Chronic inflammation is etiology of extrinsic aging.
Thornfeldt, Carl R
2008-03-01
Skin care regimens using active ingredients that are recommended by physicians who treat mucocutaneous conditions including aging should become more focused on reversing and preventing chronic inflammation. This adjustment of therapeutic and preventive strategies is necessary because chronic inflammation appears strongly linked to many preventable and treatable skin diseases and conditions such as visible skin aging. Mucocutaneous inflammation as the final common pathway of many systemic and mucocutaneous diseases including extrinsic aging has been established at the molecular and cellular levels. The corollary to this strategy includes inhibition of primary activators of mucocutaneous inflammation such as stratum corneum permeability barrier disruption, blocking any pro-inflammatory environmental insult such as ultraviolet radiation, and quenching tissue responses to these insults. This review will present the scientific rationale substantiating the conclusion that chronic inflammation is the common denominator in many mucocutaneous pathophysiologic processes including extrinsic skin aging.
Role of Antioxidants and Natural Products in Inflammation
Fard, Masoumeh Tangestani; Tan, Woan Sean; Gothai, Sivapragasam; Kumar, S. Suresh
2016-01-01
Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases. PMID:27803762
Effects of inflammation on social processes and implications for health.
Moieni, Mona; Eisenberger, Naomi I
2018-05-28
Although at first glance inflammation and social behavior may appear unrelated, research points to an important role for inflammation in shaping social processes. This review summarizes findings in this field, specifically highlighting work that provides support for the idea that inflammation can lead to (1) increases in sensitivity to negative, threatening social experiences and (2) increases in sensitivity to positive, socially rewarding experiences. These diverging sensitivities in response to inflammation may depend on context and be adaptive for recuperation and recovery from illness. This review also discusses the implications of these findings for health and future research, including implications for depression, loneliness, and inflammatory disorders. © 2018 New York Academy of Sciences.
Pain related inflammation analysis using infrared images
NASA Astrophysics Data System (ADS)
Bhowmik, Mrinal Kanti; Bardhan, Shawli; Das, Kakali; Bhattacharjee, Debotosh; Nath, Satyabrata
2016-05-01
Medical Infrared Thermography (MIT) offers a potential non-invasive, non-contact and radiation free imaging modality for assessment of abnormal inflammation having pain in the human body. The assessment of inflammation mainly depends on the emission of heat from the skin surface. Arthritis is a disease of joint damage that generates inflammation in one or more anatomical joints of the body. Osteoarthritis (OA) is the most frequent appearing form of arthritis, and rheumatoid arthritis (RA) is the most threatening form of them. In this study, the inflammatory analysis has been performed on the infrared images of patients suffering from RA and OA. For the analysis, a dataset of 30 bilateral knee thermograms has been captured from the patient of RA and OA by following a thermogram acquisition standard. The thermograms are pre-processed, and areas of interest are extracted for further processing. The investigation of the spread of inflammation is performed along with the statistical analysis of the pre-processed thermograms. The objectives of the study include: i) Generation of a novel thermogram acquisition standard for inflammatory pain disease ii) Analysis of the spread of the inflammation related to RA and OA using K-means clustering. iii) First and second order statistical analysis of pre-processed thermograms. The conclusion reflects that, in most of the cases, RA oriented inflammation affects bilateral knees whereas inflammation related to OA present in the unilateral knee. Also due to the spread of inflammation in OA, contralateral asymmetries are detected through the statistical analysis.
NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases.
Lin, T-H; Pajarinen, J; Lu, L; Nabeshima, A; Cordova, L A; Yao, Z; Goodman, S B
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. © 2017 Elsevier Inc. All rights reserved.
NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases
Lin, T.-h.; Pajarinen, J.; Lu, L.; Nabeshima, A.; Cordova, L.A.; Yao, Z.; Goodman, S.B.
2017-01-01
Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. PMID:28215222
[Inflammatory process in atherogenesis: new facts about old flame].
Vucević, Danijela; Radak, Dorde; Radosavljević, Tatjana; Mladenović, Dusan; Milovanović, Ivan
2012-01-01
INTRODUCTION. Atherosclerosis is a progressive, multifactorial, diffuse, multisystemic, chronic, inflammatory disease, which is manifested by disorders of vascular, immune and metabolic system. Pathogenesis of this disease is not fully understood. Endothelial Dysfunction and Inflammatory Process. Endothelial dysfunction is recognized as the crucial step in atherogenesis. A lot of studies have confirmed the involvement of various mediators of inflammation in initial proatherogenic processes, such as the upregulation of adhesion molecules on endothelial cells, binding of low density lipoproteins to endothelium, activation of macrophages and proliferation of vascular smooth muscle cells. Fatty stain and Inflammatory Process. Fatty stain consists of foam cell accumulation. After foam cell formation, mediators of inflammation initiate a series ofintracellular events that include the induction of inflammatory cytokines. Thus, a vicious circle of inflammation, modification of lipoproteins and further inflammation can be maintained in the artery. Transitory Lesion and Inflammatory Process. In transitory lesion intensive phagocytosis of oxidized low density lipoproteins additionally activates monocytes and macrophages and consequently facilitates and exacerbates the inflammatory response. Fibrotic Plaque and Inflammatory Process. Inflammatory process, matrix-degrading metalloproteinases activity, platelets aggregation and smooth muscle cells proliferation play a central role in development of fibrotic plaque. Complex Lesion and Inflammatory Process. It has been shown that inflammation is closely related to the development of atherosclerotic plaque rupture. The contribution of inflammatory process has become increasingly meaningful in understanding the initiation, progression and clinical manifestations ofatherosclerosis.
Effects of blueberries on inflammation, motor performance and cognitive function
USDA-ARS?s Scientific Manuscript database
Motor and cognitive function decrease with age, to include deficits in balance, coordination, gait, processing speed, executive function, memory, and spatial learning. These functional declines may be caused by long term increases in and susceptibility to oxidative stress and inflammation. Research ...
Pancreatic Cancer, Inflammation and Microbiome
Zambirinis, Constantinos P.; Pushalkar, Smruti; Saxena, Deepak; Miller, George
2014-01-01
Pancreatic cancer is one of the most lethal cancers worldwide. No effective screening methods exist and available treatment modalities do not effectively treat the disease. Inflammatory conditions such as pancreatitis represent a well-known risk for pancreatic cancer development. Yet only in the past two decades has pancreatic cancer been recognized as an inflammation-driven cancer, and the precise mechanisms underlying the pathogenic role of inflammation are beginning to be explored in detail. A substantial amount of preclinical and clinical evidence suggests that bacteria are likely to influence this process by activating immune receptors and perpetuating cancer-associated inflammation. The recent explosion of investigations into the human microbiome have highlighted how perturbations of commensal bacterial populations can promote inflammation and promote disease processes, including carcinogenesis. The elucidation of the interplay between inflammation and microbiome in the context of pancreatic carcinogenesis will provide novel targets for intervention in order to both prevent and treat pancreatic cancer more efficiently. Further studies towards this direction are urgently needed. PMID:24855007
Ratajczak, Mariusz Z; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy
2018-01-01
Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as "sterile inflammation" when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms.
USDA-ARS?s Scientific Manuscript database
Chronic alcohol intake decreases adiponectin and sirtuin 1 (SIRT1) expressions, both of which have been implicated in various biological processes including inflammation, apoptosis and metabolism. We have previously shown that moderate consumption of alcohol aggravates liver inflammation and apoptos...
Hutchinson, James L; Rajagopal, Shalini P; Sales, Kurt J; Jabbour, Henry N
2011-07-01
Inflammatory processes are central to reproductive events including ovulation, menstruation, implantation and labour, while inflammatory dysregulation is a feature of numerous reproductive pathologies. In recent years, there has been much research into the endogenous mechanisms by which inflammatory reactions are terminated and tissue homoeostasis is restored, a process termed resolution. The identification and characterisation of naturally occurring pro-resolution mediators including lipoxins and annexin A1 has prompted a shift in the field of anti-inflammation whereby resolution is now observed as an active process, triggered as part of a normal inflammatory response. This review will address the process of resolution, discuss available evidence for expression of pro-resolution factors in the reproductive tract and explore possible roles for resolution in physiological reproductive processes and associated pathologies.
