health standpoint, oxalate present in edible plant tiss...
Endocrine, electrolyte, and fluid volume changes associated with Apollo missions
NASA Technical Reports Server (NTRS)
Leach, C. S.; Alexander, W. C.; Johnson, P. C.
1975-01-01
The endocrine and metabolic results obtained before and after the Apollo missions and the results of the limited in-flight sampling are summarized and discussed. The studies were designed to evaluate the biochemical changes in the returning Apollo crewmembers, and the areas studied included balance of fluids and electrolytes, regulation of calcium metabolism, adaptation to the environment, and regulation of metabolic processes.
Fabrication of cell-benign inverse opal hydrogels for three-dimensional cell culture.
Im, Pilseon; Ji, Dong Hwan; Kim, Min Kyung; Kim, Jaeyun
2017-05-15
Inverse opal hydrogels (IOHs) for cell culture were fabricated and optimized using calcium-crosslinked alginate microbeads as sacrificial template and gelatin as a matrix. In contrast to traditional three-dimensional (3D) scaffolds, the gelatin IOHs allowed the utilization of both the macropore surface and inner matrix for cell co-culture. In order to remove templates efficiently for the construction of 3D interconnected macropores and to maintain high cell viability during the template removal process using EDTA solution, various factors in fabrication, including alginate viscosity, alginate concentration, alginate microbeads size, crosslinking calcium concentration, and gelatin network density were investigated. Low viscosity alginate, lower crosslinking calcium ion concentration, and lower concentration of alginate and gelatin were found to obtain high viability of cells encapsulated in the gelatin matrix after removal of the alginate template by EDTA treatment by allowing rapid dissociation and diffusion of alginate polymers. Based on the optimized fabrication conditions, gelatin IOHs showed good potential as a cell co-culture system, applicable to tissue engineering and cancer research. Copyright © 2017 Elsevier Inc. All rights reserved.
Petrushanko, Irina Yu; Lobachev, Vladimir M; Kononikhin, Alexey S; Makarov, Alexander A; Devred, Francois; Kovacic, Hervé; Kubatiev, Aslan A; Tsvetkov, Philipp O
2016-01-01
NOX5 protein, one of the most active generators of reactive oxygen species (ROS), plays an important role in many processes, including regulation of cell growth, death and differentiation. Because of its central role in ROS generation, it needs to be tightly regulated to guarantee cellular homeostasis. Contrary to other members of NADPH-oxidases family, NOX5 has its own regulatory calcium-binding domain and thus could be activated directly by calcium ions. While several mechanisms of activation have been described, very little is known about the mechanisms that could prevent the overproduction of ROS by NOX5. In the present study using calorimetric methods and circular dichroism we found that oxidation of cysteine and methionine residues of NOX5 decreases binding of Ca2+ ions and perturbs both secondary and tertiary structure of protein. Our data strongly suggest that oxidation of calcium-binding domain of NOX5 could be implicated in its inactivation, serving as a possible defense mechanism against oxidative stress.
Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S
2014-05-02
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage.
2015-01-01
Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage. PMID:24708184
Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin.
Maity, Jyoti Prakash; Lin, Tz-Jiun; Cheng, Henry Pai-Heng; Chen, Chien-Yen; Reddy, A Satyanarayana; Atla, Shashi B; Chang, Young-Fo; Chen, Hau-Ren; Chen, Chien-Cheng
2011-01-01
In this study the "green chemistry" use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16-200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8-14 nm in diameter and 80-100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50-200 nm in diameter), oval (~300 nm in diameter) and nanorod (200-400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles.
Shuvy, Mony; Abedat, Suzan; Beeri, Ronen; Danenberg, Haim D.; Planer, David; Ben-Dov, Iddo Z.; Meir, Karen; Sosna, Jacob; Lotan, Chaim
2008-01-01
Aims Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney disease. Methods and results Sprague–Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing diet for 7 weeks followed by a normal diet for 2 weeks (‘diet group’). These rats were compared with normal controls (n = 10) and with uraemic controls fed with phosphate-depleted diet (‘low-phosphate group’, n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examinations of the valves included histological characterization, Von Kossa staining, and antigen and gene expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification following normalization of their kidney function. At 4 weeks, all diet group rats developed renal failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperparathyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression analyses revealed overexpression of osteoblast genes and nuclear factor κB activation. Valve calcification resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores and histology showed only minimal valve calcification. Conclusion We developed an animal model for AVC. The process is related to disturbed mineral metabolism. It is associated with inflammation and osteoblastic features. Furthermore, the process is reversible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform for studying AVC and potential remedies. PMID:18390899
Shuvy, Mony; Abedat, Suzan; Beeri, Ronen; Danenberg, Haim D; Planer, David; Ben-Dov, Iddo Z; Meir, Karen; Sosna, Jacob; Lotan, Chaim
2008-08-01
Renal failure is associated with aortic valve calcification (AVC). Our aim was to develop an animal model for exploring the pathophysiology and reversibility of AVC, utilizing rats with diet-induced kidney disease. Sprague-Dawley rats (n = 23) were fed a phosphate-enriched, uraemia-inducing diet for 7 weeks followed by a normal diet for 2 weeks ('diet group'). These rats were compared with normal controls (n = 10) and with uraemic controls fed with phosphate-depleted diet ('low-phosphate group', n = 10). Clinical investigations included serum creatinine, phosphate and parathyroid hormone (PTH) levels, echocardiography, and multislice computed tomography. Pathological examinations of the valves included histological characterization, Von Kossa staining, and antigen and gene expression analyses. Eight diet group rats were further assessed for reversibility of valve calcification following normalization of their kidney function. At 4 weeks, all diet group rats developed renal failure and hyperparathyroidism. At week 9, renal failure resolved with improvement in the hyperparathyroid state. Echocardiography demonstrated valve calcifications only in diet group rats. Tomographic calcium scores were significantly higher in the diet group compared with controls. Von Kossa stain in diet group valves revealed calcium deposits, positive staining for osteopontin, and CD68. Gene expression analyses revealed overexpression of osteoblast genes and nuclear factor kappaB activation. Valve calcification resolved after diet cessation in parallel with normalization of PTH levels. Resolution was associated with down-regulation of inflammation and osteoblastic features. Low-phosphate group rats developed kidney dysfunction similar to that of the diet group but with normal levels of PTH. Calcium scores and histology showed only minimal valve calcification. We developed an animal model for AVC. The process is related to disturbed mineral metabolism. It is associated with inflammation and osteoblastic features. Furthermore, the process is reversible upon normalization of the mineral homeostasis. Thus, our model constitutes a convenient platform for studying AVC and potential remedies.
Structural changes of casein micelles in a calcium gradient film.
Gebhardt, Ronald; Burghammer, Manfred; Riekel, Christian; Roth, Stephan Volkher; Müller-Buschbaum, Peter
2008-04-09
Calcium gradients are prepared by sequentially filling a micropipette with casein solutions of varying calcium concentration and spreading them on glass slides. The casein film is formed by a solution casting process, which results in a macroscopically rough surface. Microbeam grazing incidence small-angle X-ray scattering (microGISAXS) is used to investigate the lateral size distribution of three main components in casein films: casein micelles, casein mini-micelles, and micellar calcium phosphate. At length scales within the beam size the film surface is flat and detection of size distribution in a macroscopic casein gradient becomes accessible. The model used to analyze the data is based on a set of three log-normal distributed particle sizes. Increasing calcium concentration causes a decrease in casein micelle diameter while the size of casein mini-micelles increases and micellar calcium phosphate particles remain unchanged.
N-(2-Mercaptoethyl)-1,3-Propanediamine (WR-1065) Protects Thymocytes from Programed Cell Death
1992-03-15
and most characteristic biohemical marker for apoptosts is calcium lontophores stimulate a suicide process in nuclear DNA fragmentation Into...1065 the dephosphory- exposed to -7-radiation. dexamethazone. or calcium lated form of WR-2721 and generally considered to be Ionophore A23187. WR...33258 fluorochrome was purchased from Calbiochem-Rehring. La Jolla, CA: Dexameth- azone and calcium lonophore A23 187 were purchased from Sigmatos
Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride
Squires, Leah N.; Lessing, Paul
2016-01-13
A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can easily removed upon cooling. Furthermore, the direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.
Calcium-Mediated Apoptosis and Apoptotic Sensitization in Prostate Cancer
2003-06-01
tyrosine phosphatase, PTP1B . To study their direct involvement in apoptosis and signaling, PC cells were transfected with dominant negative caspase 7...and inducible constructs of activated PTP1B B. Dominant negative caspase 7 suppressed activation of endogenous caspase 7 by calcium ionophore...supporting a role for its recruitment into the calcium initiated apoptotic process. Activated PTP1B expression (but not a phosphatase-dead mutant
The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation
Boonrungsiman, Suwimon; Gentleman, Eileen; Carzaniga, Raffaella; Evans, Nicholas D.; McComb, David W.; Porter, Alexandra E.; Stevens, Molly M.
2012-01-01
Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization. PMID:22879397
Neumann, Verena
2016-01-01
A biophysical model of the excitation-contraction pathway, which has previously been validated for slow-twitch and fast-twitch skeletal muscles, is employed to investigate key biophysical processes leading to peripheral muscle fatigue. Special emphasis hereby is on investigating how the model's original parameter sets can be interpolated such that realistic behaviour with respect to contraction time and fatigue progression can be obtained for a continuous distribution of the model's parameters across the muscle units, as found for the functional properties of muscles. The parameters are divided into 5 groups describing (i) the sarcoplasmatic reticulum calcium pump rate, (ii) the cross-bridge dynamics rates, (iii) the ryanodine receptor calcium current, (iv) the rates of binding of magnesium and calcium ions to parvalbumin and corresponding dissociations, and (v) the remaining processes. The simulations reveal that the first two parameter groups are sensitive to contraction time but not fatigue, the third parameter group affects both considered properties, and the fourth parameter group is only sensitive to fatigue progression. Hence, within the scope of the underlying model, further experimental studies should investigate parvalbumin dynamics and the ryanodine receptor calcium current to enhance the understanding of peripheral muscle fatigue. PMID:27980606
Process for electroslag refining of uranium and uranium alloys
Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.
1975-07-22
A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)
Yang, Jiao-lan; Chen, Dong-qing; Li, Shu-min; Yue, Yin-ling; Jin, Xin; Zhao, Bing-cheng; Ying, Bo
2010-02-05
The fluorosis derived from coal burning is a very serious problem in China. By using fluorine-fixing technology during coal burning we are able to reduce the release of fluorides in coal at the source in order to reduce pollution to the surrounding environment by coal burning pollutants as well as decrease the intake and accumulating amounts of fluorine in the human body. The aim of this study was to conduct a pilot experiment on calcium-based fluorine-fixing material efficiency during coal burning to demonstrate and promote the technology based on laboratory research. A proper amount of calcium-based fluorine sorbent was added into high-fluorine coal to form briquettes so that the fluorine in high-fluorine coal can be fixed in coal slag and its release into atmosphere reduced. We determined figures on various components in briquettes and fluorine in coal slag as well as the concentrations of indoor air pollutants, including fluoride, sulfur dioxide and respirable particulate matter (RPM), and evaluated the fluorine-fixing efficiency of calcium-based fluorine sorbents and the levels of indoor air pollutants. Pilot experiments on fluorine-fixing efficiency during coal burning as well as its demonstration and promotion were carried out separately in Guiding and Longli Counties of Guizhou Province, two areas with coal burning fluorosis problems. If the calcium-based fluorine sorbent mixed coal was made into honeycomb briquettes the average fluorine-fixing ratio in the pilot experiment was 71.8%. If the burning calcium-based fluorine-fixing bitumite was made into a coalball, the average of fluorine-fixing ratio was 77.3%. The concentration of fluoride, sulfur dioxide and PM10 of indoor air were decreased significantly. There was a 10% increase in the cost of briquettes due to the addition of calcium-based fluorine sorbent. The preparation process of calcium-based fluorine-fixing briquette is simple yet highly flammable and it is applicable to regions with abundant bitumite coal. As a small scale application, villagers may make fluorine-fixing coalballs or briquettes by themselves, achieving the optimum fluorine-fixing efficiency and reducing indoor air pollutants providing environmental and social benefits.
Kim, Min Ju; Kim, Kyung Won
2015-10-01
Calcium is important but deficient in diets of young adult women. This study aimed to examine if cognitive factors and eating behaviors differ according to calcium intake based on the Social Cognitive Theory. Subjects were female college students in Seoul, Korea. Three hundred students completed the questionnaire regarding calcium intake, nutrition knowledge, outcome expectations, self-efficacy and eating behaviors. Data on 240 students were analyzed using t-test or χ(2)-test. Subjects were categorized into two groups, high calcium intake (HC, ≥ 650 mg/day) and low calcium intake (LC, < 650 mg/day), according to recommended intakes of calcium for women aged 19-29 years. The LC group constituted 77.9% of total subjects. Nutrition knowledge was not different according to calcium intake. Three out of 12 outcome expectations items were significantly different between the HC and LC groups. Subjects in the HC group agreed more strongly with the practical benefits of consuming calcium-rich foods, including 'taste' (P < 0.01) and 'going well with other snacks' (P < 0.05), compared to those in the LC group. Negative expectations of 'indigestion' were stronger in the LC group than HC group (P < 0.001). Among self-efficacy items, perceived ability of 'eating dairy foods for snacks' (P < 0.001), 'eating dairy foods every day' (P < 0.01), and 'eating calcium-rich side dishes at meals' (P < 0.05) differed significantly between the HC and LC groups. Eating behaviors including more frequent consumption of dairy foods, fruits or fruit juice (P < 0.001), anchovy, seaweeds, green vegetables, protein-rich foods (P < 0.05), and less frequent consumption of sweets or soft drinks (P < 0.01) were significantly related to calcium intake. This study found that outcome expectations, self-efficacy in consuming calcium-rich foods, and eating behaviors are important in explaining calcium intake. Nutrition education needs to address practical benefits, reduce negative expectations of calcium-rich foods, increase self-efficacy, and modify eating behaviors contributing to calcium intake.
Vashisht, Ayushi; Trebak, Mohamed; Motiani, Rajender K
2015-10-01
Calcium (Ca(2+)) regulates a plethora of cellular functions including hallmarks of cancer development such as cell cycle progression and cellular migration. Receptor-regulated calcium rise in nonexcitable cells occurs through store-dependent as well as store-independent Ca(2+) entry pathways. Stromal interaction molecules (STIM) and Orai proteins have been identified as critical constituents of both these Ca(2+) influx pathways. STIMs and Orais have emerged as targets for cancer therapeutics as their altered expression and function have been shown to contribute to tumorigenesis. Recent data demonstrate that they play a vital role in development and metastasis of a variety of tumor types including breast, prostate, cervical, colorectal, brain, and skin tumors. In this review, we will retrospect the data supporting a key role for STIM1, STIM2, Orai1, and Orai3 proteins in tumorigenesis and discuss the potential of targeting these proteins for cancer therapy. Copyright © 2015 the American Physiological Society.
Nakonieczna-Rudnicka, Marta; Bachanek, Teresa; Rogowska, Wanda
2009-01-01
Dental decay is a pathological process of extrasomatic origin which leads to demineralization and proteolytic degradation of hard surfaces of a tooth susceptible to this disease. Saliva composition, including calcium ion concentration and its pH value, is of importance in the development of the carious process. Tobacco smoke contains toxic compounds which negatively influence oral health. The aim of the study was evaluation of the selected saliva components: protein concentration, Ca2+ concentration, pH value both in male and female smokers. The investigated group included 65 patients reporting for the treatment to the Department of Conservative Dentistry of Medical University in Lublin. In the investigated group male smokers constituted 15.38%, female smokers--20.00%, male nicotine abstinents 21.54% and female nicotine abstinent 43.08%. The study included both survey examinations of patients and biochemical examinations of the saliva. Mixed, non-stimulated saliva was used as a material for biochemical examinations. Ca2+ concentration and pH of the saliva were assayed with the use of Rapidlab 348 analyzer. Protein in the saliva was assayed with calorimetric method according to Lowry. Saliva was collected from smokers 10-120 minutes after smoking of several cigarettes. It was stated that Ca2+ and protein concentration as well as pH of the saliva were not correlated with sex and cigarette smoking or non-smoking.
Musgrove, MaryLynn; Fahlquist, Lynne; Houston, Natalie A.; Lindgren, Richard J.; Ging, Patricia B.
2010-01-01
As part of the National Water-Quality Assessment Program, the U.S. Geological Survey collected and analyzed groundwater samples during 1996-2006 from the San Antonio segment of the Edwards aquifer of central Texas, a productive karst aquifer developed in Cretaceous-age carbonate rocks. These National Water-Quality Assessment Program studies provide an extensive dataset of groundwater geochemistry and water quality, consisting of 249 groundwater samples collected from 136 sites (wells and springs), including (1) wells completed in the shallow, unconfined, and urbanized part of the aquifer in the vicinity of San Antonio (shallow/urban unconfined category), (2) wells completed in the unconfined (outcrop area) part of the regional aquifer (unconfined category), and (3) wells completed in and springs discharging from the confined part of the regional aquifer (confined category). This report evaluates these data to assess geochemical evolution processes, including local- and regional-scale processes controlling groundwater geochemistry, and to make water-quality observations pertaining to sources and distribution of natural constituents and anthropogenic contaminants, the relation between geochemistry and hydrologic conditions, and groundwater age tracers and travel time. Implications for monitoring water-quality trends in karst are also discussed. Geochemical and isotopic data are useful tracers of recharge, groundwater flow, fluid mixing, and water-rock interaction processes that affect water quality. Sources of dissolved constituents to Edwards aquifer groundwater include dissolution of and geochemical interaction with overlying soils and calcite and dolomite minerals that compose the aquifer. Geochemical tracers such as magnesium to calcium and strontium to calcium ratios and strontium isotope compositions are used to evaluate and constrain progressive fluid-evolution processes. Molar ratios of magnesium to calcium and strontium to calcium in groundwater typically increase along flow paths; results for samples of Edwards aquifer groundwater show an increase from shallow/urban unconfined, to unconfined, to confined groundwater categories. These differences are consistent with longer residence times and greater extents of water-rock interaction controlling fluid compositions as groundwater evolves from shallow unconfined groundwater to deeper confined groundwater. Results for stable isotopes of hydrogen and oxygen indicate specific geochemical processes affect some groundwater samples, including mixing with downdip saline water, mixing with recent recharge associated with tropical cyclonic storms, or mixing with recharge water than has undergone evaporation. The composition of surface water recharging the aquifer, as well as mixing with downdip water from the Trinity aquifer or the saline zone, also might affect water quality. A time-series record (1938-2006) of discharge at Comal Springs, one of the major aquifer discharge points, indicates an upward trend for nitrate and chloride concentrations, which likely reflects anthropogenic activities. A small number of organic contaminants were routinely or frequently detected in Edwards aquifer groundwater samples. These were the pesticides atrazine, its degradate deethylatrazine, and simazine; the drinking-water disinfection byproduct chloroform; and the solvent tetrachloroethene. Detection of these contaminants was most frequent in samples of the shallow/urban unconfined groundwater category and least frequent in samples of the unconfined groundwater category. Results indicate that the shallow/urban unconfined part of the aquifer is most affected by anthropogenic contaminants and the unconfined part of the aquifer is the least affected. The high frequency of detection for these anthropogenic contaminants aquifer-wide and in samples of deep, confined groundwater indicates that the entire aquifer is susceptible to water-quality changes as a result of anthropogenic activities. L
Zhou, Jiapeng; Zhao, Lan-Juan; Watson, Patrice; Zhang, Qin; Lappe, Joan M
2010-07-23
It is undetermined whether calcium supplementation has an effect on obesity or body composition in postmenopausal women. The purpose of the study is to detect the effect of calcium supplementation on indices of obesity and body composition. This is a secondary analysis of data from a population-based, double-blind, placebo-controlled, randomized trial designed to determine the effects of calcium and vitamin D on osteoporotic fractures. The cohort included 1179 postmenopausal women who were randomly assigned into one of three groups: 1) supplemental calcium (1400 mg/d or 1500 mg/d) plus vitamin D placebo (Ca-only group); 2) supplemental calcium (1400 mg/d or 1500 mg/d) plus supplemental vitamin D3 (1100 IU/d) (Ca + D group); or, 3) two placebos (placebo group). After applying the exclusion criteria for this analysis, 870 subjects were included in this study. The primary outcomes for the present study were changes in body mass index, trunk fat, trunk lean, and percentage of trunk fat after calcium supplementation. Changes in trunk fat, trunk lean, and percentage of trunk fat were significantly different between the calcium intervention groups (Ca-only group or Ca + D group) and the placebo group during the trial (P < 0.05). The calcium intervention groups gained less trunk fat and maintained more trunk lean when compared to the placebo group. No significant difference was observed for body mass index between groups. Calcium supplementation over four years has a beneficial effect on body composition in postmenopausal women.
Calcium pathway machinery at fertilization in echinoderms
Ramos, Isabela; Wessel, Gary M.
2016-01-01
Calcium signaling in cells directs diverse physiological processes. The calcium waves triggered by fertilization is a highly conserved calcium signaling event essential for egg activation, and has been documented in every egg tested. This activity is one of the few highly conserved events of egg activation through the course of evolution. Echinoderm eggs, as well as many other cell types, have three main intracellular Ca2+ mobilizing messengers – IP3, cADPR and NAADP. Both cADPR and NAADP were identified as Ca2+ mobilizing messengers using the sea urchin egg homogenate, and this experimental system, along with the intact urchin and starfish oocyte/egg, continues to be a vital tool for investigating the mechanism of action of calcium signals. While many of the major regulatory steps of the IP3 pathway are well resolved, both cADPR and NAADP remain understudied in terms of our understanding of the fundamental process of egg activation at fertilization. Recently, NAADP has been shown to trigger Ca2+ release from acidic vesicles, separately from the ER, and a new class of calcium channels, the two-pore channels (TPCs), was identified as the likely targets for this messenger. Moreover, it was found that both cADPR and NAADP can be synthesized by the same family of enzymes, the ADP-rybosyl cyclases (ARCs). In this context of increasing amount of information, the potential coupling and functional roles of different messengers, intracellular stores and channels in the formation of the fertilization calcium wave in echinoderms will be critically evaluated. PMID:23218671
Proper Calcium Use: Vitamin K2 as a Promoter of Bone and Cardiovascular Health.
Maresz, Katarzyna
2015-02-01
Inadequate calcium intake can lead to decreased bone mineral density, which can increase the risk of bone fractures. Supplemental calcium promotes bone mineral density and strength and can prevent osteoporosis. Recent scientific evidence, however, suggests that elevated consumption of calcium supplements may raise the risk for heart disease and can be connected with accelerated deposit of calcium in blood-vessel walls and soft tissues. In contrast, vitamin K2 is associated with the inhibition of arterial calcification and arterial stiffening. An adequate intake of vitamin K2 has been shown to lower the risk of vascular damage because it activates matrix GLA protein (MGP), which inhibits the deposits of calcium on the walls. Vitamin K, particularly as vitamin K2, is nearly nonexistent in junk food, with little being consumed even in a healthy Western diet. Vitamin K deficiency results in inadequate activation of MGP, which greatly impairs the process of calcium removal and increases the risk of calcification of the blood vessels. An increased intake of vitamin K2 could be a means of lowering calcium-associated health risks.
Antagonist effects of calcium on borosilicate glass alteration
NASA Astrophysics Data System (ADS)
Mercado-Depierre, S.; Angeli, F.; Frizon, F.; Gin, S.
2013-10-01
Numerous studies have been conducted on glass and cement durability in contact with water, but very little work to date has focused directly on interactions between the two materials. These interactions are mostly controlled by silicon-calcium reactivity. However, the physical and chemical processes involved remain insufficiently understood to predict the evolution of coupled glass-cement systems used in several industrial applications. Results are reported from borosilicate glass alteration in calcium-rich solutions. Our data show that four distinct behaviors can be expected according to the relative importance of three key parameters: the pH, the reaction progress (short- or long-term alteration) and the calcium concentration. Glass alteration is thus controlled by specific mechanisms depending on the solution chemistry: calcium complexation at the glass surface, precipitation of calcium silicate hydrates (C-S-H) or calcium incorporation in the altered layer. These findings highlight the impact of silicon-calcium interactions on glass durability and open the way for a better understanding of glass-cement mixing in civil engineering applications as well as in nuclear waste storage.
An improved kilogram-scale preparation of atorvastatin calcium.
Novozhilov, Yuri V; Dorogov, Mikhail V; Blumina, Maria V; Smirnov, Alexey V; Krasavin, Mikhail
2015-01-01
If literature protocols are followed, conversion of an advanced ketal ester intermediate (available in kilogram quantities via a published Paal-Knorr synthesis) to cholesterol-lowering drug atorvastatin calcium is hampered by several process issues, particularly at the final stage where the hemi-calcium salt is obtained. We developed a high-yielding synthesis of atorvastatin calcium salt on 7 kg scale that affords >99.5% product purities by introducing the following key improvements: i. isolating the pure product of the ketal deprotection step as crystalline solid, and ii. using a convenient ethyl acetate extraction procedure to isolate the pure atorvastatin calcium at the ester hydrolysis and counter-ion exchange step. The convenient and operationally simple conversion of an advanced intermediate of atorvastatin to the clinically used hemi-calcium salt form of the drug that is superior to the methods obtainable from the literature is now available to facilitate the production of atorvastatin calcium on industrial scale. Graphical abstractStepwise ketal and tert-butyl ester group hydrolysis and a modified work-up protocol lead to a more convenient preparation of API-grade atorvastatin calcium.
Code of Federal Regulations, 2010 CFR
2010-04-01
... not limited to, acetaminophen, aspirin, carbaspirin calcium, choline salicylate, ibuprofen, ketoprofen... anti-inflammatory analgesic/antipyretic active ingredients—including but not limited to aspirin...—including but not limited to aspirin, carbaspirin calcium, choline salicylate, ibuprofen, ketoprofen...
Tuluc, Petronel; Flucher, Bernhard E
2011-12-01
Voltage-gated calcium channels are multi-subunit protein complexes that specifically allow calcium ions to enter the cell in response to membrane depolarization. But, for many years it seemed that the skeletal muscle calcium channel Ca(V)1.1 is the exception. The classical splice variant Ca(V)1.1a activates slowly, has a very small current amplitude and poor voltage sensitivity. In fact adult muscle fibers work perfectly well even in the absence of calcium influx. Recently a new splice variant of the skeletal muscle calcium channel Ca(V)1.1e has been characterized. The lack of the 19 amino acid exon 29 in this splice variant results in a rapidly activating calcium channel with high current amplitude and good voltage sensitivity. Ca(V)1.1e is the dominant channel in embryonic muscle, where the expression of this high calcium-conducting Ca(V)1.1 isoform readily explains developmental processes depending on L-type calcium currents. Moreover, the availability of these two structurally similar but functionally distinct channel variants facilitates the analysis of the molecular mechanisms underlying the unique current properties of the classical Ca(V)1.1a channel.
