Sample records for processes including global

  1. Global interrupt and barrier networks

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.

    2008-10-28

    A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.

  2. Performing an allreduce operation on a plurality of compute nodes of a parallel computer

    DOEpatents

    Faraj, Ahmad [Rochester, MN

    2012-04-17

    Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer. Each compute node includes at least two processing cores. Each processing core has contribution data for the allreduce operation. Performing an allreduce operation on a plurality of compute nodes of a parallel computer includes: establishing one or more logical rings among the compute nodes, each logical ring including at least one processing core from each compute node; performing, for each logical ring, a global allreduce operation using the contribution data for the processing cores included in that logical ring, yielding a global allreduce result for each processing core included in that logical ring; and performing, for each compute node, a local allreduce operation using the global allreduce results for each processing core on that compute node.

  3. Global tree network for computing structures enabling global processing operations

    DOEpatents

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  4. Global Consultation Processes: Lessons Learned from Refugee Teacher Consultation Research in Malaysia

    ERIC Educational Resources Information Center

    O'Neal, Colleen R.; Gosnell, Nicole M.; Ng, Wai Sheng; Clement, Jennifer; Ong, Edward

    2018-01-01

    The process of global consultation has received little attention despite its potential for promoting international mutual understanding with marginalized communities. This article details theory, entry, implementation, and evaluation processes for global consultation research, including lessons learned from our refugee teacher intervention. The…

  5. Seeing the Forest "and" the Trees: Default Local Processing in Individuals with High Autistic Traits Does Not Come at the Expense of Global Attention

    ERIC Educational Resources Information Center

    Stevenson, Ryan A.; Sun, Sol Z.; Hazlett, Naomi; Cant, Jonathan S.; Barense, Morgan D.; Ferber, Susanne

    2018-01-01

    Atypical sensory perception is one of the most ubiquitous symptoms of autism, including a tendency towards a local-processing bias. We investigated whether local-processing biases were associated with global-processing impairments on a global/local attentional-scope paradigm in conjunction with a composite-face task. Behavioural results were…

  6. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A; Coteus, Paul W; Chen, Dong; Gara, Alan; Giampapa, Mark E; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd E; Steinmacher-Burow, Burkhard D; Vranas, Pavlos M

    2014-01-07

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to the needs of a processing algorithm.

  7. Collective network for computer structures

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Coteus, Paul W [Yorktown Heights, NY; Chen, Dong [Croton On Hudson, NY; Gara, Alan [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Takken, Todd E [Brewster, NY; Steinmacher-Burow, Burkhard D [Wernau, DE; Vranas, Pavlos M [Bedford Hills, NY

    2011-08-16

    A system and method for enabling high-speed, low-latency global collective communications among interconnected processing nodes. The global collective network optimally enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices ate included that interconnect the nodes of the network via links to facilitate performance of low-latency global processing operations at nodes of the virtual network and class structures. The global collective network may be configured to provide global barrier and interrupt functionality in asynchronous or synchronized manner. When implemented in a massively-parallel supercomputing structure, the global collective network is physically and logically partitionable according to needs of a processing algorithm.

  8. Global processing in amblyopia: a review

    PubMed Central

    Hamm, Lisa M.; Black, Joanna; Dai, Shuan; Thompson, Benjamin

    2014-01-01

    Amblyopia is a neurodevelopmental disorder of the visual system that is associated with disrupted binocular vision during early childhood. There is evidence that the effects of amblyopia extend beyond the primary visual cortex to regions of the dorsal and ventral extra-striate visual cortex involved in visual integration. Here, we review the current literature on global processing deficits in observers with either strabismic, anisometropic, or deprivation amblyopia. A range of global processing tasks have been used to investigate the extent of the cortical deficit in amblyopia including: global motion perception, global form perception, face perception, and biological motion. These tasks appear to be differentially affected by amblyopia. In general, observers with unilateral amblyopia appear to show deficits for local spatial processing and global tasks that require the segregation of signal from noise. In bilateral cases, the global processing deficits are exaggerated, and appear to extend to specialized perceptual systems such as those involved in face processing. PMID:24987383

  9. Global Citizenship Education and Its Implications for Curriculum Goals at the Age of Globalization

    ERIC Educational Resources Information Center

    Zahabioun, Shahla; Yousefy, Alireza; Yarmohammadian, Mohammad H.; Keshtiaray, Narges

    2013-01-01

    As the inevitable process of the 21st century, globalization has affected and altered all aspects of human life including education. Therefore, one of the main tasks of any education system is to identify the features and impacts of such process. Thus, the present study was conducted aiming to discuss and examine global citizenship education and…

  10. Making Education Markets through Global Trade Agreements

    ERIC Educational Resources Information Center

    Robertson, Susan L.

    2017-01-01

    This paper uses the global trade negotiations and agreements, which include education sectors as potentially tradable services, to show the complex processes at work in making global education markets. Drawing on the work of Jens Beckert and others, I focus on the micro-processes of making capitalist orders and the challenges at hand in bringing…

  11. Seeing the Forest and the Trees: Default Local Processing in Individuals with High Autistic Traits Does Not Come at the Expense of Global Attention.

    PubMed

    Stevenson, Ryan A; Sun, Sol Z; Hazlett, Naomi; Cant, Jonathan S; Barense, Morgan D; Ferber, Susanne

    2018-04-01

    Atypical sensory perception is one of the most ubiquitous symptoms of autism, including a tendency towards a local-processing bias. We investigated whether local-processing biases were associated with global-processing impairments on a global/local attentional-scope paradigm in conjunction with a composite-face task. Behavioural results were related to individuals' levels of autistic traits, specifically the Attention to Detail subscale of the Autism Quotient, and the Sensory Profile Questionnaire. Individuals showing high rates of Attention to Detail were more susceptible to global attentional-scope manipulations, suggesting that local-processing biases associated with Attention to Detail do not come at the cost of a global-processing deficit, but reflect a difference in default global versus local bias. This relationship operated at the attentional/perceptual level, but not response criterion.

  12. Revising a conceptual model of partnership and sustainability in global health.

    PubMed

    Upvall, Michele J; Leffers, Jeanne M

    2018-05-01

    Models to guide global health partnerships are rare in the nursing literature. The Conceptual Model for Partnership and Sustainability in Global Health while significant was based on Western perspectives. The purpose of this study was to revise the model to include the voice of nurses from low- and middle-resource countries. Grounded theory was used to maintain fidelity with the design in the original model. A purposive sample of 15 participants from a variety of countries in Africa, the Caribbean, and Southeast Asia and having extensive experience in global health partnerships were interviewed. Skype recordings and in-person interviews were audiotaped using the same questions as the original study. Theoretical coding and a comparison of results with the original study was completed independently by the researchers. The process of global health partnerships was expanded from the original model to include engagement processes and processes for ongoing partnership development. New concepts of Transparency, Expanded World View, and Accompaniment were included as well as three broad themes: Geopolitical Influence, Power differential/Inequities, and Collegial Friendships. The revised conceptual model embodies a more comprehensive model of global health partnerships with representation of nurses from low- and middle-resource countries. © 2018 Wiley Periodicals, Inc.

  13. Addressing Society's Problems in a Global Studies Class.

    ERIC Educational Resources Information Center

    Pesce, Louis; And Others

    1996-01-01

    Describes the adaptation of the Future Problem-Solving Process (FPS) in a global studies class. The process applies state-of-the-art critical thinking and problem solving to unstable areas such as the Middle East and the former Soviet Union. Includes handouts directing the students through the process. (MJP)

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attinella, John E.; Davis, Kristan D.; Musselman, Roy G.

    Methods, apparatuses, and computer program products for servicing a globally broadcast interrupt signal in a multi-threaded computer comprising a plurality of processor threads. Embodiments include an interrupt controller indicating in a plurality of local interrupt status locations that a globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include a thread determining that a local interrupt status location corresponding to the thread indicates that the globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include the thread processing one or more entries in a global interrupt status bit queue based on whethermore » global interrupt status bits associated with the globally broadcast interrupt signal are locked. Each entry in the global interrupt status bit queue corresponds to a queued global interrupt.« less

  15. Servicing a globally broadcast interrupt signal in a multi-threaded computer

    DOEpatents

    Attinella, John E.; Davis, Kristan D.; Musselman, Roy G.; Satterfield, David L.

    2015-12-29

    Methods, apparatuses, and computer program products for servicing a globally broadcast interrupt signal in a multi-threaded computer comprising a plurality of processor threads. Embodiments include an interrupt controller indicating in a plurality of local interrupt status locations that a globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include a thread determining that a local interrupt status location corresponding to the thread indicates that the globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include the thread processing one or more entries in a global interrupt status bit queue based on whether global interrupt status bits associated with the globally broadcast interrupt signal are locked. Each entry in the global interrupt status bit queue corresponds to a queued global interrupt.

  16. Land-related global habitability science issues

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The scientific investigation of the viewpoint of the biosphere that living organisms and their physical and chemical environment are bound, inseparable parts of one set of closely coupled global processes of the global biogeochemical system, life and life support cycles, is discussed as one of the major scientific challenges of the next decade by building from understanding land processes to interdisciplinary, holistic studies of biospheric dynamics including human impacts.

  17. A global regulatory science agenda for vaccines.

    PubMed

    Elmgren, Lindsay; Li, Xuguang; Wilson, Carolyn; Ball, Robert; Wang, Junzhi; Cichutek, Klaus; Pfleiderer, Michael; Kato, Atsushi; Cavaleri, Marco; Southern, James; Jivapaisarnpong, Teeranart; Minor, Philip; Griffiths, Elwyn; Sohn, Yeowon; Wood, David

    2013-04-18

    The Decade of Vaccines Collaboration and development of the Global Vaccine Action Plan provides a catalyst and unique opportunity for regulators worldwide to develop and propose a global regulatory science agenda for vaccines. Regulatory oversight is critical to allow access to vaccines that are safe, effective, and of assured quality. Methods used by regulators need to constantly evolve so that scientific and technological advances are applied to address challenges such as new products and technologies, and also to provide an increased understanding of benefits and risks of existing products. Regulatory science builds on high-quality basic research, and encompasses at least two broad categories. First, there is laboratory-based regulatory science. Illustrative examples include development of correlates of immunity; or correlates of safety; or of improved product characterization and potency assays. Included in such science would be tools to standardize assays used for regulatory purposes. Second, there is science to develop regulatory processes. Illustrative examples include adaptive clinical trial designs; or tools to analyze the benefit-risk decision-making process of regulators; or novel pharmacovigilance methodologies. Included in such science would be initiatives to standardize regulatory processes (e.g., definitions of terms for adverse events [AEs] following immunization). The aim of a global regulatory science agenda is to transform current national efforts, mainly by well-resourced regulatory agencies, into a coordinated action plan to support global immunization goals. This article provides examples of how regulatory science has, in the past, contributed to improved access to vaccines, and identifies gaps that could be addressed through a global regulatory science agenda. The article also identifies challenges to implementing a regulatory science agenda and proposes strategies and actions to fill these gaps. A global regulatory science agenda will enable regulators, academics, and other stakeholders to converge around transformative actions for innovation in the regulatory process to support global immunization goals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Expandable and reconfigurable instrument node arrays

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Inventor); Deshpande, Manohar (Inventor)

    2012-01-01

    An expandable and reconfigurable instrument node includes a feature detection means and a data processing portion in communication with the feature detection means, the data processing portion configured and disposed to process feature information. The instrument node further includes a phase locked loop (PLL) oscillator in communication with the data processing portion, the PLL oscillator configured and disposed to provide PLL information to the processing portion. The instrument node further includes a single tone transceiver and a pulse transceiver in communication with the PLL oscillator, the single tone transceiver configured and disposed to transmit or receive a single tone for phase correction of the PLL oscillator and the pulse transceiver configured and disposed to transmit and receive signals for phase correction of the PLL oscillator. The instrument node further includes a global positioning (GPA) receiver in communication with the processing portion, the GPS receiver configured and disposed to establish a global position of the instrument node.

  19. [Global immunization policies and recommendations: objectives and process].

    PubMed

    Duclos, Philippe; Okwo-Bele, Jean-Marie

    2007-04-01

    The World Health Organization (WHO) has a dual mandate of providing global policies, standards and norms as well as support for member countries in applying such policies and standards to national programmes with the aim to improve health. The vaccine world is changing and with it the demands and expectations of the global and national policy makers, donors, and other interested parties. Changes pertain to : new vaccines and technologies developments, vaccine safety issues, regulation and approval of vaccines, and increased funding flowing through new financing mechanisms. This places a special responsibility on WHO to respond effectively. WHO has recently reviewed and optimized its policy making structure for vaccines and immunization and adjusted it to the new Global Immunization Vision and Strategy, which broadens the scope of immunization efforts to all age groups and vaccines with emphasis on integration of immunization delivery with other health interventions. This includes an extended consultation process to promptly generate evidence base recommendations, ensuring transparency of the decision making process and added communication efforts. This article presents the objectives and impact of the process set to develop global immunization policies, norms, standards and recommendations. The key advisory committees landscape contributing to this process is described. This includes the Strategic Advisory Group of Experts, the Global Advisory Committee on Vaccine Safety and the Expert Committee on Biological Standardization. The elaboration of WHO vaccine position papers is also described.

  20. Children inhibit global information when the forest is dense and local information when the forest is sparse.

    PubMed

    Krakowski, Claire-Sara; Borst, Grégoire; Vidal, Julie; Houdé, Olivier; Poirel, Nicolas

    2018-09-01

    Visual environments are composed of global shapes and local details that compete for attentional resources. In adults, the global level is processed more rapidly than the local level, and global information must be inhibited in order to process local information when the local information and global information are in conflict. Compared with adults, children present less of a bias toward global visual information and appear to be more sensitive to the density of local elements that constitute the global level. The current study aimed, for the first time, to investigate the key role of inhibition during global/local processing in children. By including two different conditions of global saliency during a negative priming procedure, the results showed that when the global level was salient (dense hierarchical figures), 7-year-old children and adults needed to inhibit the global level to process the local information. However, when the global level was less salient (sparse hierarchical figures), only children needed to inhibit the local level to process the global information. These results confirm a weaker global bias and the greater impact of saliency in children than in adults. Moreover, the results indicate that, regardless of age, inhibition of the most salient hierarchical level is systematically required to select the less salient but more relevant level. These findings have important implications for future research in this area. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. DMA engine for repeating communication patterns

    DOEpatents

    Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard; Vranas, Pavlos

    2010-09-21

    A parallel computer system is constructed as a network of interconnected compute nodes to operate a global message-passing application for performing communications across the network. Each of the compute nodes includes one or more individual processors with memories which run local instances of the global message-passing application operating at each compute node to carry out local processing operations independent of processing operations carried out at other compute nodes. Each compute node also includes a DMA engine constructed to interact with the application via Injection FIFO Metadata describing multiple Injection FIFOs where each Injection FIFO may containing an arbitrary number of message descriptors in order to process messages with a fixed processing overhead irrespective of the number of message descriptors included in the Injection FIFO.

  2. Modelling the role of fires in the terrestrial carbon balance by incorporating SPITFIRE into the global vegetation modelORCHIDEE - Part 1: Simulating historical global burned area and fire regimes

    Treesearch

    C. Yue; P. Ciais; P. Cadule; K. Thonicke; S. Archibald; B. Poulter; W. M. Hao; S. Hantson; F. Mouillot; P. Friedlingstein; F. Maignan; N. Viovy

    2014-01-01

    Fire is an important global ecological process that influences the distribution of biomes, with consequences for carbon, water, and energy budgets. Therefore it is impossible to appropriately model the history and future of the terrestrial ecosystems and the climate system without including fire. This study incorporates the process-based prognostic fire module SPITFIRE...

  3. Improving Global Health Education: Development of a Global Health Competency Model

    PubMed Central

    Ablah, Elizabeth; Biberman, Dorothy A.; Weist, Elizabeth M.; Buekens, Pierre; Bentley, Margaret E.; Burke, Donald; Finnegan, John R.; Flahault, Antoine; Frenk, Julio; Gotsch, Audrey R.; Klag, Michael J.; Lopez, Mario Henry Rodriguez; Nasca, Philip; Shortell, Stephen; Spencer, Harrison C.

    2014-01-01

    Although global health is a recommended content area for the future of education in public health, no standardized global health competency model existed for master-level public health students. Without such a competency model, academic institutions are challenged to ensure that students are able to demonstrate the knowledge, skills, and attitudes (KSAs) needed for successful performance in today's global health workforce. The Association of Schools of Public Health (ASPH) sought to address this need by facilitating the development of a global health competency model through a multistage modified-Delphi process. Practitioners and academic global health experts provided leadership and guidance throughout the competency development process. The resulting product, the Global Health Competency Model 1.1, includes seven domains and 36 competencies. The Global Health Competency Model 1.1 provides a platform for engaging educators, students, and global health employers in discussion of the KSAs needed to improve human health on a global scale. PMID:24445206

  4. Tropospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Mohnen, V.

    1984-01-01

    The fundamental processes that control the chemical composition and cycles of the global troposphere and how these processes and properties affect the physical behavior of the atmosphere are examined. The long-term information needs for tropospheric chemistry are: to be able to predict tropospheric responses to perturbations, both natural and anthropogenic, of these cycles, and to provide the information required for the maintenance and effective future management of the atmospheric component of our global life support system. The processes controlling global tropospheric biogeochemical cycles include: the input of trace species into the troposphere, their long-range transport and distribution as affected by the mean wind and vertical venting, their chemical transformations, including gas to particle conversion, leading to the appearance of aerosols or aqueous phase reactions inside cloud droplets, and their removal from the troposphere via wet (precipitation) and dry deposition.

  5. World weather program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.

  6. Ultrascalable petaflop parallel supercomputer

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY

    2010-07-20

    A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.

  7. Science priorities for the human dimensions of global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The topics covered include the following: defining research needs; understanding land use change; improving policy analysis -- research on the decision-making process; designing policy instruments and institutions to address energy-related environmental problems; assessing impacts, vulnerability, and adaptation to global changes; and understanding population dynamics and global change.

  8. Understanding One Institutions' Process in Preparing Civil Engineering Students to Be Globally Competent

    ERIC Educational Resources Information Center

    Mavroudhis, Vasiliki Goudanas

    2017-01-01

    Civil engineering is an increasingly dynamic and global industry experiencing expansion cross borders, resulting in new required competencies sought out by employers and reflected in updated undergraduate program outcomes. These new competencies include attributes that result in global competence. Institutions of higher learning need to…

  9. Exploring the Relationship between Undergraduate Service-Learning Experiences and Global Perspective-Taking

    ERIC Educational Resources Information Center

    Engberg, Mark E.; Fox, Katherine

    2011-01-01

    This study examines the relationship between service-learning participation and global perspective-taking. A global perspective is broadly defined to include both the acquisition of knowledge, attitudes, and skills important to intercultural communication and the development of more complex epistemological processes, identities, and interpersonal…

  10. The Not-So-Global Blood Oxygen Level-Dependent Signal.

    PubMed

    Billings, Jacob; Keilholz, Shella

    2018-04-01

    Global signal regression is a controversial processing step for resting-state functional magnetic resonance imaging, partly because the source of the global blood oxygen level-dependent (BOLD) signal remains unclear. On the one hand, nuisance factors such as motion can readily introduce coherent BOLD changes across the whole brain. On the other hand, the global signal has been linked to neural activity and vigilance levels, suggesting that it contains important neurophysiological information and should not be discarded. Any widespread pattern of coordinated activity is likely to contribute appreciably to the global signal. Such patterns may include large-scale quasiperiodic spatiotemporal patterns, known also to be tied to performance on vigilance tasks. This uncertainty surrounding the separability of the global BOLD signal from concurrent neurological processes motivated an examination of the global BOLD signal's spatial distribution. The results clarify that although the global signal collects information from all tissue classes, a diverse subset of the BOLD signal's independent components contribute the most to the global signal. Further, the timing of each network's contribution to the global signal is not consistent across volunteers, confirming the independence of a constituent process that comprises the global signal.

  11. Global Climate Change Pathfinder: A Guide to Information Resources. Second Edition.

    ERIC Educational Resources Information Center

    Pintozzi, Chestalene; Jones, Douglas E.

    This pathfinder is a guide to scientific and technical aspects of global climate change including meteorological and climatological aspects; biological, agricultural, and public policy implications; and the chemical processes involved. Sources are arranged by type of publication and include: (1) 10 reference sources; (2) 12 bibliographies; (3) 44…

  12. A common monitoring framework for ending preventable maternal mortality, 2015-2030: phase I of a multi-step process.

    PubMed

    Moran, Allisyn C; Jolivet, R Rima; Chou, Doris; Dalglish, Sarah L; Hill, Kathleen; Ramsey, Kate; Rawlins, Barbara; Say, Lale

    2016-08-26

    While global maternal mortality declined 44 % between 1990 and 2015, the majority of countries fell short of attaining Millennium Development Goal targets. The Sustainable Development Goals (SDGs), adopted in late 2015, include a target to reduce national maternal mortality ratios (MMR) to achieve a global average of 70 per 100,000 live births by 2030. A comprehensive paper outlining Strategies toward Ending Preventable Maternal Mortality (EPMM) was launched in February 2015 to support achievement of the SDG global targets. To date, there has not been consensus on a set of core metrics to track progress toward the overall global maternal mortality target, which has made it difficult to systematically monitor maternal health status and programs over time. The World Health Organization (WHO), Maternal Health Taskforce (MHTF), and the US Agency for International Development (USAID) along with its flagship Maternal and Child Survival Program (MCSP), facilitated a consultative process to seek consensus on maternal health indicators for global monitoring and reporting by all countries. Consensus was reached on 12 indicators and four priority areas for further indicator development and testing. These indicators are being harmonized with the Every Newborn Action Plan core metrics for a joint global maternal newborn monitoring framework. Next steps include a similar process to agree upon indicators to monitor social, political and economic determinants of maternal health and survival highlighted in the EPMM strategies. This process provides a foundation for the maternal health community to work collaboratively to track progress on core global indicators. It is important that actors continue to work together through transparent and participatory processes to track progress to end preventable maternal mortality and achieve the SDG maternal mortality targets.

  13. The role of temporo-parietal junction (TPJ) in global Gestalt perception.

    PubMed

    Huberle, Elisabeth; Karnath, Hans-Otto

    2012-07-01

    Grouping processes enable the coherent perception of our environment. A number of brain areas has been suggested to be involved in the integration of elements into objects including early and higher visual areas along the ventral visual pathway as well as motion-processing areas of the dorsal visual pathway. However, integration not only is required for the cortical representation of individual objects, but is also essential for the perception of more complex visual scenes consisting of several different objects and/or shapes. The present fMRI experiments aimed to address such integration processes. We investigated the neural correlates underlying the global Gestalt perception of hierarchically organized stimuli that allowed parametrical degrading of the object at the global level. The comparison of intact versus disturbed perception of the global Gestalt revealed a network of cortical areas including the temporo-parietal junction (TPJ), anterior cingulate cortex and the precuneus. The TPJ location corresponds well with the areas known to be typically lesioned in stroke patients with simultanagnosia following bilateral brain damage. These patients typically show a deficit in identifying the global Gestalt of a visual scene. Further, we found the closest relation between behavioral performance and fMRI activation for the TPJ. Our data thus argue for a significant role of the TPJ in human global Gestalt perception.

  14. A SmallSat Approach for Global Imaging Spectroscopy of the Earth SYSTEM Enabled by Advanced Technology

    NASA Astrophysics Data System (ADS)

    Green, R. O.; Asner, G. P.; Thompson, D. R.; Mouroulis, P.; Eastwood, M. L.; Chien, S.

    2017-12-01

    Global coverage imaging spectroscopy in the solar reflected energy portion of the spectrum has been identified by the Earth Decadal Survey as an important measurement that enables a diverse set of new and time critical science objectives/targets for the Earth system. These science objectives include biodiversity; ecosystem function; ecosystem biogeochemistry; initialization and constraint of global ecosystem models; fire fuel, combustion, burn severity, and recovery; surface mineralogy, geochemistry, geologic processes, soils, and hazards; global mineral dust source composition; cryospheric albedo, energy balance, and melting; coastal and inland water habitats; coral reefs; point source gas emission; cloud thermodynamic phase; urban system properties; and more. Traceability of these science objectives to spectroscopic measurement in the visible to short wavelength infrared portion of the spectrum is summarized. New approaches, including satellite constellations, to acquire these global imaging spectroscopy measurements is presented drawing from recent advances in optical design, detector technology, instrument architecture, thermal control, on-board processing, data storage, and downlink.

  15. [The modern international public health and globalization challenges].

    PubMed

    2012-01-01

    The article deals with the issues of impact of globalization on population health and public health. The positive and negative aspects of this process are analyzed. The role of international organizations (UN, WHO, UNESCO, ILO, UNISEF) is demonstrated in the area of management of globalization impact on public health of different countries, Russia included.

  16. New insights into the role of motion and form vision in neurodevelopmental disorders.

    PubMed

    Johnston, Richard; Pitchford, Nicola J; Roach, Neil W; Ledgeway, Timothy

    2017-12-01

    A selective deficit in processing the global (overall) motion, but not form, of spatially extensive objects in the visual scene is frequently associated with several neurodevelopmental disorders, including preterm birth. Existing theories that proposed to explain the origin of this visual impairment are, however, challenged by recent research. In this review, we explore alternative hypotheses for why deficits in the processing of global motion, relative to global form, might arise. We describe recent evidence that has utilised novel tasks of global motion and global form to elucidate the underlying nature of the visual deficit reported in different neurodevelopmental disorders. We also examine the role of IQ and how the sex of an individual can influence performance on these tasks, as these are factors that are associated with performance on global motion tasks, but have not been systematically controlled for in previous studies exploring visual processing in clinical populations. Finally, we suggest that a new theoretical framework is needed for visual processing in neurodevelopmental disorders and present recommendations for future research. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Performing an allreduce operation on a plurality of compute nodes of a parallel computer

    DOEpatents

    Faraj, Ahmad

    2013-07-09

    Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer, each node including at least two processing cores, that include: establishing, for each node, a plurality of logical rings, each ring including a different set of at least one core on that node, each ring including the cores on at least two of the nodes; iteratively for each node: assigning each core of that node to one of the rings established for that node to which the core has not previously been assigned, and performing, for each ring for that node, a global allreduce operation using contribution data for the cores assigned to that ring or any global allreduce results from previous global allreduce operations, yielding current global allreduce results for each core; and performing, for each node, a local allreduce operation using the global allreduce results.

  18. Pollination and seed dispersal are the most threatened processes of plant regeneration

    NASA Astrophysics Data System (ADS)

    Neuschulz, Eike Lena; Mueller, Thomas; Schleuning, Matthias; Böhning-Gaese, Katrin

    2016-07-01

    Plant regeneration is essential for maintaining forest biodiversity and ecosystem functioning, which are globally threatened by human disturbance. Here we present the first integrative meta-analysis on how forest disturbance affects multiple ecological processes of plant regeneration including pollination, seed dispersal, seed predation, recruitment and herbivory. We analysed 408 pairwise comparisons of these processes between near-natural and disturbed forests. Human impacts overall reduced plant regeneration. Importantly, only processes early in the regeneration cycle that often depend on plant-animal interactions, i.e. pollination and seed dispersal, were negatively affected. Later processes, i.e. seed predation, recruitment and herbivory, showed overall no significant response to human disturbance. Conserving pollination and seed dispersal, including the animals that provide these services to plants, should become a priority in forest conservation efforts globally.

  19. The importance of 'global meaning' for people rehabilitating from spinal cord injury.

    PubMed

    Littooij, E; Leget, C J W; Stolwijk-Swüste, J M; Doodeman, S; Widdershoven, G A M; Dekker, J

    2016-11-01

    Qualitative study. To explore whether aspects of global meaning (that is, fundamental beliefs and life goals concerning core values, relationships, worldview, identity and inner posture) are associated with processes and outcomes in rehabilitation, as experienced by people with spinal cord injury (SCI). People living in the community receiving outpatient rehabilitation in a Dutch rehabilitation center. In-depth semi-structured interviews were conducted with 16 people with SCI. Interviews were analyzed using qualitative research methods: structural and provisional coding. Core values, relationships, worldview, identity and inner posture (that is, the way in which people relate to the facts of life) were associated with various processes and outcomes of rehabilitation. Elements of the rehabilitation process included motivation, regulation of emotion, making decisions and handling stress. Elements of the outcome of rehabilitation included physical functioning, emotional functioning, social functioning and subjective sense of meaning. The influence was positive, with the exception of one case in which worldview and inner posture were negatively associated with motivation. Besides that, respondents emphasized the importance of rehabilitation professionals attuning to their global meaning. All aspects of global meaning were positively associated with various processes and outcomes of rehabilitation. It is recommended that rehabilitation professionals are aware of the importance of global meaning to people with SCI and that they take people's fundamental beliefs and life goals into account.

  20. Earth Observing System. Volume 1, Part 2: Science and Mission Requirements. Working Group Report Appendix

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Areas of global hydrologic cycles, global biogeochemical cycles geophysical processes are addressed including biological oceanography, inland aquatic resources, land biology, tropospheric chemistry, oceanic transport, polar glaciology, sea ice and atmospheric chemistry.

  1. Cognition in school-aged children with "active" epilepsy: A population-based study.

    PubMed

    Reilly, Colin; Atkinson, Patricia; Das, Krishna B; Chin, Richard F M; Aylett, Sarah E; Burch, Victoria; Gillberg, Christopher; Scott, Rod C; Neville, Brian G R

    2015-01-01

    There is a lack of population-based data on specific cognitive profiles in childhood epilepsy. This study sought to determine the frequency of impairments in global cognition and aspects of working memory and processing speed in a population-based sample of children with "active" epilepsy (on antiepileptic Drugs (AEDs), and/or had a seizure in the last year). Factors significantly associated with global and specific difficulties in cognition were also identified. A total of 85 (74% of eligible population) school-aged children (5-15 years) with "active" epilepsy underwent comprehensive psychological assessment including assessment of global cognition, working memory, and processing speed. Scores on cognitive subtests were compared via paired-samples t tests. The factors associated with cognitive difficulties were analyzed via linear regression. A total of 24% of children were functioning below IQ 50, and 40% had IQ scores below 70. Scores on the Processing Speed Index were significantly lower than scores on the Verbal or Performance indexes on Wechsler instruments. The Coding subtest was a significant weakness compared with the other Wechsler subtests. A total of 58% of children displayed "memory underachievement" (memory score 1 SD below assessed IQ) on at least one of the four administered working memory subtests. Factors significantly associated with globally impaired cognition included being on polytherapy (β = -13.0; 95% CI [-19.3, -6.6], p = .000) and having attention-deficit/hyperactivity disorder (ADHD; β = -11.1, 95% CI [-3.0, -19.3], p = .008). Being on polytherapy was also associated with lower scores on the working memory and processing speed composite scores. Having developmental coordination disorder (DCD) was associated with a lower score on the processing speed composite. There is a high rate of global and specific cognitive difficulties in childhood epilepsy. Difficulties are most pronounced in aspects of working memory and processing speed. Predictors of cognitive impairment in childhood epilepsy include epilepsy-related and behavioral factors, which may differ depending on the domain of cognition assessed.

  2. Global Precipitation Measurement: GPM Microwave Imager (GMI) Algorithm Development Approach

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation reviews the approach to the development of the Global Precipitation Measurement algorithm. This presentation includes information about the responsibilities for the development of the algorithm, and the calibration. Also included is information about the orbit, and the sun angle. The test of the algorithm code will be done with synthetic data generated from the Precipitation Processing System (PPS).

  3. Plant leaf traits, canopy processes, and global atmospheric chemistry interactions.

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2017-12-01

    Plants produce and emit a diverse array of volatile metabolites into the atmosphere that participate in chemical reactions that influence distributions of air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. It is now widely accepted that accurate estimates of these emissions are required as inputs for regional air quality and global climate models. Predicting these emissions is complicated by the large number of volatile organic compounds, driving variables (e.g., temperature, solar radiation, abiotic and biotic stresses) and processes operating across a range of scales. Modeling efforts to characterize emission magnitude and variations will be described along with an assessment of the observations available for parameterizing and evaluating these models including discussion of the limitations and challenges associated with existing model approaches. A new approach for simulating canopy scale organic emissions on regional to global scales will be described and compared with leaf, canopy and regional scale flux measurements. The importance of including additional compounds and processes as well as improving estimates of existing ones will also be discussed.

  4. Advanced Computing Architectures for Cognitive Processing

    DTIC Science & Technology

    2009-07-01

    Evolution ................................................................................. 20  Figure 9: Logic diagram smart block-based neuron...48  Figure 21: Naive Grid Potential Kernel...processing would be helpful for Air Force systems acquisition. Specific cognitive processing approaches addressed herein include global information grid

  5. Public Health and Unconventional Oil and Gas Extraction Including Fracking: Global Lessons from a Scottish Government Review.

    PubMed

    Watterson, Andrew; Dinan, William

    2018-04-04

    Unconventional oil and gas extraction (UOGE) including fracking for shale gas is underway in North America on a large scale, and in Australia and some other countries. It is viewed as a major source of global energy needs by proponents. Critics consider fracking and UOGE an immediate and long-term threat to global, national, and regional public health and climate. Rarely have governments brought together relatively detailed assessments of direct and indirect public health risks associated with fracking and weighed these against potential benefits to inform a national debate on whether to pursue this energy route. The Scottish government has now done so in a wide-ranging consultation underpinned by a variety of reports on unconventional gas extraction including fracking. This paper analyses the Scottish government approach from inception to conclusion, and from procedures to outcomes. The reports commissioned by the Scottish government include a comprehensive review dedicated specifically to public health as well as reports on climate change, economic impacts, transport, geology, and decommissioning. All these reports are relevant to public health, and taken together offer a comprehensive review of existing evidence. The approach is unique globally when compared with UOGE assessments conducted in the USA, Australia, Canada, and England. The review process builds a useful evidence base although it is not without flaws. The process approach, if not the content, offers a framework that may have merits globally.

  6. Machine processing of remotely sensed data - quantifying global process: Models, sensor systems, and analytical methods; Proceedings of the Eleventh International Symposium, Purdue University, West Lafayette, IN, June 25-27, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mengel, S.K.; Morrison, D.B.

    1985-01-01

    Consideration is given to global biogeochemical issues, image processing, remote sensing of tropical environments, global processes, geology, landcover hydrology, and ecosystems modeling. Topics discussed include multisensor remote sensing strategies, geographic information systems, radars, and agricultural remote sensing. Papers are presented on fast feature extraction; a computational approach for adjusting TM imagery terrain distortions; the segmentation of a textured image by a maximum likelihood classifier; analysis of MSS Landsat data; sun angle and background effects on spectral response of simulated forest canopies; an integrated approach for vegetation/landcover mapping with digital Landsat images; geological and geomorphological studies using an image processing technique;more » and wavelength intensity indices in relation to tree conditions and leaf-nutrient content.« less

  7. Quantifying the Global Nitrous Oxide Emissions Using a Trait-based Biogeochemistry Model

    NASA Astrophysics Data System (ADS)

    Zhuang, Q.; Yu, T.

    2017-12-01

    Nitrogen is an essential element for the global biogeochemical cycle. It is a key nutrient for organisms and N compounds including nitrous oxide significantly influence the global climate. The activities of bacteria and archaea are responsible for the nitrification and denitrification in a wide variety of environments, so microbes play an important role in the nitrogen cycle in soils. To date, most existing process-based models treated nitrification and denitrification as chemical reactions driven by soil physical variables including soil temperature and moisture. In general, the effect of microbes on N cycling has not been modeled in sufficient details. Soil organic carbon also affects the N cycle because it supplies energy to microbes. In my study, a trait-based biogeochemistry model quantifying N2O emissions from the terrestrial ecosystems is developed based on an extant process-based model TEM (Terrestrial Ecosystem Model). Specifically, the improvement to TEM includes: 1) Incorporating the N fixation process to account for the inflow of N from the atmosphere to biosphere; 2) Implementing the effects of microbial dynamics on nitrification process; 3) fully considering the effects of carbon cycling on N nitrogen cycling following the principles of stoichiometry of carbon and nitrogen in soils, plants, and microbes. The difference between simulations with and without the consideration of bacterial activity lies between 5% 25% based on climate conditions and vegetation types. The trait based module allows a more detailed estimation of global N2O emissions.

  8. Translating Globalization and Democratization into Local Policy: Educational Reform in Hong Kong and Taiwan

    NASA Astrophysics Data System (ADS)

    Law, Wing-Wah

    2004-11-01

    The past two decades have witnessed three important international trends: an increase in the number of democratic states; economic globalization; and educational reforms in light of the challenges of the new millennium. A great deal of research has addressed educational change in relation to either globalization or democratization, but little has been said about the complex interactions among all three processes. In view of recent educational reforms in Hong Kong and Taiwan, the present contribution examines the local nature of education policy in a globalized age. It challenges those globalization theories which minimize the role of the state and exaggerate the power of globalization over local factors. In particular, it explores how the governments of these two Chinese societies have employed democratization to generate and legitimate reform proposals and have used economic globalization to justify educational reforms. The study concludes by discussing the complex interrelations of these processes, including tensions between global and local concerns in educational reform.

  9. Sex differences in the Kimchi-Palmer task revisited: Global reaction times, but not number of global choices differ between adult men and women.

    PubMed

    Scheuringer, Andrea; Pletzer, Belinda

    2016-10-15

    Research, directly assessing sex-dependent differences in global versus local processing is sparse, but predominantly suggesting that men show a stronger global processing bias than women. Utilizing the Kimchi-Palmer task however, sex differences in the number of global choices can only be found in children, but not in adults. In the current study 52 men and 46 women completed a computerized version of the Kimchi Palmer task, in order to investigate whether sex-differences in global-local processing in the Kimchi-Palmer task are reflected in choice reaction times rather than choices per se. While no sex differences were found in the number of global choices, we found that especially women are faster in making local choices than men, while men are faster in making global choices than women. We did not find support for the assumption that this sex difference was modulated by menstrual cycle phase of women, since the difference between reaction times to global and local choices was consistent across the menstrual cycle of women. Accordingly there was no relationship between progesterone and global-local processing in the Kimchi-Palmer task. However, like in studies utilizing the Navon task, testosterone was positively related to the number of global choices in both men and women. To our knowledge, this is the first study including reaction times as outcome measure in a Kimchi Palmer paradigm and also the first study demonstrating sex differences in the Kimchi Palmer task in adults. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    NASA Technical Reports Server (NTRS)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  11. Nonlinear dynamics of global atmospheric and Earth system processes

    NASA Technical Reports Server (NTRS)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  12. Coastal Zone Color Scanner studies

    NASA Technical Reports Server (NTRS)

    Elrod, J.

    1988-01-01

    Activities over the past year have included cooperative work with a summer faculty fellow using the Coastal Zone Color Scanner (CZCS) imagery to study the effects of gradients in trophic resources on coral reefs in the Caribbean. Other research included characterization of ocean radiances specific to an acid-waste plume. Other activities include involvement in the quality control of imagery produced in the processing of the global CZCS data set, the collection of various other data global sets, and the subsequent data comparison and analysis.

  13. Information processing speed as a mediator between psychosocial stress and global cognition in older adults.

    PubMed

    Foong, Hui F; Hamid, Tengku A; Ibrahim, Rahimah; Haron, Sharifah A

    2018-01-01

    The link between psychosocial stress and cognitive function is complex, and previous studies have indicated that it may be mediated by processing speed. Therefore, the main aim of this study was to examine whether processing speed mediates the association between psychosocial stress and global cognition in older adults. Moreover, the moderating role of gender in this model is examined as well. The study included 2322 community-dwelling older adults in Malaysia who were randomly selected through a multistage proportional cluster random sampling technique. Global cognition construct was measured by the Mini-Mental State Examination and Montreal Cognitive Assessment; psychosocial stress construct was measured by perceived stress, depression, loneliness, and neuroticism; and processing speed was assessed by the Digit Symbol Substitution Test. Structural equation modelling was used to analyze the mediation and moderation tests. Processing speed was found to partially mediate the relationship between psychosocial stress and global cognition (β in the direct model = -0.15, P < 0.001; β in the full mediation model = -0.11, P < 0.001). Moreover, the relationship between psychosocial stress and global cognition was found to be significant in men only, whereas the association between processing speed and global cognition was significant in men and women. Psychosocial stress may increase the likelihood that older adults will experience poor processing capacity, which could reduce their higher level cognition. Results indicate that there is a need to develop processing capacity intervention programmes for psychologically distressed older adults to prevent them from suffering cognitive decline. © 2018 Japanese Psychogeriatric Society.

  14. Forest, Trees, Dynamics: Results from a Novel Wisconsin Card Sorting Test Variant Protocol for Studying Global-Local Attention and Complex Cognitive Processes

    PubMed Central

    Cowley, Benjamin; Lukander, Kristian

    2016-01-01

    Background: Recognition of objects and their context relies heavily on the integrated functioning of global and local visual processing. In a realistic setting such as work, this processing becomes a sustained activity, implying a consequent interaction with executive functions. Motivation: There have been many studies of either global-local attention or executive functions; however it is relatively novel to combine these processes to study a more ecological form of attention. We aim to explore the phenomenon of global-local processing during a task requiring sustained attention and working memory. Methods: We develop and test a novel protocol for global-local dissociation, with task structure including phases of divided (“rule search”) and selective (“rule found”) attention, based on the Wisconsin Card Sorting Task (WCST). We test it in a laboratory study with 25 participants, and report on behavior measures (physiological data was also gathered, but not reported here). We develop novel stimuli with more naturalistic levels of information and noise, based primarily on face photographs, with consequently more ecological validity. Results: We report behavioral results indicating that sustained difficulty when participants test their hypotheses impacts matching-task performance, and diminishes the global precedence effect. Results also show a dissociation between subjectively experienced difficulty and objective dimension of performance, and establish the internal validity of the protocol. Contribution: We contribute an advance in the state of the art for testing global-local attention processes in concert with complex cognition. With three results we establish a connection between global-local dissociation and aspects of complex cognition. Our protocol also improves ecological validity and opens options for testing additional interactions in future work. PMID:26941689

  15. The emergence of a global right to health norm--the unresolved case of universal access to quality emergency obstetric care.

    PubMed

    Hammonds, Rachel; Ooms, Gorik

    2014-02-27

    The global response to HIV suggests the potential of an emergent global right to health norm, embracing shared global responsibility for health, to assist policy communities in framing the obligations of the domestic state and the international community. Our research explores the extent to which this global right to health norm has influenced the global policy process around maternal health rights, with a focus on universal access to emergency obstetric care. In examining the extent to which arguments stemming from a global right to health norm have been successful in advancing international policy on universal access to emergency obstetric care, we looked at the period from 1985 to 2013 period. We adopted a qualitative case study approach applying a process-tracing methodology using multiple data sources, including an extensive literature review and limited key informant interviews to analyse the international policy agenda setting process surrounding maternal health rights, focusing on emergency obstetric care. We applied John Kingdon's public policy agenda setting streams model to analyse our data. Kingdon's model suggests that to succeed as a mobilising norm, the right to health could work if it can help bring the problem, policy and political streams together, as it did with access to AIDS treatment. Our analysis suggests that despite a normative grounding in the right to health, prioritisation of the specific maternal health entitlements remains fragmented. Despite United Nations recognition of maternal mortality as a human rights issue, the relevant policy communities have not yet managed to shift the policy agenda to prioritise the global right to health norm of shared responsibility for realising access to emergency obstetric care. The experience of HIV advocates in pushing for global solutions based on right to health principles, including participation, solidarity and accountability; suggest potential avenues for utilising right to health based arguments to push for policy priority for universal access to emergency obstetric care in the post-2015 global agenda.

  16. Land Boundary Conditions for the Goddard Earth Observing System Model Version 5 (GEOS-5) Climate Modeling System: Recent Updates and Data File Descriptions

    NASA Technical Reports Server (NTRS)

    Mahanama, Sarith P.; Koster, Randal D.; Walker, Gregory K.; Takacs, Lawrence L.; Reichle, Rolf H.; De Lannoy, Gabrielle; Liu, Qing; Zhao, Bin; Suarez, Max J.

    2015-01-01

    The Earths land surface boundary conditions in the Goddard Earth Observing System version 5 (GEOS-5) modeling system were updated using recent high spatial and temporal resolution global data products. The updates include: (i) construction of a global 10-arcsec land-ocean lakes-ice mask; (ii) incorporation of a 10-arcsec Globcover 2009 land cover dataset; (iii) implementation of Level 12 Pfafstetter hydrologic catchments; (iv) use of hybridized SRTM global topography data; (v) construction of the HWSDv1.21-STATSGO2 merged global 30 arc second soil mineral and carbon data in conjunction with a highly-refined soil classification system; (vi) production of diffuse visible and near-infrared 8-day MODIS albedo climatologies at 30-arcsec from the period 2001-2011; and (vii) production of the GEOLAND2 and MODIS merged 8-day LAI climatology at 30-arcsec for GEOS-5. The global data sets were preprocessed and used to construct global raster data files for the software (mkCatchParam) that computes parameters on catchment-tiles for various atmospheric grids. The updates also include a few bug fixes in mkCatchParam, as well as changes (improvements in algorithms, etc.) to mkCatchParam that allow it to produce tile-space parameters efficiently for high resolution AGCM grids. The update process also includes the construction of data files describing the vegetation type fractions, soil background albedo, nitrogen deposition and mean annual 2m air temperature to be used with the future Catchment CN model and the global stream channel network to be used with the future global runoff routing model. This report provides detailed descriptions of the data production process and data file format of each updated data set.

  17. Used planet: a global history.

    PubMed

    Ellis, Erle C; Kaplan, Jed O; Fuller, Dorian Q; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H

    2013-05-14

    Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human-environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects.

  18. Used planet: A global history

    PubMed Central

    Ellis, Erle C.; Kaplan, Jed O.; Fuller, Dorian Q.; Vavrus, Steve; Klein Goldewijk, Kees; Verburg, Peter H.

    2013-01-01

    Human use of land has transformed ecosystem pattern and process across most of the terrestrial biosphere, a global change often described as historically recent and potentially catastrophic for both humanity and the biosphere. Interdisciplinary paleoecological, archaeological, and historical studies challenge this view, indicating that land use has been extensive and sustained for millennia in some regions and that recent trends may represent as much a recovery as an acceleration. Here we synthesize recent scientific evidence and theory on the emergence, history, and future of land use as a process transforming the Earth System and use this to explain why relatively small human populations likely caused widespread and profound ecological changes more than 3,000 y ago, whereas the largest and wealthiest human populations in history are using less arable land per person every decade. Contrasting two spatially explicit global reconstructions of land-use history shows that reconstructions incorporating adaptive changes in land-use systems over time, including land-use intensification, offer a more spatially detailed and plausible assessment of our planet's history, with a biosphere and perhaps even climate long ago affected by humans. Although land-use processes are now shifting rapidly from historical patterns in both type and scale, integrative global land-use models that incorporate dynamic adaptations in human–environment relationships help to advance our understanding of both past and future land-use changes, including their sustainability and potential global effects. PMID:23630271

  19. Simulation of Aerosols and Chemistry with a Unified Global Model

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2004-01-01

    This project is to continue the development of the global simulation capabilities of tropospheric and stratospheric chemistry and aerosols in a unified global model. This is a part of our overall investigation of aerosol-chemistry-climate interaction. In the past year, we have enabled the tropospheric chemistry simulations based on the GEOS-CHEM model, and added stratospheric chemical reactions into the GEOS-CHEM such that a globally unified troposphere-stratosphere chemistry and transport can be simulated consistently without any simplifications. The tropospheric chemical mechanism in the GEOS-CHEM includes 80 species and 150 reactions. 24 tracers are transported, including O3, NOx, total nitrogen (NOy), H2O2, CO, and several types of hydrocarbon. The chemical solver used in the GEOS-CHEM model is a highly accurate sparse-matrix vectorized Gear solver (SMVGEAR). The stratospheric chemical mechanism includes an additional approximately 100 reactions and photolysis processes. Because of the large number of total chemical reactions and photolysis processes and very different photochemical regimes involved in the unified simulation, the model demands significant computer resources that are currently not practical. Therefore, several improvements will be taken, such as massive parallelization, code optimization, or selecting a faster solver. We have also continued aerosol simulation (including sulfate, dust, black carbon, organic carbon, and sea-salt) in the global model to cover most of year 2002. These results have been made available to many groups worldwide and accessible from the website http://code916.gsfc.nasa.gov/People/Chin/aot.html.

  20. Public Health and Unconventional Oil and Gas Extraction Including Fracking: Global Lessons from a Scottish Government Review

    PubMed Central

    Watterson, Andrew

    2018-01-01

    Unconventional oil and gas extraction (UOGE) including fracking for shale gas is underway in North America on a large scale, and in Australia and some other countries. It is viewed as a major source of global energy needs by proponents. Critics consider fracking and UOGE an immediate and long-term threat to global, national, and regional public health and climate. Rarely have governments brought together relatively detailed assessments of direct and indirect public health risks associated with fracking and weighed these against potential benefits to inform a national debate on whether to pursue this energy route. The Scottish government has now done so in a wide-ranging consultation underpinned by a variety of reports on unconventional gas extraction including fracking. This paper analyses the Scottish government approach from inception to conclusion, and from procedures to outcomes. The reports commissioned by the Scottish government include a comprehensive review dedicated specifically to public health as well as reports on climate change, economic impacts, transport, geology, and decommissioning. All these reports are relevant to public health, and taken together offer a comprehensive review of existing evidence. The approach is unique globally when compared with UOGE assessments conducted in the USA, Australia, Canada, and England. The review process builds a useful evidence base although it is not without flaws. The process approach, if not the content, offers a framework that may have merits globally. PMID:29617318

  1. Pathways of Understanding: the Interactions of Humanity and Global Environmental Change

    NASA Technical Reports Server (NTRS)

    Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.

  2. Global motion perception is associated with motor function in 2-year-old children.

    PubMed

    Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E

    2017-09-29

    The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, K G

    The spread of submarines and related technology is an end product of globalization. Globalization is not a new story. By one estimate, our ancestors first crossed out of Africa roughly 80,000 years ago, and began the process that they now call globalization. With the dispersion of people around the world came the development of culture and civilization as well as the spread of ideas, goods, and technology. The process of globalization then is a long-standing one, not an innovation of the late 20th and early 21st centuries. Over the millennia, this process has been an uneven one. Globalization has oftenmore » cuased great disruptions even to the societies that initiated various innovations in culture and civilization, including science and technology. Indeed, many cultures and civilizations have disappeared while some regions failed to advance as rapidly as others, so the process of globalization is not just one of continuing progress. Globalization in the current era seems to be penetrating the most remote corners of the world at a remarkable rate as a result of advances in science and technology, particularly information technology. The diffusion of science and technology is not necessarily a benign development. It could increase the potential for a global military industrial base that may have an adverse affect on world stability in the future. For example, the spread of key military capabilities, like submarines, could still have an impact, especially over the longer term, on the US capability to project power overseas.« less

  4. Towards a Pedagogical Framework for Global Citizenship Education

    ERIC Educational Resources Information Center

    Blackmore, Chloe

    2016-01-01

    Amidst growing recognition of the importance of the learning process within global citizenship education, this paper develops a pedagogical framework including dimensions of critical thinking, dialogue, reflection, and responsible being/action. It draws on a variety of critical literatures to identify characteristics of each of these dimensions.…

  5. Knowledge and Power: The Global Research and Development Budget. Worldwatch Paper 31.

    ERIC Educational Resources Information Center

    Norman, Colin

    This monograph explores the aims, priorities, and international dimensions of the world's research and development (R&D) enterprise. Global R&D priorities in order of importance include military technology, basic research, space, energy, health, information processing, transportation, pollution control, and agriculture. The majority of R&D efforts…

  6. Scene Analysis: Non-Linear Spatial Filtering for Automatic Target Detection.

    DTIC Science & Technology

    1982-12-01

    In this thesis, a method for two-dimensional pattern recognition was developed and tested. The method included a global search scheme for candidate...test global switch TYPEO Creating negative video file only.W 11=0 12=256 13=512 14=768 GO 70 2 1 TYPE" Creating negative and horizontally flipped video...purpose was to develop a base of image processing software for the AFIT Digital Signal Processing Laboratory NOVA- ECLIPSE minicomputer system, for

  7. Bayesian Inference for Signal-Based Seismic Monitoring

    NASA Astrophysics Data System (ADS)

    Moore, D.

    2015-12-01

    Traditional seismic monitoring systems rely on discrete detections produced by station processing software, discarding significant information present in the original recorded signal. SIG-VISA (Signal-based Vertically Integrated Seismic Analysis) is a system for global seismic monitoring through Bayesian inference on seismic signals. By modeling signals directly, our forward model is able to incorporate a rich representation of the physics underlying the signal generation process, including source mechanisms, wave propagation, and station response. This allows inference in the model to recover the qualitative behavior of recent geophysical methods including waveform matching and double-differencing, all as part of a unified Bayesian monitoring system that simultaneously detects and locates events from a global network of stations. We demonstrate recent progress in scaling up SIG-VISA to efficiently process the data stream of global signals recorded by the International Monitoring System (IMS), including comparisons against existing processing methods that show increased sensitivity from our signal-based model and in particular the ability to locate events (including aftershock sequences that can tax analyst processing) precisely from waveform correlation effects. We also provide a Bayesian analysis of an alleged low-magnitude event near the DPRK test site in May 2010 [1] [2], investigating whether such an event could plausibly be detected through automated processing in a signal-based monitoring system. [1] Zhang, Miao and Wen, Lianxing. "Seismological Evidence for a Low-Yield Nuclear Test on 12 May 2010 in North Korea". Seismological Research Letters, January/February 2015. [2] Richards, Paul. "A Seismic Event in North Korea on 12 May 2010". CTBTO SnT 2015 oral presentation, video at https://video-archive.ctbto.org/index.php/kmc/preview/partner_id/103/uiconf_id/4421629/entry_id/0_ymmtpps0/delivery/http

  8. The Fourth National Climate Assessment: Progress and Next Steps

    NASA Astrophysics Data System (ADS)

    Reidmiller, D.; Lewis, K.; Reeves, K.

    2017-12-01

    The Global Change Research Act of 1990 mandates the production of a quadrennial National Climate Assessment (NCA) that integrates, evaluates, and interprets global change science. The NCA analyzes observed and projected trends in global change and evaluates related impacts across a range of sectors and regions in the United States. The fourth assessment, NCA4, is currently under development by nearly 300 Federal and non-Federal experts and is expected to be available for public comment in Fall 2017 and released in late 2018. NCA4 is a key component of the US Global Change Research Program's Sustained Assessment process, which aims to advance the science of global change and provide authoritative, relevant information for decision makers. This talk will highlight the progress of NCA4, including an overview of the current draft of the assessment and advances since the third NCA, released in 2014. It will highlight the Climate Science Special Report, an essential component of NCA4, as well as provide insight into the public engagement process-including opportunities to participate-and identify scientific inputs and tools critical to its development, such as the 2nd State of the Carbon Cycle Report and USGCRP's new scenario products website.

  9. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  10. Global Education as a Way of Reinforcing the Process by Which a Solidaritous and Just World is Built

    NASA Astrophysics Data System (ADS)

    Kaniewska, Małgorzata; Klimski, Marcin

    2017-12-01

    Global education is a part of civic education and upbringing that contributes to their scope through the better understanding of various phenomena and global interdependencies that it affords. It thus represents a response to globalisation processes that has as its goal the development of critical thinking skills in schoolchildren from an early age, with a view to stereotypes and prejudices being combated, human life and human dignity being shown values, and emphasis placed on equality, peace, tolerance, solidarity and equity. The paper considers the reasons for including axiological reflection in school education programmes encompassing matters that are global in nature. Also presented are methods by which to achieve postulates of global education at the primary-school teaching level, as well as the results of research into the level of knowledge on key aspects of this education that are present among primary-school teachers.

  11. PROCESS DESIGN FOR ENVIRONMENT: A MULTI-OBJECTIVE FRAMEWORK UNDER UNCERTAINTY

    EPA Science Inventory

    Designing chemical processes for environment requires consideration of several indexes of environmental impact including ozone depletion and global warming potentials, human and aquatic toxicity, and photochemical oxidation, and acid rain potentials. Current methodologies like t...

  12. The ATOVS and AVHRR product processing facility for EPS

    NASA Astrophysics Data System (ADS)

    Klaes, D.; Ackermann, J.; Schraidt, R.; Patterson, T.; Schlüssel, P.; Phillips, P.; Arriaga, A.; Grandell, J.

    The ATOVS/AVHRR Product Processing Facility (PPF) of the EPS (EUMETSAT Polar System) Core Ground Segment comprises the Level 1 processing of the data from the ATOVS sounding instruments AMSU-A, MHS and HIRS/4, and the imager AVHRR/3 into calibrated and navigated radiances. A second component includes the level 2 processing, which uses as input the level 1 products of the aforementioned instruments. The specification of the PPF is based on two well-known and well-established software packages, which have been used by the international community for some years: The AAPP (ATOVS and AVHRR Pre-processing Package) and ICI (Inversion Coupled with Imager). The PPF is able to process data from instruments flown on the Metop and NOAA satellites. For the level 1 processing of the sounding instruments' data (HIRS, AMSU-A and MHS), the basic functionality of AAPP has been kept; however, the individual chains for each instrument have been separated and additional functionality has been integrated. For HIRS a global calibration, as performed by NOAA/NESDIS today, has been included. For AMSU-A and MHS the moon contamination of the calibration space view can be corrected for. Additional functionality has also been included in the AVHRR processing. In particular, an enhanced navigation by landmark processing has been implemented to ensure accurate geo-location. Additionally, the PPF can digest and process the global AVHRR data either at full pixel resolution (1 km at nadir), which is the nominal mode for the Metop processing, or at the reduced resolution of the NOAA/GAC (Global Area Coverage) data (about 4 km resolution at nadir). For the level 2 processing the ICI had to be modified to include the most recent improvement in fast radiative transfer modelling as included in the RTTOV-7. As a first step towards the realisation of the PPF a prototype has been generated for the purpose to help specifying the details of the PPF, and for verification of the latter by generation of reference and test data. The prototype is able to process HRPT data, GAC data from the NOAA satellite active archive (SAA), and also Local Area Coverage (LAC) data. GAC data processing means that the processing of whole orbits is possible. Current work is aimed to assess the quality of the Level 2 retrievals and to generate reference test data for the operational PPF.

  13. Region effects influence local tree species diversity.

    PubMed

    Ricklefs, Robert E; He, Fangliang

    2016-01-19

    Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.

  14. Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.

  15. The Global Distribution of Precipitation and Clouds. Chapter 2.4

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Adler, Robert; Huffman, George; Rossow, William; Ritter, Michael; Curtis, Scott

    2004-01-01

    The water cycle is the key circuit moving water through the Earth's system. This large system, powered by energy from the sun, is a continuous exchange of moisture between the oceans, the atmosphere, and the land. Precipitation (including rain, snow, sleet, freezing rain, and hail), is the primary mechanism for transporting water from the atmosphere back to the Earth's surface and is the key physical process that links aspects of climate, weather, and the global water cycle. Global precipitation and associate cloud processes are critical for understanding the water cycle balance on a global scale and interactions with the Earth's climate system. However, unlike measurement of less dynamic and more homogenous meteorological fields such as pressure or even temperature, accurate assessment of global precipitation is particularly challenging due to its highly stochastic and rapidly changing nature. It is not uncommon to observe a broad spectrum of precipitation rates and distributions over very localized time scales. Furthermore, precipitating systems generally exhibit nonhomogeneous spatial distributions of rain rates over local to global domains.

  16. Providing Context for Complexity: Using Infographics and Conceptual Models to Teach Global Change Processes

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; White, L. D.

    2015-12-01

    Understanding modern and historical global changes requires interdisciplinary knowledge of the physical and life sciences. The Understanding Global Change website from the UC Museum of Paleontology will use a focal infographic that unifies diverse content often taught in separate K-12 science units. This visualization tool provides scientists with a structure for presenting research within the broad context of global change, and supports educators with a framework for teaching and assessing student understanding of complex global change processes. This new approach to teaching the science of global change is currently being piloted and refined based on feedback from educators and scientists in anticipation of a 2016 website launch. Global change concepts are categorized within the infographic as causes of global change (e.g., burning of fossil fuels, volcanism), ongoing Earth system processes (e.g., ocean circulation, the greenhouse effect), and the changes scientists measure in Earth's physical and biological systems (e.g., temperature, extinctions/radiations). The infographic will appear on all website content pages and provides a template for the creation of flowcharts, which are conceptual models that allow teachers and students to visualize the interdependencies and feedbacks among processes in the atmosphere, hydrosphere, biosphere, and geosphere. The development of this resource is timely given that the newly adopted Next Generation Science Standards emphasize cross-cutting concepts, including model building, and Earth system science. Flowchart activities will be available on the website to scaffold inquiry-based lessons, determine student preconceptions, and assess student content knowledge. The infographic has already served as a learning and evaluation tool during professional development workshops at UC Berkeley, Stanford University, and the Smithsonian National Museum of Natural History. At these workshops, scientists and educators used the infographic to highlight how their research and activities reinforce conceptual links among global change topics. Pre- and post-workshop assessment results and responses to questionnaires have guided the refinement of classroom activities and assessment tools utilizing flowcharts as models for global change processes.

  17. 75 FR 11216 - Self-Regulatory Organizations; NYSE Arca, Inc.; Notice of Filing of Proposed Rule Change Relating...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-10

    ..., 2009) (SR-NYSEArca-2009-83) (order approving listing of Grail American Beacon International Equity ETF... appreciation above international benchmarks, such as the BNY Mellon Classic ADR Index and the MSCI EAFE Index... process include demographics, global commerce, outsourcing, the growing global middle class and the...

  18. Globalization amid the Cornfields: Teaching Sustainable Practices in the American Midwest

    ERIC Educational Resources Information Center

    Writing Instructor, 2010

    2010-01-01

    This article discusses three sites that disrupt accustomed expectations and roles for technical communication. These sites include an agricultural processing site that is requesting tax abatements in exchange for decreased emissions so that it can remain competitive in the global market. The second is also an agricultural manufacturing site that…

  19. Global Journal of Computer Science and Technology. Volume 1.2

    ERIC Educational Resources Information Center

    Dixit, R. K.

    2009-01-01

    Articles in this issue of "Global Journal of Computer Science and Technology" include: (1) Input Data Processing Techniques in Intrusion Detection Systems--Short Review (Suhair H. Amer and John A. Hamilton, Jr.); (2) Semantic Annotation of Stock Photography for CBIR Using MPEG-7 standards (R. Balasubramani and V. Kannan); (3) An Experimental Study…

  20. A Space-Based Point Design for Global Coherent Doppler Wind Lidar Profiling Matched to the Recent NASA/NOAA Draft Science Requirements

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Emmitt, G. David; Frehlich, Rod G.; Amzajerdian, Farzin; Singh, Upendra N.

    2002-01-01

    An end-to-end point design, including lidar, orbit, scanning, atmospheric, and data processing parameters, for space-based global profiling of atmospheric wind will be presented. The point design attempts to match the recent NASA/NOAA draft science requirements for wind measurement.

  1. Global Journal of Computer Science and Technology. Volume 9, Issue 5 (Ver. 2.0)

    ERIC Educational Resources Information Center

    Dixit, R. K.