Autophagy and kidney inflammation
Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu
2017-01-01
ABSTRACT Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases. PMID:28441075
Autophagy and kidney inflammation.
Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu
2017-06-03
Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases.
Bollen, Jessica; Trick, Leanne; Llewellyn, David; Dickens, Chris
2017-03-01
The cognitive neuropsychological model of depression proposes that negative biases in the processing of emotionally salient information have a central role in the development and maintenance of depression. We have conducted a systematic review to determine whether acute experimental inflammation is associated with changes to cognitive and emotional processing that are thought to cause and maintain depression. We identified experimental studies in which healthy individuals were administered an acute inflammatory challenge (bacterial endotoxin/vaccination) and standardised tests of cognitive function were performed. Fourteen references were identified, reporting findings from 12 independent studies on 345 participants. Methodological quality was rated strong or moderate for 11 studies. Acute experimental inflammation was triggered using a variety of agents (including endotoxin from E. coli, S. typhi, S. abortus Equi and Hepatitis B vaccine) and cognition was assessed over hours to months, using cognitive tests of i) attention/executive functioning, ii) memory and iii) social/emotional processing. Studies found mixed evidence that acute experimental inflammation caused changes to attention/executive functioning (2 of 6 studies showed improvements in attention executive function compared to control), changes in memory (3 of 5 studies; improved reaction time: reduced memory for object proximity: poorer immediate and delayed memory) and changes to social/emotional processing (4 of 5 studies; reduced perception of emotions, increased avoidance of punishment/loss experiences, and increased social disconnectedness). Acute experimental inflammation causes negative biases in social and emotional processing that could explain observed associations between inflammation and depression. Copyright © 2017 Elsevier Inc. All rights reserved.
Immunomodulatory Effects of Soybeans and Processed Soy Food Compounds.
Tezuka, Hiroyuki; Imai, Shinjiro
2015-01-01
Inflammation is an immune response against both internal and external antigens in organisms, particularly in mammals, and includes both uncontrolled chronic and low-grade inflammations. Uncontrolled chronic inflammation often leads to severe diseases such as vascular disease, arthritis, cancer, diabete, allergy, and autoimmunity. On the other hand, low-grade inflammation is recognized as a relationship between obesity and risk of metabolic syndrome. Elevated production of pro-inflammatory cytokines and mediators is commonly observed in patients with uncontrolled or low-grade inflammation-associated diseases. Plants have been generated phytochemicals to overcome inflammations and infections through evolution. Phytochemicals belong to alkaloids, polyphenols, flavonoids, coumarins, and terpenoids. The consumption of soybeans plays a role in immune modulation through their components such as isoflavones, saponins, and anthocyanins. Recently, it was reported that the application of phytochemicals into patients with inflammatory diseases improves their symptoms. Therefore, it is important to identify novel phytochemicals with immunomodulatory activities. This review introduces and discusses recent advances and patents regarding soybean or processed soy food compounds which exhibit immunomodulatory activity in immune diseases, particularly allergy, by mediating the suppression of inflammatory pathways.
Glycogen Synthase Kinase-3 (GSK3): Inflammation, Diseases, and Therapeutics
Jope, Richard S.; Yuskaitis, Christopher J.; Beurel, Eléonore
2007-01-01
Deciphering what governs inflammation and its effects on tissues is vital for understanding many pathologies. The recent discovery that glycogen synthase kinase-3 (GSK3) promotes inflammation reveals a new component of its well-documented actions in several prevalent diseases which involve inflammation, including mood disorders, Alzheimer’s disease, diabetes, and cancer. Involvement in such disparate conditions stems from the widespread influences of GSK3 on many cellular functions, with this review focusing on its regulation of inflammatory processes. GSK3 promotes the production of inflammatory molecules and cell migration, which together make GSK3 a powerful regulator of inflammation, while GSK3 inhibition provides protection from inflammatory conditions in animal models. The involvement of GSK3 and inflammation in these diseases are highlighted. Thus, GSK3 may contribute not only to primary pathologies in these diseases, but also to the associated inflammation, suggesting that GSK3 inhibitors may have multiple effects influencing these conditions. PMID:16944320
Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues
2017-01-01
Cells within cartilaginous tissues are mechanosensitive and thus require mechanical loading for regulation of tissue homeostasis and metabolism. Mechanical loading plays critical roles in cell differentiation, proliferation, biosynthesis, and homeostasis. Inflammation is an important event occurring during multiple processes, such as aging, injury, and disease. Inflammation has significant effects on biological processes as well as mechanical function of cells and tissues. These effects are highly dependent on cell/tissue type, timing, and magnitude. In this review, we summarize key findings pertaining to effects of inflammation on multiscale mechanical properties at subcellular, cellular, and tissue level in cartilaginous tissues, including alterations in mechanotransduction and mechanosensitivity. The emphasis is on articular cartilage and the intervertebral disc, which are impacted by inflammatory insults during degenerative conditions such as osteoarthritis, joint pain, and back pain. To recapitulate the pro-inflammatory cascades that occur in vivo, different inflammatory stimuli have been used for in vitro and in situ studies, including tumor necrosis factor (TNF), various interleukins (IL), and lipopolysaccharide (LPS). Therefore, this review will focus on the effects of these stimuli because they are the best studied pro-inflammatory cytokines in cartilaginous tissues. Understanding the current state of the field of inflammation and cell/tissue biomechanics may potentially identify future directions for novel and translational therapeutics with multiscale biomechanical considerations. PMID:29152560
Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues.
Nguyen, Q T; Jacobsen, T D; Chahine, N O
2017-11-13
Cells within cartilaginous tissues are mechanosensitive and thus require mechanical loading for regulation of tissue homeostasis and metabolism. Mechanical loading plays critical roles in cell differentiation, proliferation, biosynthesis, and homeostasis. Inflammation is an important event occurring during multiple processes, such as aging, injury, and disease. Inflammation has significant effects on biological processes as well as mechanical function of cells and tissues. These effects are highly dependent on cell/tissue type, timing, and magnitude. In this review, we summarize key findings pertaining to effects of inflammation on multiscale mechanical properties at subcellular, cellular, and tissue level in cartilaginous tissues, including alterations in mechanotransduction and mechanosensitivity. The emphasis is on articular cartilage and the intervertebral disc, which are impacted by inflammatory insults during degenerative conditions such as osteoarthritis, joint pain, and back pain. To recapitulate the pro-inflammatory cascades that occur in vivo, different inflammatory stimuli have been used for in vitro and in situ studies, including tumor necrosis factor (TNF), various interleukins (IL), and lipopolysaccharide (LPS). Therefore, this review will focus on the effects of these stimuli because they are the best studied pro-inflammatory cytokines in cartilaginous tissues. Understanding the current state of the field of inflammation and cell/tissue biomechanics may potentially identify future directions for novel and translational therapeutics with multiscale biomechanical considerations.