The shape of things to come: regulation of shape changes in endoplasmic reticulum.
Paiement, J; Bergeron, J
2001-01-01
Shape changes in the endoplasmic reticulum control fundamental cell processes including nuclear envelope assembly in mitotic cells, calcium homeostasis in cytoplasmic domains of secreting and motile cells, and membrane traffic in the early secretion apparatus between the endoplasmic reticulum and Golgi. Opposing forces of assembly (membrane fusion) and disassembly (membrane fragmentation) ultimately determine the size and shape of this organelle. This review examines some of the regulatory mechanisms involved in these processes and how they occur at specific sites or subcompartments of the endoplasmic reticulum.
Calcium-dependent molecular fMRI using a magnetic nanosensor.
Okada, Satoshi; Bartelle, Benjamin B; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan
2018-06-01
Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca 2+ ] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.
NASA Astrophysics Data System (ADS)
Restrepo, Simon; Basler, Konrad
2016-08-01
Calcium signalling is a highly versatile cellular communication system that modulates basic functions such as cell contractility, essential steps of animal development such as fertilization and higher-order processes such as memory. We probed the function of calcium signalling in Drosophila wing imaginal discs through a combination of ex vivo and in vivo imaging and genetic analysis. Here we discover that wing discs display slow, long-range intercellular calcium waves (ICWs) when mechanically stressed in vivo or cultured ex vivo. These slow imaginal disc intercellular calcium waves (SIDICs) are mediated by the inositol-3-phosphate receptor, the endoplasmic reticulum (ER) calcium pump SERCA and the key gap junction component Inx2. The knockdown of genes required for SIDIC formation and propagation negatively affects wing disc recovery after mechanical injury. Our results reveal a role for ICWs in wing disc homoeostasis and highlight the utility of the wing disc as a model for calcium signalling studies.
Dorozhkin, Sergey V
2011-01-01
The present overview is intended to point the readers' attention to the important subject of calcium orthophosphates. This type of materials is of special significance for human beings, because they represent the inorganic part of major normal (bones, teeth and antlers) and pathological (i.e., those appearing due to various diseases) calcified tissues of mammals. For example, atherosclerosis results in blood vessel blockage caused by a solid composite of cholesterol with calcium orthophosphates, while dental caries and osteoporosis mean a partial decalcification of teeth and bones, respectively, that results in replacement of a less soluble and harder biological apatite by more soluble and softer calcium hydrogenphosphates. Therefore, the processes of both normal and pathological calcifications are just an in vivo crystallization of calcium orthophosphates. Similarly, dental caries and osteoporosis might be considered an in vivo dissolution of calcium orthophosphates. Thus, calcium orthophosphates hold a great significance for humankind, and in this paper, an overview on the current knowledge on this subject is provided.
van Goor, Mark K C; Hoenderop, Joost G J; van der Wijst, Jenny
2017-06-01
Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport. Copyright © 2016. Published by Elsevier B.V.
Calcium-dependent molecular fMRI using a magnetic nanosensor
NASA Astrophysics Data System (ADS)
Okada, Satoshi; Bartelle, Benjamin B.; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J.; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan
2018-06-01
Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales1. Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue2. Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.
Soil-calcium depletion linked to acid rain and forest growth in the eastern United States
Lawrence, Gregory B.; Huntington, T.G.
1999-01-01
Since the discovery of acid rain in the 1970's, scientists have been concerned that deposition of acids could cause depletion of calcium in forest soils. Research in the 1980's showed that the amount of calcium in forest soils is controlled by several factors that are difficult to measure. Further research in the 1990's, including several studies by the U.S. Geological Survey, has shown that (1) calcium in forest soils has decreased at locations in the northeastern and southeastern U.S., and (2) acid rain and forest growth (uptake of calcium from the soil by roots) are both factors contributing to calcium depletion.
He, Xiao-Sheng; Xiang, Zhang; Zhou, Fei; Fu, Luo-An; Shuang, Wang
2004-05-01
The study investigated morphologically axonal calcium overloading and its relationship with axonal structural changes. Twelve SD rats were divided into an injury and a sham group. The rat model of traumatic axonal injury (TAI) by lateral head rotation was produced. The oxalate-pyroantimonate technique for calcium localization was used to process the rat's medulla oblongata tissues with thin sections observed electron-microscopically for axonal structure and calcium precipitates on it. The axonal damage in medulla oblongata appeared at 2 h post-injury, gradually became diffuse and severe, and continued to exist at 24 hours. At 2 hours, calcium precipitates were deposited on separated lamellae and axolemma, but were rarely distributed in the axoplasm. At 6 hours, calcium precipitates occurred on separated lamellae and axolemma in much higher density, but on axoplasm in extremely small amounts. Some axons, though lacking structural changes of the myelin sheath, sequestered plenty of calcium deposits on their swollen mitochondria. At 24 hours, damaged axons presented with much more severe lamellae separation and calcium deposits. Axonal calcium overloading developed in rat TAI model using lateral head rotation. This was significantly related to structural damage in the axons. These findings suggest the feasibility of using calcium antagonists in cope the management of human DAI in its very early stage.
Novel calcium recognition constructions in proteins: Calcium blade and EF-hand zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denesyuk, Alexander I., E-mail: adenesyu@abo.fi; Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino 142290; Permyakov, Sergei E.
Metal ions can regulate various cell processes being first, second or third messengers, and some of them, especially transition metal ions, take part in catalysis in many enzymes. As an intracellular ion, Ca{sup 2+} is involved in many cellular functions from fertilization and contraction, cell differentiation and proliferation, to apoptosis and cancer. Here, we have identified and described two novel calcium recognition environments in proteins: the calcium blade zone and the EF-hand zone, common to 12 and 8 different protein families, respectively. Each of the two environments contains three distinct structural elements: (a) the well-known characteristic Dx[DN]xDG motif; (b) anmore » adjacent structurally identical segment, which binds metal ion in the same way between the calcium blade zone and the EF-hand zone; and (c) the following structurally variable segment, which distinguishes the calcium blade zone from the EF-hand zone. Both zones have sequence insertions between the last residue of the zone and calcium-binding residues in positions V or VI. The long insertion often connects the active and the calcium-binding sites in proteins. Using the structurally identical segments as an anchor, we were able to construct the classical calmodulin type EF-hand calcium-binding site out of two different calcium-binding motifs from two unrelated proteins.« less
Aspects of calcium oxalate crystallization: theory, in vitro studies, and in vivo implementation.
Rodgers, A
1999-11-01
There are three main approaches to urolithiasis research: theory, basic science, and clinical implementation. Although each approach has yielded meaningful results, there does not appear to be complete synergy between them. This article examines these approaches as they pertain to urinary calcium oxalate crystallization processes. Theoretical calculations were performed to examine the role of oxalate concentration on calcium oxalate supersaturation. The effects of magnesium, citrate, and combinations thereof on calcium oxalate crystallization kinetics were examined in a mixed suspension, mixed product removal crystallizer. Finally, male volunteers were given supplements of calcium alone and binary combinations of calcium, magnesium, and citrate to investigate their effects on the urinary supersaturation of calcium oxalate. Calculations showed that oxalate is 23 times more potent than calcium in its effect on the supersaturation of calcium oxalate. In the in vitro experiments, magnesium and citrate reduced the growth and nucleation kinetics as well as the supersaturation. In combination, these two components were more effective than the individual components in reducing the growth rate and the supersaturation. All of the supplements favorably altered the kinetic and thermodynamic risk factors. Calcium was the most effective in reducing the urinary excretion of oxalate. Articulation of these three approaches is essential for the meaningful investigation and understanding of urolithiasis.
Fritzsche, Marco; Fernandes, Ricardo A; Colin-York, Huw; Santos, Ana M; Lee, Steven F; Lagerholm, B Christoffer; Davis, Simon J; Eggeling, Christian
2015-11-13
Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines.
Mallampati, Srinivasa Reddy; Lee, Byoung Ho; Mitoma, Yoshiharu; Simion, Cristian
2016-11-01
Simultaneous immobilization of heavy metals and decomposition of halogenated organic compounds in different fractions of automobile shredder residue (ASR) were achieved with a nano-sized metallic calcium through a 60-min ball milling treatment. Heavy metal (HM) immobilization and chlorinated/brominated compound (CBC) decomposition efficiencies both reached 90-100 %, after ball milling with nanometallic calcium/calcium oxide (Ca/CaO) dispersion, regardless of ASR particle size (1.0, 0.45-1.0, and 0.250 mm). Concentrations of leachable HMs substantially decreased to a level lower than the regulatory standard limits (Co and Cd 0.3 mg L -1 ; Cr 1.5 mg L -1 ; Fe, Pb, and Zn 3.0 mg L -1 ; Mn and Ni 1 mg L -1 ) proposed by the Korean hazardous waste elution standard regulatory threshold. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) element maps/spectra showed that while the amounts of HMs and CBCs detectable in ASR significantly decreased, the calcium mass percentage increased. X-ray powder diffraction (XRD) patterns indicate that the main fraction of enclosed/bound materials on ASR includes Ca-associated crystalline complexes that remarkably inhibit HM desorption and simultaneously transform dangerous CBCs into harmless compounds. The use of a nanometallic Ca/CaO mixture in a mechanochemical process to treat hazardous ASR (dry conditions) is an innovative approach to remediate cross-contaminated residues with heavy metals and halogenated compounds.
Phosphoserine-modified calcium phosphate cements: bioresorption and substitution.
Offer, Liliana; Veigel, Bastian; Pavlidis, Theodoros; Heiss, Christian; Gelinsky, Michael; Reinstorf, Antje; Wenisch, Sabine; Lips, Katrin Susanne; Schnettler, Reinhard
2011-01-01
This work reports the effects of phosphoserine addition on the biodegradability of calcium phosphate cements. The characteristics of a phosphoserine-modified calcium phosphate cement without collagen in a large animal model are presented here for the first time. Critical size bone defects in the proximal tibia of 10 sheep were filled with the bone cement, and five sheep with empty defects were included as controls. The sheep were sacrificed after either 10 days or 12 weeks, and bones were processed for histological, histomorphometric and enzyme histochemical analyses as well as transmission electron microscopic examination. After 12 weeks, there was no significant reduction in either the implant or the bone defect cross-sectional area. Different amounts of fibrous tissue were observed around the implant and in the bone defect after 12 weeks. The direct bone-implant contact decreased after 12 weeks (p = 0.034). Although the implanted material properly filled the defect and promoted an initial activation of macrophages and osteoblasts, the resorption and simultaneous substitution did not reach expected levels during the experimental time course. Although other studies have shown that the addition of phosphoserine to calcium phosphate cements that have already been modified with collagen I resulted in an acceleration of cement resorption and bone regeneration, this study demonstrates that phosphoserine-modified calcium phosphate cements without collagen perform poorly in the treatment of bone defects. Efforts to use phosphoserine in the development of new composites should take into consideration the need to improve osteoconduction simultaneously via other means. Copyright © 2010 John Wiley & Sons, Ltd.
An early-branching microbialite cyanobacterium forms intracellular carbonates.
Couradeau, Estelle; Benzerara, Karim; Gérard, Emmanuelle; Moreira, David; Bernard, Sylvain; Brown, Gordon E; López-García, Purificación
2012-04-27
Cyanobacteria have affected major geochemical cycles (carbon, nitrogen, and oxygen) on Earth for billions of years. In particular, they have played a major role in the formation of calcium carbonates (i.e., calcification), which has been considered to be an extracellular process. We identified a cyanobacterium in modern microbialites in Lake Alchichica (Mexico) that forms intracellular amorphous calcium-magnesium-strontium-barium carbonate inclusions about 270 nanometers in average diameter, revealing an unexplored pathway for calcification. Phylogenetic analyses place this cyanobacterium within the deeply divergent order Gloeobacterales. The chemical composition and structure of the intracellular precipitates suggest some level of cellular control on the biomineralization process. This discovery expands the diversity of organisms capable of forming amorphous calcium carbonates.
Importance of vesicle release stochasticity in neuro-spike communication.
Ramezani, Hamideh; Akan, Ozgur B
2017-07-01
Aim of this paper is proposing a stochastic model for vesicle release process, a part of neuro-spike communication. Hence, we study biological events occurring in this process and use microphysiological simulations to observe functionality of these events. Since the most important source of variability in vesicle release probability is opening of voltage dependent calcium channels (VDCCs) followed by influx of calcium ions through these channels, we propose a stochastic model for this event, while using a deterministic model for other variability sources. To capture the stochasticity of calcium influx to pre-synaptic neuron in our model, we study its statistics and find that it can be modeled by a distribution defined based on Normal and Logistic distributions.
Process for production desulfurized of synthesis gas
Wolfenbarger, James K.; Najjar, Mitri S.
1993-01-01
A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1900.degree.-2600.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises a calcium-containing compound portion, a sodium-containing compound portion, and a fluoride-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (1) a sulfur-containing sodium-calcium-fluoride silicate phase; and (2) a sodium-calcium sulfide phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yi; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092; Zhang, Hua, E-mail: zhanghua_tj@tongji.edu.cn
Highlights: • The leaching behavior of Ca-based compounds commonly in MSWI residues was studied. • pH is the crucial factor for calcium leaching process. • CaCO{sub 3} was the most sensitive to leaching temperature and Ca{sub 3}(PO{sub 4}){sub 2} was the least. • Ca leaching of MSWIBA and SAPCR attributed to CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} respectively. • Potential clogging ability of MSWI residues leachate in open air was calculated. - Abstract: Leachate collection system (LCS) clogging caused by calcium precipitation would be disadvantageous to landfill stability and operation. Meanwhile, calcium-based compounds are the main constituents in bothmore » municipal solid waste incineration bottom ash (MSWIBA) and stabilized air pollution control residues (SAPCR), which would increase the risk of LCS clogging once these calcium-rich residues were disposed in landfills. The leaching behaviors of calcium from the four compounds and municipal solid waste incineration (MSWI) residues were studied, and the influencing factors on leaching were discussed. The results showed that pH was the crucial factor in the calcium leaching process. CaCO{sub 3} and CaSiO{sub 3} began leaching when the leachate pH decreased to less than 7 and 10, respectively, while Ca{sub 3}(PO{sub 4}){sub 2} leached at pH < 12. CaSO{sub 4} could hardly dissolve in the experimental conditions. Moreover, the sequence of the leaching rate for the different calcium-based compounds is as follows: CaSiO{sub 3} > Ca{sub 3}(PO{sub 4}){sub 2} > CaCO{sub 3}. The calcium leaching from the MSWIBA and SAPCR separately started from pH < 7 and pH < 12, resulting from CaCO{sub 3} and Ca{sub 3}(PO{sub 4}){sub 2} leaching respectively, which was proven by the X-ray diffraction results. Based on the leaching characteristics of the different calcium compounds and the mineral phase of calcium in the incineration residues, simulated computation of their clogging potential was conducted, providing the theoretical basis for the risk assessment pertaining to LCS clogging in landfills.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, HyangKyu
The AMoRE (Advanced Mo based Rare process Experiment) collaboration is going to use calcium molybdate crystals to search for neutrinoless double beta decay of {sup 100}Mo isotope. In order to make the crystal, we use calcium carbonate and molybdenum oxide powders as raw materials. Therefore it is highly necessary to reduce potential sources for radioactive backgrounds such as U and Th in the powders. In this talk, we will present our studies for purification of calcium carbonate and molybdenum oxide powders.
Roake, W.E.
1960-09-13
A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.
Initial stages of calcium uptake and mineral deposition in sea urchin embryos
Vidavsky, Netta; Addadi, Sefi; Mahamid, Julia; Shimoni, Eyal; Ben-Ezra, David; Shpigel, Muki; Weiner, Steve; Addadi, Lia
2014-01-01
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. We reconstructed various stages of the formation pathway of calcium carbonate from calcium ions in sea water to mineral deposition and integration into the forming spicules. Monitoring calcium uptake with the fluorescent dye calcein shows that calcium ions first penetrate the embryo and later are deposited intracellularly. Surprisingly, calcium carbonate deposits are distributed widely all over the embryo, including in the primary mesenchyme cells and in the surface epithelial cells. Using cryo-SEM, we show that the intracellular calcium carbonate deposits are contained in vesicles of diameter 0.5–1.5 μm. Using the newly developed airSEM, which allows direct correlation between fluorescence and energy dispersive spectroscopy, we confirmed the presence of solid calcium carbonate in the vesicles. This mineral phase appears as aggregates of 20–30-nm nanospheres, consistent with amorphous calcium carbonate. The aggregates finally are introduced into the spicule compartment, where they integrate into the growing spicule. PMID:24344263
Initial stages of calcium uptake and mineral deposition in sea urchin embryos.
Vidavsky, Netta; Addadi, Sefi; Mahamid, Julia; Shimoni, Eyal; Ben-Ezra, David; Shpigel, Muki; Weiner, Steve; Addadi, Lia
2014-01-07
Sea urchin larvae have an endoskeleton consisting of two calcitic spicules. We reconstructed various stages of the formation pathway of calcium carbonate from calcium ions in sea water to mineral deposition and integration into the forming spicules. Monitoring calcium uptake with the fluorescent dye calcein shows that calcium ions first penetrate the embryo and later are deposited intracellularly. Surprisingly, calcium carbonate deposits are distributed widely all over the embryo, including in the primary mesenchyme cells and in the surface epithelial cells. Using cryo-SEM, we show that the intracellular calcium carbonate deposits are contained in vesicles of diameter 0.5-1.5 μm. Using the newly developed airSEM, which allows direct correlation between fluorescence and energy dispersive spectroscopy, we confirmed the presence of solid calcium carbonate in the vesicles. This mineral phase appears as aggregates of 20-30-nm nanospheres, consistent with amorphous calcium carbonate. The aggregates finally are introduced into the spicule compartment, where they integrate into the growing spicule.
Process for gasification using a synthetic CO.sub.2 acceptor
Lancet, Michael S.; Curran, George P.
1980-01-01
A gasification process is disclosed using a synthetic CO.sub.2 acceptor consisting essentially of at least one compound selected from the group consisting of calcium oxide and calcium carbonate supported in a refractory carrier matrix, the carrier having the general formula Ca.sub.5 (SiO.sub.4).sub.2 CO.sub.3. A method for producing the synthetic CO.sub.2 acceptor is also disclosed.
Effect of fruit on net acid and urinary calcium excretion in an acute feeding trial of women.
Bell, Janet Amy; Whiting, Susan Joyce
2004-05-01
Consumption of fruits and vegetables has been implicated in lowering net acid excretion (NAE), but few studies have directly examined NAE and urinary calcium effects. Further, there is no evidence that only fresh fruits and vegetables must be consumed for a beneficial effect on bone. A crossover, acute-load study was designed to investigate whether processed fruit was as effective as fresh fruit in reducing NAE and protein-induced hypercalciuria. Fifteen women completed three dietary treatments on three different mornings. A fasting urine sample was collected before consuming one of the following three isocaloric high-protein treatments: control, fresh apples, and processed applesauce. The serving size for the applesauce treatment was 2.5 times that for fresh apples. Urine was collected at baseline (0 h) and at 1.5, 3.0, and 4.5 h. Compared with baseline, NAE increased after control treatment but decreased after fresh or processed apple treatment (P = 0.041). Calcium excretion increased with all treatments by 3 h; however, the increase was less for fresh apple and applesauce (P = 0.024). In an acute feeding model, fruit intake reduced NAE and urinary calcium excretion. Processed fruit appears to be effective, although a larger serving size was needed than with fresh fruit.
Kim, Min-Soo; Song, Ha-Seung; Park, Hee Jun; Hwang, Sung-Joo
2012-01-01
The aims of this study were to identify how the solvent selection affects particle formation and to examine the effect of the initial drug solution concentration on mean particle size and particle size distribution in the supercritical antisolvent (SAS) process. Amorphous atorvastatin calcium was precipitated from seven different solvents using the SAS process. Particles with mean particle size ranging between 62.6 and 1493.7 nm were obtained by varying organic solvent type and solution concentration. By changing the solvent, we observed large variations in particle size and particle size distribution, accompanied by different particle morphologies. Particles obtained from acetone and tetrahydrofuran (THF) were compact and spherical fine particles, whereas those from N-methylpyrrolidone (NMP) and dimethylsulfoxide (DMSO) were agglomerated, with rough surfaces and relatively larger particle sizes. Interestingly, the mean particle size of atorvastatin calcium increased with an increase in the boiling point of the organic solvent used. Thus, for atorvastatin particle formation via the SAS process, particle size was determined mainly by evaporation of the organic solvent into the antisolvent phase. In addition, the mean particle size was increased with increasing drug solution concentration. In this study, from the aspects of particle size and solvent toxicity, acetone was the better organic solvent for controlling nanoparticle formation of atorvastatin calcium.
Szostek, Krzysztof; Głab, Henryk; Pudło, Aleksandra
2009-01-01
Barium and strontium analyses yield an important perspective on temporal shifts in diet in relation to social and environmental circumstances. This research focuses on reconstructing dietary strategies of individuals in the early medieval (12-13th century) population of Gdańsk on the coast of the Baltic Sea. To describe these strategies where seafood rich in minerals was included in the diet, levels of strontium, barium, calcium and phosphorus were measured in first permanent molars of adult men and women whose remains were excavated from the churchyard in the city centre. Faunal remains from the excavation were analysed as an environmental background with respect to the content of the above-mentioned elements. The impact of diagenesis on the odontological material under study was also determined by an analysis of the soil derived from the grave and non-grave surroundings. For verification of diagenetic processes, the calcium/phosphorus index was used. Strontium, calcium, phosphorus and barium levels were determined with the spectrophotometric method using the latest generation plasma spectrophotometer Elan 6100 ICP-MS. From the results of the analysis of taphonomic parameters such as the soil pH, potential ion exchange in the grave surroundings and the Ca/P ratio, it can be inferred that diagenetic factors had little impact on the studied material. From this pilot study we can conclude that in the early Middle Ages in the Baltic Sea basin, seafood was included in the diet from early childhood and at the same time the diet contained calcium-rich milk products (also rich in minerals). The lack of sex differences may indicate the absence of a sex-specific nutritional strategy in childhood and early adolescence.
Kaestner, Lars; Tabellion, Wiebke; Lipp, Peter; Bernhardt, Ingolf
2004-12-01
Prostaglandin E(2) (PGE(2)) is released from platelets when they are activated. Using fluorescence imaging and the patch-clamp technique, we provide evidence that PGE(2) at physiological concentrations (10(-10) M) activates calcium rises mediated by calcium influx through a non-selective cation-channel in human red blood cells. The extent of calcium increase varied between cells with a total of 45% of the cells responding. It is well known that calcium increases elicited the calcium-activated potassium channel (Gardos channel) in the red cell membrane. Previously, it was shown that the Gardos channel activation results in potassium efflux and shrinkage of the cells. Therefore, we conclude that the PGE(2) responses of red blood cells described here reveal a direct and active participation of erythrocytes in blood clot formation.
Stable prenucleation mineral clusters are liquid-like ionic polymers
Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.; Quigley, David; Gebauer, Denis
2011-01-01
Calcium carbonate is an abundant substance that can be created in several mineral forms by the reaction of dissolved carbon dioxide in water with calcium ions. Through biomineralization, organisms can harness and control this process to form various functional materials that can act as anything from shells through to lenses. The early stages of calcium carbonate formation have recently attracted attention as stable prenucleation clusters have been observed, contrary to classical models. Here we show, using computer simulations combined with the analysis of experimental data, that these mineral clusters are made of an ionic polymer, composed of alternating calcium and carbonate ions, with a dynamic topology consisting of chains, branches and rings. The existence of a disordered, flexible and strongly hydrated precursor provides a basis for explaining the formation of other liquid-like amorphous states of calcium carbonate, in addition to the non-classical behaviour during growth of amorphous calcium carbonate. PMID:22186886
Calcium homeostasis and vitamin D metabolism and expression in strongly calcifying laying birds.
Bar, Arie
2008-12-01
Egg laying and shell calcification impose severe extra demands on ionic calcium (Ca2+) homeostasis; especially in birds characterized by their long clutches (series of eggs laid sequentially before a "pause day"). These demands induce vitamin D metabolism and expression. The metabolism of vitamin D is also altered indirectly, by other processes associated with increased demands for calcium, such as growth, bone formation and egg production. A series of intestinal, renal or bone proteins are consequently expressed in the target organs via mechanisms involving a vitamin D receptor. Some of these proteins (carbonic anhydrase, calbindin and calcium-ATPase) are also found in the uterus (eggshell gland) or are believed to be involved in calcium transport in the intestine or kidney (calcium channels). The present review deals with vitamin D metabolism and the expression of the above-mentioned proteins in birds, with special attention to the strongly calcifying laying bird.
Regulation of cardiomyocyte autophagy by calcium.
Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio
2016-04-15
Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. Copyright © 2016 the American Physiological Society.
Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.
NASA Astrophysics Data System (ADS)
Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.
2015-04-01
The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The rates of crystal growth were measured as a function of the solution supersaturation using the highly accurate and reproducible methodology of constant supersaturation. The dependence of the rates of crystal growth on supersaturation suggested surface diffusion controlled mechanism. At constant supersaturation it was possible to extend the time period for the growth of the initially forming polymorph, in a way that sufficient amount is precipitated for characterization with X-ray diffraction (XRD). Moreover, scanning electron microscopy (SEM) was used for the characterization of the morphology of the precipitated solid. In all cases and depending on the solution supersaturation vaterite formed first from solutions of high supersaturation while at low supersaturations calcite formed exclusively. The presence of dodecane reduced the stability of the supersaturated solutions with the crystals forming at the oil-water interface. The presence of ethylene glycol (concentrations between 10-80%) also affected the stability and the kinetics of calcium carbonate precipitation. The morphology of the formed crystals showed habit modifications: Spherical formations consisting of aggregated nanocrystals and calcite crystals with profound pits on the faces were the characteristic feature in the presence of dodecane. ACKNOWLEDGMENT This research was partially funded by the European Union (European Social Fund-ESF) and Greek National Funds through the Operational program Education and Lifelong Learning under the action Aristeia II( Code No 4420).