    2010-01-01

    This is a special issue published in version 1.0 of "Global Journal of Computer Science and Technology." Articles in this issue include: (1) [Theta] Scheme (Orthogonal Milstein Scheme), a Better Numerical Approximation for Multi-dimensional SDEs (Klaus Schmitz Abe); (2) Input Data Processing Techniques in Intrusion Detection…

  2. Culinary culture and globalization: an analysis of British and German Michelin-starred restaurants.

    PubMed

    Lane, Christel

    2011-12-01

    The high-end restaurant segment in Britain and Germany has long been shaped by the cultural hegemony of French haute cuisine, perpetuated by multiple processes, including the influence of the Michelin or Red Guide. Traditionally, this hegemony has been expressed in the prevalence of French expatriate chefs, culinary techniques and style and even restaurant culture. This paper investigates whether processes of globalization have weakened or even undermined this French cultural dominance in fine-dining restaurants and their culinary culture. To this end, the study identifies the various forms taken by globalization processes in this industry segment and then assesses their impact on the dominance of the French paradigm of culinary culture. The investigation focuses on British and German Michelin-starred restaurants, underlining both commonalities and divergences in the process of interaction between French, global and local influences. The study employs a qualitative method, using a number of case studies to discern cross-industry patterns. All chefs with two or three stars in the two countries, i.e. 45 chefs, were selected for the analysis of their cuisine. © London School of Economics and Political Science 2011.

  3. Multi-petascale highly efficient parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time andmore » supports DMA functionality allowing for parallel processing message-passing.« less

  4. An Intensive Observation of Calving at Helheim Glacier, East Greenland

    NASA Technical Reports Server (NTRS)

    Holland, David M.; Voytenko, Denis; Christianson, Knut; Dixon, Timothy H.; Mei, M. Jeffrey; Parizek, Byron R.; Vankova, Irena; Walker, Ryan T.; Walter, Jacob I.; Nicholls, Keith; hide

    2016-01-01

    Calving of glacial ice into the ocean from the Greenland Ice Sheet is an important component of global sea-level rise. The calving process itself is relatively poorly observed, understood, and modeled; as such, it represents a bottleneck in improving future global sea-level estimates in climate models. We organized a pilot project to observe the calving process at Helheim Glacier in east Greenland in an effort to better understand it. During an intensive one-week survey, we deployed a suite of instrumentation, including a terrestrial radar interferometer, global positioning system (GPS) receivers, seismometers, tsunameters, and an automated weather station. We were fortunate to capture a calving process and to measure various glaciological, oceanographic, and atmospheric parameters before, during, and after the event. One outcome of our observations is evidence that the calving process actually consists of a number of discrete events, spread out over time, in this instance over at least two days. This time span has implications for models of the process. Realistic projections of future global sea level will depend on an accurate parametrization of calving, and we argue that more sustained observations will be required to reach this objective.

  5. Global CO2 emissions from cement production

    NASA Astrophysics Data System (ADS)

    Andrew, Robbie M.

    2018-01-01

    The global production of cement has grown very rapidly in recent years, and after fossil fuels and land-use change, it is the third-largest source of anthropogenic emissions of carbon dioxide. The required data for estimating emissions from global cement production are poor, and it has been recognised that some global estimates are significantly inflated. Here we assemble a large variety of available datasets and prioritise official data and emission factors, including estimates submitted to the UNFCCC plus new estimates for China and India, to present a new analysis of global process emissions from cement production. We show that global process emissions in 2016 were 1.45±0.20 Gt CO2, equivalent to about 4 % of emissions from fossil fuels. Cumulative emissions from 1928 to 2016 were 39.3±2.4 Gt CO2, 66 % of which have occurred since 1990. Emissions in 2015 were 30 % lower than those recently reported by the Global Carbon Project. The data associated with this article can be found at https://doi.org/10.5281/zenodo.831455.

  6. Performing an allreduce operation on a plurality of compute nodes of a parallel computer

    DOEpatents

    Faraj, Ahmad

    2013-02-12

    Methods, apparatus, and products are disclosed for performing an allreduce operation on a plurality of compute nodes of a parallel computer, each node including at least two processing cores, that include: performing, for each node, a local reduction operation using allreduce contribution data for the cores of that node, yielding, for each node, a local reduction result for one or more representative cores for that node; establishing one or more logical rings among the nodes, each logical ring including only one of the representative cores from each node; performing, for each logical ring, a global allreduce operation using the local reduction result for the representative cores included in that logical ring, yielding a global allreduce result for each representative core included in that logical ring; and performing, for each node, a local broadcast operation using the global allreduce results for each representative core on that node.

  7. Globalization and local response to epidemiological overlap in 21st century Ecuador

    PubMed Central

    Waters, William F

    2006-01-01

    Background Third World countries are confronted by a complex overlay of two sets of health problems. Traditional maladies, including communicable diseases, malnutrition, and environmental health hazards coexist with emerging health challenges, including cardiovascular disease, cancer, and increasing levels of obesity. Using Ecuador as an example, this paper proposes a conceptual framework for linking epidemiologic overlap to emerging social structures and processes at the national and global levels. Discussion Epidemiologic trends can be seen as part of broader processes related to globalization, but this does not imply that globalization is a monolithic force that inevitably and uniformly affects nations, communities, and households in the same manner. Rather, characteristics and forms of social organization at the subnational level can shape the way that globalization takes place. Thus, globalization has affected Ecuador in specific ways and is, at the same time, intimately related to the form in which the epidemiologic transition has transpired in that country. Summary Ecuador is among neither the poorest nor the wealthiest countries and its situation may illuminate trends in other parts of the world. As in other countries, insertion into the global economy has not taken place in a vacuum; rather, Ecuador has experienced unprecedented social and demographic change in the past several decades, producing profound transformation in its social structure. Examples of local represent alternatives to centralized health systems that do not effectively address the complex overlay of traditional and emerging health problems. PMID:16712722

  8. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    NASA Astrophysics Data System (ADS)

    1999-09-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  9. Mars Pathfinder and Mars Global Surveyor Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This videotape is a compilation of the best NASA JPL (Jet Propulsion Laboratory) videos of the Mars Pathfinder and Mars Global Surveyor missions. The mission is described using animation and narration as well as some actual footage of the entire sequence of mission events. Included within these animations are the spacecraft orbit insertion; descent to the Mars surface; deployment of the airbags and instruments; and exploration by Sojourner, the Mars rover. JPL activities at spacecraft control during significant mission events are also included at the end. The spacecraft cameras pan the surrounding Mars terrain and film Sojourner traversing the surface and inspecting rocks. A single, brief, processed image of the Cydonia region (Mars face) at an oblique angle from the Mars Global Surveyor is presented. A description of the Mars Pathfinder mission, instruments, landing and deployment process, Mars approach, spacecraft orbit insertion, rover operation are all described using computer animation. Actual color footage of Sojourner as well as a 360 deg pan of the Mars terrain surrounding the spacecraft is provided. Lower quality black and white photography depicting Sojourner traversing the Mars surface and inspecting Martian rocks also is included.

  10. Causal implication by rhythmic transcranial magnetic stimulation of alpha frequency in feature-based local vs. global attention.

    PubMed

    Romei, Vincenzo; Thut, Gregor; Mok, Robert M; Schyns, Philippe G; Driver, Jon

    2012-03-01

    Although oscillatory activity in the alpha band was traditionally associated with lack of alertness, more recent work has linked it to specific cognitive functions, including visual attention. The emerging method of rhythmic transcranial magnetic stimulation (TMS) allows causal interventional tests for the online impact on performance of TMS administered in short bursts at a particular frequency. TMS bursts at 10 Hz have recently been shown to have an impact on spatial visual attention, but any role in featural attention remains unclear. Here we used rhythmic TMS at 10 Hz to assess the impact on attending to global or local components of a hierarchical Navon-like stimulus (D. Navon (1977) Forest before trees: The precedence of global features in visual perception. Cognit. Psychol., 9, 353), in a paradigm recently used with TMS at other frequencies (V. Romei, J. Driver, P.G. Schyns & G. Thut. (2011) Rhythmic TMS over parietal cortex links distinct brain frequencies to global versus local visual processing. Curr. Biol., 2, 334-337). In separate groups, left or right posterior parietal sites were stimulated at 10 Hz just before presentation of the hierarchical stimulus. Participants had to identify either the local or global component in separate blocks. Right parietal 10 Hz stimulation (vs. sham) significantly impaired global processing without affecting local processing, while left parietal 10 Hz stimulation vs. sham impaired local processing with a minor trend to enhance global processing. These 10 Hz outcomes differed significantly from stimulation at other frequencies (i.e. 5 or 20 Hz) over the same site in other recent work with the same paradigm. These dissociations confirm differential roles of the two hemispheres in local vs. global processing, and reveal a frequency-specific role for stimulation in the alpha band for regulating feature-based visual attention. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  11. The emergence of a global right to health norm – the unresolved case of universal access to quality emergency obstetric care

    PubMed Central

    2014-01-01

    Background The global response to HIV suggests the potential of an emergent global right to health norm, embracing shared global responsibility for health, to assist policy communities in framing the obligations of the domestic state and the international community. Our research explores the extent to which this global right to health norm has influenced the global policy process around maternal health rights, with a focus on universal access to emergency obstetric care. Methods In examining the extent to which arguments stemming from a global right to health norm have been successful in advancing international policy on universal access to emergency obstetric care, we looked at the period from 1985 to 2013 period. We adopted a qualitative case study approach applying a process-tracing methodology using multiple data sources, including an extensive literature review and limited key informant interviews to analyse the international policy agenda setting process surrounding maternal health rights, focusing on emergency obstetric care. We applied John Kingdon's public policy agenda setting streams model to analyse our data. Results Kingdon’s model suggests that to succeed as a mobilising norm, the right to health could work if it can help bring the problem, policy and political streams together, as it did with access to AIDS treatment. Our analysis suggests that despite a normative grounding in the right to health, prioritisation of the specific maternal health entitlements remains fragmented. Conclusions Despite United Nations recognition of maternal mortality as a human rights issue, the relevant policy communities have not yet managed to shift the policy agenda to prioritise the global right to health norm of shared responsibility for realising access to emergency obstetric care. The experience of HIV advocates in pushing for global solutions based on right to health principles, including participation, solidarity and accountability; suggest potential avenues for utilising right to health based arguments to push for policy priority for universal access to emergency obstetric care in the post-2015 global agenda. PMID:24576008

  12. The Global Food System as a Transport Pathway for Hazardous Chemicals: The Missing Link between Emissions and Exposure.

    PubMed

    Ng, Carla A; von Goetz, Natalie

    2017-01-01

    Food is a major pathway for human exposure to hazardous chemicals. The modern food system is becoming increasingly complex and globalized, but models for food-borne exposure typically assume locally derived diets or use concentrations directly measured in foods without accounting for food origin. Such approaches may not reflect actual chemical intakes because concentrations depend on food origin, and representative analysis is seldom available. Processing, packaging, storage, and transportation also impart different chemicals to food and are not yet adequately addressed. Thus, the link between environmental emissions and realistic human exposure is effectively broken. We discuss the need for a fully integrated treatment of the modern industrialized food system, and we propose strategies for using existing models and relevant supporting data sources to track chemicals during production, processing, packaging, storage, and transport. Fate and bioaccumulation models describe how chemicals distribute in the environment and accumulate through local food webs. Human exposure models can use concentrations in food to determine body burdens based on individual or population characteristics. New models now include the impacts of processing and packaging but are far from comprehensive. We propose to close the gap between emissions and exposure by utilizing a wider variety of models and data sources, including global food trade data, processing, and packaging models. A comprehensive approach that takes into account the complexity of the modern global food system is essential to enable better prediction of human exposure to chemicals in food, sound risk assessments, and more focused risk abatement strategies. Citation: Ng CA, von Goetz N. 2017. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect 125:1-7; http://dx.doi.org/10.1289/EHP168.

  13. Organ donation and transplantation: Awareness and roles of healthcare professionals-A systematic literature review.

    PubMed

    Jawoniyi, Oluwafunmilayo; Gormley, Kevin; McGleenan, Emma; Noble, Helen Rose

    2018-03-01

    To examine the role of healthcare professionals in the organ donation and transplantation process. Globally, there remains a perennial disequilibrium between organ donation and organ transplantation. Several factors account for this disequilibrium; however, as healthcare professionals are not only strategically positioned as the primary intermediaries between organ donors and transplant recipients, but also professionally situated as the implementers of organ donation and transplantation processes, they are often blamed for the global organ shortage. Mixed-method systematic review using the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols 2015 checklist. Databases were searched including CINAHL, MEDLINE, Web of Science and EMBASE using the search terms "organ donation," "healthcare professionals," "awareness" and "roles" to retrieve relevant publications. Thirteen publications met the inclusion criteria. The global organ shortage is neither contingent upon unavailability of suitable organs nor exclusively dependent upon healthcare professionals. Instead, the existence of disequilibrium between organ donation and transplantation is necessitated by a web of factors. These include the following: healthcare professionals' attitudes towards, and experience of, the organ donation and transplantation process, underpinned by professional education, specialist clinical area and duration of professional practice; conflicts of interests; ethical dilemmas; altruistic values towards organ donation; and varied organ donation legislations in different legal jurisdictions. This review maintains that if this web of factors is to be adequately addressed by healthcare systems in different global and legal jurisdictions, there should be sufficient organs voluntarily donated to meet all transplantation needs. There is a suggestion that healthcare professionals partly account for the global shortage in organ donation, but there is a need to examine how healthcare professionals' roles, knowledge, awareness, skills and competencies might impact upon the organ donation and transplantation process. © 2017 John Wiley & Sons Ltd.

  14. The effects of global awareness on the spreading of epidemics in multiplex networks

    NASA Astrophysics Data System (ADS)

    Zang, Haijuan

    2018-02-01

    It is increasingly recognized that understanding the complex interplay patterns between epidemic spreading and human behavioral is a key component of successful infection control efforts. In particular, individuals can obtain the information about epidemics and respond by altering their behaviors, which can affect the spreading dynamics as well. Besides, because the existence of herd-like behaviors, individuals are very easy to be influenced by the global awareness information. Here, in this paper, we propose a global awareness controlled spreading model (GACS) to explore the interplay between the coupled dynamical processes. Using the global microscopic Markov chain approach, we obtain the analytical results for the epidemic thresholds, which shows a high accuracy by comparison with lots of Monte Carlo simulations. Furthermore, considering other classical models used to describe the coupled dynamical processes, including the local awareness controlled contagion spreading (LACS) model, Susceptible-Infected-Susceptible-Unaware-Aware-Unaware (SIS-UAU) model and the single layer occasion, we make a detailed comparisons between the GACS with them. Although the comparisons and results depend on the parameters each model has, the GACS model always shows a strong restrain effects on epidemic spreading process. Our results give us a better understanding of the coupled dynamical processes and highlights the importance of considering the spreading of global awareness in the control of epidemics.

  15. Aeolian Processes and the Biosphere

    NASA Astrophysics Data System (ADS)

    Ravi, Sujith; D'Odorico, Paolo; Breshears, David D.; Field, Jason P.; Goudie, Andrew S.; Huxman, Travis E.; Li, Junran; Okin, Gregory S.; Swap, Robert J.; Thomas, Andrew D.; Van Pelt, Scott; Whicker, Jeffrey J.; Zobeck, Ted M.

    2011-08-01

    Aeolian processes affect the biosphere in a wide variety of contexts, including landform evolution, biogeochemical cycles, regional climate, human health, and desertification. Collectively, research on aeolian processes and the biosphere is developing rapidly in many diverse and specialized areas, but integration of these recent advances is needed to better address management issues and to set future research priorities. Here we review recent literature on aeolian processes and their interactions with the biosphere, focusing on (1) geography of dust emissions, (2) impacts, interactions, and feedbacks, (3) drivers of dust emissions, and (4) methodological approaches. Geographically, dust emissions are highly spatially variable but also provide connectivity at global scales between sources and effects, with “hot spots” being of particular concern. Recent research reveals that aeolian processes have impacts, interactions, and feedbacks at a variety of scales, including large-scale dust transport and global biogeochemical cycles, climate mediated interactions between atmospheric dust and ecosystems, impacts on human health, impacts on agriculture, and interactions between aeolian processes and dryland vegetation. Aeolian dust emissions are driven largely by, in addition to climate, a combination of soil properties, soil moisture, vegetation and roughness, biological and physical crusts, and disturbances. Aeolian research methods span laboratory and field techniques, modeling, and remote sensing. Together these integrated perspectives on aeolian processes and the biosphere provide insights into management options and aid in identifying research priorities, both of which are increasingly important given that global climate models predict an increase in aridity in many dryland systems of the world.

  16. Teacher Voice in Global Conversations around Education Access, Equity, and Quality

    ERIC Educational Resources Information Center

    Gozali, Charlina; Claassen Thrush, Elizabeth; Soto-Peña, Michelle; Whang, Christine; Luschei, Thomas F.

    2017-01-01

    Despite public commitments internationally and nationally to include the voices of all stakeholders, the voices of teachers have continued to be marginalized in the literature and in policy-making related to global educational development. The purpose of the current study is to examine the process of invoking teacher voice using a sample of…

  17. Measuring Quality beyond Test Scores: The Impact of Regional Context on Curriculum Implementation (in Northern Uganda)

    ERIC Educational Resources Information Center

    Spreen, Carol Anne; Knapczyk, Jillian J.

    2017-01-01

    Although global initiatives have brought attention to the lack of quality in education systems worldwide; the question remains, how do we implement quality education? Teachers, a vital component of the education process, are not usually included in these global conversations; this results in government initiatives missing key obstacles faced by…

  18. Effective Strategies for Global Health Research, Training and Clinical Care: A Narrative Review

    PubMed Central

    Walker, Rebekah J.; Campbell, Jennifer A.; Egede, Leonard E.

    2015-01-01

    The purpose of this narrative review was to synthesize the evidence on effective strategies for global health research, training and clinical care in order to identify common structures that have been used to guide program development. A Medline search from 2001 to 2011 produced 951 articles, which were reviewed and categorized. Thirty articles met criteria to be included in this review. Eleven articles discussed recommendations for research, 8 discussed training and 11 discussed clinical care. Global health program development should be completed within the framework of a larger institutional commitment or partnership. Support from leadership in the university or NGO, and an engaged local community are both integral to success and sustainability of efforts. It is also important for program development to engage local partners from the onset, jointly exploring issues and developing goals and objectives. Evaluation is a recommended way to determine if goals are being met, and should include considerations of sustainability, partnership building, and capacity. Global health research programs should consider details regarding the research process, context of research, partnerships, and community relationships. Training for global health should involve mentorship, pre-departure preparation of students, and elements developed to increase impact. Clinical care programs should focus on collaboration, sustainability, meeting local needs, and appropriate process considerations. PMID:25716404

  19. Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants.

    PubMed

    Galic, Nika; Grimm, Volker; Forbes, Valery E

    2017-08-01

    Freshwater ecosystems are exposed to many stressors, including toxic chemicals and global warming, which can impair, separately or in combination, important processes in organisms and hence higher levels of organization. Investigating combined effects of warming and toxicants has been a topic of little research, but neglecting their combined effects may seriously misguide management efforts. To explore how toxic chemicals and warming, alone and in combination, propagate across levels of biological organization, including a key ecosystem process, we developed an individual-based model (IBM) of a freshwater amphipod detritivore, Gammarus pseudolimnaeus, feeding on leaf litter. In this IBM, life history emerges from the individuals' energy budgets. We quantified, in different warming scenarios (+1-+4 °C), the effects of hypothetical toxicants on suborganismal processes, including feeding, somatic and maturity maintenance, growth, and reproduction. Warming reduced mean adult body sizes and population abundance and biomass, but only in the warmest scenarios. Leaf litter processing, a key contributor to ecosystem functioning and service delivery in streams, was consistently enhanced by warming, through strengthened interaction between the detritivorous consumer and its resource. Toxicant effects on feeding and maintenance resulted in initially small adverse effects on consumers, but ultimately led to population extinction and loss of ecosystem process. Warming in combination with toxicants had little effect at the individual and population levels, but ecosystem process was impaired in the warmer scenarios. Our results suggest that exposure to the same amount of toxicants can disproportionately compromise ecosystem processing depending on global warming scenarios; for example, reducing organismal feeding rates by 50% will reduce resource processing by 50% in current temperature conditions, but by up to 200% with warming of 4 °C. Our study has implications for assessing and monitoring impacts of chemicals on ecosystems facing global warming. We advise complementing existing monitoring approaches with directly quantifying ecosystem processes and services. © 2017 John Wiley & Sons Ltd.

  20. Importance of vegetation distribution for future carbon balance

    NASA Astrophysics Data System (ADS)

    Ahlström, A.; Xia, J.; Arneth, A.; Luo, Y.; Smith, B.

    2015-12-01

    Projections of future terrestrial carbon uptake vary greatly between simulations. Net primary production (NPP), wild fires, vegetation dynamics (including biome shifts) and soil decomposition constitute the main processes governing the response of the terrestrial carbon cycle in a changing climate. While primary production and soil respiration are relatively well studied and implemented in all global ecosystem models used to project the future land sink of CO2, vegetation dynamics are less studied and not always represented in global models. Here we used a detailed second generation dynamic global vegetation model with advanced representation of vegetation growth and mortality and the associated turnover and proven skill in predicting vegetation distribution and succession. We apply an emulator that describes the carbon flows and pools exactly as in simulations with the full model. The emulator simulates ecosystem dynamics in response to 13 different climate or Earth system model simulations from the CMIP5 ensemble under RCP8.5 radiative forcing at year 2085. We exchanged carbon cycle processes between these 13 simulations and investigate the changes predicted by the emulator. This method allowed us to partition the entire ensemble carbon uptake uncertainty into individual processes. We found that NPP, vegetation dynamics (including biome shifts, wild fires and mortality) and soil decomposition rates explained 49%, 17% and 33% respectively of uncertainties in modeled global C-uptake. Uncertainty due to vegetation dynamics was further partitioned into stand-clearing disturbances (16%), wild fires (0%), stand dynamics (7%), reproduction (10%) and biome shifts (67%) globally. We conclude that while NPP and soil decomposition rates jointly account for 83% of future climate induced C-uptake uncertainties, vegetation turnover and structure, dominated by shifts in vegetation distribution, represent a significant fraction globally and regionally (tropical forests: 40%), strongly motivating their representation and analysis in future C-cycle studies.

  1. Plant health and global change--some implications for landscape management.

    PubMed

    Pautasso, Marco; Dehnen-Schmutz, Katharina; Holdenrieder, Ottmar; Pietravalle, Stéphane; Salama, Nabeil; Jeger, Mike J; Lange, Eckart; Hehl-Lange, Sigrid

    2010-11-01

    Global change (climate change together with other worldwide anthropogenic processes such as increasing trade, air pollution and urbanization) will affect plant health at the genetic, individual, population and landscape level. Direct effects include ecosystem stress due to natural resources shortage or imbalance. Indirect effects include (i) an increased frequency of natural detrimental phenomena, (ii) an increased pressure due to already present pests and diseases, (iii) the introduction of new invasive species either as a result of an improved suitability of the climatic conditions or as a result of increased trade, and (iv) the human response to global change. In this review, we provide an overview of recent studies on terrestrial plant health in the presence of global change factors. We summarize the links between climate change and some key issues in plant health, including tree mortality, changes in wildfire regimes, biological invasions and the role of genetic diversity for ecosystem resilience. Prediction and management of global change effects are complicated by interactions between globalization, climate and invasive plants and/or pathogens. We summarize practical guidelines for landscape management and draw general conclusions from an expanding body of literature. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  2. Global land cover mapping: a review and uncertainty analysis

    USGS Publications Warehouse

    Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu

    2014-01-01

    Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.

  3. Sustainable development goals for global health: facilitating good governance in a complex environment.

    PubMed

    Haffeld, Just

    2013-11-01

    Increasing complexity is following in the wake of rampant globalization. Thus, the discussion about Sustainable Development Goals (SDGs) requires new thinking that departs from a critique of current policy tools in exploration of a complexity-friendly approach. This article argues that potential SDGs should: treat stakeholders, like states, business and civil society actors, as agents on different aggregate levels of networks; incorporate good governance processes that facilitate early involvement of relevant resources, as well as equitable participation, consultative processes, and regular policy and programme implementation reviews; anchor adoption and enforcement of such rules to democratic processes in accountable organizations; and include comprehensive systems evaluations, including procedural indicators. A global framework convention for health could be a suitable instrument for handling some of the challenges related to the governance of a complex environment. It could structure and legitimize government involvement, engage stakeholders, arrange deliberation and decision-making processes with due participation and regular policy review, and define minimum standards for health services. A monitoring scheme could ensure that agents in networks comply according to whole-systems targets, locally defined outcome indicators, and process indicators, thus resolving the paradox of government control vs. local policy space. A convention could thus exploit the energy created in the encounter between civil society, international organizations and national authorities. Copyright © 2013 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.

  4. Estimating Total Electron Content Using 1,000+ GPS Receivers

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila; Mannucci, Anthony

    2006-01-01

    A computer program uses data from more than 1,000 Global Positioning System (GPS) receivers in an Internet-accessible global network to generate daily estimates of the global distribution of vertical total electron content (VTEC) of the ionosphere. This program supersedes an older program capable of processing readings from only about 200 GPS receivers. This program downloads the data via the Internet, then processes the data in three stages. In the first stage, raw data from a global subnetwork of about 200 receivers are preprocessed, station by station, in a Kalman-filter-based least-squares estimation scheme that estimates satellite and receiver differential biases for these receivers and for satellites. In the second stage, an observation equation that incorporates the results from the first stage and the raw data from the remaining 800 receivers is solved to obtain the differential biases for these receivers. The only remaining error sources for which an account cannot be given are multipath and receiver noise contributions. The third stage is a postprocessing stage in which all the processed data are combined and used to generate new data products, including receiver differential biases and global and regional VTEC maps and animations.

  5. The Global Geophysical Fluids Center of IERS (and its Special Bureau for Mantle)

    NASA Astrophysics Data System (ADS)

    Chao, B. F.

    2002-12-01

    The Global Geophysical Fluids Center (GGFC) was established by the International Earth Rotation Service (IERS) on IERS's 10th anniversary day January 1, 1998, in an effort to expand IERS's services to the scientific community. Under the GGFC, eight Special Bureaus (SB) have been selected, each to be responsible for research and data service activities pertaining to mass transports and related geophysical processes in specific components of the Earth system, or "global geophysical fluids," including the atmosphere, oceans, solid Earth, core, and geophysical processes of gravity, loading, tides and hydrological cycles. GGFC and the SBs have the responsibility of supporting, facilitating, and providing services to the worldwide research community, in areas related to the variations in Earth rotation, gravity field and geocenter that are caused by mass transport in the global geophysical fluids. These minute variations have been observed by various space geodetic techniques, as effective remote sensing tools, with ever increasing precision/accuracy and temporal/spatial resolution. The GGFC and SBs have organized dedicated workshops and special sessions at international conferences, published articles, and held regular business meetings. The SBs maintain individual website for data services and information exchanges. See URL bowie.gsfc.nasa.gov/ggfc/. In particular, the SB for Mantle focuses on large-scale mass redistributions that occur in the mantle in association with various dynamic processes, including seismic activities, the post-glacial rebound, and mantle convections.

  6. Uneven dietary development: linking the policies and processes of globalization with the nutrition transition, obesity and diet-related chronic diseases

    PubMed Central

    Hawkes, Corinna

    2006-01-01

    In a "nutrition transition", the consumption of foods high in fats and sweeteners is increasing throughout the developing world. The transition, implicated in the rapid rise of obesity and diet-related chronic diseases worldwide, is rooted in the processes of globalization. Globalization affects the nature of agri-food systems, thereby altering the quantity, type, cost and desirability of foods available for consumption. Understanding the links between globalization and the nutrition transition is therefore necessary to help policy makers develop policies, including food policies, for addressing the global burden of chronic disease. While the subject has been much discussed, tracing the specific pathways between globalization and dietary change remains a challenge. To help address this challenge, this paper explores how one of the central mechanisms of globalization, the integration of the global marketplace, is affecting the specific diet patterns. Focusing on middle-income countries, it highlights the importance of three major processes of market integration: (I) production and trade of agricultural goods; (II) foreign direct investment in food processing and retailing; and (III) global food advertising and promotion. The paper reveals how specific policies implemented to advance the globalization agenda account in part for some recent trends in the global diet. Agricultural production and trade policies have enabled more vegetable oil consumption; policies on foreign direct investment have facilitated higher consumption of highly-processed foods, as has global food marketing. These dietary outcomes also reflect the socioeconomic and cultural context in which these policies are operating. An important finding is that the dynamic, competitive forces unleashed as a result of global market integration facilitates not only convergence in consumption habits (as is commonly assumed in the "Coca-Colonization" hypothesis), but adaptation to products targeted at different niche markets. This convergence-divergence duality raises the policy concern that globalization will exacerbate uneven dietary development between rich and poor. As high-income groups in developing countries accrue the benefits of a more dynamic marketplace, lower-income groups may well experience convergence towards poor quality obseogenic diets, as observed in western countries. Global economic polices concerning agriculture, trade, investment and marketing affect what the world eats. They are therefore also global food and health policies. Health policy makers should pay greater attention to these policies in order to address some of the structural causes of obesity and diet-related chronic diseases worldwide, especially among the groups of low socioeconomic status. PMID:16569239

  7. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE PAGES

    Dai, Heng; Ye, Ming; Walker, Anthony P.; ...

    2017-03-28

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  8. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    A hydrological model consists of multiple process level submodels, and each submodel represents a process key to the operation of the simulated system. Global sensitivity analysis methods have been widely used to identify important processes for system model development and improvement. The existing methods of global sensitivity analysis only consider parametric uncertainty, and are not capable of handling model uncertainty caused by multiple process models that arise from competing hypotheses about one or more processes. To address this problem, this study develops a new method to probe model output sensitivity to competing process models by integrating model averaging methods withmore » variance-based global sensitivity analysis. A process sensitivity index is derived as a single summary measure of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and their parameters. Here, for demonstration, the new index is used to assign importance to the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that convert precipitation to recharge, and the geology process is simulated by two models of hydraulic conductivity. Each process model has its own random parameters. Finally, the new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  9. Lightning and middle atmospheric discharges in the atmosphere

    NASA Astrophysics Data System (ADS)

    Siingh, Devendraa; Singh, R. P.; Kumar, Sarvan; Dharmaraj, T.; Singh, Abhay K.; Singh, Ashok K.; Patil, M. N.; Singh, Shubha

    2015-11-01

    Recent development in lightning discharges including transient luminous events (TLEs) and global electric circuit are discussed. Role of solar activity, convective available potential energy, surface temperature and difference of land-ocean surfaces on convection process are discussed. Different processes of discharge initiation are discussed. Events like sprites and halos are caused by the upward quasi-electrostatic fields associated with intense cloud-to-ground discharges while jets (blue starter, blue jet, gigantic jet) are caused by charge imbalance in thunderstorm during lightning discharges but they are not associated with a particular discharge flash. Elves are generated by the electromagnetic pulse radiated during lightning discharges. The present understanding of global electric circuit is also reviewed. Relation between lightning activity/global electric circuit and climate is discussed.

  10. The Role of Civil Society Organizations in Monitoring the Global AIDS Response.

    PubMed

    Smith, Julia; Mallouris, Christoforos; Lee, Kelley; Alfvén, Tobias

    2017-07-01

    Civil society organizations (CSOs) are recognized as playing an exceptional role in the global AIDS response. However, there is little detailed research to date on how they contribute to specific governance functions. This article uses Haas' framework on global governance functions to map CSO's participation in the monitoring of global commitments to the AIDS response by institutions and states. Drawing on key informant interviews and primary documents, it focuses specifically on CSO participation in Global AIDS Response Progress Reporting and in Global Fund to Fight AIDS, Tuberculosis and Malaria processes. It argues that the AIDS response is unique within global health governance, in that CSOs fulfill both formal and informal monitoring functions, and considers the strengths and weaknesses of these contributions. It concludes that future global health governance arrangements should include provisions and resources for monitoring by CSOs because their participation creates more inclusive global health governance and contributes to strengthening commitments to human rights.

  11. Transitioning from Distributed and Traditional to Distributed and Agile: An Experience Report

    NASA Astrophysics Data System (ADS)

    Wildt, Daniel; Prikladnicki, Rafael

    Global companies that experienced extensive waterfall phased plans are trying to improve their existing processes to expedite team engagement. Agile methodologies have become an acceptable path to follow because it comprises project management as part of its practices. Agile practices have been used with the objective of simplifying project control through simple processes, easy to update documentation and higher team iteration over exhaustive documentation, focusing rather on team continuous improvement and aiming to add value to business processes. The purpose of this chapter is to describe the experience of a global multinational company on transitioning from distributed and traditional to distributed and agile. This company has development centers across North America, South America and Asia. This chapter covers challenges faced by the project teams of two pilot projects, including strengths of using agile practices in a globally distributed environment and practical recommendations for similar endeavors.

  12. Funding global emergency medicine research-from seed grants to NIH support.

    PubMed

    Hansoti, Bhakti; Levine, Adam; Ganti, Latha; Oteng, Rockefeller; DesRosiers, Taylor; Modi, Payal; Brown, Jeremy

    2016-12-01

    Funding for global health has grown significantly over the past two decades. Numerous funding opportunities for international development and research work exist; however, they can be difficult to navigate. The 2013 Academic Emergency Medicine consensus conference on global health and emergency care identified the need to strengthen global emergency care research funding, solidify existing funding streams, and expand funding sources. This piece focuses on the various federal funding opportunities available to support emergency physicians conducting international research from seed funding to large institutional grants. In particular, we focus on the application and review processes for the Fulbright and Fogarty programs, National Institutes of Health (NIH) Career development awards, and the Medical Education Partnership Initiative (MEPI), including tips and pathways through each application process. Lastly, the paper provides an index that may be used as a guide in determining whether the amount of funding provided by a grant is worth the effort in applying.

  13. Our changing planet: The FY 1993 US global change research program. A supplement to the US President's fiscal year 1993 budget

    NASA Technical Reports Server (NTRS)

    1992-01-01

    An improved predictive understanding of the integrated Earth system, including human interactions, will provide direct benefits by anticipating and planning for possible impacts on commerce, agriculture, energy, resource utilization, human safety, and environmental quality. The central goal of the U.S. Global Change Research Program (USGCRP) is to help establish the scientific understanding and the basis for national and international policymaking related to natural and human-induced changes in the global Earth system. This will be accomplished through: (1) establishing an integrated, comprehensive, long-term program of documenting the Earth system on a global scale; (2) conducting a program of focused studies to improve our understanding of the physical, geological, chemical, biological, and social processes that influence the Earth system processes; and (3) developing integrated conceptual and predictive Earth system models.

  14. A DBMS architecture for global change research

    NASA Astrophysics Data System (ADS)

    Hachem, Nabil I.; Gennert, Michael A.; Ward, Matthew O.

    1993-08-01

    The goal of this research is the design and development of an integrated system for the management of very large scientific databases, cartographic/geographic information processing, and exploratory scientific data analysis for global change research. The system will represent both spatial and temporal knowledge about natural and man-made entities on the eath's surface, following an object-oriented paradigm. A user will be able to derive, modify, and apply, procedures to perform operations on the data, including comparison, derivation, prediction, validation, and visualization. This work represents an effort to extend the database technology with an intrinsic class of operators, which is extensible and responds to the growing needs of scientific research. Of significance is the integration of many diverse forms of data into the database, including cartography, geography, hydrography, hypsography, images, and urban planning data. Equally important is the maintenance of metadata, that is, data about the data, such as coordinate transformation parameters, map scales, and audit trails of previous processing operations. This project will impact the fields of geographical information systems and global change research as well as the database community. It will provide an integrated database management testbed for scientific research, and a testbed for the development of analysis tools to understand and predict global change.

  15. A global dataset of sub-daily rainfall indices

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Lewis, E.; Blenkinsop, S.; Guerreiro, S.; Li, X.; Barbero, R.; Chan, S.; Lenderink, G.; Westra, S.

    2017-12-01

    It is still uncertain how hydrological extremes will change with global warming as we do not fully understand the processes that cause extreme precipitation under current climate variability. The INTENSE project is using a novel and fully-integrated data-modelling approach to provide a step-change in our understanding of the nature and drivers of global precipitation extremes and change on societally relevant timescales, leading to improved high-resolution climate model representation of extreme rainfall processes. The INTENSE project is in conjunction with the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges Project (GEWEX) Science questions. A new global sub-daily precipitation dataset has been constructed (data collection is ongoing). Metadata for each station has been calculated, detailing record lengths, missing data, station locations. A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community.

  16. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery.

    PubMed

    Kim, Mi-Hyung; Kim, Jung-Wk

    2010-09-01

    This study evaluated feed manufacturing including dry feeding and wet feeding, composting, and landfilling for food waste disposal options from the perspective of global warming and resource recovery. The method of the expanded system boundaries was employed in order to compare different by-products. The whole stages of disposal involved in the systems such as separate discharge, collection, transportation, treatment, and final disposal, were included in the system boundary and evaluated. The Global Warming Potential generated from 1tonne of food wastes for each disposal system was analyzed by the life cycle assessment method. The results showed that 200kg of CO(2)-eq could be produced from dry feeding process, 61kg of CO(2)-eq from wet feeding process, 123kg of CO(2)-eq from composting process, and 1010kg of CO(2)-eq from landfilling. Feed manufacturing and composting, the common treatment methods currently employed, have been known to be environment friendlier than other methods. However, this study shows that they can negatively affect the environment if their by-products are not appropriately utilized as intended. Copyright 2010 Elsevier B.V. All rights reserved.

  17. NASA Dryden Flight Research Center: Unmanned Aircraft Operations

    NASA Technical Reports Server (NTRS)

    Pestana, Mark

    2010-01-01

    This slide presentation reviews several topics related to operating unmanned aircraft in particular sharing aspects of unmanned aircraft from the perspective of a pilot. There is a section on the Global Hawk project which contains information about the first Global Hawk science mission, (i.e., Global Hawk Pacific (GloPac). Included in this information is GloPac science highlights, a listing of the GloPac Instruments. The second Global Hawk science mission was Genesis and Rapid Intensification Process (GRIP), for the NASA Hurricane Science Research Team. Information includes the instrumentation and the flights that were undertaken during the program. A section on Ikhana is next. This section includes views of the Ground Control Station (GCS), and a discussion of how the piloting of UAS is different from piloting in a manned aircraft. There is also discussion about displays and controls of aircraft. There is also discussion about what makes a pilot. The last section relates the use of Ikhana in the western states fire mission.

  18. Global Particulate Matter Source Apportionment

    NASA Astrophysics Data System (ADS)

    Lamancusa, C.; Wagstrom, K.

    2017-12-01

    As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.

  19. A Framework and Methodology for Navigating Disaster and Global Health in Crisis Literature

    PubMed Central

    Chan, Jennifer L.; Burkle, Frederick M.

    2013-01-01

    Both ‘disasters’ and ‘global health in crisis’ research has dramatically grown due to the ever-increasing frequency and magnitude of crises around the world. Large volumes of peer-reviewed literature are not only a testament to the field’s value and evolution, but also present an unprecedented outpouring of seemingly unmanageable information across a wide array of crises and disciplines. Disaster medicine, health and humanitarian assistance, global health and public health disaster literature all lie within the disaster and global health in crisis literature spectrum and are increasingly accepted as multidisciplinary and transdisciplinary disciplines. Researchers, policy makers, and practitioners now face a new challenge; that of accessing this expansive literature for decision-making and exploring new areas of research. Individuals are also reaching beyond the peer-reviewed environment to grey literature using search engines like Google Scholar to access policy documents, consensus reports and conference proceedings. What is needed is a method and mechanism with which to search and retrieve relevant articles from this expansive body of literature. This manuscript presents both a framework and workable process for a diverse group of users to navigate the growing peer-reviewed and grey disaster and global health in crises literature. Methods: Disaster terms from textbooks, peer-reviewed and grey literature were used to design a framework of thematic clusters and subject matter ‘nodes’. A set of 84 terms, selected from 143 curated terms was organized within each node reflecting topics within the disaster and global health in crisis literature. Terms were crossed with one another and the term ‘disaster’. The results were formatted into tables and matrices. This process created a roadmap of search terms that could be applied to the PubMed database. Each search in the matrix or table results in a listed number of articles. This process was applied to literature from PubMed from 2005-2011. A complementary process was also applied to Google Scholar using the same framework of clusters, nodes, and terms expanding the search process to include the broader grey literature assets. Results: A framework of four thematic clusters and twelve subject matter nodes were designed to capture diverse disaster and global health in crisis-related content. From 2005-2011 there were 18,660 articles referring to the term [disaster]. Restricting the search to human research, MeSH, and English language there remained 7,736 identified articles representing an unmanageable number to adequately process for research, policy or best practices. However, using the crossed search and matrix process revealed further examples of robust realms of research in disasters, emergency medicine, EMS, public health and global health. Examples of potential gaps in current peer-reviewed disaster and global health in crisis literature were identified as mental health, elderly care, and alternate sites of care. The same framework and process was then applied to Google Scholar, specifically for topics that resulted in few PubMed search returns. When applying the same framework and process to the Google Scholar example searches retrieved unique peer-reviewed articles not identified in PubMed and documents including books, governmental documents and consensus papers. Conclusions: The proposed framework, methodology and process using four clusters, twelve nodes and a matrix and table process applied to PubMed and Google Scholar unlocks otherwise inaccessible opportunities to better navigate the massively growing body of peer-reviewed disaster and global health in crises literature. This approach will assist researchers, policy makers, and practitioners to generate future research questions, report on the overall evolution of the disaster and global health in crisis field and further guide disaster planning, prevention, preparedness, mitigation response and recovery. PMID:23591457

  20. A framework and methodology for navigating disaster and global health in crisis literature.

    PubMed

    Chan, Jennifer L; Burkle, Frederick M

    2013-04-04

    Both 'disasters' and 'global health in crisis' research has dramatically grown due to the ever-increasing frequency and magnitude of crises around the world. Large volumes of peer-reviewed literature are not only a testament to the field's value and evolution, but also present an unprecedented outpouring of seemingly unmanageable information across a wide array of crises and disciplines. Disaster medicine, health and humanitarian assistance, global health and public health disaster literature all lie within the disaster and global health in crisis literature spectrum and are increasingly accepted as multidisciplinary and transdisciplinary disciplines. Researchers, policy makers, and practitioners now face a new challenge; that of accessing this expansive literature for decision-making and exploring new areas of research. Individuals are also reaching beyond the peer-reviewed environment to grey literature using search engines like Google Scholar to access policy documents, consensus reports and conference proceedings. What is needed is a method and mechanism with which to search and retrieve relevant articles from this expansive body of literature. This manuscript presents both a framework and workable process for a diverse group of users to navigate the growing peer-reviewed and grey disaster and global health in crises literature. Disaster terms from textbooks, peer-reviewed and grey literature were used to design a framework of thematic clusters and subject matter 'nodes'. A set of 84 terms, selected from 143 curated terms was organized within each node reflecting topics within the disaster and global health in crisis literature. Terms were crossed with one another and the term 'disaster'. The results were formatted into tables and matrices. This process created a roadmap of search terms that could be applied to the PubMed database. Each search in the matrix or table results in a listed number of articles. This process was applied to literature from PubMed from 2005-2011. A complementary process was also applied to Google Scholar using the same framework of clusters, nodes, and terms expanding the search process to include the broader grey literature assets. A framework of four thematic clusters and twelve subject matter nodes were designed to capture diverse disaster and global health in crisis-related content. From 2005-2011 there were 18,660 articles referring to the term [disaster]. Restricting the search to human research, MeSH, and English language there remained 7,736 identified articles representing an unmanageable number to adequately process for research, policy or best practices. However, using the crossed search and matrix process revealed further examples of robust realms of research in disasters, emergency medicine, EMS, public health and global health. Examples of potential gaps in current peer-reviewed disaster and global health in crisis literature were identified as mental health, elderly care, and alternate sites of care. The same framework and process was then applied to Google Scholar, specifically for topics that resulted in few PubMed search returns. When applying the same framework and process to the Google Scholar example searches retrieved unique peer-reviewed articles not identified in PubMed and documents including books, governmental documents and consensus papers. The proposed framework, methodology and process using four clusters, twelve nodes and a matrix and table process applied to PubMed and Google Scholar unlocks otherwise inaccessible opportunities to better navigate the massively growing body of peer-reviewed disaster and global health in crises literature. This approach will assist researchers, policy makers, and practitioners to generate future research questions, report on the overall evolution of the disaster and global health in crisis field and further guide disaster planning, prevention, preparedness, mitigation response and recovery.

  1. Conceptualizing psychological processes in response to globalization: Components, antecedents, and consequences of global orientations.

    PubMed

    Chen, Sylvia Xiaohua; Lam, Ben C P; Hui, Bryant P H; Ng, Jacky C K; Mak, Winnie W S; Guan, Yanjun; Buchtel, Emma E; Tang, Willie C S; Lau, Victor C Y

    2016-02-01

    The influences of globalization have permeated various aspects of life in contemporary society, from technical innovations, economic development, and lifestyles, to communication patterns. The present research proposed a construct termed global orientation to denote individual differences in the psychological processes of acculturating to the globalizing world. It encompasses multicultural acquisition as a proactive response and ethnic protection as a defensive response to globalization. Ten studies examined the applicability of global orientations among majority and minority groups, including immigrants and sojourners, in multicultural and relatively monocultural contexts, and across Eastern and Western cultures. Multicultural acquisition is positively correlated with both independent and interdependent self-construals, bilingual proficiency and usage, and dual cultural identifications. Multicultural acquisition is promotion-focused, while ethnic protection is prevention-focused and related to acculturative stress. Global orientations affect individuating and modest behavior over and above multicultural ideology, predict overlap with outgroups over and above political orientation, and predict psychological adaptation, sociocultural competence, tolerance, and attitudes toward ethnocultural groups over and above acculturation expectations/strategies. Global orientations also predict English and Chinese oral presentation performance in multilevel analyses and the frequency and pleasantness of intercultural contact in cross-lagged panel models. We discuss how the psychological study of global orientations contributes to theory and research on acculturation, cultural identity, and intergroup relations. (c) 2016 APA, all rights reserved).

  2. Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products

    NASA Astrophysics Data System (ADS)

    Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.

    2012-12-01

    The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.

  3. Science plan for the Alaska SAR facility program. Phase 1: Data from the first European sensing satellite, ERS-1

    NASA Technical Reports Server (NTRS)

    Carsey, Frank D.

    1989-01-01

    Science objectives, opportunities and requirements are discussed for the utilization of data from the Synthetic Aperture Radar (SAR) on the European First Remote Sensing Satellite, to be flown by the European Space Agency in the early 1990s. The principal applications of the imaging data are in studies of geophysical processes taking place within the direct-reception area of the Alaska SAR Facility in Fairbanks, Alaska, essentially the area within 2000 km of the receiver. The primary research that will be supported by these data include studies of the oceanography and sea ice phenomena of Alaskan and adjacent polar waters and the geology, glaciology, hydrology, and ecology of the region. These studies focus on the area within the reception mask of ASF, and numerous connections are made to global processes and thus to the observation and understanding of global change. Processes within the station reception area both affect and are affected by global phenomena, in some cases quite critically. Requirements for data processing and archiving systems, prelaunch research, and image processing for geophysical product generation are discussed.

  4. NEAT1 Scaffolds RNA Binding Proteins and the Microprocessor to Globally Enhance Pri-miRNA Processing

    PubMed Central

    Jiang, Li; Shao, Changwei; Wu, Qi-Jia; Chen, Geng; Zhou, Jie; Yang, Bo; Li, Hairi; Gou, Lan-Tao; Zhang, Yi; Wang, Yangming; Yeo, Gene W.; Zhou, Yu; Fu, Xiang-Dong

    2018-01-01

    Summary MicroRNA biogenesis is known to be modulated by a variety of RNA binding proteins (RBPs), but in most cases, individual RBPs appear to influence the processing of a small subset of target miRNAs. We herein report that the RNA binding NONO/PSF heterodimer binds a large number of expressed pri-miRNAs in HeLa cells to globally enhance pri-miRNA processing by the Drosha/DGCR8 Microprocessor. Because NONO/PSF are key components of paraspeckles organized by the lncRNA NEAT1, we further demonstrate that NEAT1 also has a profound effect on global pri-miRNA processing. Mechanistic dissection reveals that NEAT1 broadly interacts with NONO/PSF as well as many other RBPs, and that multiple RNA segments in NEAT1, including a “pseudo pri-miRNA” near its 3′ end, help attract the Microprocessor. These findings suggest a bird nest model for a large non-coding RNA to orchestrate efficient processing of almost an entire class of small non-coding RNAs in the nucleus. PMID:28846091

  5. NEAT1 scaffolds RNA-binding proteins and the Microprocessor to globally enhance pri-miRNA processing.

    PubMed

    Jiang, Li; Shao, Changwei; Wu, Qi-Jia; Chen, Geng; Zhou, Jie; Yang, Bo; Li, Hairi; Gou, Lan-Tao; Zhang, Yi; Wang, Yangming; Yeo, Gene W; Zhou, Yu; Fu, Xiang-Dong

    2017-10-01

    MicroRNA (miRNA) biogenesis is known to be modulated by a variety of RNA-binding proteins (RBPs), but in most cases, individual RBPs appear to influence the processing of a small subset of target miRNAs. Here, we report that the RNA-binding NONO-PSF heterodimer binds a large number of expressed pri-miRNAs in HeLa cells to globally enhance pri-miRNA processing by the Drosha-DGCR8 Microprocessor. NONO and PSF are key components of paraspeckles organized by the long noncoding RNA (lncRNA) NEAT1. We further demonstrate that NEAT1 also has a profound effect on global pri-miRNA processing. Mechanistic dissection reveals that NEAT1 broadly interacts with the NONO-PSF heterodimer as well as many other RBPs and that multiple RNA segments in NEAT1, including a 'pseudo pri-miRNA' near its 3' end, help attract the Microprocessor. These findings suggest a 'bird nest' model in which an lncRNA orchestrates efficient processing of potentially an entire class of small noncoding RNAs in the nucleus.

  6. Probabilistic Estimates of Global Mean Sea Level and its Underlying Processes

    NASA Astrophysics Data System (ADS)

    Hay, C.; Morrow, E.; Kopp, R. E.; Mitrovica, J. X.

    2015-12-01

    Local sea level can vary significantly from the global mean value due to a suite of processes that includes ongoing sea-level changes due to the last ice age, land water storage, ocean circulation changes, and non-uniform sea-level changes that arise when modern-day land ice rapidly melts. Understanding these sources of spatial and temporal variability is critical to estimating past and present sea-level change and projecting future sea-level rise. Using two probabilistic techniques, a multi-model Kalman smoother and Gaussian process regression, we have reanalyzed 20th century tide gauge observations to produce a new estimate of global mean sea level (GMSL). Our methods allow us to extract global information from the sparse tide gauge field by taking advantage of the physics-based and model-derived geometry of the contributing processes. Both methods provide constraints on the sea-level contribution of glacial isostatic adjustment (GIA). The Kalman smoother tests multiple discrete models of glacial isostatic adjustment (GIA), probabilistically computing the most likely GIA model given the observations, while the Gaussian process regression characterizes the prior covariance structure of a suite of GIA models and then uses this structure to estimate the posterior distribution of local rates of GIA-induced sea-level change. We present the two methodologies, the model-derived geometries of the underlying processes, and our new probabilistic estimates of GMSL and GIA.

  7. Global change effects on humid tropical forests: Evidence for biogeochemical and biodiversity shifts at an ecosystem scale

    NASA Astrophysics Data System (ADS)

    Cusack, Daniela F.; Karpman, Jason; Ashdown, Daniel; Cao, Qian; Ciochina, Mark; Halterman, Sarah; Lydon, Scott; Neupane, Avishesh

    2016-09-01

    Government and international agencies have highlighted the need to focus global change research efforts on tropical ecosystems. However, no recent comprehensive review exists synthesizing humid tropical forest responses across global change factors, including warming, decreased precipitation, carbon dioxide fertilization, nitrogen deposition, and land use/land cover changes. This paper assesses research across spatial and temporal scales for the tropics, including modeling, field, and controlled laboratory studies. The review aims to (1) provide a broad understanding of how a suite of global change factors are altering humid tropical forest ecosystem properties and biogeochemical processes; (2) assess spatial variability in responses to global change factors among humid tropical regions; (3) synthesize results from across humid tropical regions to identify emergent trends in ecosystem responses; (4) identify research and management priorities for the humid tropics in the context of global change. Ecosystem responses covered here include plant growth, carbon storage, nutrient cycling, biodiversity, and disturbance regime shifts. The review demonstrates overall negative effects of global change on all ecosystem properties, with the greatest uncertainty and variability in nutrient cycling responses. Generally, all global change factors reviewed, except for carbon dioxide fertilization, demonstrate great potential to trigger positive feedbacks to global warming via greenhouse gas emissions and biogeophysical changes that cause regional warming. This assessment demonstrates that effects of decreased rainfall and deforestation on tropical forests are relatively well understood, whereas the potential effects of warming, carbon dioxide fertilization, nitrogen deposition, and plant species invasions require more cross-site, mechanistic research to predict tropical forest responses at regional and global scales.

  8. The PHI/GHFP-II Employers' Study: The Hidden Barriers Between Domestic and Global Health Careers and Crucial Competencies for Success.

    PubMed

    Rudy, Sharon; Wanchek, Natasha; Godsted, David; Blackburn, Morgan; Mann, Elise

    An ongoing discussion in global health in the United States centers on the future of the US-trained global health workforce and how best to prepare professionals for this career path. The Public Health Institute, through its Global Health Fellows Program (I and II), has been in a unique position to identify the shifting employment dynamic in global health. The purpose of the survey was to gather information on global health employers' hiring practices and insights into the importance of nonclinical skills in contributing to successful professional work; preparedness of graduates with needed nonclinical skills; and the value of domestic work experience for global health careers. The focus was on individuals primarily raised in the United States who studied global health in either graduate or undergraduate settings. A web-based survey and telephone interviews were conducted in early 2015. Overall, 49 project directors from 32 organizations participated. Key findings included: CONCLUSIONS: The process of preparing professionals for global health work has fallen behind emerging realities, including globalization, ever-evolving technologies, and advances in health care. Universities must provide an increased curricular emphasis on nonclinical skills, both interpersonal and business related, as well as the international experience that is valued in the global health workplace. Copyright © 2016 Icahn School of Medicine at Mount Sinai. All rights reserved.

  9. Visual and Experiential Learning Opportunities through Geospatial Data

    NASA Astrophysics Data System (ADS)

    Gardiner, N.; Bulletins, S.

    2007-12-01

    Global observation data from satellites are essential for both research and education about Earth's climate because they help convey the temporal and spatial scales inherent to the subject, which are beyond most people's experience. Experts in the development of visualizations using spatial data distinguish the process of learning through data exploration from the process of learning by absorbing a story told from beginning to end. The former requires the viewer to absorb complex spatial and temporal dynamics inherent to visualized data and therefore is a process best undertaken by those familiar with the data and processes represented. The latter requires that the viewer understand the intended presentation of concepts, so story telling can be employed to educate viewers with varying backgrounds and familiarity with a given subject. Three examples of climate science education, drawn from the current science program Science Bulletins (American Museum of Natural History, New York, USA), demonstrate the power of visualized global earth observations for climate science education. The first example seeks to explain the potential for sea level rise on a global basis. A short feature film includes the visualized, projected effects of sea level rise at local to global scales; this visualization complements laboratory and field observations of glacier retreat and paleoclimatic reconstructions based on fossilized coral reef analysis, each of which is also depicted in the film. The narrative structure keeps learners focused on discrete scientific concepts. The second example utilizes half-hourly cloud observations to demonstrate weather and climate patterns to audiences on a global basis. Here, the scientific messages are qualitatively simpler, but the viewer must deduce his own complex visual understanding of the visualized data. Finally, we present plans for distributing climate science education products via mediated public events whereby participants learn from climate and geovisualization experts working collaboratively. This last example provides an opportunity for deep exploration of patterns and processes in a live setting and makes full use of complementary talents, including computer science, internet-enabled data sharing, remote sensing image processing, and meteorology. These innovative examples from informal educators serve as powerful pedagogical models to consider for the classroom of the future.

  10. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies.

    PubMed

    Yeager, Lauren A; Marchand, Philippe; Gill, David A; Baum, Julia K; McPherson, Jana M

    2017-07-01

    Biophysical conditions, including climate, environmental stress, and habitat availability, are key drivers of many ecological processes (e.g., community assembly and productivity) and associated ecosystem services (e.g., carbon sequestration and fishery production). Furthermore, anthropogenic impacts such as coastal development and fishing can have drastic effects on the structure and function of marine ecosystems. Scientists need to account for environmental variation and human impacts to accurately model, manage, and conserve marine ecosystems. Although there are many types of environmental data available from global remote sensing and open-source data products, some are inaccessible to potential end-users because they exist as global layers in high temporal and spatial resolutions which require considerable computational power to process. Additionally, coastal locations often suffer from missing data or data quality issues which limit the utility of some global marine products for coastal sites. Herein we present the Marine Socio-Environmental Covariates dataset for the global oceans, which consists of environmental and anthropogenic variables summarized in ecologically relevant ways. The dataset includes four sets of environmental variables related to biophysical conditions (net primary productivity models corrected for shallow-water reflectance, wave energy including sheltered-coastline corrections) and landscape context (coral reef and land cover within varying radii). We also present two sets of anthropogenic variables, human population density (within varying radii) and distance to large population center, which can serve as indicators of local human impacts. We have paired global, summarized layers available for download with an online data querying platform that allows users to extract data for specific point locations with finer control of summary statistics. In creating these global layers and online platform, we hope to make the data accessible to a wide array of end-users with the goal of advancing marine ecosystem studies. © 2017 by the Ecological Society of America.

  11. Globalization and reproductive tourism in the United Arab Emirates.

    PubMed

    Inhorn, Marcia C; Shrivastav, Pankaj

    2010-07-01

    Over the past 2 decades, the discipline of anthropology has been deeply concerned with the processes and effects of globalization around the world. One of the major anthropological theorists of globalization, Arjun Appadurai, has delineated a "global cultural economy" in which global movements operate through 5 pathways, which he famously called "scapes." This article uses the language of "scapes" to examine the global flows involved in so-called "reproductive tourism," or the search for assisted reproductive technologies across national and international borders. Reproductive tourism entails a complex "reproscape" of moving people, technologies, finance, media, ideas, and gametes, pursued by infertile couples in their "quests for conception." This article examines reproductive tourism to and from the United Arab Emirates, which is now the site of intense globalization and global flows, including individual and population movements for the purposes of reproductive and other forms of medical care.

  12. State and Trends of the Global Carbon Budget

    NASA Astrophysics Data System (ADS)

    Canadell, J.

    2017-12-01

    Long-term redistribution of carbon among fossil fuel reserves, the atmosphere, oceans and land largely determines the degree of the human perturbation of the atmosphere and the climate system. Here I'll show a number of diagnostics to characterize changes in the global carbon cycle, including: 1) the continued growth in atmospheric CO2 despite an apparent stabilization in the growth of fossil fuel emissions and the likely emissions decline from land use change; 2) the growth in the land and ocean sinks in response to the rise in excess atmospheric CO2 with large annual and decadal variability; and 3) key drivers of these trends including the global greening, spatial distribution of carbons sinks, and responses to inter-annual variability. Efforts to attribute driving processes to the growing sinks require a strong CO2 fertilization effect on vegetation growth and emerging trends show an under realized role of semiarid regions in contributing to the mean, trend and variability of the global land sink. Climate variability, including ENSO and the 2000's slowdown in terrestrial global warming, has produced opportunities to explore the drivers of global carbon fluxes as they take large departures from mean states (e.g., high rates of atmospheric CO2 accumulation along with no growth in fossil fuel emissions and strong land greening trends in recent years). Process attribution shows the strong interplay between gross primary productivity and heterotrophic respiration in response to warming, and the role of tropical and sub-tropical systems to the overall sink. New advances in observations and data handling are critical in reducing uncertainties including 1) Bayesian fusion approaches to optimally combine multiple data streams of ocean and land uptake, and fossil fuel and land use change emissions; 2) continuous landscape carbon density measurements and column CO2 from remotely sensed platforms; and 3) improved ocean circulation and CO2 uptake at the decadal scales; among others. This presentation builds upon the work done by a team of international scientists under the umbrella of the Global Carbon Project.

  13. Evidence of Reduced Global Processing in Autism Spectrum Disorder.

    PubMed

    Booth, Rhonda D L; Happé, Francesca G E

    2018-04-01

    Frith's original notion of 'weak central coherence' suggested that increased local processing in autism spectrum disorder (ASD) resulted from reduced global processing. More recent accounts have emphasised superior local perception and suggested intact global integration. However, tasks often place local and global processing in direct trade-off, making it difficult to determine whether group differences reflect reduced global processing, increased local processing, or both. We present two measures of global integration in which poor performance could not reflect increased local processing. ASD participants were slower to identify fragmented figures and less sensitive to global geometric impossibility than IQ-matched controls. These findings suggest that reduced global integration comprises one important facet of weak central coherence in ASD.

  14. The US Food and Drug Administration's tentative approval process and the global fight against HIV.

    PubMed

    Chahal, Harinder Singh; Murray, Jeffrey S; Shimer, Martin; Capella, Peter; Presto, Ryan; Valdez, Mary Lou; Lurie, Peter G

    2017-12-01

    In 2004, the US government began to utilize the Food and Drug Administration's (USFDA) tentative approval process (tFDA) as a basis to determine which HIV drugs are appropriate to be purchased and used in resource-constrained settings. This process permits products that are not approved for marketing in the US, including medicines with active patents or marketing restrictions in the US, to be purchased and distributed in resource-constrained settings. Although the tFDA was originally intended to support the United States' President's Emergency Plan for AIDS Relief (PEPFAR), the USFDA list has become a cornerstone of international HIV programmes that support procurement of ARVs, such as the World Health Organization and the Global Fund to Fight AIDS, Tuberculosis, and Malaria. Our objective in this article is to help the global HIV policy makers and implementers of HIV programmes better understand the benefits and limitations of the tFDA by providing an in-depth review of the relevant legal and regulatory processes. USFDA's dedicated tFDA process for ARVs used by the PEPFAR programme has a wide impact globally; however, the implementation and the regulatory processes governing the programme have not been thoroughly described in the medical literature. This paper seeks to help stakeholders better understand the legal and regulatory aspects associated with review of ARVs under the tFDA by describing the following: (1) the tFDA and its importance to global ARV procurement; (2) the regulatory pathways for applications under tFDA for the PEPFAR programme, including modifications to applications, review timelines and costs; (3) the role of US patents, US marketing exclusivity rights, and the Medicines Patents Pool in tFDA; and (4) an overview of how applications for PEPFAR programme are processed through the USFDA. We also provide a case study of a new ARV, tenofovir alafenamide fumarate (TAF), not yet reviewed by USFDA for PEPFAR use. In this paper, we describe the importance and implementation of USFDA's tentative approval process to review ARVs for resource-constrained settings. We also highlight the impact of patents and exclusivities on review of HIV drugs under tFDA and illustrate the concepts using a new HIV drug as an example. © 2017 The Authors. Journal of the International AIDS Society published by John Wiley & sons Ltd on behalf of the International AIDS Society.

  15. The Cultural Adaptation Process during a Short-Term Study Abroad Experience in Swaziland

    ERIC Educational Resources Information Center

    Conner, Nathan W.; Roberts, T. Grady

    2015-01-01

    Globalization continuously shapes our world and influences post-secondary education. This study explored the cultural adaptation process of participants during a short-term study abroad program. Participants experienced stages which included initial feelings, cultural uncertainty, cultural barriers, cultural negativity, academic and career growth,…

  16. A New Global Geomorphology?

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1985-01-01

    Geomorphology is entering a new era of discovery and scientific excitement centered on expanding scales of concern in both time and space. The catalysts for this development include technological advances in global remote sensing systems, mathematical modeling, and the dating of geomorphic surfaces and processes. Even more important are new scientific questions centered on comparative planetary geomorphology, the interaction of tectonism with landscapes, the dynamics of late Cenozoic climatic changes, the influence of cataclysmic processes, the recognition of extremely ancient landforms, and the history of the world's hydrologic systems. These questions all involve feedback relationships with allied sciences that have recently yielded profound developments.

  17. Study on Global GIS architecture and its key technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Chengqi; Guan, Li; Lv, Xuefeng

    2009-09-01

    Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.