Calder, P C; Ahluwalia, N; Albers, R; Bosco, N; Bourdet-Sicard, R; Haller, D; Holgate, S T; Jönsson, L S; Latulippe, M E; Marcos, A; Moreines, J; M'Rini, C; Müller, M; Pawelec, G; van Neerven, R J J; Watzl, B; Zhao, J
2013-01-01
To monitor inflammation in a meaningful way, the markers used must be valid: they must reflect the inflammatory process under study and they must be predictive of future health status. In 2009, the Nutrition and Immunity Task Force of the International Life Sciences Institute, European Branch, organized an expert group to attempt to identify robust and predictive markers, or patterns or clusters of markers, which can be used to assess inflammation in human nutrition studies in the general population. Inflammation is a normal process and there are a number of cells and mediators involved. These markers are involved in, or are produced as a result of, the inflammatory process irrespective of its trigger and its location and are common to all inflammatory situations. Currently, there is no consensus as to which markers of inflammation best represent low-grade inflammation or differentiate between acute and chronic inflammation or between the various phases of inflammatory responses. There are a number of modifying factors that affect the concentration of an inflammatory marker at a given time, including age, diet and body fatness, among others. Measuring the concentration of inflammatory markers in the bloodstream under basal conditions is probably less informative compared with data related to the concentration change in response to a challenge. A number of inflammatory challenges have been described. However, many of these challenges are poorly standardised. Patterns and clusters may be important as robust biomarkers of inflammation. Therefore, it is likely that a combination of multiple inflammatory markers and integrated readouts based upon kinetic analysis following defined challenges will be the most informative biomarker of inflammation.
Noncoding RNAs and chronic inflammation: Micro-managing the fire within.
Alexander, Margaret; O'Connell, Ryan M
2015-09-01
Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age-associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we emphasize the emerging roles of microRNAs (miRNAs) and other noncoding RNAs (ncRNA) in regulating chronic inflammatory states, making them important future diagnostic markers and therapeutic targets. © 2015 The Authors. BioEssays published by WILEY Periodicals, Inc.
Grimm, Elizabeth A.; Sikora, Andrew G.; Ekmekcioglu, Suhendan
2013-01-01
It is widely accepted that many cancers express features of inflammation, driven by both microenvironmental cells and factors, and the intrinsic production of inflammation-associated mediators from malignant cells themselves. Inflammation results in intracellular oxidative stress, with the ultimate biochemical oxidants composed of reactive nitrogens and oxygens. Although the role of inflammation in carcinogensis is well accepted, we now present data that inflammatory processes are also active in the maintenance phase of many aggressive forms of cancer. The oxidative stress of inflammation is proposed to drive a continuous process of DNA adducts and crosslinks, as well as posttranslational modifications to lipids and proteins that we argue support growth and survival. In this Perspective we introduce data on the emerging science of inflammation-driven posttranslational modifications on proteins responsible for driving growth, angiogenesis, immunosuppression, and inhibition of apoptosis. Examples include data from human melanoma, breast, head and neck, lung, and colon cancers. Fortunately, numerous anti-oxidant agents are clinically available, and we further propose that the pharmacological attenuation of these inflammatory processes, particularly the reactive nitrogen species, will restore the cancer cells to an apoptosis-permissive and growth inhibitory state. Our mouse model data using an arginine antagonist that prevents enzymatic production of nitric oxide, directly supports this view. We contend that selected antioxidants be considered as part of the cancer treatment approach, as they are likely to provide a novel and mechanistically justified addition for therapeutic benefit. PMID:23868870
Evaluation of Gastrointestinal Leakage in Multiple Enteric Inflammation Models in Chickens.
Kuttappan, Vivek A; Vicuña, Eduardo A; Latorre, Juan D; Wolfenden, Amanda D; Téllez, Guillermo I; Hargis, Billy M; Bielke, Lisa R
2015-01-01
Enteric inflammation models can help researchers' study methods to improve health and performance and evaluate various growth promoters and dietary formulations targeted to improve performance in poultry. Oral administration of fluorescein isothiocyanate-dextran (FITC-d; 3-5 kDa) and its pericellular mucosal epithelial leakage are an established marker to evaluate enteric inflammation in multiple species. The present study evaluated different methods to induce gut inflammation in poultry based on FITC-d leakage. Four independent experiments were completed with different inflammation treatment groups, and serum FITC-d and/or retention of FITC-d in GI tract were determined. In experiment 1 (n = 10 birds/treatment, broilers, processed at 14 days), groups included control (CON), dextran sodium sulfate (DSS; drinking water at 0.75%) and feed restriction (FRS; 24 h before processing). Experiment 2 (n = 14 birds/treatment, leghorns, processed at 7 days) included CON, DSS, FRS, and rye-based diet (RBD). In experiments 3 and 4 (n = 15 birds/treatment, broilers, processed at 7 days), groups were CON, DSS, high fat diet (HFD), FRS, and RBD. In all experiments, FRS and RBD treatments showed significantly higher serum FITC-d levels compared to the respective CON. This indicates that FRS and RBD results in disruption of the intact barrier of the gastrointestinal tract (GIT), resulting in increased gut permeability. DSS and HFD groups showed elevation of serum FITC-d levels although the magnitude of difference from respective CON was inconsistent between experiments. FRS was the only treatment which consistently showed elevated retention of FITC-d in GIT in all experiments. The results from present studies showed that FRS and RBD, based on serum FITC-d levels, can be robust models to induce gut leakage in birds in different age and species/strains.
Ratajczak, Mariusz Z.; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy
2018-01-01
Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as “sterile inflammation” when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms. PMID:29541038
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo
Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, whichmore » is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and is implicated in decreased 5 Prime -AMP activated kinase (AMPK) activation, leading to the impairment of autophagy. The mTOR inhibitor, rapamycin, abolishes Sirtinol-induced inflammation and NF-{kappa}B activation associated with p62/Sqstm1 accumulation. In summary, SIRT1 inactivation induces inflammation through NF-{kappa}B activation and dysregulates autophagy via nutrient-sensing pathways such as the mTOR and AMPK pathways, in THP-1 cells.« less
Yang, Yanyan; Yu, Tao; Sung, Gi-Ho; Yoo, Byong Chul
2014-01-01
Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs) are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases. PMID:24771982
Noncoding RNAs and chronic inflammation: Micro‐managing the fire within
Alexander, Margaret
2015-01-01
Inflammatory responses are essential for the clearance of pathogens and the repair of injured tissues; however, if these responses are not properly controlled chronic inflammation can occur. Chronic inflammation is now recognized as a contributing factor to many age‐associated diseases including metabolic disorders, arthritis, neurodegeneration, and cardiovascular disease. Due to the connection between chronic inflammation and these diseases, it is essential to understand underlying mechanisms behind this process. In this review, factors that contribute to chronic inflammation are discussed. Further, we emphasize the emerging roles of microRNAs (miRNAs) and other noncoding RNAs (ncRNA) in regulating chronic inflammatory states, making them important future diagnostic markers and therapeutic targets. Copyright Line: © 2015 The Authors BioEssays Published by Wiley‐VCH Verlag GmbH & Co. KGaA. PMID:26249326
Autism, Asthma, Inflammation, and the Hygiene Hypothesis
Becker, Kevin G.
2007-01-01
Inflammation and the genes, molecules, and biological pathways that lead to inflammatory processes influence many important and disparate biological processes and disease states that are quite often not generally considered classical inflammatory or autoimmune disorders. These include development, reproduction, aging, tumor development and tumor rejection, cardiovascular pathologies, metabolic disorders, as well as neurological and psychiatric disorders. This paper compares parallel aspects of autism and inflammatory disorders with an emphasis on asthma. These comparisons include epidemiological, morphometric, molecular, and genetic aspects of both disease types, contributing to a hypothesis of autism in the context of the immune based hygiene hypothesis. This hypothesis is meant to address the apparent rise in the prevalence of autism in the population. PMID:17412520
Autism, asthma, inflammation, and the hygiene hypothesis.
Becker, Kevin G
2007-01-01
Inflammation and the genes, molecules, and biological pathways that lead to inflammatory processes influence many important and disparate biological processes and disease states that are quite often not generally considered classical inflammatory or autoimmune disorders. These include development, reproduction, aging, tumor development and tumor rejection, cardiovascular pathologies, metabolic disorders, as well as neurological and psychiatric disorders. This paper compares parallel aspects of autism and inflammatory disorders with an emphasis on asthma. These comparisons include epidemiological, morphometric, molecular, and genetic aspects of both disease types, contributing to a hypothesis of autism in the context of the immune based hygiene hypothesis. This hypothesis is meant to address the apparent rise in the prevalence of autism in the population.