ERIC Educational Resources Information Center
Science Activities, 1994
1994-01-01
Discusses the basic principles of baking soda chemistry including the chemical composition of baking soda, its acid-base properties, the reaction of bicarbonate solution with calcium ions, and a description of some general types of chemical reactions. Includes a science activity that involves removing calcium ions from water. (LZ)
Influence of calcium on ceramide-1-phosphate monolayers
Brezesinski, Gerald; Hill, Alexandra; Gericke, Arne
2016-01-01
Summary Ceramide-1-phosphate (C1P) plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM), infrared reflection–absorption spectroscopy (IRRAS) and grazing incidence X-ray diffraction (GIXD). The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P. PMID:26977381
Aït Ghezali, Lamia; Arbabian, Atousa; Roudot, Hervé; Brouland, Jean-Philippe; Baran-Marszak, Fanny; Salvaris, Evelyn; Boyd, Andrew; Drexler, Hans G; Enyedi, Agnes; Letestu, Remi; Varin-Blank, Nadine; Papp, Bela
2017-06-26
Endoplasmic reticulum (ER) calcium storage and release play important roles in B lymphocyte maturation, survival, antigen-dependent cell activation and immunoglobulin synthesis. Calcium is accumulated in the endoplasmic reticulum (ER) by Sarco/Endoplasmic Reticulum Calcium ATPases (SERCA enzymes). Because lymphocyte function is critically dependent on SERCA activity, it is important to understand qualitative and quantitative changes of SERCA protein expression that occur during B lymphoid differentiation and leukemogenesis. In this work we investigated the modulation of SERCA expression during the pharmacologically induced differentiation of leukemic precursor B lymphoblast cell lines that carry the E2A-PBX1 fusion oncoprotein. Changes of SERCA levels during differentiation were determined and compared to those of established early B lymphoid differentiation markers. SERCA expression of the cells was compared to that of mature B cell lines as well, and the effect of the direct inhibition of SERCA-dependent calcium transport on the differentiation process was investigated. We show that E2A-PBX1 + leukemia cells simultaneously express SERCA2 and SERCA3-type calcium pumps; however, their SERCA3 expression is markedly inferior to that of mature B cells. Activation of protein kinase C enzymes by phorbol ester leads to phenotypic differentiation of the cells, and this is accompanied by the induction of SERCA3 expression. Direct pharmacological inhibition of SERCA-dependent calcium transport during phorbol ester treatment interferes with the differentiation process. These data show that the calcium pump composition of the ER is concurrent with increased SERCA3 expression during the differentiation of precursor B acute lymphoblastic leukemia cells, that a cross-talk exists between SERCA function and the control of differentiation, and that SERCA3 may constitute an interesting new marker for the study of early B cell phenotype.
Calcium Isotope Systematics During Development of the Domestic Chicken (Gallus gallus)
NASA Astrophysics Data System (ADS)
Wheatley, P. V.
2003-12-01
Calcium isotope distributions have been recognized as showing systematic and predictable fractionation in nature. However, most of the observed calcium isotope fractionation to date is due to biological processes. The presence of abundant amounts of calcium in mineralized tissues makes the isotopic system of calcium particularly valuable in biological and paleobiological questions involving biomineralization. In order to apply calcium isotope systematics to paleobiological questions the changes in the calcium isotope signatures of mineralized tissue in modern animals should be studied. My study observed the domestic chicken (Gallus gallus) through embryologic ontogeny. This was accomplished by obtaining fertilized eggs staged in a growth series from day 12 to day 20. The eggs were dissected and shell, embryonic bone, albumen, and yolk were analyzed in order to characterize the calcium isotopic composition of the individual components over the course of the growth series. Several systematic changes in the isotopic signatures of various tissues were observed during the course of the development of the embryos. In general, mineralization in biological systems preferentially partitions the lighter isotopes of calcium into hard parts. As a result of this fractionation during mineralization, partitioning of light isotopes of calcium into the mineralized tissues may result in residual tissues being enriched in the heavier isotopes as ontogeny progresses. Better understanding of the behavior of calcium in modern biological systems will improve its application to fossils and expand the number of paleobiological and evolutionary questions that can be addressed using calcium isotopic data.
Yang, Baiyu; Campbell, Peter T; Gapstur, Susan M; Jacobs, Eric J; Bostick, Roberd M; Fedirko, Veronika; Flanders, W Dana; McCullough, Marjorie L
2016-03-01
Calcium intake may be important for bone health, but its effects on other outcomes, including cardiovascular disease (CVD) and cancer, remain unclear. Recent reports of adverse cardiovascular effects of supplemental calcium have raised concerns. We investigated associations of supplemental, dietary, and total calcium intakes with all-cause, CVD-specific, and cancer-specific mortality in a large, prospective cohort. A total of 132,823 participants in the Cancer Prevention Study II Nutrition Cohort, who were followed from baseline (1992 or 1993) through 2012 for mortality outcomes, were included in the analysis. Dietary and supplemental calcium information was first collected at baseline and updated in 1999 and 2003. Multivariable-adjusted Cox proportional hazards models with cumulative updating of exposures were used to calculate RRs and 95% CIs for associations between calcium intake and mortality. During a mean follow-up of 17.5 y, 43,186 deaths occurred. For men, supplemental calcium intake was overall not associated with mortality outcomes (P-trend > 0.05 for all), but men who were taking ≥1000 mg supplemental calcium/d had a higher risk of all-cause mortality (RR: 1.17; 95% CI: 1.03, 1.33), which was primarily attributed to borderline statistically significant higher risk of CVD-specific mortality (RR: 1.22; 95% CI: 0.99, 1.51). For women, supplemental calcium was inversely associated with mortality from all causes [RR (95% CI): 0.90 (0.87, 0.94), 0.84 (0.80, 0.88), and 0.93 (0.87, 0.99) for intakes of 0.1 to <500, 500 to <1000, and ≥1000 mg/d, respectively; P-trend < 0.01]. Total calcium intake was inversely associated with mortality in women (P-trend < 0.01) but not in men; dietary calcium was not associated with all-cause mortality in either sex. In this cohort, associations of calcium intake and mortality varied by sex. For women, total and supplemental calcium intakes are associated with lower mortality, whereas for men, supplemental calcium intake ≥1000 mg/d may be associated with higher all-cause and CVD-specific mortality. © 2016 American Society for Nutrition.
Zhang, Martin Yi; Ye, Chang; Erasquin, Uriel Joseph; Huynh, Toan; Cai, Chengzhi; Cheng, Gary J
2011-02-01
In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells.
Calsequestrin mediates changes in spontaneous calcium release profiles.
Tania, Nessy; Keener, James P
2010-08-07
Calsequestrin (CSQ) is the primary calcium buffer within the sarcoplasmic reticulum (SR) of cardiac cells. It has also been identified as a regulator of Ryanodine receptor (RyR) calcium release channels by serving as a SR luminal sensor. When calsequestrin is free and unbound to calcium, it can bind to RyR and desensitize the channel from cytoplasmic calcium activation. In this paper, we study the role of CSQ as a buffer and RyR luminal sensor using a mechanistic model of RyR-CSQ interaction. By using various asymptotic approximations and mean first exit time calculation, we derive a minimal model of a calcium release unit which includes CSQ dependence. Using this model, we then analyze the effect of changing CSQ expression on the calcium release profile and the rate of spontaneous calcium release. We show that because of its buffering capability, increasing CSQ increases the spark duration and size. However, because of luminal sensing effects, increasing CSQ depresses the basal spark rate and increases the critical SR level for calcium release termination. Finally, we show that with increased bulk cytoplasmic calcium concentration, the CRU model exhibits deterministic oscillations.
Large-particle calcium hydroxylapatite injection for correction of facial wrinkles and depressions.
Alam, Murad; Havey, Jillian; Pace, Natalie; Pongprutthipan, Marisa; Yoo, Simon
2011-07-01
Small-particle calcium hydroxylapatite (Radiesse, Merz, Frankfurt, Germany) is safe and effective for facial wrinkle reduction, and has medium-term persistence for this indication. There is patient demand for similar fillers that may be longer lasting. We sought to assess the safety and persistence of effect in vivo associated with use of large-particle calcium hydroxylapatite (Coaptite, Merz) for facial augmentation and wrinkle reduction. This was a case series of 3 patients injected with large-particle calcium hydroxylapatite. Large-particle calcium hydroxylapatite appears to be effective and well tolerated for correction of facial depressions, including upper mid-cheek atrophy, nasolabial creases, and HIV-associated lipoatrophy. Adverse events included erythema and edema, and transient visibility of the injection sites. Treated patients, all of whom had received small-particle calcium hydroxylapatite correction before, noted improved persistence at 6 and 15 months with the large-particle injections as compared with prior small-particle injections. This is a small case series, and there was no direct control to compare the persistence of small-particle versus large-particle correction. For facial wrinkle correction, large-particle calcium hydroxylapatite has a safety profile comparable with that of small-particle calcium hydroxylapatite. The large-particle variant may have longer persistence that may be useful in selected clinical circumstances. Copyright © 2010 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.
Mehlmer, Norbert; Parvin, Nargis; Hurst, Charlotte H.; Knight, Marc R.; Teige, Markus; Vothknecht, Ute C.
2014-01-01
Calcium has long been acknowledged as one of the most important signalling components in plants. Many abiotic and biotic stimuli are transduced into a cellular response by temporal and spatial changes in cellular calcium concentration and the calcium-sensitive protein aequorin has been exploited as a genetically encoded calcium indicator for the measurement of calcium in planta. The objective of this work was to generate a compatible set of aequorin expression plasmids for the generation of transgenic plant lines to measure changes in calcium levels in different cellular subcompartments. Aequorin was fused to different targeting peptides or organellar proteins as a means to localize it to the cytosol, the nucleus, the plasma membrane, and the mitochondria. Furthermore, constructs were designed to localize aequorin in the stroma as well as the inner and outer surface of the chloroplast envelope membranes. The modular set-up of the plasmids also allows the easy replacement of targeting sequences to include other compartments. An additional YFP-fusion was included to verify the correct subcellular localization of all constructs by laser scanning confocal microscopy. For each construct, pBin19-based binary expression vectors driven by the 35S or UBI10 promoter were made for Agrobacterium-mediated transformation. Stable Arabidopsis lines were generated and initial tests of several lines confirmed their feasibility to measure calcium signals in vivo. PMID:22213817
NASA Technical Reports Server (NTRS)
Roux, S. J. (Editor)
1983-01-01
The hypothesis that calcium plays an important part in regulating cellular response to gravity and to other environmental stimuli is explored. Topics covered include the role of calmodulin and other proteins, gravitropic responses, bone demineralization during space flight, and intracellular communication.
Gelation of Na-alginate aqueous solution: A study of sodium ion dynamics via NMR relaxometry.
Zhao, Congxian; Zhang, Chao; Kang, Hongliang; Xia, Yanzhi; Sui, Kunyan; Liu, Ruigang
2017-08-01
Sodium alginate (SA) hydrogels have a wide range of applications including tissue engineering, drug delivery and formulations for preventing gastric reflux. The dynamics of sodium ions during the gelation process of SA solution is critical for clarification of the gelation procedure. In this work, nuclear magnetic resonance (NMR) relaxometry and pulsed-field-gradient (PFG) NMR diffusometry were used to investigate the dynamics of the sodium ions during the gelation of SA alginate. We find that sodium ions are in two different states with the addition of divalent calcium ions, corresponding to Ca 2+ crosslinked and un-crosslinked regions in the hydrogels. The sodium ions within the un-crosslinked regions are those released from the alginate chains without Ca 2+ crosslinking. The relative content of sodium ions within the Ca 2+ crosslinked regions decreased with the increase in the content of calcium ions in the system. The relaxation time T 2 of sodium ions within the Ca 2+ crosslinked and un-crosslinked regions shift to shorter and longer relaxation time with the increase in concentration of calcium ion, which indicates the closer package of SA chains and the larger space for the diffusion of free sodium ions. This work clarifies the dynamics of 23 Na + in a calcium alginate gel at the equilibrium state. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Oestreicher, Z.; Lower, B.; Lower, S.; Bazylinski, D. A.
2011-12-01
Biomineralization occurs throughout the living world; a few common examples include iron oxide in chiton teeth, calcium carbonate in mollusk shells, calcium phosphate in animal bones and teeth, silica in diatom shells, and magnetite crystals inside the cells of magnetotactic bacteria. Biologically controlled mineralization is characterized by biominerals that have species-specific properties such as: preferential crystallographic orientation, consistent particle size, highly ordered spatial locations, and well-defined composition and structure. It is well known that magnetotactic bacteria synthesize crystals of magnetite inside of their cells, but how they mineralize the magnetite is poorly understood. Magnetosomes have a species-specific morphology that is due to specific proteins involved in the mineralization process. In addition to magnetite crystals, magnetotactic bacteria also produce inclusion bodies or granules that contain different elements, such as phosphorus, calcium, and sulfur. In this study we used the transmission electron microscope to analyze the structure of magnetite crystals and inclusion bodies from different species of magnetotactic bacteria in order to determine the composition of the inclusion bodies and to ascertain whether or not the magnetite crystals contain elements other than iron and oxygen. Using energy dispersive spectroscopy we found that different bacteria from different environments possess inclusion bodies that contain different elements such as phosphorus, calcium, barium, magnesium, and sulfur. These differences may reflect the conditions of the environment in which the bacteria inhabit.
Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L
2012-05-01
The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. Copyright © 2011 Wiley Periodicals, Inc.
Neuroprotective action of lithium in disorders of the central nervous system
CHIU, Chi-Tso; CHUANG, De-Maw
2011-01-01
Substantial in vitro and in vivo evidence of neurotrophic and neuroprotective effects of lithium suggests that it may also have considerable potential for the treatment of neurodegenerative conditions. Lithium's main mechanisms of action appear to stem from its ability to inhibit glycogen synthase kinase-3 activity and also to induce signaling mediated by brain-derived neurotrophic factor. This in turn alters a wide variety of downstream efectors, with the ultimate effect of enhancing pathways to cell survival. In addition, lithium contributes to calcium homeostasis. By inhibiting N-methyl-D-aspartate receptor-mediated calcium influx, for instance, it suppresses the calcium-dependent activation of pro-apoptotic signaling pathways. By inhibiting the activity of phosphoinositol phosphatases, it decreases levels of inositol 1,4,5-trisphosphate, a process recently identified as a novel mechanism for inducing autophagy. These mechanisms alow therapeutic doses of lithium to protect neuronal cells from diverse insults that would otherwise lead to massive cell death. Lithium, moreover, has been shown to improve behavioral and cognitive deficits in animal models of neurodegenerative diseases, including stroke, amyotrophic lateral sclerosis, fragile X syndrome, and Huntington's, Alzheimer's, and Parkinson's diseases. Since lithium is already FDA-approved for the treatment of bipolar disorder, our conclusions support the notion that its clinical relevance can be expanded to include the treatment of several neurological and neurodegenerative-related diseases. PMID:21743136
Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology
Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping
2016-01-01
Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins’ regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. PMID:26123302
Yan, Yuhui; Shen, Feng-Yi; Agresti, Michael; Zhang, Lin-Ling; Matloub, Hani S; LoGiudice, John A; Havlik, Robert; Li, Jifeng; Gu, Yu-Dong; Yan, Ji-Geng
2017-09-01
Peripheral nerve injury can have a devastating effect on daily life. Calcium concentrations in nerve fibers drastically increase after nerve injury, and this activates downstream processes leading to neuron death. Our previous studies showed that calcium-modulating agents decrease calcium accumulation, which aids in regeneration of injured peripheral nerves; however, the optimal therapeutic window for this application has not yet been identified. In this study, we show that calcium clearance after nerve injury is positively correlated with functional recovery in rats suffering from a crushed sciatic nerve injury. After the nerve injury, calcium accumulation increased. Peak volume is from 2 to 8 weeks post injury; calcium accumulation then gradually decreased over the following 24-week period. The compound muscle action potential (CMAP) measurement from the extensor digitorum longus muscle recovered to nearly normal levels in 24 weeks. Simultaneously, real-time polymerase chain reaction results showed that upregulation of calcium-ATPase (a membrane protein that transports calcium out of nerve fibers) mRNA peaked at 12 weeks. These results suggest that without intervention, the peak in calcium-ATPase mRNA expression in the injured nerve occurs after the peak in calcium accumulation, and CMAP recovery continues beyond 24 weeks. Immediately using calcium-modulating agents after crushed nerve injury improved functional recovery. These studies suggest that a crucial time frame in which to initiate effective clinical approaches to accelerate calcium clearance and nerve regeneration would be prior to 2 weeks post injury. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Aptel, I; Cance-Rouzaud, A; Grandjean, H
1999-05-01
Although the main source of dietary calcium is dairy products, the calcium contained in mineral water, which is as available as that of milk, could provide a valuable source of calcium. We analyzed the data from the EPIDOS multicenter study to evaluate the relationship between both dietary calcium and that supplied by drinking water and bone density measured at the femoral neck by dual-energy X-ray absorptiometry. The study included 4434 women over 75 years of age who had not received any treatment likely to interfere with calcium metabolism. A significant correlation was found between total calcium intake and bone density at the femoral neck (r = 0.10, p < 0. 001). After adjustment for the main variables influencing bone density, an increase of 100 mg/day in calcium from drinking water was associated to a 0.5% increase in femoral bone density, while a similar increase in dietary calcium from other sources only led to a 0.2% increase; however, this difference was not significant. The consumption of calcium-rich mineral water may be of interest, especially in older women who consume little calcium from dairy products.
Calcium ion binding to a soil fulvic acid using a donnan potential model
Marinsky, J.A.; Mathuthu, A.; Ephraim, J.H.; Reddy, M.M.
1999-01-01
Calcium ion binding to a soil fulvic acid (Armadale Bh Horizon) was evaluated over a range of calcium ion concentrations, from pH 3.8 to 7.3, using potentiometric titrations and calcium ion electrode measurements. Fulvic acid concentration was constant (100 milligrams per liter) and calcium ion concentration varied up to 8 X 10-4 moles per liter. Experiments discussed here included: (1) titrations of fulvic acid-calcium ion containing solutions with sodium hydroxide; and (2) titrations of fully neutralized fulvic acid with calcium chloride solutions. Apparent binding constants (expressed as the logarithm of the value, log ??app) vary with solution pH, calcium ion concentration, degree of acid dissociation, and ionic strength (from log ??app = 2.5 to 3.9) and are similar to those reported by others. Fulvic acid charge, and the associated Donnan Potential, influences calcium ion-fulvic acid ion pair formation. A Donnan Potential corrrection term allowed calculation of intrinsic calcium ion-fulvic acid binding constants. Intrinsic binding constants vary from 1.2 to 2.5 (the average value is about log??= 1.6) and are similar to, but somewhat higher than, stability constants for calcium ion-carboxylic acid monodentate complexes. ?? by Oldenbourg Wissenschaftsverlag, Mu??nchen.
Nutritional Biochemistry of Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2000-01-01
Adequate nutrition is critical for maintenance of crew health during and after extended-duration space flight. The impact of weightlessness on human physiology is profound, with effects on many systems related to nutrition, including bone, muscle, hematology, fluid and electrolyte regulation. Additionally, we have much to learn regarding the impact of weightlessness on absorption, mtabolism , and excretion of nutrients, and this will ultimately determine the nutrient requirements for extended-duration space flight. Existing nutritional requirements for extended-duration space flight have been formulated based on limited flight research, and extrapolation from ground-based research. NASA's Nutritional Biochemistry Laboratory is charged with defining the nutritional requirements for space flight. This is accomplished through both operational and research projects. A nutritional status assessment program is included operationally for all International Space Station astronauts. This medical requirement includes biochemical and dietary assessments, and is completed before, during, and after the missions. This program will provide information about crew health and nutritional status, and will also provide assessments of countermeasure efficacy. Ongoing research projects include studies of calcium and bone metabolism, and iron absorption and metabolism. The calcium studies include measurements of endocrine regulation of calcium homeostasis, biochemical marker of bone metabolism, and tracer kinetic studies of calcium movement in the body. These calcium kinetic studies allow for estimation of intestinal absorption, urinary excretion, and perhaps most importantly - deposition and resorption of calcium from bone. The Calcium Kinetics experiment is currently being prepared for flight on the Space Shuttle in 2001, and potentially for subsequent Shuttle and International Space Station missions. The iron study is intended to assess whether iron absorption is down-regulated dUl1ng space flight. This is critical due to the red blood cell changes which occur, and the increase in iron storage that has been observed after space flight. The Iron Absorption and Metabolism experiment is currently planned for long-term flights on the International Space Station.
STRUCTURAL CHANGES IN SURFACTANT-MODIFIED SORBENTS DURING FURNACE INJECTION
A calcium hydroxide [Ca(OH)2] sorbent modified by the addition of calcium lignosulfonate has recently been developed for use in the Environmental Protection Agency's limestone injection multistage burner process. The increased reactivity with sulfur dioxide (SO2) displayed by thi...
75 FR 66433 - Mandatory Reporting of Greenhouse Gases
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-28
... oxygen process furnace shops. Lime Production 327410 Calcium oxide, calcium hydroxide, dolomitic hydrates... Chemists AOD argon-oxygen decarburization API American Petroleum Institute ASTM American Society for... Mandates Reform Act of 1995 VOD vacuum oxygen decarburization Table of Contents I. Background A. How is...
Asmat, Tauseef M; Tenenbaum, Tobias; Jonsson, Ann-Beth; Schwerk, Christian; Schroten, Horst
2014-01-01
The pili and outer membrane proteins of Neisseria meningitidis (meningococci) facilitate bacterial adhesion and invasion into host cells. In this context expression of meningococcal PilC1 protein has been reported to play a crucial role. Intracellular calcium mobilization has been implicated as an important signaling event during internalization of several bacterial pathogens. Here we employed time lapse calcium-imaging and demonstrated that PilC1 of meningococci triggered a significant increase in cytoplasmic calcium in human brain microvascular endothelial cells, whereas PilC1-deficient meningococci could not initiate this signaling process. The increase in cytosolic calcium in response to PilC1-expressing meningococci was due to efflux of calcium from host intracellular stores as demonstrated by using 2-APB, which inhibits the release of calcium from the endoplasmic reticulum. Moreover, pre-treatment of host cells with U73122 (phospholipase C inhibitor) abolished the cytosolic calcium increase caused by PilC1-expressing meningococci demonstrating that active phospholipase C (PLC) is required to induce calcium transients in host cells. Furthermore, the role of cytosolic calcium on meningococcal adherence and internalization was documented by gentamicin protection assay and double immunofluorescence (DIF) staining. Results indicated that chelation of intracellular calcium by using BAPTA-AM significantly impaired PilC1-mediated meningococcal adherence to and invasion into host endothelial cells. However, buffering of extracellular calcium by BAPTA or EGTA demonstrated no significant effect on meningococcal adherence to and invasion into host cells. Taken together, these results indicate that meningococci induce calcium release from intracellular stores of host endothelial cells via PilC1 and cytoplasmic calcium concentrations play a critical role during PilC1 mediated meningococcal adherence to and subsequent invasion into host endothelial cells.
Heinemann, C; Heinemann, S; Kruppke, B; Worch, H; Thomas, J; Wiesmann, H P; Hanke, T
2016-10-15
A biomimetic strategy was developed in order to prepare organically modified hydroxyapatite (ormoHAP) with spherical shape. The technical approach is based on electric field-assisted migration of calcium ions and phosphate ions into a hydrogel composed of carboxymethylated gelatin. The electric field as well as the carboxymethylation using glucuronic acid (GlcA) significantly accelerates the mineralization process, which makes the process feasible for lab scale production of ormoHAP spheres and probably beyond. A further process was developed for gentle separation of the ormoHAP spheres from the gelatin gel without compromising the morphology of the mineral. The term ormoHAP was chosen since morphological analyses using electron microscopy (SEM, TEM) and element analysis (EDX, FT-IR, XRD) confirmed that carboxymethylated gelatin molecules use to act as organic templates for the formation of nanocrystalline HAP. The hydroxyapatite (HAP) crystals self-organize to form hollow spheres with diameters ranging from 100 to 500nm. The combination of the biocompatible chemical composition and the unique structure of the nanocomposites is considered to be a useful basis for future applications in functionalized degradable biomaterials. A novel bioinspired mineralization process was developed based on electric field-assisted migration of calcium and phosphate ions into biochemically carboxymethylated gelatin acting as organic template. Advantages over conventional hydroxyapatite include particle size distribution and homogeneity as well as achievable mechanical properties of relevant composites. Moreover, specifically developed calcium ion or phosphate ion release during degradation can be useful to adjust the fate of bone cells in order to manipulate remodeling processes. The hollow structure of the spheres can be useful for embedding drugs in the core, encapsulated by the highly mineralized outer shell. In this way, controlled drug release could be achieved, which enables advanced strategies for threating bone-related diseases, e.g. osteoporosis and multiple myeloma. Copyright © 2016. Published by Elsevier Ltd.
Yu, Ji-Kuen; Pan, Huichin; Huang, Shing-Moo; Huang, Nan-Lan; Yao, Chung-Chin; Hsiao, Kuang-Ming; Wu, Chew-Wun
2013-01-01
Our aim was to investigate the calcium content of different gallstone compositions and the pathogenic mechanisms of calcium carbonate gallstones. Between August 2001 and July 2007, gallstones from 481 patients, including 68 calcium carbonate gallstones, were analyzed for total calcium content. Gallbladder bile samples from 33 cases and six controls were analyzed for pH, carbonate anion level, free-ionized calcium concentration and saturation index for calcium carbonate. Total calcium content averaged 75.6 %, 11.8 %, and 4.2 % for calcium carbonate, calcium bilirubinate and cholesterol gallstones. In 29.4 % of patients, chronic and/or intermittent cystic duct obstructions were caused by polypoid lesions in the neck region and 70.6 % were caused by stones. A total of 82 % of patients had chronic low-grade inflammation of the gallbladder wall and 18.0 % had acute inflammatory exacerbations. In the bile, we found the mean pH, mean carbonate anion, free-ionized calcium concentrations, and mean saturation index for calcium carbonate to be elevated in comparison to controls. From our study, we found chronic and/or intermittent cystic duct obstructions and low-grade GB wall inflammation lead to GB epithelium hydrogen secretion dysfunction. Increased calcium ion efflux into the GB lumen combined with increased carbonate anion presence increases SI_CaCO(3) from 1 to 22.4. Thus, in an alkaline milieu with pH 7.8, calcium carbonate begins to aggregate and precipitate. Copyright © 2012. Published by Elsevier B.V.
Process for the manufacture of an attrition resistant sorbent used for gas desulfurization
Venkataramani, Venkat S.; Ayala, Raul E.
2003-09-16
This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.
Molding mineral within microporous hydrogels by a polymer-induced liquid-precursor (PILP) process.