  18. Study on Global GIS architecture and its key technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Chengqi; Guan, Li; Lv, Xuefeng

    2010-11-01

    Global GIS (G2IS) is a system, which supports the huge data process and the global direct manipulation on global grid based on spheroid or ellipsoid surface. Based on global subdivision grid (GSG), Global GIS architecture is presented in this paper, taking advantage of computer cluster theory, the space-time integration technology and the virtual reality technology. Global GIS system architecture is composed of five layers, including data storage layer, data representation layer, network and cluster layer, data management layer and data application layer. Thereinto, it is designed that functions of four-level protocol framework and three-layer data management pattern of Global GIS based on organization, management and publication of spatial information in this architecture. Three kinds of core supportive technologies, which are computer cluster theory, the space-time integration technology and the virtual reality technology, and its application pattern in the Global GIS are introduced in detail. The primary ideas of Global GIS in this paper will be an important development tendency of GIS.

  19. The impact of the Bologna process on nursing higher education in Europe: a review.

    PubMed

    Collins, Shawn; Hewer, Ian

    2014-01-01

    Changes are occurring in global higher education. Nursing is not exempt from these changes, and must adapt in order to be competitive in a global market. The Bologna process has been integral in the last decade in modernizing European higher education. However, modernization does not occur without challenges. This paper addresses the Bologna process and the challenges it presents to nursing higher education in Europe. To describe the Bologna Process as it relates to European nursing education. Literature review via searches of the following electronic databases: Academic Search Premier, MEDLINE, PubMed, ERIC, and CINAHL. Search criteria included Bologna process, European higher education, nursing education, quality assurance, and ECTS. Twenty-four peer-reviewed articles were included as well as one peer-reviewed presentation, one commission report, and one book. Further investigation is required to address the complexities of the Bologna process and its evolutionary changes as it relates to nursing education in Europe. Change is not always easy, and is often complex, especially as it relates to cross-border education that involves governmental regulation. Bologna-member countries need to adapt to the ever-changing higher education environment or fall behind. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Exploiting Satellite Archives to Estimate Global Glacier Volume Changes

    NASA Astrophysics Data System (ADS)

    McNabb, R. W.; Nuth, C.; Kääb, A.; Girod, L.

    2017-12-01

    In the past decade, the availability of, and ability to process, remote sensing data over glaciers has expanded tremendously. Newly opened satellite image archives, combined with new processing techniques as well as increased computing power and storage capacity, have given the glaciological community the ability to observe and investigate glaciological processes and changes on a truly global scale. In particular, the opening of the ASTER archives provides further opportunities to both estimate and monitor glacier elevation and volume changes globally, including potentially on sub-annual timescales. With this explosion of data availability, however, comes the challenge of seeing the forest instead of the trees. The high volume of data available means that automated detection and proper handling of errors and biases in the data becomes critical, in order to properly study the processes that we wish to see. This includes holes and blunders in digital elevation models (DEMs) derived from optical data or penetration of radar signals leading to biases in DEMs derived from radar data, among other sources. Here, we highlight new advances in the ability to sift through high-volume datasets, and apply these techniques to estimate recent glacier volume changes in the Caucasus Mountains, Scandinavia, Africa, and South America. By properly estimating and correcting for these biases, we additionally provide a detailed accounting of the uncertainties in these estimates of volume changes, leading to more reliable results that have applicability beyond the glaciological community.

  1. The Global Polio Eradication Initiative: Progress, Lessons Learned, And Polio Legacy Transition Planning.

    PubMed

    Cochi, Stephen L; Hegg, Lea; Kaur, Anjali; Pandak, Carol; Jafari, Hamid

    2016-02-01

    The world is closer than ever to achieving global polio eradication, with record-low polio cases in 2015 and the impending prospect of a polio-free Africa. Tens of millions of volunteers, social mobilizers, and health workers have participated in the Global Polio Eradication Initiative. The program contributes to efforts to deliver other health benefits, including health systems strengthening. As the initiative nears completion after more than twenty-five years, it becomes critical to document and transition the knowledge, lessons learned, assets, and infrastructure accumulated by the initiative to address other health goals and priorities. The primary goals of this process, known as polio legacy transition planning, are both to protect a polio-free world and to ensure that investments in polio eradication will contribute to other health goals after polio is completely eradicated. The initiative is engaged in an extensive transition process of consultations and planning at the global, regional, and country levels. A successful completion of this process will result in a well-planned and -managed conclusion of the initiative that will secure the global public good gained by ending one of the world's most devastating diseases and ensure that these investments provide public health benefits for years to come. Project HOPE—The People-to-People Health Foundation, Inc.

  2. ALM-FATES: Using dynamic vegetation and demography to capture changes in forest carbon cycling and competition at the global scale

    NASA Astrophysics Data System (ADS)

    Holm, J. A.; Knox, R. G.; Koven, C.; Riley, W. J.; Bisht, G.; Fisher, R.; Christoffersen, B. O.; Dietze, M.; Chambers, J. Q.

    2017-12-01

    The inclusion of dynamic vegetation demography in Earth System Models (ESMs) has been identified as a critical step in moving ESMs towards more realistic representations of plant ecology and the processes that govern climatically important fluxes of carbon, energy, and water. Successful application of dynamic vegetation models, and process-based approaches to simulate plant demography, succession, and response to disturbances without climate envelopes at the global scale is a challenging endeavor. We integrated demographic processes using the Functionally-Assembled Terrestrial Ecosystem Simulator (FATES) in the newly developed ACME Land Model (ALM). We then use an ALM-FATES globally gridded simulation for the first time to investigate plant functional type (PFT) distributions and dynamic turnover rates. Initial global simulations successfully include six interacting and competing PFTs (ranging from tropical to boreal, evergreen, deciduous, needleleaf and broadleaf); including more PFTs is planned. Global maps of net primary productivity, leaf area index, and total vegetation biomass by ALM-FATES matched patterns and values when compared to CLM4.5-BGC and MODIS estimates. We also present techniques for PFT parameterization based on the Predictive Ecosystem Analyzer (PEcAn), field based turnover rates, improved PFT groupings based on trait-tradeoffs, and improved representation of multiple canopy positions. Finally, we applied the improved ALM-FATES model at a central Amazon tropical and western U.S. temperate sites and demonstrate improvements in predicted PFT size- and age-structure and regional distribution. Results from the Amazon tropical site investigate the ability and magnitude of a tropical forest to act as a carbon sink by 2100 with a doubling of CO2, while results from the temperate sites investigate the response of forest mortality with increasing droughts.

  3. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less

  4. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol

    DOE PAGES

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; ...

    2017-06-15

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate modelsmore » typically do not comprehensively include all important processes. Our review summarizes some of the important developments during the past decade in understanding SOA formation. We also highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.« less

  5. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Kuang, Chongai; Laskin, Alexander; Martin, Scot T.; Ng, Nga Lee; Petaja, Tuukka; Pierce, Jeffrey R.; Rasch, Philip J.; Roldin, Pontus; Seinfeld, John H.; Shilling, John; Smith, James N.; Thornton, Joel A.; Volkamer, Rainer; Wang, Jian; Worsnop, Douglas R.; Zaveri, Rahul A.; Zelenyuk, Alla; Zhang, Qi

    2017-06-01

    Anthropogenic emissions and land use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding preindustrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features (1) influence estimates of aerosol radiative forcing and (2) can confound estimates of the historical response of climate to increases in greenhouse gases. Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This review summarizes some of the important developments during the past decade in understanding SOA formation. We highlight the importance of some processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including formation of extremely low volatility organics in the gas phase, acid-catalyzed multiphase chemistry of isoprene epoxydiols, particle-phase oligomerization, and physical properties such as volatility and viscosity. Several SOA processes highlighted in this review are complex and interdependent and have nonlinear effects on the properties, formation, and evolution of SOA. Current global models neglect this complexity and nonlinearity and thus are less likely to accurately predict the climate forcing of SOA and project future climate sensitivity to greenhouse gases. Efforts are also needed to rank the most influential processes and nonlinear process-related interactions, so that these processes can be accurately represented in atmospheric chemistry-climate models.

  6. The Global Food System as a Transport Pathway for Hazardous Chemicals: The Missing Link between Emissions and Exposure

    PubMed Central

    Ng, Carla A.; von Goetz, Natalie

    2016-01-01

    Background: Food is a major pathway for human exposure to hazardous chemicals. The modern food system is becoming increasingly complex and globalized, but models for food-borne exposure typically assume locally derived diets or use concentrations directly measured in foods without accounting for food origin. Such approaches may not reflect actual chemical intakes because concentrations depend on food origin, and representative analysis is seldom available. Processing, packaging, storage, and transportation also impart different chemicals to food and are not yet adequately addressed. Thus, the link between environmental emissions and realistic human exposure is effectively broken. Objectives: We discuss the need for a fully integrated treatment of the modern industrialized food system, and we propose strategies for using existing models and relevant supporting data sources to track chemicals during production, processing, packaging, storage, and transport. Discussion: Fate and bioaccumulation models describe how chemicals distribute in the environment and accumulate through local food webs. Human exposure models can use concentrations in food to determine body burdens based on individual or population characteristics. New models now include the impacts of processing and packaging but are far from comprehensive. We propose to close the gap between emissions and exposure by utilizing a wider variety of models and data sources, including global food trade data, processing, and packaging models. Conclusions: A comprehensive approach that takes into account the complexity of the modern global food system is essential to enable better prediction of human exposure to chemicals in food, sound risk assessments, and more focused risk abatement strategies. Citation: Ng CA, von Goetz N. 2017. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect 125:1–7; http://dx.doi.org/10.1289/EHP168 PMID:27384039

  7. The impact of social activities, social networks, social support and social relationships on the cognitive functioning of healthy older adults: a systematic review.

    PubMed

    Kelly, Michelle E; Duff, Hollie; Kelly, Sara; McHugh Power, Joanna E; Brennan, Sabina; Lawlor, Brian A; Loughrey, David G

    2017-12-19

    Social relationships, which are contingent on access to social networks, promote engagement in social activities and provide access to social support. These social factors have been shown to positively impact health outcomes. In the current systematic review, we offer a comprehensive overview of the impact of social activities, social networks and social support on the cognitive functioning of healthy older adults (50+) and examine the differential effects of aspects of social relationships on various cognitive domains. We followed PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines, and collated data from randomised controlled trials (RCTs), genetic and observational studies. Independent variables of interest included subjective measures of social activities, social networks, and social support, and composite measures of social relationships (CMSR). The primary outcome of interest was cognitive function divided into domains of episodic memory, semantic memory, overall memory ability, working memory, verbal fluency, reasoning, attention, processing speed, visuospatial abilities, overall executive functioning and global cognition. Thirty-nine studies were included in the review; three RCTs, 34 observational studies, and two genetic studies. Evidence suggests a relationship between (1) social activity and global cognition and overall executive functioning, working memory, visuospatial abilities and processing speed but not episodic memory, verbal fluency, reasoning or attention; (2) social networks and global cognition but not episodic memory, attention or processing speed; (3) social support and global cognition and episodic memory but not attention or processing speed; and (4) CMSR and episodic memory and verbal fluency but not global cognition. The results support prior conclusions that there is an association between social relationships and cognitive function but the exact nature of this association remains unclear. Implications of the findings are discussed and suggestions for future research provided. PROSPERO 2012: CRD42012003248 .

  8. A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1)

    NASA Astrophysics Data System (ADS)

    Forkel, Matthias; Dorigo, Wouter; Lasslop, Gitta; Teubner, Irene; Chuvieco, Emilio; Thonicke, Kirsten

    2017-12-01

    Vegetation fires affect human infrastructures, ecosystems, global vegetation distribution, and atmospheric composition. However, the climatic, environmental, and socioeconomic factors that control global fire activity in vegetation are only poorly understood, and in various complexities and formulations are represented in global process-oriented vegetation-fire models. Data-driven model approaches such as machine learning algorithms have successfully been used to identify and better understand controlling factors for fire activity. However, such machine learning models cannot be easily adapted or even implemented within process-oriented global vegetation-fire models. To overcome this gap between machine learning-based approaches and process-oriented global fire models, we introduce a new flexible data-driven fire modelling approach here (Satellite Observations to predict FIre Activity, SOFIA approach version 1). SOFIA models can use several predictor variables and functional relationships to estimate burned area that can be easily adapted with more complex process-oriented vegetation-fire models. We created an ensemble of SOFIA models to test the importance of several predictor variables. SOFIA models result in the highest performance in predicting burned area if they account for a direct restriction of fire activity under wet conditions and if they include a land cover-dependent restriction or allowance of fire activity by vegetation density and biomass. The use of vegetation optical depth data from microwave satellite observations, a proxy for vegetation biomass and water content, reaches higher model performance than commonly used vegetation variables from optical sensors. We further analyse spatial patterns of the sensitivity between anthropogenic, climate, and vegetation predictor variables and burned area. We finally discuss how multiple observational datasets on climate, hydrological, vegetation, and socioeconomic variables together with data-driven modelling and model-data integration approaches can guide the future development of global process-oriented vegetation-fire models.

  9. The place of physical activity in the WHO Global Strategy on Diet and Physical Activity.

    PubMed

    Bauman, Adrian; Craig, Cora L

    2005-08-24

    In an effort to reduce the global burden of non-communicable disease, the World Health Organization released a Global Strategy for Diet and Physical Activity in May 2004. This commentary reports on the development of the strategy and its importance specifically for physical activity-related work of NGOs and researchers interested in increasing global physical activity participation. Sparked by its work on global efforts to target non-communicable disease prevention in 2000, the World Health Organization commissioned a global strategy on diet and physical activity. The physical activity interest followed efforts that had led to the initial global "Move for Health Day" in 2002. WHO assembled a reference group for the global strategy, and a regional consultation process with countries was undertaken. Underpinning the responses was the need for more physical activity advocacy; partnerships outside of health including urban planning; development of national activity guidelines; and monitoring of the implementation of the strategy. The consultation process was an important mechanism to confirm the importance and elevate the profile of physical activity within the global strategy. It is suggested that separate implementation strategies for diet and physical activity may be needed to work with partner agencies in disparate sectors (e.g. urban planning for physical activity, agriculture for diet). International professional societies are well situated to make an important contribution to global public health by advocating for the importance of physical activity among risk factors; developing international measures of physical activity and global impacts of inactivity; and developing a global research and intervention agenda.

  10. Family Medicine Global Health Fellowship Competencies: A Modified Delphi Study.

    PubMed

    Rayess, Fadya El; Filip, Anna; Doubeni, Anna; Wilson, Calvin; Haq, Cynthia; Debay, Marc; Anandarajah, Gowri; Heffron, Warren; Jayasekera, Neil; Larson, Paul; Dahlman, Bruce; Valdman, Olga; Hunt, Vince

    2017-02-01

    Many US medical schools and family medicine departments have responded to a growing interest in global health by developing global health fellowships. However, there are no guidelines or consensus statements outlining competencies for global health fellows. Our objective was to develop a mission and core competencies for Family Medicine Global Health Fellowships. A modified Delphi technique was used to develop consensus on fellowship competencies. A panel, comprised of 13 members with dual expertise in global health and medical education, undertook an iterative consensus process, followed by peer review, from April to December 2014. The panel developed a mission statement and identified six domains for family medicine global health fellowships: patient care, medical knowledge, professionalism, communication and leadership, teaching, and scholarship. Each domain includes a set of core and program-specific competencies. The family medicine global health competencies are intended to serve as an educational framework for the design, implementation, and evaluation of individual family medicine global health fellowship programs.

  11. How Sensitive Is the Carbon Budget Approach to Potential Carbon Cycle Changes?

    NASA Astrophysics Data System (ADS)

    Matthews, D.

    2014-12-01

    The recent development of global Earth-system models, which include dynamic representations of both physical climate and carbon cycle processes, has led to new insights about how the climate responds to human carbon dioxide emissions. Notably, several model analyses have now shown that global temperature responds linearly to cumulative CO2 emissions across a wide range of emissions scenarios. This implies that the timing of CO2 emissions does not affect the overall climate response, and allows a finite global carbon carbon budget to be defined for a given global temperature target. This linear climate response, however, emerges from the interaction of several non-linear processes and feedbacks involving how carbon sinks respond to changes in atmospheric CO2 and climate. In this presentation, I will give an overview of how carbon sinks and carbon cycle feedbacks contribute to the overall linearity of the climate response to cumulative emissions, and will assess how robust this relationship is to a range of possible changes in the carbon cycle, including (a) potential positive carbon cycle feedbacks that are not well represented in the current generation of Earth-system models and (b) negative emission scenarios resulting from possible technological strategies to remove CO2 from the atmosphere.

  12. Policies and Practices of Diversity: Reimagining Possibilities for New Discourses

    ERIC Educational Resources Information Center

    Infante, Marta D.; Matus, Claudia

    2009-01-01

    The processes of globalization have demanded that emergent countries include issues of diversity into their political, economic and educational agendas. Consequently, educational institutions have started, in order to ascribe to requests made by transnational organizations (UNESCO, the World Bank and OECD), to include diversity as a priority to…

  13. Biological invasions in forest ecosystems

    Treesearch

    Andrew M. Liebhold; Eckehard G. Brockerhoff; Susan Kalisz; Martin A. Nuñez; David A. Wardle; Michael J. Wingfield

    2017-01-01

    Forests play critical roles in global ecosystem processes and provide numerous services to society. But forests are increasingly affected by a variety of human influences, especially those resulting from biological invasions. Species invading forests include woody and herbaceous plants, many animal species including mammals and invertebrates, as well as a variety of...

  14. Globalization and medicine in Trinidad.

    PubMed

    Reznik, David L; Murphy, John W; Belgrave, Linda Liska

    2007-05-01

    In a qualitative study of urban Trinidadians who work in the medical industry, the concept of medical globalization was provisionally analysed. Two research questions were addressed: what is globalization, in the context of mainstream medicine, and how is this process manifested in everyday practices? Four fundamental principles of medical globalization emerged from in-depth interviews and analysis of observational materials: (1) the notion of history as an autonomous force with globalization as the latest stage, (2) the expansion of 'Total Market' philosophy as a driving social force, (3) the fragmentation of society into atomistic, self-interested, and competitive individuals, and (4) the adoption of a 'centralised' set of ideals as the normative core necessary for social order. In this paper, findings from this investigation and their implications are discussed. In particular, medical globalization is linked with major themes in medical sociological theory including dualism and medicalization.

  15. On the Past, Present, and Future of Eastern Boundary Upwelling Systems

    NASA Astrophysics Data System (ADS)

    Bograd, S. J.; Black, B.; Garcia-Reyes, M.; Rykaczewski, R. R.; Thompson, S. A.; Turley, B. D.; van der Sleen, P.; Sydeman, W. J.

    2016-12-01

    Coastal upwelling in Eastern Boundary Upwelling Systems (EBUS) drives high productivity and marine biodiversity and supports lucrative commercial fishing operations. Thus there is significant interest in understanding the mechanisms underlying variations in the upwelling process, its drivers, and potential changes relative to global warming. Here we review recent results from a combination of regional and global observations, reanalysis products, and climate model projections that describe variability in coastal upwelling in EBUS. Key findings include: (1) interannual variability in California Current upwelling occurs in two orthogonal seasonal modes: a winter/early spring mode dominated by interannual variability and a summer mode dominated by long-term increasing trend; (2) there is substantial coherence in year-to-year variability between this winter/spring upwelling mode and upper trophic level demographic processes, including fish growth rates (rockfish and salmon) and seabird phenology, breeding success and survival; (3) a meta-analysis of existing literature suggests consistency with the Bakun (1990) hypothesis that rising global greenhouse-gas concentrations would result in upwelling-favorable wind intensification; however, (4) an ensemble of coupled, global ocean-atmosphere models finds limited evidence for intensification of upwelling-favorable winds over the 21st century, although summertime winds near the poleward boundaries of climatalogical upwelling zones are projected to intensify. We will also review a new comparative research program between the California and Benguela Upwelling Systems, including efforts to understand patterns of change and variation between climate, upwelling, fish, and seabirds.

  16. Key technologies for manufacturing and processing sheet materials: A global perspective

    NASA Astrophysics Data System (ADS)

    Demeri, Mahmoud Y.

    2001-02-01

    Modern industrial technologies continue to seek new materials and processes to produce products that meet design and functional requirements. Sheet materials made from ferrous and non-ferrous metals, laminates, composites, and reinforced plastics constitute a large percentage of today’s products, components, and systems. Major manufacturers of sheet products include automotive, aerospace, appliance, and food-packaging industries. The Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials is organized to provide a forum for presenting advances in sheet processing and manufacturing by worldwide researchers and engineers from industrial, research, and academic centers. The symposium, sponsored by the TMS Materials Processing & Manufacturing Division (MPMD), was planned for the 2001 TMS Annual Meeting, New Orleans, Louisiana, February 11 15, 2001. This article is a review of key papers submitted for publication in the concurrent volume. The selected papers present significant developments in the rapidly expanding areas of advanced sheet materials, innovative forming methods, industrial applications, primary and secondary processing, composite processing, and numerical modeling of manufacturing processes.

  17. Exploring the impact of agriculture on nitrogen and phosphorus biogeochemistry in global rivers during the twentieth century (Invited)

    NASA Astrophysics Data System (ADS)

    Bouwman, L.; Beusen, A.; Van Beek, L. P.

    2013-12-01

    Nutrients are transported from land to sea through the continuum formed by soils, groundwater, riparian zones, floodplains, streams, rivers, lakes, and reservoirs. The hydrology, ecology and biogeochemical processing in each of these components are strongly coupled and result in retention of a significant fraction of the nutrients transported. This paper analyzes the global changes in nutrient biogeochemical processes and retention in rivers during the past century (1900-2000); this period encompasses dramatic increases in human population and economic human activities including agriculture that have resulted in major changes in land use, nutrient use in agriculture, wastewater flows and human interventions in the hydrology (1). We use the hydrological PCR-GLOBWB model (2) for the period 1900-2000, including climate variability and the history of dam construction and land use conversion. Global agricultural and natural N and P soil budgets for the period 1900-2000 are the starting point to simulate nutrient flows from the soil via surface runoff and leaching through the groundwater system and riparian zones. In-stream processes are described with the nutrient spiraling concept. In the period 1900-2000, the global soil N budget surplus (inputs minus withdrawal in harvested crops) for agricultural and natural ecosystems increased from 118 to 202 Tg yr-1, and the global P budget increased from < 0.5 to 11 Tg P yr-1. As a result of this massive increase, nutrient delivery to streams and river nutrient export has increased rapidly in the 20th century. Model results are sensitive to factors determining the N and P delivery, as well as in-stream processes. The most uncertain factors are N delivery to streams by groundwater (denitrification as a function of thickness and reactivity of aquifers), and in-stream N and P retention parameters (net uptake velocity, retention as function of concentration). References 1. Bouwman AF, Beusen AHW, Griffioen J, Van Groenigen JW, Hefting MM, Oenema O, et al. Global trends and uncertainties in terrestrial denitrification and N2O emissions. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013;368(20130112). 2. Van Beek LPH, Wada Y, Bierkens MFP. Global monthly water stress: 1. Water balance and water availability. Water Resour Res. 2011;47(7):W07517.

  18. Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea

    PubMed Central

    Collins, Daniel S.; Avdis, Alexandros; Allison, Peter A.; Johnson, Howard D.; Hill, Jon; Piggott, Matthew D.; Hassan, Meor H. Amir; Damit, Abdul Razak

    2017-01-01

    Modern mangroves are among the most carbon-rich biomes on Earth, but their long-term (≥106 years) impact on the global carbon cycle is unknown. The extent, productivity and preservation of mangroves are controlled by the interplay of tectonics, global sea level and sedimentation, including tide, wave and fluvial processes. The impact of these processes on mangrove-bearing successions in the Oligo–Miocene of the South China Sea (SCS) is evaluated herein. Palaeogeographic reconstructions, palaeotidal modelling and facies analysis suggest that elevated tidal range and bed shear stress optimized mangrove development along tide-influenced tropical coastlines. Preservation of mangrove organic carbon (OC) was promoted by high tectonic subsidence and fluvial sediment supply. Lithospheric storage of OC in peripheral SCS basins potentially exceeded 4,000 Gt (equivalent to 2,000 p.p.m. of atmospheric CO2). These results highlight the crucial impact of tectonic and oceanographic processes on mangrove OC sequestration within the global carbon cycle on geological timescales. PMID:28643789

  19. Methods for globally treating silica optics to reduce optical damage

    DOEpatents

    Miller, Philip Edward; Suratwala, Tayyab Ishaq; Bude, Jeffrey Devin; Shen, Nan; Steele, William Augustus; Laurence, Ted Alfred; Feit, Michael Dennis; Wong, Lana Louie

    2012-11-20

    A method for preventing damage caused by high intensity light sources to optical components includes annealing the optical component for a predetermined period. Another method includes etching the optical component in an etchant including fluoride and bi-fluoride ions. The method also includes ultrasonically agitating the etching solution during the process followed by rinsing of the optical component in a rinse bath.

  20. Improving Science Pedagogic Quality in Elementary School Using Process Skill Approach Can Motivate Student to Be Active in Learning

    ERIC Educational Resources Information Center

    Sukiniarti

    2016-01-01

    On global era todays, as the professional teacher should be improving their pedagogic competency, including to improve their science pedagogy quality. This study is aimed to identify: (1) Process skill approach which has been used by Elementary School Teacher in science learning; (2) Teacher's opinion that process skill can motivate the student to…

  1. Switching between forest and trees: Opposite relationship of progesterone and testosterone to global–local processing

    PubMed Central

    Pletzer, Belinda; Petasis, Ourania; Cahill, Larry

    2014-01-01

    Sex differences in attentional selection of global and local components of stimuli have been hypothesized to underlie sex differences in cognitive strategy choice. A Navon figure paradigm was employed in 32 men, 41 naturally cycling women (22 follicular, 19 luteal) and 19 users of oral contraceptives (OCs) containing first to third generation progestins in their active pill phase. Participants were first asked to detect targets at any level (divided attention) and then at either the global or the local level only (focused attention). In the focused attention condition, luteal women showed reduced global advantage (i.e. faster responses to global vs. local targets) compared to men, follicular women and OC users. Accordingly, global advantage during the focused attention condition related significantly positively to testosterone levels and significantly negatively to progesterone, but not estradiol levels in a multiple regression model including all naturally cycling women and men. Interference (i.e. delayed rejection of stimuli displaying targets at the non-attended level) was significantly enhanced in OC users as compared to naturally cycling women and related positively to testosterone levels in all naturally cycling women and men. Remarkably, when analyzed separately for each group, the relationship of testosterone to global advantage and interference was reversed in women during their luteal phase as opposed to men and women during their follicular phase. As global processing is lateralized to the right and local processing to the left hemisphere, we speculate that these effects stem from a testosterone-mediated enhancement of right-hemisphere functioning as well as progesterone-mediated inter-hemispheric decoupling. PMID:24874173

  2. Attention Orienting in Response to Non-conscious Hierarchical Arrows: Individuals with Higher Autistic Traits Differ in Their Global/Local Bias.

    PubMed

    Laycock, Robin; Chan, Daniel; Crewther, Sheila G

    2017-01-01

    One aspect of the social communication impairments that characterize autism spectrum disorder (ASD) include reduced use of often subtle non-verbal social cues. People with ASD, and those with self-reported sub-threshold autistic traits, also show impairments in rapid visual processing of stimuli unrelated to social or emotional properties. Hence, this study sought to investigate whether perceptually non-conscious visual processing is related to autistic traits. A neurotypical sample of thirty young adults completed the Subthreshold Autism Trait Questionnaire and a Posner-like attention cueing task. Continuous Flash Suppression (CFS) was employed to render incongruous hierarchical arrow cues perceptually invisible prior to consciously presented targets. This was achieved via a 10 Hz masking stimulus presented to the dominant eye that suppressed information presented to the non-dominant eye. Non-conscious arrows consisted of local arrow elements pointing in one direction, and forming a global arrow shape pointing in the opposite direction. On each trial, the cue provided either a valid or invalid cue for the spatial location of the subsequent target, depending on which level (global or local) received privileged attention. A significant autism-trait group by global cue validity interaction indicated a difference in the extent of non-conscious local/global cueing between groups. Simple effect analyses revealed that whilst participants with lower autistic traits showed a global arrow cueing effect, those with higher autistic traits demonstrated a small local arrow cueing effect. These results suggest that non-conscious processing biases in local/global attention may be related to individual differences in autistic traits.

  3. Studies in geophysics: The Earth's electrical environment

    NASA Astrophysics Data System (ADS)

    The Earth is electrified. Between the surface and the outer reaches of the atmosphere, there is a global circuit that is maintained by worldwide thunderstorm activity and by upper atmospheric dynamo processes. The highest voltages approach a billion volts and are generated within thunderclouds, where lightning is a visual display of the cloud's electrical nature. The largest currents in the circuit, approaching a million amperes, are associated with the aurora. Because there have been significant advances in understanding many of the component parts of the global electric circuit (lightning, cloud electrification, electrical processes in specific atmospheric regions, and telluric currents), a principal research challenge is to understand how these components interact to shape the global circuit. Increased basic understanding in this field has many potential practical applications, including lightning protection, the design of advanced aircraft and spacecraft, and improvements in weather prediction.

  4. Studies in geophysics: The Earth's electrical environment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The Earth is electrified. Between the surface and the outer reaches of the atmosphere, there is a global circuit that is maintained by worldwide thunderstorm activity and by upper atmospheric dynamo processes. The highest voltages approach a billion volts and are generated within thunderclouds, where lightning is a visual display of the cloud's electrical nature. The largest currents in the circuit, approaching a million amperes, are associated with the aurora. Because there have been significant advances in understanding many of the component parts of the global electric circuit (lightning, cloud electrification, electrical processes in specific atmospheric regions, and telluric currents), a principal research challenge is to understand how these components interact to shape the global circuit. Increased basic understanding in this field has many potential practical applications, including lightning protection, the design of advanced aircraft and spacecraft, and improvements in weather prediction.

  5. Higher levels of depression are associated with reduced global bias in visual processing.

    PubMed

    de Fockert, Jan W; Cooper, Andrew

    2014-04-01

    Negative moods have been associated with a tendency to prioritise local details in visual processing. The current study investigated the relation between depression and visual processing using the Navon task, a standard task of local and global processing. In the Navon task, global stimuli are presented that are made up of many local parts, and the participants are instructed to report the identity of either a global or a local target shape. Participants with a low self-reported level of depression showed evidence of the expected global processing bias, and were significantly faster at responding to the global, compared with the local level. By contrast, no such difference was observed in participants with high levels of depression. The reduction of the global bias associated with high levels of depression was only observed in the overall speed of responses to global (versus local) targets, and not in the level of interference produced by the global (versus local) distractors. These results are in line with recent findings of a dissociation between local/global processing bias and interference from local/global distractors, and support the claim that depression is associated with a reduction in the tendency to prioritise global-level processing.

  6. The PCR-GLOBWB global hydrological reanalysis product

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; Wanders, N.; Sutanudjaja, E.; Van Beek, L. P.

    2013-12-01

    Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal land surface hydrological reanalysis with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we used PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB is basically a leaky bucket type of water balance model with a process-based simulation of moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid distributions of elevation, land cover and soil saturation distribution. The model thus includes detailed schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. . By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrated the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow module, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields due to local topographic and orographic effects. Results show that the model parameters can be calibrated and forcing precipitation fields were successfully corrected. The calibrated model output was compared to the reference run of PCR-GLOBWB before calibration. Here we found significant improvement in simulation of the global terrestrial water cycle, specifically discharge simulation for major river basins in the world. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).

  7. Global patterns of groundwater table depth.

    PubMed

    Fan, Y; Li, H; Miguez-Macho, G

    2013-02-22

    Shallow groundwater affects terrestrial ecosystems by sustaining river base-flow and root-zone soil water in the absence of rain, but little is known about the global patterns of water table depth and where it provides vital support for land ecosystems. We present global observations of water table depth compiled from government archives and literature, and fill in data gaps and infer patterns and processes using a groundwater model forced by modern climate, terrain, and sea level. Patterns in water table depth explain patterns in wetlands at the global scale and vegetation gradients at regional and local scales. Overall, shallow groundwater influences 22 to 32% of global land area, including ~15% as groundwater-fed surface water features and 7 to 17% with the water table or its capillary fringe within plant rooting depths.

  8. Examining the validity of self-reports on scales measuring students' strategic processing.

    PubMed

    Samuelstuen, Marit S; Bråten, Ivar

    2007-06-01

    Self-report inventories trying to measure strategic processing at a global level have been much used in both basic and applied research. However, the validity of global strategy scores is open to question because such inventories assess strategy perceptions outside the context of specific task performance. The primary aim was to examine the criterion-related and construct validity of the global strategy data obtained with the Cross-Curricular Competencies (CCC) scale. Additionally, we wanted to compare the validity of these data with the validity of data obtained with a task-specific self-report inventory focusing on the same types of strategies. The sample included 269 10th-grade students from 12 different junior high schools. Global strategy use as assessed with the CCC was compared with task-specific strategy use reported in three different reading situations. Moreover, relationships between scores on the CCC and scores on measures of text comprehension were examined and compared with relationships between scores on the task-specific strategy measure and the same comprehension measures. The comparison between the CCC strategy scores and the task-specific strategy scores suggested only modest criterion-related validity for the data obtained with the global strategy inventory. The CCC strategy scores were also not related to the text comprehension measures, indicating poor construct validity. In contrast, the task-specific strategy scores were positively related to the comprehension measures, indicating good construct validity. Attempts to measure strategic processing at a global level seem to have limited validity and utility.

  9. Global change technology architecture trade study

    NASA Technical Reports Server (NTRS)

    Garrett, L. Bernard (Editor); Hypes, Warren D. (Editor); Wright, Robert L. (Editor)

    1991-01-01

    Described here is an architecture trade study conducted by the Langley Research Center to develop a representative mix of advanced space science instrumentation, spacecraft, and mission orbits to assist in the technology selection processes. The analyses concentrated on the highest priority classes of global change measurements which are the global climate changes. Issues addressed in the tradeoffs includes assessments of the economics of scale of large platforms with multiple instruments relative to smaller spacecraft; the influences of current and possible future launch vehicles on payload sizes, and on-orbit assembly decisions; and the respective roles of low-Earth versus geostationary Earth orbiting systems.

  10. The Australian Computational Earth Systems Simulator

    NASA Astrophysics Data System (ADS)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.

  11. [Key microbial processes in nitrous oxide emissions of agricultural soil and mitigation strategies].

    PubMed

    Zhu, Yong-Guan; Wang, Xiao-Hui; Yang, Xiao-Ru; Xu, Hui-Juan; Jia, Yan

    2014-02-01

    Nitrous oxide (N2O) is a powerful atmospheric greenhouse gas, which does not only have a strong influence on the global climate change but also depletes the ozone layer and induces the enhancement of ultraviolet radiation to ground surface, so numerous researches have been focused on global climate change and ecological environmental change. Soil is the foremost source of N2O emissions to the atmosphere, and approximately two-thirds of these emissions are generally attributed to microbiological processes including bacterial and fungal denitrification and nitrification processes, largely as a result of the application of nitrogenous fertilizers. Here the available knowledge concerning the research progress in N2O production in agricultural soils was reviewed, including denitrification, nitrification, nitrifier denitrification and dissimilatory nitrate reduction to ammonium, and the abiotic (including soil pH, organic and inorganic nitrogen, organic matter, soil humidity and temperature) and biotic factors that have direct and indirect effects on N2O fluxes from agricultural soils were also summarized. In addition, the strategies for mitigating N2O emissions and the future research direction were proposed. Therefore, these studies are expected to provide valuable and scientific evidence for the study on mitigation strategies for the emission of greenhouse gases, adjustment of nitrogen transformation processes and enhancement of nitrogen use efficiency.

  12. Doing It Right: 366 answers to computing questions you didn't know you had

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herring, Stuart Davis

    Slides include information on history: version control, version control: branches, version control: Git, releases, requirements, readability, readability control flow, global variables, architecture, architecture redundancy, processes, input/output, unix, etcetera.

  13. Bryophyte-cyanobacteria associations as regulators of the northern latitude carbon balance in response to global change.

    PubMed

    Lindo, Zoë; Nilsson, Marie-Charlotte; Gundale, Michael J

    2013-07-01

    Ecosystems in the far north, including arctic and boreal biomes, are a globally significant pool of carbon (C). Global change is proposed to influence both C uptake and release in these ecosystems, thereby potentially affecting whether they act as C sources or sinks. Bryophytes (i.e., mosses) serve a variety of key functions in these systems, including their association with nitrogen (N2 )-fixing cyanobacteria, as thermal insulators of the soil, and producers of recalcitrant litter, which have implications for both net primary productivity (NPP) and heterotrophic respiration. While ground-cover bryophytes typically make up a small proportion of the total biomass in northern systems, their combined physical structure and N2 -fixing capabilities facilitate a disproportionally large impact on key processes that control ecosystem C and N cycles. As such, the response of bryophyte-cyanobacteria associations to global change may influence whether and how ecosystem C balances are influenced by global change. Here, we review what is known about their occurrence and N2 -fixing activity, and how bryophyte systems will respond to several key global change factors. We explore the implications these responses may have in determining how global change influences C balances in high northern latitudes. © 2013 Blackwell Publishing Ltd.

  14. Visual form-processing deficits: a global clinical classification.

    PubMed

    Unzueta-Arce, J; García-García, R; Ladera-Fernández, V; Perea-Bartolomé, M V; Mora-Simón, S; Cacho-Gutiérrez, J

    2014-10-01

    Patients who have difficulties recognising visual form stimuli are usually labelled as having visual agnosia. However, recent studies let us identify different clinical manifestations corresponding to discrete diagnostic entities which reflect a variety of deficits along the continuum of cortical visual processing. We reviewed different clinical cases published in medical literature as well as proposals for classifying deficits in order to provide a global perspective of the subject. Here, we present the main findings on the neuroanatomical basis of visual form processing and discuss the criteria for evaluating processing which may be abnormal. We also include an inclusive diagram of visual form processing deficits which represents the different clinical cases described in the literature. Lastly, we propose a boosted decision tree to serve as a guide in the process of diagnosing such cases. Although the medical community largely agrees on which cortical areas and neuronal circuits are involved in visual processing, future studies making use of new functional neuroimaging techniques will provide more in-depth information. A well-structured and exhaustive assessment of the different stages of visual processing, designed with a global view of the deficit in mind, will give a better idea of the prognosis and serve as a basis for planning personalised psychostimulation and rehabilitation strategies. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  15. The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements

    NASA Astrophysics Data System (ADS)

    Lucas, S. E.; Todd, J. F.

    2015-12-01

    The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.

  16. The evolution of global disaster risk assessments: from hazard to global change

    NASA Astrophysics Data System (ADS)

    Peduzzi, Pascal

    2013-04-01

    The perception of disaster risk as a dynamic process interlinked with global change is a fairly recent concept. It gradually emerged as an evolution from new scientific theories, currents of thinking and lessons learned from large disasters since the 1970s. The interest was further heighten, in the mid-1980s, by the Chernobyl nuclear accident and the discovery of the ozone layer hole, both bringing awareness that dangerous hazards can generate global impacts. The creation of the UN International Decade for Natural Disaster Reduction (IDNDR) and the publication of the first IPCC report in 1990 reinforced the interest for global risk assessment. First global risk models including hazard, exposure and vulnerability components were available since mid-2000s. Since then increased computation power and more refined datasets resolution, led to more numerous and sophisticated global risk models. This article presents a recent history of global disaster risk models, the current status of researches for the Global Assessment Report on Disaster Risk Reduction (GAR 2013) and future challenges and limitations for the development of next generation global disaster risk models.

  17. 77 FR 58584 - Stream Global Services, Inc., AdCenter, Beaverton, OR; Notice of a Revised Determination on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... supply of services like or directly competitive with the customer relationship management and business... subject worker group includes workers involved in employment related to the supply of customer relationship management and business process outsourcing services. The subject worker group does not include on...

  18. Sensor-Web Operations Explorer

    NASA Technical Reports Server (NTRS)

    Meemong, Lee; Miller, Charles; Bowman, Kevin; Weidner, Richard

    2008-01-01

    Understanding the atmospheric state and its impact on air quality requires observations of trace gases, aerosols, clouds, and physical parameters across temporal and spatial scales that range from minutes to days and from meters to more than 10,000 kilometers. Observations include continuous local monitoring for particle formation; field campaigns for emissions, local transport, and chemistry; and periodic global measurements for continental transport and chemistry. Understanding includes global data assimilation framework capable of hierarchical coupling, dynamic integration of chemical data and atmospheric models, and feedback loops between models and observations. The objective of the sensor-web system is to observe trace gases, aerosols, clouds, and physical parameters, an integrated observation infrastructure composed of space-borne, air-borne, and in-situ sensors will be simulated based on their measurement physics properties. The objective of the sensor-web operation is to optimally plan for heterogeneous multiple sensors, the sampling strategies will be explored and science impact will be analyzed based on comprehensive modeling of atmospheric phenomena including convection, transport, and chemical process. Topics include system architecture, software architecture, hardware architecture, process flow, technology infusion, challenges, and future direction.

  19. Terrestrial nitrogen cycling in Earth system models revisited

    USGS Publications Warehouse

    Stocker, Benjamin D; Prentice, I. Colin; Cornell, Sarah; Davies-Barnard, T; Finzi, Adrien; Franklin, Oskar; Janssens, Ivan; Larmola, Tuula; Manzoni, Stefano; Näsholm, Torgny; Raven, John; Rebel, Karin; Reed, Sasha C.; Vicca, Sara; Wiltshire, Andy; Zaehle, Sönke

    2016-01-01

    Understanding the degree to which nitrogen (N) availability limits land carbon (C) uptake under global environmental change represents an unresolved challenge. First-generation ‘C-only’vegetation models, lacking explicit representations of N cycling,projected a substantial and increasing land C sink under rising atmospheric CO2 concentrations. This prediction was questioned for not taking into account the potentially limiting effect of N availability, which is necessary for plant growth (Hungate et al.,2003). More recent global models include coupled C and N cycles in land ecosystems (C–N models) and are widely assumed to be more realistic. However, inclusion of more processes has not consistently improved their performance in capturing observed responses of the global C cycle (e.g. Wenzel et al., 2014). With the advent of a new generation of global models, including coupled C, N, and phosphorus (P) cycling, model complexity is sure to increase; but model reliability may not, unless greater attention is paid to the correspondence of model process representations ande mpirical evidence. It was in this context that the ‘Nitrogen Cycle Workshop’ at Dartington Hall, Devon, UK was held on 1–5 February 2016. Organized by I. Colin Prentice and Benjamin D. Stocker (Imperial College London, UK), the workshop was funded by the European Research Council,project ‘Earth system Model Bias Reduction and assessing Abrupt Climate change’ (EMBRACE). We gathered empirical ecologists and ecosystem modellers to identify key uncertainties in terrestrial C–N cycling, and to discuss processes that are missing or poorly represented in current models.

  20. Mapping a Global Agenda for Adolescent Health

    PubMed Central

    Patton, George C.; Viner, Russell M.; Linh, Le Cu; Ameratunga, Shanthi; Fatusi, Adesegun O.; Ferguson, B. Jane; Patel, Vikram

    2016-01-01

    Major changes in health are underway in many low- and middle-income countries that are likely to bring greater focus on adolescents. This commentary, based on a 2009 London meeting, considers the need for strategic information for future global initiatives in adolescent health. Current coverage of adolescent health in global data collections is patchy. There is both the need and scope to extend existing collections into the adolescent years as well as achieve greater harmonization of measures between surveys. The development of a core set of global adolescent health indicators would aid this process. Other important tasks include adapting and testing interventions in low- and middle-income countries, growing research capacity in those settings, better communication of research from those countries, and building structures to implement future global initiatives. A global agenda needs more than good data, but sound information about adolescent health and its social and environmental determinants, will be important in both advocacy and practice. PMID:20970076

  1. Graphics Processing Unit (GPU) Acceleration of the Goddard Earth Observing System Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putnam, Williama

    2011-01-01

    The Goddard Earth Observing System 5 (GEOS-5) is the atmospheric model used by the Global Modeling and Assimilation Office (GMAO) for a variety of applications, from long-term climate prediction at relatively coarse resolution, to data assimilation and numerical weather prediction, to very high-resolution cloud-resolving simulations. GEOS-5 is being ported to a graphics processing unit (GPU) cluster at the NASA Center for Climate Simulation (NCCS). By utilizing GPU co-processor technology, we expect to increase the throughput of GEOS-5 by at least an order of magnitude, and accelerate the process of scientific exploration across all scales of global modeling, including: The large-scale, high-end application of non-hydrostatic, global, cloud-resolving modeling at 10- to I-kilometer (km) global resolutions Intermediate-resolution seasonal climate and weather prediction at 50- to 25-km on small clusters of GPUs Long-range, coarse-resolution climate modeling, enabled on a small box of GPUs for the individual researcher After being ported to the GPU cluster, the primary physics components and the dynamical core of GEOS-5 have demonstrated a potential speedup of 15-40 times over conventional processor cores. Performance improvements of this magnitude reduce the required scalability of 1-km, global, cloud-resolving models from an unfathomable 6 million cores to an attainable 200,000 GPU-enabled cores.

  2. Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kerry H.; Vizy, Edward

    The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less

  3. Linked Open Data in the Global Change Information System (GCIS)

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt A.

    2012-01-01

    The U.S. Global Change Research Program (http://globalchange.gov) coordinates and integrates federal research on changes in the global environment and their implications for society. The USGCRP is developing a Global Change Information System (GCIS) that will centralize access to data and information related to global change across the U.S. federal government. The first implementation will focus on the 2013 National Climate Assessment (NCA) . (http://assessment.globalchange.gov) The NCA integrates, evaluates, and interprets the findings of the USGCRP; analyzes the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and analyzes current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. The NCA has received over 500 distinct technical inputs to the process, many of which are reports distilling and synthesizing even more information, coming from thousands of individuals around the federal, state and local governments, academic institutions and non-governmental organizations. The GCIS will present a web-based version of the NCA including annotations linking the findings and content of the NCA with the scientific research, datasets, models, observations, etc. that led to its conclusions. It will use semantic tagging and a linked data approach, assigning globally unique, persistent, resolvable identifiers to all of the related entities and capturing and presenting the relationships between them, both internally and referencing out to other linked data sources and back to agency data centers. The developing W3C PROV Data Model and ontology will be used to capture the provenance trail and present it in both human readable web pages and machine readable formats such as RDF and SPARQL. This will improve visibility into the assessment process, increase understanding and reproducibility, and ultimately increase credibility and trust of the resulting report. Building on the foundation of the NCA, longer term plans for the GCIS include extending these capabilities throughout the U.S. Global Change Research Program, centralizing access to global change data and information across the thirteen agencies that comprise the program.

  4. Raw and processed ground-penetrating radar and postprocessed differential global positioning system data collected from Assateague Island, Maryland, October 2014

    USGS Publications Warehouse

    Zaremba, Nicholas J.; Bernier, Julie C.; Forde, Arnell S.; Smith, Christopher G.

    2016-06-08

    This report serves as an archive of GPR and DGPS data collected from Assateague Island in October 2014. Data products, including raw GPR and processed DGPS data, elevation corrected GPR profiles, and accompanying Federal Geographic Data Committee metadata can be downloaded from the Data Downloads page.

  5. Integrated Tales of Policies, Teaching and Teacher Education: Reflecting on an Ongoing Process

    ERIC Educational Resources Information Center

    Reddy, C.

    2009-01-01

    Changing times in teacher education has been a long mantra and many changes have been occurring globally in this sector of higher education. In South Africa teacher education change has been linked to changes in the broader education processes and includes policy changes and the development of regulatory frameworks which all impacted on practice…

  6. Education of Music Teachers: A Study of the Brazilian Higher Education Programs

    ERIC Educational Resources Information Center

    Mateiro, Teresa

    2011-01-01

    With reference to educational policies in the globalization process, the purpose of this article is to show the status of higher Music Teacher Education Programs in Brazil after the enactment of the "Directives and Bases Act No. 9.394", in 1996. This law emphasizes the evaluation process for higher education, including teaching quality…

  7. Landscape pattern and ecological process in the Sierra Nevada

    Treesearch

    Dean L. Urban

    2004-01-01

    The Sierran Global Change Program in Sequoia-Kings Canyon and Yosemite National Parks includes a nearly decade-long integrated study of the interactions between climate, forest processes, and fire. This study is characterized by three recurring themes: (1) the use of systems-level models as a framework for integration and synthesis, (2) an effort to extrapolate an...

  8. The process and challenges of obtaining and sustaining clinical placements for nursing and allied health students.

    PubMed

    Taylor, Christine; Angel, Liz; Nyanga, Lucy; Dickson, Cathy

    2017-10-01

    To describe the process and challenges from a project that aimed to develop processes, source new placements and place students primarily in the discipline of nursing, but also occupational therapy, physiotherapy, podiatry, social work, and speech therapy. Clinical experience in health facilities is an essential element of health professional education, yet globally, there is a lack of clinical placements to meet demands. Educational providers are seeking placements in nontraditional facilities, yet little has been reported on the challenges in the process of procuring clinical placements. The project used a descriptive approach within a quality implementation framework. The project was guided by the quality implementation framework that included four critical steps: considerations of the host setting, structuring the implementation, supporting the implementation and improving future applications. A total of 115 new student placements were finalised across six health disciplines, including elderly care, nongovernment organisations and general practice. Sixty-two nursing students were placed in the new placements during the project. Challenges included communication, the time-consuming nature of the process and 'gatekeeping' blocks to obtaining placements. Recommendations included the importance of personal interaction in developing and maintaining relationships, and the need for clear communication processes and documentation. Potential areas for research are also given. There is great potential for growth in establishing new placements outside the traditional placement facilities for nursing and allied health and for expanding already existing nonhospital placements. Clinical professional experiences are essential to any nursing or allied health programme. There is an increasing demand for, and global lack of, clinical placements for nursing and allied health students. The results provide nursing and allied health educators and managers a framework for planning clinical placement procurement, and assisting in decision-making and developing strategies and processes for practice. © 2016 John Wiley & Sons Ltd.

  9. Process evaluation of sea salt aerosol concentrations at remote marine locations

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M.; Nilsson, E. D.

    2011-12-01

    Sea salt, an important natural aerosol, is generated by bubbles bursting at the surface of the ocean. Sea salt aerosol contributes significantly to the global aerosol burden and radiative budget and are a significant source of cloud condensation nuclei in remote marine areas (Monahan et al., 1986). Consequently, changes in marine aerosol abundance is expected to impact on climate forcing. Estimates of the atmospheric burden of sea salt aerosol mass derived from chemical transport and global climate models vary greatly both in the global total and the spatial distribution (Texor et al. 2006). This large uncertainty in the sea salt aerosol distribution in turn contributes to the large uncertainty in the current estimates of anthropogenic aerosol climate forcing (IPCC, 2007). To correctly attribute anthropogenic climate change and to veraciously project future climate, natural aerosols including sea salt must be understood and accurately modelled. In addition, the physical processes that determine the sea salt aerosol concentration are susceptible to modification due to climate change (Carslaw et al., 2010) which means there is the potential for feedbacks within the climate/aerosol system. Given the large uncertainties in sea salt aerosol modelling, there is an urgent need to evaluate the process description of sea salt aerosols in global models. An extremely valuable source of data for model evaluation is the long term measurements of PM10 sea salt aerosol mass available from a number of remote marine observation sites around the globe (including the GAW network). Sea salt aerosol concentrations at remote marine locations depend strongly on the surface exchange (emission and deposition) as well as entrainment or detrainment to the free troposphere. This suggests that the key parameters to consider in any analysis include the sea surface water temperature, wind speed, precipitation rate and the atmospheric stability. In this study, the sea salt aerosol observations are analysed to quantify the key sensitivities of the processes connecting the physical drivers of sea salt aerosol to the mass tendency. The analysis employs a semi-empirical model based on the time-tendency of the aerosol mass. This approach of focusing on the time-tendency of the sea salt aerosol concentration provides a framework for the process evaluation of sea salt aerosol concentrations in global models. The same analysis methodology can be applied to output from global models. A process of comparing the sensitivity parameters derived from observations and models will reveal model inadequacies and thus guide model improvements. Carslaw, K. S., Boucher, O., Spracklen, D. V., Mann G. W., Rae, J. G. L, Woodward, S., Kulmala, M. (2010). Atmos. Chem. Phys., 10, 1701-1737 IPCC (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon, S., D. Monahan, E. C., Spiel, D. E., Davidson, K. L. (1986) Oceanic Whitecaps ed. Monahan E. C. & MacNiochaill, D. Reidel, Norwell, Mass. Texor, C., et al. (2006) Atmos. Chem. Phys., 6, 1777-1813.

  10. Rapid communication: Global-local processing affects recognition of distractor emotional faces.

    PubMed

    Srinivasan, Narayanan; Gupta, Rashmi

    2011-03-01

    Recent studies have shown links between happy faces and global, distributed attention as well as sad faces to local, focused attention. Emotions have been shown to affect global-local processing. Given that studies on emotion-cognition interactions have not explored the effect of perceptual processing at different spatial scales on processing stimuli with emotional content, the present study investigated the link between perceptual focus and emotional processing. The study investigated the effects of global-local processing on the recognition of distractor faces with emotional expressions. Participants performed a digit discrimination task with digits at either the global level or the local level presented against a distractor face (happy or sad) as background. The results showed that global processing associated with broad scope of attention facilitates recognition of happy faces, and local processing associated with narrow scope of attention facilitates recognition of sad faces. The novel results of the study provide conclusive evidence for emotion-cognition interactions by demonstrating the effect of perceptual processing on emotional faces. The results along with earlier complementary results on the effect of emotion on global-local processing support a reciprocal relationship between emotional processing and global-local processing. Distractor processing with emotional information also has implications for theories of selective attention.

  11. Prospects for improving the representation of coastal and shelf seas in global ocean models

    NASA Astrophysics Data System (ADS)

    Holt, Jason; Hyder, Patrick; Ashworth, Mike; Harle, James; Hewitt, Helene T.; Liu, Hedong; New, Adrian L.; Pickles, Stephen; Porter, Andrew; Popova, Ekaterina; Icarus Allen, J.; Siddorn, John; Wood, Richard

    2017-02-01

    Accurately representing coastal and shelf seas in global ocean models represents one of the grand challenges of Earth system science. They are regions of immense societal importance through the goods and services they provide, hazards they pose and their role in global-scale processes and cycles, e.g. carbon fluxes and dense water formation. However, they are poorly represented in the current generation of global ocean models. In this contribution, we aim to briefly characterise the problem, and then to identify the important physical processes, and their scales, needed to address this issue in the context of the options available to resolve these scales globally and the evolving computational landscape.We find barotropic and topographic scales are well resolved by the current state-of-the-art model resolutions, e.g. nominal 1/12°, and still reasonably well resolved at 1/4°; here, the focus is on process representation. We identify tides, vertical coordinates, river inflows and mixing schemes as four areas where modelling approaches can readily be transferred from regional to global modelling with substantial benefit. In terms of finer-scale processes, we find that a 1/12° global model resolves the first baroclinic Rossby radius for only ˜ 8 % of regions < 500 m deep, but this increases to ˜ 70 % for a 1/72° model, so resolving scales globally requires substantially finer resolution than the current state of the art.We quantify the benefit of improved resolution and process representation using 1/12° global- and basin-scale northern North Atlantic nucleus for a European model of the ocean (NEMO) simulations; the latter includes tides and a k-ɛ vertical mixing scheme. These are compared with global stratification observations and 19 models from CMIP5. In terms of correlation and basin-wide rms error, the high-resolution models outperform all these CMIP5 models. The model with tides shows improved seasonal cycles compared to the high-resolution model without tides. The benefits of resolution are particularly apparent in eastern boundary upwelling zones.To explore the balance between the size of a globally refined model and that of multiscale modelling options (e.g. finite element, finite volume or a two-way nesting approach), we consider a simple scale analysis and a conceptual grid refining approach. We put this analysis in the context of evolving computer systems, discussing model turnaround time, scalability and resource costs. Using a simple cost model compared to a reference configuration (taken to be a 1/4° global model in 2011) and the increasing performance of the UK Research Councils' computer facility, we estimate an unstructured mesh multiscale approach, resolving process scales down to 1.5 km, would use a comparable share of the computer resource by 2021, the two-way nested multiscale approach by 2022, and a 1/72° global model by 2026. However, we also note that a 1/12° global model would not have a comparable computational cost to a 1° global model in 2017 until 2027. Hence, we conclude that for computationally expensive models (e.g. for oceanographic research or operational oceanography), resolving scales to ˜ 1.5 km would be routinely practical in about a decade given substantial effort on numerical and computational development. For complex Earth system models, this extends to about 2 decades, suggesting the focus here needs to be on improved process parameterisation to meet these challenges.

  12. Global and Regional Evaluation of Energy for Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yaling; Hejazi, Mohamad; Kyle, Page

    Despite significant effort to quantify the inter-dependence of the water and energy sectors, global requirements of energy for water (E4W) are still poorly understood, which may result in biases in projections and consequently in water and energy management and policy. This study estimates water-related energy consumption by water source, sector, and process, for 14 global regions from 1973 to 2012. Globally, E4W amounted to 10.2 ± 5 EJ of primary energy consumption in 2010, accounting for 1.2–3% of total global primary energy consumption, of which 58% pertains to surface water, 30% to groundwater, and 12% to non-fresh water, assuming medianmore » energy intensity levels. The sectoral E4W allocation includes municipal (45%), industrial (30%), and agricultural (25%), and main process-level contributions are from source/conveyance (39%), water purification (27%), water distribution (12%) and wastewater treatment (18%). While the USA was the largest E4W consumer from the 1970’s until the 2000’s, the largest consumers at present are the Middle East, India, and China, driven by rapid growth in desalination, groundwater-based irrigation, and industrial and municipal water use, respectively. The improved understanding of global E4W will enable enhanced consistency of both water and energy representations in integrated assessment models.« less

  13. Chapter B: Regional Geologic Setting of Late Cenozoic Lacustrine Diatomite Deposits, Great Basin and Surrounding Region: Overview and Plans for Investigation

    USGS Publications Warehouse

    Wallace, Alan R.

    2003-01-01

    Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional and local processes that led to the formation and preservation of the deposits. Major questions that need to be answered include (1) why were some basins favorable for diatomite formation, whereas others were not; (2) what post-depositional conditions are needed for diatomite preservation; and (3) what were the optimum process combinations that led to the formation and preservation of economic diatomite deposits?

  14. Evidence of Reduced Global Processing in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Booth, Rhonda D. L.; Happé, Francesca G. E.

    2018-01-01

    Frith's original notion of 'weak central coherence' suggested that increased local processing in autism spectrum disorder (ASD) resulted from reduced global processing. More recent accounts have emphasised superior local perception and suggested intact global integration. However, tasks often place local and global processing in direct trade-off,…

  15. The land-ice contribution to 21st-century dynamic sea level rise

    NASA Astrophysics Data System (ADS)

    Howard, T.; Ridley, J.; Pardaens, A. K.; Hurkmans, R. T. W. L.; Payne, A. J.; Giesen, R. H.; Lowe, J. A.; Bamber, J. L.; Edwards, T. L.; Oerlemans, J.

    2014-06-01

    Climate change has the potential to influence global mean sea level through a number of processes including (but not limited to) thermal expansion of the oceans and enhanced land ice melt. In addition to their contribution to global mean sea level change, these two processes (among others) lead to local departures from the global mean sea level change, through a number of mechanisms including the effect on spatial variations in the change of water density and transport, usually termed dynamic sea level changes. In this study, we focus on the component of dynamic sea level change that might be given by additional freshwater inflow to the ocean under scenarios of 21st-century land-based ice melt. We present regional patterns of dynamic sea level change given by a global-coupled atmosphere-ocean climate model forced by spatially and temporally varying projected ice-melt fluxes from three sources: the Antarctic ice sheet, the Greenland Ice Sheet and small glaciers and ice caps. The largest ice melt flux we consider is equivalent to almost 0.7 m of global mean sea level rise over the 21st century. The temporal evolution of the dynamic sea level changes, in the presence of considerable variations in the ice melt flux, is also analysed. We find that the dynamic sea level change associated with the ice melt is small, with the largest changes occurring in the North Atlantic amounting to 3 cm above the global mean rise. Furthermore, the dynamic sea level change associated with the ice melt is similar regardless of whether the simulated ice fluxes are applied to a simulation with fixed CO2 or under a business-as-usual greenhouse gas warming scenario of increasing CO2.

  16. Seafloor 2030 - Building a Global Ocean Map through International Collaboration

    NASA Astrophysics Data System (ADS)

    Ferrini, V. L.; Wigley, R. A.; Falconer, R. K. H.; Jakobsson, M.; Allen, G.; Mayer, L. A.; Schmitt, T.; Rovere, M.; Weatherall, P.; Marks, K. M.

    2016-12-01

    With more than 85% of the ocean floor unmapped, a huge proportion of our planet remains unexplored. Creating a comprehensive map of seafloor bathymetry remains a true global challenge that can only be accomplished through collaboration and partnership between governments, industry, academia, research organizations and non-government organizations. The objective of Seafloor 2030 is to comprehensively map the global ocean floor to resolutions that enable exploration and improved understanding of ocean processes, while informing maritime policy and supporting the management of natural marine resources for a sustainable Blue Economy. Seafloor 2030 is the outcome of the Forum for Future of Ocean Floor Mapping held in Monaco in June 2016, which was held under the auspices of GEBCO and the Nippon Foundation of Japan. GEBCO is the only international organization mandated to map the global ocean floor and is guided by the International Hydrographic Organization (IHO) and the Intergovernmental Oceanographic Commission of UNESCO. The task of completely mapping the ocean floor will require new global coordination to ensure that both existing data are identified and that new mapping efforts are coordinated to help efficiently "map the gaps." Fundamental to achieving Seafloor 2030 will be greater access to data, tools and technology, particularly for developing and coastal nations. This includes bathymetric post-processing and analysis software, database technology, computing infrastructure and gridding techniques as well as the latest developments in seafloor mapping methods and emerging crowd-sourced bathymetry initiatives. The key to achieving this global bathymetric map is capacity building and education - including greater coordination between scientific research and industry and the effective engagement of international organizations such as the United Nations.

  17. An Optimised System for Generating Multi-Resolution Dtms Using NASA Mro Datasets

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Muller, J.-P.; Sidiropoulos, P.; Veitch-Michaelis, J.; Yershov, V.

    2016-06-01

    Within the EU FP-7 iMars project, a fully automated multi-resolution DTM processing chain, called Co-registration ASP-Gotcha Optimised (CASP-GO) has been developed, based on the open source NASA Ames Stereo Pipeline (ASP). CASP-GO includes tiepoint based multi-resolution image co-registration and an adaptive least squares correlation-based sub-pixel refinement method called Gotcha. The implemented system guarantees global geo-referencing compliance with respect to HRSC (and thence to MOLA), provides refined stereo matching completeness and accuracy based on the ASP normalised cross-correlation. We summarise issues discovered from experimenting with the use of the open-source ASP DTM processing chain and introduce our new working solutions. These issues include global co-registration accuracy, de-noising, dealing with failure in matching, matching confidence estimation, outlier definition and rejection scheme, various DTM artefacts, uncertainty estimation, and quality-efficiency trade-offs.

  18. Earth Survey Applications Division. [a bibliography

    NASA Technical Reports Server (NTRS)

    Carpenter, L. (Editor)

    1981-01-01

    Accomplishments of research and data analysis conducted to study physical parameters and processes inside the Earth and on the Earth's surface, to define techniques and systems for remotely sensing the processes and measuring the parameters of scientific and applications interest, and the transfer of promising operational applications techniques to the user community of Earth resources monitors, managers, and decision makers are described. Research areas covered include: geobotany, magnetic field modeling, crustal studies, crustal dynamics, sea surface topography, land resources, remote sensing of vegetation and soils, and hydrological sciences. Major accomplishments include: production of global maps of magnetic anomalies using Magsat data; computation of the global mean sea surface using GEOS-3 and Seasat altimetry data; delineation of the effects of topography on the interpretation of remotely-sensed data; application of snowmelt runoff models to water resources management; and mapping of snow depth over wheat growing areas using Nimbus microwave data.