Causes of CNS inflammation and potential targets for anticonvulsants.
Falip, Mercé; Salas-Puig, Xavier; Cara, Carlos
2013-08-01
Inflammation is one of the most important endogenous defence mechanisms in an organism. It has been suggested that inflammation plays an important role in the pathophysiology of a number of human epilepsies and convulsive disorders, and there is clinical and experimental evidence to suggest that inflammatory processes within the CNS may either contribute to or be a consequence of epileptogenesis. This review discusses evidence from human studies on the role of inflammation in epilepsy and highlights potential new targets in the inflammatory cascade for antiepileptic drugs. A number of mechanisms have been shown to be involved in CNS inflammatory reactions. These include an inflammatory response at the level of the blood-brain barrier (BBB), immune-mediated damage to the CNS, stress-induced release of inflammatory mediators and direct neuronal dysfunction or damage as a result of inflammatory reactions. Mediators of inflammation in the CNS include interleukin (IL)-1β, tumour necrosis factor-α, nuclear factor-κB and toll-like receptor-4 (TLR4). IL-1β, BBB and high-mobility group box-1-TLR4 signalling appear to be the most promising targets for anticonvulsant agents directed at inflammation. Such agents may provide effective therapy for drug-resistant epilepsies in the future.
Curbing Inflammation in the Ischemic Heart Disease
Evora, Paulo Roberto B.; Nather, Julio; Tubino, Paulo Victor; Albuquerque, Agnes Afrodite S.; Celotto, Andrea Carla; Rodrigues, Alfredo J.
2013-01-01
A modern concept considers acute coronary syndrome as an autoinflammatory disorder. From the onset to the healing stage, an endless inflammation has been presented with complex, multiple cross-talk mechanisms at the molecular, cellular, and organ levels. Inflammatory response following acute myocardial infarction has been well documented since the 1940s and 1950s, including increased erythrocyte sedimentation rate, the C-reactive protein analysis, and the determination of serum complement. It is surprising to note, based on a wide literature overview including the following 30 years (decades of 1960, 1970, and 1980), that the inflammatory acute myocardium infarction lost its focus, virtually disappearing from the literature reports. The reversal of this historical process occurs in the 1990s with the explosion of studies involving cytokines. Considering the importance of inflammation in the pathophysiology of ischemic heart disease, the aim of this paper is to present a conceptual overview in order to explore the possibility of curbing this inflammatory process. PMID:23819098
S100-alarmins: potential therapeutic targets for arthritis.
Austermann, Judith; Zenker, Stefanie; Roth, Johannes
2017-07-01
In arthritis, inflammatory processes are triggered by numerous factors that are released from joint tissues, promoting joint destruction and pathological progression. During inflammation, a novel family of pro-inflammatory molecules called alarmins is released, amplifying inflammation and joint damage. Areas covered: With regard to the role of the alarmins S100A8 and S100A9 in the pathogenesis of arthritis, recent advances and the future prospects in terms of therapeutic implications are considered. Expert opinion: There is still an urgent need for novel treatment strategies addressing the local mechanisms of joint inflammation and tissue destruction, offering promising therapeutic alternatives. S100A8 and S100A9, which are the most up-regulated alarmins during arthritis, are endogenous triggers of inflammation, defining these proteins as promising targets for local suppression of arthritis. In murine models, the blockade of S100A8/S100A9 ameliorates inflammatory processes, including arthritis, and there are several lines of evidence that S100-alarmins may already be targeted in therapeutic approaches in man.
Changes in Oxidative Damage, Inflammation and [NAD(H)] with Age in Cerebrospinal Fluid
Guest, Jade; Grant, Ross; Mori, Trevor A.; Croft, Kevin D.
2014-01-01
An extensive body of evidence indicates that oxidative stress and inflammation play a central role in the degenerative changes of systemic tissues in aging. However a comparatively limited amount of data is available to verify whether these processes also contribute to normal aging within the brain. High levels of oxidative damage results in key cellular changes including a reduction in available nicotinamide adenine dinucleotide (NAD+), an essential molecule required for a number of vital cellular processes including DNA repair, immune signaling and epigenetic processing. In this study we quantified changes in [NAD(H)] and markers of inflammation and oxidative damage (F2-isoprostanes, 8-OHdG, total antioxidant capacity) in the cerebrospinal fluid (CSF) of healthy humans across a wide age range (24–91 years). CSF was collected from consenting patients who required a spinal tap for the administration of anesthetic. CSF of participants aged >45 years was found to contain increased levels of lipid peroxidation (F2-isoprostanes) (p = 0.04) and inflammation (IL-6) (p = 0.00) and decreased levels of both total antioxidant capacity (p = 0.00) and NAD(H) (p = 0.05), compared to their younger counterparts. A positive association was also observed between plasma [NAD(H)] and CSF NAD(H) levels (p = 0.03). Further analysis of the data identified a relationship between alcohol intake and CSF [NAD(H)] and markers of inflammation. The CSF of participants who consumed >1 standard drink of alcohol per day contained lower levels of NAD(H) compared to those who consumed no alcohol (p<0.05). An increase in CSF IL-6 was observed in participants who reported drinking >0–1 (p<0.05) and >1 (p<0.05) standard alcoholic drinks per day compared to those who did not drink alcohol. Taken together these data suggest a progressive age associated increase in oxidative damage, inflammation and reduced [NAD(H)] in the brain which may be exacerbated by alcohol intake. PMID:24454842
Contribution of inflammatory pathways to Fabry disease pathogenesis.
Rozenfeld, Paula; Feriozzi, Sandro
2017-11-01
Lysosomal storage diseases are usually considered to be pathologies in which the passive deposition of unwanted materials leads to functional changes in lysosomes. Lysosomal deposition of unmetabolized glycolipid substrates stimulates the activation of pathogenic cascades, including immunological processes, and particularly the activation of inflammation. In lysosomal storage diseases, the inflammatory response is continuously being activated because the stimulus cannot be eliminated. Consequently, inflammation becomes a chronic process. Lysosomes play a role in many steps of the immune response. Leukocyte perturbation and over-expression of immune molecules have been reported in Fabry disease. Innate immunity is activated by signals originating from dendritic cells via interactions between toll-like receptors and globotriaosylceramide (Gb3) and/or globotriaosylsphingosine (lyso-Gb3). Evidence indicates that these glycolipids can activate toll-like receptors, thus triggering inflammation and fibrosis cascades. In the kidney, Gb3 deposition is associated with the increased release of transforming growth factor beta and with epithelial-to-mesenchymal cell transition, leading to the over-expression of pro-fibrotic molecules and to renal fibrosis. Interstitial fibrosis is also a typical feature of heart involvement in Fabry disease. Endomyocardial biopsies show infiltration of lymphocytes and macrophages, suggesting a role for inflammation in causing tissue damage. Inflammation is present in all tissues and may be associated with other potentially pathologic processes such as apoptosis, impaired autophagy, and increases in pro-oxidative molecules, which could all contribute synergistically to tissue damage. In Fabry disease, the activation of chronic inflammation over time leads to organ damage. Therefore, enzyme replacement therapy must be started early, before this process becomes irreversible. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Impact of negative cognitions about body image on inflammatory status in relation to health.
Černelič-Bizjak, Maša; Jenko-Pražnikar, Zala
2014-01-01
Evidence suggests that body dissatisfaction may relate to biological processes and that negative cognitions can influence physical health through the complex pathways linking psychological and biological factors. The present study investigates the relationships between body image satisfaction, inflammation (cytokine levels), aerobic fitness level and obesity in 96 middle-aged men and women (48 normal and 48 overweight). All participants underwent measurements of body satisfaction, body composition, serological measurements of inflammation and aerobic capabilities assessment. Body image dissatisfaction uniquely predicted inflammation biomarkers, C-reactive protein and tumour necrosis factor-α, even when controlled for obesity indicators. Thus, body image dissatisfaction is strongly linked to inflammation processes and may promote the increase in cytokines, representing a relative metabolic risk, independent of most traditional risk factors, such as gender, body mass index and intra-abdominal (waist to hip ratio) adiposity. Results highlight the fact that person's negative cognitions need to be considered in psychologically based interventions and strategies in treatment of obesity, including strategies for health promotion. Results contribute to the knowledge base of the complex pathways in the association between psychological factors and physical illness and some important attempts were made to explain the psychological pathways linking cognitions with inflammation.
Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?
Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel
2015-01-01
The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically.
Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?
Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel
2015-01-01
The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically. PMID:26538825
Evaluation of Gastrointestinal Leakage in Multiple Enteric Inflammation Models in Chickens
Kuttappan, Vivek A.; Vicuña, Eduardo A.; Latorre, Juan D.; Wolfenden, Amanda D.; Téllez, Guillermo I.; Hargis, Billy M.; Bielke, Lisa R.
2015-01-01
Enteric inflammation models can help researchers’ study methods to improve health and performance and evaluate various growth promoters and dietary formulations targeted to improve performance in poultry. Oral administration of fluorescein isothiocyanate-dextran (FITC-d; 3–5 kDa) and its pericellular mucosal epithelial leakage are an established marker to evaluate enteric inflammation in multiple species. The present study evaluated different methods to induce gut inflammation in poultry based on FITC-d leakage. Four independent experiments were completed with different inflammation treatment groups, and serum FITC-d and/or retention of FITC-d in GI tract were determined. In experiment 1 (n = 10 birds/treatment, broilers, processed at 14 days), groups included control (CON), dextran sodium sulfate (DSS; drinking water at 0.75%) and feed restriction (FRS; 24 h before processing). Experiment 2 (n = 14 birds/treatment, leghorns, processed at 7 days) included CON, DSS, FRS, and rye-based diet (RBD). In experiments 3 and 4 (n = 15 birds/treatment, broilers, processed at 7 days), groups were CON, DSS, high fat diet (HFD), FRS, and RBD. In all experiments, FRS and RBD treatments showed significantly higher serum FITC-d levels compared to the respective CON. This indicates that FRS and RBD results in disruption of the intact barrier of the gastrointestinal tract (GIT), resulting in increased gut permeability. DSS and HFD groups showed elevation of serum FITC-d levels although the magnitude of difference from respective CON was inconsistent between experiments. FRS was the only treatment which consistently showed elevated retention of FITC-d in GIT in all experiments. The results from present studies showed that FRS and RBD, based on serum FITC-d levels, can be robust models to induce gut leakage in birds in different age and species/strains. PMID:26697435
Omega-3 fatty acids and inflammatory processes: from molecules to man.
Calder, Philip C
2017-10-15
Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
N-Palmitoylethanolamine and Neuroinflammation: a Novel Therapeutic Strategy of Resolution.
Skaper, Stephen D; Facci, Laura; Barbierato, Massimo; Zusso, Morena; Bruschetta, Giuseppe; Impellizzeri, Daniela; Cuzzocrea, Salvatore; Giusti, Pietro
2015-10-01
Inflammation is fundamentally a protective cellular response aimed at removing injurious stimuli and initiating the healing process. However, when prolonged, it can override the bounds of physiological control and becomes destructive. Inflammation is a key element in the pathobiology of chronic pain, neurodegenerative diseases, stroke, spinal cord injury, and neuropsychiatric disorders. Glia, key players in such nervous system disorders, are not only capable of expressing a pro-inflammatory phenotype but respond also to inflammatory signals released from cells of immune origin such as mast cells. Chronic inflammatory processes may be counteracted by a program of resolution that includes the production of lipid mediators endowed with the capacity to switch off inflammation. These naturally occurring lipid signaling molecules include the N-acylethanolamines, N-arachidonoylethanolamine (an endocannabinoid), and its congener N-palmitoylethanolamine (palmitoylethanolamide or PEA). PEA may play a role in maintaining cellular homeostasis when faced with external stressors provoking, for example, inflammation. PEA is efficacious in mast cell-mediated models of neurogenic inflammation and neuropathic pain and is neuroprotective in models of stroke, spinal cord injury, traumatic brain injury, and Parkinson disease. PEA in micronized/ultramicronized form shows superior oral efficacy in inflammatory pain models when compared to naïve PEA. Intriguingly, while PEA has no antioxidant effects per se, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treat neuroinflammation. This review is intended to discuss the role of mast cells and glia in neuroinflammation and strategies to modulate their activation based on leveraging natural mechanisms with the capacity for self-defense against inflammation.
Chronic Inflammation-Related HPV: A Driving Force Speeds Oropharyngeal Carcinogenesis
Liu, Xin; Ma, Xiangrui; Lei, Zhengge; Feng, Hao; Wang, Shasha; Cen, Xiao; Gao, Shiyu; Jiang, Yaping; Jiang, Jian; Chen, Qianming; Tang, Yajie; Tang, Yaling; Liang, Xinhua
2015-01-01
Oropharyngeal squamous cell carcinoma (OPSCC) has been known to be a highly aggressive disease associated with human papilloma virus (HPV) infection. To investigate the relationship between HPV and chronic inflammation in oropharyngeal carcinogenesis, we collected 140 oral mucous fresh specimens including 50 OPSCC patients, 50 cancer in situ, 30 precancerous lesions, and 10 normal oral mucous. Our data demonstrated that there was a significantly higher proportion of severe chronic inflammation in dysplastic epithelia in comparison with that in normal tissues (P<0.001). The positive rate of HPV 16 was parallel with the chronic inflammation degrees from mild to severe inflammation (P<0.05). The positive rate of HPV 16 was progressively improved with the malignant progression of oral mucous (P<0.05). In addition, CD11b+ LIN- HLA-DR-CD33+ MDSCs were a critical cell population that mediates inflammation response and immune suppression in HPV-positive OPSCC. These indicated that persistent chronic inflammation-related HPV infection might drive oropharyngeal carcinogenesis and MDSCs might pay an important role during this process. Thus, a combination of HPV infection and inflammation expression might become a helpful biomedical marker to predict oropharyngeal carcinogenesis. PMID:26193368
Chronic Inflammation-Related HPV: A Driving Force Speeds Oropharyngeal Carcinogenesis.
Liu, Xin; Ma, Xiangrui; Lei, Zhengge; Feng, Hao; Wang, Shasha; Cen, Xiao; Gao, Shiyu; Jiang, Yaping; Jiang, Jian; Chen, Qianming; Tang, Yajie; Tang, Yaling; Liang, Xinhua
2015-01-01
Oropharyngeal squamous cell carcinoma (OPSCC) has been known to be a highly aggressive disease associated with human papilloma virus (HPV) infection. To investigate the relationship between HPV and chronic inflammation in oropharyngeal carcinogenesis, we collected 140 oral mucous fresh specimens including 50 OPSCC patients, 50 cancer in situ, 30 precancerous lesions, and 10 normal oral mucous. Our data demonstrated that there was a significantly higher proportion of severe chronic inflammation in dysplastic epithelia in comparison with that in normal tissues (P<0.001). The positive rate of HPV 16 was parallel with the chronic inflammation degrees from mild to severe inflammation (P<0.05). The positive rate of HPV 16 was progressively improved with the malignant progression of oral mucous (P<0.05). In addition, CD11b+ LIN- HLA-DR-CD33+ MDSCs were a critical cell population that mediates inflammation response and immune suppression in HPV-positive OPSCC. These indicated that persistent chronic inflammation-related HPV infection might drive oropharyngeal carcinogenesis and MDSCs might pay an important role during this process. Thus, a combination of HPV infection and inflammation expression might become a helpful biomedical marker to predict oropharyngeal carcinogenesis.