Cheng, Xingguo; Gower, Laurie B
2006-01-01
Natural biominerals often have exquisite morphologies, where the cells exercise a high degree of crystallographic control through secretion of biological macromolecules and regulation of ion transport. One important example is the sea urchin spine. It has recently been shown to be formed through deposition of a transient amorphous calcium carbonate (ACC) precursor phase that later transforms to single-crystalline calcite, ultimately forming an elaborate three-dimensional microporous calcium carbonate structure with interconnected pores. Macromolecules associated with the mineral phase are thought to play a key role in regulating this transformation. The work described here mimics this type of morphological control by "molding" an amorphous calcium carbonate precursor within a porous poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogel that has been prepared as a negative replica from the void space of an urchin spine. Using an acidic biomimetic polymer as a process-directing agent, we show that polyaspartic acid induces amorphous calcium carbonate (ACC) nanoparticles, which have fluidic character and therefore are able to infiltrate the PHEMA hydrogel replica and coalesce into the convoluted morphology that replicates the original microporous structure of the sea urchin spine. By "molding" calcium carbonate into a complex morphology at room temperature, using a precursor process that is induced by a biomimetic acidic macromolecule, the PILP process is a useful in vitro model for examining different aspects of the amorphous-to-crystalline transformation process that is apparently used by a variety of biomineralizing organisms. For example, although we were able to replicate the overall morphology of the spine, it had polycrystalline texture; further studies with this system will focus on controlling the nucleation event, which may help to elucidate how such a convoluted structure can be prepared with single-crystalline texture via an amorphous precursor. Through a better understanding of the mechanisms used by organisms to regulate crystal properties, such biomimetic processes can lead to the synthesis of materials with superior electronic, mechanical, and optical properties.
Calcium antagonists modulate oxidative stress and acrosomal reaction in rat spermatozoa.
Morakinyo, Ayodele; Iranloye, Bolanle; Adegoke, Olufeyisipe
2011-08-01
Calcium ions are vital in many biological processes and qualify as an almost ubiquitous intracellular second messenger. This indicates the multiplicity of the effects associated with drug actions aimed at interfering with calcium ions. To examine the cellular process involved in the induction of infertility in males by calcium antagonist (CA) even in the presence of normal semen parameters, we studied the effects of different CA namely; nifedipine, verapamil and diltiazem on oxidative balance and acrosome reaction in the sperm. For this purpose, lipid peroxidation, antioxidants such as superoxide dismutase, catalase and reduced glutathione, and acrosomal reaction were determined in sperm samples of rats. Calcium antagonist causes significant oxidative stress in the epididymal sperm with increased malondialdehyde level and a concomitant decrease in antioxidant activities of catalase and superoxide dismutase. The percentage value of acrosomal-reacted sperm in the nifedipine, verapamil and diltiazem-treated rats were 41 ±2.45, 39 ±2.92 and 42 ±1.22 respectively, compared with the control group value of 86 ±2.92. It appears CA oxidatively modify the sperm resulting in functional inhibition of acrosomal reaction. Suppression of the sperm acrosomal reaction is known to have serious adverse implications for fertilization.
Amorphous calcium carbonate: A precursor phase for aragonite in shell disease of the pearl oyster.
Huang, Jingliang; Liu, Chuang; Xie, Liping; Zhang, Rongqing
2018-02-26
Amorphous calcium carbonate (ACC) has long been shown to act as an important constituent or precursor phase for crystalline material in mollusks. However, the presence and the role of ACC in bivalve shell formation are not fully studied. In this study, we found that brown deposits containing heterogeneous calcium carbonates were precipitated when a shell disease occurred in the pearl oyster Pinctada fucata. Calcein-staining of the brown deposits indicated that numerous amorphous calcium deposits were present, which was further confirmed by Fourier-transform infrared spectroscopy (FTIR), Raman spectrum and X-ray difraction (XRD) analyses. So we speculate that ACC plays an important role in rapid calcium carbonate precipitation during shell repair process in diseased oysters. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kristensen, L.; Cornwell, G.; Sedlacek, A. J., III; Prather, K. A.
2016-12-01
Mineral dust particles can serve as cloud condensation nuclei (CCN), with enhanced CCN activity observed when the dust is mixed with additional soluble species. Long range atmospheric transport can change the composition of dust particles through aging, cloud processing and mixing with other particles. The CalWater2 campaign measured single particles and cloud dynamics to investigate the influence aerosols have on the hydrological cycle in California. An Aircraft Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to characterize and identify single particles within clouds potentially acting as ice and cloud nuclei. Two matching flights over California's mountains in March 2015 detected significantly different particle types that resulted in different precipitation totals. Calcium dust dominated the particle composition during the first flight which had an observed decrease in orographic precipitation. Particle composition and air mass back trajectories indicate an Asian desert origin. The calcium dust particles contained secondary acids, in particular oxalic acid, acquired during transport from Asia to California. This chemical processing likely increased the solubility of the dust, enabling the particles to act as more effective CCN. The chemical composition also showed oligomeric carbonaceous species were mixed with the calcium dust particles, potentially further increasing the solubility the particles. A single particle soot photometer (SP2) measured black carbon concurrently and returned intense incandescence when calcium dust was present, confirming the calcium dust particles were internally mixed with a carbonaceous species. Dust particles were greatly reduced during the second flight with local biomass burning particles the dominant type. Observed precipitation in California were within forecast levels during the second flight. These single particle measurements from CalWater2 show that dust particles from Asia can affect cloud process and thus precipitation in California.
Calcium Intake, Major Dietary Sources and Bone Health Indicators in Iranian Primary School Children.
Omidvar, Nasrin; Neyestani, Tirang-Reza; Hajifaraji, Majid; Eshraghian, Mohammad-Reza; Rezazadeh, Arezoo; Armin, Saloumeh; Haidari, Homa; Zowghi, Telma
2015-02-01
Adequate calcium intake may have a crucial role with regards to prevention of many chronic diseases, including hypertension, hypercholesterolemia, different types of cancer, obesity and osteoporosis. In children, sufficient calcium intake is especially important to support the accelerated growth spurt during the preteen and teenage years and to increase bone mineral mass to lay the foundation for older age. This study aimed to assess daily calcium intake in school-age children to ensure whether they fulfill the FGP dairy serving recommendations, the recommended levels of daily calcium intake and to assess the relationship between dietary calcium intake and major bone health indicators. A total of 501 Iranian school-age children were randomly selected. Calcium intake was assessed using a semi-quantitative food frequency questionnaire. Bone health indicators were also assessed. Dairy products contributed to 69.3% of the total calcium intake of the children. Daily adequate intake of calcium was achieved by 17.8% of children. Only 29.8% met the Food guide pyramid recommendations for dairy intake. Dietary calcium intake was not significantly correlated with serum calcium and other selected biochemical indicators of bone health. The need for planning appropriate nutrition strategies for overcoming inadequate calcium intake in school age children in the city of Tehran is inevitable.
Luquet, G; Testenière, O; Graf, F
1996-04-16
We extracted proteins from the organic matrix of calcareous concretions, which represents the calcium storage form in a terrestrial crustacean. Electrophoretic analyses of water-soluble organic-matrix proteinaceous components revealed 11 polypeptides, 6 of which are probably glycosylated. Among the unglycosylated proteins, we characterized a 23 kDa polypeptide, with an isoelectric point of 5.5, which is able to bind calcium. Its N-terminal sequence is rich in acidic amino acids (essentially aspartic acid). All these characteristics suggest its involvement in the calcium precipitation process within the successive layers of the organic matrix.
NASA Astrophysics Data System (ADS)
Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel
2018-06-01
We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.
Dietary calcium requirements do not differ between Mexican-American boys and girls.
Palacios, Cristina; Martin, Berdine R; McCabe, George P; McCabe, Linda; Peacock, Munro; Weaver, Connie M
2014-08-01
Mexican Americans are an understudied ethnic group for determinants of bone health, although the risk of age-related osteoporosis is high in this rapidly growing sector of the U.S. population. Thus, the objective of the present study was to establish the dietary calcium requirements for bone health in Mexican-American adolescents by measuring calcium retention calculated from balance in response to a range of dietary calcium intakes and to determine predictors of skeletal calcium retention. Adolescents aged 12-15 y were studied twice on paired calcium intakes ranging from 600 to 2300 mg/d using randomized-order, crossover 3-wk balance studies. Skeletal calcium retention was calculated as dietary calcium intake minus calcium excreted in feces and urine over the last 2 wk of balance. A linear model was developed to explain the variation in calcium retention. Boys (n = 20) were taller and had higher lean mass, usual dietary calcium intake, bone mineral content, and serum alkaline phosphatase compared with girls, whereas girls (n = 20) had higher Tanner scores and greater fat mass. Calcium retention increased with calcium intake (P < 0.0001) and did not differ by sex (P = 0.66). In boys and girls considered together, calcium intake explained 33% of the variation in calcium retention. Serum alkaline phosphatase explained an additional 11% of the variation in calcium retention. Other variables measured, including the urine N-telopeptide of type I collagen/creatinine ratio, Tanner score, serum parathyroid hormone and 25-hydroxyvitamin D, weight, height, and body mass index, did not contribute to the variance in calcium retention. In adolescence, calcium retention in both Mexican-American boys and girls was higher than determined previously in adolescent nonHispanic white girls. This trial was registered at clinicaltrials.gov as NCT01277185. © 2014 American Society for Nutrition.
Liang, Hong; Miao, Maohua; Chen, Jianping; Chen, Kanglian; Wu, Bin; Dai, Qi; Wang, Jian; Sun, Fei; Shi, Huijuan; Yuan, Wei
2016-11-01
The study aimed to examine the relationships between calcium, magnesium, and calcium/magnesium ratio in semen plasma and sperm quality. It was a cross-sectional study based on a program aiming at promoting the reproductive health in less-developed areas. A total of 515 men aged between 18 and 55 years provided semen specimens at family planning clinics in Sandu County, Guizhou Province, China. Total calcium and magnesium concentrations in semen plasma were measured with flame atomic absorption spectrometry. Sperm quality, including sperm motility and concentration, was evaluated by using a computer-assisted sperm analysis method. The medians of seminal plasma calcium, magnesium, and zinc concentrations were 9.61, 4.41, and 2.23 mmol/l, respectively. Calcium concentration and calcium/magnesium ratio were negatively associated with sperm concentrations (β = -0.47, P = 0.0123 for calcium; β = -0.25, P = 0.0393 for calcium/magnesium ratio) after adjusting for zinc and other covariates. In stratified analyses, the association between calcium and sperm concentrations only persisted among subjects with a calcium/magnesium ratio of ≤2.5 (β = -0.71, P = 0.0268). In the same stratum, magnesium was associated with increased sperm concentration (β = 0.73, P = 0.0386). Among subjects with a calcium/magnesium ratio of >2.5, neither calcium nor magnesium was associated with sperm concentration. In conclusion, total calcium and magnesium concentrations were associated with sperm concentration among subjects with a lower calcium/magnesium ratio. The calcium and magnesium ratio had a modifying effect on the associations of calcium and magnesium with sperm concentration.
Cuticular Biominerals of the Terrestrial Crustacean Oniscus asellus (Isopoda, Linnaeus 1758)
NASA Astrophysics Data System (ADS)
Mergelsberg, S. T.; Mukhopadhyay, B.; Dove, P. M.
2013-12-01
Biomineralization is a phenomenon observed in many eukaryotic organisms and evidence suggests this process began relatively early in the evolution of multicellular life (Marin F et al. 1996). Crustaceans form a large fraction of all eukaryotic biomineralizers by incorporating calcium carbonate (CaCO3) into their cuticle. Terrestrial species are challenged in their production of CaCO3 by the absence of calcium-rich waters. To cope with this limitation, the terrestrial crustacean Oniscus asellus recycles up to 80% (Auzou G 1953) of its total calcium during the molting process. This feat is accomplished by separate molting of the front and back cuticle, with temporary storage of the calcium carbonate as amorphous calcium carbonate (ACC) in the front half (Ziegler A 1997). These processes infer a highly efficient and regulated mechanism for biomineralization that is most likely orchestrated by a myriad of proteins (Ziegler A et al. 2012). Until recently, investigations of biomineralization were largely directed toward understanding morphology and large-scale chemistry of the minerals, ignoring the mechanistic roles of biomacromolecules in mineralization processes. More recent work suggests a high involvement of these compounds on the formation of biominerals and, in some cases, the specific polymorphs thereof (Keene EC et al. 2010). This study focuses on identifying the components of the biological mineralization matrix at each stage of the process. Using chemical demineralization of the stored ACC, all biomacromolecules can be separated and purified for subsequent analysis by MALDI-TOF mass spectrometry. To link the localized biochemistry more intimately to the polymorph of calcium carbonate that forms in the animal, the inorganic phase (';the mineral') will be monitored at each life stage using XRD and TEM. This analysis will reveal the organic components of a very precise biomineralization mechanism and may shed insight on its evolutionary origin. References: Marin F, Westbroek P et al., 1996, Proc Nat Acad Sci 93:1554-1559 Auzou G, 1953, L Ann Sci Nat 15:71-98 Ziegler A, 1997, Zoomorphology 117:181-187 Ziegler A et al., 2012, Cryst Growth Des 12:646-655 Keene EC et al., 2010, Cryst Growth Des 10:1383-1389
2002-07-31
This diagram shows the normal pathways of calcium movement in the body and indicates changes (green arrows) seen during preliminary space flight experiments. Calcium plays a central role because 1) it gives strength and structure to bone and 2) all types of cells require it to function normally. To better understand how and why weightlessness induces bone loss, astronauts have participated in a study of calcium kinetics -- that is, the movement of calcium through the body, including absorption from food, and its role in the formation and breakdown of bone.
Lecourieux, David; Lamotte, Olivier; Bourque, Stéphane; Wendehenne, David; Mazars, Christian; Ranjeva, Raoul; Pugin, Alain
2005-12-01
We previously reported elevated cytosolic calcium levels in tobacco cells in response to elicitors [D. Lecourieux, C. Mazars, N. Pauly, R. Ranjeva, A. Pugin, Analysis and effects of cytosolic free calcium elevations in response to elicitors in Nicotiana plumbaginifolia cells, Plant Cell 14 (2002) 2627-2641]. These data suggested that in response to elicitors, Ca2+, as a second messenger, was involved in both systemic acquired resistance (RSA) and/or hypersensitive response (HR) depending on calcium signature. Here, we used transformed tobacco cells with apoaequorin expressed in the nucleus to monitor changes in free nuclear calcium concentrations ([Ca2+](nuc)) in response to elicitors. Two types of elicitors are compared: proteins leading to necrosis including four elicitins and harpin, and non-necrotic elicitors including flagellin (flg22) and two oligosaccharidic elicitors, namely the oligogalacturonides (OGs) and the beta-1,3-glucan laminarin. Our data indicate that the proteinaceous elicitors induced a pronounced and sustainable [Ca2+](nuc) elevation, relative to the small effects of oligosaccharidic elicitors. This [Ca2+](nuc) elevation, which seems insufficient to induce cell death, is unlikely to result directly from the diffusion of calcium from the cytosol. The [Ca2+](nuc) rise depends on free cytosolic calcium, IP3, and active oxygen species (AOS) but is independent of nitric oxide.
Dou, Weixiao; Zhou, Zhen; Ye, Jiongjiong; Huang, Rongwei; Jiang, Lu-Man; Chen, Guofeng; Fei, Xiaoyun
2017-09-01
Flue gas desulfurization (FGD) wastewater treatment by conventional neutralization, chemical precipitation and coagulation process removes most suspended solids and heavy metals, and provides an effluent rich in calcium, alkalinity and chloride, which obstructs its reclamation and reuse but is in favor of phosphorus (P) precipitation. The goals of this study were to investigate feasibility of reusing FGD effluent as a calcium source for P removal from P-rich wastewater. Results revealed that increasing the volumetric ratio between FGD effluent and P-rich wastewater achieved higher pH value and Ca/P ratio, and thus enhanced P removal efficiency to 94.3% at the ratio of 40%. X-ray diffraction and scanning electron microscope analysis of harvested precipitates showed that increasing pH from 8 to 10 induced the conversion of hydroxyapatite to tri-calcium phosphate, and then to whitlockite. This study demonstrated that for reusing FGD effluent for P removal was highly feasible, both technically and economically. This process not only saves the cost of precipitants for P removal, but also provides an economical alternative for current zero liquid discharge technology for FGD wastewater, which requires high energy consumption and capital costs.
Patel, Atit A.; Cox, Daniel N.
2017-01-01
To investigate cellular, molecular and behavioral mechanisms of noxious cold detection, we developed cold plate behavioral assays and quantitative means for evaluating the predominant noxious cold-evoked contraction behavior. To characterize neural activity in response to noxious cold, we implemented a GCaMP6-based calcium imaging assay enabling in vivo studies of intracellular calcium dynamics in intact Drosophila larvae. We identified Drosophila class III multidendritic (md) sensory neurons as multimodal sensors of innocuous mechanical and noxious cold stimuli and to dissect the mechanistic bases of multimodal sensory processing we developed two independent functional assays. First, we developed an optogenetic dose response assay to assess whether levels of neural activation contributes to the multimodal aspects of cold sensitive sensory neurons. Second, we utilized CaMPARI, a photo-switchable calcium integrator that stably converts fluorescence from green to red in presence of high intracellular calcium and photo-converting light, to assess in vivo functional differences in neural activation levels between innocuous mechanical and noxious cold stimuli. These novel assays enable investigations of behavioral and functional roles of peripheral sensory neurons and multimodal sensory processing in Drosophila larvae. PMID:28835907
Prebiotics and the absorption of minerals: a review of experimental and human data
USDA-ARS?s Scientific Manuscript database
Dietary factors, including calcium and vitamin D intake, absorption, and status, lifestyle factors including physical activity, and genetics interact to determine peak bone mass. The current recommended dietary intake of calcium (adequate intake, AI) of 1300 mg/day in the United States for adolescen...
USDA-ARS?s Scientific Manuscript database
Insufficient calcium intake has been proposed to cause unbalanced energy partitioning leading to obesity. However, weight loss interventions including dietary calcium or dairy product consumption have not reported changes in lipid metabolism measured by the plasma lipidome. Methods. The objective ...
USDA-ARS?s Scientific Manuscript database
Children with calcium-deficiency rickets have high 1,25-dihydroxyvitamin D values. The objective of the study was to determine whether vitamin D increased calcium absorption. This was an experimental study. The study was conducted at a teaching hospital. Participants included 17 children with nutrit...
LIGNOSULFONATE-MODIFIED CALCIUM HYDROXIDE FOR SULFUR DIOXIDE CONTROL
The article discusses the use of lignosulfonate-modified calcium hydroxide Ca(OH)2 for sulfur dioxide (SO2) control. The limestone injection multistage burner (LIMB) process is currently being developed at the U.S. EPA as a low cost retrofittable technology for controlling oxides...
SINTERING AND SULFATION OF CALCIUM SILICATE-ALUMINATE
The effect of sintering on the reactivity of solids at high temperature was studied. The nature of the interaction was studied with calcium silicate-aluminate reacting with SO2 between 665 and 800 C. The kinetics of the sintering and sulfation processes were measured independentl...
Kleyböcker, A; Liebrich, M; Verstraete, W; Kraume, M; Würdemann, H
2012-11-01
Early warning indicators for process failures were investigated to develop a reliable method to increase the production efficiency of biogas plants. Organic overloads by the excessive addition of rapeseed oil were used to provoke the decrease in the gas production rate. Besides typical monitoring parameters, as pH, methane and hydrogen contents, biogas production rate and concentrations of fatty acids; carbon dioxide content, concentrations of calcium and phosphate were monitored. The concentration ratio of volatile fatty acids to calcium acted as an early warning indicator (EWI-VFA/Ca). The EWI-VFA/Ca always clearly and reliably indicated a process imbalance by exhibiting a 2- to 3-fold increase 3-7days before the process failure occurred. At this time, it was still possible to take countermeasures successfully. Furthermore, increases in phosphate concentration and in the concentration ratio of phosphate to calcium also indicated a process failure, in some cases, even earlier than the EWI-VFA/Ca. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mixed-mode oscillations in a three-store calcium dynamics model
NASA Astrophysics Data System (ADS)
Liu, Peng; Liu, Xijun; Yu, Pei
2017-11-01
Calcium ions are important in cell process, which control cell functions. Many models on calcium oscillation have been proposed. Most of existing literature analyzed calcium oscillations using numerical methods, and found rich dynamical behaviours. In this paper, we explore a further study on an established three-store model, which contains endoplasmic reticulum (ER), mitochondria and calcium binding proteins. We conduct bifurcation analysis to identify two Hopf bifurcations, and apply normal form theory to study their stability and show that one of them is supercritical while the other is subcritical. Further, we transform the model into a slow-fast system, and then apply the geometrical singular perturbation theory to investigate the mechanism of generating slow-fast motions. The study reveals that the mechanism of generating the slow-fast oscillating behaviour in the three-store calcium model for certain parameter values is due to the relative fast change in the free calcium in cytosol, and relative slow changes in the free calcium in mitochondria and in the bounded Ca2+ binding sites on the cytosolic proteins. A further parametric study may provide some useful information for controlling harmful effect, by adjusting the amount of calcium in a human body. Numerical simulations are present to demonstrate the correct analytical predictions.
Local Control Models of Cardiac Excitation–Contraction Coupling
Stern, Michael D.; Song, Long-Sheng; Cheng, Heping; Sham, James S.K.; Yang, Huang Tian; Boheler, Kenneth R.; Ríos, Eduardo
1999-01-01
In cardiac muscle, release of activator calcium from the sarcoplasmic reticulum occurs by calcium- induced calcium release through ryanodine receptors (RyRs), which are clustered in a dense, regular, two-dimensional lattice array at the diad junction. We simulated numerically the stochastic dynamics of RyRs and L-type sarcolemmal calcium channels interacting via calcium nano-domains in the junctional cleft. Four putative RyR gating schemes based on single-channel measurements in lipid bilayers all failed to give stable excitation–contraction coupling, due either to insufficiently strong inactivation to terminate locally regenerative calcium-induced calcium release or insufficient cooperativity to discriminate against RyR activation by background calcium. If the ryanodine receptor was represented, instead, by a phenomenological four-state gating scheme, with channel opening resulting from simultaneous binding of two Ca2+ ions, and either calcium-dependent or activation-linked inactivation, the simulations gave a good semiquantitative accounting for the macroscopic features of excitation–contraction coupling. It was possible to restore stability to a model based on a bilayer-derived gating scheme, by introducing allosteric interactions between nearest-neighbor RyRs so as to stabilize the inactivated state and produce cooperativity among calcium binding sites on different RyRs. Such allosteric coupling between RyRs may be a function of the foot process and lattice array, explaining their conservation during evolution. PMID:10051521
Proteomic Analysis of Calcium Effects on Soybean Root Tip under Flooding and Drought Stresses.
Wang, Xin; Komatsu, Setsuko
2017-08-01
Flooding and drought are disadvantageous environmental conditions that induce cytosolic calcium in soybean. To explore the effects of flooding- and drought-induced increases in calcium, a gel-free/label-free proteomic analysis was performed. Cytosolic calcium was decreased by blocking calcium channels in the endoplasmic reticulum (ER) and plasma membrane under both stresses. Calnexin, protein disulfide isomerase, heat shock proteins and thioredoxin were predominantly affected as the ER proteins in response to calcium, and ER-associated degradation-related proteins of HCP-like superfamily protein were up-regulated under stress exposure and then down-regulated. Glycolysis, fermentation, the tricarboxylic acid cycle and amino acid metabolism were mainly induced as the types of cellular metabolism in response to calcium under both stresses. Pyruvate decarboxylase was increased and decreased under flooding and drought, respectively, and was further decreased by the reduction of cytosolic calcium; however, it was recovered by exogenous calcium under both stresses. Furthermore, pyruvate decarboxylase activity was increased under flooding, but decreased under drought. These results suggest that calcium is involved in protein folding in the ER, and ER-associated degradation might alleviate ER stress during the early stage of both stresses. Furthermore, calcium appears to modify energy metabolism, and pyruvate decarboxylase may be a key enzyme in this process under flooding and drought. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Bone and Calcium Metabolism During Space Flight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2004-01-01
Understanding bone loss during space flight is one of the most critical challenges for maintaining astronaut health on space exploration missions. Flight and ground-based studies have been conducted to better understand the nature and mechanisms of weightlessness-induced bone loss, and to identify a means to counteract the loss. Maintenance of bone health requires a balance between bone formation and bone resorption. Early space research identified bone loss as a critical health issue, but could not provide a distinction between the bone formation and breakdown processes. The recent identification of collagen crosslinks as markers of bone resorption has made possible a clear understanding that a decrease in bone resorption is an important effect of space flight, with bone formation being unchanged or only slightly decreased. Calcium regulatory factors have also been studied, in an attempt to understand their role in bone loss. The lack of ultraviolet light exposure and insufficient dietary sources of vitamin D often lead to reduced vitamin D stores on long-duration flights. Serum parathyroid hormone (PTH) concentrations are decreased during flight compared to before flight, although small subject numbers often make this hard to document statistically. As expected, reduced PTH concentrations are accompanied by reduced 1,25-dihydroxyvitamin D concentrations. Calcium kinetic studies during space flight confirm and extend the information gained from biochemical markers of bone metabolism. Calcium kinetic studies demonstrate that bone resorption is increased, bone formation is unchanged or decreased, and dietary calcium absorption is reduced during space flight. Evaluations have also been conducted of countermeasures, including dietary, exercise, and pharmacological treatments. In recent studies, many potential countermeasures show promise at mitigating bone loss in ground-based analogs of weightlessness (e.g., bed rest), but require further ground and flight testing to ensure that the beneficial effects are seen in space flight. As we begin to plan for missions to go back to the Moon, and even off to Mars, many questions are yet to be answered. Maintaining bone is one of the greatest challenges, but with a better understanding of the mechanical processes of bone loss, countermeasures can be designed more efficiently, and the solution (or solutions) may be just over the horizon.
Image-based Modeling of Biofilm-induced Calcium Carbonate Precipitation
NASA Astrophysics Data System (ADS)
Connolly, J. M.; Rothman, A.; Jackson, B.; Klapper, I.; Cunningham, A. B.; Gerlach, R.
2013-12-01
Pore scale biological processes in the subsurface environment are important to understand in relation to many engineering applications including environmental contaminant remediation, geologic carbon sequestration, and petroleum production. Specifically, biofilm induced calcium carbonate precipitation has been identified as an attractive option to reduce permeability in a lasting way in the subsurface. This technology may be able to replace typical cement-based grouting in some circumstances; however, pore-scale processes must be better understood for it to be applied in a controlled manor. The work presented will focus on efforts to observe biofilm growth and ureolysis-induced mineral precipitation in micro-fabricated flow cells combined with finite element modelling as a tool to predict local chemical gradients of interest (see figure). We have been able to observe this phenomenon over time using a novel model organism that is able to hydrolyse urea and express a fluorescent protein allowing for non-invasive observation over time with confocal microscopy. The results of this study show the likely existence of a wide range of local saturation indices even in a small (1 cm length scale) experimental system. Interestingly, the locations of high predicted index do not correspond to the locations of higher precipitation density, highlighting the need for further understanding. Figure 1 - A micro-fabricated flow cell containing biofilm-induced calcium carbonate precipitation. (A) Experimental results: Active biofilm is in green and dark circles are calcium carbonate crystals. Note the channeling behavior in the top of the image, leaving a large hydraulically inactive area in the biofilm mass. (B) Finite element model: The prediction of relative saturation of calcium carbonate (as calcite). Fluid enters the system at a low saturation state (blue) but areas of high supersaturation (red) are predicted within the hydraulically inactive area in the biofilm. If only effluent saturation was measured, precipitation may not even be predicted but we see local, pore-scale behavior dictating system behavior in this case. The flow cell is 1 cm in length and the porous media elements are 100 μm.