  19. Parental Co-Construction of 5- to 13-Year-Olds' Global Self-Esteem Through Reminiscing About Past Events.

    PubMed

    Harris, Michelle A; Donnellan, M B; Guo, Jen; McAdams, Dan P; Garnier-Villarreal, Mauricio; Trzesniewski, Kali H

    2017-11-01

    The current study explored parental processes associated with children's global self-esteem development. Eighty 5- to 13-year-olds and one of their parents provided qualitative and quantitative data through questionnaires, open-ended questions, and a laboratory-based reminiscing task. Parents who included more explanations of emotions when writing about the lowest points in their lives were more likely to discuss explanations of emotions experienced in negative past events with their child, which was associated with child attachment security. Attachment was associated with concurrent self-esteem, which predicted relative increases in self-esteem 16 months later, on average. Finally, parent support also predicted residual increases in self-esteem. Findings extend prior research by including younger ages and uncovering a process by which two theoretically relevant parenting behaviors impact self-esteem development. © 2017 The Authors. Child Development © 2017 Society for Research in Child Development, Inc.

  20. A Novel Strategy for Very-Large-Scale Cash-Crop Mapping in the Context of Weather-Related Risk Assessment, Combining Global Satellite Multispectral Datasets, Environmental Constraints, and In Situ Acquisition of Geospatial Data

    PubMed Central

    Iannelli, Gianni Cristian; Torres, Marco A.

    2018-01-01

    Cash crops are agricultural crops intended to be sold for profit as opposed to subsistence crops, meant to support the producer, or to support livestock. Since cash crops are intended for future sale, they translate into large financial value when considered on a wide geographical scale, so their production directly involves financial risk. At a national level, extreme weather events including destructive rain or hail, as well as drought, can have a significant impact on the overall economic balance. It is thus important to map such crops in order to set up insurance and mitigation strategies. Using locally generated data—such as municipality-level records of crop seeding—for mapping purposes implies facing a series of issues like data availability, quality, homogeneity, etc. We thus opted for a different approach relying on global datasets. Global datasets ensure homogeneity and availability of data, although sometimes at the expense of precision and accuracy. A typical global approach makes use of spaceborne remote sensing, for which different land cover classification strategies are available in literature at different levels of cost and accuracy. We selected the optimal strategy in the perspective of a global processing chain. Thanks to a specifically developed strategy for fusing unsupervised classification results with environmental constraints and other geospatial inputs including ground-based data, we managed to obtain good classification results despite the constraints placed. The overall production process was composed using “good-enough" algorithms at each step, ensuring that the precision, accuracy, and data-hunger of each algorithm was commensurate to the precision, accuracy, and amount of data available. This paper describes the tailored strategy developed on the occasion as a cooperation among different groups with diverse backgrounds, a strategy which is believed to be profitably reusable in other, similar contexts. The paper presents the problem, the constraints and the adopted solutions; it then summarizes the main findings including that efforts and costs can be saved on the side of Earth Observation data processing when additional ground-based data are available to support the mapping task. PMID:29443919

  1. A Novel Strategy for Very-Large-Scale Cash-Crop Mapping in the Context of Weather-Related Risk Assessment, Combining Global Satellite Multispectral Datasets, Environmental Constraints, and In Situ Acquisition of Geospatial Data.

    PubMed

    Dell'Acqua, Fabio; Iannelli, Gianni Cristian; Torres, Marco A; Martina, Mario L V

    2018-02-14

    Cash crops are agricultural crops intended to be sold for profit as opposed to subsistence crops, meant to support the producer, or to support livestock. Since cash crops are intended for future sale, they translate into large financial value when considered on a wide geographical scale, so their production directly involves financial risk. At a national level, extreme weather events including destructive rain or hail, as well as drought, can have a significant impact on the overall economic balance. It is thus important to map such crops in order to set up insurance and mitigation strategies. Using locally generated data-such as municipality-level records of crop seeding-for mapping purposes implies facing a series of issues like data availability, quality, homogeneity, etc. We thus opted for a different approach relying on global datasets. Global datasets ensure homogeneity and availability of data, although sometimes at the expense of precision and accuracy. A typical global approach makes use of spaceborne remote sensing, for which different land cover classification strategies are available in literature at different levels of cost and accuracy. We selected the optimal strategy in the perspective of a global processing chain. Thanks to a specifically developed strategy for fusing unsupervised classification results with environmental constraints and other geospatial inputs including ground-based data, we managed to obtain good classification results despite the constraints placed. The overall production process was composed using "good-enough" algorithms at each step, ensuring that the precision, accuracy, and data-hunger of each algorithm was commensurate to the precision, accuracy, and amount of data available. This paper describes the tailored strategy developed on the occasion as a cooperation among different groups with diverse backgrounds, a strategy which is believed to be profitably reusable in other, similar contexts. The paper presents the problem, the constraints and the adopted solutions; it then summarizes the main findings including that efforts and costs can be saved on the side of Earth Observation data processing when additional ground-based data are available to support the mapping task.

  2. The global sulfur cycle

    NASA Technical Reports Server (NTRS)

    Sagan, D. (Editor)

    1985-01-01

    The results of the planetary biology microbial ecology's 1984 Summer Research Program, which examined various aspects of the global sulfur cycle are summarized. Ways in which sulfur flows through the many living and chemical species that inhabit the surface of the Earth were investigated. Major topics studied include: (1) sulfur cycling and metabolism of phototropic and filamentous sulfur bacteria; (2) sulfur reduction in sediments of marine and evaporite environments; (3) recent cyanobacterial mats; (4) microanalysis of community metabolism in proximity to the photic zone in potential stromatolites; and (5) formation and activity of microbial biofilms on metal sulfides and other mineral surfaces. Relationships between the global sulfur cycle and the understanding of the early evolution of the Earth and biosphere and current processes that affect global habitability are stressed.

  3. Water vapour correction of the daily 1 km AVHRR global land dataset: Part I validation and use of the Water Vapour input field

    USGS Publications Warehouse

    DeFelice, Thomas P.; Lloyd, D.; Meyer, D.J.; Baltzer, T. T.; Piraina, P.

    2003-01-01

    An atmospheric correction algorithm developed for the 1 km Advanced Very High Resolution Radiometer (AVHRR) global land dataset was modified to include a near real-time total column water vapour data input field to account for the natural variability of atmospheric water vapour. The real-time data input field used for this study is the Television and Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder A global total column water vapour dataset. It was validated prior to its use in the AVHRR atmospheric correction process using two North American AVHRR scenes, namely 13 June and 28 November 1996. The validation results are consistent with those reported by others and entail a comparison between TOVS, radiosonde, experimental sounding, microwave radiometer, and data from a hand-held sunphotometer. The use of this data layer as input to the AVHRR atmospheric correction process is discussed.

  4. The Direct Lighting Computation in Global Illumination Methods

    NASA Astrophysics Data System (ADS)

    Wang, Changyaw Allen

    1994-01-01

    Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.

  5. Botanic gardens science for conservation and global change.

    PubMed

    Donaldson, John S

    2009-11-01

    The contributions of botanic gardens to conservation biology and global-change research need to be understood within the context of the traditional strengths of such gardens in herbarium collections, living collections and interactions with the public. Here, I propose that research in conservation planning, modelling species responses to climate change, conservation of threatened species and experimental tests of global change build on the core strengths of botanic gardens. However, there are limits to what can be achieved through traditional gardens-based programs, and some botanic gardens have adapted their research to include studies of threatening processes and to monitor and verify global-change impacts. There is an opportunity for botanic gardens to use their living collections more effectively in global-change research and for them to have a role in linking biodiversity conservation with benefits derived from ecosystem services.

  6. GEWEX Water and Energy Budget Study

    NASA Technical Reports Server (NTRS)

    Roads, J.; Bainto, E.; Masuda, K.; Rodell, Matthew; Rossow, W. B.

    2008-01-01

    Closing the global water and energy budgets has been an elusive Global Energy and Water-cycle Experiment (GEWEX) goal. It has been difficult to gather many of the needed global water and energy variables and processes, although, because of GEWEX, we now have globally gridded observational estimates for precipitation and radiation and many other relevant variables such as clouds and aerosols. Still, constrained models are required to fill in many of the process and variable gaps. At least there are now several atmospheric reanalyses ranging from the early National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) and NCEP/Department of Energy (DOE) reanalyses to the more recent ERA40 and JRA-25 reanalyses. Atmospheric constraints include requirements that the models state variables remain close to in situ observations or observed satellite radiances. This is usually done by making short-term forecasts from an analyzed initial state; these short-term forecasts provide the next guess, which is corrected by comparison to available observations. While this analysis procedure is likely to result in useful global descriptions of atmospheric temperature, wind and humidity, there is no guarantee that relevant hydroclimate processes like precipitation, which we can observe and evaluate, and evaporation over land, which we cannot, have similar verisimilitude. Alternatively, the Global Land Data Assimilation System (GLDAS), drives uncoupled land surface models with precipitation, surface solar radiation, and surface meteorology (from bias-corrected reanalyses during the study period) to simulate terrestrial states and surface fluxes. Further constraints are made when a tuned water balance model is used to characterize the global runoff observational estimates. We use this disparate mix of observational estimates, reanalyses, GLDAS and calibrated water balance simulations to try to characterize and close global and terrestrial atmospheric and surface water and energy budgets to within 10-20% for long term (1986-1995), large-scale global to regional annual means.

  7. Intercomparison of hydrologic processes in global climate models

    NASA Technical Reports Server (NTRS)

    Lau, W. K.-M.; Sud, Y. C.; Kim, J.-H.

    1995-01-01

    In this report, we address the intercomparison of precipitation (P), evaporation (E), and surface hydrologic forcing (P-E) for 23 Atmospheric Model Intercomparison Project (AMIP) general circulation models (GCM's) including relevant observations, over a variety of spatial and temporal scales. The intercomparison includes global and hemispheric means, latitudinal profiles, selected area means for the tropics and extratropics, ocean and land, respectively. In addition, we have computed anomaly pattern correlations among models and observations for different seasons, harmonic analysis for annual and semiannual cycles, and rain-rate frequency distribution. We also compare the joint influence of temperature and precipitation on local climate using the Koeppen climate classification scheme.

  8. [Review of dynamic global vegetation models (DGVMs)].

    PubMed

    Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun

    2014-01-01

    Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project.

  9. Variations in global thunderstorm activity inferred from the OTD records

    NASA Astrophysics Data System (ADS)

    Nickolaenko, A. P.; Hayakawa, M.; Sekiguchi, M.

    2006-03-01

    We use the data on the planetary distribution of thunderstorms collected by optical transient detector (OTD) to derive the properties of global electric activity. Processing of optical data indicates that modern observations from space confirm the general concept of thunderstorm distribution and motion. Close similarity is demonstrated between the World Meteorological Organization data and modern records including Carnegie curve. Departures noted might be caused by thunderstorms redistribution owing to climate change; the issue deserves a special examination.

  10. The tendency of unconscious thought toward global processing style.

    PubMed

    Li, Jiansheng; Wang, Fan; Shen, Mowei; Fan, Gang

    2017-08-01

    This study explored whether unconscious thought has a tendency to process information globally. In three experiments, a Navon task was used to activate global or local processing styles. Findings showed that in the unconscious-thought groups, those performing the local Navon task presented a poorer decision-making performance when compared to those performing the global Navon task (Experiment 1); participants reported that their judgments were made based on partial attributes (Experiment 2), and evaluated a target individual mainly based on information consistent with stereotypes (Experiment 3). These results showed that when presented with distracter tasks, conscious thought activates local processing, which impairs its ability to process information globally. However, this impairment would not happen if global processing were activated instead. This study provides support to the idea that unconscious thought has a tendency to process information globally. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Autism: Hard to Switch from Details to the Whole.

    PubMed

    Soriano, María Felipa; Ibáñez-Molina, Antonio J; Paredes, Natalia; Macizo, Pedro

    2017-12-18

    It has long been proposed that individuals with autism exhibit a superior processing of details at the expense of an impaired global processing. This theory has received some empirical support, but results are mixed. In this research we have studied local and global processing in ASD and Typically Developing children, with an adaptation of the Navon task, designed to measure congruency effects between local and global stimuli and switching cost between local and global tasks. ASD children showed preserved global processing; however, compared to Typically Developing children, they exhibited more facilitation from congruent local stimuli when they performed the global task. In addition, children with ASD had more switching cost than Typically Developing children only when they switched from the local to the global task, reflecting a specific difficulty to disengage from local stimuli. Together, results suggest that ASD is characterized by a tendency to process local details, they benefit from the processing of local stimuli at the expense of increasing cost to disengage from local stimuli when global processing is needed. Thus, this work demonstrates experimentally the advantages and disadvantages of the increased local processing in children with ASD.

  12. Resource allocation processes at multilateral organizations working in global health

    PubMed Central

    Chi, Y-Ling; Bump, Jesse B

    2018-01-01

    Abstract International institutions provide well over US$10 billion in development assistance for health (DAH) annually and between 1990 and 2014, DAH disbursements totaled $458 billion but how do they decide who gets what, and for what purpose? In this article, we explore how allocation decisions were made by the nine convening agencies of the Equitable Access Initiative. We provide clear, plain language descriptions of the complete process from resource mobilization to allocation for the nine multilateral agencies with prominent agendas in global health. Then, through a comparative analysis we illuminate the choices and strategies employed in the nine international institutions. We find that resource allocation in all reviewed institutions follow a similar pattern, which we categorized in a framework of five steps: strategy definition, resource mobilization, eligibility of countries, support type and funds allocation. All the reviewed institutions generate resource allocation decisions through well-structured and fairly complex processes. Variations in those processes seem to reflect differences in institutional principles and goals. However, these processes have serious shortcomings. Technical problems include inadequate flexibility to account for or meet country needs. Although aid effectiveness and value for money are commonly referenced, we find that neither performance nor impact is a major criterion for allocating resources. We found very little formal consideration of the incentives generated by allocation choices. Political issues include non-transparent influence on allocation processes by donors and bureaucrats, and the common practice of earmarking funds to bypass the normal allocation process entirely. Ethical deficiencies include low accountability and transparency at international institutions, and limited participation by affected citizens or their representatives. We find that recipient countries have low influence on allocation processes themselves, although within these processes they have some influence in relatively narrow areas. PMID:29415239

  13. Local and Global Auditory Processing: Behavioral and ERP Evidence

    PubMed Central

    Sanders, Lisa D.; Poeppel, David

    2007-01-01

    Differential processing of local and global visual features is well established. Global precedence effects, differences in event-related potentials (ERPs) elicited when attention is focused on local versus global levels, and hemispheric specialization for local and global features all indicate that relative scale of detail is an important distinction in visual processing. Observing analogous differential processing of local and global auditory information would suggest that scale of detail is a general organizational principle of the brain. However, to date the research on auditory local and global processing has primarily focused on music perception or on the perceptual analysis of relatively higher and lower frequencies. The study described here suggests that temporal aspects of auditory stimuli better capture the local-global distinction. By combining short (40 ms) frequency modulated tones in series to create global auditory patterns (500 ms), we independently varied whether pitch increased or decreased over short time spans (local) and longer time spans (global). Accuracy and reaction time measures revealed better performance for global judgments and asymmetric interference that were modulated by amount of pitch change. ERPs recorded while participants listened to identical sounds and indicated the direction of pitch change at the local or global levels provided evidence for differential processing similar to that found in ERP studies employing hierarchical visual stimuli. ERP measures failed to provide evidence for lateralization of local and global auditory perception, but differences in distributions suggest preferential processing in more ventral and dorsal areas respectively. PMID:17113115

  14. Global Manufacturing of CAR T Cell Therapy.

    PubMed

    Levine, Bruce L; Miskin, James; Wonnacott, Keith; Keir, Christopher

    2017-03-17

    Immunotherapy using chimeric antigen receptor-modified T cells has demonstrated high response rates in patients with B cell malignancies, and chimeric antigen receptor T cell therapy is now being investigated in several hematologic and solid tumor types. Chimeric antigen receptor T cells are generated by removing T cells from a patient's blood and engineering the cells to express the chimeric antigen receptor, which reprograms the T cells to target tumor cells. As chimeric antigen receptor T cell therapy moves into later-phase clinical trials and becomes an option for more patients, compliance of the chimeric antigen receptor T cell manufacturing process with global regulatory requirements becomes a topic for extensive discussion. Additionally, the challenges of taking a chimeric antigen receptor T cell manufacturing process from a single institution to a large-scale multi-site manufacturing center must be addressed. We have anticipated such concerns in our experience with the CD19 chimeric antigen receptor T cell therapy CTL019. In this review, we discuss steps involved in the cell processing of the technology, including the use of an optimal vector for consistent cell processing, along with addressing the challenges of expanding chimeric antigen receptor T cell therapy to a global patient population.

  15. Water circulation and global mantle dynamics: Insight from numerical modeling

    NASA Astrophysics Data System (ADS)

    Nakagawa, Takashi; Nakakuki, Tomoeki; Iwamori, Hikaru

    2015-05-01

    We investigate water circulation and its dynamical effects on global-scale mantle dynamics in numerical thermochemical mantle convection simulations. Both dehydration-hydration processes and dehydration melting are included. We also assume the rheological properties of hydrous minerals and density reduction caused by hydrous minerals. Heat transfer due to mantle convection seems to be enhanced more effectively than water cycling in the mantle convection system when reasonable water dependence of viscosity is assumed, due to effective slab dehydration at shallow depths. Water still affects significantly the global dynamics by weakening the near-surface oceanic crust and lithosphere, enhancing the activity of surface plate motion compared to dry mantle case. As a result, including hydrous minerals, the more viscous mantle is expected with several orders of magnitude compared to the dry mantle. The average water content in the whole mantle is regulated by the dehydration-hydration process. The large-scale thermochemical anomalies, as is observed in the deep mantle, is found when a large density contrast between basaltic material and ambient mantle is assumed (4-5%), comparable to mineral physics measurements. Through this study, the effects of hydrous minerals in mantle dynamics are very important for interpreting the observational constraints on mantle convection.

  16. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  17. Representing anthropogenic gross land use change, wood harvest, and forest age dynamics in a global vegetation model ORCHIDEE-MICT v8.4.2

    NASA Astrophysics Data System (ADS)

    Yue, Chao; Ciais, Philippe; Luyssaert, Sebastiaan; Li, Wei; McGrath, Matthew J.; Chang, Jinfeng; Peng, Shushi

    2018-01-01

    Land use change (LUC) is among the main anthropogenic disturbances in the global carbon cycle. Here we present the model developments in a global dynamic vegetation model ORCHIDEE-MICT v8.4.2 for a more realistic representation of LUC processes. First, we included gross land use change (primarily shifting cultivation) and forest wood harvest in addition to net land use change. Second, we included sub-grid evenly aged land cohorts to represent secondary forests and to keep track of the transient stage of agricultural lands since LUC. Combination of these two features allows the simulation of shifting cultivation with a rotation length involving mainly secondary forests instead of primary ones. Furthermore, a set of decision rules regarding the land cohorts to be targeted in different LUC processes have been implemented. Idealized site-scale simulation has been performed for miombo woodlands in southern Africa assuming an annual land turnover rate of 5 % grid cell area between forest and cropland. The result shows that the model can correctly represent forest recovery and cohort aging arising from agricultural abandonment. Such a land turnover process, even though without a net change in land cover, yields carbon emissions largely due to the imbalance between the fast release from forest clearing and the slow uptake from agricultural abandonment. The simulation with sub-grid land cohorts gives lower emissions than without, mainly because the cleared secondary forests have a lower biomass carbon stock than the mature forests that are otherwise cleared when sub-grid land cohorts are not considered. Over the region of southern Africa, the model is able to account for changes in different forest cohort areas along with the historical changes in different LUC activities, including regrowth of old forests when LUC area decreases. Our developments provide possibilities to account for continental or global forest demographic change resulting from past anthropogenic and natural disturbances.

  18. Access NASA Satellite Global Precipitation Data Visualization on YouTube

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Su, J.; Acker, J.; Huffman, G.; Vollmer, B.; Wei, J.; Meyer, D.

    2017-01-01

    Since the satellite era began, NASA has collected a large volume of Earth science observations for research and applications around the world. The collected and archived satellite data at 12 NASA data centers can also be used for STEM education and activities such as disaster events, climate change, etc. However, accessing satellite data can be a daunting task for non-professional users such as teachers and students because of unfamiliarity of terminology, disciplines, data formats, data structures, computing resources, processing software, programming languages, etc. Over the years, many efforts including tools, training classes, and tutorials have been developed to improve satellite data access for users, but barriers still exist for non-professionals. In this presentation, we will present our latest activity that uses a very popular online video sharing Web site, YouTube (https://www.youtube.com/), for accessing visualizations of our global precipitation datasets at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC). With YouTube, users can access and visualize a large volume of satellite data without the necessity to learn new software or download data. The dataset in this activity is a one-month animation for the GPM (Global Precipitation Measurement) Integrated Multi-satellite Retrievals for GPM (IMERG). IMERG provides precipitation on a near-global (60 deg. N-S) coverage at half-hourly time interval, providing more details on precipitation processes and development compared to the 3-hourly TRMM (Tropical Rainfall Measuring Mission) Multisatellite Precipitation Analysis (TMPA, 3B42) product. When the retro-processing of IMERG during the TRMM era is finished in 2018, the entire video will contain more than 330,000 files and will last 3.6 hours. Future plans include development of flyover videos for orbital data for an entire satellite mission or project. All videos, including the one-month animation, will be uploaded and available at the GES DISC site on YouTube (https://www.youtube.com/user/NASAGESDISC).

  19. Global processing takes time: A meta-analysis on local-global visual processing in ASD.

    PubMed

    Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan

    2015-05-01

    What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research. (c) 2015 APA, all rights reserved).

  20. CHANGING CLIMATE AND PHOTOBIOGEOCHEMICAL CYCLES IN AQUATIC ENVIRONMENTS

    EPA Science Inventory

    Global biogeochemistry plays a critical role in controlling life processes, climate and their interactions, including effects on atmospheric greenhouse gas concentrations. Recent evidence indicates that the light-driven part of aquatic biogeochemical cycles is being altered by in...

  1. Sup wit Eval Ext?

    ERIC Educational Resources Information Center

    Patton, Michael Quinn

    2008-01-01

    Extension and evaluation share some similar challenges, including working with diverse stakeholders, parallel processes for focusing priorities, meeting common standards of excellence, and adapting to globalization, new technologies, and changing times. Evaluations of extension programs have helped clarify how change occurs, especially the…

  2. U.S. Clean Energy Hydrogen and Fuel Cell Technologies: A Competitiveness Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fullenkamp, Patrick; Holody, Diane; James, Brian

    The objectives of this project are a 1) Global Competitiveness Analysis of hydrogen and fuel cell systems and components manufactured including 700 bar compressed hydrogen storage system in the U.S., Europe, Asia, and other key areas to be identified to determine the global cost leaders, the best current manufacturing processes, the key factors determining competitiveness, and the potential means of cost reductions; and an 2) Analysis to assess the status of global hydrogen and fuel cell markets. The analysis of units, megawatts by country and by application will focus on polymer electrolyte membrane (PEM) fuel cell systems (automotive and stationary).

  3. Mission to Planet Earth. The living ocean: Observing ocean color from space

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Measurements of ocean color are part of NASA's Mission to Planet Earth, which will assess how the global environment is changing. Using the unique perspective available from space, NASA will observe, monitor, and study large-scale environmental processes, focusing on quantifying climate change. NASA will distribute the results of these studies to researchers worldwide to furnish a basis for informed decisions on environmental protection and economic policy. This information packet includes discussion on the reasons for measuring ocean color, the carbon cycle and ocean color, priorities for global climate research, and SeWiFS (sea-viewing wide field-of-view sensor) global ocean color measurements.

  4. Global warming and neurodegenerative disorders: speculations on their linkage.

    PubMed

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  5. Balancing the benefits and risks of public-private partnerships to address the global double burden of malnutrition.

    PubMed

    Kraak, Vivica I; Harrigan, Paige B; Lawrence, Mark; Harrison, Paul J; Jackson, Michaela A; Swinburn, Boyd

    2012-03-01

    Transnational food, beverage and restaurant companies, and their corporate foundations, may be potential collaborators to help address complex public health nutrition challenges. While UN system guidelines are available for private-sector engagement, non-governmental organizations (NGO) have limited guidelines to navigate diverse opportunities and challenges presented by partnering with these companies through public-private partnerships (PPP) to address the global double burden of malnutrition. We conducted a search of electronic databases, UN system websites and grey literature to identify resources about partnerships used to address the global double burden of malnutrition. A narrative summary provides a synthesis of the interdisciplinary literature identified. We describe partnership opportunities, benefits and challenges; and tools and approaches to help NGO engage with the private sector to address global public health nutrition challenges. PPP benefits include: raising the visibility of nutrition and health on policy agendas; mobilizing funds and advocating for research; strengthening food-system processes and delivery systems; facilitating technology transfer; and expanding access to medications, vaccines, healthy food and beverage products, and nutrition assistance during humanitarian crises. PPP challenges include: balancing private commercial interests with public health interests; managing conflicts of interest; ensuring that co-branded activities support healthy products and healthy eating environments; complying with ethical codes of conduct; assessing partnership compatibility; and evaluating partnership outcomes. NGO should adopt a systematic and transparent approach using available tools and processes to maximize benefits and minimize risks of partnering with transnational food, beverage and restaurant companies to effectively target the global double burden of malnutrition.

  6. GPS Imaging of Global Vertical Land Motion for Sea Level Studies

    NASA Astrophysics Data System (ADS)

    Hammond, W. C.; Blewitt, G.; Hamlington, B. D.

    2015-12-01

    Coastal vertical land motion contributes to the signal of local relative sea level change. Moreover, understanding global sea level change requires understanding local sea level rise at many locations around Earth. It is therefore essential to understand the regional secular vertical land motion attributable to mantle flow, tectonic deformation, glacial isostatic adjustment, postseismic viscoelastic relaxation, groundwater basin subsidence, elastic rebound from groundwater unloading or other processes that can change the geocentric height of tide gauges anchored to the land. These changes can affect inferences of global sea level rise and should be taken into account for global projections. We present new results of GPS imaging of vertical land motion across most of Earth's continents including its ice-free coastlines around North and South America, Europe, Australia, Japan, parts of Africa and Indonesia. These images are based on data from many independent open access globally distributed continuously recording GPS networks including over 13,500 stations. The data are processed in our system to obtain solutions aligned to the International Terrestrial Reference Frame (ITRF08). To generate images of vertical rate we apply the Median Interannual Difference Adjusted for Skewness (MIDAS) algorithm to the vertical times series to obtain robust non-parametric estimates with realistic uncertainties. We estimate the vertical land motion at the location of 1420 tide gauges locations using Delaunay-based geographic interpolation with an empirically derived distance weighting function and median spatial filtering. The resulting image is insensitive to outliers and steps in the GPS time series, omits short wavelength features attributable to unstable stations or unrepresentative rates, and emphasizes long-wavelength mantle-driven vertical rates.

  7. TOPEX/POSEIDON operational orbit determination results using global positioning satellites

    NASA Technical Reports Server (NTRS)

    Guinn, J.; Jee, J.; Wolff, P.; Lagattuta, F.; Drain, T.; Sierra, V.

    1994-01-01

    Results of operational orbit determination, performed as part of the TOPEX/POSEIDON (T/P) Global Positioning System (GPS) demonstration experiment, are presented in this article. Elements of this experiment include the GPS satellite constellation, the GPS demonstration receiver on board T/P, six ground GPS receivers, the GPS Data Handling Facility, and the GPS Data Processing Facility (GDPF). Carrier phase and P-code pseudorange measurements from up to 24 GPS satellites to the seven GPS receivers are processed simultaneously with the GDPF software MIRAGE to produce orbit solutions of T/P and the GPS satellites. Daily solutions yield subdecimeter radial accuracies compared to other GPS, LASER, and DORIS precision orbit solutions.

  8. Telecommunications and Information-Systems Standardization--Is America Ready? CRS Report for Congress. Sci-Tech Alert. 87-458 SPR.

    ERIC Educational Resources Information Center

    Hack, David

    This report on telephone networks and computer networks in a global context focuses on the processes and organizations through which the standards that make this possible are set. The first of five major sections presents descriptions of the standardization process, including discussions of the various kinds of standards, advantages and…

  9. Bologna Trends 2010: The Implementation of the Bologna Process and a Move towards a "New Global Regionalism"

    ERIC Educational Resources Information Center

    Observatory on Borderless Higher Education, 2010

    2010-01-01

    The European University Association, whose members include European higher educations institutions across 46 countries, just published Trends 2010, the sixth in the Trends series, its flagship pan-European report. The principal aim of the 2010 report is to situate and analyse the implementation of the Bologna Process, an initiative to create a…

  10. REVIEWS OF TOPICAL PROBLEMS: Free convection in geophysical processes

    NASA Astrophysics Data System (ADS)

    Alekseev, V. V.; Gusev, A. M.

    1983-10-01

    A highly significant geophysical process, free convection, is examined. Thermal convection often controls the dynamical behavior in several of the earth's envelopes: the atmosphere, ocean, and mantle. Section 2 sets forth the thermohydrodynamic equations that describe convection in a compressible or incompressible fluid, thermochemical convection, and convection in the presence of thermal diffusion. Section 3 reviews the mechanisms for the origin of the global atmospheric and oceanic circulation. Interlatitudinal convection and jet streams are discussed, as well as monsoon circulation and the mean meridional circulation of ocean waters due to the temperature and salinity gradients. Also described are the hypotheses for convective motion in the mantle and the thermal-wave (moving flame) mechanism for inducing global circulation (the atmospheres of Venus and Mars provide illustrations). Eddy formation by convection in a centrifugal force field is considered. Section 4 deals with medium- and small-scale convective processes, including hurricane systems with phase transitions, cellular cloud structure, and convection penetrating into the ocean, with its stepped vertical temperature and salinity microstructure. Self-oscillatory processes involving convection in fresh-water basins are discussed, including effects due to the anomalous (p,T) relation for water.

  11. Assessing Health Impacts within Environmental Impact Assessments: An Opportunity for Public Health Globally Which Must Not Remain Missed

    PubMed Central

    Harris, Patrick; Viliani, Francesca; Spickett, Jeff

    2015-01-01

    Within the member states of the United Nations 190 of 193 have regulated Environmental Impact Assessments (EIA) which is a systematic process to prevent and mitigate the potential environmental impacts of industry development projects before these occur. However, the routine and comprehensive assessment of health impacts within EIAs remains underdeveloped. Focusing, as an example, on the risks to global health from the global shift in the mining industry towards Low and Middle Income Countries LMIC), this viewpoint details why connecting with EIA is an essential task for the health system. Although existing knowledge is out of date in relation to global practice we identify how health has been included, to some extent, in High Income Country EIAs and the institutional requirements for doing so. Using arguments identified by industry themselves about requiring a ‘social license to operate’, we conclude that EIA regulations provide the best current mechanism to ensure health protection is a core aspect in the decision making process to approve projects. PMID:25608592

  12. (abstract) The EOS SAR Mission: A New Approach

    NASA Technical Reports Server (NTRS)

    Way, JoBea

    1993-01-01

    The goal of the Earth Orbiting System Synthetic Aperture Radar (EOS SAR) program is to help develop the modeling and observational capabilities to predict and monitor terrestrial and oceanic processes that are either causing global change or resulting from global change. Specifically, the EOS SAR will provide important geophysical products to the EOS data set to improve our understanding of the state and functioning of the Earth system. The strategy for the EOS SAR program is to define the instrument requirements based on required input to geophysical algorithms, provide the processing capability and algorithms to generate such products on the required spatial (global) and temporal (3-5 days) scales, and to provide the spaceborne instrumentation with international partnerships. Initially this partnership has been with Germany; currently we are exploring broader international partnerships. A MultiSAR approach to the EOS SAR which includes a number of SARs provided by Japan, ESA, Germany, Canada, and the US in synergistic orbits could be used to attain a truly global monitoring capability using multifrequency polarimetric signatures. These concepts and several options for mission scenarios will be presented.

  13. Radioisotope tracer approach for understanding the impacts of global change-induced pedoturbation on soil C dynamics

    NASA Astrophysics Data System (ADS)

    Gonzalez-Meler, M. A.; Sturchio, N. C.; Sanchez-de Leon, Y.; Blanc-Betes, E.; Taneva, L.; Poghosyan, A.; Norby, R. J.; Filley, T. R.; Guilderson, T. P.; Welker, J. M.

    2010-12-01

    Biogeochemical carbon-cycle feedbacks to climate are apparent but uncertain, primarily because of gaps in mechanistic understanding on the ecosystem processes that drive carbon cycling and storage in terrestrial ecosystems, particularly in soils. Recent findings are increasingly recognizing the interaction between soil biota and the soil physical environment. Soil carbon turnover is partly determined by burial of organic matter and its physical and chemical protection. These factors are potentially affected by changes in climate (freezing-thawing or wet-drying cycles) or ecosystem structure including biological invasions. A major impediment to understanding dynamics of soil C in terrestrial systems is our inability to measure soil physical processes such as soil mixing rates or turnover of soil structures, including aggregates. Here we present a multiple radioisotope tracer approach (naturally occurring and man-made) to measure soil mixing rates in response to global change. We will present evidence of soil mixing rate changes in a temperate forest exposed to increased levels of atmospheric CO2 and in a tundra ecosystem exposed to increased thermal insulation. In both cases, radioisotope tracers proved to be an effective way to measure effects of global change on pedoturbation. Results also provided insights into the specific mechanisms involved in the responses. Elevated CO2 resulted in deeper soil mixing cells (increased by about 5cm on average) when compared to control soils as a consequence of changes in biota (increased root growth, higher earthworm density). In the tundra, soil warming induced higher rates of cryoturbation, resulting in what appears to be a net uplift of organic matter to the surface thereby exposing deeper C to decomposers. In both cases, global change factors affected the vertical distribution of C and changed the amount of bulk soil actively involved in soil processes. As a consequence, comparisons of C budgets to a given soil depth in response to global change factors may be misleading if they do not account for the depth change in the soil mixing cells.

  14. Drawing Connections Between Local and Global Observations: An Essential Element of Geoscience Education

    NASA Astrophysics Data System (ADS)

    Manduca, C. A.; Mogk, D. W.

    2002-12-01

    One of the hallmarks of geoscience research is the process of moving between observations and interpretations on local and global scales to develop an integrated understanding of Earth processes. Understanding this interplay is an important aspect of student geoscience learning which leads to an understanding of the fundamental principles of science and geoscience and of the connections between local natural phenomena or human activity and global processes. Several techniques that engage students in inquiry and discovery (as recommended in the National Science Education Standards, NRC 1996, Shaping the Future of Undergraduate Earth Science Education, AGU, 1997) hold promise for helping students make these connections. These include the development of global data sets from local observations (e.g. GLOBE); studying small scale or local phenomenon in the context of global models (e.g. carbon storage in local vegetation and its role in the carbon cycle); or an analysis of local environmental issues in a global context (e.g. a comparison of local flooding to flooding in other countries and analysis in the context of weather, geology and development patterns). Research on learning suggests that data-rich activities linking the local and global have excellent potential for enhancing student learning because 1) students have already developed observations and interpretations of their local environment which can serve as a starting point for constructing new knowledge and 2) this context may motivate learning and develop understanding that can be transferred to other situations. (How People Learn, NRC, 2001). Faculty and teachers at two recent workshops confirm that projects that involve local or global data can engage students in learning by providing real world context, creating student ownership of the learning process, and developing scientific skills applicable to the complex problems that characterize modern science and society. Workshop participants called for increased dissemination of examples of effective practice, evaluation of the impact of data-rich activities on learning, and further development of data access infrastructure and services. (for additional workshop results and discussion see http://serc.carleton.edu/research_education/usingdata)

  15. Ultra-processed products are becoming dominant in the global food system.

    PubMed

    Monteiro, C A; Moubarac, J-C; Cannon, G; Ng, S W; Popkin, B

    2013-11-01

    The relationship between the global food system and the worldwide rapid increase of obesity and related diseases is not yet well understood. A reason is that the full impact of industrialized food processing on dietary patterns, including the environments of eating and drinking, remains overlooked and underestimated. Many forms of food processing are beneficial. But what is identified and defined here as ultra-processing, a type of process that has become increasingly dominant, at first in high-income countries, and now in middle-income countries, creates attractive, hyper-palatable, cheap, ready-to-consume food products that are characteristically energy-dense, fatty, sugary or salty and generally obesogenic. In this study, the scale of change in purchase and sales of ultra-processed products is examined and the context and implications are discussed. Data come from 79 high- and middle-income countries, with special attention to Canada and Brazil. Results show that ultra-processed products dominate the food supplies of high-income countries, and that their consumption is now rapidly increasing in middle-income countries. It is proposed here that the main driving force now shaping the global food system is transnational food manufacturing, retailing and fast food service corporations whose businesses are based on very profitable, heavily promoted ultra-processed products, many in snack form. © 2013 The Authors. Obesity Reviews published by John Wiley & Sons Ltd on behalf of the International Association for the Study of Obesity.

  16. Cervical cancer and the global health agenda: Insights from multiple policy-analysis frameworks

    PubMed Central

    Parkhurst, Justin O.; Vulimiri, Madhulika

    2013-01-01

    Cervical cancer is the second leading cause of cancer deaths for women globally, with an estimated 88% of deaths occurring in the developing world. Available technologies have dramatically reduced mortality in high-income settings, yet cervical cancer receives considerably little attention on the global health policy landscape. The authors applied four policy-analysis frameworks to literature on global cervical cancer to explore the question of why cervical cancer may not be receiving the international attention it may otherwise warrant. Each framework explores the process of agenda setting and discerns factors that either facilitate or hinder policy change in cases where there is both a clear problem and a potential effective solution. In combination, these frameworks highlight a number of crucial elements that may be needed to raise the profile of cervical cancer on global health agendas, including improving local (national or sub-national) information on the condition; increasing mobilisation of affected civil society groups; framing cervical cancer debates in ways that build upon its classification as a non-communicable disease (NCD) and an issue of women's rights; linking cervical cancer screening to well-funded services such as those for HIV treatment in some countries; and identifying key global policy windows of opportunity to promote the cervical cancer agenda, including emerging NCD global health discussions and post-2015 reviews of the Millennium Development Goals. PMID:24236409

  17. Cervical cancer and the global health agenda: Insights from multiple policy-analysis frameworks.

    PubMed

    Parkhurst, Justin O; Vulimiri, Madhulika

    2013-01-01

    Cervical cancer is the second leading cause of cancer deaths for women globally, with an estimated 88% of deaths occurring in the developing world. Available technologies have dramatically reduced mortality in high-income settings, yet cervical cancer receives considerably little attention on the global health policy landscape. The authors applied four policy-analysis frameworks to literature on global cervical cancer to explore the question of why cervical cancer may not be receiving the international attention it may otherwise warrant. Each framework explores the process of agenda setting and discerns factors that either facilitate or hinder policy change in cases where there is both a clear problem and a potential effective solution. In combination, these frameworks highlight a number of crucial elements that may be needed to raise the profile of cervical cancer on global health agendas, including improving local (national or sub-national) information on the condition; increasing mobilisation of affected civil society groups; framing cervical cancer debates in ways that build upon its classification as a non-communicable disease (NCD) and an issue of women's rights; linking cervical cancer screening to well-funded services such as those for HIV treatment in some countries; and identifying key global policy windows of opportunity to promote the cervical cancer agenda, including emerging NCD global health discussions and post-2015 reviews of the Millennium Development Goals.

  18. Global anthropogenic emissions of particulate matter including black carbon

    NASA Astrophysics Data System (ADS)

    Klimont, Zbigniew; Kupiainen, Kaarle; Heyes, Chris; Purohit, Pallav; Cofala, Janusz; Rafaj, Peter; Borken-Kleefeld, Jens; Schöpp, Wolfgang

    2017-07-01

    This paper presents a comprehensive assessment of historical (1990-2010) global anthropogenic particulate matter (PM) emissions including the consistent and harmonized calculation of mass-based size distribution (PM1, PM2. 5, PM10), as well as primary carbonaceous aerosols including black carbon (BC) and organic carbon (OC). The estimates were developed with the integrated assessment model GAINS, where source- and region-specific technology characteristics are explicitly included. This assessment includes a number of previously unaccounted or often misallocated emission sources, i.e. kerosene lamps, gas flaring, diesel generators, refuse burning; some of them were reported in the past for selected regions or in the context of a particular pollutant or sector but not included as part of a total estimate. Spatially, emissions were calculated for 172 source regions (as well as international shipping), presented for 25 global regions, and allocated to 0.5° × 0.5° longitude-latitude grids. No independent estimates of emissions from forest fires and savannah burning are provided and neither windblown dust nor unpaved roads emissions are included. We estimate that global emissions of PM have not changed significantly between 1990 and 2010, showing a strong decoupling from the global increase in energy consumption and, consequently, CO2 emissions, but there are significantly different regional trends, with a particularly strong increase in East Asia and Africa and a strong decline in Europe, North America, and the Pacific region. This in turn resulted in important changes in the spatial pattern of PM burden, e.g. European, North American, and Pacific contributions to global emissions dropped from nearly 30 % in 1990 to well below 15 % in 2010, while Asia's contribution grew from just over 50 % to nearly two-thirds of the global total in 2010. For all PM species considered, Asian sources represented over 60 % of the global anthropogenic total, and residential combustion was the most important sector, contributing about 60 % for BC and OC, 45 % for PM2. 5, and less than 40 % for PM10, where large combustion sources and industrial processes are equally important. Global anthropogenic emissions of BC were estimated at about 6.6 and 7.2 Tg in 2000 and 2010, respectively, and represent about 15 % of PM2. 5 but for some sources reach nearly 50 %, i.e. for the transport sector. Our global BC numbers are higher than previously published owing primarily to the inclusion of new sources. This PM estimate fills the gap in emission data and emission source characterization required in air quality and climate modelling studies and health impact assessments at a regional and global level, as it includes both carbonaceous and non-carbonaceous constituents of primary particulate matter emissions. The developed emission dataset has been used in several regional and global atmospheric transport and climate model simulations within the ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) project and beyond, serves better parameterization of the global integrated assessment models with respect to representation of black carbon and organic carbon emissions, and built a basis for recently published global particulate number estimates.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.

  20. Contemporary HIV/AIDS research: Insights from knowledge management theory.

    PubMed

    Callaghan, Chris William

    2017-12-01

    Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn's paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the 'crowd,' thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process.

  1. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.

    2010-10-01

    A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment pseudo-modal aerosol dynamics approach rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulfate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulfuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulfate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.

  2. Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model

    NASA Astrophysics Data System (ADS)

    Mann, G. W.; Carslaw, K. S.; Spracklen, D. V.; Ridley, D. A.; Manktelow, P. T.; Chipperfield, M. P.; Pickering, S. J.; Johnson, C. E.

    2010-05-01

    A new version of the Global Model of Aerosol Processes (GLOMAP) is described, which uses a two-moment modal aerosol scheme rather than the original two-moment bin scheme. GLOMAP-mode simulates the multi-component global aerosol, resolving sulphate, sea-salt, dust, black carbon (BC) and particulate organic matter (POM), the latter including primary and biogenic secondary POM. Aerosol processes are simulated in a size-resolved manner including primary emissions, secondary particle formation by binary homogeneous nucleation of sulphuric acid and water, particle growth by coagulation, condensation and cloud-processing and removal by dry deposition, in-cloud and below-cloud scavenging. A series of benchmark observational datasets are assembled against which the skill of the model is assessed in terms of normalised mean bias (b) and correlation coefficient (R). Overall, the model performs well against the datasets in simulating concentrations of aerosol precursor gases, chemically speciated particle mass, condensation nuclei (CN) and cloud condensation nuclei (CCN). Surface sulphate, sea-salt and dust mass concentrations are all captured well, while BC and POM are biased low (but correlate well). Surface CN concentrations compare reasonably well in free troposphere and marine sites, but are underestimated at continental and coastal sites related to underestimation of either primary particle emissions or new particle formation. The model compares well against a compilation of CCN observations covering a range of environments and against vertical profiles of size-resolved particle concentrations over Europe. The simulated global burden, lifetime and wet removal of each of the simulated aerosol components is also examined and each lies close to multi-model medians from the AEROCOM model intercomparison exercise.

  3. Global Positioning System data collection, processing, and analysis conducted by the U.S. Geological Survey Earthquake Hazards Program

    USGS Publications Warehouse

    Murray, Jessica R.; Svarc, Jerry L.

    2017-01-01

    The U.S. Geological Survey Earthquake Science Center collects and processes Global Positioning System (GPS) data throughout the western United States to measure crustal deformation related to earthquakes and tectonic processes as part of a long‐term program of research and monitoring. Here, we outline data collection procedures and present the GPS dataset built through repeated temporary deployments since 1992. This dataset consists of observations at ∼1950 locations. In addition, this article details our data processing and analysis procedures, which consist of the following. We process the raw data collected through temporary deployments, in addition to data from continuously operating western U.S. GPS stations operated by multiple agencies, using the GIPSY software package to obtain position time series. Subsequently, we align the positions to a common reference frame, determine the optimal parameters for a temporally correlated noise model, and apply this noise model when carrying out time‐series analysis to derive deformation measures, including constant interseismic velocities, coseismic offsets, and transient postseismic motion.

  4. A multi-level, multi-jurisdictional strategy: Transnational tobacco companies' attempts to obstruct tobacco packaging restrictions.

    PubMed

    Hawkins, Benjamin; Holden, Chris; Mackinder, Sophie

    2018-03-09

    Despite the extensive literature on the tobacco industry, there has been little attempt to study how transnational tobacco companies (TTCs) coordinate their political activities globally, or to theorise TTC strategies within the context of global governance structures and policy processes. This article draws on three concepts from political science - policy transfer, multi-level governance and venue shifting - to analyse TTCs' integrated, global strategies to oppose augmented packaging requirements across multiple jurisdictions. Following Uruguay's introduction of extended labelling requirements, Australia became the first country in the world to require tobacco products to be sold in standardised ('plain') packaging in 2012. Governments in the European Union, including in the United Kingdom and Ireland, adopted similar laws, with other member states due to follow. TTCs vehemently opposed these measures and developed coordinated, global strategies to oppose their implementation, exploiting the complexity of contemporary global governance arrangements. These included a series of legal challenges in various jurisdictions, alongside political lobbying and public relations campaigns. This article draws on analysis of public documents and 32 semi-structured interviews with key policy actors. It finds that TTCs developed coordinated and highly integrated strategies to oppose packaging restrictions across multiple jurisdictions and levels of governance.

  5. Invasive Plants on Rangelands: a Global Threat

    USDA-ARS?s Scientific Manuscript database

    Invasive plant species are spreading and invading rangelands at an unprecedented rate costing ranchers billions of dollars to control invasive plants each year. In its simplest form, the invasion process has four primary stages, including introduction, establishment, spread and colonization. Th...

  6. The rise of global warming skepticism: exploring affective image associations in the United States over time.

    PubMed

    Smith, Nicholas; Leiserowitz, Anthony

    2012-06-01

    This article explores how affective image associations to global warming have changed over time. Four nationally representative surveys of the American public were conducted between 2002 and 2010 to assess public global warming risk perceptions, policy preferences, and behavior. Affective images (positive or negative feelings and cognitive representations) were collected and content analyzed. The results demonstrate a large increase in "naysayer" associations, indicating extreme skepticism about the issue of climate change. Multiple regression analyses found that holistic affect and "naysayer" associations were more significant predictors of global warming risk perceptions than cultural worldviews or sociodemographic variables, including political party and ideology. The results demonstrate the important role affective imagery plays in judgment and decision-making processes, how these variables change over time, and how global warming is currently perceived by the American public. © 2012 Society for Risk Analysis.

  7. Laboratory and software applications for clinical trials: the global laboratory environment.

    PubMed

    Briscoe, Chad

    2011-11-01

    The Applied Pharmaceutical Software Meeting is held annually. It is sponsored by The Boston Society, a not-for-profit organization that coordinates a series of meetings within the global pharmaceutical industry. The meeting generally focuses on laboratory applications, but in recent years has expanded to include some software applications for clinical trials. The 2011 meeting emphasized the global laboratory environment. Global clinical trials generate massive amounts of data in many locations that must be centralized and processed for efficient analysis. Thus, the meeting had a strong focus on establishing networks and systems for dealing with the computer infrastructure to support such environments. In addition to the globally installed laboratory information management system, electronic laboratory notebook and other traditional laboratory applications, cloud computing is quickly becoming the answer to provide efficient, inexpensive options for managing the large volumes of data and computing power, and thus it served as a central theme for the meeting.

  8. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    NASA Astrophysics Data System (ADS)

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-07-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit.

  9. The global compendium of Aedes aegypti and Ae. albopictus occurrence

    PubMed Central

    Kraemer, Moritz U. G.; Sinka, Marianne E.; Duda, Kirsten A.; Mylne, Adrian; Shearer, Freya M.; Brady, Oliver J.; Messina, Jane P.; Barker, Christopher M.; Moore, Chester G.; Carvalho, Roberta G.; Coelho, Giovanini E.; Van Bortel, Wim; Hendrickx, Guy; Schaffner, Francis; Wint, G. R. William; Elyazar, Iqbal R. F.; Teng, Hwa-Jen; Hay, Simon I.

    2015-01-01

    Aedes aegypti and Ae. albopictus are the main vectors transmitting dengue and chikungunya viruses. Despite being pathogens of global public health importance, knowledge of their vectors’ global distribution remains patchy and sparse. A global geographic database of known occurrences of Ae. aegypti and Ae. albopictus between 1960 and 2014 was compiled. Herein we present the database, which comprises occurrence data linked to point or polygon locations, derived from peer-reviewed literature and unpublished studies including national entomological surveys and expert networks. We describe all data collection processes, as well as geo-positioning methods, database management and quality-control procedures. This is the first comprehensive global database of Ae. aegypti and Ae. albopictus occurrence, consisting of 19,930 and 22,137 geo-positioned occurrence records respectively. Both datasets can be used for a variety of mapping and spatial analyses of the vectors and, by inference, the diseases they transmit. PMID:26175912

  10. Necessary conditions for the globalization of traditional Chinese medicine.

    PubMed

    Yu, Bei-Bei; Gong, Xiu-Lin

    2011-03-01

    With the current trend of globalization, unprecedented opportunities and enormous changes have emerged for the global development of traditional Chinese medicine (TCM). However, many old and new challenges and problems still remain, including partial or limited comprehension of acupuncture, oriental medicine and TCM, the existence of non-standardized institutes of TCM and acupuncture training schools, unqualified TCM practitioners, and problems concerning Chinese herbal medicine and inexperience in conducting TCM business. These problems will doubtlessly impede the further development of TCM worldwide in the foreseeable future. It is also clear that the globalization of TCM will require a large scale systematic project and constitute an arduous historical task. This paper aims to consolidate 6 strategic development modes to reinforce and facilitate the process of TCM globalization through a detailed analysis of both the present status and existing problems concerning the development of TCM in the United States.

  11. Future generations, environmental ethics, and global environmental change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, B.E.

    1994-12-31

    The elements of a methodology to be employed by the global community to investigate the consequences of global environmental change upon future generations and global ecosystems are outlined in this paper. The methodology is comprised of two major components: A possible future worlds model; and a formal, citizen-oriented process to judge whether the possible future worlds potentially inheritable by future generations meet obligational standards. A broad array of descriptors of future worlds can be encompassed within this framework, including survival of ecosystems and other species and satisfaction of human concerns. The methodology expresses fundamental psychological motivations and human myths journey,more » renewal, mother earth, and being-in-nature-and incorporates several viewpoints on obligations to future generations-maintaining options, fairness, humility, and the cause of humanity. The methodology overcomes several severe drawbacks of the economic-based methods most commonly used for global environmental policy analysis.« less

  12. Monitoring and Evaluating the Transition of Large-Scale Programs in Global Health

    PubMed Central

    Bao, James; Rodriguez, Daniela C; Paina, Ligia; Ozawa, Sachiko; Bennett, Sara

    2015-01-01

    Purpose: Donors are increasingly interested in the transition and sustainability of global health programs as priorities shift and external funding declines. Systematic and high-quality monitoring and evaluation (M&E) of such processes is rare. We propose a framework and related guiding questions to systematize the M&E of global health program transitions. Methods: We conducted stakeholder interviews, searched the peer-reviewed and gray literature, gathered feedback from key informants, and reflected on author experiences to build a framework on M&E of transition and to develop guiding questions. Findings: The conceptual framework models transition as a process spanning pre-transition and transition itself and extending into sustained services and outcomes. Key transition domains include leadership, financing, programming, and service delivery, and relevant activities that drive the transition in these domains forward include sustaining a supportive policy environment, creating financial sustainability, developing local stakeholder capacity, communicating to all stakeholders, and aligning programs. Ideally transition monitoring would begin prior to transition processes being implemented and continue for some time after transition has been completed. As no set of indicators will be applicable across all types of health program transitions, we instead propose guiding questions and illustrative quantitative and qualitative indicators to be considered and adapted based on the transition domains identified as most important to the particular health program transition. The M&E of transition faces new and unique challenges, requiring measuring constructs to which evaluators may not be accustomed. Many domains hinge on measuring “intangibles” such as the management of relationships. Monitoring these constructs may require a compromise between rigorous data collection and the involvement of key stakeholders. Conclusion: Monitoring and evaluating transitions in global health programs can bring conceptual clarity to the transition process, provide a mechanism for accountability, facilitate engagement with local stakeholders, and inform the management of transition through learning. Further investment and stronger methodological work are needed. PMID:26681706

  13. Understanding Global Change: Tools for exploring Earth processes and biotic change through time

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; White, L. D.; Berbeco, M.

    2014-12-01

    Teaching global change is one of the great pedagogical challenges of our day because real understanding entails integrating a variety of concepts from different scientific subject areas, including chemistry, physics, and biology, with a variety of causes and impacts in the past, present, and future. With the adoption of the Next Generation Science Standards, which emphasize climate change and other human impacts on natural systems, there has never been a better time to provide instructional support to educators on these topics. In response to this clear need, the University of California Museum of Paleontology, in collaboration with the National Center for Science Education, developed a new web resource for teachers and students titled "Understanding Global Change" (UGC) that introduces the drivers and impacts of global change. This website clarifies the connections among deep time, modern Earth system processes, and anthropogenic influences, and provides K-16 instructors with a wide range of easy-to-use tools, strategies, and lesson plans for communicating these important concepts regarding global change and the basic Earth systems processes. In summer 2014, the UGC website was field-tested during a workshop with 25 K-12 teachers and science educators. Feedback from participants helped the UGC team develop and identify pedagogically sound lesson plans and instructional tools on global change. These resources are accessible through UGC's searchable database, are aligned with NGSS and Common Core, and are categorized by grade level, subject, and level of inquiry-based instruction (confirmation, structured, guided, open). Providing a range of content and tools at levels appropriate for teachers is essential because our initial needs assessment found that educators often feel that they lack the content knowledge and expertise to address complex, but relevant global change issues, such as ocean acidification and deforestation. Ongoing needs assessments and surveys of teacher confidence when teaching global change content will continue to drive UGC resource development as the site expands in the future.

  14. Perception of shapes targeting local and global processes in autism spectrum disorders.

    PubMed

    Grinter, Emma J; Maybery, Murray T; Pellicano, Elizabeth; Badcock, Johanna C; Badcock, David R

    2010-06-01

    Several researchers have found evidence for impaired global processing in the dorsal visual stream in individuals with autism spectrum disorders (ASDs). However, support for a similar pattern of visual processing in the ventral visual stream is less consistent. Critical to resolving the inconsistency is the assessment of local and global form processing ability. Within the visual domain, radial frequency (RF) patterns - shapes formed by sinusoidally varying the radius of a circle to add 'bumps' of a certain number to a circle - can be used to examine local and global form perception. Typically developing children and children with an ASD discriminated between circles and RF patterns that are processed either locally (RF24) or globally (RF3). Children with an ASD required greater shape deformation to identify RF3 shapes compared to typically developing children, consistent with difficulty in global processing in the ventral stream. No group difference was observed for RF24 shapes, suggesting intact local ventral-stream processing. These outcomes support the position that a deficit in global visual processing is present in ASDs, consistent with the notion of Weak Central Coherence.

  15. The impact of ARM on climate modeling

    DOE PAGES

    Randall, David A.; Del Genio, Anthony D.; Donner, Lee J.; ...

    2016-07-15

    Climate models are among humanity’s most ambitious and elaborate creations. They are designed to simulate the interactions of the atmosphere, ocean, land surface, and cryosphere on time scales far beyond the limits of deterministic predictability and including the effects of time-dependent external forcings. The processes involved include radiative transfer, fluid dynamics, microphysics, and some aspects of geochemistry, biology, and ecology. The models explicitly simulate processes on spatial scales ranging from the circumference of Earth down to 100 km or smaller and implicitly include the effects of processes on even smaller scales down to a micron or so. In addition, themore » atmospheric component of a climate model can be called an atmospheric global circulation model (AGCM).« less

  16. Global-local processing relates to spatial and verbal processing: implications for sex differences in cognition.

    PubMed

    Pletzer, Belinda; Scheuringer, Andrea; Scherndl, Thomas

    2017-09-05

    Sex differences have been reported for a variety of cognitive tasks and related to the use of different cognitive processing styles in men and women. It was recently argued that these processing styles share some characteristics across tasks, i.e. male approaches are oriented towards holistic stimulus aspects and female approaches are oriented towards stimulus details. In that respect, sex-dependent cognitive processing styles share similarities with attentional global-local processing. A direct relationship between cognitive processing and global-local processing has however not been previously established. In the present study, 49 men and 44 women completed a Navon paradigm and a Kimchi Palmer task as well as a navigation task and a verbal fluency task with the goal to relate the global advantage (GA) effect as a measure of global processing to holistic processing styles in both tasks. Indeed participants with larger GA effects displayed more holistic processing during spatial navigation and phonemic fluency. However, the relationship to cognitive processing styles was modulated by the specific condition of the Navon paradigm, as well as the sex of participants. Thus, different types of global-local processing play different roles for cognitive processing in men and women.

  17. Global health partnership for student peer-to-peer psychiatry e-learning: Lessons learned.

    PubMed

    Keynejad, Roxanne C

    2016-12-03

    Global 'twinning' relationships between healthcare organizations and institutions in low and high-resource settings have created growing opportunities for e-health partnerships which capitalize upon expanding information technology resources worldwide. E-learning approaches to medical education are increasingly popular but remain under-investigated, whilst a new emphasis on global health teaching has coincided with university budget cuts in many high income countries. King's Somaliland Partnership (KSP) is a paired institutional partnership health link, supported by Tropical Health and Education Trust (THET), which works to strengthen the healthcare system and improve access to care through mutual exchange of skills, knowledge and experience between Somaliland and King's Health Partners, UK. Aqoon, meaning knowledge in Somali, is a peer-to-peer global mental health e-learning partnership between medical students at King's College London (KCL) and Hargeisa and Amoud Universities, Somaliland. It aims to extend the benefits of KSP's cross-cultural and global mental health education work to medical students and has reported positive results, including improved attitudes towards psychiatry in Somaliland students. The process of devising, piloting, evaluating, refining, implementing, re-evaluating and again refining the Aqoon model has identified important barriers to successful partnership. This article describes lessons learned during this process, sharing principles and recommendations for readers wishing to expand their own global health link beyond qualified clinicians, to the healthcare professionals of the future.

  18. Global industrial impact coefficient based on random walk process and inter-country input-output table

    NASA Astrophysics Data System (ADS)

    Xing, Lizhi; Dong, Xianlei; Guan, Jun

    2017-04-01

    Input-output table is very comprehensive and detailed in describing the national economic system with lots of economic relationships, which contains supply and demand information among industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can describe the structural characteristics of the internal structure of the research object by measuring the structural indicators of the social and economic system, revealing the complex relationship between the inner hierarchy and the external economic function. This paper builds up GIVCN-WIOT models based on World Input-Output Database in order to depict the topological structure of Global Value Chain (GVC), and assumes the competitive advantage of nations is equal to the overall performance of its domestic sectors' impact on the GVC. Under the perspective of econophysics, Global Industrial Impact Coefficient (GIIC) is proposed to measure the national competitiveness in gaining information superiority and intermediate interests. Analysis of GIVCN-WIOT models yields several insights including the following: (1) sectors with higher Random Walk Centrality contribute more to transmitting value streams within the global economic system; (2) Half-Value Ratio can be used to measure robustness of open-economy macroeconomics in the process of globalization; (3) the positive correlation between GIIC and GDP indicates that one country's global industrial impact could reveal its international competitive advantage.

  19. Advances in Polyhydroxyalkanoate (PHA) Production.

    PubMed

    Koller, Martin

    2017-11-02

    This editorial paper provides a synopsis of the contributions to the Bioengineering special issue "Advances in Polyhydroxyalkanoate (PHA) Production". It illustrates the embedding of the issue's individual research articles in the current global research and development landscape related to polyhydroxyalkanoates (PHA). The article shows how these articles are interrelated to each other, reflecting the entire PHA process chain including strain selection, metabolic and genetic considerations, feedstock evaluation, fermentation regimes, process engineering, and polymer processing towards high-value marketable products.

  20. Road Map For National Security Addendum on Structure and Process Analyses. Volume 1: Key Observations and Overarching Processes

    DTIC Science & Technology

    2000-01-01

    business of national security. The seven volumes contained herein analyze key organizations and processes throughout the Federal government, to include...Secretary of State (S) Chapter 2 – Under Secretary for Political Affairs (P) Chapter 3 – Under Secretary for Economic, Business and Agricultural Affairs...vulnerabilities of the evolving global economic infrastructure; E. Energy will continue to have a major strategic significance; F. All borders will be more

  1. Spatial information technologies for remote sensing today and tomorrow; Proceedings of the Ninth Pecora Symposium, Sioux Falls, SD, October 2-4, 1984

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.

  2. Concept Mapping to Assess Learning and Understanding of Complexity in Courses on Global Climate Change

    NASA Astrophysics Data System (ADS)

    Rebich-Hespanha, S.; Gautier, C.

    2010-12-01

    The complex nature of climate change science poses special challenges for educators wishing to broaden and deepen student understanding of the climate system and its sensitivity to and impacts upon human activity. Learners have prior knowledge that may limit their perception and processing of the multiple relationships between processes (e.g., feedbacks) that arise in global change science, and these existing mental models serve as the scaffold for all future learning. Because adoption of complex scientific concepts is not likely if instruction includes presentation of information or concepts that are not compatible with the learners’ prior knowledge, providing effective instruction on this complex topic requires learning opportunities that are anchored upon an evaluation of the limitations and inaccuracies of the learners’ existing understandings of the climate system. The formative evaluation that serves as the basis for planning such instruction can also be useful as a baseline against which to evaluate subsequent learning. We will present concept-mapping activities that we have used to assess students’ knowledge and understanding about global climate change in courses that utilized multiple assessment methods including presentations, writings, discussions, and concept maps. The courses in which these activities were completed use a variety of instructional approaches (including standard lectures and lab assignments and a mock summit) to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. Two instances of concept map assessment will be presented: one focused on evaluating student understanding of the major components of the climate system and their interconnections, and the other focused on student understanding of the connections between climate change and the global food system. We will discuss how concept mapping can be used to demonstrate evidence of learning and conceptual change, and also how it can be used to provide information about gaps in knowledge and misconceptions students have about the topic.