Gao, Xiao; Lampraki, Eirini-Maria; Al-Khalidi, Sarwah; Qureshi, Muhammad Asif; Desai, Rhea; Wilson, Joanna Beatrice
2017-01-01
Chronic inflammation results when the immune system responds to trauma, injury or infection and the response is not resolved. It can lead to tissue damage and dysfunction and in some cases predispose to cancer. Some viruses (including Epstein-Barr virus (EBV)) can induce inflammation, which may persist even after the infection has been controlled or cleared. The damage caused by inflammation, can itself act to perpetuate the inflammatory response. The latent membrane protein 1 (LMP1) of EBV is a pro-inflammatory factor and in the skin of transgenic mice causes a phenotype of hyperplasia with chronic inflammation of increasing severity, which can progress to pre-malignant and malignant lesions. LMP1 signalling leads to persistent deregulated expression of multiple proteins throughout the mouse life span, including TGFα S100A9 and chitinase-like proteins. Additionally, as the inflammation increases, numerous chemokines and cytokines are produced which promulgate the inflammation. Deposition of IgM, IgG, IgA and IgE and complement activation form part of this process and through genetic deletion of CD40, we show that this contributes to the more tissue-destructive aspects of the phenotype. Treatment of the mice with N-acetylcysteine (NAC), an antioxidant which feeds into the body's natural redox regulatory system through glutathione synthesis, resulted in a significantly reduced leukocyte infiltrate in the inflamed tissue, amelioration of the pathological features and delay in the inflammatory signature measured by in vivo imaging. Reducing the degree of inflammation achieved through NAC treatment, had the knock on effect of reducing leukocyte recruitment to the inflamed site, thereby slowing the progression of the pathology. These data support the idea that NAC could be considered as a treatment to alleviate chronic inflammatory pathologies, including post-viral disease. Additionally, the model described can be used to effectively monitor and accurately measure therapies for chronic inflammation.
Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes
Kahles, Florian; Findeisen, Hannes M.; Bruemmer, Dennis
2014-01-01
Since its first description more than 20 years ago osteopontin has emerged as an active player in many physiological and pathological processes, including biomineralization, tissue remodeling and inflammation. As an extracellular matrix protein and proinflammatory cytokine osteopontin is thought to facilitate the recruitment of monocytes/macrophages and to mediate cytokine secretion in leukocytes. Modulation of immune cell response by osteopontin has been associated with various inflammatory diseases and may play a pivotal role in the development of adipose tissue inflammation and insulin resistance. Here we summarize recent findings on the role of osteopontin in metabolic disorders, particularly focusing on diabetes and obesity. PMID:24944898
Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes.
Kahles, Florian; Findeisen, Hannes M; Bruemmer, Dennis
2014-07-01
Since its first description more than 20 years ago osteopontin has emerged as an active player in many physiological and pathological processes, including biomineralization, tissue remodeling and inflammation. As an extracellular matrix protein and proinflammatory cytokine osteopontin is thought to facilitate the recruitment of monocytes/macrophages and to mediate cytokine secretion in leukocytes. Modulation of immune cell response by osteopontin has been associated with various inflammatory diseases and may play a pivotal role in the development of adipose tissue inflammation and insulin resistance. Here we summarize recent findings on the role of osteopontin in metabolic disorders, particularly focusing on diabetes and obesity.
Inflammation in sickle cell disease.
Conran, Nicola; Belcher, John D
2018-01-01
The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.
NASA Astrophysics Data System (ADS)
La Porta, Caterina A. M.; Zapperi, Stefano
2016-07-01
The process of inflammation tries to protect the body after an injury due to biological causes such as the presence of pathogens or chemicals, or to physical processes such as burns or cuts. The biological rationale for this process has the main goal of eliminating the cause of the injury and then repairing the damaged tissues. We can distinguish two kinds of inflammations: acute and chronic. In acute inflammation, a series of events involving the local vascular systems, the immune system and various cells within the injured tissue work together to eradicate the harmful stimuli. If the inflammation does not resolve the problem, it can evolve into a chronic inflammation, where the type of cells involved changes and there is a simultaneous destruction and healing of the tissue from the inflammation process.
Matrix Metalloproteinases as Regulators of Periodontal Inflammation
Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández
2017-01-01
Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the ‘protease web’ is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules—such as cytokines, chemokines, and growth factors, among others—regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation. PMID:28218665
The roles of special proresolving mediators in pain relief.
Zhang, Lan-Yu; Jia, Ming-Rui; Sun, Tao
2018-02-08
The resolution of acute inflammation, once thought to be a passive process, is now recognized as an active one. The productions of endogenous special proresolving mediators (SPMs) are involved in this process. SPMs, including lipoxins, resolvins, protectins, and maresins, are endogenous lipid mediators generated from ω-6 arachidonic acid or ω-3 poly-unsaturated fatty acids during the resolution phase of acute inflammation. They have potent anti-inflammatory and proresolving actions in various inflammatory disorders. Due to the potent proresolving and anti-inflammatory effects, SPMs are also used for pain relief. This review focuses on the mechanisms by which SPMs act on their respective G-protein-coupled receptors in immune cells and nerve cells to normalize pain via regulating inflammatory mediators, transient receptor potential ion channels, and central sensitization. SPMs may offer novel therapeutic approaches for preventing and treating pain conditions associated with inflammation.
Matrix Metalloproteinases as Regulators of Periodontal Inflammation.
Franco, Cavalla; Patricia, Hernández-Ríos; Timo, Sorsa; Claudia, Biguetti; Marcela, Hernández
2017-02-17
Periodontitis are infectious diseases characterized by immune-mediated destruction of periodontal supporting tissues and tooth loss. Matrix metalloproteinases (MMPs) are key proteases involved in destructive periodontal diseases. The study and interest in MMP has been fuelled by emerging evidence demonstrating the broad spectrum of molecules that can be cleaved by them and the myriad of biological processes that they can potentially regulate. The huge complexity of MMP functions within the 'protease web' is crucial for many physiologic and pathologic processes, including immunity, inflammation, bone resorption, and wound healing. Evidence points out that MMPs assemble in activation cascades and besides their classical extracellular matrix substrates, they cleave several signalling molecules-such as cytokines, chemokines, and growth factors, among others-regulating their biological functions and/or bioavailability during periodontal diseases. In this review, we provide an overview of emerging evidence of MMPs as regulators of periodontal inflammation.
The Microbiome and Complement Activation: A Mechanistic Model for Preterm Birth
Dunn, Alexis B.; Dunlop, Anne L.; Hogue, Carol J.; Miller, Andrew; Corwin, Elizabeth J.
2018-01-01
Preterm Birth (PTB, < 37 completed weeks' gestation) is one of the leading obstetrical problems in the United States affecting approximately 1 of every 9 births. Even more concerning are the persistent racial disparities in PTB with particularly high rates in African Americans. There are several recognized pathophysiologic pathways to PTB, including infection and/or exaggerated systemic or local inflammation. Intrauterine infection is a causal factor linked to PTB, thought to result most commonly from inflammatory processes triggered by microbial invasion of bacteria ascending from the vaginal microbiome. Trials to treat various infections have shown limited efficacy in reducing PTB risk, suggesting that other complex mechanisms, including those associated with inflammation, may be involved in the relationship between microbes, infection, and PTB. A key mediator of the inflammatory response, and recently shown to be associated with PTB, is the complement system, an innate defense mechanism involved in both normal physiologic processes that occur during pregnancy implantation, as well as processes that promote the elimination of pathogenic microbes. The purpose of this paper is to present a mechanistic model of inflammation-associated PTB, which hypothesizes a relationship between the microbiome and dysregulation of the complement system. Exploring the relationships between the microbial environment and complement biomarkers may elucidate a potentially modifiable biological pathway to preterm birth. PMID:28073296
2014-01-01
Activation of nuclear factor-kappa B (NF- κB) as a mechanism of host defense against infection and stress is the central mediator of inflammatory responses. A normal (acute) inflammatory response is activated on urgent basis and is auto-regulated. Chronic inflammation that results due to failure in the regulatory mechanism, however, is largely considered as a critical determinant in the initiation and progression of various forms of cancer. Mechanistically, NF- κB favors this process by inducing various genes responsible for cell survival, proliferation, migration, invasion while at the same time antagonizing growth regulators including tumor suppressor p53. It has been shown by various independent investigations that a down regulation of NF- κB activity directly, or indirectly through the activation of the p53 pathway reduces tumor growth substantially. Therefore, there is a huge effort driven by many laboratories to understand the NF- κB signaling pathways to intervene the function of this crucial player in inflammation and tumorigenesis in order to find an effective inhibitor directly, or through the p53 tumor suppressor. We discuss here on the role of NF- κB in chronic inflammation and cancer, highlighting mutual antagonism between NF- κB and p53 pathways in the process. We also discuss prospective pharmacological modulators of these two pathways, including those that were already tested to affect this mutual antagonism. PMID:25152696
Molecular inflammation: underpinnings of aging and age-related diseases.