Constraints on Ca/Sr as a Proxy for Calcium in Forest Ecosystems
NASA Astrophysics Data System (ADS)
Hoff, C. J.; Hobbie, E. A.; Hallett, R.; Colpaert, J.; Bryce, J. G.
2004-05-01
Calcium is a key plant nutrient and important base cation in ecosystems. Our current efforts to quantify Ca cycling in ecosystems rely on indirect proxies, e.g., Ca/Sr or Sr isotopic systems (1). An important assumption in these applications is that the elemental ratio of calcium to strontium faithfully represents calcium cycling and that little fractionation occurs through biogeochemical and physiological processes. However, several researchers have reported variations in Ca/Sr, e.g. among different tree tissues (2) and during weathering processes (3), raising doubts about the suitability of the proxy. To address the question of reliability, we measured Ca/Sr values in a culture study in which Scots pines were grown at low or high nutrient supply rates (3% per day or 5% per day). Because mycorrhizal fungi are intimately involved in plant nutrient supply, plants were also grown either uncolonized or colonized with one of two different species of mycorrhizal fungi (Suillus luteus and Thelephora terrestris). Our preliminary results indicate that Ca/Sr values differ between high and low nutrient treatments, root and foliage, and mycorrhizal treatments. In individual seedlings, roots have lower Ca/Sr than foliage by absolute factors of 2-5. The magnitude of the effect is apparently determined by a combination of environmental factors including both the nutrient and mycorrhizal treatments. These results indicate that Ca and Sr are partitioned differently between nutrient and mycorrhizal treatments and between plant fractions despite the common nutrient broth and substrate. Thus, Ca/Sr values alone are not reliable tracers of Ca within an ecosystem because of partitioning of Ca and Sr during nutrient transport within the plant-mycorrhizal system. We are presently refining analytical techniques and conducting leachate experiments to improve the quantification of this Ca/Sr fractionation. We are also exploring the use of isotopic tracers to study calcium biogeochemical cycling in forest ecosystems. (1) Blum, J.D., et al. 2002. Nature 417: 729-731. (2) Bailey, S.W., et al. 1996. Water Resources Research 32: 707-719. (3) Vitousek, P.M., et al. 1999. Oecologia 121: 255- 259.
Tong, Jie; Sun, Lijun; Zhu, Bin; Fan, Yun; Ma, Xingfeng; Yu, Liyin; Zhang, Jianbao
2017-10-01
Pulsed electromagnetic fields (PEMF) can be used to treat bone-related diseases, but the underlying mechanism remains unclear, especially the process by which PEMFs initiate biological effects. In this study, we demonstrated the effects of PEMF on proliferation and differentiation of osteoblasts using the model of calcium transients induced by high extracellular calcium. Our results showed that PEMF can increase both the percentage of responding cells and amplitude of intracellular calcium transients induced by high extracellular calcium stimulation. Compared with corresponding extracellular calcium levels, PEMF stimulation increased proliferation and differentiation of osteoblasts and related gene expressions, such as insulin-like growth factor 1 (IGF-1), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), which can be completely abolished by BAPTA-AM. Moreover, PEMF did not affect proliferation and differentiation of osteoblasts if no intracellular calcium transient was present in osteoblasts during PEMF exposure. Our results revealed that PEMF affects osteoblast proliferation and differentiation through enhanced intracellular calcium transients, which provided a cue to treat bone-related diseases with PEMF. Bioelectromagnetics. 38:541-549, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate.
Chen, Dong; Szostak, Paul; Wei, Zongsu; Xiao, Ruiyang
2016-01-01
Nutrient loss from soil, especially phosphorous (P) from farmlands to natural water bodies via surface runoff or infiltration, have caused significant eutrophication problems. This is because dissolved orthophosphates are usually the limiting nutrient for algal blooms. Currently, available techniques to control eutrophication are surprisingly scarce. Calcium sulfate or gypsum is a common soil amendment and has a strong complexation to orthophosphates. The results showed that calcium sulfate reduced the amount of water extractable P (WEP) through soil incubation tests, suggesting less P loss from farmlands. A greater decrease in WEP occurred with a greater dosage of calcium sulfate. Compared to conventional coarse calcium sulfate, nano calcium sulfate further reduced WEP by providing a much greater specific surface area, higher solubility, better contact with the fertilizer and the soil particles, and superior dispersibility. The enhancement of the nano calcium sulfate for WEP reduction is more apparent for a pellet- than a powdered- fertilizer. At the dosage of Ca/P weight ratio of 2.8, the WEP decreased by 31±5% with the nano calcium sulfate compared to 20±5% decrease with the coarse calcium sulfate when the pellet fertilizer was used. Computation of the chemical equilibrium speciation shows that calcium hydroxyapatite has the lowest solubility. However, other mineral phases such as hydroxydicalcium phosphate, dicalcium phosphate dihydrate, octacalcium phosphate, and tricalcium phosphate might form preceding to calcium hydroxyapatite. Since calcium sulfate is the major product of the flue gas desulfurization (FGD) process, this study demonstrates a potential beneficial reuse and reduction of the solid FGD waste. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of aluminum on bidirectional calcium flux in rat everted intestinal sacs.
Adler, A J; Zara, C; Berlyne, G M
1989-09-01
The effect of aluminum on intestinal calcium absorption was determined in male Sprague-Dawley rats using an everted intestinal sac technique. Bidirectional calcium flux in the duodena and ilea of normal rats was assessed by means of dual calcium isotopes. Two micromolar aluminum significantly inhibited net calcium absorption (J net) in the duodenum through suppression of mucosato-serosa flux (J m----s). Jm----s was reduced from 2.21 +/- 0.50 mumol Ca.h-1.g wet wt-1 in controls to 0.93 +/- 0.35 mumol Ca.h-1.g-1 in aluminum exposed sacs, and Jnet was reduced from 1.88 +/- 0.14 mumol Ca.h-1.g-1 to 0.55 +/- 0.41 mumol Ca.h-1.g-1 (P less than 0.001). Serosa-to-mucosa calcium flux (Js----m) was not similarly influenced by aluminum. Inhibition of Jm----s occurred whether aluminum was initially present on the mucosal or serosal side of the duodenal sac and inhibition of Jnet calcium by 2 muM A1 occurred at all ambient concentrations of calcium studied. In the ileum, aluminum had no effect on any component of calcium flux. Aluminum did not induce any suppression of glucose transport in either the duodenum or ileum, suggesting that the effect on calcium transport is relatively specific. These results suggest that aluminum inhibits calcium absorption in the duodenum through an effect on active mucosa-to-serosa transport, but has no effect on ileal calcium absorption, which in the rat is not mediated by an active process.
Voltage-gated calcium flux mediates Escherichia coli mechanosensation.
Bruni, Giancarlo N; Weekley, R Andrew; Dodd, Benjamin J T; Kralj, Joel M
2017-08-29
Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli , including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings.
Voltage-gated calcium flux mediates Escherichia coli mechanosensation
Weekley, R. Andrew; Dodd, Benjamin J. T.
2017-01-01
Electrically excitable cells harness voltage-coupled calcium influx to transmit intracellular signals, typically studied in neurons and cardiomyocytes. Despite intense study in higher organisms, investigations of voltage and calcium signaling in bacteria have lagged due to their small size and a lack of sensitive tools. Only recently were bacteria shown to modulate their membrane potential on the timescale of seconds, and little is known about the downstream effects from this modulation. In this paper, we report on the effects of electrophysiology in individual bacteria. A genetically encoded calcium sensor expressed in Escherichia coli revealed calcium transients in single cells. A fusion sensor that simultaneously reports voltage and calcium indicated that calcium influx is induced by voltage depolarizations, similar to metazoan action potentials. Cytoplasmic calcium levels and transients increased upon mechanical stimulation with a hydrogel, and single cells altered protein concentrations dependent on the mechanical environment. Blocking voltage and calcium flux altered mechanically induced changes in protein concentration, while inducing calcium flux reproduced these changes. Thus, voltage and calcium relay a bacterial sense of touch and alter cellular lifestyle. Although the calcium effectors remain unknown, these data open a host of new questions about E. coli, including the identity of the underlying molecular players, as well as other signals conveyed by voltage and calcium. These data also provide evidence that dynamic voltage and calcium exists as a signaling modality in the oldest domain of life, and therefore studying electrophysiology beyond canonical electrically excitable cells could yield exciting new findings. PMID:28808010
A Low Affinity GCaMP3 Variant (GCaMPer) for Imaging the Endoplasmic Reticulum Calcium Store.
Henderson, Mark J; Baldwin, Heather A; Werley, Christopher A; Boccardo, Stefano; Whitaker, Leslie R; Yan, Xiaokang; Holt, Graham T; Schreiter, Eric R; Looger, Loren L; Cohen, Adam E; Kim, Douglas S; Harvey, Brandon K
2015-01-01
Endoplasmic reticulum calcium homeostasis is critical for cellular functions and is disrupted in diverse pathologies including neurodegeneration and cardiovascular disease. Owing to the high concentration of calcium within the ER, studying this subcellular compartment requires tools that are optimized for these conditions. To develop a single-fluorophore genetically encoded calcium indicator for this organelle, we targeted a low affinity variant of GCaMP3 to the ER lumen (GCaMPer (10.19)). A set of viral vectors was constructed to express GCaMPer in human neuroblastoma cells, rat primary cortical neurons, and human induced pluripotent stem cell-derived cardiomyocytes. We observed dynamic changes in GCaMPer (10.19) fluorescence in response to pharmacologic manipulations of the ER calcium store. Additionally, periodic calcium efflux from the ER was observed during spontaneous beating of cardiomyocytes. GCaMPer (10.19) has utility in imaging ER calcium in living cells and providing insight into luminal calcium dynamics under physiologic and pathologic states.
Mechanically induced intercellular calcium communication in confined endothelial structures.
Junkin, Michael; Lu, Yi; Long, Juexuan; Deymier, Pierre A; Hoying, James B; Wong, Pak Kin
2013-03-01
Calcium signaling in the diverse vascular structures is regulated by a wide range of mechanical and biochemical factors to maintain essential physiological functions of the vasculature. To properly transmit information, the intercellular calcium communication mechanism must be robust against various conditions in the cellular microenvironment. Using plasma lithography geometric confinement, we investigate mechanically induced calcium wave propagation in networks of human umbilical vein endothelial cells organized. Endothelial cell networks with confined architectures were stimulated at the single cell level, including using capacitive force probes. Calcium wave propagation in the network was observed using fluorescence calcium imaging. We show that mechanically induced calcium signaling in the endothelial networks is dynamically regulated against a wide range of probing forces and repeated stimulations. The calcium wave is able to propagate consistently in various dimensions from monolayers to individual cell chains, and in different topologies from linear patterns to cell junctions. Our results reveal that calcium signaling provides a robust mechanism for cell-cell communication in networks of endothelial cells despite the diversity of the microenvironmental inputs and complexity of vascular structures. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Bo; Wen, Di; Nye, Katelyn; Gilkeson, Robert C.; Wilson, David L.
2016-03-01
Coronary artery calcification (CAC) as assessed with CT calcium score is the best biomarker of coronary artery disease. Dual energy x-ray provides an inexpensive, low radiation-dose alternative. A two shot system (GE Revolution-XRd) is used, raw images are processed with a custom algorithm, and a coronary calcium image (DECCI) is created, similar to the bone image, but optimized for CAC visualization, not lung visualization. In this report, we developed a physicsbased, digital-phantom containing heart, lung, CAC, spine, ribs, pulmonary artery, and adipose elements, examined effects on DECCI, suggested physics-inspired algorithms to improve CAC contrast, and evaluated the correlation between CT calcium scores and a proposed DE calcium score. In simulation experiment, Beam hardening from increasing adipose thickness (2cm to 8cm) reduced Cg by 19% and 27% in 120kVp and 60kVp images, but only reduced Cg by <7% in DECCI. If a pulmonary artery moves or pulsates with blood filling between exposures, it can give rise to a significantly confounding PA signal in DECCI similar in amplitude to CAC. Observations suggest modifications to DECCI processing, which can further improve CAC contrast by a factor of 2 in clinical exams. The DE score had the best correlation with "CT mass score" among three commonly used CT scores. Results suggest that DE x-ray is a promising tool for imaging and scoring CAC, and there still remains opportunity for further DECCI processing improvements.
Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review
Shalavi, S; Yazdizadeh, M
2012-01-01
The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217
Naga, Kranthi Kumari
2012-01-01
Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria. PMID:20625939
Naga, Kranthi Kumari; Geddes, James W
2011-03-01
Dimebon was originally introduced as an antihistamine and subsequently investigated as a possible therapeutic for a variety of disorders, including Alzheimer's disease. One putative mechanism underlying the neuroprotective properties of Dimebon is inhibition of mitochondrial permeability transition, based on the observation that Dimebon inhibited the swelling of rat liver mitochondria induced by calcium and other agents that induce permeability transition. Because liver and brain mitochondria differ substantially in their properties and response to conditions associated with opening of the permeability transition pore, we sought to determine whether Dimebon inhibited permeability transition in brain mitochondria. Dimebon reduced calcium-induced mitochondrial swelling but did not enhance the calcium retention capacity or impair calcium-induced cytochrome C release from non-synaptic mitochondria isolated from rat brain cerebral cortex. These findings indicate that Dimebon does not inhibit mitochondrial permeability transition, induced by excessive calcium uptake, in brain mitochondria.
Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping
2010-11-09
Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.
Why Calcium? How Calcium Became the Best Communicator*
Carafoli, Ernesto; Krebs, Joachim
2016-01-01
Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these “calcium sensors” are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. PMID:27462077
Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe
2014-01-01
TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701
Improving serum calcium test ordering according to a decision algorithm.
Faria, Daniel K; Taniguchi, Leandro U; Fonseca, Luiz A M; Ferreira-Junior, Mario; Aguiar, Francisco J B; Lichtenstein, Arnaldo; Sumita, Nairo M; Duarte, Alberto J S; Sales, Maria M
2018-05-18
To detect differences in the pattern of serum calcium tests ordering before and after the implementation of a decision algorithm. We studied patients admitted to an internal medicine ward of a university hospital on April 2013 and April 2016. Patients were classified as critical or non-critical on the day when each test was performed. Adequacy of ordering was defined according to adherence to a decision algorithm implemented in 2014. Total and ionised calcium tests per patient-day of hospitalisation significantly decreased after the algorithm implementation; and duplication of tests (total and ionised calcium measured in the same blood sample) was reduced by 49%. Overall adequacy of ionised calcium determinations increased by 23% (P=0.0001) due to the increase in the adequacy of ionised calcium ordering in non-critical conditions. A decision algorithm can be a useful educational tool to improve adequacy of the process of ordering serum calcium tests. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Why Calcium? How Calcium Became the Best Communicator.
Carafoli, Ernesto; Krebs, Joachim
2016-09-30
Calcium carries messages to virtually all important functions of cells. Although it was already active in unicellular organisms, its role became universally important after the transition to multicellular life. In this Minireview, we explore how calcium ended up in this privileged position. Most likely its unique coordination chemistry was a decisive factor as it makes its binding by complex molecules particularly easy even in the presence of large excesses of other cations, e.g. magnesium. Its free concentration within cells can thus be maintained at the very low levels demanded by the signaling function. A large cadre of proteins has evolved to bind or transport calcium. They all contribute to buffer it within cells, but a number of them also decode its message for the benefit of the target. The most important of these "calcium sensors" are the EF-hand proteins. Calcium is an ambivalent messenger. Although essential to the correct functioning of cell processes, if not carefully controlled spatially and temporally within cells, it generates variously severe cell dysfunctions, and even cell death. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Yu, Yiding; Zhang, Mingdi; Lin, Songyi; Wang, Liyan; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi
2013-07-01
Optimized conditions were obtained by one-factor-at-a-time test (OFAT) and ternary quadratic regression orthogonal composite design (TQROCD) respectively. By pulse electric fields (PEF) technology, the process of eggshell calcium citrate malate (ESCCM), eggshell calcium citrate (ESCC) and eggshells calcium malate (ESCM) were comprehensive compared. The levels of tartrate-resistant acid phosphatase (TRAP) and the bioavailability on mice fed with eggshell calcium citrate malate (ESCCM) treated by pulsed electric field (PEF) were evaluated. Results showed that the rates of calcium dissolution of the different acids studied can be arranged as ESCCM (7.90 mg/mL)>ESCC (7.12 mg/mL)>ESCM (7.08 mg/mL) from highest to lowest rate of dissolution. At the same dose 133.0 mg kg(-1) d(-1), the levels of TRAP in the ESCCM treatment groups were significantly lower than those in ESCM and ESCC (P<0.05). Bone calcium content in the mice fed with ESCCM was generally higher than fed with ESCM and ESCC. Copyright © 2013 Elsevier B.V. All rights reserved.
Resistance of extraocular motoneuron terminals to effects of amyotrophic lateral sclerosis sera
NASA Technical Reports Server (NTRS)
Mosier, D. R.; Siklos, L.; Appel, S. H.
2000-01-01
In sporadic ALS (s-ALS), axon terminals contain increased intracellular calcium. Passively transferred sera from patients with s-ALS increase intracellular calcium in spinal motoneuron terminals in vivo and enhance spontaneous transmitter release, a calcium-dependent process. In this study, passive transfer of s-ALS sera increased spontaneous release from spinal but not extraocular motoneuron terminals, suggesting that the resistance to physiologic abnormalities induced by s-ALS sera in mice parallels the resistance of extraocular motoneurons to dysfunction and degeneration in ALS.
Assessing the Health Impact of Phosphorus in the Food Supply: Issues and Considerations123
Calvo, Mona S.; Moshfegh, Alanna J.; Tucker, Katherine L.
2014-01-01
The Western dietary pattern of intake common to many Americans is high in fat, refined carbohydrates, sodium, and phosphorus, all of which are associated with processed food consumption and higher risk of life-threatening chronic diseases. In this review, we focus on the available information on current phosphorus intake with this Western dietary pattern, and new knowledge of how the disruption of phosphorus homeostasis can occur when intake of phosphorus far exceeds nutrient needs and calcium intake is limited. Elevation of extracellular phosphorus, even when phosphorus intake is seemingly modest, but excessive relative to need and calcium intake, may disrupt the endocrine regulation of phosphorus balance in healthy individuals, as it is known to do in renal disease. This elevation in serum phosphate, whether episodic or chronically sustained, may trigger the secretion of regulatory hormones, whose actions can damage tissue, leading to the development of cardiovascular disease, renal impairment, and bone loss. Therefore, we assessed the health impact of excess phosphorus intake in the context of specific issues that reflect changes over time in the U.S. food supply and patterns of intake. Important issues include food processing and food preferences, the need to evaluate phosphorus intake in relation to calcium intake and phosphorus bioavailability, the accuracy of various approaches used to assess phosphorus intake, and the difficulties encountered in evaluating the relations of phosphorus intake to chronic disease markers or incident disease. PMID:24425729
ERIC Educational Resources Information Center
Chen, Alice Y.; McKee, Nancy
1999-01-01
Describes the developmental process used to visualize the calcium ATPase enzyme of the sarcoplasmic reticulum which involves evaluating scientific information, consulting scientists, model making, storyboarding, and creating and editing in a computer medium. (Author/CCM)
Tomek, Jakub; Novak, Ondrej; Syka, Josef
2013-07-01
Two-Photon Processor (TPP) is a versatile, ready-to-use, and freely available software package in MATLAB to process data from in vivo two-photon calcium imaging. TPP includes routines to search for cell bodies in full-frame (Search for Neural Cells Accelerated; SeNeCA) and line-scan acquisition, routines for calcium signal calculations, filtering, spike-mining, and routines to construct parametric fields. Searching for somata in artificial in vivo data, our algorithm achieved better performance than human annotators. SeNeCA copes well with uneven background brightness and in-plane motion artifacts, the major problems in simple segmentation methods. In the fast mode, artificial in vivo images with a resolution of 256 × 256 pixels containing ≈ 100 neurons can be processed at a rate up to 175 frames per second (tested on Intel i7, 8 threads, magnetic hard disk drive). This speed of a segmentation algorithm could bring new possibilities into the field of in vivo optophysiology. With such a short latency (down to 5-6 ms on an ordinary personal computer) and using some contemporary optogenetic tools, it will allow experiments in which a control program can continuously evaluate the occurrence of a particular spatial pattern of activity (a possible correlate of memory or cognition) and subsequently inhibit/stimulate the entire area of the circuit or inhibit/stimulate a different part of the neuronal system. TPP will be freely available on our public web site. Similar all-in-one and freely available software has not yet been published.
Dimic-Misic, Katarina; Hummel, Michael; Paltakari, Jouni; Sixta, Herbert; Maloney, Thad; Gane, Patrick
2015-05-15
Suspensions of mineral pigment and cellulose fibrillar derivatives are materials regularly found in the forest products industries, particularly in paper and board production. Many manufacturing processes, including forming and coating employ flow geometries incorporating extensional flow. Traditionally, colloidal mineral pigment suspensions have been considered to show little to no non-linear behaviour in extensional viscosity. Additionally, recently, nanofibrillar materials, such as microfibrillar (MFC) and nanofibrillar cellulose (NFC), collectively termed MNFC, have been confirmed by their failure to follow the Cox-Merz rule to behave more as particulate material rather than showing polymeric rheological properties when dispersed in water. Such suspensions and their mixtures are currently intensively investigated to enable them to generate likely enhanced composite material properties. The processes frequently involve exposure to increasing levels of ionic strength, coming either from the weak solubility of pigments, such as calcium carbonate, or retained salts arising from the feed fibre source processing. By taking the simple case of polyacrylate stabilised calcium carbonate suspension and comparing the extensional viscosity as a function of post extension capillary-induced Hencky strain on a CaBER extensional rheometer over a range of increasing salt concentration, it has been shown that the regime of constriction changes as the classic DLVO double layer is progressively suppressed. This change is seen to lead to a characteristic double (bimodal) measured viscosity response for flocculated systems. With this novel characteristic established, more complex mixed suspensions of calcium carbonate, clay and MNFC have been studied, and the effects of fibrils versus flocculation identified and where possible separated. This technique is suggested to enable a better understanding of the origin of viscoelasticity in these important emerging water-based suspensions. Copyright © 2015 Elsevier Inc. All rights reserved.
Cadesky, Lee; Walkling-Ribeiro, Markus; Kriner, Kyle T; Karwe, Mukund V; Moraru, Carmen I
2017-09-01
Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding α S1 - and α S2 -casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
Investigation of Biogrout processes by numerical analysis at pore scale
NASA Astrophysics Data System (ADS)
Bergwerff, Luke; van Paassen, Leon A.; Picioreanu, Cristian; van Loosdrecht, Mark C. M.
2013-04-01
Biogrout is a soil improving process that aims to improve the strength of sandy soils. The process is based on microbially induced calcite precipitation (MICP). In this study the main process is based on denitrification facilitated by bacteria indigenous to the soil using substrates, which can be derived from pretreated waste streams containing calcium salts of fatty acids and calcium nitrate, making it a cost effective and environmentally friendly process. The goal of this research is to improve the understanding of the process by numerical analysis so that it may be improved and applied properly for varying applications, such as borehole stabilization, liquefaction prevention, levee fortification and mitigation of beach erosion. During the denitrification process there are many phases present in the pore space including a liquid phase containing solutes, crystals, bacteria forming biofilms and gas bubbles. Due to the amount of phases and their dynamic changes (multiphase flow with (non-linear) reactive transport), there are many interactions making the process very complex. To understand this complexity in the system, the interactions between these phases are studied in a reductionist approach, increasing the complexity of the system by one phase at a time. The model will initially include flow, solute transport, crystal nucleation and growth in 2D at pore scale. The flow will be described by Navier-Stokes equations. Initial study and simulations has revealed that describing crystal growth for this application on a fixed grid can introduce significant fundamental errors. Therefore a level set method will be employed to better describe the interface of developing crystals in between sand grains. Afterwards the model will be expanded to 3D to provide more realistic flow, nucleation and clogging behaviour at pore scale. Next biofilms and lastly gas bubbles may be added to the model. From the results of these pore scale models the behaviour of the system may be studied and eventually observations may be extrapolated to a larger continuum scale.
Calcium in the prevention of postmenopausal osteoporosis: EMAS clinical guide.
Cano, Antonio; Chedraui, Peter; Goulis, Dimitrios G; Lopes, Patrice; Mishra, Gita; Mueck, Alfred; Senturk, Levent M; Simoncini, Tommaso; Stevenson, John C; Stute, Petra; Tuomikoski, Pauliina; Rees, Margaret; Lambrinoudaki, Irene
2018-01-01
Postmenopausal osteoporosis is a highly prevalent disease. Prevention through lifestyle measures includes an adequate calcium intake. Despite the guidance provided by scientific societies and governmental bodies worldwide, many issues remain unresolved. To provide evidence regarding the impact of calcium intake on the prevention of postmenopausal osteoporosis and critically appraise current guidelines. Literature review and consensus of expert opinion. The recommended daily intake of calcium varies between 700 and 1200mg of elemental calcium, depending on the endorsing source. Although calcium can be derived either from the diet or supplements, the former source is preferred. Intake below the recommended amount may increase fragility fracture risk; however, there is no consistent evidence that calcium supplementation at, or above, recommended levels reduces risk. The addition of vitamin D may minimally reduce fractures, mainly among institutionalised people. Excessive intake of calcium, defined as higher than 2000mg/day, can be potentially harmful. Some studies demonstrated harm even at lower dosages. An increased risk for cardiovascular events, urolithiasis and even fractures has been found in association with excessive calcium intake, but this issue remains unresolved. In conclusion, an adequate intake of calcium is recommended for general bone health. Excessive calcium intake seems of no benefit, and could possibly be harmful. Copyright © 2017 Elsevier B.V. All rights reserved.
Vaisman, Nachum; Shaltiel, Galit; Daniely, Michal; Meiron, Oren E; Shechter, Assaf; Abrams, Steven A; Niv, Eva; Shapira, Yami; Sagi, Amir
2014-10-01
Calcium supplementation is a widely recognized strategy for achieving adequate calcium intake. We designed this blinded, randomized, crossover interventional trial to compare the bioavailability of a new stable synthetic amorphous calcium carbonate (ACC) with that of crystalline calcium carbonate (CCC) using the dual stable isotope technique. The study was conducted in the Unit of Clinical Nutrition, Tel Aviv Sourasky Medical Center, Israel. The study population included 15 early postmenopausal women aged 54.9 ± 2.8 (mean ± SD) years with no history of major medical illness or metabolic bone disorder, excess calcium intake, or vitamin D deficiency. Standardized breakfast was followed by randomly provided CCC or ACC capsules containing 192 mg elemental calcium labeled with 44Ca at intervals of at least 3 weeks. After swallowing the capsules, intravenous CaCl2 labeled with 42Ca on was administered on each occasion. Fractional calcium absorption (FCA) of ACC and CCC was calculated from the 24-hour urine collection following calcium administration. The results indicated that FCA of ACC was doubled (± 0.96 SD) on average compared to that of CCC (p < 0.02). The higher absorption of the synthetic stable ACC may serve as a more efficacious way of calcium supplementation. © 2014 American Society for Bone and Mineral Research.
Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry
2017-09-01
The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium phosphate (ACP) environments could also arise from a transient amorphous precursor phase of apatite. Here, we provide an NMR spectroscopy methodology to reveal the origin of these ACP environments in bone mineral or in biomimetic apatite. The 1 H magnetization exchange between protons arising from amorphous and crystalline domains shows unambiguously that an ACP layer coats the apatitic crystalline core of bone et biomimetic apatite platelets. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Predicting changes in cardiac myocyte contractility during early drug discovery with in vitro assays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morton, M.J., E-mail: michael.morton@astrazeneca.com; Armstrong, D.; Abi Gerges, N.
2014-09-01
Cardiovascular-related adverse drug effects are a major concern for the pharmaceutical industry. Activity of an investigational drug at the L-type calcium channel could manifest in a number of ways, including changes in cardiac contractility. The aim of this study was to define which of the two assay technologies – radioligand-binding or automated electrophysiology – was most predictive of contractility effects in an in vitro myocyte contractility assay. The activity of reference and proprietary compounds at the L-type calcium channel was measured by radioligand-binding assays, conventional patch-clamp, automated electrophysiology, and by measurement of contractility in canine isolated cardiac myocytes. Activity inmore » the radioligand-binding assay at the L-type Ca channel phenylalkylamine binding site was most predictive of an inotropic effect in the canine cardiac myocyte assay. The sensitivity was 73%, specificity 83% and predictivity 78%. The radioligand-binding assay may be run at a single test concentration and potency estimated. The least predictive assay was automated electrophysiology which showed a significant bias when compared with other assay formats. Given the importance of the L-type calcium channel, not just in cardiac function, but also in other organ systems, a screening strategy emerges whereby single concentration ligand-binding can be performed early in the discovery process with sufficient predictivity, throughput and turnaround time to influence chemical design and address a significant safety-related liability, at relatively low cost. - Highlights: • The L-type calcium channel is a significant safety liability during drug discovery. • Radioligand-binding to the L-type calcium channel can be measured in vitro. • The assay can be run at a single test concentration as part of a screening cascade. • This measurement is highly predictive of changes in cardiac myocyte contractility.« less
Hernandez, L L
2017-12-01
The mammary gland regulates maternal metabolism during lactation. Numerous factors within the tissue send signals to shift nutrients to the mammary gland for milk synthesis. Serotonin is a monoamine that has been well documented to regulate several aspects of lactation among species. Maintenance of maternal calcium homeostasis during lactation is a highly evolved process that is elegantly regulated by the interaction of the mammary gland with the bone, gut, and kidney tissues. It is well documented that dietary calcium is insufficient to maintain maternal calcium concentrations during lactation, and mammals must rely on bone resorption to maintain normocalcemia. Our recent work focused on the ability of the mammary gland to function as an accessory parathyroid gland during lactation. It was demonstrated that serotonin acts to stimulate parathyroid hormone-related protein (PTHrP) in the mammary gland during lactation. The main role of mammary-derived PTHrP during mammalian lactation is to stimulate bone resorption to maintain maternal calcium homeostasis during lactation. In addition to regulating PTHrP, it was shown that serotonin appears to directly affect calcium transporters and pumps in the mammary gland. Our current working hypothesis regarding the control of calcium during lactation is as follows: serotonin directly stimulates PTHrP production in the mammary gland through interaction with the sonic hedgehog signaling pathway. Simultaneously, serotonin directly increases calcium movement into the mammary gland and, subsequently, milk. These 2 direct actions of serotonin combine to induce a transient maternal hypocalcemia required to further stimulate PTHrP production and calcium mobilization from bone. Through these 2 routes, serotonin is able to improve maternal calcium concentrations. Furthermore, we have shown that Holstein and Jersey cows appear to regulate calcium in different manners and also respond differently to serotonergic stimulation of the calcium pathway. Our data in rodents and cows indicate that serotonin and calcium are working through a unique feedback loop with PTHrP during lactation to regulate milk calcium and maternal calcium homeostasis.
Fruit Calcium: Transport and Physiology
Hocking, Bradleigh; Tyerman, Stephen D.; Burton, Rachel A.; Gilliham, Matthew
2016-01-01
Calcium has well-documented roles in plant signaling, water relations and cell wall interactions. Significant research into how calcium impacts these individual processes in various tissues has been carried out; however, the influence of calcium on fruit ripening has not been thoroughly explored. Here, we review the current state of knowledge on how calcium may impact the development, physical traits and disease susceptibility of fruit through facilitating developmental and stress response signaling, stabilizing membranes, influencing water relations and modifying cell wall properties through cross-linking of de-esterified pectins. We explore the involvement of calcium in hormone signaling integral to the physiological mechanisms behind common disorders that have been associated with fruit calcium deficiency (e.g., blossom end rot in tomatoes or bitter pit in apples). This review works toward an improved understanding of how the many roles of calcium interact to influence fruit ripening, and proposes future research directions to fill knowledge gaps. Specifically, we focus mostly on grapes and present a model that integrates existing knowledge around these various functions of calcium in fruit, which provides a basis for understanding the physiological impacts of sub-optimal calcium nutrition in grapes. Calcium accumulation and distribution in fruit is shown to be highly dependent on water delivery and cell wall interactions in the apoplasm. Localized calcium deficiencies observed in particular species or varieties can result from differences in xylem morphology, fruit water relations and pectin composition, and can cause leaky membranes, irregular cell wall softening, impaired hormonal signaling and aberrant fruit development. We propose that the role of apoplasmic calcium-pectin crosslinking, particularly in the xylem, is an understudied area that may have a key influence on fruit water relations. Furthermore, we believe that improved knowledge of the calcium-regulated signaling pathways that control ripening would assist in addressing calcium deficiency disorders and improving fruit pathogen resistance. PMID:27200042
The influence of calcium supplementation on immobilised mixed microflora for biohydrogen production
NASA Astrophysics Data System (ADS)
Lutpi, Nabilah Aminah; Shian, Wong Yee; Izhar, Tengku Nuraiti Tengku; Zainol, Noor Ainee; Kiong, Yiek Wee
2017-04-01
This study is aim to study the effect of calcium as supplement in attached growth system towards the enhancement of the hydrogen production performance. The effects of calcium ion for thermophilic biohydrogen production were studied by using a mixed culture, from palm oil mill effluent sludge and granular activated carbon (GAC) as the support material. Batch experiments were carried out at 60°C by feeding the anaerobic sludge bacteria with sucrose-containing synthetic medium at an initial pH of 5.5 under anaerobic conditions. The repeated batch cultivation process was conducted by adding different concentration of calcium at range 0.025g/L to 0.15g/L. The results showed that the calcium at 0.1 g/L was the optimal concentration to enhance the fermentative hydrogen production under thermophilic (60°C) conditions.
A ‘calcium capacitor’ shapes cholinergic inhibition of cochlear hair cells
Fuchs, Paul Albert
2014-01-01
Efferent cholinergic neurons project from the brainstem to inhibit sensory hair cells of the vertebrate inner ear. This inhibitory synapse combines the activity of an unusual class of ionotropic cholinergic receptor with that of nearby calcium-dependent potassium channels to shunt and hyperpolarize the hair cell. Postsynaptic calcium signalling is constrained by a thin near-membrane cistern that is co-extensive with the efferent terminal contacts. The postsynaptic cistern may play an essential role in calcium homeostasis, serving as sink or source, depending on ongoing activity and the degree of buffer saturation. Release of calcium from postsynaptic stores leads to a process of retrograde facilitation via the synthesis of nitric oxide in the hair cell. Activity-dependent synaptic modification may contribute to changes in hair cell innervation that occur during development, and in the aged or damaged cochlea. PMID:24566542
Building osteoporosis prevention into dental practice.
Stewart, Stacey; Hanning, Rhona
2012-01-01
The National Report Card on Osteoporosis Care (2008) announced the need for comprehensive approaches to risk reduction and improvement in the early diagnosis of osteoporosis. Dental research has suggested that low systemic bone-mineral density also occurs in alveolar bone, and people with osteoporosis may have an increased risk of tooth loss. Whether or not a causal link exists, both conditions share similar modifiable risk factors, including a role for calcium and vitamin D. The purpose of this paper was to critically examine the role calcium and vitamin D play in the relationship between osteoporosis and the risk of tooth loss. Scientific articles were obtained through PubMed, MEDLINE, CINAHL, AgeLine and Web of Science. Publications were restricted to those involving human subjects, and English-language articles on calcium and vitamin D. The search yielded 8 articles relating to osteoporosis and tooth loss that included calcium and vitamin D intake. Despite methodological concerns, the evidence shows a relationship between osteoporosis and tooth loss for people who have an inadequate intake of calcium and vitamin D. Adequate calcium intake positively influences optimal peak bone mass and may also assist in tooth retention in later life. The dental sector can assist with national prevention strategies for osteoporosis care.
Saleh, Livia; Plieth, Christoph
2013-01-01
The involvement of chloride in salt stress symptoms and salt tolerance mechanisms in plants has been less investigated in the past. Therefore, we studied the salt-induced chloride influx in Arabidopsis expressing the GFP-based anion indicator Clomeleon. High salt concentrations induce two phases of chloride influx. The fast kinetic phase is likely caused by membrane depolarization, and is assumed to be mediated by channels. This is followed by a slower "saturation" phase, where chloride is accumulated in the cytoplasm. Both phases of chloride uptake are dependent on the presence of external calcium. In general: with high [Ca2+] less chloride is accumulated in the cytoplasm. Surprisingly, also the internal calcium availability has an impact on chloride transport. A complete block of the second phase of chloride influx is achieved by the anion channel blocker A9C and trivalent cations (La3+, Gd3+, and Al3+). Other channel blockers and diuretics were found to inhibit the process partially. The results suggest that several transporter species are involved here, including electroneutral cation-chloride-cotransporters, and a part of chloride possibly enters the cells through cation channels after salt application. PMID:23603974
Osteoinductive implants: the mise-en-scène for drug-bearing biomimetic coatings.
Liu, Y; de Groot, K; Hunziker, E B
2004-03-01
In orthopaedic and dental implantology, novel tools and techniques are being sought to improve the regeneration of bone tissue. Numerous attempts have been made to enhance the osteoconductivity of titanium prostheses, including modifications in their surface properties and coating with layers of calcium phosphate. The technique whereby such layers are produced has recently undergone a revolutionary change, which has had profound consequences for their potential to serve as drug-carrier systems. Hitherto, calcium phosphate layers were deposited upon the surfaces of metal implants under highly unphysiological physical conditions, which precluded the incorporation of proteinaceous osteoinductive drugs. These agents could only be adsorbed, superficially, upon preformed layers. Such superficially adsorbed molecules are released too rapidly within a biological milieu to be effective in their osteoinductive capacity. Now, it is possible to deposit calcium phosphate layers under physiological conditions of temperature and pH by the so-called biomimetic process, during which bioactive agents can be coprecipitated. Since these molecules are integrated into the inorganic latticework, they are released gradually in vivo as the layer undergoes degradation. This feature enhances the capacity of these coatings to act as a carrier system for osteogenic agents.
Synthesis of Brushite Particles in Reverse Microemulsions of the Biosurfactant Surfactin
Maity, Jyoti Prakash; Lin, Tz-Jiun; Cheng, Henry Pai-Heng; Chen, Chien-Yen; Reddy, A. Satyanarayana; Atla, Shashi B.; Chang, Young-Fo; Chen, Hau-Ren; Chen, Chien-Cheng
2011-01-01
In this study the “green chemistry” use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16–200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8–14 nm in diameter and 80–100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50–200 nm in diameter), oval (~300 nm in diameter) and nanorod (200–400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles. PMID:21747709
Calcium Intake, Major Dietary Sources and Bone Health Indicators in Iranian Primary School Children
Omidvar, Nasrin; Neyestani, Tirang-Reza; Hajifaraji, Majid; Eshraghian, Mohammad-Reza; Rezazadeh, Arezoo; Armin, Saloumeh; Haidari, Homa; Zowghi, Telma
2015-01-01
Background: Adequate calcium intake may have a crucial role with regards to prevention of many chronic diseases, including hypertension, hypercholesterolemia, different types of cancer, obesity and osteoporosis. In children, sufficient calcium intake is especially important to support the accelerated growth spurt during the preteen and teenage years and to increase bone mineral mass to lay the foundation for older age. Objectives: This study aimed to assess daily calcium intake in school-age children to ensure whether they fulfill the FGP dairy serving recommendations, the recommended levels of daily calcium intake and to assess the relationship between dietary calcium intake and major bone health indicators. Patients and Methods: A total of 501 Iranian school-age children were randomly selected. Calcium intake was assessed using a semi-quantitative food frequency questionnaire. Bone health indicators were also assessed. Results: Dairy products contributed to 69.3% of the total calcium intake of the children. Daily adequate intake of calcium was achieved by 17.8% of children. Only 29.8% met the Food guide pyramid recommendations for dairy intake. Dietary calcium intake was not significantly correlated with serum calcium and other selected biochemical indicators of bone health. Conclusions: The need for planning appropriate nutrition strategies for overcoming inadequate calcium intake in school age children in the city of Tehran is inevitable. PMID:26199684
Calcium impregnation of coal enriched in CO.sub.2 using high-pressure techniques
NASA Technical Reports Server (NTRS)
Gavalas, George R. (Inventor); Sharma, Pramod K. (Inventor); Voecks, Gerald E. (Inventor)
1990-01-01
Methods are described for impregnating coal with calcium carbonate by utilizing an aqueous phase ionic reaction between calcium acetate, calcium hydroxide, and water with CO.sub.2 contained within the coal. The coal is enriched in CO.sub.2 by contacting it with CO.sub.2 at high pressure, in either a continuous or pulsed mode. The inclusion of CO.sub.2 in the coal during the process does not involve evacuating the coal and subsequently absorbing CO.sub.2 onto the coal as in prior methods. Rather, the coal is treated with carbon dioxide at high pressure in a practical and viable approach. The impregnation of coal by calcium compounds not only reduces sulfur emissions by effectively tying up the sulfur as calcium sulfide or sulfate, but also increases the gasification or combustion rate. The invention also encompasses the use of other Group IIA elements, as well as the coal products resulting from the methods of treatment described.
NASA Astrophysics Data System (ADS)
Cardoso, Elizabeth Carvalho L.; Seixas, Marcus Vinicius S.; Wiebeck, Helio; Oliveira, René R.; Machado, Glauson Aparecido F.; Moura, Esperidiana A. B.
In Brazil, the food industry generates every year huge amounts of avian eggshell waste, an industrial byproduct containing 95% of calcium carbonate, and its disposal constitutes a serious environmental hazard. This study aims to the development of bio-foams from PBAT/PLA blends reinforced with bio-calcium carbonate from eggshells. Composites were obtained by melting extrusion process, blending PBAT/PLA (50/50) with 25% of bio-calcium carbonate, PBAT/PLA (50/45) with 25% of bio-calcium carbonate and 5 % of pre-irradiated PLA and PBAT/PLA (50/40) with 25% of bio-calcium carbonate and 10 % of pre-irradiated PLA. PLA was previously e-beam irradiated at 150kGy in air and used as compatibilizer agent. The composites were then extruded in a Rheomex 332p single special screw for foaming. Samples were submitted to Tensile and Compression tests, MFI, DSC, TGA, XRD and FEG/SEM, analyses.
Physicochemical properties of nixtamalized corn flours with and without germ.
Vega Rojas, Lineth J; Rojas Molina, Isela; Gutiérrez Cortez, Elsa; Rincón Londoño, Natalia; Acosta Osorio, Andrés A; Del Real López, Alicia; Rodríguez García, Mario E
2017-04-01
This research studied the influence of the germ components on the physicochemical properties of cooked corn and nixtamalized corn flours as a function of the calcium hydroxide content (from 0 to 2.1 w/w) and steeping time (between 0 and 9h). A linear relationship was found between calcium content in germ and steeping time used during nixtamalization process. X-ray diffraction analysis showed that calcium carbonate is formed into the germ structure to 2.1 w/w of calcium hydroxide and 9h steeping time. The presence of the germ improves the development of peak viscosity in flours, and it is related to the increases in calcium concentration in germ and the formation of amylose-lipid complexes. No significant changes were observed in palmitic, stearic, oleic and linoleic acids of corn oil. The levels of further corn oil deterioration were 2.1 w/w of calcium hydroxide concentration and 9h of steeping time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Low temperature pyrolysis of coal or oil shale in the presence of calcium compounds
Khan, M. Rashid
1988-01-01
A coal pyrolysis technique or process is described in which particulate coal is pyrolyzed in the presence of about 5 to 21 wt. % of a calcium compound selected from calcium oxide, calcined (hydrate) dolomite, or calcined calcium hydrate to produce a high quality hydrocarbon liquid and a combustible product gas which are characterized by low sulfur content. The pyrolysis is achieved by heating the coal-calcium compound mixture at a relatively slow rate at a temperature of about 450.degree. to 700.degree. C. over a duration of about 10 to 60 minutes in a fixed or moving bed reactor. The gas exhibits an increased yield in hydrogen and C.sub.1 -C.sub.8 hydrocarbons and a reduction in H.sub.2 S over gas obtainable by pyrolyzing cola without the calcium compound. The liquid product obtained is of a sufficient quality to permit its use directly as a fuel and has a reduced sulfur and oxygen content which inhibits polymerization during storage.
Mechanism of the calcium-regulation of muscle contraction--in pursuit of its structural basis.
Wakabayashi, Takeyuki
2015-01-01
The author reviewed the research that led to establish the structural basis for the mechanism of the calcium-regulation of the contraction of striated muscles. The target of calcium ions is troponin on the thin filaments, of which the main component is the double-stranded helix of actin. A model of thin filament was generated by adding tropomyosin and troponin. During the process to provide the structural evidence for the model, the troponin arm was found to protrude from the calcium-depleted troponin and binds to the carboxyl-terminal region of actin. As a result, the carboxyl-terminal region of tropomyosin shifts and covers the myosin-binding sites of actin to block the binding of myosin. At higher calcium concentrations, the troponin arm changes its partner from actin to the main body of calcium-loaded troponin. Then, tropomyosin shifts back to the position near the grooves of actin double helix, and the myosin-binding sites of actin becomes available to myosin resulting in force generation through actin-myosin interactions.
The Lincolnshire Limestone — Hydrogeochemical evolution over a ten-year period
NASA Astrophysics Data System (ADS)
Edmunds, W. M.; Walton, N. R. G.
1983-02-01
In the Lincolnshire (Jurassic) Limestone of Britain, a sequence of hydrogeochemical processes along a 28-km flow line was defined in 1969. These processes include solution, redox and ion-exchange reactions, sulphate reduction and mixing with saline formation water. Resampling of the aquifer profile after 10 years has confirmed the overall sequence, although downgradient increases in both sulphate and calcium, together with changes in redox system, can be recognised. These changes are related to the migration of agrichemical pollutants and the results demonstrate that the aquifer must have a significant capacity for in situ nitrate reduction.
Interaction of grapefruit juice and calcium channel blockers.
Sica, Domenic A
2006-07-01
Drug-drug interactions are commonly recognized occurrences in the hypertensive population. Drug-nutrient interactions, however, are less well appreciated. The grapefruit juice-calcium channel blocker interaction is one that has been known since 1989. The basis for this interaction has been diligently explored and appears to relate to both flavanoid and nonflavanoid components of grapefruit juice interfering with enterocyte CYP3A4 activity. In the process, presystemic clearance of susceptible drugs decreases and bioavailability increases. A number of calcium channel blockers are prone to this interaction, with the most prominent interaction occurring with felodipine. The calcium channel blocker and grapefruit juice interaction should be incorporated into the knowledge base of rational therapeutics for the prescribing physician.
Code of Federal Regulations, 2011 CFR
2011-07-01
... best practicable control technology currently available (BPT): Subpart AD—Calcium Carbonate Milk of... SOURCE CATEGORY Calcium Carbonate Production Subcategory § 415.302 Effluent limitations guidelines... point source subject to this subpart and using the milk of lime process must achieve the following...
Commercial scale cucumber fermentations brined with calcium chloride instead of sodium chloride
USDA-ARS?s Scientific Manuscript database
Development of low salt cucumber fermentation processes present opportunities to reduce the amount of sodium chloride (NaCl) that reaches fresh water streams from industrial activities. The objective of this research was to translate cucumber fermentation brined with calcium chloride instead of NaCl...
USDA-ARS?s Scientific Manuscript database
Fermentation of cucumbers in calcium chloride brine has been proposed as an alternative process to reduce the environmental impact of traditional, high salt fermentations. The objective of this research was to determine whether consumer acceptability of pickle products would be impacted by fermentat...
USDA-ARS?s Scientific Manuscript database
Reformulation of calcium chloride cover brine for cucumber fermentation was explored as a mean to minimize the incidence of bloater defect. This study particularly focused on cover brine supplementation with calcium hydroxide, sodium chloride (NaCl), and acids to enhance buffer capacity, inhibit the...
Neely, Alan; Hidalgo, Patricia
2014-01-01
Openings of high-voltage-activated (HVA) calcium channels lead to a transient increase in calcium concentration that in turn activate a plethora of cellular functions, including muscle contraction, secretion and gene transcription. To coordinate all these responses calcium channels form supramolecular assemblies containing effectors and regulatory proteins that couple calcium influx to the downstream signal cascades and to feedback elements. According to the original biochemical characterization of skeletal muscle Dihydropyridine receptors, HVA calcium channels are multi-subunit protein complexes consisting of a pore-forming subunit (α1) associated with four additional polypeptide chains β, α2, δ, and γ, often referred to as accessory subunits. Twenty-five years after the first purification of a high-voltage calcium channel, the concept of a flexible stoichiometry to expand the repertoire of mechanisms that regulate calcium channel influx has emerged. Several other proteins have been identified that associate directly with the α1-subunit, including calmodulin and multiple members of the small and large GTPase family. Some of these proteins only interact with a subset of α1-subunits and during specific stages of biogenesis. More strikingly, most of the α1-subunit interacting proteins, such as the β-subunit and small GTPases, regulate both gating and trafficking through a variety of mechanisms. Modulation of channel activity covers almost all biophysical properties of the channel. Likewise, regulation of the number of channels in the plasma membrane is performed by altering the release of the α1-subunit from the endoplasmic reticulum, by reducing its degradation or enhancing its recycling back to the cell surface. In this review, we discuss the structural basis, interplay and functional role of selected proteins that interact with the central pore-forming subunit of HVA calcium channels. PMID:24917826
Rigden, Daniel J.; Woodhead, Duncan D.; Wong, Prudence W. H.; Galperin, Michael Y.
2011-01-01
Binding of calcium ions (Ca2+) to proteins can have profound effects on their structure and function. Common roles of calcium binding include structure stabilization and regulation of activity. It is known that diverse families – EF-hands being one of at least twelve – use a Dx[DN]xDG linear motif to bind calcium in near-identical fashion. Here, four novel structural contexts for the motif are described. Existing experimental data for one of them, a thermophilic archaeal subtilisin, demonstrate for the first time a role for Dx[DN]xDG-bound calcium in protein folding. An integrin-like embedding of the motif in the blade of a β-propeller fold – here named the calcium blade – is discovered in structures of bacterial and fungal proteins. Furthermore, sensitive database searches suggest a common origin for the calcium blade in β-propeller structures of different sizes and a pan-kingdom distribution of these proteins. Factors favouring the multiple convergent evolution of the motif appear to include its general Asp-richness, the regular spacing of the Asp residues and the fact that change of Asp into Gly and vice versa can occur though a single nucleotide change. Among the known structural contexts for the Dx[DN]xDG motif, only the calcium blade and the EF-hand are currently found intracellularly in large numbers, perhaps because the higher extracellular concentration of Ca2+ allows for easier fixing of newly evolved motifs that have acquired useful functions. The analysis presented here will inform ongoing efforts toward prediction of similar calcium-binding motifs from sequence information alone. PMID:21720552
Lai, L P; Su, M J; Lin, J L; Lin, F Y; Tsai, C H; Chen, Y S; Huang, S K; Tseng, Y Z; Lien, W P
1999-04-01
We investigated the gene expression of calcium-handling genes including L-type calcium channel, sarcoplasmic reticular calcium adenosine triphosphatase (Ca(2+)-ATPase), ryanodine receptor, calsequestrin and phospholamban in human atrial fibrillation. Recent studies have demonstrated that atrial electrical remodeling in atrial fibrillation is associated with intracellular calcium overload. However, the changes of calcium-handling proteins remain unclear. A total of 34 patients undergoing open heart surgery were included. Atrial tissue was obtained from the right atrial free wall, right atrial appendage, left atrial free wall and left atrial appendage, respectively. The messenger ribonucleic acid (mRNA) amount of the genes was measured by reverse transcription-polymerase chain reaction and normalized to the mRNA levels of glyceraldehyde 3-phosphate dehydrogenase. The mRNA of L-type calcium channel and of Ca(2+)-ATPase was significantly decreased in patients with persistent atrial fibrillation for more than 3 months (0.36+/-0.26 vs. 0.90+/-0.88 for L-type calcium channel; 0.69+/-0.42 vs. 1.21+/-0.68 for Ca(2+)-ATPase; both p < 0.05, all data in arbitrary unit). We further demonstrated that there was no spatial dispersion of the gene expression among the four atrial tissue sampling sites. Age, gender and underlying cardiac disease had no significant effects on the gene expression. In contrast, the mRNA levels of ryanodine receptor, calsequestrin and phospholamban showed no significant change in atrial fibrillation. L-type calcium channel and the sarcoplasmic reticular Ca(2+)-ATPase gene were down-regulated in atrial fibrillation. These changes may be a consequence of, as well as a contributory factor for, atrial fibrillation.
Avian reproductive anatomy, physiology and endocrinology.
Pollock, Christal G; Orosz, Susan E
2002-09-01
Although many environmental cues influence reproductive activity, the seasonal breeder responds most strongly to long day length. THE MALE BIRD: Testicular interstitial cells secrete testosterone, which influences reproductive behavior such as territorial aggression and song. Other changes observed in seasonal breeders include testicular hypertrophy and enlargement of the ductus deferens and seminal glomus. THE FEMALE BIRD: Early changes associated with rising estrogen levels in the hen include osteomyelosclerosis and hypercalcemia. Ovulation is then induced by LH, which is followed by eggshell calcification, which is under the control of progesterone. Sources of calcium for shell production include intestinal absorption from the diet, renal control of calcium levels, and mobilization of bone calcium stores. During oviposition, PGF2 alpha and vasotocin stimulate powerful uterine contractions [32] in the presence of calcium. Incubation is associated with falling LH levels and rising prolactin levels. If the hen actually enters reproductive quiescence at this time, then molt will follow. Molt is associated with the total regression of the reproductive tract.