  3. White Matter Atrophy and Cognitive Dysfunctions in Neuromyelitis Optica

    PubMed Central

    Blanc, Frederic; Noblet, Vincent; Jung, Barbara; Rousseau, François; Renard, Felix; Bourre, Bertrand; Longato, Nadine; Cremel, Nadjette; Di Bitonto, Laure; Kleitz, Catherine; Collongues, Nicolas; Foucher, Jack; Kremer, Stephane; Armspach, Jean-Paul; de Seze, Jerome

    2012-01-01

    Neuromyelitis optica (NMO) is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N) to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain) and VBM for focal brain volume (GM and WM), NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54%) had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM) was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in NMO patients, particularly in the WM. PMID:22509264

  4. Auditory global-local processing: effects of attention and musical experience.

    PubMed

    Ouimet, Tia; Foster, Nicholas E V; Hyde, Krista L

    2012-10-01

    In vision, global (whole) features are typically processed before local (detail) features ("global precedence effect"). However, the distinction between global and local processing is less clear in the auditory domain. The aims of the present study were to investigate: (i) the effects of directed versus divided attention, and (ii) the effect musical training on auditory global-local processing in 16 adult musicians and 16 non-musicians. Participants were presented with short nine-tone melodies, each comprised of three triplet sequences (three-tone units). In a "directed attention" task, participants were asked to focus on either the global or local pitch pattern and had to determine if the pitch pattern went up or down. In a "divided attention" task, participants judged whether the target pattern (up or down) was present or absent. Overall, global structure was perceived faster and more accurately than local structure. The global precedence effect was observed regardless of whether attention was directed to a specific level or divided between levels. Musicians performed more accurately than non-musicians overall, but non-musicians showed a more pronounced global advantage. This study provides evidence for an auditory global precedence effect across attention tasks, and for differences in auditory global-local processing associated with musical experience.

  5. Early vision and focal attention

    NASA Astrophysics Data System (ADS)

    Julesz, Bela

    1991-07-01

    At the thirty-year anniversary of the introduction of the technique of computer-generated random-dot stereograms and random-dot cinematograms into psychology, the impact of the technique on brain research and on the study of artificial intelligence is reviewed. The main finding-that stereoscopic depth perception (stereopsis), motion perception, and preattentive texture discrimination are basically bottom-up processes, which occur without the help of the top-down processes of cognition and semantic memory-greatly simplifies the study of these processes of early vision and permits the linking of human perception with monkey neurophysiology. Particularly interesting are the unexpected findings that stereopsis (assumed to be local) is a global process, while texture discrimination (assumed to be a global process, governed by statistics) is local, based on some conspicuous local features (textons). It is shown that the top-down process of "shape (depth) from shading" does not affect stereopsis, and some of the models of machine vision are evaluated. The asymmetry effect of human texture discrimination is discussed, together with recent nonlinear spatial filter models and a novel extension of the texton theory that can cope with the asymmetry problem. This didactic review attempts to introduce the physicist to the field of psychobiology and its problems-including metascientific problems of brain research, problems of scientific creativity, the state of artificial intelligence research (including connectionist neural networks) aimed at modeling brain activity, and the fundamental role of focal attention in mental events.

  6. What is the Right RFID for Your Process?

    DTIC Science & Technology

    2006-04-30

    chain efficiency at the US Department of Defense (DoD) and at major retailers such as Wal-Mart, Tesco and others has prompted these organizations...areas of expertise include global operations, supply- chain management, sustainable technologies, product stewardship, reverse logistics and...time MBA programs. Areas of Apte’s research interests include managing service operations, supply- chain management, technology management, and

  7. Intellectual Property Rights and International Trade

    DTIC Science & Technology

    2008-07-23

    Brazil, Mexico, Malaysia , Egypt, Saudi Arabia, and Colombia.7 CRS-6 Table 1. Global Intellectual Property Filings Through the PCT, 2006-2007 Country...processing, motion pictures, publishing, and recording industries. Other industries that indirectly benefit from IPR protection include retailers ...in 2007, counterfeit footwear represented $77.8 million (40% of the total). Other popular items included wearing apparel ($27.0 million in value, 14

  8. Research priorities to reduce the global burden of dementia by 2025.

    PubMed

    Shah, Hiral; Albanese, Emiliano; Duggan, Cynthia; Rudan, Igor; Langa, Kenneth M; Carrillo, Maria C; Chan, Kit Yee; Joanette, Yves; Prince, Martin; Rossor, Martin; Saxena, Shekhar; Snyder, Heather M; Sperling, Reisa; Varghese, Mathew; Wang, Huali; Wortmann, Marc; Dua, Tarun

    2016-11-01

    At the First WHO Ministerial Conference on Global Action Against Dementia in March, 2015, 160 delegates, including representatives from 80 WHO Member States and four UN agencies, agreed on a call for action to reduce the global burden of dementia by fostering a collective effort to advance research. To drive this effort, we completed a globally representative research prioritisation exercise using an adapted version of the Child Health and Nutrition Research Initiative method. We elicited 863 research questions from 201 participants and consolidated these questions into 59 thematic research avenues, which were scored anonymously by 162 researchers and stakeholders from 39 countries according to five criteria. Six of the top ten research priorities were focused on prevention, identification, and reduction of dementia risk, and on delivery and quality of care for people with dementia and their carers. Other priorities related to diagnosis, biomarkers, treatment development, basic research into disease mechanisms, and public awareness and understanding of dementia. Research priorities identified by this systematic international process should be mapped onto the global dementia research landscape to identify crucial gaps and inform and motivate policy makers, funders, and researchers to support and conduct research to reduce the global burden of dementia. Efforts are needed by all stakeholders, including WHO, WHO Member States, and civil society, to continuously monitor research investments and progress, through international platforms such as a Global Dementia Observatory. With established research priorities, an opportunity now exists to translate the call for action into a global dementia action plan to reduce the global burden of dementia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. The globalization of football: a study in the glocalization of the 'serious life'.

    PubMed

    Giulianotti, Richard; Robertson, Roland

    2004-12-01

    Sport, in particular football, constitutes one of the most dynamic, sociologically illuminating domains of globalization. This paper examines the globalization of football with particular reference to Robertson's theorizations of global processes. We examine football's cultural globalization through the concept of 'glocalization', which highlights the interdependence of local and global processes within the game's identities and institutions. We address economic globalization in football by considering the world's leading clubs as 'glocal' transnational corporations. We assess the political globalization of football with reference to the possible enhancement of democracy within the game's international governance. We conclude by affirming the utility of sport in advancing our empirical and theoretical understanding of globalization processes.

  10. Remote Sensing and Problems of the Hydrosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, E. D. (Editor)

    1979-01-01

    A discussion of freshwater and marine systems is presented including areas of the classification of lakes, identification and quantification of major functional groups of phytoplankton, sources and sinks of biochemical factors, and temporal and regional variability of surface features. Atmospheric processes linked to hydrospheric process through the transfer of matter via aerosols and gases are discussed. Particle fluxes to the aquatic environment and global geochemical problems are examined.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierrehumbert, Raymond

    There are a number of crises that a potentially habitable planet must avoid or surmount if its potential is to be realized. These include the runaway greenhouse, loss of atmosphere by chemical or physical processes, and long-lasting global glaciation. In this lecture I will present research on the climate dynamics governing such processes, with particular emphasis on the lessons to be learned from the cases of Early Mars and the Neoproterozoic Snowball Earth.

  12. NASA/MSFC FY-82 atmospheric processes research review

    NASA Technical Reports Server (NTRS)

    Turner, R. E. (Compiler)

    1982-01-01

    The NASA/MSFC FY-82 Atmospheric Processes Research Program was reviewed. The review covered research tasks in the areas of upper atmosphere, global weather, and severe storms and local weather. Also included was research on aviation safety environmental hazards. The research project summaries, in narrative outline form, supplied by the individual investigators together with the agenda and other information about the review are presented.

  13. Sequence stratigraphy as a scientific enterprise: the evolution and persistence of conflicting paradigms

    NASA Astrophysics Data System (ADS)

    Miall, Andrew D.; Miall, Charlene E.

    2001-08-01

    In the 1970s, seismic stratigraphy represented a new paradigm in geological thought. The development of new techniques for analyzing seismic-reflection data constituted a "crisis," as conceptualized by T.S. Kuhn, and stimulated a revolution in stratigraphy. We analyze here a specific subset of the new ideas, that pertaining to the concept of global-eustasy and the global cycle chart published by Vail et al. [Vail, P.R., Mitchum, R.M., Jr., Todd, R.G., Widmier, J.M., Thompson, S., III, Sangree, J.B., Bubb, J.N., Hatlelid, W.G., 1977. Seismic stratigraphy and global changes of sea-level. In: Payton, C.E. (Ed.), Seismic Stratigraphy—Applications to Hydrocarbon Exploration, Am. Assoc. Pet. Geol. Mem. 26, pp. 49-212.] The global-eustasy model posed two challenges to the "normal science" of stratigraphy then underway: (1) that sequence stratigraphy, as exemplified by the global cycle chart, constitutes a superior standard of geologic time to that assembled from conventional chronostratigraphic evidence, and (2) that stratigraphic processes are dominated by the effects of eustasy, to the exclusion of other allogenic mechanisms, including tectonism. While many stratigraphers now doubt the universal validity of the model of global-eustasy, what we term the global-eustasy paradigm, a group of sequence researchers led by Vail still adheres to it, and the two conceptual approaches have evolved into two conflicting paradigms. Those who assert that there are multiple processes generating stratigraphic sequences (possibly including eustatic processes) are adherents of what we term the complexity paradigm. Followers of this paradigm argue that tests of the global cycle chart amount to little more than circular reasoning. A new body of work documenting the European sequence record was published in 1998 by de Graciansky et al. These workers largely follow the global-eustasy paradigm. Citation and textual analysis of this work indicates that they have not responded to any of the scientific problems identified by the opposing group. These researchers have developed their own descriptive and interpretive language that is largely self-referential. Through the use of philosophical and sociological assumptions about the nature of human activity, and in particular the work of Thomas Kuhn, we have attempted to illustrate (1) how the preconceptions of geologists shape their observations in nature; (2) how the working environment can contribute to the consensus that develops around a theoretical approach with a concomitant disregard for anomalous data that may arise; (3) how a theoretical argument can be accepted by the geological community in the absence of "proofs" such as documentation and primary data; (4) how the definition of a situation and the use or non-use of geological language "texts" can direct geological interpretive processes in one direction or another; and (5) how citation patterns and clusters of interrelated "invisible colleges" of geologists can extend or thwart the advancement of geological knowledge.

  14. Scale-Independent Relational Query Processing

    DTIC Science & Technology

    2013-10-04

    source options are also available, including Postgresql, MySQL , and SQLite. These mod- ern relational databases are generally very complex software systems...and Their Application to Data Stream Management. IGI Global, 2010. [68] George Reese. Database Programming with JDBC and Java , Second Edition. Ed. by

  15. Development of the Metropolitan Water Availability Index (MWAI) and Short-term Assessment with Multi-scale Remote Sensing Technologies

    EPA Science Inventory

    Global climate change will change environmental conditions including temperature, precipitation, surface radiation, humidity, soil moisture, and sea level, and impact significantly the regional-scale hydrologic processes such as evapotranspiration (ET), runoff, groundwater levels...

  16. The PCR-GLOBWB global hydrological reanalysis product

    NASA Astrophysics Data System (ADS)

    Wanders, Niko; Bierkens, Marc; Sutanudjaja, Edwin; van Beek, Rens

    2014-05-01

    Accurate and long time series of hydrological data are important for understanding land surface water and energy budgets in many parts of the world, as well as for improving real-time hydrological monitoring and climate change anticipation. The ultimate goal of the present work is to produce a multi-decadal "land surface hydrological reanalysis" dataset with retrospective and updated hydrological states and fluxes that are constrained to available in-situ river discharge measurements. Here we use PCR-GLOBWB (van Beek et al., 2011), which is a large-scale hydrological model intended for global to regional studies. PCR-GLOBWB provides a grid-based representation of terrestrial hydrology with a typical spatial resolution of approximately 50×50 km (currently 0.5° globally) on a daily basis. For each grid cell, PCR-GLOBWB simulates moisture storage in two vertically stacked soil layers as well as the water exchange between the soil and the atmosphere and the underlying groundwater reservoir. Exchange to the atmosphere comprises precipitation, evaporation and transpiration, as well as snow accumulation and melt, which are all simulated by considering vegetation phenology and sub-grid variations of elevation, land cover and soil saturation distribution. The model includes improved schemes for runoff-infiltration partitioning, interflow, groundwater recharge and baseflow, as well as river routing of discharge. It also dynamically simulates water storage in reservoirs, water demand and the withdrawal, allocation and consumptive use of surface water and groundwater resources. By embedding the PCR-GLOBWB model in an Ensemble Kalman Filter framework, we calibrate the model parameters based on the discharge observations from the Global Runoff Data Centre. The parameters calibrated are related to snow accumulation and melt, runoff-infiltration partitioning, groundwater recharge, channel discharge and baseflow processes, as well as pre-factors to correct forcing precipitation fields with consideration of local topographic and orographic effects. Results show that the model parameters can be successfully calibrated, while corrections to the forcing precipitation fields are substantial. Topography has the largest impact on the corrected precipitation and globally the precipitation is reduced by 3%. The calibrated model output is compared to the reference run of PCR-GLOBWB before calibration showing significant improvement in simulation of the global terrestrial water cycle. The RMSE is reduced by 10% on average, leading to improved discharge simulations, especially under base flow situations. The main outcome of this work is a 1960-2010 global reanalysis dataset that includes extensive daily hydrological components, such as precipitation, evaporation and transpiration, snow, soil moisture, groundwater storage and discharge. This reanalysis product may be used for understanding land surface memory processes, initializing regional studies and operational forecasts, as well as evaluating and improving our understanding of spatio-temporal variation of meteorological and hydrological processes. Moreover, The PCR-GLOBWB data assimilation framework developed in this work can also be extended by including more observational data, including remotely sensed data reflecting the distribution of energy and water (e.g., heat fluxes and soil moisture storage).

  17. The Global Fund's paradigm of oversight, monitoring, and results in Mozambique.

    PubMed

    Warren, Ashley; Cordon, Roberto; Told, Michaela; de Savigny, Don; Kickbusch, Ilona; Tanner, Marcel

    2017-12-12

    The Global Fund is one of the largest actors in global health. In 2015 the Global Fund was credited with disbursing close to 10 % of all development assistance for health. In 2011 it began a reform process in response to internal reviews following allegations of recipients' misuse of funds. Reforms have focused on grant application processes thus far while the core structures and paradigm have remained intact. We report results of discussions with key stakeholders on the Global Fund, its paradigm of oversight, monitoring, and results in Mozambique. We conducted 38 semi-structured in-depth interviews in Maputo, Mozambique and members of the Global Fund Board and Secretariat in Switzerland. In-country stakeholders were representatives from Global Fund country structures (eg. Principle Recipient), the Ministry of Health, health or development attachés bilateral and multilateral agencies, consultants, and the NGO coordinating body. Thematic coding revealed concerns about the combination of weak country oversight with stringent and cumbersome requirements for monitoring and evaluation linked to performance-based financing. Analysis revealed that despite the changes associated with the New Funding Model, respondents in both Maputo and Geneva firmly believe challenges remain in Global Fund's structure and paradigm. The lack of a country office has many negative downstream effects including reliance on in-country partners and ineffective coordination. Due to weak managerial and absorptive capacity, more oversight is required than is afforded by country team visits. In-country partners provide much needed support for Global Fund recipients, but roles, responsibilities, and accountability must be clearly defined for a successful long-term partnership. Furthermore, decision-makers in Geneva recognize in-country coordination as vital to successful implementation, and partners welcome increased Global Fund engagement. To date, there are no institutional requirements for formalized coordination, and the Global Fund has no consistent representation in Mozambique's in-country coordination groups. The Global Fund should adapt grant implementation and monitoring procedures to the specific local realities that would be illuminated by more formalized coordination.

  18. Tropospheric ozone simulated by a global-multi-regional two-way coupling model system

    NASA Astrophysics Data System (ADS)

    Yan, Y.; Lin, J.; Chen, J.; Hu, L.

    2015-12-01

    Current global chemical transport models are limited by horizontal resolutions (100-500 km), and they cannot capture small-scale processes affecting tropospheric ozone (O3). Here we use a recently built two-way coupling system of GEOS-Chem to simulate the global tropospheric O3 in 2009. The system couples the global model (~ 200 km) and its three nested models (~ 50 km) covering Asia, North America and Europe, respectively. Benefiting from the high resolution, the nested models better capture small-scale processes than the global model alone. In the coupling system, the nested models provide results to modify the global model simulation within respective nested domains while taking the lateral boundary conditions from the global model. Due to the "coupling" effects, the two-way system significantly improves the tropospheric O3 simulation upon the global model alone, as found by comparisons with a suite of ground (1420 sites from WDCGG, GMD, EMEP, and AQS), aircraft (HIPPO and MOZAIC), and satellite measurements (two OMI products). Compared to the global model alone, the two-way coupled simulation enhances the correlation in day-to-day variation of afternoon mean O3 with the ground measurements from 0.53 to 0.68 and reduces the mean model bias from 10.8 to 6.7 ppb. Regionally, the coupled model reduces the bias by 4.6 ppb over Europe, 3.9 ppb over North America, and 3.1 ppb over other regions. The two-way coupling brings O3 vertical profiles much closer to the HIPPO and MOZAIC data, reducing the tropospheric (0-9 km) mean bias by 3-10 ppb at most MOZAIC sites and by 5.3 ppb for HIPPO profiles. The two-way coupled simulation also reduces the global tropospheric column ozone by 3.0 DU (9.5%), bringing them closer to the OMI data in all seasons. Simulation improvements are more significant in the northern hemisphere, and are primarily a result of improved representation of the nonlinear ozone chemistry, including but not limited to urban-rural contrast. The two-way coupled simulation also reduces the global tropospheric mean hydroxyl radical by 5% with enhancements by 5% in lifetimes of methyl chloroform and methane, bringing them closer to observation-based estimates. Therefore improving model representations of small-scale processes are a critical step forward to understanding the global tropospheric chemistry.

  19. Globalization and Contemporary Fertility Convergence.

    PubMed

    Hendi, Arun S

    2017-09-01

    The rise of the global network of nation-states has precipitated social transformations throughout the world. This article examines the role of political and economic globalization in driving fertility convergence across countries between 1965 and 2009. While past research has typically conceptualized fertility change as a country-level process, this study instead employs a theoretical and methodological framework that examines differences in fertility between pairs of countries over time. Convergence in fertility between pairs of countries is hypothesized to result from increased cross-country connectedness and cross-national transmission of fertility-related schemas. I investigate the impact of various cross-country ties, including ties through bilateral trade, intergovernmental organizations, and regional trade blocs, on fertility convergence. I find that globalization acts as a form of social interaction to produce fertility convergence. There is significant heterogeneity in the effects of different cross-country ties. In particular, trade with rich model countries, joint participation in the UN and UNESCO, and joining a free trade agreement all contribute to fertility convergence between countries. Whereas the prevailing focus in fertility research has been on factors producing fertility declines, this analysis highlights specific mechanisms-trade and connectedness through organizations-leading to greater similarity in fertility across countries. Globalization is a process that propels the spread of culturally laden goods and schemas impinging on fertility, which in turn produces fertility convergence.

  20. Building a Bridge to Deep Time: Sedimentary Systems Across Timescales

    NASA Astrophysics Data System (ADS)

    Romans, B.; Castelltort, S.; Covault, J. A.; Walsh, J. P.

    2013-12-01

    It is increasingly important to understand the complex and interdependent processes associated with sediment production, transport, and deposition at timescales relevant to civilization (annual to millennial). However, predicting the response of sedimentary systems to global environmental change across a range of timescales remains a significant challenge. For example, a significant increase in global average temperature at the Paleocene-Eocene boundary (55.8 Ma) is interpreted to have occurred over millennial timescales; however, the specific response of sedimentary systems (e.g., timing and magnitude of sediment flux variability in river systems) to that forcing is debated. Thus, using such environmental perturbations recorded in sedimentary archives as analogs for ongoing/future global change requires improved approaches to bridging across time. Additionally, the ability to bridge timescales is critical for addressing other questions about sedimentary system behavior, including signal propagation and signal versus ';noise' in the record. The geologic record provides information that can be used to develop a comprehensive understanding of process-response behavior at multiple timescales. The geomorphic ';snapshot' of present-day erosional and depositional landscapes can be examined to reconstruct the history of processes that created the observable configurations. Direct measurement and monitoring of active processes are used to constrain conceptual and numerical models and develop sedimentary system theory. But real-time observations of active Earth-surface processes are limited to the very recent, and how such processes integrate over longer timescales to transform into strata remains unknown. At longer timescales (>106 yr), the stratigraphic record is the only vestige of ancient sedimentary systems. Stratigraphic successions contain a complex record of sediment deposition and preservation, as well as the detrital material that originated in long since denuded orogenic belts. Moreover, as the timescale of the duration of the process-response behavior and/or system age increase, additional aspects must be considered (e.g., significant tectonic regime change, rare but significant events, non-periodic global change, etc.). In this presentation we discuss several examples of sedimentary system analysis at different timescales with the goal of highlighting various approaches at one timescale and how they can (or cannot) be applied for questions at different timescales. Examples include: (1) brief review of decadal to centennial sediment budgets; (2) land-to-sea sediment budget reconstructions from southern California at millennial to multi-millennial timescales, and (3) sedimentary system response to climatic and tectonic forcings at ≥105 yr timescales.

  1. The Earth's Population Can Reach 14 Billion in the 23rd Century without Significant Adverse Effects on Survivability.

    PubMed

    Krapivin, Vladimir F; Varotsos, Costas A; Soldatov, Vladimir Yu

    2017-08-07

    This paper presents the results obtained from the study of the sustainable state between nature and human society on a global scale, focusing on the most critical interactions between the natural and anthropogenic processes. Apart from the conventional global models, the basic tool employed herein is the newly proposed complex model entitled "nature-society system (NSS) model", through which a reliable modeling of the processes taking place in the global climate-nature-society system (CNSS) is achieved. This universal tool is mainly based on the information technology that allows the adaptive conformance of the parametric and functional space of this model. The structure of this model includes the global biogeochemical cycles, the hydrological cycle, the demographic processes and a simple climate model. In this model, the survivability indicator is used as a criterion for the survival of humanity, which defines a trend in the dynamics of the total biomass of the biosphere, taking into account the trends of the biocomplexity dynamics of the land and hydrosphere ecosystems. It should be stressed that there are no other complex global models comparable to those of the CNSS model developed here. The potential of this global model is demonstrated through specific examples in which the classification of the terrestrial ecosystem is accomplished by separating 30 soil-plant formations for geographic pixels 4° × 5°. In addition, humanity is considered to be represented by three groups of economic development status (high, transition, developing) and the World Ocean is parameterized by three latitude zones (low, middle, high). The modelling results obtained show the dynamics of the CNSS at the beginning of the 23rd century, according to which the world population can reach the level of 14 billion without the occurrence of major negative impacts.

  2. Cartography for lunar exploration: 2008 status and mission plans

    USGS Publications Warehouse

    Kirk, R.L.; Archinal, B.A.; Gaddis, L.R.; Rosiek, M.R.; Chen, Jun; Jiang, Jie; Nayak, Shailesh

    2008-01-01

    The initial spacecraft exploration of the Moon in the 1960s-70s yielded extensive data, primarily in the form of film and television images, which were used to produce a large number of hardcopy maps by conventional techniques. A second era of exploration, beginning in the early 1990s, has produced digital data including global multispectral imagery and altimetry, from which a new generation of digital map products tied to a rapidly evolving global control network has been made. Efforts are also underway to scan the earlier hardcopy maps for online distribution and to digitize the film images so that modern processing techniques can be used to make high-resolution digital terrain models (DTMs) and image mosaics consistent with the current global control. The pace of lunar exploration is accelerating dramatically, with as many as eight new missions already launched or planned for the current decade. These missions, of which the most important for cartography are SMART-1 (Europe), Kaguya/SELENE (Japan), Chang'e-1 (China), Chandrayaan-1 (India), and Lunar Reconnaissance Orbiter (USA), will return a volume of data exceeding that of all previous lunar and planetary missions combined. Framing and scanner camera images, including multispectral and stereo data, hyperspectral images, synthetic aperture radar (SAR) images, and laser altimetry will all be collected, including, in most cases, multiple data sets of each type. Substantial advances in international standardization and cooperation, development of new and more efficient data processing methods, and availability of resources for processing and archiving will all be needed if the next generation of missions are to fulfill their potential for high-precision mapping of the Moon in support of subsequent exploration and scientific investigation.

  3. Innovations in nanotechnology for water treatment

    PubMed Central

    Gehrke, Ilka; Geiser, Andreas; Somborn-Schulz, Annette

    2015-01-01

    Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA. PMID:25609931

  4. Importance of solar subsurface heating in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.

    2001-12-01

    The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.

  5. Bacterial differentiation via gradual activation of global regulators.

    PubMed

    Kovács, Ákos T

    2016-02-01

    Bacteria have evolved to adapt to various conditions and respond to certain stress conditions. The ability to sense and efficiently reply to these environmental effects involve versatile array of sensors and global or specific regulators. Interestingly, modulation of the levels of active global regulators enables bacteria to respond to diverse signals via a single central transcriptional regulator and to activate or repress certain differentiation pathways at a spatio-temporal manner. The Gram-positive Bacillus subtilis is an ideal bacterium to study how membrane bound and cytoplasmic sensor kinases affect the level of phosphorylated global regulator, Spo0A which in response activates genes related to sliding, biofilm formation, and sporulation. In addition, other global regulators, including the two-component system DegS-DegU, modulate overlapping and complementary genes in B. subtilis related to surface colonization and biofilm formation. The intertwinement of global regulatory systems also allows the accurate modulation of differentiation pathways. Studies in the last decade enable us to get a deeper insight into the role of global regulators on the smooth transition of developmental processes in B. subtilis.

  6. AgMIP: Next Generation Models and Assessments

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.

    2014-12-01

    Next steps in developing next-generation crop models fall into several categories: significant improvements in simulation of important crop processes and responses to stress; extension from simplified crop models to complex cropping systems models; and scaling up from site-based models to landscape, national, continental, and global scales. Crop processes that require major leaps in understanding and simulation in order to narrow uncertainties around how crops will respond to changing atmospheric conditions include genetics; carbon, temperature, water, and nitrogen; ozone; and nutrition. The field of crop modeling has been built on a single crop-by-crop approach. It is now time to create a new paradigm, moving from 'crop' to 'cropping system.' A first step is to set up the simulation technology so that modelers can rapidly incorporate multiple crops within fields, and multiple crops over time. Then the response of these more complex cropping systems can be tested under different sustainable intensification management strategies utilizing the updated simulation environments. Model improvements for diseases, pests, and weeds include developing process-based models for important diseases, frameworks for coupling air-borne diseases to crop models, gathering significantly more data on crop impacts, and enabling the evaluation of pest management strategies. Most smallholder farming in the world involves integrated crop-livestock systems that cannot be represented by crop modeling alone. Thus, next-generation cropping system models need to include key linkages to livestock. Livestock linkages to be incorporated include growth and productivity models for grasslands and rangelands as well as the usual annual crops. There are several approaches for scaling up, including use of gridded models and development of simpler quasi-empirical models for landscape-scale analysis. On the assessment side, AgMIP is leading a community process for coordinated contributions to IPCC AR6 that involves the key modeling groups from around the world including North America, Europe, South America, Sub-Saharan Africa, South Asia, East Asia, and Australia and Oceania. This community process will lead to mutually agreed protocols for coordinated global and regional assessments.

  7. Global form and motion processing in healthy ageing.

    PubMed

    Agnew, Hannah C; Phillips, Louise H; Pilz, Karin S

    2016-05-01

    The ability to perceive biological motion has been shown to deteriorate with age, and it is assumed that older adults rely more on the global form than local motion information when processing point-light walkers. Further, it has been suggested that biological motion processing in ageing is related to a form-based global processing bias. Here, we investigated the relationship between older adults' preference for form information when processing point-light actions and an age-related form-based global processing bias. In a first task, we asked older (>60years) and younger adults (19-23years) to sequentially match three different point-light actions; normal actions that contained local motion and global form information, scrambled actions that contained primarily local motion information, and random-position actions that contained primarily global form information. Both age groups overall performed above chance in all three conditions, and were more accurate for actions that contained global form information. For random-position actions, older adults were less accurate than younger adults but there was no age-difference for normal or scrambled actions. These results indicate that both age groups rely more on global form than local motion to match point-light actions, but can use local motion on its own to match point-light actions. In a second task, we investigated form-based global processing biases using the Navon task. In general, participants were better at discriminating the local letters but faster at discriminating global letters. Correlations showed that there was no significant linear relationship between performance in the Navon task and biological motion processing, which suggests that processing biases in form- and motion-based tasks are unrelated. Copyright © 2016. Published by Elsevier B.V.

  8. iOS and OS X Apps for Exploring Earthquake Activity

    NASA Astrophysics Data System (ADS)

    Ammon, C. J.

    2015-12-01

    The U.S. Geological Survey and many other agencies rapidly provide information following earthquakes. This timely information garners great public interest and provides a rich opportunity to engage students in discussion and analysis of earthquakes and tectonics. In this presentation I will describe a suite of iOS and Mac OS X apps that I use for teaching and that Penn State employs in outreach efforts in a small museum run by the College of Earth and Mineral Sciences. The iOS apps include a simple, global overview of earthquake activity, epicentral, designed for a quick review or event lookup. A more full-featured iPad app, epicentral-plus, includes a simple global overview along with views that allow a more detailed exploration of geographic regions of interest. In addition, epicentral-plus allows the user to monitor ground motions using seismic channel lists compatible with the IRIS web services. Some limited seismogram processing features are included to allow focus on appropriate signal bandwidths. A companion web site, which includes background material on earthquakes, and a blog that includes sample images and channel lists appropriate for monitoring earthquakes in regions of recent earthquake activity can be accessed through the a third panel in the app. I use epicentral-plus at the beginning of each earthquake seismology class to review recent earthquake activity and to stimulate students to formulate and to ask questions that lead to discussions of earthquake and tectonic processes. Less interactive OS X versions of the apps are used to display a global map of earthquake activity and seismograms in near real time in a small museum on the ground floor of the building hosting Penn State's Geoscience Department.

  9. How have Global Health Initiatives impacted on health equity?

    PubMed

    Hanefeld, Johanna

    2008-01-01

    This review examines the impact of Global Health Initiatives (GHIs) on health equity, focusing on low- and middle-income countries. It is a summary of a literature review commissioned by the WHO Commission on the Social Determinants of Health. GHIs have emerged during the past decade as a mechanism in development assistance for health. The review focuses on three GHIs, the US President's Emergency Plan For AIDS Relief (PEPFAR), the World Bank's Multi-country AIDS Programme (MAP) and the Global Fund to Fight AIDS, TB and Malaria. All three have leveraged significant amounts of funding for their focal diseases - together these three GHIs provide an estimated two-thirds of external resources going to HIV/AIDS. This paper examines their impact on gender equity. An analysis of these Initiatives finds that they have a significant impact on health equity, including gender equity, through their processes of programme formulation and implementation, and through the activities they fund and implement, including through their impact on health systems and human resources. However, GHIs have so far paid insufficient attention to health inequities. While increasingly acknowledging equity, including gender equity, as a concern, Initiatives have so far failed to adequately translate this into programmes that address drivers of health inequity, including gender inequities. The review highlights the comparative advantage of individual GHIs, which point to an increased need for, and continued difficulties in, harmonisation of activities at country level. On the basis of this comparative analysis, key recommendations are made. They include a call for equity-sensitive targets, the collection of gender-disaggregated data, the use of policy-making processes for empowerment, programmes that explicitly address causes of health inequity and impact assessments of interventions' effect on social inequities.

  10. Gray Wave of the Great Transformation: A Satellite View of Urbanization, Climate, and Food Security

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.

    2007-01-01

    Land cover change driven by human activity is profoundly affecting Earth's natural systems with impacts ranging from a loss of biological productivity to changes in atmospheric chemistry and regional and global climate. This change has been so pervasive and progressed so rapidly, compared to natural processes, scientists refer to it as 'the great transformation'. Urbanization or the 'gray wave' of this transformation is being increasingly recognized as an important process in global climate change. A hallmark of our success as a species, large urban conglomerates do in fact alter their environments so profoundly that the local climate, atmospheric composition, and the basic ecology of the landscape are affected in ways that have consequences to human health and economic well-being. Fortunately we have incredible new tools to observe and understand these processes in ways that can be used to plan and develop enjoyable and sustainable urban places. A suite of Earth observing satellites is making it possible to study the interactions between urbanization, biological processes, and the atmosphere including weather and climate. Using these Earth Observatories we are learning how urban heat islands form and potentially ameliorate them, how urbanization can affect rainfall, pollution, surface water recharge at the local level, and climate and food security globally.

  11. International Accreditations as Drivers of Business School Quality Improvement

    ERIC Educational Resources Information Center

    Bryant, Michael

    2013-01-01

    Business schools are under pressure to implement continuous improvement and quality assurance processes to remain competitive in a globalized higher education market. Drivers for quality improvement include external, environmental pressures, regulatory bodies such as governments, and, increasingly, voluntary accreditation agencies such as AACSB…

  12. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  13. Advances in Polyhydroxyalkanoate (PHA) Production

    PubMed Central

    2017-01-01

    This editorial paper provides a synopsis of the contributions to the Bioengineering special issue “Advances in Polyhydroxyalkanoate (PHA) Production”. It illustrates the embedding of the issue’s individual research articles in the current global research and development landscape related to polyhydroxyalkanoates (PHA). The article shows how these articles are interrelated to each other, reflecting the entire PHA process chain including strain selection, metabolic and genetic considerations, feedstock evaluation, fermentation regimes, process engineering, and polymer processing towards high-value marketable products. PMID:29099065

  14. The post-millennium development goals agenda: include 'end to all wars' as a public health goal!

    PubMed

    Jayasinghe, Saroj

    2014-09-01

    The process of identifying global post-millennium development goals (post-MDGs) has begun in earnest. Consensus is emerging in certain areas (e.g. eliminating poverty) and conflicts and violence are recognized as key factors that retard human development. However, current discussions focus on tackling intra-state conflicts and individual-based violence and hardly mention eliminating wars as a goal. Wars create public health catastrophes. They kill, maim, displace and affect millions. Inter-state wars fuel intra-state conflicts and violence. The peace agenda should not be the monopoly of the UN Security Council, and the current consensus-building process setting the post-MDG agenda is a rallying point for the global community. The human rights approach will not suffice to eliminate wars, because few are fought to protect human rights. The development agenda should therefore commit to eliminating all wars by 2030. Targets to reduce tensions and discourage wars should be included. We should act now. © The Author(s) 2014.

  15. A global view on the Higgs self-coupling at lepton colliders

    DOE PAGES

    Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe; ...

    2018-02-28

    We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less

  16. Producing Global Science Products for the Moderate Resolution Imaging Spectroradiometer (MODIS) in MODAPS

    NASA Technical Reports Server (NTRS)

    Masuoka, Edward J.; Tilmes, Curt A.; Ye, Gang; Devine, Neal; Smith, David E. (Technical Monitor)

    2000-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) was launched on NASA's EOS-Terra spacecraft December 1999. With 36 spectral bands covering the visible, near wave and short wave infrared. MODIS produces over 40 global science data products, including sea surface temperature, ocean color, cloud properties, vegetation indices land surface temperature and land cover change. The MODIS Data Processing System (MODAPS) produces 400 GB/day of global MODIS science products from calibrated radiances generated in the Earth Observing System Data and Information System (EOSDIS). The science products are shipped to the EOSDIS for archiving and distribution to the public. An additional 200 GB of products are shipped each day to MODIS team members for quality assurance and validation of their products. In the sections that follow, we will describe the architecture of the MODAPS, identify processing bottlenecks encountered in scaling MODAPS from 50 GB/day backup system to a 400 GB/day production system and discuss how these were handled.

  17. A global view on the Higgs self-coupling at lepton colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Vita, Stefano; Durieux, Gauthier; Grojean, Christophe

    We perform a global effective-field-theory analysis to assess the precision on the determination of the Higgs trilinear self-coupling at future lepton colliders. Two main scenarios are considered, depending on whether the center-of-mass energy of the colliders is sufficient or not to access Higgs pair production processes. Low-energy machines allow for ~40% precision on the extraction of the Higgs trilinear coupling through the exploitation of next-to-leading-order effects in single Higgs measurements, provided that runs at both 240/250 GeV and 350 GeV are available with luminosities in the few attobarns range. A global fit, including possible deviations in other SM couplings, ismore » essential in this case to obtain a robust determination of the Higgs self-coupling. High-energy machines can easily achieve a ~20% precision through Higgs pair production processes. In this case, the impact of additional coupling modifications is milder, although not completely negligible.« less

  18. Oral health promotion and education messages in Live.Learn.Laugh. projects.

    PubMed

    Horn, Virginie; Phantumvanit, Prathip

    2014-10-01

    The FDI-Unilever Live.Learn.Laugh. phase 2 partnership involved dissemination of the key oral health message of encouraging 'twice-daily toothbrushing with fluoride toothpaste' and education of people worldwide by FDI, National Dental Associations, the Unilever Oral Care global team and local brands. The dissemination and education process used different methodologies, each targeting specific groups, namely: mother and child (Project option A); schoolchildren (Project option B); dentists and patients (Project option C); and specific communities (Project option D). Altogether, the partnership implemented 29 projects in 27 countries. These consisted of educational interventions, evaluations including (in some cases) clinical assessment, together with communication activities at both global and local levels, to increase the reach of the message to a broader population worldwide. The phase 2 experience reveals the strength of such a public-private partnership approach in tackling global oral health issues by creating synergies between partners and optimising the promotion and education process. © 2014 FDI World Dental Federation.

  19. Gender, globalisation, and democracy.

    PubMed

    Walby, S

    2000-03-01

    This article discusses the link between gender, globalization and democracy in relation to women¿s empowerment. Analyzing gender relations within the processes of development planning involves five approaches: 1) welfare, 2) equity, 3) anti-poverty, 4) efficiency, and 5) empowerment. In addition, a new approach, which combines efficiency and empowerment, must be added to highlight the problematic nature of the direction of causality assumed by traditional theory of development. The rise on women's representation in national parliament can be attributed to the increase of women's economic power and women's political struggles. However, promotion of globalization produces new opportunities for feminist politics, as well as difficulties, which include: the emergent position of productive engagement in which an efficient economy and democratic society are seen as interdependent; and increase in parliamentary representation correlates with increased paid employment for women. In conclusion, the author underscores that globalization is a gendered process which is restructuring social relations on a large scale and the challenges it bring provide opportunities for women in development.

  20. Temporal variability of the surface and atmosphere of Mars: Viking Orbiter color observations

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.

    1992-01-01

    We are near the final stages in the processing of a large Viking Orbiter global color dataset. Mosaics from 57 spacecraft revolutions (or 'revs' hereafter) were produced, most in both red and violet or red, green, and violet filters. Phase angles range from 13 deg to 85 deg. A total of approximately 2000 frames were processed through radiometric calibration, cosmetic cleanup, geometric control, reprojection, and mosaicking into single-rev mosaics at a scale of 1 km/pixel. All of the mosaics are geometrically tied to the 1/256 deg/pixel Mars Digital Image Mosaic (MDIM). Photometric normalization is in progress, to be followed by production of a 'best coverage' global mosaic at a scale of 1/64 deg/pixel (0.923 km/pixel). Global coverage is near 100 percent in red-filter mosaics and 98 percent and 60 percent in corresponding violet- and green-filter mosaics, respectively. Soon after completion, all final datasets (including single-rev mosaics) will be distributed to the planetary community on compact disks.

  1. A TRMM-Based System for Real-Time Quasi-Global Merged Precipitation Estimates

    NASA Technical Reports Server (NTRS)

    Starr, David OC. (Technical Monitor); Huffman, G. J.; Adler, R. F.; Stocker, E. F.; Bolvin, D. T.; Nelkin, E. J.

    2002-01-01

    A new processing system has been developed to combine IR and microwave data into 0.25 degree x 0.25 degree gridded precipitation estimates in near-real time over the latitude band plus or minus 50 degrees. Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) precipitation estimates are used to calibrate Special Sensor Microwave/Imager (SSM/I) estimates, and Advanced Microwave Sounding Unit (AMSU) and Advanced Microwave Scanning Radiometer (AMSR) estimates, when available. The merged microwave estimates are then used to create a calibrated IR estimate in a Probability-Matched-Threshold approach for each individual hour. The microwave and IR estimates are combined for each 3-hour interval. Early results will be shown, including typical tropical and extratropical storm evolution and examples of the diurnal cycle. Major issues will be discussed, including the choice of IR algorithm, the approach for merging the IR and microwave estimates, extension to higher latitudes, retrospective processing back to 1999, and extension to the GPCP One-Degree Daily product (for which the authors are responsible). The work described here provides one approach to using data from the future NASA Global Precipitation Measurement program, which is designed to provide Jill global coverage by low-orbit passive microwave satellites every three hours beginning around 2008.

  2. The relevance of phylogeny to studies of global change.

    PubMed

    Edwards, Erika J; Still, Christopher J; Donoghue, Michael J

    2007-05-01

    Phylogenetic thinking has infiltrated many areas of biological research, but has had little impact on studies of global ecology or climate change. Here, we illustrate how phylogenetic information can be relevant to understanding vegetation-atmosphere dynamics at ecosystem or global scales by re-analyzing a data set of carbonic anhydrase (CA) activity in leaves that was used to estimate terrestrial gross primary productivity. The original calculations relied on what appeared to be low CA activity exclusively in C4 grasses, but our analyses indicate that such activity might instead characterize the PACCAD grass lineage, which includes many widespread C3 species. We outline how phylogenetics can guide better taxon sampling of key physiological traits, and discuss how the emerging field of phyloinformatics presents a promising new framework for scaling from organism physiology to global processes.

  3. Global-scale tectonic patterns on Pluto

    NASA Astrophysics Data System (ADS)

    Matsuyama, I.; Keane, J. T.; Kamata, S.

    2016-12-01

    The New Horizons spacecraft revealed a global-scale tectonic pattern on the surface of Pluto which is presumably related to its formation and early evolution. Changes in the rotational and tidal potentials, expansion, and loading can generate stresses capable of producing global-scale tectonic patterns. The current alignment of Sputnik Planum with the tidal axis suggests a reorientation of Pluto relative to the rotation and tidal axes, or true polar wander. This reorientation can be driven by mass loading associated with Sputnik Planum. We developed a general theoretical formalism for the calculation of tectonic patterns due to a variety of process including true polar wander, loading, and expansion. The formalism is general enough to be applicable to non-axisymmetric loads. We illustrate that the observed global-scale tectonic pattern can be explained by stresses generated by true polar wander, Sputnik Planum loading, and expansion.

  4. Recent advances in understanding secondary organic aerosols: implications for global climate forcing

    NASA Astrophysics Data System (ADS)

    Shrivastava, Manish

    2017-04-01

    Anthropogenic emissions and land-use changes have modified atmospheric aerosol concentrations and size distributions over time. Understanding pre-industrial conditions and changes in organic aerosol due to anthropogenic activities is important because these features 1) influence estimates of aerosol radiative forcing and 2) can confound estimates of the historical response of climate to increases in greenhouse gases (e.g. the 'climate sensitivity'). Secondary organic aerosol (SOA), formed in the atmosphere by oxidation of organic gases, often represents a major fraction of global submicron-sized atmospheric organic aerosol. Over the past decade, significant advances in understanding SOA properties and formation mechanisms have occurred through measurements, yet current climate models typically do not comprehensively include all important processes. This presentation is based on a US Department of Energy Atmospheric Systems Research sponsored workshop, which highlighted key SOA processes overlooked in climate models that could greatly affect climate forcing estimates. We will highlight the importance of processes that influence the growth of SOA particles to sizes relevant for clouds and radiative forcing, including: formation of extremely low-volatility organics in the gas-phase; isoprene epoxydiols (IEPOX) multi-phase chemistry; particle-phase oligomerization; and physical properties such as viscosity. We also highlight some of the recently discovered important processes that involve interactions between natural biogenic emissions and anthropogenic emissions such as effects of sulfur and NOx emissions on SOA. We will present examples of integrated model-measurement studies that relate the observed evolution of organic aerosol mass and number with knowledge of particle properties such as volatility and viscosity. We will also highlight the importance of continuing efforts to rank the most influential SOA processes that affect climate forcing, but are often missing in climate models. Ultimately, gas- and particle-phase chemistry processes that capture the dynamic evolution of number and mass concentrations of SOA particles need to be accurately and efficiently represented in regional and global atmospheric chemistry-climate models.

  5. Radioisotope studies in cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biersack, H.J.; Cox, P.H.

    1985-01-01

    In this text, reviews of all available techniques in this field have been collected, including methods that are still in the developmental stage. After a discussion of the pathophysiology of myocardial perfusion, metabolism, and recent developments in instrumentation, particular chapters are devoted to data processing, radipharmaceuticals, and labelled metabolites. Special references are made to cardiac blood-pool imaging, including evaluations of global and regional ventricular functions and reguritation volumes.

  6. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network

    NASA Astrophysics Data System (ADS)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Carbone, Francesco; Cinnirella, Sergio; Mannarino, Valentino; Landis, Matthew; Ebinghaus, Ralf; Weigelt, Andreas; Brunke, Ernst-Günther; Labuschagne, Casper; Martin, Lynwill; Munthe, John; Wängberg, Ingvar; Artaxo, Paulo; Morais, Fernando; Barbosa, Henrique de Melo Jorge; Brito, Joel; Cairns, Warren; Barbante, Carlo; Diéguez, María del Carmen; Garcia, Patricia Elizabeth; Dommergue, Aurélien; Angot, Helene; Magand, Olivier; Skov, Henrik; Horvat, Milena; Kotnik, Jože; Read, Katie Alana; Mendes Neves, Luis; Gawlik, Bernd Manfred; Sena, Fabrizio; Mashyanov, Nikolay; Obolkin, Vladimir; Wip, Dennis; Feng, Xin Bin; Zhang, Hui; Fu, Xuewu; Ramachandran, Ramesh; Cossa, Daniel; Knoery, Joël; Marusczak, Nicolas; Nerentorp, Michelle; Norstrom, Claus

    2016-09-01

    Long-term monitoring of data of ambient mercury (Hg) on a global scale to assess its emission, transport, atmospheric chemistry, and deposition processes is vital to understanding the impact of Hg pollution on the environment. The Global Mercury Observation System (GMOS) project was funded by the European Commission (http://www.gmos.eu) and started in November 2010 with the overall goal to develop a coordinated global observing system to monitor Hg on a global scale, including a large network of ground-based monitoring stations, ad hoc periodic oceanographic cruises and measurement flights in the lower and upper troposphere as well as in the lower stratosphere. To date, more than 40 ground-based monitoring sites constitute the global network covering many regions where little to no observational data were available before GMOS. This work presents atmospheric Hg concentrations recorded worldwide in the framework of the GMOS project (2010-2015), analyzing Hg measurement results in terms of temporal trends, seasonality and comparability within the network. Major findings highlighted in this paper include a clear gradient of Hg concentrations between the Northern and Southern hemispheres, confirming that the gradient observed is mostly driven by local and regional sources, which can be anthropogenic, natural or a combination of both.

  7. [Considerations on the development of nutrition-related guidelines by the World Health Organization and their implementation].

    PubMed

    Zamora, Gerardo; Meneses, Daniela; De-Regil, Luz Maria; Neufeld, Lynnette; Peña-Rosas, Juan Pablo; Sinisterra, Odalis Teresa

    2015-03-01

    The World Health Organization (WHO) follows a complex and rigorous process to develop global guidelines. With regard to nutrition-related guidelines, the joint participation of national authorities from Member States and their partners, including those of the social economy, is key to strengthening the process of evidence-informed guideline development and the subsequent implementation as part of national public health strategies. WHO puts forward a series of tools that can assist national authorities on health and social development in the elaboration of evidence-informed policies, considering their pertinence, relevance and implementability. This adoption and adaptation process must consider equity in order to avoid widening existing inequities. WHO global nutrition guidelines contribute to the effective implementation of nutrition interventions in Member States. Two experiences of implementation, one in Panama and one in Peru, exemplify this process. The paper ends by suggesting a deeper understanding and utilization of implementation research during programmes to identify what factors ensure effective interventions, appropriate scale up strategies and greater health equity.

  8. Atypical Local Interference Affects Global Processing in Children with Neurofibromatosis Type 1.

    PubMed

    Payne, Jonathan M; Porter, Melanie A; Bzishvili, Samantha; North, Kathryn N

    2017-05-01

    To examine hierarchical visuospatial processing in children with neurofibromatosis type 1 (NF1), a single gene disorder associated with visuospatial impairments, attention deficits, and executive dysfunction. We used a modified Navon paradigm consisting of a large "global" shape composed of smaller "local" shapes that were either congruent (same) or incongruent (different) to the global shape. Participants were instructed to name either the global or local shape within a block. Reaction times, interference ratios, and error rates of children with NF1 (n=30) and typically developing controls (n=24) were compared. Typically developing participants demonstrated the expected global processing bias evidenced by a vulnerability to global interference when naming local stimuli without a cost of congruence when naming global stimuli. NF1 participants, however, experienced significant interference from the unattended level when naming both local and global levels of the stimuli. Findings suggest that children with NF1 do not demonstrate the typical human bias of processing visual information from a global perspective. (JINS, 2017, 23, 446-450).

  9. Land-cover observations as part of a Global Earth Observation System of Systems (GEOSS): Progress, activities, and prospects

    USGS Publications Warehouse

    Herold, M.; Woodcock, C.E.; Loveland, Thomas R.; Townshend, J.; Brady, M.; Steenmans, C.; Schmullius, C. C.

    2008-01-01

    The international land-cover community has been working with GEO since 2005 to build the foundations for land-cover observations as an integral part of a Global Earth Observation System of Systems (GEOSS). The Group on Earth Observation (GEO) has provided the platform to elevate the societal relevance of land cover monitoring and helped to link a diverse set of global, regional, and national activities. A dedicated 2007-2009 GEO work plan task has resulted in achievements on the strategic and implementation levels. Integrated Global Observations of the Land (IGOL), the land theme of the Integrated Global Observation Strategy (IGOS), has been approved and is now in the process of transition into GEO implementation. New global land-cover maps at moderate spatial resolutions (i.e., GLOBCOVER) are being produced using guidelines and standards of the international community. The Middecadal Global Landsat Survey for 2005-2006 is extending previous 1990 and 2000 efforts for global, high-quality Landsat data. Despite this progress, essential challenges for building a sustained global land-cover-observing system remain, including: international cooperation on the continuity of global observations; ensuring consistency in land monitoring approaches; community engagement and country participation in mapping activities; commitment to ongoing quality assurance and validation; and regional networking and capacity building.

  10. More than just a hobby: building an academic career in global emergency medicine.

    PubMed

    Martin, Ian B K; Levine, Adam C; Kayden, Stephanie; Hauswald, Mark

    2014-07-01

    As the specialty of emergency medicine (EM) continues to spread around the world, a growing number of academic emergency physicians have become involved in global EM development, research, and teaching. While academic departments have always found this work laudable, they have only recently begun to accept global EM as a rigorous academic pursuit in its own right. This article describes how emergency physicians can translate their global health work into "academic currency" within both the clinician-educator and clinician-researcher tracks. The authors discuss the impact of various types of additional training, including global EM fellowships, for launching a career in global EM. Clearly delineated clinician-researcher and clinician-educator tracks are important for documenting achievement in global EM. Reflecting a growing interest in global health, more of today's EM faculty members are ascending the academic ranks as global EM specialists. Whether attempting to climb the academic ladder as a clinician-educator or clinician-researcher, advanced planning and the firm support of one's academic chair is crucial to the success of the promotion process. Given the relative youth of the subspecialty of global EM, however, it will take time for the pathways to academic promotion to become well delineated. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The fluid dynamics of atmospheric clouds

    NASA Astrophysics Data System (ADS)

    Randall, David A.

    2017-11-01

    Clouds of many types are of leading-order importance for Earth's weather and climate. This importance is most often discussed in terms of the effects of clouds on radiative transfer, but the fluid dynamics of clouds are at least equally significant. Some very small-scale cloud fluid-dynamical processes have significant consequences on the global scale. These include viscous dissipation near falling rain drops, and ``buoyancy reversal'' associated with the evaporation of liquid water. Major medium-scale cloud fluid-dynamical processes include cumulus convection and convective aggregation. Planetary-scale processes that depend in an essential way on cloud fluid dynamics include the Madden-Julian Oscillation, which is one of the largest and most consequential weather systems on Earth. I will attempt to give a coherent introductory overview of this broad range of phenomena.

  12. Process evaluation of knowledge transfer across industries: Leveraging Coca-Cola's supply chain expertise for medicine availability in Tanzania.

    PubMed

    Linnander, Erika; Yuan, Christina T; Ahmed, Shirin; Cherlin, Emily; Talbert-Slagle, Kristina; Curry, Leslie A

    2017-01-01

    Persistent gaps in the availability of essential medicines have slowed the achievement of global health targets. Despite the supply chain knowledge and expertise that ministries of health might glean from other industries, limited empirical research has examined the process of knowledge transfer from other industries into global public health. We examined a partnership designed to improve the availability of medical supplies in Tanzania by transferring knowledge from The Coca-Cola system to Tanzania's Medical Stores Department (MSD). We conducted a process evaluation including in-depth interviews with 70 participants between July 2011 and May 2014, corresponding to each phase of the partnership, with focus on challenges and strategies to address them, as well as benefits perceived by partners. Partners faced challenges in (1) identifying relevant knowledge to transfer, (2) translating operational solutions from Coca-Cola to MSD, and (3) maintaining momentum between project phases. Strategies to respond to these challenges emerged through real-time problem solving and included (1) leveraging the receptivity of MSD leadership, (2) engaging a boundary spanner to identify knowledge to transfer, (3) promoting local recognition of commonalities across industries, (4) engaging external technical experts to manage translation activities, (5) developing tools with visible benefits for MSD, (6) investing in local relationships, and (7) providing time and space for the partnership model to evolve. Benefits of the partnership perceived by MSD staff included enhanced collaboration and communication, more proactive orientations in managing operations, and greater attention to performance management. Benefits perceived by Coca-Cola staff included strengthened knowledge transfer capability and enhanced job satisfaction. Linking theoretical constructs with practical experiences from the field, we highlight the challenges, emergent strategies, and perceived benefits of a partnership across industry boundaries that may be useful to others seeking to promote the transfer of knowledge to improve global health.

  13. Process evaluation of knowledge transfer across industries: Leveraging Coca-Cola’s supply chain expertise for medicine availability in Tanzania

    PubMed Central

    Yuan, Christina T.; Ahmed, Shirin; Cherlin, Emily; Talbert-Slagle, Kristina; Curry, Leslie A.

    2017-01-01

    Persistent gaps in the availability of essential medicines have slowed the achievement of global health targets. Despite the supply chain knowledge and expertise that ministries of health might glean from other industries, limited empirical research has examined the process of knowledge transfer from other industries into global public health. We examined a partnership designed to improve the availability of medical supplies in Tanzania by transferring knowledge from The Coca-Cola system to Tanzania’s Medical Stores Department (MSD). We conducted a process evaluation including in-depth interviews with 70 participants between July 2011 and May 2014, corresponding to each phase of the partnership, with focus on challenges and strategies to address them, as well as benefits perceived by partners. Partners faced challenges in (1) identifying relevant knowledge to transfer, (2) translating operational solutions from Coca-Cola to MSD, and (3) maintaining momentum between project phases. Strategies to respond to these challenges emerged through real-time problem solving and included (1) leveraging the receptivity of MSD leadership, (2) engaging a boundary spanner to identify knowledge to transfer, (3) promoting local recognition of commonalities across industries, (4) engaging external technical experts to manage translation activities, (5) developing tools with visible benefits for MSD, (6) investing in local relationships, and (7) providing time and space for the partnership model to evolve. Benefits of the partnership perceived by MSD staff included enhanced collaboration and communication, more proactive orientations in managing operations, and greater attention to performance management. Benefits perceived by Coca-Cola staff included strengthened knowledge transfer capability and enhanced job satisfaction. Linking theoretical constructs with practical experiences from the field, we highlight the challenges, emergent strategies, and perceived benefits of a partnership across industry boundaries that may be useful to others seeking to promote the transfer of knowledge to improve global health. PMID:29121051

  14. Can climate models be tuned to simulate the global mean absolute temperature correctly?

    NASA Astrophysics Data System (ADS)

    Duan, Q.; Shi, Y.; Gong, W.

    2016-12-01

    The Inter-government Panel on Climate Change (IPCC) has already issued five assessment reports (ARs), which include the simulation of the past climate and the projection of the future climate under various scenarios. The participating models can simulate reasonably well the trend in global mean temperature change, especially of the last 150 years. However, there is a large, constant discrepancy in terms of global mean absolute temperature simulations over this period. This discrepancy remained in the same range between IPCC-AR4 and IPCC-AR5, which amounts to about 3oC between the coldest model and the warmest model. This discrepancy has great implications to the land processes, particularly the processes related to the cryosphere, and casts doubts over if land-atmosphere-ocean interactions are correctly considered in those models. This presentation aims to explore if this discrepancy can be reduced through model tuning. We present an automatic model calibration strategy to tune the parameters of a climate model so the simulated global mean absolute temperature would match the observed data over the last 150 years. An intermediate complexity model known as LOVECLIM is used in the study. This presentation will show the preliminary results.

  15. Global search tool for the Advanced Photon Source Integrated Relational Model of Installed Systems (IRMIS) database.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division

    2007-01-01

    The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, themore » necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.« less

  16. A model function of the global bomb tritium distribution in precipitation, 1960-1986

    NASA Astrophysics Data System (ADS)

    Doney, Scott C.; Glover, David M.; Jenkins, William J.

    1992-04-01

    The paper presents a model function for predicting the annual mean concentration of the decay-corrected bomb tritium in precipitation over the time period 1960-1986. The model was developed using the World Meteorological Organization/International Atomic Energy Agency data for tritium precipitation. The resulting tritium function is global in scope and includes both marine and continental data. Estimates were obtained of the seasonal cycle of tritium in precipitation, which may be useful for studying atmospheric transport and oceanic processes, such as convection and subduction that occur on seasonal timescales.

  17. A horizon scan of global conservation issues for 2015.

    PubMed

    Sutherland, William J; Clout, Mick; Depledge, Michael; Dicks, Lynn V; Dinsdale, Jason; Entwistle, Abigail C; Fleishman, Erica; Gibbons, David W; Keim, Brandon; Lickorish, Fiona A; Monk, Kathryn A; Ockendon, Nancy; Peck, Lloyd S; Pretty, Jules; Rockström, Johan; Spalding, Mark D; Tonneijck, Femke H; Wintle, Bonnie C

    2015-01-01

    This paper presents the results of our sixth annual horizon scan, which aims to identify phenomena that may have substantial effects on the global environment, but are not widely known or well understood. A group of professional horizon scanners, researchers, practitioners, and a journalist identified 15 topics via an iterative, Delphi-like process. The topics include a novel class of insecticide compounds, legalisation of recreational drugs, and the emergence of a new ecosystem associated with ice retreat in the Antarctic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Meteorological Data near Rabbit Ears Pass, Colorado, U.S.A., 1984-2008

    USGS Publications Warehouse

    Halm, Douglas R.; Beaver, Larry D.; Leavesley, George H.; Reddy, Michael M.

    2009-01-01

    In 1983, a snowmelt energy budget study was initiated by the U.S. Geological Survey on a small watershed near Rabbit Ears Pass, Colorado, to better understand snowmelt processes. The study included data collection from hydrological and meteorological instrumentation. Interest in long term, high-altitude meteorological sites has increased recently due to the increased awareness of global climate change. The meteorological data collected near Rabbit Ears Pass may aid researchers involved in global climate change studies. Meteorological data from 1984 to 2008 are presented.

  19. Lunar and Planetary Science XXXVI, Part 2

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Topics covered include: Ringwoodite-olivine assemblages in Dhofar L6 melt veins; Amorphization of forsterite grains due to high energy heavy ion irradiation: Implications for grain processing in ISM; Validation of AUTODYN in replicating large-scale planetary impact events; A network of geophysical observatories for mars; Modelling catastrophic floods on the surface of mars; Impact into coarse grained spheres; The diderot meteorite: The second chassignite; Galileo global color mosaics of Io; Ganymede's sulci on global and regional scales; and The cold traps near the south pole of the moon.

  20. Development of Doppler Global Velocimetry as a Flow Diagnostics Tool

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    1995-01-01

    The development of Doppler global velocimetry is described from its inception to its use as a flow diagnostics tool. Its evolution is traced from an elementary one-component laboratory prototype, to a full three-component configuration operating in a wind tunnel at focal distances exceeding 15 m. As part of the developmental process, several wind tunnel flow field investigations were conducted. These included supersonic flow measurements about an oblique shock, subsonic and supersonic measurements of the vortex flow above a delta wing, and three-component measurements of a high-speed jet.

  1. A new process sensitivity index to identify important system processes under process model and parametric uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Heng; Ye, Ming; Walker, Anthony P.

    Hydrological models are always composed of multiple components that represent processes key to intended model applications. When a process can be simulated by multiple conceptual-mathematical models (process models), model uncertainty in representing the process arises. While global sensitivity analysis methods have been widely used for identifying important processes in hydrologic modeling, the existing methods consider only parametric uncertainty but ignore the model uncertainty for process representation. To address this problem, this study develops a new method to probe multimodel process sensitivity by integrating the model averaging methods into the framework of variance-based global sensitivity analysis, given that the model averagingmore » methods quantify both parametric and model uncertainty. A new process sensitivity index is derived as a metric of relative process importance, and the index includes variance in model outputs caused by uncertainty in both process models and model parameters. For demonstration, the new index is used to evaluate the processes of recharge and geology in a synthetic study of groundwater reactive transport modeling. The recharge process is simulated by two models that converting precipitation to recharge, and the geology process is also simulated by two models of different parameterizations of hydraulic conductivity; each process model has its own random parameters. The new process sensitivity index is mathematically general, and can be applied to a wide range of problems in hydrology and beyond.« less

  2. Substantial global carbon uptake by cement carbonation

    NASA Astrophysics Data System (ADS)

    Xi, Fengming; Davis, Steven J.; Ciais, Philippe; Crawford-Brown, Douglas; Guan, Dabo; Pade, Claus; Shi, Tiemao; Syddall, Mark; Lv, Jie; Ji, Lanzhu; Bing, Longfei; Wang, Jiaoyue; Wei, Wei; Yang, Keun-Hyeok; Lagerblad, Björn; Galan, Isabel; Andrade, Carmen; Zhang, Ying; Liu, Zhu

    2016-12-01

    Calcination of carbonate rocks during the manufacture of cement produced 5% of global CO2 emissions from all industrial process and fossil-fuel combustion in 2013. Considerable attention has been paid to quantifying these industrial process emissions from cement production, but the natural reversal of the process--carbonation--has received little attention in carbon cycle studies. Here, we use new and existing data on cement materials during cement service life, demolition, and secondary use of concrete waste to estimate regional and global CO2 uptake between 1930 and 2013 using an analytical model describing carbonation chemistry. We find that carbonation of cement materials over their life cycle represents a large and growing net sink of CO2, increasing from 0.10 GtC yr-1 in 1998 to 0.25 GtC yr-1 in 2013. In total, we estimate that a cumulative amount of 4.5 GtC has been sequestered in carbonating cement materials from 1930 to 2013, offsetting 43% of the CO2 emissions from production of cement over the same period, not including emissions associated with fossil use during cement production. We conclude that carbonation of cement products represents a substantial carbon sink that is not currently considered in emissions inventories.

  3. "Competing Conceptions of Globalization" Revisited: Relocating the Tension between World-Systems Analysis and Globalization Analysis

    ERIC Educational Resources Information Center

    Clayton, Thomas

    2004-01-01

    In recent years, many scholars have become fascinated by a contemporary, multidimensional process that has come to be known as "globalization." Globalization originally described economic developments at the world level. More specifically, scholars invoked the concept in reference to the process of global economic integration and the seemingly…

  4. Towards a well-connected, global, interdisciplinary research community for rational decision making in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Rauser, Florian

    2016-04-01

    The Young Earth System Scientists community YESS (yess-community.org) is a global network of Earth System Science early career researchers focussing on interdisciplinarity. One of the central goals of our early career network is to communicate to the world that Earth System Science has accepted the central challenge of creating tangible products for the benefit of society. A coordinated and truly global approach to Earth System Science is our best attempt to focus our understanding of the complex interplay of Earth's processes into tools for future societies, i.e., for humanity to move away from being a sorcerer's apprentice and to become a rational actor. We believe that starting with the next generation of Earth system scientists to work on that unified approach and creating an environment that allows ambitious, forward-thinking, interdisciplinary science to blossom will be our best way forward into a mature Anthropocene. In 2015 YESS started a process to come up with a definition of the Frontiers of Earth System Science research from an early career perspective, together with the research arms of the World Meteorological Organisation (WMO). During this process it became apparent that there are a few major aspects that cannot be put into the forefront often enough: one, the reality of capacity building; societies can only have robust decision-making if their decision makers can be advised not only by global assessment processes like the Intergovernmental Panel on Climate Change (IPCC) but also by local experts. The reality of a globalised science community is often only true for a few scientists at the very top from a selected number of countries. Two, the integration and balance of both user-driven and fundamental research is key to make science one pillar of a global, mature Anthropocene. This includes a better way to communicate science to end users and a more comprehensive homogenisation of weather and climate research agendas. Three, a complete overview of the scales of predictability and control of the Earth system has to be developed and maintained as a basis of societal decision making. Four, the interdisciplinary research that is required for better understanding the Anthropocene requires global research coordination across fields that is currently not necessarily reflected in standing research organisation structures. Five, the necessity of better integration of science into societal decision processes. The 2015 Conference of the Parties 21 in Paris has shown what is possible on a global, aggregated policy level - but the next years will have to show which societal actors can be thought of as rational and deliberate. This point addresses the issue that science alone is not the rational actor we need in the future, but can only advise those actors. In this session we want to outline those arguments with examples and discuss the influence of a global research funding structure that often reflects what we did in the past more, than what we want to do in the future. This discussion includes an example of the concept of science based target setting, a methodology developed to transfer scientific information into guidelines for companies.

  5. Global/local processing of hierarchical visual stimuli in a conflict-choice task by capuchin monkeys (Sapajus spp.).

    PubMed

    Truppa, Valentina; Carducci, Paola; De Simone, Diego Antonio; Bisazza, Angelo; De Lillo, Carlo

    2017-03-01

    In the last two decades, comparative research has addressed the issue of how the global and local levels of structure of visual stimuli are processed by different species, using Navon-type hierarchical figures, i.e. smaller local elements that form larger global configurations. Determining whether or not the variety of procedures adopted to test different species with hierarchical figures are equivalent is of crucial importance to ensure comparability of results. Among non-human species, global/local processing has been extensively studied in tufted capuchin monkeys using matching-to-sample tasks with hierarchical patterns. Local dominance has emerged consistently in these New World primates. In the present study, we assessed capuchins' processing of hierarchical stimuli with a method frequently adopted in studies of global/local processing in non-primate species: the conflict-choice task. Different from the matching-to-sample procedure, this task involved processing local and global information retained in long-term memory. Capuchins were trained to discriminate between consistent hierarchical stimuli (similar global and local shape) and then tested with inconsistent hierarchical stimuli (different global and local shapes). We found that capuchins preferred the hierarchical stimuli featuring the correct local elements rather than those with the correct global configuration. This finding confirms that capuchins' local dominance, typically observed using matching-to-sample procedures, is also expressed as a local preference in the conflict-choice task. Our study adds to the growing body of comparative studies on visual grouping functions by demonstrating that the methods most frequently used in the literature on global/local processing produce analogous results irrespective of extent of the involvement of memory processes.

  6. International Development of e-Infrastructures and Data Management Priorities for Global Change Research

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Gurney, R. J.

    2015-12-01

    An e-infrastructure that supports data-intensive, multidisciplinary research is needed to accelerate the pace of science to address 21st century global change challenges. Data discovery, access, sharing and interoperability collectively form core elements of an emerging shared vision of e-infrastructure for scientific discovery. The pace and breadth of change in information management across the data lifecycle means that no one country or institution can unilaterally provide the leadership and resources required to use data and information effectively, or needed to support a coordinated, global e-infrastructure. An 18-month long process involving ~120 experts in domain, computer, and social sciences from more than a dozen countries resulted in a formal set of recommendations to the Belmont Forum collaboration of national science funding agencies and others on what they are best suited to implement for development of an e-infrastructure in support of global change research, including: adoption of data principles that promote a global, interoperable e-infrastructure establishment of information and data officers for coordination of global data management and e-infrastructure efforts promotion of effective data planning determination of best practices development of a cross-disciplinary training curriculum on data management and curation The Belmont Forum is ideally poised to play a vital and transformative leadership role in establishing a sustained human and technical international data e-infrastructure to support global change research. The international collaborative process that went into forming these recommendations is contributing to national governments and funding agencies and international bodies working together to execute them.

  7. Terrestrial Feedbacks Incorporated in Global Vegetation Models through Observed Trait-Environment Responses

    NASA Astrophysics Data System (ADS)

    Bodegom, P. V.

    2015-12-01

    Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.

  8. The global health network on alcohol control: successes and limits of evidence-based advocacy

    PubMed Central

    Schmitz, Hans Peter

    2016-01-01

    Global efforts to address alcohol harm have significantly increased since the mid-1990s. By 2010, the World Health Organization (WHO) had adopted the non-binding Global Strategy to Reduce the Harmful Use of Alcohol. This study investigates the role of a global health network, anchored by the Global Alcohol Policy Alliance (GAPA), which has used scientific evidence on harm and effective interventions to advocate for greater global public health efforts to reduce alcohol harm. The study uses process-tracing methodology and expert interviews to evaluate the accomplishments and limitations of this network. The study documents how network members have not only contributed to greater global awareness about alcohol harm, but also advanced a public health approach to addressing this issue at the global level. Although the current network represents an expanding global coalition of like-minded individuals, it faces considerable challenges in advancing its cause towards successful implementation of effective alcohol control policies across many low- and middle-income countries (LMICs). The analysis reveals a need to transform the network into a formal coalition of regional and national organizations that represent a broader variety of constituents, including the medical community, consumer groups and development-focused non-governmental organizations. Considering the growing harm of alcohol abuse in LMICs and the availability of proven and cost-effective public health interventions, alcohol control represents an excellent ‘buy’ for donors interested in addressing non-communicable diseases. Alcohol control has broad beneficial effects for human development, including promoting road safety and reducing domestic violence and health care costs across a wide variety of illnesses caused by alcohol consumption. PMID:26276763

  9. The global health network on alcohol control: successes and limits of evidence-based advocacy.

    PubMed

    Schmitz, Hans Peter

    2016-04-01

    Global efforts to address alcohol harm have significantly increased since the mid-1990 s. By 2010, the World Health Organization (WHO) had adopted the non-binding Global Strategy to Reduce the Harmful Use of Alcohol. This study investigates the role of a global health network, anchored by the Global Alcohol Policy Alliance (GAPA), which has used scientific evidence on harm and effective interventions to advocate for greater global public health efforts to reduce alcohol harm. The study uses process-tracing methodology and expert interviews to evaluate the accomplishments and limitations of this network. The study documents how network members have not only contributed to greater global awareness about alcohol harm, but also advanced a public health approach to addressing this issue at the global level. Although the current network represents an expanding global coalition of like-minded individuals, it faces considerable challenges in advancing its cause towards successful implementation of effective alcohol control policies across many low- and middle-income countries (LMICs). The analysis reveals a need to transform the network into a formal coalition of regional and national organizations that represent a broader variety of constituents, including the medical community, consumer groups and development-focused non-governmental organizations. Considering the growing harm of alcohol abuse in LMICs and the availability of proven and cost-effective public health interventions, alcohol control represents an excellent 'buy' for donors interested in addressing non-communicable diseases. Alcohol control has broad beneficial effects for human development, including promoting road safety and reducing domestic violence and health care costs across a wide variety of illnesses caused by alcohol consumption. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2015; all rights reserved.

  10. Position sensitive solid-state photomultipliers, systems and methods

    DOEpatents

    Shah, Kanai S; Christian, James; Stapels, Christopher; Dokhale, Purushottam; McClish, Mickel

    2014-11-11

    An integrated silicon solid state photomultiplier (SSPM) device includes a pixel unit including an array of more than 2.times.2 p-n photodiodes on a common substrate, a signal division network electrically connected to each photodiode, where the signal division network includes four output connections, a signal output measurement unit, a processing unit configured to identify the photodiode generating a signal or a center of mass of photodiodes generating a signal, and a global receiving unit.

  11. Attentional selection of relative SF mediates global versus local processing: evidence from EEG.

    PubMed

    Flevaris, Anastasia V; Bentin, Shlomo; Robertson, Lynn C

    2011-06-13

    Previous research on functional hemispheric differences in visual processing has associated global perception with low spatial frequency (LSF) processing biases of the right hemisphere (RH) and local perception with high spatial frequency (HSF) processing biases of the left hemisphere (LH). The Double Filtering by Frequency (DFF) theory expanded this hypothesis by proposing that visual attention selects and is directed to relatively LSFs by the RH and relatively HSFs by the LH, suggesting a direct causal relationship between SF selection and global versus local perception. We tested this idea in the current experiment by comparing activity in the EEG recorded at posterior right and posterior left hemisphere sites while participants' attention was directed to global or local levels of processing after selection of relatively LSFs versus HSFs in a previous stimulus. Hemispheric asymmetry in the alpha band (8-12 Hz) during preparation for global versus local processing was modulated by the selected SF. In contrast, preparatory activity associated with selection of SF was not modulated by the previously attended level (global/local). These results support the DFF theory that top-down attentional selection of SF mediates global and local processing.

  12. Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.

  13. Achieving Carbon Neutrality in the Global Aluminum Industry

    NASA Astrophysics Data System (ADS)

    Das, Subodh

    2012-02-01

    In the 21st century, sustainability is widely regarded as the new corporate culture, and leading manufacturing companies (Toyota, GE, and Alcoa) and service companies (Google and Federal Express) are striving towards carbon neutrality. The current carbon footprint of the global aluminum industry is estimated at 500 million metric tonnes carbon dioxide equivalent (CO2eq), representing about 1.7% of global emissions from all sources. For the global aluminum industry, carbon neutrality is defined as a state where the total "in-use" CO2eq saved from all products in current use, including incremental process efficiency improvements, recycling, and urban mining activities, equals the CO2eq expended to produce the global output of aluminum. This paper outlines an integrated and quantifiable plan for achieving "carbon neutrality" in the global aluminum industry by advocating five actionable steps: (1) increase use of "green" electrical energy grid by 8%, (2) reduce process energy needs by 16%, (3) deploy 35% of products in "in-use" energy saving applications, (4) divert 6.1 million metric tonnes/year from landfills, and (5) mine 4.5 million metric tonnes/year from aluminum-rich "urban mines." Since it takes 20 times more energy to make aluminum from bauxite ore than to recycle it from scrap, the global aluminum industry could set a reasonable, self-imposed energy/carbon neutrality goal to incrementally increase the supply of recycled aluminum by at least 1.05 metric tonnes for every tonne of incremental production via primary aluminum smelter capacity. Furthermore, the aluminum industry can and should take a global leadership position by actively developing internationally accepted and approved carbon footprint credit protocols.

  14. Global trends in ocean phytoplankton: a new assessment using revised ocean colour data.

    PubMed

    Gregg, Watson W; Rousseaux, Cécile S; Franz, Bryan A

    2017-01-01

    A recent revision of the NASA global ocean colour record shows changes in global ocean chlorophyll trends. This new 18-year time series now includes three global satellite sensors, the Sea-viewing Wide Field of view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS). The major changes are radiometric drift correction, a new algorithm for chlorophyll, and a new sensor VIIRS. The new satellite data record shows no significant trend in global annual median chlorophyll from 1998 to 2015, in contrast to a statistically significant negative trend from 1998 to 2012 in the previous version. When revised satellite data are assimilated into a global ocean biogeochemical model, no trend is observed in global annual median chlorophyll. This is consistent with previous findings for the 1998-2012 time period using the previous processing version and only two sensors (SeaWiFS and MODIS). Detecting trends in ocean chlorophyll with satellites is sensitive to data processing options and radiometric drift correction. The assimilation of these data, however, reduces sensitivity to algorithms and radiometry, as well as the addition of a new sensor. This suggests the assimilation model has skill in detecting trends in global ocean colour. Using the assimilation model, spatial distributions of significant trends for the 18-year record (1998-2015) show recent decadal changes. Most notable are the North and Equatorial Indian Oceans basins, which exhibit a striking decline in chlorophyll. It is exemplified by declines in diatoms and chlorophytes, which in the model are large and intermediate size phytoplankton. This decline is partially compensated by significant increases in cyanobacteria, which represent very small phytoplankton. This suggests the beginning of a shift in phytoplankton composition in these tropical and subtropical Indian basins.

  15. An online education approach to population health in a global society.

    PubMed

    Utley-Smith, Queen

    2017-07-01

    Health professions education content must keep pace with the ever-evolving and changing health care system. Population-based health care is advocated as a way to improve health outcomes, particularly in a technologically advanced health system like the United States. At the same time, global health knowledge is increasingly valued in health professions education, including nursing. This article describes the design and implementation of an online population health course with a global viewpoint intended to accommodate the need for improved knowledge and skill application for graduate nurses. Attention was also given to faculty efficiency during the process of design and implementation. This population-global health course was piloted in a renovated master's curriculum for two semesters. Administering a Course Improvement Survey after initial course offerings assisted faculty to assess and target essential course changes. Data were collected from 106 registered nurse graduate students. Population and global health course objectives were met and students identified areas for course enhancement. Students (90%-94%) reported achieving increased knowledge of population health and global health. Like other creative works, the first rendition of a course requires pedagogical adjustments and editing. Formal student input, when built into the design and implementation of a course can assist faculty to be efficient when crafting essential course changes for subsequent semesters. Data from the survey showed that major population and global subject matter was being grasped by students, the data also revealed that tweaking specific online strategies like making all course content mobile would enhance the course. The course development process and course improvement evaluation for this Population Health in a Global Society course proved valuable in the education of nurses, and helped maintain faculty work efficiency. © 2017 Wiley Periodicals, Inc.

  16. Natural Disasters and Cholera Outbreaks: Current Understanding and Future Outlook.

    PubMed

    Jutla, Antarpreet; Khan, Rakibul; Colwell, Rita

    2017-03-01

    Diarrheal diseases remain a serious global public health threat, especially for those populations lacking access to safe water and sanitation infrastructure. Although association of several diarrheal diseases, e.g., cholera, shigellosis, etc., with climatic processes has been documented, the global human population remains at heightened risk of outbreak of diseases after natural disasters, such as earthquakes, floods, or droughts. In this review, cholera was selected as a signature diarrheal disease and the role of natural disasters in triggering and transmitting cholera was analyzed. Key observations include identification of an inherent feedback loop that includes societal structure, prevailing climatic processes, and spatio-temporal seasonal variability of natural disasters. Data obtained from satellite-based remote sensing are concluded to have application, although limited, in predicting risks of a cholera outbreak(s). We argue that with the advent of new high spectral and spatial resolution data, earth observation systems should be seamlessly integrated in a decision support mechanism to be mobilize resources when a region suffers a natural disaster. A framework is proposed that can be used to assess the impact of natural disasters with response to outbreak of cholera, providing assessment of short- and long-term influence of climatic processes on disease outbreaks.

  17. Science Formulation of Global Precipitation Mission (gpm)

    NASA Astrophysics Data System (ADS)

    Smith, Eric A.

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally-sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.

  18. Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research

    NASA Astrophysics Data System (ADS)

    Smith, Eric A.

    start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally- sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.

  19. Science Formulation of Global Precipitation Mission (GPM)

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Mehta, Amita; Shepherd, Marshall; Starr, David O. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). The new mission, which is now in its formulation phase, is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC), although not restricted to that branch of research. Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various areas in the course of the mission formulation phase that are of interest to the Natural Hazards scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning the rate of the global water cycling, cloud macrophysical-microphysical processes of flood-producing storms, and the general improvement in measuring precipitation at the fundamental microphysical level.

  20. Large-river delta-front estuaries as natural “recorders” of global environmental change

    PubMed Central

    Bianchi, Thomas S.; Allison, Mead A.

    2009-01-01

    Large-river delta-front estuaries (LDE) are important interfaces between continents and the oceans for material fluxes that have a global impact on marine biogeochemistry. In this article, we propose that more emphasis should be placed on LDE in future global climate change research. We will use some of the most anthropogenically altered LDE systems in the world, the Mississippi/Atchafalaya River and the Chinese rivers that enter the Yellow Sea (e.g., Huanghe and Changjiang) as case-studies, to posit that these systems are both “drivers” and “recorders” of natural and anthropogenic environmental change. Specifically, the processes in the LDE can influence (“drive”) the flux of particulate and dissolved materials from the continents to the global ocean that can have profound impact on issues such as coastal eutrophication and the development of hypoxic zones. LDE also record in their rapidly accumulating subaerial and subaqueous deltaic sediment deposits environmental changes such as continental-scale trends in climate and land-use in watersheds, frequency and magnitude of cyclonic storms, and sea-level change. The processes that control the transport and transformation of carbon in the active LDE and in the deltaic sediment deposit are also essential to our understanding of carbon sequestration and exchange with the world ocean—an important objective in global change research. U.S. efforts in global change science including the vital role of deltaic systems are emphasized in the North American Carbon Plan (www.carboncyclescience.gov). PMID:19435849

  1. Resource allocation processes at multilateral organizations working in global health.

    PubMed

    Chi, Y-Ling; Bump, Jesse B

    2018-02-01

    International institutions provide well over US$10 billion in development assistance for health (DAH) annually and between 1990 and 2014, DAH disbursements totaled $458 billion but how do they decide who gets what, and for what purpose? In this article, we explore how allocation decisions were made by the nine convening agencies of the Equitable Access Initiative. We provide clear, plain language descriptions of the complete process from resource mobilization to allocation for the nine multilateral agencies with prominent agendas in global health. Then, through a comparative analysis we illuminate the choices and strategies employed in the nine international institutions. We find that resource allocation in all reviewed institutions follow a similar pattern, which we categorized in a framework of five steps: strategy definition, resource mobilization, eligibility of countries, support type and funds allocation. All the reviewed institutions generate resource allocation decisions through well-structured and fairly complex processes. Variations in those processes seem to reflect differences in institutional principles and goals. However, these processes have serious shortcomings. Technical problems include inadequate flexibility to account for or meet country needs. Although aid effectiveness and value for money are commonly referenced, we find that neither performance nor impact is a major criterion for allocating resources. We found very little formal consideration of the incentives generated by allocation choices. Political issues include non-transparent influence on allocation processes by donors and bureaucrats, and the common practice of earmarking funds to bypass the normal allocation process entirely. Ethical deficiencies include low accountability and transparency at international institutions, and limited participation by affected citizens or their representatives. We find that recipient countries have low influence on allocation processes themselves, although within these processes they have some influence in relatively narrow areas. © The Author(s) 2018. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  2. The influence of visual and phonological features on the hemispheric processing of hierarchical Navon letters.

    PubMed

    Aiello, Marilena; Merola, Sheila; Lasaponara, Stefano; Pinto, Mario; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2018-01-31

    The possibility of allocating attentional resources to the "global" shape or to the "local" details of pictorial stimuli helps visual processing. Investigations with hierarchical Navon letters, that are large "global" letters made up of small "local" ones, consistently demonstrate a right hemisphere advantage for global processing and a left hemisphere advantage for local processing. Here we investigated how the visual and phonological features of the global and local components of Navon letters influence these hemispheric advantages. In a first study in healthy participants, we contrasted the hemispheric processing of hierarchical letters with global and local items competing for response selection, to the processing of hierarchical letters in which a letter, a false-letter conveying no phonological information or a geometrical shape presented at the unattended level did not compete for response selection. In a second study, we investigated the hemispheric processing of hierarchical stimuli in which global and local letters were both visually and phonologically congruent (e.g. large uppercase G made of smaller uppercase G), visually incongruent and phonologically congruent (e.g. large uppercase G made of small lowercase g) or visually incongruent and phonologically incongruent (e.g. large uppercase G made of small lowercase or uppercase M). In a third study, we administered the same tasks to a right brain damaged patient with a lesion involving pre-striate areas engaged by global processing. The results of the first two experiments showed that the global abilities of the left hemisphere are limited because of its strong susceptibility to interference from local letters even when these are irrelevant to the task. Phonological features played a crucial role in this interference because the interference was entirely maintained also when letters at the global and local level were presented in different uppercase vs. lowercase formats. In contrast, when local features conveyed no phonological information, the left hemisphere showed preserved global processing abilities. These findings were supported by the study of the right brain damaged patient. These results offer a new look at the hemispheric dominance in the attentional processing of the global and local levels of hierarchical stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Local and Global Cross-Modal Influences between Vision and Hearing, Tasting, Smelling, or Touching

    ERIC Educational Resources Information Center

    Forster, Jens

    2011-01-01

    It is suggested that the distinction between global versus local processing styles exists across sensory modalities. Activation of one-way of processing in one modality should affect processing styles in a different modality. In 12 studies, auditory, haptic, gustatory or olfactory global versus local processing was induced, and participants were…

  4. Global Biology Research Program: Biogeochemical Processes in Wetlands

    NASA Technical Reports Server (NTRS)

    Bartlett, D. S. (Editor)

    1984-01-01

    The results of a workshop examining potential NASA contributions to research on wetland processes as they relate to global biogeochemical cycles are summarized. A wetlands data base utilizing remotely sensed inventories, studies of wetland/atmosphere exchange processes, and the extrapolation of local measurements to global biogeochemical cycling processes were identified as possible areas for NASA support.

  5. Major multinational food and beverage companies and informal sector contributions to global food consumption: implications for nutrition policy.

    PubMed

    Alexander, Eleanore; Yach, Derek; Mensah, George A

    2011-08-01

    In recent years, 10 major multinational food and beverage companies have worked together within the International Food and Beverage Alliance (IFBA) to increase their commitments to public health. Current IFBA commitments include initiatives to improve the nutrition quality of products and how these products are advertised to children. The impact and magnitude of IFBA member contributions to the total market share of packaged foods and beverages consumed remain incompletely understood, however. In order to evaluate this impact, we examined packaged food and soft drink company shares provided by Euromonitor, an international independent market analysis company. Packaged foods include baby food, bakery, canned/preserved food, chilled/processed food, confectionery, dairy, dried processed food, frozen processed food, ice cream, meal replacement, noodles, oils and fats, pasta, ready meals, sauces, dressings and condiments, snack bars, soup, spreads, and sweet and savoury snacks. Soft drinks include carbonates, packaged fruit/vegetable juice, bottled water, functional drinks, concentrates, ready-to-drink tea, ready-to-drink coffee and Asian specialty drinks. We calculated the market shares for IFBA companies, globally and within nine countries--the US, China, India, Egypt, South Africa, Brazil, Mexico, Turkey and the UK. Worldwide, the top ten packaged food companies account for 15.2% of sales, with each individual company contributing less than 3.3%. The top ten soft drink companies account for 52.3% of sales worldwide; Coca-Cola and PepsiCo lead with 25.9% and 11.5% of sales, respectively. Although the top ten soft drink companies account for half of global sales, the top ten packaged food companies account for only a small proportion of market share with most individual companies contributing less than 3.3% each. Major multinational companies need to be joined by the myriad of small- and medium-sized enterprises in developing and implementing programs to improve the health of the public, globally. Without full participation of these companies, the impact of commitments made by IFBA members and other major multinational food and beverage companies will remain limited.

  6. Major multinational food and beverage companies and informal sector contributions to global food consumption: implications for nutrition policy

    PubMed Central

    2011-01-01

    Background In recent years, 10 major multinational food and beverage companies have worked together within the International Food and Beverage Alliance (IFBA) to increase their commitments to public health. Current IFBA commitments include initiatives to improve the nutrition quality of products and how these products are advertised to children. The impact and magnitude of IFBA member contributions to the total market share of packaged foods and beverages consumed remain incompletely understood, however. Methods In order to evaluate this impact, we examined packaged food and soft drink company shares provided by Euromonitor, an international independent market analysis company. Packaged foods include baby food, bakery, canned/preserved food, chilled/processed food, confectionery, dairy, dried processed food, frozen processed food, ice cream, meal replacement, noodles, oils and fats, pasta, ready meals, sauces, dressings and condiments, snack bars, soup, spreads, and sweet and savoury snacks. Soft drinks include carbonates, packaged fruit/vegetable juice, bottled water, functional drinks, concentrates, ready-to-drink tea, ready-to-drink coffee and Asian specialty drinks. We calculated the market shares for IFBA companies, globally and within nine countries--the US, China, India, Egypt, South Africa, Brazil, Mexico, Turkey and the UK. Results Worldwide, the top ten packaged food companies account for 15.2% of sales, with each individual company contributing less than 3.3%. The top ten soft drink companies account for 52.3% of sales worldwide; Coca-Cola and PepsiCo lead with 25.9% and 11.5% of sales, respectively. Conclusions Although the top ten soft drink companies account for half of global sales, the top ten packaged food companies account for only a small proportion of market share with most individual companies contributing less than 3.3% each. Major multinational companies need to be joined by the myriad of small- and medium-sized enterprises in developing and implementing programs to improve the health of the public, globally. Without full participation of these companies, the impact of commitments made by IFBA members and other major multinational food and beverage companies will remain limited. PMID:21806827

  7. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less

  8. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less

  9. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less

  10. A global interaction network maps a wiring diagram of cellular function

    PubMed Central

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles

    2017-01-01

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008

  11. The changing global context of public health.

    PubMed

    McMichael, A J; Beaglehole, R

    2000-08-05

    Future health prospects depend increasingly on globalisation processes and on the impact of global environmental change. Economic globalisation--entailng deregulated trade and investment--is a mixed blessing for health. Economic growth and the dissemination of technologies have widely enhanced life expectancy. However, aspects of globalisation are jeopardising health by eroding social and environmental conditions, exacerbating the rich-poor gap, and disseminating consumerism. Global environmental changes reflect the growth of populations and the intensity of economic activity. These changes include altered composition of the atmosphere, land degradation, depletion of terrestrial aquifers and ocean fisheries, and loss of biodiversity. This weakening of life-supporting systems poses health risks. Contemporary public health must therefore encompass the interrelated tasks of reducing social and health inequalities and achieving health-sustaining environments.

  12. Processes of lithosphere evolution: New evidence on the structure of the continental crust and uppermost mantle

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.; Perchuc, E.; Thybo, H.

    2002-01-01

    We discuss the structure of the continental lithosphere, its physical properties, and the mechanisms that formed and modified it since the early Archean. The structure of the upper mantle and the crust is derived primarily from global and regional seismic tomography studies of Eurasia and from global and regional data on seismic anisotropy. These data as documented in the papers of this special issue of Tectonophysics are used to illustrate the role of different tectonic processes in the lithospheric evolution since Archean to present. These include, but are not limited to, cratonization, terrane accretion and collision, continental rifting (both passive and active), subduction, and lithospheric basal erosion due to a relative motion of cratonic keels and the convective mantle. ?? 2002 Elsevier Science B.V. All rights reserved.

  13. B-HIT - A Tool for Harvesting and Indexing Biodiversity Data

    PubMed Central

    Barker, Katharine; Braak, Kyle; Cawsey, E. Margaret; Coddington, Jonathan; Robertson, Tim; Whitacre, Jamie

    2015-01-01

    With the rapidly growing number of data publishers, the process of harvesting and indexing information to offer advanced search and discovery becomes a critical bottleneck in globally distributed primary biodiversity data infrastructures. The Global Biodiversity Information Facility (GBIF) implemented a Harvesting and Indexing Toolkit (HIT), which largely automates data harvesting activities for hundreds of collection and observational data providers. The team of the Botanic Garden and Botanical Museum Berlin-Dahlem has extended this well-established system with a range of additional functions, including improved processing of multiple taxon identifications, the ability to represent associations between specimen and observation units, new data quality control and new reporting capabilities. The open source software B-HIT can be freely installed and used for setting up thematic networks serving the demands of particular user groups. PMID:26544980

  14. B-HIT - A Tool for Harvesting and Indexing Biodiversity Data.

    PubMed

    Kelbert, Patricia; Droege, Gabriele; Barker, Katharine; Braak, Kyle; Cawsey, E Margaret; Coddington, Jonathan; Robertson, Tim; Whitacre, Jamie; Güntsch, Anton

    2015-01-01

    With the rapidly growing number of data publishers, the process of harvesting and indexing information to offer advanced search and discovery becomes a critical bottleneck in globally distributed primary biodiversity data infrastructures. The Global Biodiversity Information Facility (GBIF) implemented a Harvesting and Indexing Toolkit (HIT), which largely automates data harvesting activities for hundreds of collection and observational data providers. The team of the Botanic Garden and Botanical Museum Berlin-Dahlem has extended this well-established system with a range of additional functions, including improved processing of multiple taxon identifications, the ability to represent associations between specimen and observation units, new data quality control and new reporting capabilities. The open source software B-HIT can be freely installed and used for setting up thematic networks serving the demands of particular user groups.

  15. Terrestrial remote sensing science and algorithms planned for EOS/MODIS

    USGS Publications Warehouse

    Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen

    1994-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.

  16. Global terrestrial biogeochemistry: Perturbations, interactions, and time scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braswell, B.H. Jr.

    1996-12-01

    Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetimemore » of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.« less

  17. International conference on the role of the polar regions in global change: Proceedings. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, G.; Wilson, C.L.; Severin, B.A.B.

    1991-12-01

    The International Conference on the Role of the Polar Regions in Global Change took place on the campus of the University of Alaska Fairbanks on June 11--15, 1990. The goal of the conference was to define and summarize the state of knowledge on the role of the polar regions in global change, and to identify gaps in knowledge. To this purpose experts in a wide variety of relevant disciplines were invited to present papers and hold panel discussions. While there are numerous conferences on global change, this conference dealt specifically with the polar regions which occupy key positions in themore » global system. These two volumes of conference proceedings include papers on (1) detection and monitoring of change; (2) climate variability and climate forcing; (3) ocean, sea ice, and atmosphere interactions and processes; and (4) effects on biota and biological feedbacks; (5) ice sheet, glacier and permafrost responses and feedbacks, (6) paleoenvironmental studies; and, (7) aerosol and trace gases.« less

  18. Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints

    NASA Technical Reports Server (NTRS)

    Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David

    2016-01-01

    Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.

  19. Biomass Burning: The Cycling of Gases and Particulates from the Biosphere to the Atmosphere

    NASA Astrophysics Data System (ADS)

    Levine, J. S.

    2003-12-01

    Biomass burning is both a process of geochemical cycling of gases and particulates from the biosphere to the atmosphere and a process of global change. In the preface to the book, One Earth, One Future: Our Changing Global Environment (National Academy of Sciences, 1990), Dr. Frank Press, the President of the National Academy of Sciences, writes: "Human activities are transforming the global environment, and these global changes have many faces: ozone depletion, tropical deforestation, acid deposition, and increased atmospheric concentrations of gases that trap heat and may warm the global climate."It is interesting to note that all four global change "faces" identified by Dr. Press have a common thread - they are all caused by biomass burning.Biomass burning or vegetation burning is the burning of living and dead vegetation and includes human-initiated burning and natural lightning-induced burning. The bulk of the world's biomass burning occurs in the tropics - in the tropical forests of South America and Southeast Asia and in the savannasof Africa and South America. The majority of the biomass burning, primarily in the tropics (perhaps as much as 90%), is believed to be human initiated for land clearing and land-use change. Natural fires triggered by atmospheric lightning only accounts for ˜10% of all fires (Andreae, 1991). As will be discussed, a significant amount of biomass burning occurs in the boreal forests of Russia, Canada, and Alaska.Biomass burning is a significant source of gases and particulates to the regional and global atmosphere (Crutzen et al., 1979; Seiler and Crutzen, 1980; Crutzen and Andreae, 1990; Levine et al., 1995). Its burning is truly a multidiscipline subject, encompassing the following areas: fire ecology, fire measurements, fire modeling, fire combustion, remote sensing, fire combustion gaseous and particulate emissions, the atmospheric transport of these emissions, and the chemical and climatic impacts of these emissions. Recently, a series of dedicated books have documented much of our understanding of biomass burning in different ecosystems. These volumes include: Goldammer (1990), Levine (1991, 1996a, b), Crutzen and Goldammer (1993), Goldammer and Furyaev (1996), van Wilgen et al. (1997), Kasischke and Stocks (2000), Innes et al. (2000), and Eaton and Radojevic (2001).

  20. Global/local processing style: Explaining the relationship between trait anxiety and binge eating.

    PubMed

    Becker, Kendra R; Plessow, Franziska; Coniglio, Kathryn A; Tabri, Nassim; Franko, Debra L; Zayas, Lazaro V; Germine, Laura; Thomas, Jennifer J; Eddy, Kamryn T

    2017-11-01

    Anxiety is a risk factor for disordered eating, but the mechanisms by which anxiety promotes disordered eating are poorly understood. One possibility is local versus global cognitive processing style, defined as a relative tendency to attend to details at the expense of the "big picture." Anxiety may narrow attention, in turn, enhancing local and/or compromising global processing. We examined relationships between global/local processing style, anxiety, and disordered eating behaviors in a transdiagnostic outpatient clinical sample. We hypothesized that local (vs. global) processing bias would mediate the relationship between anxiety and disordered eating behaviors. Ninety-three participants completed the eating disorder examination-questionnaire (EDE-Q), State-Trait Anxiety Inventory (STAI)-trait subscale, and the Navon task (a test of processing style in which large letters are composed of smaller letters both congruent and incongruent with the large letter). The sample was predominantly female (95%) with a mean age of 27.4 years (SD = 12.1 years). Binge eating, but not fasting, purging, or excessive exercise, was correlated with lower levels of global processing style. There was a significant indirect effect between anxiety and binge eating via reduced global level global/local processing. In individuals with disordered eating, being more generally anxious may encourage a detailed-oriented bias, preventing individuals from maintaining the bigger picture and making them more likely to engage in maladaptive behaviors (e.g., binge eating). © 2017 Wiley Periodicals, Inc.

  1. Global/local processing style: Explaining the relationship between trait anxiety and binge eating

    PubMed Central

    Becker, Kendra R.; Plessow, Franziska; Coniglio, Kathryn A.; Tabri, Nassim; Franko, Debra L; Zayas, Lazaro V.; Germine, Laura; Thomas, Jennifer J.; Eddy, Kamryn T.

    2018-01-01

    Objective Anxiety is a risk factor for disordered eating, but the mechanisms by which anxiety promotes disordered eating are poorly understood. One possibility is local versus global cognitive processing style, defined as a relative tendency to attend to details at the expense of the “big picture.” Anxiety may narrow attention, in turn, enhancing local and/or compromising global processing. We examined relationships between global/local processing style, anxiety, and disordered eating behaviors in a transdiagnostic outpatient clinical sample. We hypothesized that local (vs. global) processing bias would mediate the relationship between anxiety and disordered eating behaviors. Method Ninety-three participants completed the eating disorder examination—questionnaire (EDE-Q), State-Trait Anxiety Inventory (STAI)—trait subscale, and the Navon task (a test of processing style in which large letters are composed of smaller letters both congruent and incongruent with the large letter). The sample was predominantly female (95%) with a mean age of 27.4 years (SD = 12.1 years). Results Binge eating, but not fasting, purging, or excessive exercise, was correlated with lower levels of global processing style. There was a significant indirect effect between anxiety and binge eating via reduced global level global/local processing. Discussion In individuals with disordered eating, being more generally anxious may encourage a detailed-oriented bias, preventing individuals from maintaining the bigger picture and making them more likely to engage in maladaptive behaviors (e.g., binge eating). PMID:28963792

  2. The Demographic Crisis and Global Migration - Selected Issues

    NASA Astrophysics Data System (ADS)

    Frątczak, Ewa Zofia

    2016-01-01

    Currently the world is undergoing a serious demographic shift, characterised by slowing population growth in developed countries. However, the population in certain less-developed regions of the world is still increasing. According to UN data, as of 2015, (World...2015), 244 million people (or 3.3% of the global population) lived outside their country of birth. While most of these migrants travel abroad looking for better economic and social conditions, there are also those forced to move by political crises, revolutions and war. Such migration is being experienced currently in Europe, a continent which is thus going through both a demographic crisis related to the low fertility rate and population ageing, and a migration crisis. Global migrations link up inseparably with demographic transformation processes taking place globally and resulting in the changing tempo of population growth. Attracting and discouraging migration factors are changing at the same time, as is the scale and range of global migration, and with these also the global consequences. The focus of work addressed in this paper is on global population, the demographic transformation and the role of global migrations, as well as the range and scale of international migration, and selected aspects of global migrations including participation in the global labour market, the scale of monetary transfers (remittances) and the place of global migration in the UN 2030 Agenda for Sustainable Development (Transforming...2015) and the Europe of two crises (Domeny 2016).

  3. Global bias reliability in dogs (Canis familiaris).

    PubMed

    Mongillo, Paolo; Pitteri, Elisa; Sambugaro, Pamela; Carnier, Paolo; Marinelli, Lieta

    2017-03-01

    Dogs enrolled in a previous study were assessed two years later for reliability of their local/global preference in a discrimination test with the same hierarchical stimuli used in the previous study (Experiment 1) and with a novel stimulus (Experiment 2). In Experiment 1, dogs easily re-learned to discriminate the positive stimulus; their individual global/local choices were stable compared to the previous study; and an overall clear global bias was found. In Experiment 2, dogs were slower in acquiring the initial discrimination task; the overall global bias disappeared; and, individually, dogs tended to make inverse choices compared to the original study. Spontaneous attention toward the test stimulus resembling the global features of the probe stimulus was the main factor affecting the likeliness of a global choice of our dogs, regardless of the type of experiment. However, attention to task-irrelevant elements increased at the expense of attention to the stimuli in the test phase of Experiment 2. Overall, the results suggest that the stability of global bias in dogs depends on the characteristics of the assessment contingencies, likely including the learning requirements of the tasks. Our results also clearly indicate that attention processes have a prominent role on dogs' global bias, in agreement with previous findings in humans and other species.

  4. Putting the pieces together: creating and implementing an Interprofessional Global Health Grant Program.

    PubMed

    Rowthorn, Virginia; Olsen, Jody

    2015-12-01

    In 2014, the Center for Global Education Initiatives (CGEI) at the University of Maryland, Baltimore (UMB) created an innovative Faculty and Student Interprofessional Global Health Grant Program. Under the terms of this program, a UMB faculty member can apply for up to $10,000 for an interprofessional global health project that includes at least two students from different schools. Students selected to participate in a funded project receive a grant for the travel portion of their participation. This is the first university-sponsored global health grant program in North America that conditions funding on interprofessional student participation. The program grew out of CGEI's experience creating interprofessional global health programming on a graduate campus with six schools (dentistry, law, medicine, nursing, pharmacy, and social work) and meets several critical goals identified by CGEI faculty: increased global health experiential learning opportunities, increased use of interprofessional education on campus; and support for sustainable global health programming. This case study describes the history that led to the creation of the grant program, the development and implementation process, the parameters of the grant program, and the challenges to date. The case study is designed to provide guidance to other universities that want to foster interprofessional global health on their campuses. Copyright © 2015. Published by Elsevier Inc.

  5. The Super Dual Auroral Radar Network (SuperDARN): A ground-based array of HF radars for global-scale studies of ionospheric and magnetospheric processes

    NASA Astrophysics Data System (ADS)

    Greenwald, R. A.

    2004-05-01

    Radars have been utilized since early in the 20th century for remote investigations of Earth's upper atmosphere. Many of the terms used to describe the ionosphere in particular were derived from the characteristics of radar soundings. It is now appreciated that the ionosphere also provides a portal for viewing processes in the magnetosphere, including the impact of variability in the solar wind. Beginning in the 1970s, efforts were made to construct small systems of ionospheric radars for research at high latitudes (e.g., STARE, SABRE). These efforts culminated in the last decade with the realization of the SuperDARN concept. An international consortium of researchers and funding agencies assembled networks of HF radars that provide large-scale coverage of the high-latitude ionosphere in both hemispheres. The northern component comprises 9 instruments with sites that extend westward from Scandinavia to Alaska while the southern component consists of 6 instruments with fields of view that converge over Antarctica. The radars observe coherent backscatter from ionization irregularities in the E and F regions and measure their motions. Synthesis of the velocity data sets results in global-scale images of the convection of ionospheric plasma that are analogous to images of auroral luminosity obtained with spaced-based instruments. The radars operate continuously with a cadence of 1 or 2 minutes. Summary information is downloaded from the northern radars via real-time internet links to JHU/APL where they are combined into a nowcast of the ionospheric space weather. Further expansion of SuperDARN is planned for both hemispheres and may include sites that will extend the coverage higher into the polar cap and to mid-latitudes. The range of studies pursued with SuperDARN includes convection dynamics, M-I coupling, atmospheric gravity waves, substorm processes, ionospheric modeling, and ULF pulsations. New areas for development include estimation of the global Poynting flux with the Iridium satellite network, coordinated studies of the polar cap ionosphere with AMISR, and the exploitation of meteor scatter to study the global distribution of mesospheric winds. In this talk we will review the status of SuperDARN, describe some of the scientific and technical accomplishments to date, and discuss the application of the data to the solution of current research problems.

  6. Comparing Goldstone Solar System Radar Earth-based Observations of Mars with Orbital Datasets

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Larsen, K. W.; Jurgens, R. F.; Slade, M. A.

    2005-01-01

    The Goldstone Solar System Radar (GSSR) has collected a self-consistent set of delay-Doppler near-nadir radar echo data from Mars since 1988. Prior to the Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global topography for Mars, these radar data provided local elevation information, along with radar scattering information with global coverage. Two kinds of GSSR Mars delay-Doppler data exist: low 5 km x 150 km resolution and, more recently, high (5 to 10 km) spatial resolution. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. Interpretation of these parameters, while limited by the complexities of electromagnetic scattering, provide information directly relevant to geophysical and geomorphic analyses of Mars. In this presentation we want to demonstrate how to compare GSSR delay-Doppler data to other Mars datasets, including some idiosyncracies of the radar data. Additional information is included in the original extended abstract.

  7. Genotype and plant trait effects on soil CO2 efflux responses to altered precipitation in switchgrass

    USDA-ARS?s Scientific Manuscript database

    Background/Question/Methods Global climate change models predict increasing drought during the growing season, which will alter many ecosystem processes including soil CO2 efflux (JCO2), with potential consequences for carbon retention in soils. Soil moisture, soil temperature and plant traits such...

  8. Man and the Environment: The Need for a More Realistic Approach to Teaching Ecology.

    ERIC Educational Resources Information Center

    Evans, Stewart M.

    1988-01-01

    This article argues that Biology syllabi give insufficient attention to the role humans play in the ecological processes and interactions with their environment. Discussed are ecological studies in urban and managed habitats, using a multidisciplinary approach, and including a global perspective. (CW)

  9. Academic Learning Revisited: Curriculum Innovation in an Australian University.

    ERIC Educational Resources Information Center

    Dovey, Ken; Green, Jenny; McQueen, Meryl

    2001-01-01

    Explores University of Technology, Sydney's process to transform its program in management of third sector organizations because of the profound social change caused by globalization. Analyzes the nature of the crisis, offers a rationale for the strategic action taken, and evaluates the first-phase implementation, including the politics of…

  10. Chapter 9: Carbon fluxes across regions.

    Treesearch

    Beverly E. Law; Dave Turner; John Campbell; Michael Lefsky; Michael Guzy; Osbert Sun; Steve Van Tuyl; Warren Cohen

    2006-01-01

    Scaling biogeochemical processes to regions, continents, and the globe is critical for understanding feedbacks between the biosphere and atmosphere in the analysis of global change. This includes the effects of changing atmospheric carbon dioxide, climate, disturbances, and increasing nitrogen deposition from air pollution (Ehleringer and Field 1993, Vitousek et al....

  11. Indonesia: Internal Conditions, the Global Economy, and Regional Development.

    ERIC Educational Resources Information Center

    Leitner, Helga; Sheppard, Eric S.

    1987-01-01

    Describes recent trends in the economic and regional development of Indonesia and examines the internal and external forces influencing the process. Shows how these forces account for the rise of a strong centralized state. Discusses Indonesia's current problems. Includes tables, maps, and graphs of economic investment figures, world trade, and…

  12. Accreditation of Engineering Programmes: European Perspectives and Challenges in a Global Context

    ERIC Educational Resources Information Center

    Augusti, Giuliano

    2007-01-01

    The EUR-ACE Socrates-Tempus project (September 2004/March 2006) proposed a decentralized European system for accreditation of engineering programmes in the "Bologna process" area (European Higher Education Area) at the First and Second Cycle (FC and SC) level (but including "Integrated Programmes", i.e. programmes leading…

  13. Disturbance in boreal forest ecosystems: human impacts and natural processes. Proceedings of the International Boreal Forest Research Association 1997 annual meeting; 1997 August 4-7; Duluth, Minnesota.

    Treesearch

    2000-01-01

    The papers in these proceedings cover a wide range of topics related to human and natural disturbance processes in forests of the boreal zone in North America and Eurasia. Topics include historic and predicted landscape change; forest management; disturbance by insects, fire, air pollution, severe weather, and global climate change; and carbon cycling.

  14. Early Life Crises of Habitable Planets

    ScienceCinema

    Pierrehumbert, Raymond

    2018-05-11

    There are a number of crises that a potentially habitable planet must avoid or surmount if its potential is to be realized. These include the runaway greenhouse, loss of atmosphere by chemical or physical processes, and long-lasting global glaciation. In this lecture I will present research on the climate dynamics governing such processes, with particular emphasis on the lessons to be learned from the cases of Early Mars and the Neoproterozoic Snowball Earth.

  15. Using Field and Satellite Measurements to Improve Snow and Riming Processes in Cloud Resolving Models

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew L.

    2013-01-01

    The representation of clouds in climate and weather models is a driver in forecast uncertainty. Cloud microphysics parameterizations are challenged by having to represent a diverse range of ice species. Key characteristics of predicted ice species include habit and fall speed, and complex interactions that result from mixed-phased processes like riming. Our proposed activity leverages Global Precipitation Measurement (GPM) Mission ground validation studies to improve parameterizations

  16. Variational Data Assimilation for the Global Ocean

    DTIC Science & Technology

    2013-01-01

    ocean includes the Geoid (a fixed gravity equipotential surface ) as well as the MDT, which is not known accurately enough relative to the centimeter...scales, including processes that control the surface mixed layer, the formation of ocean eddies, meandering ocean J.A. Cummings (E3) nography Division...variables. Examples of this in the ocean are integral quantities, such as acous^B travel time and altimeter measures of sea surface height, and direct

  17. A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions

    NASA Astrophysics Data System (ADS)

    Lienert, Sebastian; Joos, Fortunat

    2018-05-01

    A dynamic global vegetation model (DGVM) is applied in a probabilistic framework and benchmarking system to constrain uncertain model parameters by observations and to quantify carbon emissions from land-use and land-cover change (LULCC). Processes featured in DGVMs include parameters which are prone to substantial uncertainty. To cope with these uncertainties Latin hypercube sampling (LHS) is used to create a 1000-member perturbed parameter ensemble, which is then evaluated with a diverse set of global and spatiotemporally resolved observational constraints. We discuss the performance of the constrained ensemble and use it to formulate a new best-guess version of the model (LPX-Bern v1.4). The observationally constrained ensemble is used to investigate historical emissions due to LULCC (ELUC) and their sensitivity to model parametrization. We find a global ELUC estimate of 158 (108, 211) PgC (median and 90 % confidence interval) between 1800 and 2016. We compare ELUC to other estimates both globally and regionally. Spatial patterns are investigated and estimates of ELUC of the 10 countries with the largest contribution to the flux over the historical period are reported. We consider model versions with and without additional land-use processes (shifting cultivation and wood harvest) and find that the difference in global ELUC is on the same order of magnitude as parameter-induced uncertainty and in some cases could potentially even be offset with appropriate parameter choice.

  18. The German government's global health strategy--a strategy also to support research and development for neglected diseases?

    PubMed

    Fehr, Angela; Razum, Oliver

    2014-01-01

    Neglected tropical infectious diseases as well as rare diseases are characterized by structural research and development (R&D) deficits. The market fails for these disease groups. Consequently, to meet public health and individual patient needs, political decision makers have to develop strategies at national and international levels to make up for this R&D deficit. The German government recently published its first global health strategy. The strategy underlines the German government's commitment to strengthening global health governance. We find, however, that the strategy lacks behind the international public health endeavors for neglected diseases. It fails to make reference to the ongoing debate on a global health agreement. Neither does it outline a comprehensive national strategy to promote R&D into neglected diseases, which would integrate existing R&D activities in Germany and link up to the international debate on sustainable, needs-based R&D and affordable access. This despite the fact that only recently, in a consensus-building process, a National Plan of Action for rare diseases was successfully developed in Germany which could serve as a blueprint for a similar course of action for neglected diseases. We recommend that, without delay, a structured process be initiated in Germany to explore all options to promote R&D for neglected diseases, including a global health agreement.

  19. Re-evaluating the oceanic magnesium and magnesium isotope budgets - the contribution of authigenic mineral formation in marine sediments

    NASA Astrophysics Data System (ADS)

    Berg, R. D.; Solomon, E. A.

    2016-12-01

    Formation of authigenic minerals in marine sediments is a globally significant geochemical process for several major element cycles in the ocean on the 105-107 year time scale, including the sulfur, potassium, and calcium cycles. However, the significance of these processes to the magnesium (Mg) cycle have not yet been well constrained, and thus are not typically included in global oceanic Mg budgets. Exclusion of this authigenic sink for Mg affects work derived from the existing Mg and Mg isotope budgets in the fields of paleo-oceanography and global geochemical cycling. To robustly constrain the magnitude of this sedimentary Mg sink in continental slope, rise, and abyssal environments, we estimate rates of Mg uptake in marine sediments using reactive-transport modeling of 200 pore water solute concentration profiles measured during scientific ocean drilling expeditions. The depth-integrated rates of Mg uptake are extrapolated globally using statistical machine learning methods, which are particularly well-suited for using with the wide variety of environments represented in the ocean drilling dataset. Due to the differences in Mg isotope fractionation during formation of authigenic clays versus carbonates, the relative proportion of the Mg flux being sequestered by these minerals may have a major effect on the oceanic Mg isotope record. We evaluate the processes controlling Mg uptake (authigenic clay and carbonate formation) at representative continental margin locations using pore water Mg isotope measurements. Results indicate that rates of Mg uptake are over an order of magnitude higher in continental margin settings than in the abyssal environment, likely due to greater organic matter degradation resulting in higher rates of carbonate formation and in situ weathering of primary silicates to authigenic clays. Preliminary results show that authigenic mineral formation in marine sediments is a major sink for Mg in the ocean, rivaling the ridge-crest hydrothermal sink. The quantification of this Mg sink and associated Mg isotope fractionation provides more accurate constraints on the modern global Mg budget, and provides a benchmark for models and interpretations of the paleooceanographic Mg isotope record.

  20. MARs Color Imager (MARCI) Daily Global Ozone Column Mapping from the Mars Reconnaissance Orbiter (MRO): A Survey of 2006-2010 Results

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Malin, M. C.; Cantor, B. A.

    2010-12-01

    MARCI UV band imaging photometry within (260nm) and outside (320nm) the Hartley ozone band absorption supports daily global mapping of Mars ozone column abundances. Key retrieval issues include accurate UV radiometric calibrations, detailed specifications of surface and atmospheric background reflectance (surface albedo, atmospheric Raleigh and dust scattering/absorption), and simultaneous cloud retrievals. The implementation of accurate radiative transfer (RT) treatments of these processes has been accomplished (Wolff et al., 2010) such that daily global mapping retrievals for Mars ozone columns have been completed for the 2006-2010 period of MARCI global imaging. Ozone retrievals are most accurate for high column abundances associated with mid-to-high latitude regions during fall, winter, and spring seasons. We present a survey of these MARCI ozone column retrievals versus season, latitude, longitude, and year.

  1. The Global in Global Health is Not a Given.

    PubMed

    Mason, Paul H; Kerridge, Ian; Lipworth, Wendy

    2017-04-01

    AbstractThe process of globalization is commonly espoused as a means for promoting global health. Efforts to "go global" can, however, easily go awry as a result of lack of attention to local social, economic, and political contexts and/or as a result of commercial and political imperatives that allow local populations to be exploited. Critical analysis of the processes of globalization is necessary to better understand the local particularities of global projects and confront challenges more transparently. We illustrate the potential adverse impacts of globalization in the global health setting, through examination of international tuberculosis control, global mental health, and the establishment of transnational biobank networks.

  2. Persistent Identification of Agents and Objects of Global Change

    NASA Astrophysics Data System (ADS)

    Tilmes, C.; Fox, P. A.; Waple, A.; Zednik, S.

    2012-12-01

    "Global Change" includes climate change, ecological change, land-use changes and host of other interacting complex systems including societal and institutional implications. This vast body of information includes scientific research, data, measurements, models, analyses, assessments, etc. It is produced by a collection of multi-disciplinary researchers and organizations from around the world and demand for this information is increasing from a multitude of different audiences and stakeholders. The identification and organization of the agents and objects of global change information and their inter-relationships and contributions to the whole story of change is critical for conveying the state of knowledge, its complexity as well as syntheses and key messages to researchers, decision makers, and the public. The U.S. Global Change Research Program (http://globalchange.gov) coordinates and integrates federal research on changes in the global environment and their implications for society. The USGCRP is developing a Global Change Information System (GCIS) that will organize and present our best understanding of global change, and all the contributing information that leads to that understanding, including the provenance needed to trust and use that information. The first implementation will provide provenance for the National Climate Assessment (NCA). (http://assessment.globalchange.gov) The NCA must integrate, evaluate, and interpret the findings of the USGCRP; analyze the effects of global change on the natural environment, agriculture, energy production and use, land and water resources, transportation, human health and welfare, human social systems, and biological diversity; and analyze current trends in global change, both human-induced and natural, and projects major trends for the subsequent 25 to 100 years. It also assesses information at the regional scale across the Nation. A synthesis report is required not less frequently than every four years and the next NCA report will be delivered in 2013. However a major new approach for the NCA is as a sustained effort including many more foundational components (such as scenarios and indicators) and thousands of contributors and participants. As a result of a public "request for information" the NCA has received over 500 distinct technical inputs to the process, many of which are reports distilling and synthesizing even more information, coming from thousands of groups around the federal government, non-governmental organizations, academic institutions, etc. The GCIS will assign identifiers, track citations and provide the links from the content of the National Climate Assessment back to related inputs. We will describe our approach to persistent identification of the agents and objects and their relationships to the NCA, how we plan to implement that approach throughout the global change research and sustained assessment activities of the 13 federal agencies of the USGCRP, and how this approach will improve understanding, reproducibility, and ultimately, credibility and usability of global change information.

  3. The Role of Musical Experience in Hemispheric Lateralization of Global and Local Auditory Processing.

    PubMed

    Black, Emily; Stevenson, Jennifer L; Bish, Joel P

    2017-08-01

    The global precedence effect is a phenomenon in which global aspects of visual and auditory stimuli are processed before local aspects. Individuals with musical experience perform better on all aspects of auditory tasks compared with individuals with less musical experience. The hemispheric lateralization of this auditory processing is less well-defined. The present study aimed to replicate the global precedence effect with auditory stimuli and to explore the lateralization of global and local auditory processing in individuals with differing levels of musical experience. A total of 38 college students completed an auditory-directed attention task while electroencephalography was recorded. Individuals with low musical experience responded significantly faster and more accurately in global trials than in local trials regardless of condition, and significantly faster and more accurately when pitches traveled in the same direction (compatible condition) than when pitches traveled in two different directions (incompatible condition) consistent with a global precedence effect. In contrast, individuals with high musical experience showed less of a global precedence effect with regards to accuracy, but not in terms of reaction time, suggesting an increased ability to overcome global bias. Further, a difference in P300 latency between hemispheres was observed. These findings provide a preliminary neurological framework for auditory processing of individuals with differing degrees of musical experience.

  4. Behavioral and Physiological Findings of Gender Differences in Global-Local Visual Processing

    ERIC Educational Resources Information Center

    Roalf, David; Lowery, Natasha; Turetsky, Bruce I.

    2006-01-01

    Hemispheric asymmetries in global-local visual processing are well-established, as are gender differences in cognition. Although hemispheric asymmetry presumably underlies gender differences in cognition, the literature on gender differences in global-local processing is sparse. We employed event related brain potential (ERP) recordings during…

  5. Cultural Variations in Global versus Local Processing: A Developmental Perspective

    ERIC Educational Resources Information Center

    Oishi, Shigehiro; Jaswal, Vikram K.; Lillard, Angeline S.; Mizokawa, Ai; Hitokoto, Hidefumi; Tsutsui, Yoshiro

    2014-01-01

    We conducted 3 studies to explore cultural differences in global versus local processing and their developmental trajectories. In Study 1 ("N" = 363), we found that Japanese college students were less globally oriented in their processing than American or Argentine participants. We replicated this effect in Study 2 ("N" =…

  6. Global agenda, local health: including concepts of health security in preparedness programs at the jurisdictional level.

    PubMed

    Eby, Chas

    2014-01-01

    The Global Health Security Agenda's objectives contain components that could help health departments address emerging public health challenges that threaten the population. As part of the agenda, partner countries with advanced public health systems will support the development of infrastructure in stakeholder health departments. To facilitate this process and augment local programs, state and local health departments may want to include concepts of health security in their public health preparedness offices in order to simultaneously build capacity. Health security programs developed by public health departments should complete projects that are closely aligned with the objectives outlined in the global agenda and that facilitate the completion of current preparedness grant requirements. This article identifies objectives and proposes tactical local projects that run parallel to the 9 primary objectives of the Global Health Security Agenda. Executing concurrent projects at the international and local levels in preparedness offices will accelerate the completion of these objectives and help prevent disease epidemics, detect health threats, and respond to public health emergencies. Additionally, future funding tied or related to health security may become more accessible to state and local health departments that have achieved these objectives.

  7. Developing Character and Values for Global Citizens: Analysis of pre-service science teachers' moral reasoning on socioscientific issues

    NASA Astrophysics Data System (ADS)

    Lee, Hyunju; Chang, Hyunsook; Choi, Kyunghee; Kim, Sung-Won; Zeidler, Dana L.

    2012-04-01

    Character and values are the essential driving forces that serve as general guides or points of reference for individuals to support decision-making and to act responsibly about global socioscientific issues (SSIs). Based on this assumption, we investigated to what extent pre-service science teachers (PSTs) of South Korea possess character and values as global citizens; these values include ecological worldview, socioscientific accountability, and social and moral compassion. Eighteen PSTs participated in the SSI programs focusing on developing character and values through dialogical and reflective processes. SSIs were centered on the use of nuclear power generation, climate change, and embryonic stem cell research. The results indicated that PSTs showed three key elements of character and values, but failed to apply consistent moral principles on the issues and demonstrated limited global perspectives. While they tended to approach the issues with emotion and sympathy, they nonetheless failed to perceive themselves as major moral agents who are able to actively resolve large-scale societal issues. This study also suggests that the SSI programs can facilitate socioscientific reasoning to include abilities such as recognition of the complexity of SSIs, examine issues from multiple perspectives, and exhibit skepticism about information.

  8. Global Multi-Resolution Topography (GMRT) Synthesis - Version 2.0

    NASA Astrophysics Data System (ADS)

    Ferrini, V.; Coplan, J.; Carbotte, S. M.; Ryan, W. B.; O'Hara, S.; Morton, J. J.

    2010-12-01

    The detailed morphology of the global ocean floor is poorly known, with most areas mapped only at low resolution using satellite-based measurements. Ship-based sonars provide data at resolution sufficient to quantify seafloor features related to the active processes of erosion, sediment flow, volcanism, and faulting. To date, these data have been collected in a small fraction of the global ocean (<10%). The Global Multi-Resolution Topography (GMRT) synthesis makes use of sonar data collected by scientists and institutions worldwide, merging them into a single continuously updated compilation of high-resolution seafloor topography. Several applications, including GeoMapApp (http://www.geomapapp.org) and Virtual Ocean (http://www.virtualocean.org), make use of the GMRT Synthesis and provide direct access to images and underlying gridded data. Source multibeam files included in the compilation can also accessed through custom functionality in GeoMapApp. The GMRT Synthesis began in 1992 as the Ridge Multibeam Synthesis. It was subsequently expanded to include bathymetry data from the Southern Ocean, and now includes data from throughout the global oceans. Our design strategy has been to make data available at the full native resolution of shipboard sonar systems, which historically has been ~100 m in the deep sea (Ryan et al., 2009). A new release of the GMRT Synthesis in Fall of 2010 includes several significant improvements over our initial strategy. In addition to increasing the number of cruises included in the compilation by over 25%, we have developed a new protocol for handling multibeam source data, which has improved the overall quality of the compilation. The new tileset also includes a discrete layer of sonar data in the public domain that are gridded to the full resolution of the sonar system, with data gridded 25 m in some areas. This discrete layer of sonar data has been provided to Google for integration into Google’s default ocean base map. NOAA coastal grids and numerous grids contributed by the international science community are also integrated into the GMRT Synthesis. Finally, terrestrial elevation data from NASA’s ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) global DEM, and the USGS National Elevation Dataset have been included in the synthesis, providing resolution of up to 10 m in some areas of the US.

  9. Coastal Algorithms and On-Demand Processing- The Lessons Learnt from CoastColour for Sentinel 3

    NASA Astrophysics Data System (ADS)

    Brockmann, Carsten; Doerffer, Roland; Boettcher, Martin; Kramer, Uwe; Zuhlke, Marco; Pinnock, Simon

    2015-12-01

    The ESA DUE CoastColour Project has been initiated to provide water quality products for important costal zones globally. A new 5 component bio-optical model was developed and used in a 3-step approach for regional processing of ocean colour data. The L1P step consists of radiometric and geometric system corrections, and top-of-atmosphere pixel classification including cloud screening, sun glint risk masking or detection of floating vegetation. The second step includes the atmospheric correction and is providing the L2R product, which comprises marine reflectances with error characterisation and normalisation. The third step is the in-water processing which produces IOPs, attenuation coefficient and water constituent concentrations. Each of these steps will benefit from the additional bands on OLCI. The 5 component bio-optical model will already be used in the standard ESA processing of OLCI, and also part of the pixel classification methods will be part of the standard products. Other algorithm adaptation are in preparation. Another important advantage of the CoastColour approach is the highly configurable processing chain which allows adaptation to the individual characteristics of the area of interest, temporal window, algorithm parametrisation and processing chain configuration. This flexibility is made available to data users through the CoastColour on-demand processing service. The complete global MERIS Full and Reduced Resolution data archive is accessible, covering the time range from 17. May 2002 until 08. April 2012, which is almost 200TB of in-put data available online. The CoastColour on-demand processing service can serve as a model for hosted processing, where the software is moved to the data instead of moving the data to the users, which will be a challenge with the large amount of data coming from Sentinel 3.

  10. Measurement of Health Care Quality in Atopic Dermatitis - Development and Application of a Set of Quality Indicators.