Xiang, J Z; Kentish, J C
1995-03-01
The aim was to investigate whether, and how, increases in inorganic phosphate (Pi) and ADP, similar to those occurring intracellularly during early myocardial ischaemia, affect the calcium handling of the sarcoplasmic reticulum. Rat ventricular trabeculae were permeabilised with saponin. The physiological process of calcium induced calcium release (CICR) from the muscle sarcoplasmic reticulum was triggered via flash photolysis of the "caged Ca2+", nitr-5. Alternatively, calcium release was induced by rapid application of caffeine to give an estimate of sarcoplasmic reticular calcium loading. The initial rate of sarcoplasmic reticular calcium pumping was also assessed by photolysis of caged ATP at saturating [Ca2+]. Myoplasmic [Ca2+] (using fluo-3) and isometric force were measured. Pi (2-20 mM) significantly depressed the magnitude of CICR and the associated force transient. Sarcoplasmic reticular calcium loading was inhibited even more than CICR by Pi, suggesting that reduced calcium loading could account for all of the inhibitory effect of Pi on CICR and that Pi may slightly activate the calcium release mechanism. The reduced sarcoplasmic reticular calcium loading seemed to be due to a fall in the free energy of ATP hydrolysis (delta GATP) available for the calcium pump, since equal decreases in delta GATP produced by adding both Pi and ADP in various ratios caused similar falls in the calcium loading of the sarcoplasmic reticulum. The caged ATP experiments indicated that Pi (20 mM) did not affect the rate constant of sarcoplasmic reticular calcium uptake. ADP (10 mM) alone, or with 1 mM Pi, inhibited calcium loading. In spite of this, ADP (10 mM) did not alter CICR and, when 1 mM Pi was added, ADP increased CICR above control. An increase in intracellular Pi reduces sarcoplasmic reticular calcium loading and thus depresses the CICR. This could be an important contributing factor in the hypoxic or ischaemic contractile failure of the myocardium. However the detrimental effect of Pi may be offset to some extent by a stimulatory action of ADP on the calcium release mechanism of CICR.
Kaczmarek, Leonard K; Aldrich, Richard W; Chandy, K George; Grissmer, Stephan; Wei, Aguan D; Wulff, Heike
2017-01-01
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Calcium signaling in immune cells
Vig, Monika; Kinet, Jean-Pierre
2010-01-01
Calcium acts as a second messenger in many cell types, including lymphocytes. Resting lymphocytes maintain a low concentration of Ca2+. However, engagement of antigen receptors induces calcium influx from the extracellular space by several routes. A chief mechanism of Ca2+ entry in lymphocytes is through store-operated calcium (SOC) channels. The identification of two important molecular components of SOC channels, CRACM1 (the pore-forming subunit) and STIM1 (the sensor of stored calcium), has allowed genetic and molecular manipulation of the SOC entry pathway. In this review, we highlight advances in the understanding of Ca2+ signaling in lymphocytes with special emphasis on SOC entry. We also discuss outstanding questions and probable future directions of the field. PMID:19088738
Farkas, Michael H; Mojica, Elmer-Rico E; Patel, Minesh; Aga, Diana S; Berry, James O
2009-08-01
Tetracycline antibiotics, such as chlortetracycline (CTC) and tetracycline (TC), are introduced into agricultural lands through the application of manure as fertilizer. These compounds are phytotoxic to certain crop plants, including pinto beans (Phaseolus vulgaris), the species used for this investigation. While the mechanism of this toxicity is not yet understood, CTC is known to be a calcium chelator. We describe here a novel method to show that CTC is taken up by pinto bean plants and chelates calcium in leaves. Cameleon fusion proteins can provide qualitative and quantitative imaging of intracellular calcium levels, but current methodology requires stable transformation. Many plant species, including pinto beans, are not yet transformable using standard Agrobacterium-based protocols. To determine the role of calcium chelation in this plant, a rapid, biolistic method was developed to transiently express the cameleon protein. This method can easily be adapted to other plant systems. Our findings provide evidence that chelation of intracellular calcium by CTC is related to phytotoxic effects caused by this antibiotic in pinto beans. Root uptake of CTC and TC by pinto beans and their translocation to leaves were further verified by fluorescence spectroscopy and liquid chromatography/mass spectrometry, confirming results of the biolistic method that showed calcium chelation by tetracyclines in leaves.
Ubiquitylation Functions in the Calcium Carbonate Biomineralization in the Extracellular Matrix
Fang, Dong; Pan, Cong; Lin, Huijuan; Lin, Ya; Xu, Guangrui; Zhang, Guiyou; Wang, Hongzhong; Xie, Liping; Zhang, Rongqing
2012-01-01
Mollusks shell formation is mediated by matrix proteins and many of these proteins have been identified and characterized. However, the mechanisms of protein control remain unknown. Here, we report the ubiquitylation of matrix proteins in the prismatic layer of the pearl oyster, Pinctada fucata. The presence of ubiquitylated proteins in the prismatic layer of the shell was detected with a combination of western blot and immunogold assays. The coupled ubiquitins were separated and identified by Edman degradation and liquid chromatography/mass spectrometry (LC/MS). Antibody injection in vivo resulted in large amounts of calcium carbonate randomly accumulating on the surface of the nacreous layer. These ubiquitylated proteins could bind to specific faces of calcite and aragonite, which are the two main mineral components of the shell. In the in vitro calcium carbonate crystallization assay, they could reduce the rate of calcium carbonate precipitation and induce the calcite formation. Furthermore, when the attached ubiquitins were removed, the functions of the EDTA-soluble matrix of the prismatic layer were changed. Their potency to inhibit precipitation of calcium carbonate was decreased and their influence on the morphology of calcium carbonate crystals was changed. Taken together, ubiquitylation is involved in shell formation. Although the ubiquitylation is supposed to be involved in every aspect of biophysical processes, our work connected the biomineralization-related proteins and the ubiquitylation mechanism in the extracellular matrix for the first time. This would promote our understanding of the shell biomineralization and the ubiquitylation processes. PMID:22558208
Seiquer, I; Delgado-Andrade, C; Haro, A; Navarro, M P
2010-12-01
Thermal processing of milk is a common practice. As milk is the main source of dietary calcium, this study aimed to assess the effects of overheating milk on calcium availability. Thus, thermally damaged milk (overheated, OH, milk; 3 cycles of sterilization at 116 °C, 16 min) was compared with UHT milk (150 °C, 6s) in 2 types of assays: in vitro and in vivo (rats). In addition, the greater Maillard reaction rate associated with thermal treatment in OH milk was confirmed by determining specific (furosine) and unspecific markers (CieLab color). A negative effect on calcium solubility was observed after in vitro digestion of OH milk compared with UHT milk. Feeding rats the diet containing OH milk as the protein source led to significantly lower values of apparent calcium absorption and retention than those found among animals fed the UHT milk diet. Whereas reducing the absorption appears to result mainly from the decreased food intake, the negative effect on retention seems to be due to factors derived from milk thermal damage, such as the formation of Maillard reaction products. It was concluded that milk-processing conditions warrant special attention to prevent impaired dietary calcium utilization. This may be especially important in situations where milk and dairy products are the main dietary components, such as in early infancy. Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
STUDIES UPON CALCAREOUS DEGENERATION
Klotz, Oskar
1905-01-01
It will be seen from the above that we have studied the conditions associated with the deposit of calcareous salts: (I) in connection with normal and pathological ossification, and (2) in pathological calcification as exhibited in (a) atheroma of the vessels; (b) calcification of caseating tubercular lesions; (c) calcification of inflammatory new growth, and (d) degenerating tumors; and we have induced experimentally deposits of calcareous salts in the lower animals: (a) within celloidin capsules containing fats and soaps; (b) in the kidney, and (c) in connection with fat necrosis. I. We have found that bone formation and pathological calcareous infiltration are wholly distinct processes. In the former there is no evidence of associated fatty change, and the cells associated with the process of deposition of calcium are functionally active. In the latter there is an antecedent fatty change in the affected areas, and the cells involved present constant evidences of degeneration. The view that would seem to account best for the changes observed in the latter case is that with lowered vitality the cells are unable to utilize the products brought to them by the blood, or which they continue to absorb, so that the normal series of decompositions associated with their metabolism fails to take place and hence they interact among themselves in the cytoplasm with the result that insoluble compounds replace soluble ones. II. Besides the fact that calcification is always preceded by fatty change within the cells, another fact should be emphasized. namely: that combination of the fats present with calcium salts to form calcium soaps tends to occur. The stages immediately preceding these are difficult to follow with anything approaching certainty, perhaps because the earlier stages vary under different conditions. In fat necrosis, for instance, the cells affected are normally storehouses for neutral fats, and as long as they remain healthy neutral fats alone are present in them. When they are subjected to the action of the pancreatic juice with its fat-splitting ferment the cells are killed and coincidently the neutral fats are decomposed, fatty acids being deposited. The fatty acids now slowly combine with the calcium salts. In degenerating lipomata the process would seem to be similar. But in other cases the cells are not obviously fat-containing in the normal state; nevertheless prior to calcification they undergo so-called fatty degeneration, which is really a form of cell degeneration accompanied by fat infiltration. As regards the source of the cell fats in general we may safely accept: 1. That fats are transported in the blood as diffusible soaps. 2. That taken up by the cells these soaps may either— (a) Be reconverted into neutral fats and become stored in the cytoplasm as such, or (b) undergo assimilation proper, becoming part and parcel of the cell substance, in which case they are not recognizable by the ordinary microchemical tests. 3. If these two possibilities be accepted it follows that the appearance of fats and soaps in the degenerating cell may be due to either— (a) Absorption or infiltration of soaps from the surrounding medium, the degenerating cell retaining the power of splitting off the fat but being unable to utilize this in metabolism. (b) Cytoplasmic disintegration with dissociation of the soap-albumen combination or, more broadly, liberation of the fats from their combination with the cytoplasm. The appearances seen in the cells of atheromatous areas indicate that the first of these does occur. III. In areas undergoing calcareous infiltration we have demonstrated. the presence of soaps, and this often in such quantities that they can be isolated and estimated by gross chemical methods. By microchemical methods also we have been able to show that after removing all the neutral fats and fatty acids by petroleum ether there remains behind a substance giving with Sudan III the reaction we associate with the presence of soap. And experimentally we have produced these soaps within the organism, more particularly by placing capsules containing fats and fatty acids within the tissues and after several days finding that the capsules contain calcium soaps and possess a calcium content far in excess of that of the normal blood and lymph. IV. While these are the facts, certain of the details of this reaction demand elucidation. The existence of sodium and it may be potassium soaps in the degenerated cells is comprehensible if we accept that these are present in the circulating lymph and simply undergoing absorption. But even then, as these are diffusible substances how is it to be explained that they become stored up in these particular areas? We have found that, as a matter of fact, in regions which give the reaction for soaps, but which give no reaction for calcium (which therefore presumably contain at most amounts of the insoluble calcium soap too small to need consideration, the ordinary solvents for potassium and sodium soaps do not forthwith remove the stainable material; they are relatively insoluble. The reason for this insolubility is suggested by the observations made in the test tube, that soap solutions mixed with solutions of white of egg or blood serum form a precipitate of combined soap and albumen, which likewise is insoluble in water and alcohol. The indications are therefore that in cells undergoing degeneration, with degeneration of the cytoplasm, certain albuminous molecules unite with the soaps present to form relatively insoluble soap-albuminate. V. With regard to calcium soaps, these are also present and in certain stages appear to be the dominating form in the affected tissues. Two questions suggest themselves, viz.: what is the source of calcium, and what is the process by which they become formed? As to the source, the amount present in well-marked calcification is far in excess of the normal calcium contents of the affected tissue. If in the kidneys of experimental calcification three hundred times as much calcium may be present as in the normal kidney (von Kossa), the calcium must be conveyed to the part by the blood and lymph, and that this is so is demonstrated, as we have pointed out, by the distribution of the infiltration in solid organs, that like ovarian fibroids have undergone necrosis, in which the earliest deposits are superficial. As to the process, there are three possibilities: 1. That sodium and potassium soaps and soap albuminates are first formed and that interaction occurs between them and the diffused calcium salts from the lymph, the less soluble-calcium replacing the sodium and potassium. 2. That under certain conditions the calcium salts act directly on the neutral fats present in the degenerating cells. 3. That the neutral fats are first broken down into fatty acids and that these react with the calcium salts to form the soaps. We are assured that the first process occurs and that because in the boundary zone of areas of calcification we can detect soapy particles devoid of calcium, identical in position and arrangement with the particles more deeply placed which give the calcium reactions. But this is not the only reaction. In case of fat necrosis we see clearly that the third process is in evidence. And we are far from being convinced that the second does not also obtain. We have been impressed by the large accumulation of neutral fats in the cells in cases of early atheroma and the absence at any stage of the process of recognizable fatty acid. While soaps, it is true, are compounds of fatty acids with alkalies, it is recognized in ordinary domestic life that they can be formed by the direct action of strong lye upon ordinary fats, and this even in the cold. It is quite possible therefore that there occurs a similar direct process in the organism. The point is worth noting, however, that this does not occur in healthy cells the seat of fatty infiltration. We therefore leave this an open question, only laying down that, as indicated by the hyalin albuminous matrix left when calcium salts are dissolved out of an area of calcification, there must exist a calcium soap- or fat-albuminate similar to the potassium and sodium soap-albuminates already mentioned—such an albuminate as we can form with calcium soaps in the test tube. VI. In old areas of calcification soaps are largely if not entirely wanting, although these are to be detected at the periphery, when the process is still advancing. The reactions given by these older areas are almost entirely those of calcium phosphate, though some calcium carbonate is at times to be made out. This seems surely to indicate that the final stage in calcification is an interaction between the calcium soap-albuminates and substances containing phosphoric and carbonic acids. Such substances, it is needless to say, are present in considerable amounts in the lymph and blood. We must conclude that the acid sodium phosphates of the lymph act on the calcium soap, the highly insoluble calcium phosphates being formed (plus the albuminous moiety of the original compound) and diffusible sodium soap being liberated, while similarly alkaline carbonates form calcium carbonate and liberate sodium and potassium soaps. Calcium phosphate and calcium carbonate thus become the insoluble earthy salts of old crystalline areas of calcification. VII. As already stated very little soap is to be found in these old areas. It is possibly worth suggestion that the soaps liberated in this last reaction, as they diffuse out, again react with diffusible calcium salts and form calcium soaps which once more react with the alkaline salts to produce the phosphates and carbonates; that, in short, they have a katalytic action. Certain it is that old calcareous areas are extraordinarily dense, and have a coarse crystalline structure, wholly at variance with the finely granular appearance of the more recent areas, and these large crystalline masses, it would seem, can only be formed by successive deposition of new material and eventual fusion, as the interspaces become filled in between the original masses. PMID:19867016
L-Type Calcium Channels Modulation by Estradiol.
Vega-Vela, Nelson E; Osorio, Daniel; Avila-Rodriguez, Marco; Gonzalez, Janneth; García-Segura, Luis Miguel; Echeverria, Valentina; Barreto, George E
2017-09-01
Voltage-gated calcium channels are key regulators of brain function, and their dysfunction has been associated with multiple conditions and neurodegenerative diseases because they couple membrane depolarization to the influx of calcium-and other processes such as gene expression-in excitable cells. L-type calcium channels, one of the three major classes and probably the best characterized of the voltage-gated calcium channels, act as an essential calcium binding proteins with a significant biological relevance. It is well known that estradiol can activate rapidly brain signaling pathways and modulatory/regulatory proteins through non-genomic (or non-transcriptional) mechanisms, which lead to an increase of intracellular calcium that activate multiple kinases and signaling cascades, in the same way as L-type calcium channels responses. In this context, estrogens-L-type calcium channels signaling raises intracellular calcium levels and activates the same signaling cascades in the brain probably through estrogen receptor-independent modulatory mechanisms. In this review, we discuss the available literature on this area, which seems to suggest that estradiol exerts dual effects/modulation on these channels in a concentration-dependent manner (as a potentiator of these channels in pM concentrations and as an inhibitor in nM concentrations). Indeed, estradiol may orchestrate multiple neurotrophic responses, which open a new avenue for the development of novel estrogen-based therapies to alleviate different neuropathologies. We also highlight that it is essential to determine through computational and/or experimental approaches the interaction between estradiol and L-type calcium channels to assist these developments, which is an interesting area of research that deserves a closer look in future biomedical research.
General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex
Thrane, Alexander Stanley; Zeppenfeld, Douglas; Lou, Nanhong; Xu, Qiwu; Nagelhus, Erlend Arnulf; Nedergaard, Maiken
2012-01-01
Calcium signaling represents the principle pathway by which astrocytes respond to neuronal activity. General anesthetics are routinely used in clinical practice to induce a sleep-like state, allowing otherwise painful procedures to be performed. Anesthetic drugs are thought to mainly target neurons in the brain and act by suppressing synaptic activity. However, the direct effect of general anesthesia on astrocyte signaling in awake animals has not previously been addressed. This is a critical issue, because calcium signaling may represent an essential mechanism through which astrocytes can modulate synaptic activity. In our study, we performed calcium imaging in awake head-restrained mice and found that three commonly used anesthetic combinations (ketamine/xylazine, isoflurane, and urethane) markedly suppressed calcium transients in neocortical astrocytes. Additionally, all three anesthetics masked potentially important features of the astrocyte calcium signals, such as synchronized widespread transients that appeared to be associated with arousal in awake animals. Notably, anesthesia affected calcium transients in both processes and soma and depressed spontaneous signals, as well as calcium responses, evoked by whisker stimulation or agonist application. We show that these calcium transients are inositol 1,4,5-triphosphate type 2 receptor (IP3R2)-dependent but resistant to a local blockade of glutamatergic or purinergic signaling. Finally, we found that doses of anesthesia insufficient to affect neuronal responses to whisker stimulation selectively suppressed astrocyte calcium signals. Taken together, these data suggest that general anesthesia may suppress astrocyte calcium signals independently of neuronal activity. We propose that these glial effects may constitute a nonneuronal mechanism for sedative action of anesthetic drugs. PMID:23112168
Intracellular calcium buffering capacity in isolated squid axons
Brinley, FJ; Tiffert, T; Scarpa, A; Mullins, LJ
1977-01-01
Changes in ionized calcium were studied in axons isolated from living squid by measuring absorbance of the Ca binding dye Arsenazo III using multiwavelength differential absorption spectroscopy. Absorption changes measured in situ were calibrated in vitro with media of ionic composition similar to axoplasm containing CaEGTA buffers. Calcium loads of 50-2,500 μmol/kg axoplasm were induced by microinjection, by stimulation in 112 mM Ca seawater, or by soaking in choline saline with 1-10 mM Ca. Over this range of calcium loading of intact axoplasm, the ionized calcium in the axoplasm rose about 0.6 nM/μM load. Similar loading in axons preteated with carbonyl cyanide 4- trifluoromethoxyphenylhydrazone (FCCP) to inhibit the mitochondrial proton gradient increased ionized calcium by 5-7 percent of the imposed load, i.e. 93-95 percent of the calcium load was buffered by a process insensitive to FCCP. This FCCP- insensitive buffer system was not saturated by the largest calcium loads imposed, indicating a capacity of at least several millimolar. Treatment of previously loaded axons with FCCP or apyrase plus cyanide produced rises in ionized calcium which could be correlated with the extent of the load. Analysis of results indicated that, whereas only 6 percent of the endogenous calcium in fresh axons is stored in the FCCP-sensitive (presumably mitochondrial) buffer system, about 30 percent of an imposed exogenous load in the range of 50-2,500 μM is taken up by this system. PMID:894260
Evans, A Mark; Fameli, Nicola; Ogunbayo, Oluseye A; Duan, Jingxian; Navarro-Dorado, Jorge
2016-08-01
Calcium signals determine, for example, smooth muscle contraction and changes in gene expression. How calcium signals select for these processes is enigmatic. We build on the "panjunctional sarcoplasmic reticulum" hypothesis, describing our view that different calcium pumps and release channels, with different kinetics and affinities for calcium, are strategically positioned within nanojunctions of the SR and help demarcate their respective cytoplasmic nanodomains. SERCA2b and RyR1 are preferentially targeted to the sarcoplasmic reticulum (SR) proximal to the plasma membrane (PM), i.e., to the superficial buffer barrier formed by PM-SR nanojunctions, and support vasodilation. In marked contrast, SERCA2a may be entirely restricted to the deep, perinuclear SR and may supply calcium to this sub-compartment in support of vasoconstriction. RyR3 is also preferentially targeted to the perinuclear SR, where its clusters associate with lysosome-SR nanojunctions. The distribution of RyR2 is more widespread and extends from this region to the wider cell. Therefore, perinuclear RyR3s most likely support the initiation of global calcium waves at L-SR junctions, which subsequently propagate by calcium-induced calcium release via RyR2 in order to elicit contraction. Data also suggest that unique SERCA and RyR are preferentially targeted to invaginations of the nuclear membrane. Site- and function-specific calcium signals may thus arise to modulate stimulus-response coupling and transcriptional cascades.
Kurhaliuk, N M; Ikkert, O V; Vovkanych, L S; Horyn', O V; Hal'kiv, M O; Hordiĭ, S K
2001-01-01
The effect of L-arginine and blockator of nitric oxide synthase L-NNA on processes of calcium mitochondrial capacity in liver with different resistance to hypoxia in the experiments with Wistar rats has been studied using the followrng substrates of energy support: succinic, alpha-ketoglutaric acids, alpha-ketolutarate and inhibitor succinatedehydrogenase malonate. As well we used substrates mixtures combination providing for activation of aminotransferase mechanism: glutamate and piruvate, glutamate and malate. It has been shown that L-arginine injection increases calcium mitochondrial capacity of low resistant rats using as substrates the succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of donors nitric oxide on this processes limit NO-synthase inhibitor L-NNA.
Recovery and regeneration of spent MHD seed material by the formate process
Sheth, A.C.; Holt, J.K.; Rasnake, D.G.; Solomon, R.L.; Wilson, G.L.; Herrigel, H.R.
1991-10-15
The specification discloses a spent seed recovery and regeneration process for an MHD power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to suppress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate. 5 figures.
Recovery and regeneration of spent MHD seed material by the formate process
Sheth, Atul C.; Holt, Jeffrey K.; Rasnake, Darryll G.; Solomon, Robert L.; Wilson, Gregory L.; Herrigel, Howard R.
1991-01-01
The specification discloses a spent seed recovery and regeneration process for an MHM power plant employing an alkali metal salt seed material such as potassium salt wherein the spent potassium seed in the form of potassium sulfate is collected from the flue gas and reacted with calcium hydroxide and carbon monoxide in an aqueous solution to cause the formation of calcium sulfate and potassium formate. The pH of the solution is adjusted to supress formation of formic acid and to promote precipitation of any dissolved calcium salts. The solution containing potassium formate is then employed to provide the potassium salt in the form of potassium formate or, optionally, by heating the potassium formate under oxidizing conditions to convert the potassium formate to potassium carbonate.
Post, A E; Arnold, B; Weiss, J; Hinrichs, J
2012-04-01
Selective precipitation is a common method for the isolation of β-casein, using the different calcium sensitivities of the individual caseins and the selective solubility of β-casein at a low temperature. In previous studies, it has been indicated that the β-casein yield depends on the physicochemical characteristics of the casein raw material used for fractionation. The objective of this study was to evaluate and compare the solubility of α(S)- and β-casein in solutions of micellar casein, sodium caseinate, and calcium caseinate as a function of pH and temperature. Additionally, the solubility of isolated α(S)- and β-casein fractions in demineralized water, ultrafiltration permeate, and a calcium-depleted milk salt solution was investigated depending on the pH and temperature. Furthermore, micellar casein, sodium caseinate, and calcium caseinate were subjected to a calcium chloride-precipitation process to determine the solubility of α(S)- and β-casein in calcium chloride precipitate, which is produced during selective precipitation, as a function of temperature and pH. Generally, the temperature had only a marginal influence on the α(S)-casein solubility compared with the β-casein solubility, whereas the solubility was shown to be strongly influenced by the pH. Our results suggest that the yield of β-casein obtained during isolation by means of selective precipitation may be a result of the solubility characteristics of α(S)- and β-casein in calcium chloride precipitate. Manufacturers may consider a simple solubility experiment before the β-casein isolation process by means of selective precipitation to predict β-casein yield. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Role of Orai1 and store-operated calcium entry in mouse lacrimal gland signalling and function.
Xing, Juan; Petranka, John G; Davis, Felicity M; Desai, Pooja N; Putney, James W; Bird, Gary S
2014-03-01
Lacrimal glands function to produce an aqueous layer, or tear film, that helps to nourish and protect the ocular surface. Lacrimal glands secrete proteins, electrolytes and water, and loss of gland function can result in tear film disorders such as dry eye syndrome, a widely encountered and debilitating disease in ageing populations. To combat these disorders, understanding the underlying molecular signalling processes that control lacrimal gland function will give insight into corrective therapeutic approaches. Previously, in single lacrimal cells isolated from lacrimal glands, we demonstrated that muscarinic receptor activation stimulates a phospholipase C-coupled signalling cascade involving the inositol trisphosphate-dependent mobilization of intracellular calcium and the subsequent activation of store-operated calcium entry (SOCE). Since intracellular calcium stores are finite and readily exhausted, the SOCE pathway is a critical process for sustaining and maintaining receptor-activated signalling. Recent studies have identified the Orai family proteins as critical components of the SOCE channel activity in a wide variety of cell types. In this study we characterize the role of Orai1 in the function of lacrimal glands using a mouse model in which the gene for the calcium entry channel protein, Orai1, has been deleted. Our data demonstrate that lacrimal acinar cells lacking Orai1 do not exhibit SOCE following activation of the muscarinic receptor. In comparison with wild-type and heterozygous littermates, Orai1 knockout mice showed a significant reduction in the stimulated tear production following injection of pilocarpine, a muscarinic receptor agonist. In addition, calcium-dependent, but not calcium-independent exocytotic secretion of peroxidase was eliminated in glands from knockout mice. These studies indicate a critical role for Orai1-mediated SOCE in lacrimal gland signalling and function.