    PubMed

    Steinke, S; Beikert, F C; Langenbruch, A; Fölster-Holst, R; Ring, J; Schmitt, J; Werfel, T; Hintzen, S; Franzke, N; Augustin, M

    2018-05-15

    Quality indicators are essential tools for the assessment of health care, in particular for guideline-based procedures. 1) Development of a set of indicators for the evaluation of process and outcomes quality in atopic dermatitis (AD) care. 2) Application of the indicators to a cross-sectional study and creation of a global process quality index. An expert committee consisting of 10 members of the German guideline group on atopic dermatitis condensed potential quality indicators to a final set of 5 outcomes quality and 12 process quality indicators using a Delphi panel. The outcomes quality and 7 resp. 8 process quality indicators were retrospectively applied to a nationwide study on 1,678 patients with atopic dermatitis (AtopicHealth). Each individual process quality indicator score was then summed up to a global index (ranges from 0 (no quality achieved) to 100 (full quality achieved)) displaying the quality of health care. In total, the global process quality index revealed a median value of 62.5 and did not or only slightly correlate to outcome indicators as the median SCORAD (SCORing Atopic Dermatitis; rp =0.08), Dermatology Life Quality Index (DLQI; rp = 0.256), and Patient Benefit Index (PBI; rp = -0.151). Process quality of AD care is moderate to good. The health care process quality index does not substantially correlate to the health status of AD patients measured by 5 different outcomes quality indicators. Further research should include the investigation of reliability, responsiveness, and feasibility of the proposed quality indicators for AD. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment

    PubMed Central

    Prudhomme, Christel; Giuntoli, Ignazio; Robinson, Emma L.; Clark, Douglas B.; Arnell, Nigel W.; Dankers, Rutger; Fekete, Balázs M.; Franssen, Wietse; Gerten, Dieter; Gosling, Simon N.; Hagemann, Stefan; Hannah, David M.; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty. PMID:24344266

  12. The Joint Experiment for Crop Assessment and Monitoring (JECAM) Initiative: Developing methods and best practices for global agricultural monitoring

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Jarvis, I.; Defourny, P.; Davidson, A.

    2014-12-01

    Agricultural systems differ significantly throughout the world, making a 'one size fits all' approach to remote sensing and monitoring of agricultural landscapes problematic. The Joint Experiment for Crop Assessment and Monitoring (JECAM) was established in 2009 to bring together the global scientific community to work towards a set of best practices and recommendations for using earth observation data to map, monitor and report on agricultural productivity globally across an array of diverse agricultural systems. These methods form the research and development component of the Group on Earth Observation Global Agricultural Monitoring (GEOGLAM) initiative to harmonize global monitoring efforts and increase market transparency. The JECAM initiative brings together researchers from a large number of globally distributed, well monitored agricultural test sites that cover a range of crop types, cropping systems and climate regimes. Each test site works independently as well as together across multiple sites to test methods, sensors and field data collection techniques to derive key agricultural parameters, including crop type, crop condition, crop yield and soil moisture. The outcome of this project will be a set of best practices that cover the range of remote sensing monitoring and reporting needs, including satellite data acquisition, pre-processing techniques, information retrieval and ground data validation. These outcomes provide the research and development foundation for GEOGLAM and will help to inform the development of the GEOGLAM "system of systems" for global agricultural monitoring. The outcomes of the 2014 JECAM science meeting will be discussed as well as examples of methods being developed by JECAM scientists.

  13. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment.

    PubMed

    Prudhomme, Christel; Giuntoli, Ignazio; Robinson, Emma L; Clark, Douglas B; Arnell, Nigel W; Dankers, Rutger; Fekete, Balázs M; Franssen, Wietse; Gerten, Dieter; Gosling, Simon N; Hagemann, Stefan; Hannah, David M; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Increasing concentrations of greenhouse gases in the atmosphere are expected to modify the global water cycle with significant consequences for terrestrial hydrology. We assess the impact of climate change on hydrological droughts in a multimodel experiment including seven global impact models (GIMs) driven by bias-corrected climate from five global climate models under four representative concentration pathways (RCPs). Drought severity is defined as the fraction of land under drought conditions. Results show a likely increase in the global severity of hydrological drought at the end of the 21st century, with systematically greater increases for RCPs describing stronger radiative forcings. Under RCP8.5, droughts exceeding 40% of analyzed land area are projected by nearly half of the simulations. This increase in drought severity has a strong signal-to-noise ratio at the global scale, and Southern Europe, the Middle East, the Southeast United States, Chile, and South West Australia are identified as possible hotspots for future water security issues. The uncertainty due to GIMs is greater than that from global climate models, particularly if including a GIM that accounts for the dynamic response of plants to CO2 and climate, as this model simulates little or no increase in drought frequency. Our study demonstrates that different representations of terrestrial water-cycle processes in GIMs are responsible for a much larger uncertainty in the response of hydrological drought to climate change than previously thought. When assessing the impact of climate change on hydrology, it is therefore critical to consider a diverse range of GIMs to better capture the uncertainty.

  14. The Global Tsunami Model (GTM)

    NASA Astrophysics Data System (ADS)

    Thio, H. K.; Løvholt, F.; Harbitz, C. B.; Polet, J.; Lorito, S.; Basili, R.; Volpe, M.; Romano, F.; Selva, J.; Piatanesi, A.; Davies, G.; Griffin, J.; Baptista, M. A.; Omira, R.; Babeyko, A. Y.; Power, W. L.; Salgado Gálvez, M.; Behrens, J.; Yalciner, A. C.; Kanoglu, U.; Pekcan, O.; Ross, S.; Parsons, T.; LeVeque, R. J.; Gonzalez, F. I.; Paris, R.; Shäfer, A.; Canals, M.; Fraser, S. A.; Wei, Y.; Weiss, R.; Zaniboni, F.; Papadopoulos, G. A.; Didenkulova, I.; Necmioglu, O.; Suppasri, A.; Lynett, P. J.; Mokhtari, M.; Sørensen, M.; von Hillebrandt-Andrade, C.; Aguirre Ayerbe, I.; Aniel-Quiroga, Í.; Guillas, S.; Macias, J.

    2016-12-01

    The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  15. The Global Tsunami Model (GTM)

    NASA Astrophysics Data System (ADS)

    Lorito, S.; Basili, R.; Harbitz, C. B.; Løvholt, F.; Polet, J.; Thio, H. K.

    2017-12-01

    The tsunamis occurred worldwide in the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but often disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  16. The Global Tsunami Model (GTM)

    NASA Astrophysics Data System (ADS)

    Løvholt, Finn

    2017-04-01

    The large tsunami disasters of the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  17. Establishing global policy recommendations: the role of the Strategic Advisory Group of Experts on immunization.

    PubMed

    Duclos, Philippe; Okwo-Bele, Jean-Marie; Salisbury, David

    2011-02-01

    The vaccine landscape has changed considerably over the last decade with many new vaccines and technological developments, unprecedented progress in reaching out to children and the development of new financing mechanisms. At the same time, there are more demands and additional expectations of national policy makers, donors and other interested parties for increased protection through immunization. The Global Immunization Vision and Strategy (GIVS), which broadens the previous scope of immunization efforts, sets a number of goals to be met by countries. The WHO has recently reviewed and adjusted both its policy making structure and processes for vaccines and immunization to include an enlarged consultation process to generate evidence-based recommendations, thereby ensuring the transparency of the decision making process and improving communications. This article describes the process of development of immunization policy recommendations at the global level and some of their impacts. It focuses on the roles and modes of operating of the Strategic Advisory Group of Experts on immunization, which is the overarching advisory group involved with the issuance of policy recommendations, monitoring and facilitating the achievement of the GIVS goals. The article also describes the process leading to the publication of WHO vaccine position papers, which provide WHO recommendations on vaccine use. WHO vaccine-related recommendations have become a necessary step in the pathway to the introduction and use of vaccines, especially in developing countries and, consequently, have a clear and significant impact.

  18. Evaluation of DGVMs in tropical areas: linking patterns of vegetation cover, climate and fire to ecological processes

    NASA Astrophysics Data System (ADS)

    D'Onofrio, Donatella; von Hardenberg, Jost; Baudena, Mara

    2017-04-01

    Many current Dynamic Global Vegetation Models (DGVMs), including those incorporated into Earth System Models (ESMs), are able to realistically reproduce the distribution of the most worldwide biomes. However, they display high uncertainty in predicting the forest, savanna and grassland distributions and the transitions between them in tropical areas. These biomes are the most productive terrestrial ecosystems, and owing to their different biogeophysical and biogeochemical characteristics, future changes in their distributions could have also impacts on climate states. In particular, expected increasing temperature and CO2, modified precipitation regimes, as well as increasing land-use intensity could have large impacts on global biogeochemical cycles and precipitation, affecting the land-climate interactions. The difficulty of the DGVMs in simulating tropical vegetation, especially savanna structure and occurrence, has been associated with the way they represent the ecological processes and feedbacks between biotic and abiotic conditions. The inclusion of appropriate ecological mechanisms under present climatic conditions is essential for obtaining reliable future projections of vegetation and climate states. In this work we analyse observed relationships of tree and grass cover with climate and fire, and the current ecological understanding of the mechanisms driving the forest-savanna-grassland transition in Africa to evaluate the outcomes of a current state-of-the-art DGVM and to assess which ecological processes need to be included or improved within the model. Specifically, we analyse patterns of woody and herbaceous cover and fire return times from MODIS satellite observations, rainfall annual average and seasonality from TRMM satellite measurements and tree phenology information from the ESA global land cover map, comparing them with the outcomes of the LPJ-GUESS DGVM, also used by the EC-Earth global climate model. The comparison analysis with the LPJ-GUESS simulations suggests possible improvements in the model representations of tree-grass competition for water and in the vegetation-fire interaction. The proposed method could be useful for evaluating DGVMs in tropical areas, especially in the phase of model setting-up, before the coupling with Earth System Models. This could help in improving the simulations of ecological processes and consequently of land-climate interactions.

  19. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and comparing upper tropospheric budgets of NOx from aircraft and lightning sources in the modeling domain.

  20. Contemporary HIV/AIDS research: Insights from knowledge management theory

    PubMed Central

    Callaghan, Chris William

    2017-01-01

    Abstract Knowledge management as a field is concerned with the management of knowledge, including the management of knowledge in research processes. Knowledge management theory has the potential to support research into problems such as HIV, antibiotic resistance and others, particularly in terms of aspects of scientific research related to the contribution of social science. To date, however, these challenges remain with us, and theoretical contributions that can complement natural science efforts to eradicate these problems are needed. This paper seeks to offer a theoretical contribution grounded in Kuhn’s paradigm theory of innovation, and in the argument by Lakatos that scientific research can be fundamentally non-innovative, which suggests that social science aspects of knowledge creation may hold the key to more effective biomedical innovation. Given the consequences of ongoing and emerging global crises, and the failure of knowledge systems of scientific research to solve such problems outright, this paper provides a review of theory and literature arguing for a new paradigm in scientific research, based on the development of global systems to maximise research collaborations. A global systems approach effectively includes social science theory development as an important complement to the natural sciences research process. Arguably, information technology and social media technology have developed to the point at which solutions to knowledge aggregation challenges can enable solutions to knowledge problems on a scale hitherto unimaginable. Expert and non-expert crowdsourced inputs can enable problem-solving through exponentially increasing problem-solving inputs, using the ‘crowd,’ thereby increasing collaborations dramatically. It is argued that these developments herald a new era of participatory research, or a democratisation of research, which offers new hope for solving global social problems. This paper seeks to contribute to this end, and to the recognition of the important role of social theory in the scientific research process. PMID:28922967

  1. Collaborative Paradigm of Preventive, Personalized, and Precision Medicine With Point-of-Care Technologies.

    PubMed

    Dhawan, Atam P

    2016-01-01

    Recent advances in biosensors, medical instrumentation, and information processing and communication technologies (ICT) have enabled significant improvements in healthcare. However, these technologies have been mainly applied in clinical environments, such as hospitals and healthcare facilities, under managed care by well-trained and specialized individuals. The global challenge of providing quality healthcare at affordable cost leads to the proposed paradigm of P reventive, Personalized, and Precision Medicine that requires a seamless use of technology and infrastructure support for patients and healthcare providers at point-of-care (POC) locations including homes, semi or pre-clinical facilities, and hospitals. The complexity of the global healthcare challenge necessitates strong collaborative interdisciplinary synergies involving all stakeholder groups including academia, federal research institutions, industry, regulatory agencies, and clinical communities. It is critical to evolve with collaborative efforts on the translation of research to technology development toward clinical validation and potential healthcare applications. This special issue is focused on technology innovation and translational research for POC applications with potential impact in improving global healthcare in the respective areas. Some of these papers were presented at the NIH-IEEE Strategic Conference on Healthcare Innovations and POC Technologies for Precision Medicine (HI-POCT) held at the NIH on November 9-10, 2015. The papers included in the Special Issue provide a spectrum of critical issues and collaborative resources on translational research of advanced POC devices and ICT into global healthcare environment.

  2. Transforming conservation science and practice for a postnormal world.

    PubMed

    Colloff, Matthew J; Lavorel, Sandra; van Kerkhoff, Lorrae E; Wyborn, Carina A; Fazey, Ioan; Gorddard, Russell; Mace, Georgina M; Foden, Wendy B; Dunlop, Michael; Prentice, I Colin; Crowley, John; Leadley, Paul; Degeorges, Patrick

    2017-10-01

    We examine issues to consider when reframing conservation science and practice in the context of global change. New framings of the links between ecosystems and society are emerging that are changing peoples' values and expectations of nature, resulting in plural perspectives on conservation. Reframing conservation for global change can thus be regarded as a stage in the evolving relationship between people and nature rather than some recent trend. New models of how conservation links with transformative adaptation include how decision contexts for conservation can be reframed and integrated with an adaptation pathways approach to create new options for global-change-ready conservation. New relationships for conservation science and governance include coproduction of knowledge that supports social learning. New processes for implementing adaptation for conservation outcomes include deliberate practices used to develop new strategies, shift world views, work with conflict, address power and intergenerational equity in decisions, and build consciousness and creativity that empower agents to act. We argue that reframing conservation for global change requires scientists and practitioners to implement approaches unconstrained by discipline and sectoral boundaries, geopolitical polarities, or technical problematization. We consider a stronger focus on inclusive creation of knowledge and the interaction of this knowledge with societal values and rules is likely to result in conservation science and practice that meets the challenges of a postnormal world. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  3. Earth observing satellite: Understanding the Earth as a system

    NASA Technical Reports Server (NTRS)

    Soffen, Gerald

    1990-01-01

    There is now a plan for global studies which include two very large efforts. One is the International Geosphere/Biosphere Program (IGBP) sponsored by the International Council of Scientific Unions. The other initiative is Mission to Planet Earth, an unbrella program for doing three kinds of space missions. The major one is the Earth Observation Satellite (EOS). EOS is large polar orbiting satellites with heavy payloads. Two will be placed in orbit by NASA, one by the Japanese and one or two by ESA. The overall mission measurement objectives of EOS are summarized: (1) the global distribution of energy input to and energy output from the Earth; (2) the structure, state variables, composition, and dynamics of the atmosphere from the ground to the mesopause; (3) the physical and biological structure, state, composition, and dynamics of the land surface, including terrestrial and inland water ecosystems; (4) the rates, important sources and sinks, and key components and processes of the Earth's biogeochemical cycles; (5) the circulation, surface temperature, wind stress, sea state, and the biological activity of the oceans; (6) the extent, type, state, elevation, roughness, and dynamics of glaciers, ice sheets, snow and sea ice, and the liquid equivalent of snow in the global cryosphere; (7) the global rates, amounts, and distribution of precipitation; and (8) the dynamic motions of the Earth (geophysics) as a whole, including both rotational dynamics and the kinematic motions of the tectonic plates.

  4. Global volcanic emissions: budgets, plume chemistry and impacts

    NASA Astrophysics Data System (ADS)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  5. Global health ethics: an introduction to prominent theories and relevant topics

    PubMed Central

    Stapleton, Greg; Schröder-Bäck, Peter; Laaser, Ulrich; Meershoek, Agnes; Popa, Daniela

    2014-01-01

    Global health ethics is a relatively new term that is used to conceptualize the process of applying moral value to health issues that are typically characterized by a global level effect or require action coordinated at a global level. It is important to acknowledge that this account of global health ethics takes a predominantly geographic approach and may infer that the subject relates primarily to macro-level health phenomena. However, global health ethics could alternatively be thought of as another branch of health ethics. It may then relate to specific topics in themselves, which might also include micro-level health phenomena. In its broadest sense, global health ethics is a normative project that is best characterized by the challenge of developing common values and universal norms for responding to global health threats. Consequently, many subjects fall within its scope. Whilst several accounts of global health ethics have been conceptualized in the literature, a concise demarcation of the paradigm is still needed. Through means of a literature review, this paper presents a two-part introduction to global health ethics. First, the framework of ‘borrowed’ ethics that currently form the core of global health ethics is discussed in relation to two essential ethical considerations: 1) what is the moral significance of health and 2) what is the moral significance of boundaries? Second, a selection of exemplar ethical topics is presented to illustrate the range of topics within global health ethics. PMID:24560262

  6. Global health ethics: an introduction to prominent theories and relevant topics.

    PubMed

    Stapleton, Greg; Schröder-Bäck, Peter; Laaser, Ulrich; Meershoek, Agnes; Popa, Daniela

    2014-01-01

    Global health ethics is a relatively new term that is used to conceptualize the process of applying moral value to health issues that are typically characterized by a global level effect or require action coordinated at a global level. It is important to acknowledge that this account of global health ethics takes a predominantly geographic approach and may infer that the subject relates primarily to macro-level health phenomena. However, global health ethics could alternatively be thought of as another branch of health ethics. It may then relate to specific topics in themselves, which might also include micro-level health phenomena. In its broadest sense, global health ethics is a normative project that is best characterized by the challenge of developing common values and universal norms for responding to global health threats. Consequently, many subjects fall within its scope. Whilst several accounts of global health ethics have been conceptualized in the literature, a concise demarcation of the paradigm is still needed. Through means of a literature review, this paper presents a two-part introduction to global health ethics. First, the framework of 'borrowed' ethics that currently form the core of global health ethics is discussed in relation to two essential ethical considerations: 1) what is the moral significance of health and 2) what is the moral significance of boundaries? Second, a selection of exemplar ethical topics is presented to illustrate the range of topics within global health ethics.

  7. Sensitivity of Tropospheric Chemical Composition to Halogen-Radical Chemistry Using a Fully Coupled Size-Resolved Multiphase Chemistry-Global Climate System: Halogen Distributions, Aerosol Composition, and Sensitivity of Climate-Relevant Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, M.; Keene, W. C.; Easter, Richard C.

    Observations and model studies suggest a significant but highly non-linear role for halogens, primarily Cl and Br, in multiphase atmospheric processes relevant to tropospheric chemistry and composition, aerosol evolution, radiative transfer, weather, and climate. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was tested using a size-resolved multiphase coupled chemistry/global climate model (National Center for Atmospheric Research’s Community Atmosphere Model (CAM); v3.6.33). Simulation results showed strong meridional and vertical gradients in Cl and Br species. The simulation reproduced most available observations with reasonable confidence permittingmore » the formulation of potential mechanisms for several previously unexplained halogen phenomena including the enrichment of Br- in submicron aerosol, and the presence of a BrO maximum in the polar free troposphere. However, simulated total volatile Br mixing ratios were generally high in the troposphere. Br in the stratosphere was lower than observed due to the lack of long-lived organobromine species in the simulation. Comparing simulations using chemical mechanisms with and without reactive Cl and Br species demonstrated a significant temporal and spatial sensitivity of primary atmospheric oxidants (O3, HOx, NOx), CH4, and non-methane hydrocarbons (NMHC’s) to halogen cycling. Simulated O3 and NOx were globally lower (65% and 35%, respectively, less in the planetary boundary layer based on median values) in simulations that included halogens. Globally, little impact was seen in SO2 and non-sea-salt SO42- processing due to halogens. Significant regional differences were evident: The lifetime of nss-SO42- was extended downwind of large sources of SO2. The burden and lifetime of DMS (and its oxidation products) were lower by a factor of 5 in simulations that included halogens, versus those without, leading to a 20% reduction in nss-SO42- in the southern hemisphere planetary boundary layer based on median values.« less

  8. Optimization of composite box-beam structures including effects of subcomponent interactions

    NASA Technical Reports Server (NTRS)

    Ragon, Scott A.; Guerdal, Zafer; Starnes, James H., Jr.

    1995-01-01

    Minimum mass designs are obtained for a simple box beam structure subject to bending, torque and combined bending/torque load cases. These designs are obtained subject to point strain and linear buckling constraints. The present work differs from previous efforts in that special attention is payed to including the effects of subcomponent panel interaction in the optimal design process. Two different approaches are used to impose the buckling constraints. When the global approach is used, buckling constraints are imposed on the global structure via a linear eigenvalue analysis. This approach allows the subcomponent panels to interact in a realistic manner. The results obtained using this approach are compared to results obtained using a traditional, less expensive approach, called the local approach. When the local approach is used, in-plane loads are extracted from the global model and used to impose buckling constraints on each subcomponent panel individually. In the global cases, it is found that there can be significant interaction between skin, spar, and rib design variables. This coupling is weak or nonexistent in the local designs. It is determined that weight savings of up to 7% may be obtained by using the global approach instead of the local approach to design these structures. Several of the designs obtained using the linear buckling analysis are subjected to a geometrically nonlinear analysis. For the designs which were subjected to bending loads, the innermost rib panel begins to collapse at less than half the intended design load and in a mode different from that predicted by linear analysis. The discrepancy between the predicted linear and nonlinear responses is attributed to the effects of the nonlinear rib crushing load, and the parameter which controls this rib collapse failure mode is shown to be the rib thickness. The rib collapse failure mode may be avoided by increasing the rib thickness above the value obtained from the (linear analysis based) optimizer. It is concluded that it would be necessary to include geometric nonlinearities in the design optimization process if the true optimum in this case were to be found.

  9. Non-Poissonian Distribution of Tsunami Waiting Times

    NASA Astrophysics Data System (ADS)

    Geist, E. L.; Parsons, T.

    2007-12-01

    Analysis of the global tsunami catalog indicates that tsunami waiting times deviate from an exponential distribution one would expect from a Poisson process. Empirical density distributions of tsunami waiting times were determined using both global tsunami origin times and tsunami arrival times at a particular site with a sufficient catalog: Hilo, Hawai'i. Most sources for the tsunamis in the catalog are earthquakes; other sources include landslides and volcanogenic processes. Both datasets indicate an over-abundance of short waiting times in comparison to an exponential distribution. Two types of probability models are investigated to explain this observation. Model (1) is a universal scaling law that describes long-term clustering of sources with a gamma distribution. The shape parameter (γ) for the global tsunami distribution is similar to that of the global earthquake catalog γ=0.63-0.67 [Corral, 2004]. For the Hilo catalog, γ is slightly greater (0.75-0.82) and closer to an exponential distribution. This is explained by the fact that tsunamis from smaller triggered earthquakes or landslides are less likely to be recorded at a far-field station such as Hilo in comparison to the global catalog, which includes a greater proportion of local tsunamis. Model (2) is based on two distributions derived from Omori's law for the temporal decay of triggered sources (aftershocks). The first is the ETAS distribution derived by Saichev and Sornette [2007], which is shown to fit the distribution of observed tsunami waiting times. The second is a simpler two-parameter distribution that is the exponential distribution augmented by a linear decay in aftershocks multiplied by a time constant Ta. Examination of the sources associated with short tsunami waiting times indicate that triggered events include both earthquake and landslide tsunamis that begin in the vicinity of the primary source. Triggered seismogenic tsunamis do not necessarily originate from the same fault zone, however. For example, subduction-thrust and outer-rise earthquake pairs are evident, such as the November 2006 and January 2007 Kuril Islands tsunamigenic pair. Because of variations in tsunami source parameters, such as water depth above the source, triggered tsunami events with short waiting times are not systematically smaller than the primary tsunami.

  10. A systematic review of visual processing and associated treatments in body dysmorphic disorder.

    PubMed

    Beilharz, F; Castle, D J; Grace, S; Rossell, S L

    2017-07-01

    Recent advances in body dysmorphic disorder (BDD) have explored abnormal visual processing, yet it is unclear how this relates to treatment. The aim of this study was to summarize our current understanding of visual processing in BDD and review associated treatments. The literature was collected through PsycInfo and PubMed. Visual processing articles were included if written in English after 1970, had a specific BDD group compared to healthy controls and were not case studies. Due to the lack of research regarding treatments associated with visual processing, case studies were included. A number of visual processing abnormalities are present in BDD, including face recognition, emotion identification, aesthetics, object recognition and gestalt processing. Differences to healthy controls include a dominance of detailed local processing over global processing and associated changes in brain activation in visual regions. Perceptual mirror retraining and some forms of self-exposure have demonstrated improved treatment outcomes, but have not been examined in isolation from broader treatments. Despite these abnormalities in perception, particularly concerning face and emotion recognition, few BDD treatments attempt to specifically remediate this. The development of a novel visual training programme which addresses these widespread abnormalities may provide an effective treatment modality. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Priming global and local processing of composite faces: revisiting the processing-bias effect on face perception.

    PubMed

    Gao, Zaifeng; Flevaris, Anastasia V; Robertson, Lynn C; Bentin, Shlomo

    2011-07-01

    We used the composite-face illusion and Navon stimuli to determine the consequences of priming local or global processing on subsequent face recognition. The composite-face illusion reflects the difficulty of ignoring the task-irrelevant half-face while attending the task-relevant half if the half-faces in the composite are aligned. On each trial, participants first matched two Navon stimuli, attending to either the global or the local level, and then matched the upper halves of two composite faces presented sequentially. Global processing of Navon stimuli increased the sensitivity to incongruence between the upper and the lower halves of the composite face, relative to a baseline in which the composite faces were not primed. Local processing of Navon stimuli did not influence the sensitivity to incongruence. Although incongruence induced a bias toward different responses, this bias was not modulated by priming. We conclude that global processing of Navon stimuli augments holistic processing of the face.

  12. The Global in Global Health is Not a Given

    PubMed Central

    Mason, Paul H.; Kerridge, Ian; Lipworth, Wendy

    2017-01-01

    The process of globalization is commonly espoused as a means for promoting global health. Efforts to “go global” can, however, easily go awry as a result of lack of attention to local social, economic, and political contexts and/or as a result of commercial and political imperatives that allow local populations to be exploited. Critical analysis of the processes of globalization is necessary to better understand the local particularities of global projects and confront challenges more transparently. We illustrate the potential adverse impacts of globalization in the global health setting, through examination of international tuberculosis control, global mental health, and the establishment of transnational biobank networks. PMID:28138044

  13. Longitudinal Variations of Low-Latitude Ionospheric Irregularities during the 2015 St. Patrick's Day Storm

    NASA Astrophysics Data System (ADS)

    Pi, X.; Vergados, P.

    2017-12-01

    GPS data from more than 2000 globally distributed ground-based stations are processed to generate Global Map of Ionospheric Irregularities and Scintillation (GMIIS) at 5-minite cadence for the 2015 St. Patrick's Day Storm. The time sequence of GMIIS provides global snapshots of evolving ionospheric irregularities that are helpful in investigations of small-scale ionospheric perturbations globally. Such data from selected stations at longitudes distributed around the globe are also analyzed to investigate longitudinal variations of low-latitude ionospheric irregularities (LLII) during the storm. Prior to the storm day, The GPS data show typical seasonal (March equinox) activities of LLII during evening hours in different longitude regions, i.e., active in American through Asian longitudes but relatively inactive in the Pacific sector. The data also reveal dramatic changes in LLII during the storm main phase (17 March 2015) and recovery phase (18-19 March 2015). While remaining inactive in the Pacific region, LLII have gone through complicated variations in the longitude regions of high scintillation season. The variations include active, weakened or suppressed, or post-midnight triggering during the storm main phase and recovery phase depending on specific longitude. To understand possible responsible causes of these variations in different longitudes, the Global Assimilative Ionospheric Model (GAIM) is used to reproduce ambient ionospheric state and its disturbances. For this storm study, GAIM assimilates GPS data from about 650 globally distributed stations and from spaceborne receivers onboard the COSMIC satellites. The global assimilative modeling enables us to investigate the changes of the equatorial ionospheric anomaly (EIA) and corresponding ionospheric dynamical processes in the concerned longitudes. This presentation will combine pictures of small- and large-scale ionospheric perturbations and attempt to obtain insight into mechanisms that drive LLII changes during the major storm.

  14. A human-driven decline in global burned area

    NASA Astrophysics Data System (ADS)

    Andela, N.; Morton, D. C.; Chen, Y.; van der Werf, G.; Giglio, L.; Kasibhatla, P. S.; Randerson, J. T.

    2016-12-01

    Fire is an important and dynamic ecosystem process that influences many aspects of the global Earth system. Here, we used several different satellite datasets to assess trends in global burned area during 1998 to 2014. Global burned area decreased by about 21.6 ± 8.5% over the period from 1998-2014, with large regional declines observed in savanna and grassland ecosystems in northern Africa, Eurasia, and South America. The decrease in burned area remained robust after removing the influence of climate (16.0 ± 6.0%), implicating human activity as a likely driver. To further investigate the mechanisms contributing to regional and global trends, we conducted several kinds of analysis, including separation of burned area into ignition and fire size components and geospatial analysis of fire trends in relationship with demographic and land use variables. We found that fire number was a more important factor contributing to burned area trends than fire size, suggesting a reduction in the use of fire for management purposes. Concurrent decreases in fire size also contributed to the trend outside of North and South America, suggesting a role for greater landscape fragmentation. From our geospatial analysis, we developed a conceptual model that incorporates a range of drivers for human-driven changes in biomass burning that can be used to guide global fire models, currently unable to reproduce these large scale recent trends. Patterns of agricultural expansion and land use intensification are likely to further contribute to declining burned area trends in future decades, with important consequences for Earth system processes mediated by surface albedo, greenhouse gas emissions, and aerosols. Our results also highlight the vulnerability of savannas and grassland to land use changes with unprecedented global scale consequences for vegetation structure and the carbon cycle.

  15. Phasic alertness enhances processing of face and non-face stimuli in congenital prosopagnosia.

    PubMed

    Tanzer, Michal; Weinbach, Noam; Mardo, Elite; Henik, Avishai; Avidan, Galia

    2016-08-01

    Congenital prosopagnosia (CP) is a severe face processing impairment that occurs in the absence of any obvious brain damage and has often been associated with a more general deficit in deriving holistic relations between facial features or even between non-face shape dimensions. Here we further characterized this deficit and examined a potential way to ameliorate it. To this end we manipulated phasic alertness using alerting cues previously shown to modulate attention and enhance global processing of visual stimuli in normal observers. Specifically, we first examined whether individuals with CP, similarly to controls, would show greater global processing when exposed to an alerting cue in the context of a non-facial task (Navon global/local task). We then explored the effect of an alerting cue on face processing (upright/inverted face discrimination). Confirming previous findings, in the absence of alerting cues, controls showed a typical global bias in the Navon task and an inversion effect indexing holistic processing in the upright/inverted task, while CP failed to show these effects. Critically, when alerting cues preceded the experimental trials, both groups showed enhanced global interference and a larger inversion effect. These results suggest that phasic alertness may modulate visual processing and consequently, affect global/holistic perception. Hence, these findings further reinforce the notion that global/holistic processing may serve as a possible mechanism underlying the face processing deficit in CP. Moreover, they imply a possible route for enhancing face processing in individuals with CP and thus shed new light on potential amelioration of this disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Process for Mapping Global Health Competencies in Undergraduate and Graduate Nursing Curricula.

    PubMed

    Dawson, Martha; Gakumo, C Ann; Phillips, Jennan; Wilson, Lynda

    2016-01-01

    Determining the extent to which existing nursing curricula prepare students to address global health issues is a critical step toward ensuring competence to practice in an increasingly globalized world. This article describes the process used by nursing faculty at a public university in the southern United States to assess the extent to which global health competencies for nurses were being addressed across nursing programs. Steps used and lessons learned throughout this process are discussed.

  17. Application of the analytic hierarchy process in the performance measurement of colorectal cancer care for the design of a pay-for-performance program in Taiwan.

    PubMed

    Chung, Kuo-Piao; Chen, Li-Ju; Chang, Yao-Jen; Chang, Yun-Jau; Lai, Mei-Shu

    2013-02-01

    To prioritize performance measures for colorectal cancer care to facilitate the implementation of a pay-for-performance (PFP) system. Questionnaires survey. Medical hospitals in Taiwan. Sixty-six medical doctors from 5 November 2009 to 10 December 2009. Analytic hierarchy process (AHP) technique. Main outcome measure(s) Performance measures (two pre-treatment, six treatment related and three monitoring related) were used. Forty-eight doctors responded and returned questionnaires (response rate 72.7%) with surgeons and physicians contributing equally. The most important measure was the proportion of colorectal patients who had pre-operative examinations that included chest X-ray and abdominal ultrasound, computed tomography or MRI (global priority: 0.144), followed by the proportion of stages I-III colorectal cancer patients who had undergone a wide surgical resection documented as 'negative margin' (global priority: 0.133) and the proportion of colorectal cancer patients who had undergone surgery with a pathology report that included information on tumor size and node differentiation (global priority: 0.116). Most participants considered that the best interval for the renewal indicators was 3-5 years (43.75%) followed by 5-10 years (27.08%). To design a PFP program, the AHP method is a useful technique to prioritize performance measures, especially in a highly specialized domain such as colorectal cancer care.

  18. A Global Observatory of Lake Water Quality

    NASA Astrophysics Data System (ADS)

    Tyler, Andrew N.; Hunter, Peter D.; Spyrakos, Evangelos; Neil, Claire; Simis, Stephen; Groom, Steve; Merchant, Chris J.; Miller, Claire A.; O'Donnell, Ruth; Scott, E. Marian

    2017-04-01

    Our planet's surface waters are a fundamental resource encompassing a broad range of ecosystems that are core to global biogeochemical cycling, biodiversity and food and energy security. Despite this, these same waters are impacted by multiple natural and anthropogenic pressures and drivers of environmental change. The complex interaction between physical, chemical and biological processes in surface waters poses significant challenges for in situ monitoring and assessment and this often limits our ability to adequately capture the dynamics of aquatic systems and our understanding of their status, functioning and response to pressures. Recent developments in the availability of satellite platforms for Earth observation (including ESA's Copernicus Programme) offers an unprecedented opportunity to deliver measures of water quality at a global scale. The UK NERC-funded GloboLakes project is a five-year research programme investigating the state of lakes and their response to climatic and other environmental drivers of change through the realization of a near-real time satellite based observatory (Sentinel-3) and archive data processing (MERIS, SeaWiFS) to produce a 20-year time-series of observed ecological parameters and lake temperature for more than 1000 lakes globally. However, the diverse and complex optical properties of lakes mean that algorithm performance often varies markedly between different water types. The GloboLakes project is overcoming this challenge by developing a processing chain whereby algorithms are dynamically selected according to the optical properties of the lake under observation. The development and validation of the GloboLakes processing chain has been supported by access to extensive in situ data from more than thirty partners around the world that are now held in the LIMNADES community-owned data repository developed under the auspices of GloboLakes. This approach has resulted in a step-change in our ability to produce regional and global water quality products for optically-complex waters complete with greatly improved uncertainty estimates. The value of these data and the future scientific opportunities they provide will be illustrated with examples of how it can be used to improve our understanding of the impact of global environmental change on inland, transitional and near-shore coastal waters.

  19. Benchmark Comparison of Dual- and Quad-Core Processor Linux Clusters with Two Global Climate Modeling Workloads

    NASA Technical Reports Server (NTRS)

    McGalliard, James

    2008-01-01

    This viewgraph presentation details the science and systems environments that NASA High End computing program serves. Included is a discussion of the workload that is involved in the processing for the Global Climate Modeling. The Goddard Earth Observing System Model, Version 5 (GEOS-5) is a system of models integrated using the Earth System Modeling Framework (ESMF). The GEOS-5 system was used for the Benchmark tests, and the results of the tests are shown and discussed. Tests were also run for the Cubed Sphere system, results for these test are also shown.

  20. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    USGS Publications Warehouse

    Hammarstrom, Jane M.; Robinson, Gilpin R.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    This report includes a brief overview of porphyry copper deposits in Mexico, a description of the assessment process used, a summary of results, and appendixes. Appendixes A through K contain summary information for each tract, as follows: location, the geologic feature assessed, the rationale for tract delineation, tables and descriptions of known deposits and significant prospects, exploration history, model selection, rationale for the estimates, assessment results, and references. The accompanying digital map files (shapefiles) provide permissive tract outlines, assessment results, and data for deposits and prospects in a GIS format (appendix L).

  1. Pre-departure preparation for international clinical work: a handbook.

    PubMed

    Edwardson, Jill; Owens, Lauren; Moran, Dane; Aluri, James; Kironji, Antony; Chen, Chi Chiung Grace

    2015-08-01

    International clinical experiences are increasingly popular among medical students, residents, fellows, and practitioners. Adequate pre-departure training is an integral part of a meaningful, productive, and safe international experience. At Johns Hopkins University School of Medicine, we have developed a pre-departure handbook to assist practitioners in preparing for global health work. The handbook draws from current global health education literature, existing handbooks, and expert experiences, and includes information about logistical and cultural preparations. While a pre-departure handbook cannot serve as a substitute for a comprehensive pre-departure training program, it can be a useful introduction to the pre-departure process.

  2. Test results of the STI GPS time transfer receiver

    NASA Technical Reports Server (NTRS)

    Hall, D. L.; Handlan, J.; Wheeler, P.

    1983-01-01

    Global time transfer, or synchronization, between a user clock and USNO UTC time can be performed using the Global Positioning System (GPS), and commercially available time transfer receivers. This paper presents the test results of time transfer using the GPS system and a Stanford Telecommunications, Inc. (STI) Time Transfer System (TTS) Model 502. Tests at the GPS Master Control Site (MCS) in Vandenburg, California and at the United States Naval Observatory (USNO) in Washington, D.C. are described. An overview of GPS, and the STI TTS 502 is presented. A discussion of the time transfer process and test concepts is included.

  3. Fire in the Earth system.

    PubMed

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  4. Biophysical and socio-economic assessments of the coastal zone: The LOICZ approach

    USGS Publications Warehouse

    Talaue-McManus, L.; Smith, S.V.; Buddemeier, R.W.

    2003-01-01

    The Land-Ocean Interactions in the Coastal Zone Project of the International Geosphere-Biosphere Programme focused on quantifying the role of the global coastal zone in the cycling of carbon and nutrients. From 1993 to date, it has developed protocols and tools that allow for site-specific and global assessments of coastal processes and their drivers. Indicators used in coastal assessments include the contribution of population and economic activities to waste load generation, and the resulting coastal system states relative to net production and nitrogen cycling. ?? 2003 Elsevier Science Ltd. All rights reserved.

  5. Fire in the Earth system

    USGS Publications Warehouse

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Carlson, Jean M.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth S.; Doyle, John C.; Harrison, Sandy P.; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Marston, J. Brad; Moritz, Max A.; Prentice, I. Colin; Roos, Christopher I.; Scott, Andrew C.; Swetnam, Thomas W.; van der Werf, Guido R.; Pyne, Stephen

    2009-01-01

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  6. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.

    PubMed

    Obrist, Daniel; Kirk, Jane L; Zhang, Lei; Sunderland, Elsie M; Jiskra, Martin; Selin, Noelle E

    2018-03-01

    We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4-5.3 Gt), terrestrial environments (particularly soils: 250-1000 Gg), and aquatic ecosystems (e.g., oceans: 270-450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg 0 concentrations and Hg II wet deposition in Europe and the US (- 1.5 to - 2.2% per year). Smaller atmospheric Hg 0 declines (- 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized Hg II in the tropical and subtropical free troposphere where deep convection can scavenge these Hg II reservoirs. As a result, up to 50% of total global wet Hg II deposition has been predicted to occur to tropical oceans. Ocean Hg 0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900-4200 Mg/year). Enhanced seawater Hg 0 levels suggest enhanced Hg 0 ocean evasion in the intertropical convergence zone, which may be linked to high Hg II deposition. Estimates of gaseous Hg 0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and most terrestrial environments now are considered net sinks of atmospheric Hg due to substantial Hg uptake by plants. Litterfall deposition by plants is now estimated at 1020-1230 Mg/year globally. Stable isotope analysis and direct flux measurements provide evidence that in many ecosystems Hg 0 deposition via plant inputs dominates, accounting for 57-94% of Hg in soils. Of global aquatic Hg releases, around 50% are estimated to occur in China and India, where Hg drains into the West Pacific and North Indian Oceans. A first inventory of global freshwater Hg suggests that inland freshwater Hg releases may be dominated by artisanal and small-scale gold mining (ASGM; approximately 880 Mg/year), industrial and wastewater releases (220 Mg/year), and terrestrial mobilization (170-300 Mg/year). For pelagic ocean regions, the dominant source of Hg is atmospheric deposition; an exception is the Arctic Ocean, where riverine and coastal erosion is likely the dominant source. Ocean water Hg concentrations in the North Atlantic appear to have declined during the last several decades but have increased since the mid-1980s in the Pacific due to enhanced atmospheric deposition from the Asian continent. Finally, we provide examples of ongoing and anticipated changes in Hg cycling due to emission, climate, and land use changes. It is anticipated that future emissions changes will be strongly dependent on ASGM, as well as energy use scenarios and technology requirements implemented under the Minamata Convention. We predict that land use and climate change impacts on Hg cycling will be large and inherently linked to changes in ecosystem function and global atmospheric and ocean circulations. Our ability to predict multiple and simultaneous changes in future Hg global cycling and human exposure is rapidly developing but requires further enhancement.

  7. Psychosocial factors partially mediate the relationship between mechanical hyperalgesia and self-reported pain.

    PubMed

    Mason, Kayleigh J; O'Neill, Terence W; Lunt, Mark; Jones, Anthony K P; McBeth, John

    2018-01-26

    Amplification of sensory signalling within the nervous system along with psychosocial factors contributes to the variation and severity of knee pain. Quantitative sensory testing (QST) is a non-invasive test battery that assesses sensory perception of thermal, pressure, mechanical and vibration stimuli used in the assessment of pain. Psychosocial factors also have an important role in explaining the occurrence of pain. The aim was to determine whether QST measures were associated with self-reported pain, and whether those associations were mediated by psychosocial factors. Participants with knee pain identified from a population-based cohort completed a tender point count and a reduced QST battery of thermal, mechanical and pressure pain thresholds, temporal summation, mechanical pain sensitivity (MPS), dynamic mechanical allodynia (DMA) and vibration detection threshold performed following the protocol by the German Research Network on Neuropathic Pain. QST assessments were performed at the most painful knee and opposite forearm (if pain-free). Participants were asked to score for their global and knee pain intensities within the past month (range 0-10), and complete questionnaire items investigating anxiety, depression, illness perceptions, pain catastrophising, and physical functioning. QST measures (independent variable) significantly correlated (Spearman's rho) with self-reported pain intensity (dependent variable) were included in structural equation models with psychosocial factors (latent mediators). Seventy-two participants were recruited with 61 participants (36 women; median age 64 years) with complete data included in subsequent analyses. Tender point count was significantly correlated with global pain intensity. DMA at the knee and MPS at the most painful knee and opposite pain-free forearm were significantly correlated with both global pain and knee pain intensities. Psychosocial factors including pain catastrophising sub-scales (rumination and helplessness) and illness perceptions (consequences and concern) were significant partial mediators of the association with global pain intensity when loaded on to a latent mediator for: tender point count [75% total effect; 95% confidence interval (CI) 22%, 100%]; MPS at the knee (49%; 12%, 86%); and DMA at the knee (63%; 5%, 100%). Latent psychosocial factors were also significant partial mediators of the association between pain intensity at the tested knee with MPS at the knee (30%; 2%, 58%), but not for DMA at the knee. Measures of mechanical hyperalgesia at the most painful knee and pain-free opposite forearm were associated with increased knee and global pain indicative of altered central processing. Psychosocial factors were significant partial mediators, highlighting the importance of the central integration of emotional processing in pain perception. Associations between mechanical hyperalgesia at the forearm and knee, psychosocial factors and increased levels of clinical global and knee pain intensity provide evidence of altered central processing as a key mechanism in knee pain, with psychological factors playing a key role in the expression of clinical pain.

  8. Godiva, a European Project for Ozone and Trace Gas Measurements from GOME

    NASA Astrophysics Data System (ADS)

    Goede, A. P. H.; Tanzi, C. P.; Aben, I.; Burrows, J. P.; Weber, M.; Perner, D.; Monks, P. S.; Llewellyn-Jones, D.; Corlett, G. K.; Arlander, D. W.; Platt, U.; Wagner, T.; Pfeilsticker, K.; Taalas, P.; Kelder, H.; Piters, A.

    GODIVA (GOME Data Interpretation, Validation and Application) is a European Commission project aimed at the improvement of GOME (Global Ozone Monitoring Experiment) data products. Existing data products include global ozone, NO2 columns and (ir)radiances. Advanced data products include O3 profiles, BrO, HCHO and OCIO columns. These data are validated by ground-based and balloon borne instruments. Calibration issues are investigated by in-flight monitoring using several complementary calibration sources, as well as an on-ground replica of the GOME instrument. The results will lead to specification of operational processing of the EUMETSAT ozone Satellite Application Facility as well as implementation of the improved and new GOME data products in the NILU database for use in the European THESEO (Third European Stratospheric Experiment on Ozone) campaign of 1999

  9. Global health diplomacy in Iraq: international relations outcomes of multilateral tuberculosis programmes.

    PubMed

    Kevany, Sebastian; Jaf, Payman; Workneh, Nibretie Gobezie; Abu Dalod, Mohammad; Tabena, Mohammed; Rashid, Sara; Al Hilfi, Thamer Kadum Yousif

    2014-01-01

    International development programmes, including global health interventions, have the capacity to make important implicit and explicit benefits to diplomatic and international relations outcomes. Conversely, in the absence of awareness of these implications, such programmes may generate associated threats. Due to heightened international tensions in conflict and post-conflict settings, greater attention to diplomatic outcomes may therefore be necessary. We examine related 'collateral' effects of Global Fund-supported tuberculosis programmes in Iraq. During site visits to Iraq conducted during 2012 and 2013 on behalf of the Global Fund to Fight AIDS, Tuberculosis and Malaria, on-site service delivery evaluations, unstructured interviews with clinical and operational staff, and programme documentary review of Global Fund-supported tuberculosis treatment and care programmes were conducted. During this process, a range of possible external or collateral international relations and diplomatic effects of global health programmes were assessed according to predetermined criteria. A range of positive diplomatic and international relations effects of Global Fund-supported programmes were observed in the Iraq setting. These included (1) geo-strategic accessibility and coverage; (2) provisions for programme sustainability and alignment; (3) contributions to nation-building and peace-keeping initiatives; (4) consistent observation of social, cultural and religious norms in intervention selection; and (5) selection of the most effective and cost-effective tuberculosis treatment and care interventions. Investments in global health programmes have valuable diplomatic, as well as health-related, outcomes, associated with their potential to prevent, mitigate or reverse international tension and hostility in conflict and post-conflict settings, provided that they adhere to appropriate criteria. The associated international presence in such regions may also contribute to peace-keeping efforts. Global health programmes may frequently produce a wider range of 'collateral benefits' that conventional monitoring and evaluation systems should be expanded to assess, in keeping with contemporary efforts to leverage development programmes from a 'global health diplomacy' perspective.

  10. ECHMERIT: A new on-line global mercury-chemistry model

    NASA Astrophysics Data System (ADS)

    Jung, G.; Hedgecock, I. M.; Pirrone, N.

    2009-04-01

    Mercury is a volatile metal, that is of concern because when deposited and transformed to methylmercury accumulates within the food-web. Due to the long lifetime of elemental mercury, which is the dominant fraction of mercury species in the atmosphere, mercury is prone to long-range transport and therefore distributed over the globe, transported and hence deposited even in regions far from anthropogenic emission sources. Mercury is released to the atmosphere from a variety of natural and anthropogenic sources, in elementary and oxidised forms, and as particulate mercury. It is then transported, but also transformed chemically in the gaseous phase, as well as in aqueous phase within cloud and rain droplets. Mercury (particularly its oxidised forms) is removed from the atmosphere though wet and dry deposition processes, a large fraction of deposited mercury is, after chemical or biological reduction, re-emitted to the atmosphere as elementary mercury. To investigate mercury chemistry and transport processes on the global scale, the new, global model ECHMERIT has been developed. ECHMERIT simulates meteorology, transport, deposition, photolysis and chemistry on-line. The general circulation model on which ECHMERIT is based is ECHAM5. Sophisticated chemical modules have been implemented, including gas phase chemistry based on the CBM-Z chemistry mechanism, as well as aqueous phase chemistry, both of which have been adapted to include Hg chemistry and Hg species gas-droplet mass transfer. ECHMERIT uses the fast-J photolysis routine. State-of-the-art procedures simulating wet and dry deposition and emissions were adapted and included in the model as well. An overview of the model structure, development, validation and sensitivity studies is presented.

  11. Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power

    DTIC Science & Technology

    2010-03-05

    However, the case of Iran raises perhaps the most critical question in this decade for strengthening the nuclear nonproliferation regime: How can...enrichment process can take advantage of the slight difference in atomic mass between 235U and 238U. The typical enrichment process requires about 10 lbs of...neutrons but can induce fission in all actinides , including all plutonium isotopes. Therefore, nuclear fuel for a fast reactor must have a higher

  12. The violent interstellar medium

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Snow, T. P., Jr.

    1979-01-01

    Observational evidence for high-velocity and high-temperature interstellar gas is reviewed. The physical processes that characterize this gas are described, including the ionization and emissivity of coronal gas, the behavior and appearance of high-velocity shocks, and interfaces between coronal gas and cooler interstellar gas. Hydrodynamical models for the action of supernova explosions and stellar winds on the interstellar medium are examined, and recent attempts to synthesize all the processes considered into a global model for the interstellar medium are discussed.

  13. Effects of global and local contexts on chord processing: An ERP study.

    PubMed

    Zhang, Jingjing; Zhou, Xuefeng; Chang, Ruohan; Yang, Yufang

    2018-01-31

    In real life, the processing of an incoming event is continuously influenced by prior information at multiple timescales. The present study investigated how harmonic contexts at both local and global levels influence the processing of an incoming chord in an event-related potentials experiment. Chord sequences containing two phrases were presented to musically trained listeners, with the last critical chord either harmonically related or less related to its preceding context at local and/or global levels. ERPs data showed an ERAN-like effect for local context in early time window and a N5-like component for later interaction between the local context and global context. These results suggest that both the local and global contexts influence the processing of an incoming music event, and the local effect happens earlier than the global. Moreover, the interaction between the local context and global context in N5 may suggest that music syntactic integration at local level takes place prior to the integration at global level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor); Bell, Joseph L. (Inventor)

    1996-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprising at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  15. Global Positioning System Synchronized Active Light Autonomous Docking System

    NASA Technical Reports Server (NTRS)

    Howard, Richard (Inventor)

    1994-01-01

    A Global Positioning System Synchronized Active Light Autonomous Docking System (GPSSALADS) for automatically docking a chase vehicle with a target vehicle comprises at least one active light emitting target which is operatively attached to the target vehicle. The target includes a three-dimensional array of concomitantly flashing lights which flash at a controlled common frequency. The GPSSALADS further comprises a visual tracking sensor operatively attached to the chase vehicle for detecting and tracking the target vehicle. Its performance is synchronized with the flash frequency of the lights by a synchronization means which is comprised of first and second internal clocks operatively connected to the active light target and visual tracking sensor, respectively, for providing timing control signals thereto, respectively. The synchronization means further includes first and second Global Positioning System receivers operatively connected to the first and second internal clocks, respectively, for repeatedly providing simultaneous synchronization pulses to the internal clocks, respectively. In addition, the GPSSALADS includes a docking process controller means which is operatively attached to the chase vehicle and is responsive to the visual tracking sensor for producing commands for the guidance and propulsion system of the chase vehicle.

  16. The application of Markov decision process in restaurant delivery robot

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Hu, Zhen; Wang, Ying

    2017-05-01

    As the restaurant delivery robot is often in a dynamic and complex environment, including the chairs inadvertently moved to the channel and customers coming and going. The traditional path planning algorithm is not very ideal. To solve this problem, this paper proposes the Markov dynamic state immediate reward (MDR) path planning algorithm according to the traditional Markov decision process. First of all, it uses MDR to plan a global path, then navigates along this path. When the sensor detects there is no obstructions in front state, increase its immediate state reward value; when the sensor detects there is an obstacle in front, plan a global path that can avoid obstacle with the current position as the new starting point and reduce its state immediate reward value. This continues until the target is reached. When the robot learns for a period of time, it can avoid those places where obstacles are often present when planning the path. By analyzing the simulation experiment, the algorithm has achieved good results in the global path planning under the dynamic environment.

  17. Measuring the impact of final demand on global production system based on Markov process

    NASA Astrophysics Data System (ADS)

    Xing, Lizhi; Guan, Jun; Wu, Shan

    2018-07-01

    Input-output table is a comprehensive and detailed in describing the national economic systems, consisting of supply and demand information among various industrial sectors. The complex network, a theory and method for measuring the structure of complex system, can depict the structural properties of social and economic systems, and reveal the complicated relationships between the inner hierarchies and the external macroeconomic functions. This paper tried to measure the globalization degree of industrial sectors on the global value chain. Firstly, it constructed inter-country input-output network models to reproduce the topological structure of global economic system. Secondly, it regarded the propagation of intermediate goods on the global value chain as Markov process and introduced counting first passage betweenness to quantify the added processing amount when globally final demand stimulates this production system. Thirdly, it analyzed the features of globalization at both global and country-sector level

  18. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    Scenarios have become a standard tool in the portfolio of techniques that scientists and policy-makers use to envision and plan for the future. Defined as plausible, challenging and relevant stories about how the future might unfold that integrate quantitative models with qualitative assessments of social and political trends, scenarios are a central component in assessment processes for a range of global issues, including climate change, biodiversity, agriculture, and energy. Yet, despite their prevalence, systematic analysis of scenarios is in its beginning stages. Fundamental questions remain about both the epistemology and scientific credibility of scenarios and their roles in policymaking and social change. Answers to these questions have the potential to determine the future of scenario analyses. Is scenario analysis moving in the direction of earth system governance informed by global scenarios generated through increasingly complex and comprehensive models integrating socio-economic and earth systems? Or will global environmental scenario analyses lose favour compared to more focused, policy-driven, regionally specific modelling? These questions come at an important time for the climate change issue, given that the scenario community, catalyzed by the Intergovernmental Panel on Climate Change (IPCC), is currently preparing to embark on a new round of scenario development processes aimed at coordinating research and assessment, and informing policy, over the next five to ten years. These and related questions about where next to go with global environmental scenarios animated a workshop held at Brown University (Note1) that brought together leading practitioners and scholars of global environmental change scenarios from research, policy-making, advocacy, and business settings. The workshop aimed to provide an overview of current practices/best practices in scenario production and scenario use across a range of global environmental change arenas. Participants worked to bring the experience generated from over four decades of scenario development in other issue domains, including energy and security, to bear on environmental scenarios, and to bring into dialogue scenario practitioners, both producers and users, with social science scholars. The set of contributions to this focus issue of Environmental Research Letters arose out of this workshop and collectively examines key challenges facing the scenario community, synthesizes lessons, and offers recommendations for new research and practice in this field. One theme that emerged in many of the discussions at the workshop revolved around the distinction between two broad perspectives on the goals of scenario exercises: scenarios as products and scenarios as processes. Most global environmental change scenario exercises are product-oriented; the content of the scenarios developed is the main goal of many participants and those who commission or organize the scenario development process. Typically, what is of most interest are the environmental outcomes produced, how they relate to the various factors driving them, and what the results tell us about the prospects for future environmental change, for impacts, and for mitigation. A product-oriented perspective assumes that once produced, scenario products have lives of their own, divorced from the processes that generated them and able to serve multiple, often unspecified purposes. Thus, it is often assumed that the scenario products can be 'taken up' by a variety of users in a variety of fora. A contrasting scenario approach is process-oriented and self-consciously privileges the process of scenario development as the primary goal, for example as a means to motivate organizational learning, find commonalities across different perspectives, achieve consensus on goals, or come to a shared understanding of challenges. Focusing on scenarios as processes highlights the social contexts in which scenarios are created and used. Process-oriented scenario exercises also generate scenario products, but such products are recognized as meaningful mostly (or only) in the social context in which they were developed. It should be noted that those seeking to understand the functions, implications and utility of scenarios can approach analysis of scenarios and their impacts from either perspective—focusing attention on product outcomes and influence or assessing procedural and contextual dynamics and implications. Papers in this issue examine various aspects of scenario products, scenario processes and their interactions, with specific reference to global environmental change scenarios. Hulme and Dessai (2008) use the product-process distinction as a starting point for developing a framework to evaluate the success of scenario exercises. They identify 'prediction success', 'decision success' and 'learning success' as three evaluation metrics for scenarios, with the first two most relevant to scenario products and the last emphasizing procedural aspects of scenarios. They suggest that viewing scenarios primarily as products implies examining how closely actual outcomes have matched envisioned outcomes, while viewing them primarily as processes suggests evaluating the extent to which scenarios engaged participants and enabled their learning. O'Neill and Nakicenovic (2008) focus on Hulme and Dessai's evaluation metric, learning. Based on a review of six scenario/assessment exercises, they ask if and how scenario products have incorporated comparative assessments of results in order to enable cumulative learning across scenario efforts. The authors conclude that, although participating modelling teams have benefited greatly from the process of scenario activities and applied that learning to other scenario exercises in which they engage, learning from comparative assessments of scenario products has been rather limited; the latter due to the limited time and resources invested in comparative analysis. Pitcher (2009) speaks to a similar audience, namely the emissions scenario communities that are organizing to undertake a new round of scenario development in the lead-up to the IPCC Fifth Assessment Report. His focus is primarily on a set of concerns that need to be addressed if the new set of socio-economic and emissions scenario products are to adequately support climate model runs, mitigation analyses, and impacts, adaptation and vulnerability research. Pitcher flags issues associated with assessment and measurement of economic growth, challenges associated with downscaling long-term, global scenarios to finer geographic and time scales, and possible ways to grapple with probability and uncertainty in scenario analyses. Garb et al (2008) shift focus to the process aspects of scenarios, focusing on how scenarios simultaneously shape and embed their social contexts. They outline and give examples from a research agenda, drawing on concepts and methods from sociology, political science, and science and technology studies, aimed at redressing the growing imbalance between the increasing technical sophistication of the quantitative components of scenarios on the one hand, and the continued simplicity of our understandings of the social origins, linkages, and implications of the narratives to which they are coupled on the other. Focusing on the treatment of equity concerns in the IPCC Special Report on Emissions Scenarios, Baer (2009) offers a concrete example of how particular social assumptions and definitions of equity are built into scenarios which then create particular worldviews about rights and responsibilities. Baer argues that incorporating distributions of income within—and not only between—countries in quantitative scenario exercises makes visible questions regarding the assignment of rights and the distribution of costs and benefits; such equity considerations, he argues, are central to engendering the cooperation necessary to address the climate crisis. For Parson (2008), the product-process distinction serves to highlight the unique characteristics and challenges of scenarios for global environmental change, including their use in large-scale official assessments, basis in biophysical modelling, weak connections to decision-makers, and roles as sites of public controversy. Parson argues that these characteristics of global environmental change scenarios prohibit process-oriented approaches, which rely on pre-identifying intended users and engaging them in the scenario development process. Instead, he proposes ways in which scenario products can be enhanced to support use by multiple, non-participant user communities. Wilkinson and Eidinow (2008) reach a different conclusion. They too identify the particular challenges of grappling with global environmental change. They examine approaches to past scenario efforts and categorize them into two groups that map loosely onto the product-process distinction: 'problem-focused' and 'actor-centric' approaches. They propose that progress in global environmental issues can best be made through a new, third type of approach ('reflexive interventionist or multi-agent based') that would combine elements of problem- and actor-focused approaches, creating scenario processes that can simultaneously support longer-term thinking as well as more immediate actions. Collectively, the papers in this issue range widely across issues associated with contemporary scenario processes and products. We can discern in them the outlines of an important set of suggestions for improving scenario development in the future, including, among others, the following: Focus scenario exercises on more specific questions so that results from multiple models can be more illuminating (O'Neill and Nakicenovic; Garb et al 2008). Enhance scenario transparency so as to enable extensions by users, rather than further expanding representation in global scenarios themselves (Parson 2008). Incorporate relatively simple measures (such as sub-national disaggregation of income distributions and climate change impacts) in order to boost the equity sensitivity of scenarios (Baer 2009). Recognize topics where social science inputs are becoming important for improving modelling and model relevance, such as providing a logic for how societies manage to transition from historical paths to the various future development paths foreseen in the scenarios, or developing measures of well-being which are independent of income levels, and include in global environmental scenario teams more representatives of social science professionals (Pitcher 2009; Garb et al 2008). Invest greater resources in assessing scenario results, and in understanding and overcoming the barriers to carrying out such assessment (Hulme and Dessai 2008; O'Neill and Nakicenovic, 2008). Disaggregate the variety of global change decision makers targeted as audiences for scenarios (Parson 2008; Garb et al 2008). Develop an additional 'reflective interventionist' scenarios approach that involves different epistemologies for active learning in the public interest (Wilkinson and Eidinow 2008). Draw on the extensive toolkit of social science research methods to analyze the social work of scenarios (Garb et al 2008). Create new institutions and scenario activities that can adapt and extend global scenarios to specific, often local or regional decision contexts (Parson 2008). Create fora in which scenario practitioners, modellers, decision-makers, and social scientists of various kinds can discuss the process of scenario construction and use (Garb et al 2008). We do not mean to imply a consensus among the participants in the Brown University workshop or of contributors to this collection of papers. At the same time, we believe that these and other insights and suggestions from these contributions do have a certain coherence, and collectively point to a deepening and reinvigoration of the environmental scenario-modelling enterprise—an enterprise now facing environmental change processes that are emerging as some of the most pressing challenges of our time. Acknowledgements We would like to thank the Global Environment Program at the Watson Institute for International Studies at Brown University and the US Environmental Protection Agency for financially supporting publication of this focus issue. Focus on Global Environmental Scenarios Contents Predicting, deciding, learning: can one evaluate the 'success' of national climate scenarios? Mike Hulme and Suraje Dessai Learning from global emissions scenarios Brian C O'Neill and Nebojsa Nakicenovic Scenarios in society, society in scenarios: toward a social scientific analysis of storyline-driven environmental modeling Yaakov Garb, Simone Pulver and Stacy D VanDeveer Useful global-change scenarios: current issues and challenges E A Parson Evolving practices in environmental scenarios: a new scenario typology Angela Wilkinson and Esther Eidinow Notes Note1 The workshop was held in March 2007, jointly sponsored by the Watson Institute for International Studies at Brown University, the International Institute for Applied Systems Analysis (IIASA) in Austria, and the US National Intelligence Council. See http://www.watsoninstitute.org/ge/scenarios/ for more information.

  19. Systems Factorial Technology provides new insights on global-local information processing in autism spectrum disorders.

    PubMed

    Johnson, Shannon A; Blaha, Leslie M; Houpt, Joseph W; Townsend, James T

    2010-02-01

    Previous studies of global-local processing in autism spectrum disorders (ASDs) have indicated mixed findings, with some evidence of a local processing bias, or preference for detail-level information, and other results suggesting typical global advantage, or preference for the whole or gestalt. Findings resulting from this paradigm have been used to argue for or against a detail focused processing bias in ASDs, and thus have important theoretical implications. We applied Systems Factorial Technology, and the associated Double Factorial Paradigm (both defined in the text), to examine information processing characteristics during a divided attention global-local task in high-functioning individuals with an ASD and typically developing controls. Group data revealed global advantage for both groups, contrary to some current theories of ASDs. Information processing models applied to each participant revealed that task performance, although showing no differences at the group level, was supported by different cognitive mechanisms in ASD participants compared to controls. All control participants demonstrated inhibitory parallel processing and the majority demonstrated a minimum-time stopping rule. In contrast, ASD participants showed exhaustive parallel processing with mild facilitatory interactions between global and local information. Thus our results indicate fundamental differences in the stopping rules and channel dependencies in individuals with an ASD.

  20. Climate Data Guide - Modern Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2)

    NASA Technical Reports Server (NTRS)

    Cullather, Richard; Bosilovich, Michael

    2017-01-01

    The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) is a global atmospheric reanalysis produced by the NASA Global Modeling and Assimilation Office (GMAO). It spans the satellite observing era from 1980 to the present. The goals of MERRA-2 are to provide a regularly-gridded, homogeneous record of the global atmosphere, and to incorporate additional aspects of the climate system including trace gas constituents (stratospheric ozone), and improved land surface representation, and cryospheric processes. MERRA-2 is also the first satellite-era global reanalysis to assimilate space-based observations of aerosols and represent their interactions with other physical processes in the climate system. The inclusion of these additional components are consistent with the overall objectives of an Integrated Earth System Analysis (IESA). MERRA-2 is intended to replace the original MERRA product, and reflects recent advances in atmospheric modeling and data assimilation. Modern hyperspectral radiance and microwave observations, along with GPS-Radio Occultation and NASA ozone datasets are now assimilated in MERRA-2. Much of the structure of the data files remains the same in MERRA-2. While the original MERRA data format was HDF-EOS, the MERRA-2 supplied binary data format is now NetCDF4 (with lossy compression to save space).

  1. Enhanced Oxidation Capacity from Photolytic HOx/NOx Recycling: Implications for CH4 Growth

    NASA Astrophysics Data System (ADS)

    Madronich, S.

    2017-12-01

    Oxidation by OH radicals converts many emitted compounds (CO, CH4, VOCs as well as NOx, SO2, HCFCs, and others) to more soluble forms that can be removed rapidly from the atmosphere, e.g., by deposition. In a chemically stable atmosphere (without runaway concentration growth) the rate of OH production must generally exceed the emission rates of the reduced compounds, but secondary chemistry complicates OH budgets. If emission rates (e.g., E for CH4) increase, OH concentrations can either decrease or increase depending on NOx conditions, causing a non-linear dependence of CH4 concentrations on its emissions, [CH4] Ef where f, the methane feedback factor, is currently estimated in global 3d models to be 1.3-1.4. This feature is robust among models, and can be reproduced in simpler box models with the canonical Ox-HOx-NOx chemistry, in which global OH is increased by NOx emissions and decreased by CO, CH4, and VOC emissions. Scenarios with lower NOx emissions but higher CH4 emissions point to substantially lower global oxidation capacity in the future. Several newly hypothesized processes have attracted attention in recent years, including the photolytic recycling of OH from biogenic VOCs, and the photolysis of particulate nitrates to regenerate NOx. The latter process could be particularly significant in regions far from NOx emissions, where low NOx levels are more efficient at generating O3 and OH. To the extent that these processes do occur, they may provide some buffering of global OH against CH4 variations (f nearer 1), and more generally against anthropogenic perturbations. However, critical measurements from both lab and field are needed to assess the importance of these proposed processes.

  2. Assessing and Synthesizing the Last Decade of Research on the Major Pools and Fluxes of the Carbon Cycle in the US and North America: An Interagency Governmental Perspective

    NASA Astrophysics Data System (ADS)

    Cavallaro, N.; Shrestha, G.; Stover, D. B.; Zhu, Z.; Ombres, E. H.; Deangelo, B.

    2015-12-01

    The 2nd State of the Carbon Cycle Report (SOCCR-2) is focused on US and North American carbon stocks and fluxes in managed and unmanaged systems, including relevant carbon management science perspectives and tools for supporting and informing decisions. SOCCR-2 is inspired by the US Carbon Cycle Science Plan (2011) which emphasizes global scale research on long-lived, carbon-based greenhouse gases, carbon dioxide and methane, and the major pools and fluxes of the global carbon cycle. Accordingly, the questions framing the Plan inform this report's topical roadmap, with a focus on US and North America in the global context: 1) How have natural processes and human actions affected the global carbon cycle on land, in the atmosphere, in the oceans and in the ecosystem interfaces (e.g. coastal, wetlands, urban-rural)? 2) How have socio-economic trends affected the levels of the primary carbon-containing gases, carbon dioxide and methane, in the atmosphere? 3) How have species, ecosystems, natural resources and human systems been impacted by increasing greenhouse gas concentrations, the associated changes in climate, and by carbon management decisions and practices? To address these aspects, SOCCR-2 will encompass the following broad assessment framework: 1) Carbon Cycle at Scales (Global Perspective, North American Perspective, US Perspective, Regional Perspective); 2) Role of carbon in systems (Soils; Water, Oceans, Vegetation; Terrestrial-aquatic Interfaces); 3) Interactions/Disturbance/Impacts from/on the carbon cycle. 4) Carbon Management Science Perspective and Decision Support (measurements, observations and monitoring for research and policy relevant decision-support etc.). In this presentation, the Carbon Cycle Interagency Working Group and the U.S. Global Change Research Program's U.S. Carbon Cycle Science Program Office will highlight the scientific context, strategy, structure, team and production process of the report, which is part of the USGCRP's Sustained National Climate Assessment process.

  3. The Earth’s Population Can Reach 14 Billion in the 23rd Century without Significant Adverse Effects on Survivability

    PubMed Central

    Krapivin, Vladimir F.; Varotsos, Costas A.; Soldatov, Vladimir Yu.

    2017-01-01

    This paper presents the results obtained from the study of the sustainable state between nature and human society on a global scale, focusing on the most critical interactions between the natural and anthropogenic processes. Apart from the conventional global models, the basic tool employed herein is the newly proposed complex model entitled “nature-society system (NSS) model”, through which a reliable modeling of the processes taking place in the global climate-nature-society system (CNSS) is achieved. This universal tool is mainly based on the information technology that allows the adaptive conformance of the parametric and functional space of this model. The structure of this model includes the global biogeochemical cycles, the hydrological cycle, the demographic processes and a simple climate model. In this model, the survivability indicator is used as a criterion for the survival of humanity, which defines a trend in the dynamics of the total biomass of the biosphere, taking into account the trends of the biocomplexity dynamics of the land and hydrosphere ecosystems. It should be stressed that there are no other complex global models comparable to those of the CNSS model developed here. The potential of this global model is demonstrated through specific examples in which the classification of the terrestrial ecosystem is accomplished by separating 30 soil-plant formations for geographic pixels 4° × 5°. In addition, humanity is considered to be represented by three groups of economic development status (high, transition, developing) and the World Ocean is parameterized by three latitude zones (low, middle, high). The modelling results obtained show the dynamics of the CNSS at the beginning of the 23rd century, according to which the world population can reach the level of 14 billion without the occurrence of major negative impacts. PMID:28783136

  4. Quasi-experimental study designs series-paper 12: strengthening global capacity for evidence synthesis of quasi-experimental health systems research.

    PubMed

    Rockers, Peter C; Tugwell, Peter; Grimshaw, Jeremy; Oliver, Sandy; Atun, Rifat; Røttingen, John-Arne; Fretheim, Atle; Ranson, M Kent; Daniels, Karen; Luiza, Vera Lucia; Bärnighausen, Till

    2017-09-01

    Evidence from quasi-experimental studies is often excluded from systematic reviews of health systems research despite the fact that such studies can provide strong causal evidence when well conducted. This article discusses global coordination of efforts to institutionalize the inclusion of causal evidence from quasi-experiments in systematic reviews of health systems research. In particular, we are concerned with identifying opportunities for strengthening capacity at the global and local level for implementing protocols necessary to ensure that reviews that include quasi-experiments are consistently of the highest quality. We first describe the current state of the global infrastructure that facilitates the production of systematic reviews of health systems research. We identify five important types of actors operating within this infrastructure: review authors; synthesis collaborations that facilitate the review process; synthesis interest groups that supplement the work of the larger collaborations; review funders; and end users, including policymakers. Then, we examine opportunities for intervening to build the capacity of each type of actors to support the inclusion of quasi-experiments in reviews. Finally, we suggest practical next steps for proceeding with capacity building efforts. Because of the complexity and relative nascence of the field, we recommend a carefully planned and executed approach to strengthening global capacity for the inclusion of quasi-experimental studies in systematic reviews. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Emotional and Cognitive Self-Regulation following Academic Shame

    ERIC Educational Resources Information Center

    Turner, Jeannine E.; Husman, Jenefer

    2008-01-01

    In the face of shame, students may need to turn the global focus of their failures into more discrete behaviors that they can control. Instructors can facilitate this process by informing students of specific behaviors they can enact to support successful achievement, including study and volitional strategies. Students' use of multiple study and…

  6. Relative Performance of Academic Departments Using DEA with Sensitivity Analysis

    ERIC Educational Resources Information Center

    Tyagi, Preeti; Yadav, Shiv Prasad; Singh, S. P.

    2009-01-01

    The process of liberalization and globalization of Indian economy has brought new opportunities and challenges in all areas of human endeavor including education. Educational institutions have to adopt new strategies to make best use of the opportunities and counter the challenges. One of these challenges is how to assess the performance of…

  7. Teaching to the Test: Climate Change, Militarism, and the Pedagogy of Hopefulness

    ERIC Educational Resources Information Center

    Amster, Randall

    2014-01-01

    Climate change and militarism pose existential threats to human existence, and are linked through a number of related processes including access to resources, patterns of consumption, and the workings of the global economy. As nations increasingly militarize their domestic affairs and international postures alike, such patterns can feed back into…

  8. Modelling of auroral electrodynamical processes: Magnetosphere to mesosphere

    NASA Technical Reports Server (NTRS)

    Chiu, Y. T.; Gorney, D. J.; Kishi, A. M.; Newman, A. L.; Schulz, M.; Walterscheid, R. L.; CORNWALL; Prasad, S. S.

    1982-01-01

    Research conducted on auroral electrodynamic coupling between the magnetosphere and ionosphere-atmosphere in support of the development of a global scale kinetic plasma theory is reviewed. Topics covered include electric potential structure in the evening sector; morning and dayside auroras; auroral plasma formation; electrodynamic coupling with the thermosphere; and auroral electron interaction with the atmosphere.

  9. Battlefield Object Control via Internet Architecture

    DTIC Science & Technology

    2002-01-01

    superiority is the best way to reach the goal of competition superiority. Using information technology (IT) in data processing, including computer hardware... technologies : Global Positioning System (GPS), Geographic Information System (GIS), Battlefield Information Transmission System (BITS), and Intelligent...operational environment. Keywords: C4ISR Systems, Information Superiority, Battlefield Objects, Computer - Aided Prototyping System (CAPS), IP-based

  10. Intercultural and Media Literacy: Global Tendencies in Metacontent of Teacher Education in Latvia

    ERIC Educational Resources Information Center

    Belousa, Inga; Stakle, Alnis

    2010-01-01

    Under the influence of processes of globalisation, higher education in the countries of Europe, including Latvia, has been reshaped, restructured, re-evaluated and reoriented towards the establishment of a European higher education area. New issues have emerged at both the content and metacontent level, the most significant of which are…

  11. Broadening Educational Outcomes: Social Relations, Skills Development, and Employability for Youth

    ERIC Educational Resources Information Center

    Dejaeghere, Joan; Wiger, Nancy Pellowski; Willemsen, Laura Wangsness

    2016-01-01

    This article argues that, if a global development aim is to address educational inequalities, the post-2015 agenda needs to conceptually and practically broaden the focus of learning to include social relations as important processes and outcomes for achieving educational equity. We draw on Sen's capability approach and Bourdieu's forms of capital…

  12. The Jovian Atmospheres

    NASA Technical Reports Server (NTRS)

    Allison, Michael (Editor); Travis, Larry D. (Editor)

    1986-01-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers.

  13. Learning Value at Senior High School Al-Kautsar Lampung for the Formation of Character

    ERIC Educational Resources Information Center

    Anwar, Chairul

    2015-01-01

    Globalization process went very quickly and move brings tremendous impact and implications for life, including educational institutions. Objectively, students in public schools and private are increasingly far deviated from the values of religious and moral values, the brawl between students, pornography and pornographic, played by students, abuse…

  14. Current Trends, Challenges and Prospects of Student Mobility in the African Higher Education Landscape

    ERIC Educational Resources Information Center

    Woldegiorgis, Emnet Tadesse; Doevenspeck, Martin

    2015-01-01

    Since the 1990s, the development in the international dimension of higher education including student/scholar mobility, regional and international research networks and initiatives have brought new opportunities for African higher education to be incorporated in the global knowledge production and circulation processes. One of the instruments of…

  15. Embedding Marketing in International Campus Development: Lessons from UK Universities

    ERIC Educational Resources Information Center

    Lewis, Vicky

    2016-01-01

    This paper provides recommendations for embedding a market- and marketing-informed approach within the development process for a new international campus. It includes a brief outline of the current global profile of international campuses (as one form of transnational education) before highlighting the role of marketing at key stages of campus…

  16. Direct photon production and PDF fits reloaded

    DOE PAGES

    Campbell, John M.; Rojo, Juan; Slade, Emma; ...

    2018-06-09

    Direct photon production in hadronic collisions provides a handle on the gluon PDF by means of the QCD Compton scattering process. In this work we revisit the impact of direct photon production on a global PDF analysis, motivated by the recent availability of the next-to-next-to-leading (NNLO) calculation for this process. We demonstrate that the inclusion of NNLO QCD and leading-logarithmic electroweak corrections leads to a good quantitative agreement with the ATLAS measurements at 8 and 13 TeV, except for the most forward rapidity region in the former case. By including the ATLAS 8 TeV direct photon production data in themore » NNPDF3.1 NNLO global analysis, we assess its impact on the medium-x gluon. We also study the constraining power of the direct photon production measurements on PDF fits based on different datasets, in particular on the NNPDF3.1 no-LHC and collider-only fits. Here, we also present updated NNLO theoretical predictions for direct photon production at 13 TeV that include the constraints from the 8 TeV measurements.« less

  17. Direct photon production and PDF fits reloaded

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Rojo, Juan; Slade, Emma

    Direct photon production in hadronic collisions provides a handle on the gluon PDF by means of the QCD Compton scattering process. In this work we revisit the impact of direct photon production on a global PDF analysis, motivated by the recent availability of the next-to-next-to-leading (NNLO) calculation for this process. We demonstrate that the inclusion of NNLO QCD and leading-logarithmic electroweak corrections leads to a good quantitative agreement with the ATLAS measurements at 8 and 13 TeV, except for the most forward rapidity region in the former case. By including the ATLAS 8 TeV direct photon production data in themore » NNPDF3.1 NNLO global analysis, we assess its impact on the medium-x gluon. We also study the constraining power of the direct photon production measurements on PDF fits based on different datasets, in particular on the NNPDF3.1 no-LHC and collider-only fits. Here, we also present updated NNLO theoretical predictions for direct photon production at 13 TeV that include the constraints from the 8 TeV measurements.« less

  18. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity

    PubMed Central

    Edgar, Graham J.; Alexander, Timothy J.; Lefcheck, Jonathan S.; Bates, Amanda E.; Kininmonth, Stuart J.; Thomson, Russell J.; Duffy, J. Emmett; Costello, Mark J.; Stuart-Smith, Rick D.

    2017-01-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and −15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas. PMID:29057321

  19. CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis

    NASA Astrophysics Data System (ADS)

    Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Winter, Jan; Xie, Keping; Yuan, C.-P.

    2018-02-01

    We investigate the possibility of a (sizable) nonperturbative contribution to the charm parton distribution function (PDF) in a nucleon, theoretical issues arising in its interpretation, and its potential impact on LHC scattering processes. The "fitted charm" PDF obtained in various QCD analyses contains a process-dependent component that is partly traced to power-suppressed radiative contributions in DIS and is generally different at the LHC. We discuss separation of the universal component of the nonperturbative charm from the rest of the radiative contributions and estimate its magnitude in the CT14 global QCD analysis at the next-to-next-to leading order in the QCD coupling strength, including the latest experimental data from HERA and the Large Hadron Collider. Models for the nonperturbative charm PDF are examined as a function of the charm quark mass and other parameters. The prospects for testing these models in the associated production of a Z boson and a charm jet at the LHC are studied under realistic assumptions, including effects of the final-state parton showering.

  20. Global metabolic profiling procedures for urine using UPLC-MS.

    PubMed

    Want, Elizabeth J; Wilson, Ian D; Gika, Helen; Theodoridis, Georgios; Plumb, Robert S; Shockcor, John; Holmes, Elaine; Nicholson, Jeremy K

    2010-06-01

    The production of 'global' metabolite profiles involves measuring low molecular-weight metabolites (<1 kDa) in complex biofluids/tissues to study perturbations in response to physiological challenges, toxic insults or disease processes. Information-rich analytical platforms, such as mass spectrometry (MS), are needed. Here we describe the application of ultra-performance liquid chromatography-MS (UPLC-MS) to urinary metabolite profiling, including sample preparation, stability/storage and the selection of chromatographic conditions that balance metabolome coverage, chromatographic resolution and throughput. We discuss quality control and metabolite identification, as well as provide details of multivariate data analysis approaches for analyzing such MS data. Using this protocol, the analysis of a sample set in 96-well plate format, would take ca. 30 h, including 1 h for system setup, 1-2 h for sample preparation, 24 h for UPLC-MS analysis and 1-2 h for initial data processing. The use of UPLC-MS for metabolic profiling in this way is not faster than the conventional HPLC-based methods but, because of improved chromatographic performance, provides superior metabolome coverage.

  1. Spatial Patterns in the Efficiency of the Biological Pump: What Controls Export Ratios at the Global Scale?

    NASA Astrophysics Data System (ADS)

    Moore, J. K.

    2016-02-01

    The efficiency of the biological pump is influenced by complex interactions between chemical, biological, and physical processes. The efficiency of export out of surface waters and down through the water column to the deep ocean has been linked to a number of factors including biota community composition, production of mineral ballast components, physical aggregation and disaggregation processes, and ocean oxygen concentrations. I will examine spatial patterns in the export ratio and the efficiency of the biological pump at the global scale using the Community Earth System Model (CESM). There are strong spatial variations in the export efficiency as simulated by the CESM, which are strongly correlated with new nutrient inputs to the euphotic zone and their impacts on phytoplankton community structure. I will compare CESM simulations that include dynamic, variable export ratios driven by the phytoplankton community structure, with simulations that impose a near-constant export ratio to examine the effects of export efficiency on nutrient and surface chlorophyll distributions. The model predicted export ratios will also be compared with recent satellite-based estimates.

  2. Neural plasticity in amplitude of low frequency fluctuation, cortical hub construction, regional homogeneity resulting from working memory training.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Nakagawa, Seishu; Makoto Miyauchi, Carlos; Sassa, Yuko; Kawashima, Ryuta

    2017-05-03

    Working memory training (WMT) induces changes in cognitive function and various neurological systems. Here, we investigated changes in recently developed resting state functional magnetic resonance imaging measures of global information processing [degree of the cortical hub, which may have a central role in information integration in the brain, degree centrality (DC)], the magnitude of intrinsic brain activity [fractional amplitude of low frequency fluctuation (fALFF)], and local connectivity (regional homogeneity) in young adults, who either underwent WMT or received no intervention for 4 weeks. Compared with no intervention, WMT increased DC in the anatomical cluster, including anterior cingulate cortex (ACC), to the medial prefrontal cortex (mPFC). Furthermore, WMT increased fALFF in the anatomical cluster including the right dorsolateral prefrontal cortex (DLPFC), frontopolar area and mPFC. WMT increased regional homogeneity in the anatomical cluster that spread from the precuneus to posterior cingulate cortex and posterior parietal cortex. These results suggest WMT-induced plasticity in spontaneous brain activity and global and local information processing in areas of the major networks of the brain during rest.

  3. Optimizing Research to Speed Up Availability of Pediatric Antiretroviral Drugs and Formulations.

    PubMed

    Penazzato, Martina; Gnanashanmugam, Devasena; Rojo, Pablo; Lallemant, Marc; Lewis, Linda L; Rocchi, Francesca; Saint Raymond, Agnes; Ford, Nathan; Hazra, Rohan; Giaquinto, Carlo; Belew, Yodit; Gibb, Diana M; Abrams, Elaine J

    2017-06-01

    Globally 1.8 million children are living with human immunodeficiency virus (HIV), yet only 51% of those eligible actually start treatment. Research and development (R&D) for pediatric antiretrovirals (ARVs) is a lengthy process and lags considerably behind drug development in adults. Providing safe, effective, and well-tolerated drugs for children remains critical to ensuring scale-up globally. We review current approaches to R&D for pediatric ARVs and suggest innovations to enable simplified, faster, and more comprehensive strategies to develop optimal formulations. Several approaches could be adopted, including focusing on a limited number of prioritized formulations and strengthening existing partnerships to ensure that pediatric investigation plans are developed early in the drug development process. Simplified and more efficient mechanisms to undertake R&D need to be put in place, and financing mechanisms must be made more sustainable. Lessons learned from HIV should be shared to support progress in developing pediatric formulations for other diseases, including tuberculosis and viral hepatitis. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  4. Direct photon production and PDF fits reloaded

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Rojo, Juan; Slade, Emma

    2018-02-08

    Direct photon production in hadronic collisions provides a handle on the gluon PDF by means of the QCD Compton scattering process. In this work we revisit the impact of direct photon production on a global PDF analysis, motivated by the recent availability of the next-to-next-to-leading (NNLO) calculation for this process. We demonstrate that the inclusion of NNLO QCD and leading-logarithmic electroweak corrections leads to a good quantitative agreement with the ATLAS measurements at 8 TeV and 13 TeV, except for the most forward rapidity region in the former case. By including the ATLAS 8 TeV direct photon production data inmore » the NNPDF3.1 NNLO global analysis, we assess its impact on the medium-x gluon. We also study the constraining power of the direct photon production measurements on PDF fits based on different datasets, in particular on the NNPDF3.1 no-LHC and collider-only fits. We also present updated NNLO theoretical predictions for direct photon production at 13 TeV that include the constraints from the 8 TeV measurements.« less

  5. Abundance and local-scale processes contribute to multi-phyla gradients in global marine diversity.

    PubMed

    Edgar, Graham J; Alexander, Timothy J; Lefcheck, Jonathan S; Bates, Amanda E; Kininmonth, Stuart J; Thomson, Russell J; Duffy, J Emmett; Costello, Mark J; Stuart-Smith, Rick D

    2017-10-01

    Among the most enduring ecological challenges is an integrated theory explaining the latitudinal biodiversity gradient, including discrepancies observed at different spatial scales. Analysis of Reef Life Survey data for 4127 marine species at 2406 coral and rocky sites worldwide confirms that the total ecoregion richness peaks in low latitudes, near +15°N and -15°S. However, although richness at survey sites is maximal near the equator for vertebrates, it peaks at high latitudes for large mobile invertebrates. Site richness for different groups is dependent on abundance, which is in turn correlated with temperature for fishes and nutrients for macroinvertebrates. We suggest that temperature-mediated fish predation and herbivory have constrained mobile macroinvertebrate diversity at the site scale across the tropics. Conversely, at the ecoregion scale, richness responds positively to coral reef area, highlighting potentially huge global biodiversity losses with coral decline. Improved conservation outcomes require management frameworks, informed by hierarchical monitoring, that cover differing site- and regional-scale processes across diverse taxa, including attention to invertebrate species, which appear disproportionately threatened by warming seas.

  6. Global standards and local knowledge building: Upgrading small producers in developing countries

    PubMed Central

    Perez-Aleman, Paola

    2012-01-01

    Local knowledge building is a crucial factor for upgrading small producers and improving their market competitiveness and livelihoods. The rise of global standards affecting food safety and environmental sustainability in agriculture sparks debates on the impact on smallholders in developing countries. This article presents a perspective on the links of international standards to knowledge and institution building for developing the capabilities of small producers. Interacting with global practices, indigenous private and public actors create local institutions to develop capabilities for product and process innovations that contribute to economic development and enhance food security. Local innovation depends on collective strategic efforts through increasing networks among small producers and other organizations, including firms, nongovernmental organizations, and government, that foster knowledge circulation and bring diverse resources and support to build local capabilities. PMID:21670309

  7. Global standards and local knowledge building: upgrading small producers in developing countries.

    PubMed

    Perez-Aleman, Paola

    2012-07-31

    Local knowledge building is a crucial factor for upgrading small producers and improving their market competitiveness and livelihoods. The rise of global standards affecting food safety and environmental sustainability in agriculture sparks debates on the impact on smallholders in developing countries. This article presents a perspective on the links of international standards to knowledge and institution building for developing the capabilities of small producers. Interacting with global practices, indigenous private and public actors create local institutions to develop capabilities for product and process innovations that contribute to economic development and enhance food security. Local innovation depends on collective strategic efforts through increasing networks among small producers and other organizations, including firms, nongovernmental organizations, and government, that foster knowledge circulation and bring diverse resources and support to build local capabilities.

  8. Coupled storm-time magnetosphere-ionosphere-thermosphere simulations including microscopic ionospheric turbulence

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Wiltberger, M. J.; Zhang, B.; Liu, J.; Wang, W.; Dimant, Y. S.; Oppenheim, M. M.; Lyon, J.

    2017-12-01

    During geomagnetic storms the magnetosphere-ionosphere-thermosphere system becomes activated in ways that are unique to disturbed conditions. This leads to emergence of physical feedback loops that provide tighter coupling between the system elements, often operating across disparate spatial and temporal scales. One such process that has recently received renewed interest is the generation of microscopic ionospheric turbulence in the electrojet regions (electrojet turbulence, ET) that results from strong convective electric fields imposed by the solar wind-magnetosphere interaction. ET leads to anomalous electron heating and generation of non-linear Pedersen current - both of which result in significant increases in effective ionospheric conductances. This, in turn, provides strong non-linear feedback on the magnetosphere. Recently, our group has published two studies aiming at a comprehensive analysis of the global effects of this microscopic process on the magnetosphere-ionosphere-thermosphere system. In one study, ET physics was incorporated in the TIEGCM model of the ionosphere-thermosphere. In the other study, ad hoc corrections to the ionospheric conductances based on ET theory were incorporated in the conductance module of the Lyon-Fedder-Mobarry (LFM) global magnetosphere model. In this presentation, we make the final step toward the full coupling of the microscopic ET physics within our global coupled model including LFM, the Rice Convection Model (RCM) and TIEGCM. To this end, ET effects are incorporated in the TIEGCM model and propagate throughout the system via thus modified TIEGCM conductances. The March 17, 2013 geomagnetic storm is used as a testbed for these fully coupled simulations, and the results of the model are compared with various ionospheric and magnetospheric observatories, including DMSP, AMPERE, and Van Allen Probes. Via these comparisons, we investigate, in particular, the ET effects on the global magnetosphere indicators such as the strength of the ionospheric convection, field-aligned current densities and ring current pressure amplitude and distribution.

  9. Cultural variations in global versus local processing: a developmental perspective.

    PubMed

    Oishi, Shigehiro; Jaswal, Vikram K; Lillard, Angeline S; Mizokawa, Ai; Hitokoto, Hidefumi; Tsutsui, Yoshiro

    2014-12-01

    We conducted 3 studies to explore cultural differences in global versus local processing and their developmental trajectories. In Study 1 (N = 363), we found that Japanese college students were less globally oriented in their processing than American or Argentine participants. We replicated this effect in Study 2 (N = 1,843) using a nationally representative sample of Japanese and American adults ages 20 to 69, and found further that adults in both cultures became more globally oriented with age. In Study 3 (N = 133), we investigated the developmental course of the cultural difference using Japanese and American children, and found it was evident by 4 years of age. Cultural variations in global versus local processing emerge by early childhood, and remain throughout adulthood. At the same time, both Japanese and Americans become increasingly global processors with age. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. A review on vegetation models and applicability to climate simulations at regional scale

    NASA Astrophysics Data System (ADS)

    Myoung, Boksoon; Choi, Yong-Sang; Park, Seon Ki

    2011-11-01

    The lack of accurate representations of biospheric components and their biophysical and biogeochemical processes is a great source of uncertainty in current climate models. The interactions between terrestrial ecosystems and the climate include exchanges not only of energy, water and momentum, but also of carbon and nitrogen. Reliable simulations of these interactions are crucial for predicting the potential impacts of future climate change and anthropogenic intervention on terrestrial ecosystems. In this paper, two biogeographical (Neilson's rule-based model and BIOME), two biogeochemical (BIOME-BGC and PnET-BGC), and three dynamic global vegetation models (Hybrid, LPJ, and MC1) were reviewed and compared in terms of their biophysical and physiological processes. The advantages and limitations of the models were also addressed. Lastly, the applications of the dynamic global vegetation models to regional climate simulations have been discussed.

  11. The Application of Jason-Measurements to Estimate the Global Near Surface Ocean Circulation for Climate Research

    NASA Technical Reports Server (NTRS)

    Niiler, Pearn P.

    2004-01-01

    The scientific objective of this research program were to utilize drifter and satellite sea level data for the determination of time mean and time variable surface currents of the global ocean. To accomplish these tasks has required the processing of drifter data to include a wide variety of different configurations of drifters into a uniform format and to process the along track satellite altimeter data for computing the geostrophic current components normal to the track. These tasks were accomplished, which resulted in an increase of drifter data by about 40% and the development of new algorithms for obtaining satellite derived geostrophic velocity data that was consistent with the drifter observations of geostrophic time-variable currents. The methodologies and the research results using these methodologies were reported in the publications listed in this paper.

  12. The 2nd State of the Carbon Cycle Report (SOCCR-2): Process, Progress and Institutional Context

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Cavallaro, N.; Zhu, Z.; Larson, E. K.; Butler, J. H.

    2017-12-01

    Over 200 scientists and program managers from U.S., Mexican and Canadian government and non-government institutions have been collaborating on SOCCR-2 since 2015. Responding to the U.S. Global Change Research Act (1990) and the U.S. Carbon Cycle Science Plan (2011), this special Sustained National Climate Assessment report covers many of the GCRA mandated sectors such as agriculture, energy, forestry, aquatic systems, coasts, wetlands, atmospheric and human social systems, integrating the scientific uncertainties and analyzing the effects of global change on the carbon cycle and vice versa, including projections for both human- induced and natural changes. This presentation covers the SOCCR-2 process, progress and institutional context, providing a historical perspective on the interagency instruments and mechanisms that have facilitated the last decades of carbon cycle science reflected in SOCCR-2.

  13. Physical Processes for Driving Ionospheric Outflows in Global Simulations

    NASA Technical Reports Server (NTRS)

    Moore, Thomas Earle; Strangeway, Robert J.

    2009-01-01

    We review and assess the importance of processes thought to drive ionospheric outflows, linking them as appropriate to the solar wind and interplanetary magnetic field, and to the spatial and temporal distribution of their magnetospheric internal responses. These begin with the diffuse effects of photoionization and thermal equilibrium of the ionospheric topside, enhancing Jeans' escape, with ambipolar diffusion and acceleration. Auroral outflows begin with dayside reconnexion and resultant field-aligned currents and driven convection. These produce plasmaspheric plumes, collisional heating and wave-particle interactions, centrifugal acceleration, and auroral acceleration by parallel electric fields, including enhanced ambipolar fields from electron heating by precipitating particles. Observations and simulations show that solar wind energy dissipation into the atmosphere is concentrated by the geomagnetic field into auroral regions with an amplification factor of 10-100, enhancing heavy species plasma and gas escape from gravity, and providing more current carrying capacity. Internal plasmas thus enable electromagnetic driving via coupling to the plasma, neutral gas and by extension, the entire body " We assess the Importance of each of these processes in terms of local escape flux production as well as global outflow, and suggest methods for their implementation within multispecies global simulation codes. We complete 'he survey with an assessment of outstanding obstacles to this objective.

  14. Setting research priorities by applying the combined approach matrix.

    PubMed

    Ghaffar, Abdul

    2009-04-01

    Priority setting in health research is a dynamic process. Different organizations and institutes have been working in the field of research priority setting for many years. In 1999 the Global Forum for Health Research presented a research priority setting tool called the Combined Approach Matrix or CAM. Since its development, the CAM has been successfully applied to set research priorities for diseases, conditions and programmes at global, regional and national levels. This paper briefly explains the CAM methodology and how it could be applied in different settings, giving examples and describing challenges encountered in the process of setting research priorities and providing recommendations for further work in this field. The construct and design of the CAM is explained along with different steps needed, including planning and organization of a priority-setting exercise and how it could be applied in different settings. The application of the CAM are described by using three examples. The first concerns setting research priorities for a global programme, the second describes application at the country level and the third setting research priorities for diseases. Effective application of the CAM in different and diverse environments proves its utility as a tool for setting research priorities. Potential challenges encountered in the process of research priority setting are discussed and some recommendations for further work in this field are provided.

  15. Estimation of Atmospheric Methane Surface Fluxes Using a Global 3-D Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Prinn, R.

    2003-12-01

    Accurate determination of atmospheric methane surface fluxes is an important and challenging problem in global biogeochemical cycles. We use inverse modeling to estimate annual, seasonal, and interannual CH4 fluxes between 1996 and 2001. The fluxes include 7 time-varying seasonal (3 wetland, rice, and 3 biomass burning) and 3 steady aseasonal (animals/waste, coal, and gas) global processes. To simulate atmospheric methane, we use the 3-D chemical transport model MATCH driven by NCEP reanalyzed observed winds at a resolution of T42 ( ˜2.8° x 2.8° ) in the horizontal and 28 levels (1000 - 3 mb) in the vertical. By combining existing datasets of individual processes, we construct a reference emissions field that represents our prior guess of the total CH4 surface flux. For the methane sink, we use a prescribed, annually-repeating OH field scaled to fit methyl chloroform observations. MATCH is used to produce both the reference run from the reference emissions, and the time-dependent sensitivities that relate individual emission processes to observations. The observational data include CH4 time-series from ˜15 high-frequency (in-situ) and ˜50 low-frequency (flask) observing sites. Most of the high-frequency data, at a time resolution of 40-60 minutes, have not previously been used in global scale inversions. In the inversion, the high-frequency data generally have greater weight than the weekly flask data because they better define the observational monthly means. The Kalman Filter is used as the optimal inversion technique to solve for emissions between 1996-2001. At each step in the inversion, new monthly observations are utilized and new emissions estimates are produced. The optimized emissions represent deviations from the reference emissions that lead to a better fit to the observations. The seasonal processes are optimized for each month, and contain the methane seasonality and interannual variability. The aseasonal processes, which are less variable, are solved as constant emissions over the entire time period. The Kalman Filter also produces emission uncertainties which quantify the ability of the observing network to constrain different processes. The sensitivity of the inversion to different observing sites and model sampling strategies is also tested. In general, the inversion reduces coal and gas emissions, and increases rice and biomass burning emissions relative to the reference case. Increases in both tropical and northern wetland emissions are found to have dominated the strong atmospheric methane increase in 1998. Northern wetlands are the best constrained processes, while tropical regions are poorly constrained and will require additional observations in the future for significant uncertainty reduction. The results of this study also suggest that interannual varying transport like NCEP and high-frequency measurements should be used when solving for methane emissions at monthly time resolution. Better estimates of global OH fluctuations are also necessary to fully describe the interannual behavior of methane observations.

  16. Reflections on the Process of Bilingual Education in Latin America: A Perspective from Globalization

    ERIC Educational Resources Information Center

    Joya, Magdalena; Cerón, Alejandra

    2013-01-01

    This paper intends to explain how education can be understood as a process that involves the transmission of culture, knowledge, manners and values; meanwhile, globalization implies an evolving process of constructing a global system of languages. In this way, the relationship between the educational and economic systems can become stronger…

  17. Global simulation of the induction heating TSSG process of SiC for the effects of Marangoni convection, free surface deformation and seed rotation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Takuya; Okano, Yasunori; Ujihara, Toru; Dost, Sadik

    2017-07-01

    A global numerical simulation was performed for the induction heating Top-Seeded Solution Growth (TSSG) process of SiC. Analysis included the furnace and growth melt. The effects of interfacial force due to free surface tension gradient, the RF coil-induced electromagnetic body force, buoyancy, melt free surface deformation, and seed rotation were examined. The simulation results showed that the contributions of free surface tension gradient and the electromagnetic body force to the melt flow are significant. Marangoni convection affects the growth process adversely by making the melt flow downward in the region under the seed crystal. This downward flow reduces carbon flux into the seed and consequently lowers growth rate. The effects of free surface deformation and seed rotation, although positive, are not so significant compared with those of free surface tension gradient and the electromagnetic body force. Due to the small size of the melt the contribution of buoyancy is also small.

  18. The effect of sugar and processed food imports on the prevalence of overweight and obesity in 172 countries.

    PubMed

    Lin, Tracy Kuo; Teymourian, Yasmin; Tursini, Maitri Shila

    2018-04-14

    Studies find that economic, political, and social globalization - as well as trade liberalization specifically - influence the prevalence of overweight and obesity in countries through increasing the availability and affordability of unhealthful food. However, what are the mechanisms that connect globalization, trade liberalization, and rising average body mass index (BMI)? We suggest that the various sub-components of globalization interact, leading individuals in countries that experience higher levels of globalization to prefer, import, and consume more imported sugar and processed food products than individuals in countries that experience lower levels of globalization. This study codes the amount of sugar and processed food imports in 172 countries from 1995 to 2010 using the United Nations Comtrade dataset. We employ country-specific fixed effects (FE) models, with robust standard errors, to examine the relationship between sugar and processed foods imports, globalization, and average BMI. To highlight further the relationship between the sugar and processed food import and average BMI, we employ a synthetic control method to calculate a counterfactual average BMI in Fiji. We find that sugar and processed food imports are part of the explanation to increasing average BMI in countries; after controlling for globalization and general imports and exports, sugar and processed food imports have a statistically and substantively significant effect in increasing average BMI. In the case of Fiji, the increased prevalence of obesity is associated with trade agreements and increased imports of sugar and processed food. The counterfactual estimates suggest that sugar and processed food imports are associated with a 0.5 increase in average BMI in Fiji.

  19. Globalization and its methodological discontents: Contextualizing globalization through the study of HIV/AIDS

    PubMed Central

    2011-01-01

    There remains considerable discontent between globalization scholars about how to conceptualize its meaning and in regards to epistemological and methodological questions concerning how we can come to understand how these processes ultimately operate, intersect and transform our lives. This article argues that to better understand what globalization is and how it affects issues such as global health, we must take a differentiating approach, which focuses on how the multiple processes of globalization are encountered and informed by different social groups and with how these encounters are experienced within particular contexts. The article examines the heuristic properties of qualitative field research as a means to help better understand how the intersections of globalization are manifested within particular locations. To do so, the article focuses on three recent case studies conducted on globalization and HIV/AIDS and explores how these cases can help us to understand the contextual permutations involved within the processes of globalization. PMID:21861895

  20. Effects of context and individual differences on the processing of taboo words.

    PubMed

    Christianson, Kiel; Zhou, Peiyun; Palmer, Cassie; Raizen, Adina

    2017-07-01

    Previous studies suggest that taboo words are special in regards to language processing. Findings from the studies have led to the formation of two theories, global resource theory and binding theory, of taboo word processing. The current study investigates how readers process taboo words embedded in sentences during silent reading. In two experiments, measures collected include eye movement data, accuracy and reaction time measures for recalling probe words within the sentences, and individual differences in likelihood of being offended by taboo words. Although certain aspects of the results support both theories, as the likelihood of a person being offended by a taboo word influenced some measures, neither theory sufficiently predicts or describes the effects observed. The results are interpreted as evidence that processing effects ascribed to taboo words are largely, but not completely, attributable to the context in which they are used and the individual attitudes of the people who hear/read them. The results also demonstrate the importance of investigating taboo words in naturalistic language processing paradigms. A revised theory of taboo word processing is proposed that incorporates both global resource theory and binding theory along with the sociolinguistic factors and individual differences that largely drive the effects observed here. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Palm oil mill effluent treatment and CO2 sequestration by using microalgae-sustainable strategies for environmental protection.

    PubMed

    Hariz, Harizah Bajunaid; Takriff, Mohd Sobri

    2017-09-01

    In this era of globalization, various products and technologies are being developed by the industries. While resources and energy are utilized from processes, wastes are being excreted through water streams, air, and ground. Without realizing it, environmental pollutions increase as the country develops. Effective technology is desired to create green factories that are able to overcome these issues. Wastewater is classified as the water coming from domestic or industrial sources. Wastewater treatment includes physical, chemical, and biological treatment processes. Aerobic and anaerobic processes are utilized in biological treatment approach. However, the current biological approaches emit greenhouse gases (GHGs), methane, and carbon dioxide that contribute to global warming. Microalgae can be the alternative to treating wastewater as it is able to consume nutrients from wastewater loading and fix CO 2 as it undergoes photosynthesis. The utilization of microalgae in the system will directly reduce GHG emissions with low operating cost within a short period of time. The aim of this review is to discuss the uses of native microalgae species in palm oil mill effluent (POME) and flue gas remediation. In addition, the discussion on the optimal microalgae cultivation parameter selection is included as this is significant for effective microalgae-based treatment operations.

  2. Global developmental delay and mental retardation--a pediatric perspective.

    PubMed

    Tirosh, Emanuel; Jaffe, Michael

    2011-01-01

    Pediatricians play a leading role in the detection, diagnosis, and management of children with global developmental delay (GDD) and mental retardation (MR). Assessment, investigation, and consultation with the family are the prime responsibility of the developmental pediatrician, in collaboration with a multidisciplinary team. The model used by the developmental pediatrician depends on the community health framework. Significant progress has been recently achieved in identifying underlying etiologies, using a variety of laboratory tests including neuroimaging and genetic and metabolic investigations. Although being used to achieve an acceptable yield, this progress in diagnostic investigations should be associated with proper weighing of the value of each test to the diagnostic process. Optimal utilization of this rapidly expanding knowledge can only be accomplished in the setting of in-depth clinical evaluation, including a thoughtful assessment of the child and family needs. In this article, the literature on the process of clinical evaluation and laboratory work-up of the child with GDD/MR is reviewed, with an emphasis on a multidisciplinary team approach to the child and family needs. An integrated model used by the developmental pediatrician that relates to the process of evaluation and management as well as the consequences of the diagnosis on the child, his/her family, and the community is suggested. Copyright © 2013 Wiley Periodicals, Inc.

  3. Assessing the Impact of Land Use and Land Cover Change on Global Water Resources

    NASA Astrophysics Data System (ADS)

    Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.

    2007-12-01

    Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land use change disrupts the hydrological cycle through increasing the water yield at some places leading to floods while diminishing, or even eliminating the low flow at other places.

  4. Violence Against Women

    PubMed Central

    Fulu, Emma; Miedema, Stephanie

    2015-01-01

    Globalization theories have proliferated over the past two decades. However, global developments have yet to be systematically incorporated into theories around violence against women. This article proposes to add a global level to the existing ecological model framework, popularized by Lori Heise in 1998, to explore the relationships between global processes and experiences of violence against women. Data from the Maldives and Cambodia are used to assess how globalized ideologies, economic development and integration, religious fundamentalisms, and global cultural exchange, as components of a larger globalization process, have affected men and women’s experiences and perceptions of violence against women. PMID:26215287

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, L.; Britt, J.; Birkmire, R.

    ITN Energy Systems, Inc., and Global Solar Energy, Inc., assisted by NREL's PV Manufacturing R&D program, have continued to advance CIGS production technology by developing trajectory-oriented predictive/control models, fault-tolerance control, control platform development, in-situ sensors, and process improvements. Modeling activities included developing physics-based and empirical models for CIGS and sputter-deposition processing, implementing model-based control, and applying predictive models to the construction of new evaporation sources and for control. Model-based control is enabled by implementing reduced or empirical models into a control platform. Reliability improvement activities include implementing preventive maintenance schedules; detecting failed sensors/equipment and reconfiguring to tinue processing; and systematicmore » development of fault prevention and reconfiguration strategies for the full range of CIGS PV production deposition processes. In-situ sensor development activities have resulted in improved control and indicated the potential for enhanced process status monitoring and control of the deposition processes. Substantial process improvements have been made, including significant improvement in CIGS uniformity, thickness control, efficiency, yield, and throughput. In large measure, these gains have been driven by process optimization, which in turn have been enabled by control and reliability improvements due to this PV Manufacturing R&D program.« less

  6. Developing consensus measures for global programs: lessons from the Global Alliance for Chronic Diseases Hypertension research program.

    PubMed

    Riddell, Michaela A; Edwards, Nancy; Thompson, Simon R; Bernabe-Ortiz, Antonio; Praveen, Devarsetty; Johnson, Claire; Kengne, Andre P; Liu, Peter; McCready, Tara; Ng, Eleanor; Nieuwlaat, Robby; Ovbiagele, Bruce; Owolabi, Mayowa; Peiris, David; Thrift, Amanda G; Tobe, Sheldon; Yusoff, Khalid

    2017-03-15

    The imperative to improve global health has prompted transnational research partnerships to investigate common health issues on a larger scale. The Global Alliance for Chronic Diseases (GACD) is an alliance of national research funding agencies. To enhance research funded by GACD members, this study aimed to standardise data collection methods across the 15 GACD hypertension research teams and evaluate the uptake of these standardised measurements. Furthermore we describe concerns and difficulties associated with the data harmonisation process highlighted and debated during annual meetings of the GACD funded investigators. With these concerns and issues in mind, a working group comprising representatives from the 15 studies iteratively identified and proposed a set of common measures for inclusion in each of the teams' data collection plans. One year later all teams were asked which consensus measures had been implemented. Important issues were identified during the data harmonisation process relating to data ownership, sharing methodologies and ethical concerns. Measures were assessed across eight domains; demographic; dietary; clinical and anthropometric; medical history; hypertension knowledge; physical activity; behavioural (smoking and alcohol); and biochemical domains. Identifying validated measures relevant across a variety of settings presented some difficulties. The resulting GACD hypertension data dictionary comprises 67 consensus measures. Of the 14 responding teams, only two teams were including more than 50 consensus variables, five teams were including between 25 and 50 consensus variables and four teams were including between 6 and 24 consensus variables, one team did not provide details of the variables collected and two teams did not include any of the consensus variables as the project had already commenced or the measures were not relevant to their study. Deriving consensus measures across diverse research projects and contexts was challenging. The major barrier to their implementation was related to the time taken to develop and present these measures. Inclusion of consensus measures into future funding announcements would facilitate researchers integrating these measures within application protocols. We suggest that adoption of consensus measures developed here, across the field of hypertension, would help advance the science in this area, allowing for more comparable data sets and generalizable inferences.

  7. 75 FR 11921 - Heritage Aviation, Ltd., Including On-Site Leased Workers From Global Technical Services and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-12

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,924] Heritage Aviation, Ltd., Including On-Site Leased Workers From Global Technical Services and Global, Inc. (Global Employment... from Heritage Aviation, Ltd, including on-site leased workers from Global Technical Services, Grand...

  8. 76 FR 34271 - Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit, Including...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-74,671] Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit, Including Teleworkers Reporting to... Supply Chain, Global Product Life Cycles Management Unit, including teleworkers reporting to Houston...

  9. Sustainable use of phosphorus: a finite resource.

    PubMed

    Scholz, Roland W; Ulrich, Andrea E; Eilittä, Marjatta; Roy, Amit

    2013-09-01

    Phosphorus is an essential element of life and of the modern agricultural system. Today, science, policy, agro-industry and other stakeholder groups are increasingly concerned about the sustainable use of this resource, given the dissipative nature of phosphorus and difficulties in assessing, evaluating, and coping with phosphorus pollution in aquatic and terrestrial systems. We argue that predictions about a forthcoming peak, followed by a quick reduction (i.e., physical phosphate rock scarcity) are unreasoned and stress that access to phosphorus (economic scarcity) is already, and may increasingly become critical, in particular for smallholders farmers in different parts of the world. The paper elaborates on the design, development, goals and cutting-edge contributions of a global transdisciplinary process (i.e. mutual learning between science and society including multiple stakeholders) on the understanding of potential contributions and risks related to the current mode of using phosphorus on multiple scales (Global TraPs). While taking a global and comprehensive view on the whole phosphorus-supply chain, Global TraPs organizes and integrates multiple transdisciplinary case studies to better answer questions which inform sustainable future phosphorus use. Its major goals are to contribute to four issues central to sustainable resource management: i) long-term management of biogeochemical cycles, in particular the challenge of closing the phosphorus cycle, ii) achieving food security, iii) avoiding environmental pollution and iv) sustainability learning on a global level by transdisciplinary processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The Integration of Object Levels and Their Content: A Theory of Global/Local Processing and Related Hemispheric Differences

    ERIC Educational Resources Information Center

    Hubner, Ronald; Volberg, Gregor

    2005-01-01

    This article presents and tests the authors' integration hypothesis of global/local processing, which proposes that at early stages of processing, the identities of global and local units of a hierarchical stimulus are represented separately from information about their respective levels and that, therefore, identity and level information have to…

  11. The International Commission on Geoheritage (ICG) and the Heritage Sites and Collections Subcommission (HSCS): A new global framework for advancing the science and practice of geodiversity conservation

    NASA Astrophysics Data System (ADS)

    Page, Kevin; de Wever, Patrick

    2017-04-01

    The ICG is a new Scientific Commission within IUGS, established at the 35th IGC, Cape Town, South Africa, in August 2016. The ICG was incorporates two pre-existing Task Groups, on Geoheritage (TGG) and the Heritage Stones (HSTG), now transformed into, respectively, the Heritage Sites and Collections Subcommission (HSCS) (http://geoheritage-iugs.mnhn.fr) and the Heritage Stones Subcommission (HSS) (http://globalheritagestone.com/). Although the latter focuses on culturally significant geological heritage resources, its recognition and selection of Global Heritage Stone Resources (GHSR) demonstrates the close symbiosis that exists between the two Subcommissions. The HSTG, however, will focus on those aspects of Geodiversity and Geoheritage associated with natural geological materials and processes, both in-situ (e.g. within 'geosites') and ex-situ in institutional collections - and hence, primarily facets of a natural rather than a cultural heritage. Although the foundations of an appreciation of this aspect of natural heritage conservation go back to at least the late 19th century, it was not until the 1980s that international collaborations began to develop, for instance in Europe, leading to the formation of ProGEO in Europe in 1993, with other groups, often focussed on specific tasks, developing in Africa, Australasia and within IUGS, UNESCO and IUCN. Nevertheless, until the GTG was formed in 2008, there had been no explicitly global focus for all aspects of geological heritage and its sustainable management. The GTG began the process of building a global resource for Geoheritage sites and collections through the establishment of a comprehensive website, including a review of national conservation legislation, links to national geosite inventories (with interactive maps) and the beginnings of an inventory of 'Global Geosites' (a process first begun, abortively, in the 1990s in IUGS). The work of the GTG has confirmed within IUGS the significance of Geoheritage as a fundamental facet of Earth Sciences, crucially linking society to the science, and hence justifying the establishment of a full scientific commission. In parallel, the significance of geological heritage to society has been confirmed by UNESCO's establishment of its Global Geoparks Programme in 2015 and, in the context of the conservation of the natural environment, through IUCN's adoption of a Motion on the Conservation of Geodiversity and Geological Heritage in 2008 and a Recommendation on the Conservation of Moveable Geological Heritage in 2016. The establishment of the ICG and the HSCS is, therefore, timely, as the new structure can provide an umbrella under which diverse national and international organisations and programmes can now meet and build partnerships in areas of common interest - at a global level. Areas of common interest include the development of national and global geosite inventories, the conservation of 'moveable' geological heritage and the conservation of landscapes, geological process and their memory, as 'geomorphosites'. Within these themes, the HSCS aims to promote collaborative activities, working together towards shared goals. The challenge is to ensure that we really can begin to influence policy and practice at a global scale through our new discipline of geoheritage, one which provides the strongest of connections between society and the geosciences.

  12. Incorporating Edge Information into Best Merge Region-Growing Segmentation

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Pasolli, Edoardo

    2014-01-01

    We have previously developed a best merge region-growing approach that integrates nonadjacent region object aggregation with the neighboring region merge process usually employed in region growing segmentation approaches. This approach has been named HSeg, because it provides a hierarchical set of image segmentation results. Up to this point, HSeg considered only global region feature information in the region growing decision process. We present here three new versions of HSeg that include local edge information into the region growing decision process at different levels of rigor. We then compare the effectiveness and processing times of these new versions HSeg with each other and with the original version of HSeg.

  13. 50 years of Global Seismic Observations

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; Butler, R.; Berger, J.; Davis, P.; Derr, J.; Gee, L.; Hutt, C. R.; Leith, W. S.; Park, J. J.

    2007-12-01

    Seismological recordings have been made on Earth for hundreds of years in some form or another, however, global monitoring of earthquakes only began in the 1890's when John Milne created 40 seismic observatories to measure the waves from these events. Shortly after the International Geophysical Year (IGY), a concerted effort was made to establish and maintain a more modern standardized seismic network on the global scale. In the early 1960's, the World-Wide Standardized Seismograph Network (WWSSN) was established through funding from the Advanced Research Projects Agency (ARPA) and was installed and maintained by the USGS's Albuquerque Seismological Laboratory (then a part of the US Coast and Geodetic Survey). This network of identical seismic instruments consisted of 120 stations in 60 countries. Although the network was motivated by nuclear test monitoring, the WWSSN facilitated numerous advances in observational seismology. From the IGY to the present, the network has been upgraded (High-Gain Long-Period Seismograph Network, Seismic Research Observatories, Digital WWSSN, Global Telemetered Seismograph Network, etc.) and expanded (International Deployment of Accelerometers, US National Seismic Network, China Digital Seismograph Network, Joint Seismic Project, etc.), bringing the modern day Global Seismographic Network (GSN) to a current state of approximately 150 stations. The GSN consists of state-of-the-art very broadband seismic transducers, continuous power and communications, and ancillary sensors including geodetic, geomagnetic, microbarographic, meteorological and other related instrumentation. Beyond the GSN, the system of global network observatories includes contributions from other international partners (e.g., GEOSCOPE, GEOFON, MEDNET, F-Net, CTBTO), forming an even larger backbone of permanent seismological observatories as a part of the International Federation of Digital Seismograph Networks. 50 years of seismic network operations have provided valuable data for earth science research. Developments in communications and other technological advances have expanded the role of the GSN in rapid earthquake analysis, tsunami warning, and nuclear test monitoring. With such long-term observations, scientists are now getting a glimpse of Earth structure changes on human time scales, such as the rotation of the inner core, as well as views into climate processes. Continued observations for the next 50 years will enhance our image of the Earth and its processes.

  14. A New Era in Geodesy and Cartography: Implications for Landing Site Operations

    NASA Technical Reports Server (NTRS)

    Duxbury, T. C.

    2001-01-01

    The Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global dataset has ushered in a new era for Mars local and global geodesy and cartography. These data include the global digital terrain model (Digital Terrain Model (DTM) radii), the global digital elevation model (Digital Elevation Model (DEM) elevation with respect to the geoid), and the higher spatial resolution individual MOLA ground tracks. Currently there are about 500,000,000 MOLA points and this number continues to grow as MOLA continues successful operations in orbit about Mars, the combined processing of radiometric X-band Doppler and ranging tracking of MGS together with millions of MOLA orbital crossover points has produced global geodetic and cartographic control having a spatial (latitude/longitude) accuracy of a few meters and a topographic accuracy of less than 1 meter. This means that the position of an individual MOLA point with respect to the center-of-mass of Mars is know to an absolute accuracy of a few meters. The positional accuracy of this point in inertial space over time is controlled by the spin rate uncertainty of Mars which is less than 1 km over 10 years that will be improved significantly with the next landed mission.

  15. Corporate sponsorship of global health research: Questions to promote critical thinking about potential funding relationships.

    PubMed

    Brisbois, Ben W; Cole, Donald C; Davison, Colleen M; Di Ruggiero, Erica; Hanson, Lori; Janes, Craig R; Larson, Charles P; Nixon, Stephanie; Plamondon, Katrina; Stime, Bjorn

    2016-12-27

    Funding options for global health research prominently include grants from corporations, as well as from foundations linked to specific corporations. While such funds can enable urgently-needed research and interventions, they can carry the risk of skewing health research priorities and exacerbating health inequities. With the objective of promoting critical reflection on potential corporate funding options for global health research, we propose a set of three questions developed through an open conference workshop and reflection on experiences of global health researchers and their institutions: 1) Does this funding allow me/us to retain control over research design, methodology and dissemination processes? 2) Does accessing this funding source involve altering my/our research agenda (i.e., what is the impact of this funding source on research priorities)? 3) What are the potential "unintended consequences" of accepting corporate funding, in terms of legitimizing corporations or models of development that are at the root of many global health problems? These questions outline an intentional and cautionary approach to decision-making when corporate funding for global health research is being considered by funding agencies, institutions, researchers and research stakeholders.

  16. Issues related to incorporating northern peatlands into global climate models

    NASA Astrophysics Data System (ADS)

    Frolking, Steve; Roulet, Nigel; Lawrence, David

    Northern peatlands cover ˜3-4 million km2 (˜10% of the land north of 45°N) and contain ˜200-400 Pg carbon (˜10-20% of total global soil carbon), almost entirely as peat (organic soil). Recent developments in global climate models have included incorporation of the terrestrial carbon cycle and representation of several terrestrial ecosystem types and processes in their land surface modules. Peatlands share many general properties with upland, mineral-soil ecosystems, and general ecosystem carbon, water, and energy cycle functions (productivity, decomposition, water infiltration, evapotranspiration, runoff, latent, sensible, and ground heat fluxes). However, northern peatlands also have several unique characteristics that will require some rethinking or revising of land surface algorithms in global climate models. Here we review some of these characteristics, deep organic soils, a significant fraction of bryophyte vegetation, shallow water tables, spatial heterogeneity, anaerobic biogeochemistry, and disturbance regimes, in the context of incorporating them into global climate models. With the incorporation of peatlands, global climate models will be able to simulate the fate of northern peatland carbon under climate change, and estimate the magnitude and strength of any climate system feedbacks associated with the dynamics of this large carbon pool.

  17. Biodiversity, greenhouse gas and economic trade-offs from biochar use: a 20 year model of biochar use in the UK

    NASA Astrophysics Data System (ADS)

    Gathorne-Hardy, A.

    2014-12-01

    Biochar is promoted for its carbon storage and soil amendment properties, but there remains a research gap into wider sustainability implications of biochar use. Without these there is a risk that biochar use could deliver negative unforeseen consequences. Key to biochar sustainability is the feedstock sustainability, which in developed nations can be novel due to the ability to process biomass locally. Using field trial data and primary biodiversity assessments we modelled different sustainability indicators (local GHG balance, global GHG balance, local biodiversity, global biodiversity and local economic return) associated with four different biochar feedstocks (woodlands, hedgerows, Short Rotation Coppice (SRC) and straw) over 20 years for UK arable agriculture. Global measures included Indirect Land Use Change (ILUC). Our results showed that trade-offs are inherent. Local GHG emissions are reduced by use of straw and SRC, and increased through the use of woodlands. In contrast all feedstocks reduced the global GHG emissions. Local biodiversity was increased through use of hedgerows, woodlands, SRC and low fertiliser rates. Global biodiversity was maximised through high fertiliser rates and use of all feedstocks. Critically economic return was maximised through high use of woodland and straw, and substantially reduced when hedgerows or SRC is used as feedstock. The introduction of high (£52 t-1 CO2) and low (£11.44 t-1 CO2) carbon prices were never enough to shift a system between loss and profit. This research demonstrates that the sustainability of biochar varies substantially depending on the scale (local or global) and the breadth of indicators included. Ultimately biochar is designed to have a role in solving global problems, but the decisions determining use will be made locally. Regulation to ensure biochar is used appropriately may be necessary.

  18. Examination of Satellite and Model Reanalysis Precipitation with Climate Oscillations

    NASA Astrophysics Data System (ADS)

    Donato, T. F.; Houser, P. R.

    2016-12-01

    The purpose of this study is to examine the efficacy of satellite and model reanalysis precipitation with climate oscillations. Specifically, we examine and compare the relationship between the Global Precipitation Climate Project (GPCP) with Modern-Era Retrospective Analysis for Research and Application, Version 2 (MERRA-2) in regards to four climate indices: The North Atlantic Oscillation, Southern Oscillation Index, the Southern Annular Mode and Solar Activity. This analysis covers a 35-year observation period from 1980 through 2015. We ask two questions: How is global and regional precipitation changing over the observation period, and how are global and regional variations in precipitation related to global climate variation? We explore and compare global and regional precipitation trends between the two data sets. To do this, we constructed a total of 56 Regions of Interest (ROI). Nineteen of the ROIs were focused on geographic regions including continents, ocean basins, and marginal seas. Twelve ROIs examine hemispheric processes. The remaining 26 regions are derived from spatial-temporal classification analysis of GPCP data over a ten-year period (2001-2010). These regions include the primary wet and dry monsoon regions, regions influenced by western boundary currents, and orography. We investigate and interpret the monthly, seasonal and yearly global and regional response to the selected climate indices. Initial results indicate that no correlation exist between the GPCP data and Merra-2 data. Preliminary qualitative assessment between GCPC and solar activity suggest a possible relationship in intra-annual variability. This work is performed under the State of the Global Water and Energy Cycle (SWEC) project, a NASA-sponsored program in support of NASA's Energy and Water cycle Study (NEWS).

  19. The role of law and governance reform in the global response to non-communicable diseases.

    PubMed

    Magnusson, Roger S; Patterson, David

    2014-06-05

    Addressing non-communicable diseases ("NCDs") and their risk-factors is one of the most powerful ways of improving longevity and healthy life expectancy for the foreseeable future - especially in low- and middle-income countries. This paper reviews the role of law and governance reform in that process. We highlight the need for a comprehensive approach that is grounded in the right to health and addresses three aspects: preventing NCDs and their risk factors, improving access to NCD treatments, and addressing the social impacts of illness. We highlight some of the major impediments to the passage and implementation of laws for the prevention and control of NCDs, and identify important practical steps that governments can take as they consider legal and governance reforms at country level.We review the emerging global architecture for NCDs, and emphasise the need for governance structures to harness the energy of civil society organisations and to create a global movement that influences the policy agenda at the country level. We also argue that the global monitoring framework would be more effective if it included key legal and policy indicators. The paper identifies priorities for technical legal assistance in implementing the WHO Global Action Plan for the Prevention and Control of NCDs 2013-2020. These include high-quality legal resources to assist countries to evaluate reform options, investment in legal capacity building, and global leadership to respond to the likely increase in requests by countries for technical legal assistance. We urge development agencies and other funders to recognise the need for development assistance in these areas. Throughout the paper, we point to global experience in dealing with HIV and draw out some relevant lessons for NCDs.

  20. The role of law and governance reform in the global response to non-communicable diseases

    PubMed Central

    2014-01-01

    Addressing non-communicable diseases (“NCDs”) and their risk-factors is one of the most powerful ways of improving longevity and healthy life expectancy for the foreseeable future – especially in low- and middle-income countries. This paper reviews the role of law and governance reform in that process. We highlight the need for a comprehensive approach that is grounded in the right to health and addresses three aspects: preventing NCDs and their risk factors, improving access to NCD treatments, and addressing the social impacts of illness. We highlight some of the major impediments to the passage and implementation of laws for the prevention and control of NCDs, and identify important practical steps that governments can take as they consider legal and governance reforms at country level. We review the emerging global architecture for NCDs, and emphasise the need for governance structures to harness the energy of civil society organisations and to create a global movement that influences the policy agenda at the country level. We also argue that the global monitoring framework would be more effective if it included key legal and policy indicators. The paper identifies priorities for technical legal assistance in implementing the WHO Global Action Plan for the Prevention and Control of NCDs 2013–2020. These include high-quality legal resources to assist countries to evaluate reform options, investment in legal capacity building, and global leadership to respond to the likely increase in requests by countries for technical legal assistance. We urge development agencies and other funders to recognise the need for development assistance in these areas. Throughout the paper, we point to global experience in dealing with HIV and draw out some relevant lessons for NCDs. PMID:24903332

Top