Calcium Induces Long-Term Legacy Effects in a Subalpine Ecosystem
Schaffner, Urs; Alewell, Christine; Eschen, René; Matthies, Diethart; Spiegelberger, Thomas; Hegg, Otto
2012-01-01
Human activities have transformed a significant proportion of the world’s land surface, with profound effects on ecosystem processes. Soil applications of macronutrients such as nitrate, phosphorus, potassium or calcium are routinely used in the management of croplands, grasslands and forests to improve plant health or increase productivity. However, while the effects of continuous fertilization and liming on terrestrial ecosystems are well documented, remarkably little is known about the legacy effect of historical fertilization and liming events in terrestrial ecosystems and of the mechanisms involved. Here, we show that more than 70 years after the last application of lime on a subalpine grassland, all major soil and plant calcium pools were still significantly larger in limed than in unlimed plots, and that the resulting shift in the soil calcium/aluminium ratio continues to affect ecosystem services such as primary production. The difference in the calcium content of the vegetation and the topmost 10 cm of the soil in limed vs. unlimed plots amounts to approximately 19.5 g m−2, equivalent to 16.3% of the amount that was added to the plots some 70 years ago. In contrast, plots that were treated with nitrogen-phosphorus-potassium fertilizer in the 1930s did not differ from unfertilized plots in any of the soil and vegetation characteristics measured. Our findings suggest that the long-term legacy effect of historical liming is due to long-term storage of added calcium in stable soil pools, rather than a general increase in nutrient availability. Our results demonstrate that single applications of calcium in its carbonated form can profoundly and persistently alter ecosystem processes and services in mountain ecosystems. PMID:23284779
Inulin and oligofructose and mineral metabolism: the evidence from animal trials.
Scholz-Ahrens, Katharina E; Schrezenmeir, Jürgen
2007-11-01
Nondigestible oligosaccharides have been shown to increase the absorption of several minerals (calcium, magnesium, in some cases phosphorus) and trace elements (mainly copper, iron, zinc). Inulin-type fructans including oligofructose and fructooligosaccharides derived from sucrose by enzymatic transfructosylation are the best investigated food ingredients in this respect. The stimulation of absorption was more pronounced when the demand for calcium was high, i.e., in animals in the rapid growing stage and in animals with impaired calcium absorption because of either ovariectomy or gastrectomy. Even a small stimulation of calcium absorption increased the mineral accumulation in the skeleton because of its persisting effect over months. Inulin-type fructans stimulated mineral absorption and bone mineral accretion when combined with probiotic lactobacilli and in the presence of antibiotics. Direct comparison of different inulin-type fructans revealed a more pronounced effect by inulin or a mixture of long-chain inulin and oligofructose than by oligofructose alone. Mechanisms on how inulin-type fructans mediate this effect include acidification of the intestinal lumen by short-chain fatty acids increasing solubility of minerals in the gut, enlargement of the absorption surface, increased expression of calcium-binding proteins mainly in the large intestine, modulated expression of bone-relevant cytokines, suppression of bone resorption, increased bioavailability of phytoestrogens, and, via stimulation of beneficial commensal microorganisms, increase of calcium uptake by enterocytes. Under certain conditions, inulin-type fructans may improve mineral absorption by their impact on the amelioration of gut health including stabilization of the intestinal flora and reduction of inflammation. The abundance of reports indicate that inulin-type fructans are promising substances that could help to improve the supply with available calcium in human nutrition and by this contribute to bone health.
Mineral-bearing vesicle transport in sea urchin embryos.
Vidavsky, Netta; Masic, Admir; Schertel, Andreas; Weiner, Steve; Addadi, Lia
2015-12-01
Sea urchin embryos sequester calcium from the sea water. This calcium is deposited in a concentrated form in granule bearing vesicles both in the epithelium and in mesenchymal cells. Here we use in vivo calcein labeling and confocal Raman spectroscopy, as well as cryo-FIB-SEM 3D structural reconstructions, to investigate the processes occurring in the internal cavity of the embryo, the blastocoel. We demonstrate that calcein stained granules are also present in the filopodial network within the blastocoel. Simultaneous fluorescence imaging and Raman spectroscopy show that these granules do contain a calcium mineral. By tracking the movements of these granules, we show that the granules in the epithelium and primary mesenchymal cells barely move, but those in the filopodial network move long distances. We could however not detect any unidirectional movement of the filopodial granules. We also show the presence of mineral containing multivesicular vesicles that also move in the filopodial network. We conclude that the filopodial network is an integral part of the mineral transport process, and possibly also for sequestering calcium and other ions. Although much of the sequestered calcium is deposited in the mineralized skeleton, a significant amount is used for other purposes, and this may be temporarily stored in these membrane-delineated intracellular deposits. Copyright © 2015 Elsevier Inc. All rights reserved.
Ramos, Inés; Cisint, Susana B; Crespo, Claudia A; Medina, Marcela F; Fernández, Silvia N
2009-08-01
The localization of calcium and Ca-ATPase activity in Bufo arenarum oocytes was investigated by ultracytochemical techniques during progesterone-induced nuclear maturation, under in vitro conditions. No Ca2+ deposits were detected in either control oocytes or progesterone-treated ones for 1-2 h. At the time when nuclear migration started, electron dense deposits of Ca2+ were visible in vesicles, endoplasmic reticulum cisternae and in the space between the annulate lamellae membranes. Furthermore, Ca-ATPase activity was also detected in these membrane structures. As maturation progressed, the cation deposits were observed in the cytomembrane structures, which underwent an important reorganization and redistribution. Thus, they moved from the subcortex and became located predominantly in the oocyte cortex area when nuclear maturation ended. Ca2+ stores were observed in vesicles surrounding or between the cortical granules, which are aligned close to the plasma membrane. The positive Ca-ATPase reaction in these membrane structures could indicate that the calcium deposit is an ATP-dependent process. Our results suggest that during oocyte maturation calcium would be stored in membrane structures where it remains available for release at the time of fertilization. Data obtained under our experimental conditions indicate that calcium from the extracellular medium would be important for the oocyte maturation process.
Kang, Jianhua; Sun, Wei; Hu, Yuehua; Gao, Zhiyong; Liu, Runqing; Zhang, Qingpeng; Liu, Hang; Meng, Xiangsong
2017-11-15
This study investigates an environmentally friendly technology that utilizes waste by-products (waste acid and waste alkali liquids) to treat mineral processing wastewater. Chemical precipitation is used to remove silicate from scheelite (CaWO 4 ) cleaning flotation wastewater and the waste by-products are used as a substitute for calcium chloride (CaCl 2 ). A series of laboratory experiments is conducted to explain the removal of silicate and the characterization and formation mechanism of calcium silicate. The results show that silicate removal reaches 90% when the Ca:Si molar ratio exceeds 1.0. The X-ray diffraction (XRD) results confirm the characterization and formation of calcium silicate. The pH is the key factor for silicate removal, and the formation of polysilicic acid with a reduction of pH can effectively improve the silicate removal and reduce the usage of calcium. The economic analysis shows that the treatment costs with waste acid (0.63 $/m 3 ) and waste alkali (1.54 $/m 3 ) are lower than that of calcium chloride (2.38 $/m 3 ). The efficient removal of silicate is confirmed by industrial testing at a plant. The results show that silicate removal reaches 85% in the recycled water from tailings dam. Copyright © 2017 Elsevier Ltd. All rights reserved.
Luquet, Gilles; Fernández, María S.; Badou, Aïcha; Guichard, Nathalie; Roy, Nathalie Le; Corneillat, Marion; Alcaraz, Gérard; Arias, José L.
2012-01-01
Crustaceans have to cyclically replace their rigid exoskeleton in order to grow.Most of them harden this skeleton by a calcification process. Some decapods (land crabs, lobsters and crayfish) elaborate calcium storage structures as a reservoir of calcium ions in their stomach wall, as so-called gastroliths. For a better understanding of the cyclic elaboration of these calcium deposits, we studied the ultrastructure of gastroliths from freshwater crayfish by using a combination of microscopic and physical techniques. Because sugars are also molecules putatively involved in the elaboration process of these biomineralizations, we also determined their carbohydrate composition. This study was performed in a comparative perspective on crayfish species belonging to the infra-order Astacidea (Decapoda, Malacostraca): three species from the Astacoidea superfamily and one species from the Parastacoidea superfamily. We observed that all the gastroliths exhibit a similar dense network of protein-chitin fibers, from macro- to nanoscale, within which calcium is precipitated as amorphous calcium carbonate. Nevertheless, they are not very similar at the molecular level, notably as regards their carbohydrate composition. Besides glucosamine, the basic carbohydrate component of chitin, we evidenced the presence of other sugars, some of which are species-specific like rhamnose and galacturonic acid whereas xylose and mannose could be linked to proteoglycan components. PMID:24970155
Calcium soap from palm fatty acid distillate for ruminant feed: The influence of water temperature
NASA Astrophysics Data System (ADS)
Handojo, Lienda A.; Indarto, Antonius; Shofinita, Dian; Meitha, Anggina; Nabila, Rakhmawati; Triharyogi, Harry; Kevin, Leonardus
2018-03-01
As the largest palm oil producing country in the world, Indonesia also produces abundant amount of Palm Fatty Acid Distillate (PFAD), a by-product of Crude Palm Oil (CPO) refining process. PFAD can be utilized as the raw material for calcium soap, ruminant feed that is widely used to increase milk yield, as well as to increase the ruminant’s fertility. However, the practice of feeding ruminants with calcium soap has not been practiced in Indonesia, which makes it imperative to develop calcium soap production process from PFAD within the country. This research aimed to study the effect of operating conditions of the saponification reaction using PFAD and CaO as reactants on the quality of the calcium soap obtained. The saponification reaction was carried out by modified fusion method. A range of stoichiometric mole ratios of CaO to PFAD (1.0 to 1.6) and the temperature of water (60-90°C) were studied in this research. An increase in the stoichiometric mole ratio of CaO/PFAD was observed to cause a decrease in the acid value, which indicates an increase in the reaction conversion. In contrast, the temperature of water was found to have little impact on the acid value of the product.
2013-01-01
Background Calcium deficiency is a global public-health problem. Although the initial stage of calcium deficiency can lead to metabolic alterations or potential pathological changes, calcium deficiency is difficult to diagnose accurately. Moreover, the details of the molecular mechanism of calcium deficiency remain somewhat elusive. To accurately assess and provide appropriate nutritional intervention, we carried out a global analysis of metabolic alterations in response to calcium deficiency. Methods The metabolic alterations associated with calcium deficiency were first investigated in a rat model, using urinary metabonomics based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry and multivariate statistical analysis. Correlations between dietary calcium intake and the biomarkers identified from the rat model were further analyzed to confirm the potential application of these biomarkers in humans. Results Urinary metabolic-profiling analysis could preliminarily distinguish between calcium-deficient and non-deficient rats after a 2-week low-calcium diet. We established an integrated metabonomics strategy for identifying reliable biomarkers of calcium deficiency using a time-course analysis of discriminating metabolites in a low-calcium diet experiment, repeating the low-calcium diet experiment and performing a calcium-supplement experiment. In total, 27 biomarkers were identified, including glycine, oxoglutaric acid, pyrophosphoric acid, sebacic acid, pseudouridine, indoxyl sulfate, taurine, and phenylacetylglycine. The integrated urinary metabonomics analysis, which combined biomarkers with regular trends of change (types A, B, and C), could accurately assess calcium-deficient rats at different stages and clarify the dynamic pathophysiological changes and molecular mechanism of calcium deficiency in detail. Significant correlations between calcium intake and two biomarkers, pseudouridine (Pearson correlation, r = 0.53, P = 0.0001) and citrate (Pearson correlation, r = -0.43, P = 0.001), were further confirmed in 70 women. Conclusions To our knowledge, this is the first report of reliable biomarkers of calcium deficiency, which were identified using an integrated strategy. The identified biomarkers give new insights into the pathophysiological changes and molecular mechanisms of calcium deficiency. The correlations between calcium intake and two of the biomarkers provide a rationale or potential for further assessment and elucidation of the metabolic responses of calcium deficiency in humans. PMID:23537001
Dairy Dilemma: Are You Getting Enough Calcium?
... and choosing reduced-lactose or non-dairy foods rich in the nutrients found in dairy products. How ... recommendations about dietary intake, including dairy or calcium-rich foods. Related Stories When Food Consumes You Keeping ...
Wang, Meng; Yu, Yuanman; Dai, Kai; Ma, Zhengyu; Liu, Yang; Wang, Jing; Liu, Changsheng
2016-10-18
Immune responses are vital for bone regeneration and play an essential role in the fate of biomaterials after implantation. As a kind of plastic cell, macrophages are central regulators of the immune response during the infection and wound healing process including osteogenesis and angiogenesis. Magnesium-calcium phosphate cement (MCPC) has been reported as a promising candidate for bone repair with promoted osteogenesis both in vitro and in vivo. However, relatively little is known about the effects of MCPC on immune response and the following outcome. In this study, we investigated the interactions between macrophages and MCPC. Here we found that the pro-inflammatory cytokines including TNF-α and IL-6 were less expressed and the bone repair related cytokine of TGF-β1 was up-regulated by macrophages in MCPC extract. Furthermore, the enhanced osteogenic capacity of BMSCs and angiogenic potential of HUVECs were acquired in vitro by the MCPC-induced immune microenvironment. These findings suggest that MCPC is able to facilitate bone healing by endowing favorable osteoimmunomodulatory properties and influencing crosstalk behavior between immune cells and osteogenesis-related cells.
Rooney, Mary R; Michos, Erin D; Hootman, Katie C; Harnack, Lisa; Lutsey, Pamela L
2018-06-01
Long-term outcomes of supplemental calcium are inadequately understood. Recent research suggests that calcium from supplements may not be entirely free from unintended health consequences. Consequently, it is important to understand patterns and trends in use of calcium supplements. To report trends in supplemental calcium intake between 1999 and 2014, using NHANES data, overall and stratified by sex, race/ethnicity and age. A total of 42,038 adult NHANES participants were included in this analysis. For each survey period, we calculated the prevalence of calcium supplement use exceeding the Estimated Average Requirement (EAR) and Tolerable Upper Intake Levels (UL), and mean daily supplemental calcium dose among calcium-containing supplement users. Sample weights were applied. Linear regression was used to examine trends. Overall, the prevalence of calcium supplement use at a dose ≥EAR increased between 1999 and 2000 and 2013-2014, from 2.5% (95% CI: 1.9-3.3%) to 4.6% (3.8-5.5%). Use ≥EAR peaked in 2003-2004 at 6.7% (5.3-8.5%) (p-quadratic trend<0.001). Mean supplemental calcium intake peaked in 2007-2008, thereafter decreasing (p-quadratic trend<0.001). The overall prevalence of intake ≥UL from supplemental calcium in 2013-2014 was 0.4% (0.2-0.8%). Use of supplemental calcium ≥UL peaked during 2007-2008 at 1.2% (0.7-2.0%). In all time periods, supplemental calcium intake tended to be greater among women, non-Hispanic whites and adults >60years. We described the prevalence of U.S. adults consuming supplemental calcium ≥UL and ≥ EAR. While few were consuming supplemental calcium ≥UL, consumption ≥EAR was not uncommon, especially among women, non-Hispanic whites and older adults. Copyright © 2018 Elsevier Inc. All rights reserved.
Zarkesh, Ibrahim; Ghanian, Mohammad Hossein; Azami, Mahmoud; Bagheri, Fatemeh; Baharvand, Hossein; Mohammadi, Javad; Eslaminejad, Mohamadreza Baghaban
2017-09-01
Biphasic calcium phosphate (BCP) microspheres are of great interest due to their high stability and osteoinductive properties at specific compositions. However, the need for optimal performance at a unique composition limits their flexibility for tuning drug release by modulation of bulk properties and presents the question of engineering surface topography as an alternative. It is necessary to have a facile method to control surface topography at a defined bulk composition. Here, we have produced BCP microspheres with different surface topographies that have the capability to be used as tunable drug release systems. We synthesized calcium deficient hydroxyapatite (CDHA) microparticles by precipitating calcium and phosphate ions onto ethylenediaminetetraacetic acid (EDTA) templates. The morphology and surface topography of CDHA microparticles were controlled using process parameters, which governed nucleation and growth. These parameters included template concentration, heat rate, and stirring speed. Under low heat rate and static conditions, we could obtain spherical microparticles with long and short nanosheets on their surfaces at low and high EDTA concentrations, respectively. These nanostructured microspheres were subsequently crystallized by thermal treatment to produce EDTA-free BCP microspheres with intact morphology. These biocompatible BCP microspheres were highly effective in loading and prolonged release of both small molecule [dexamethasone (Dex)] and protein [bovine serum albumin (BSA)] models. This strategy has enabled us to control the surface topography of BCP microspheres at defined compositions and holds tremendous promise for drug delivery and tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Preparation of reactive beta-dicalcium silicate
Shen, M.S.; Chen, J.M.; Yang, R.T.
1980-02-28
This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica, and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane, and hydrogen, at a temperature of about 850 to 1000/sup 0/C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.
Preparation of reactive beta-dicalcium silicate
Shen, Ming-Shing; Chen, James M.; Yang, Ralph T.
1982-01-01
This invention relates to the preparation of fine particles of reactive beta-dicalcium silicate by means of a solid state process which comprises firing a mixture of calcium sulfate, silica and a reducing additive selected from the group consisting of calcium sulfide, carbon, carbon monoxide, methane and hydrogen, at a temperature of about 850.degree.-1000.degree. C. A carrier gas such as nitrogen or carbon dioxide may also be added, if desired. A high concentration of sulfur dioxide is a by-product of this process.
Calcium/calmodulin-mediated signal network in plants
NASA Technical Reports Server (NTRS)
Yang, Tianbao; Poovaiah, B. W.
2003-01-01
Various extracellular stimuli elicit specific calcium signatures that can be recognized by different calcium sensors. Calmodulin, the predominant calcium receptor, is one of the best-characterized calcium sensors in eukaryotes. In recent years, completion of the Arabidopsis genome project and advances in functional genomics have helped to identify and characterize numerous calmodulin-binding proteins in plants. There are some similarities in Ca(2+)/calmodulin-mediated signaling in plants and animals. However, plants possess multiple calmodulin genes and many calmodulin target proteins, including unique protein kinases and transcription factors. Some of these proteins are likely to act as "hubs" during calcium signal transduction. Hence, a better understanding of the function of these calmodulin target proteins should help in deciphering the Ca(2+)/calmodulin-mediated signal network and its role in plant growth, development and response to environmental stimuli.
NASA Astrophysics Data System (ADS)
Altay, Arzu
The properties of ceramic materials are determined not only by the composition and structure of the phases present, but also by the distribution of impurities, intergranular films and second phases. The phase distribution and microstructure both depend on the fabrication techniques, the raw materials used, the phase-equilibrium relations, grain growth and sintering processes. In this dissertation research, various approaches have been employed to understand fundamental phenomena such as grain growth, impurity segregation, second-phase formation and crystallization. The materials system chosen was alumina intentionally doped with calcium. Atomic-scale structural analyses of grain boundaries in alumina were carried on the processed samples. It was found that above certain calcium concentrations, CA6 precipitated as a second phase at all sintering temperatures. The results also showed that abnormal grain growth can occur after precipitation and it is not only related to the calcium level, but it is also temperature dependent. In order to understand the formation mechanism of CA6 precipitates in calcium doped alumina samples, several studies have been carried out using either bulk materials or thin films The crystallization of CA2 and CA6 powders has been studied. Chemical processing techniques were used to synthesize the powders. It was observed that CA2 powders crystallized directly, however CA6 powders crystallized through gamma-Al 2O3 solid solution. The results of energy-loss near-edge spectrometry confirmed that gamma-Al2O3 can dissolve calcium. Calcium aluminate/alumina reaction couples have also been investigated. All reaction couples were heat treated following deposition. It was found that gamma-Al2O3 was formed at the interface as a result of the interfacial reaction between the film and the substrate. gamma-Al 2O3 at the interface was stable at much higher temperatures compared to the bulk gamma-Al2O3 formed prior to the CA6 crystallization. In order to complement the studies carried out on the calcium aluminate phases, energy-loss near-edge structure (ELNES) fingerprints of CA2 and CA6 were obtained. It was shown that it is possible to distinguish these phases from each other by comparing the ELNES fingerprints. Theoretical calculations of ELNES were used to assign spectral features to certain symmetry environments that can later be used to understand the structures of unknown materials.
Calcium Imaging of Basal Forebrain Activity during Innate and Learned Behaviors
Harrison, Thomas C.; Pinto, Lucas; Brock, Julien R.; Dan, Yang
2016-01-01
The basal forebrain (BF) plays crucial roles in arousal, attention, and memory, and its impairment is associated with a variety of cognitive deficits. The BF consists of cholinergic, GABAergic, and glutamatergic neurons. Electrical or optogenetic stimulation of BF cholinergic neurons enhances cortical processing and behavioral performance, but the natural activity of these cells during behavior is only beginning to be characterized. Even less is known about GABAergic and glutamatergic neurons. Here, we performed microendoscopic calcium imaging of BF neurons as mice engaged in spontaneous behaviors in their home cages (innate) or performed a go/no-go auditory discrimination task (learned). Cholinergic neurons were consistently excited during movement, including running and licking, but GABAergic and glutamatergic neurons exhibited diverse responses. All cell types were activated by overt punishment, either inside or outside of the discrimination task. These findings reveal functional similarities and distinctions between BF cell types during both spontaneous and task-related behaviors. PMID:27242444
Cytoplasmic calcium levels in protoplasts from the cap and elongation zone of maize roots
NASA Technical Reports Server (NTRS)
Kiss, H. G.; Evans, M. L.; Johnson, J. D.
1991-01-01
Calcium has been implicated as a key component in the signal transduction process of root gravitropism. We measured cytoplasmic free calcium in protoplasts isolated from the elongation zone and cap of primary roots of light-grown, vertically oriented seedlings of Zea mays L. Protoplasts were loaded with the penta-potassium salts of fura-2 and indo-1 by incubation in acidic solutions of these calcium indicators. Loading increased with decreasing pH but the pH dependence was stronger for indo-1 than for fura-2. In the case of fura-2, loading was enhanced only at the lowest pH (4.5) tested. Dyes loaded in this manner were distributed predominantly in the cytoplasm as indicated by fluorescence patterns. As an alternative method of loading, protoplasts were incubated with the acetoxymethylesters of fura-2 and indo-1. Protoplasts loaded by this method exhibited fluorescence both in the cytoplasm and in association with various organelles. Cytoplasmic calcium levels measured using spectrofluorometry, were found to be 160 +/- 40 nM and 257 +/- 27 nM, respectively, in populations of protoplasts from the root cap and elongation zone. Cytoplasmic free calcium did not increase upon addition of calcium to the incubation medium, indicating that the passive permeability to calcium was low.
Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia; Varian, Kenneth D; Slabaugh, Jessica L; Walton, Shane D; Gyorke, Sandor; Davis, Jonathan P; Biesiadecki, Brandon J; Janssen, Paul M L
2015-01-01
As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.
Role of Regulators of G Protein Signaling Proteins in Bone Physiology and Pathophysiology.
Jules, Joel; Yang, Shuying; Chen, Wei; Li, Yi-Ping
2015-01-01
Regulators of G protein signaling (RGS) proteins enhance the intrinsic GTPase activity of α subunits of the heterotrimeric G protein complex of G protein-coupled receptors (GPCRs) and thereby inactivate signal transduction initiated by GPCRs. The RGS family consists of nearly 37 members with a conserved RGS homology domain which is critical for their GTPase accelerating activity. RGS proteins are expressed in most tissues, including heart, lung, brain, kidney, and bone and play essential roles in many physiological and pathological processes. In skeletal development and bone homeostasis as well as in many bone disorders, RGS proteins control the functions of various GPCRs, including the parathyroid hormone receptor type 1 and calcium-sensing receptor and also regulate various critical signaling pathways, such as Wnt and calcium oscillations. This chapter will discuss the current findings on the roles of RGS proteins in regulating signaling of key GPCRs in skeletal development and bone homeostasis. We also will examine the current updates of RGS proteins' regulation of calcium oscillations in bone physiology and highlight the roles of RGS proteins in selected bone pathological disorders. Despite the recent advances in bone and mineral research, RGS proteins remain understudied in the skeletal system. Further understanding of the roles of RGS proteins in bone should not only provide great insights into the molecular basis of various bone diseases but also generate great therapeutic drug targets for many bone diseases. © 2015 Elsevier Inc. All rights reserved.
Kacprzyk, Joanna; Brogan, Niall P; Daly, Cara T; Doyle, Siamsa M; Diamond, Mark; Molony, Elizabeth M; McCabe, Paul F
2017-07-01
The protoplast retracts during apoptosis-like programmed cell death (AL-PCD) and, if this retraction is an active component of AL-PCD, it should be used as a defining feature for this type of programmed cell death. We used an array of pharmacological and genetic tools to test if the rates of protoplast retraction in cells undergoing AL-PCD can be modulated. Disturbing calcium flux signalling, ATP synthesis and mitochondrial permeability transition all inhibited protoplast retraction and often also the execution of the death programme. Protoplast retraction can precede loss of plasma membrane integrity and cell death can be interrupted after the protoplast retraction had already occurred. Blocking calcium influx inhibited the protoplast retraction, reduced DNA fragmentation and delayed death induced by AL-PCD associated stresses. At higher levels of stress, where cell death occurs without protoplast retraction, blocking calcium flux had no effect on the death process. The results therefore strongly suggest that retraction of the protoplast is an active biological process dependent on an early Ca 2+ -mediated trigger rather than cellular disintegration due to plasma membrane damage. Therefore this morphologically distinct cell type is a quantifiable feature, and consequently, reporter of AL-PCD. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of reaction solvent on hydroxyapatite synthesis in sol-gel process
NASA Astrophysics Data System (ADS)
Nazeer, Muhammad Anwaar; Yilgor, Emel; Yagci, Mustafa Baris; Unal, Ugur; Yilgor, Iskender
2017-12-01
Synthesis of hydroxyapatite (HA) through sol-gel process in different solvent systems is reported. Calcium nitrate tetrahydrate (CNTH) and diammonium hydrogen phosphate (DAHP) were used as calcium and phosphorus precursors, respectively. Three different synthesis reactions were carried out by changing the solvent media, while keeping all other process parameters constant. A measure of 0.5 M aqueous DAHP solution was used in all reactions while CNTH was dissolved in distilled water, tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) at a concentration of 0.5 M. Ammonia solution (28-30%) was used to maintain the pH of the reaction mixtures in the 10-12 range. All reactions were carried out at 40 ± 2°C for 4 h. Upon completion of the reactions, products were filtered, washed and calcined at 500°C for 2 h. It was clearly demonstrated through various techniques that the dielectric constant and polarity of the solvent mixture strongly influence the chemical structure and morphological properties of calcium phosphate synthesized. Water-based reaction medium, with highest dielectric constant, mainly produced β-calcium pyrophosphate (β-CPF) with a minor amount of HA. DMF/water system yielded HA as the major phase with a very minor amount of β-CPF. THF/water solvent system with the lowest dielectric constant resulted in the formation of pure HA.