Chung, Hae Young; Cesari, Matteo; Anton, Stephen; Marzetti, Emanuele; Giovannini, Silvia; Seo, Arnold Young; Carter, Christy; Yu, Byung Pal; Leeuwenburgh, Christiaan
2009-01-01
Recent scientific studies have advanced the notion of chronic inflammation as a major risk factor underlying aging and age-related diseases. In this review, low-grade, unresolved, molecular inflammation is described as an underlying mechanism of aging and age-related diseases, which may serve as a bridge between normal aging and age-related pathological processes. Accumulated data strongly suggest that continuous (chronic) upregulation of pro-inflammatory mediators (e.g., TNF-alpha, IL-1beta, IL-6, COX-2, iNOS) are induced during the aging process due to an age-related redox imbalance that activates many pro-inflammatory signaling pathways, including the NF-kappaB signaling pathway. These pro-inflammatory molecular events are discussed in relation to their role as basic mechanisms underlying aging and age-related diseases. Further, the anti-inflammatory actions of aging-retarding caloric restriction and exercise are reviewed. Thus, the purpose of this review is to describe the molecular roles of age-related physiological functional declines and the accompanying chronic diseases associated with aging. This new view on the role of molecular inflammation as a mechanism of aging and age-related pathogenesis can provide insights into potential interventions that may affect the aging process and reduce age-related diseases, thereby promoting healthy longevity.
Molecular Inflammation: Underpinnings of Aging and Age-related Diseases
Chung, Hae Young; Cesari, Matteo; Anton, Stephen; Marzetti, Emanuele; Giovannini, Silvia; Seo, Arnold Young; Carter, Christy; Yu, Byung Pal; Leeuwenburgh, Christiaan
2013-01-01
Recent scientific studies have advanced the notion of chronic inflammation as a major risk factor underlying aging and age-related diseases. In this review, low-grade, unresolved, molecular inflammation is described as an underlying mechanism of aging and age-related diseases, which may serve as a bridge between normal aging and age-related pathological processes. Accumulated data strongly suggest that continuous (chronic) up-regulation of pro-inflammatory mediators (e.g., TNF-α, IL-1β, 6, COX-2, iNOS) are induced during the aging process due to an age-related redox imbalance that activates many pro-inflammatory signaling pathways, including the NF-κB signaling pathway. These pro-inflammatory molecular events are discussed in relation to their role as basic mechanisms underlying aging and age-related diseases. Further, the anti-inflammatory actions of aging-retarding caloric restriction and exercise are reviewed. Thus, the purpose of this review is to describe the molecular roles of age-related physiological functional declines and the accompanying chronic diseases associated with aging. This new view on the role of molecular inflammation as a mechanism of aging and age-related pathogenesis can provide insights into potential interventions that may affect the aging process and reduce age-related diseases, thereby promoting healthy longevity. PMID:18692159
Inflammation in aging part 1: physiology and immunological mechanisms.
Hunt, Katherine J; Walsh, Bronagh M; Voegeli, David; Roberts, Helen C
2010-01-01
During the aging process, remodeling of several body systems occurs, and these changes can have a startling effect upon the immune system. The reduction in sex steroids and growth hormones and declines in vitamin D concentration that accompany the aging process are associated with increases in the baseline levels of inflammatory proteins. At the same time, inflammation arising from atherosclerosis and other chronic diseases further contributes to the inflammatory milieu and effects a state of chronic inflammation. This chronic inflammation, or ''inflammaging'' as it has been termed, seems to be associated with a host of adverse effects contributing to many of the health problems that increase morbidity and decrease both quality of life and the ability to maintain independence in old age. For nurses to be truly informed when caring for older people and to ensure that they have a detailed understanding of the complexities of older people's health needs, they must have a knowledge of the physiological and immunological changes with age. This is the first of a two-part article on inflammatory processes in aging. These age-related changes are presented here, including an examination of the impact of genetic and lifestyle factors. The effect of these changes on the health of the individual and implications for practice are described in Part 2.
Ficarra, Vincenzo; Rossanese, Marta; Zazzara, Michele; Giannarini, Gianluca; Abbinante, Maria; Bartoletti, Riccardo; Mirone, Vincenzo; Scaglione, Francesco
2014-12-01
A chronic prostatic inflammation seems to play a crucial role in benign prostatic hyperplasia (BPH) pathogenesis and progression. Therefore, inflammation could represent a new potential target for medical therapy of lower urinary tract symptoms (LUTS) due to BPH (LUTS/BPH). This review article analyzes the evidence supporting the role of inflammation in the onset and progression of BPH, and it assesses the potential impact of previous mechanisms on medical therapy of LUTS/BPH. Literature data support the role of inflammation as a relevant factor in the pathogenesis of BPH. Indeed, several data favour the role of infiltrating lymphocytes in the development and progression of prostate adenoma as an effect of a self-maintaining remodeling process. Although available drugs commonly used in the treatment of LUTS/BPH do not exhibit an anti-inflammatory activity, it seems to be obvious considering the inflammation as a new target in the treatment of LUTS/BPH. Drugs currently investigated for the treatment of prostatic inflammation include the hexanic lipidosterolic extract of Serenoa repens, nonsteroidal anti-inflammatory drugs, and vitamin D receptor agonists.
Acute coronary disease Athero-Inflammation: Therapeutic approach
Altman, Raul
2003-01-01
Antithrombotic therapy is the cornerstone of the treatment of acute coronary syndromes, but there is now evidence which indicates that by blocking inflammation, thrombosis and thus, acute coronary events, could be lowered. The concept of athero-inflammation emerges as the meeting point of different morbidities; dyslipemia, diabetes, hypertension, obesity, immunity, infection, hyperhomocyteinemia, smoking, etc. usual named as risk factors. Thus, beside specific drugs, earliest treatment, in the stage of inflammation, using anti-inflammatory drugs, should be considered since in patients with increased risk of acute coronary process are likely to have many point of origen throughout the coronary arteries. There are a body of evidences for supporting the potential of anti-inflammatory therapy to the prevention of inflammation and atherosclerosis. COX-2 inhibition may decrease endothelial inflammation reducing monocytes infiltration improving vascular cells function, plaque stability and probably resulting in a decrease of coronary atherothrombotic events. Trials including large numbers of patients in prospective double-blind randomized studies worthwhile to confirm the efficacy of NSAID, mainly, COX-2 inhibitors, together with aspirin in the prevention of coronary events in patients with acute coronary disease. PMID:12904261
Watson, Nathan; Ding, Bo; Zhu, Xiaoxia; Frisina, Robert D
2017-11-01
Chronic, low-grade inflammation, or inflammaging, is a crucial contributor to various age-related pathologies and natural processes in aging tissue, including the nervous system. Over the past two decades, much effort has been done to understand the mechanisms of inflammaging in disease models such as type II diabetes, cardiovascular disease, Alzheimer's disease, Parkinson's disease, and others. However, despite being the most prevalent neurodegenerative disorder, the number one communication disorder, and one of the top three chronic medical conditions of our aged population; little research has been conducted on the potential role of inflammation in age-related hearing loss (ARHL). Recently, it has been suggested that there is an inflammatory presence in the cochlea, perhaps involving diffusion processes of the blood-brain barrier as it relates to the inner ear. Recent research has found correlations between hearing loss and markers such as C-reactive protein, IL-6, and TNF-α indicating inflammatory status in human case-cohort studies. However, there have been very few reports of in vivo research investigating the role of chronic inflammation's in hearing loss in the aging cochlea. Future research directed at better understanding the mechanisms of inflammation in the cochlea as well as the natural changes acquired with aging may provide a better understanding of how this process can accelerate presbycusis. Animal model experimentation and pre-clinical studies designed to recognize and characterize cochlear inflammatory mechanisms may suggest novel treatment strategies for preventing or treating ARHL. In this review, we seek to summarize key research in chronic inflammation, discuss its implications for possible roles in ARHL, and finally suggest directions for future investigations. Copyright © 2017 Elsevier B.V. All rights reserved.
Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity
Irwin, Michael R; Opp, Mark R
2017-01-01
Sleep disturbances including insomnia independently contribute to risk of inflammatory disorders and major depressive disorder. This review and overview provides an integrated understanding of the reciprocal relationships between sleep and the innate immune system and considers the role of sleep in the nocturnal regulation of the inflammatory biology dynamics; the impact of insomnia complaints, extremes of sleep duration, and experimental sleep deprivation on genomic, cellular, and systemic markers of inflammation; and the influence of sleep complaints and insomnia on inflammaging and molecular processes of cellular aging. Clinical implications of this research include discussion of the contribution of sleep disturbance to depression and especially inflammation-related depressive symptoms. Reciprocal action of inflammatory mediators on the homeostatic regulation of sleep continuity and sleep macrostructure, and the potential of interventions that target insomnia to reverse inflammation, are also reviewed. Together, interactions between sleep and inflammatory biology mechanisms underscore the implications of sleep disturbance for inflammatory disease risk, and provide a map to guide the development of treatments that modulate inflammation, improve sleep, and promote sleep health. PMID:27510422
Novel therapeutic strategies targeting innate immune responses and early inflammation after stroke.
Shichita, Takashi; Ago, Tetsuro; Kamouchi, Masahiro; Kitazono, Takanari; Yoshimura, Akihiko; Ooboshi, Hiroaki
2012-11-01
Post-ischemic inflammation is an essential step in the progression of ischemic stroke. This review focuses on the function of infiltrating immune cells, macrophages, and T cells, in ischemic brain injury. The brain is a sterile organ; however, the activation of Toll-like receptor (TLR) 2 and TLR4 is pivotal in the beginning of post-ischemic inflammation. Some endogenous TLR ligands are released from injured brain cells, including high mobility group box 1 and peroxiredoxin family proteins, and activate the infiltrating macrophages and induce the expression of inflammatory cytokines. Following this step, T cells also infiltrate into the ischemic brain and mediate post-ischemic inflammation in the delayed phase. Various cytokines from helper T cells and γδT cells function as neurotoxic (IL-23/IL-17, IFN-γ) or neuroprotective (IL-10, IL-4) mediators. Novel neuroprotective strategies should therefore be developed through more detailed understanding of this process and the regulation of post-ischemic inflammation. © 2012 The Authors Journal of Neurochemistry © International Society for Neurochemistry.
Inflammation, Fracture and Bone Repair
Loi, Florence; Córdova, Luis A.; Pajarinen, Jukka; Lin, Tzu-hua; Yao, Zhenyu; Goodman, Stuart B.
2016-01-01
The reconstitution of lost bone is a subject that is germane to many orthopaedic conditions including fractures and non-unions, infection, inflammatory arthritis, osteoporosis, osteonecrosis, metabolic bone disease, tumors, and periprosthetic particle-associated osteolysis. In this regard, the processes of acute and chronic inflammation play an integral role. Acute inflammation is initiated by endogenous or exogenous adverse stimuli, and can become chronic in nature if not resolved by normal homeostatic mechanisms. Dysregulated inflammation leads to increased bone resorption and suppressed bone formation. Crosstalk amongst inflammatory cells (polymorphonuclear leukocytes and cells of the monocyte-macrophage-osteoclast lineage) and cells related to bone healing (cells of the mesenchymal stem cell-osteoblast lineage and vascular lineage) is essential to the formation, repair and remodeling of bone. In this review, the authors provide a comprehensive summary of the literature related to inflammation and bone repair. Special emphasis is placed on the underlying cellular and molecular mechanisms, and potential interventions that can favorably modulate the outcome of clinical conditions that involve bone repair. PMID:26946132
Sphingosine-1-Phosphate Metabolism and Its Role in the Development of Inflammatory Bowel Disease
Wollny, Tomasz; Wątek, Marzena; Durnaś, Bonita; Niemirowicz, Katarzyna; Piktel, Ewelina; Żendzian-Piotrowska, Małgorzata; Góźdź, Stanisław; Bucki, Robert
2017-01-01
Beyond their role as structural molecules, sphingolipids are involved in many important cellular processes including cell proliferation, apoptosis, inflammation, and migration. Altered sphingolipid metabolism is observed in many pathological conditions including gastrointestinal diseases. Inflammatory bowel disease (IBD) represents a state of complex, unpredictable, and destructive inflammation of unknown origin within the gastrointestinal tract. The mechanisms explaining the pathophysiology of IBD involve signal transduction pathways regulating gastro-intestinal system’s immunity. Progressive intestinal tissue destruction observed in chronic inflammation may be associated with an increased risk of colon cancer. Sphingosine-1-phosphate (S1P), a sphingolipid metabolite, functions as a cofactor in inflammatory signaling and becomes a target in the treatment of IBD, which might prevent its conversion to cancer. This paper summarizes new findings indicating the impact of (S1P) on IBD development and IBD-associated carcinogenesis. PMID:28362332
Toll-like receptor signaling and its relevance to intestinal inflammation.
Cario, Elke; Podolsky, Daniel K
2006-08-01
This review discusses the current progress in the understanding of how commensal-mediated activation of toll-like receptors (TLRs) may be involved in the regulation of physiological and pathophysiological processes of the intestinal mucosa including tissue regeneration and inflammation. While regulation of TLRs and their downstream signaling mediators might be used to prevent and treat inflammatory bowel diseases, paradoxically, at this time, it remains uncertain whether this would be more effectively accomplished by enhancing or inhibiting these pathways.
Food-derived bioactive peptides on inflammation and oxidative stress.
Chakrabarti, Subhadeep; Jahandideh, Forough; Wu, Jianping
2014-01-01
Chronic diseases such as atherosclerosis and cancer are now the leading causes of morbidity and mortality worldwide. Inflammatory processes and oxidative stress underlie the pathogenesis of these pathological conditions. Bioactive peptides derived from food proteins have been evaluated for various beneficial effects, including anti-inflammatory and antioxidant properties. In this review, we summarize the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.
Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis.
Fond, Aaron M; Ravichandran, Kodi S
The efficient clearance of apoptotic cells is an evolutionarily conserved process crucial for homeostasis in multicellular organisms. The clearance involves a series of steps that ultimately facilitates the recognition of the apoptotic cell by the phagocytes and the subsequent uptake and processing of the corpse. These steps include the phagocyte sensing of "find-me" signals released by the apoptotic cell, recognizing "eat-me" signals displayed on the apoptotic cell surface, and then intracellular signaling within the phagocyte to mediate phagocytic cup formation around the corpse and corpse internalization, and the processing of the ingested contents. The engulfment of apoptotic cells by phagocytes not only eliminates debris from tissues but also produces an anti-inflammatory response that suppresses local tissue inflammation. Conversely, impaired corpse clearance can result in loss of immune tolerance and the development of various inflammation-associated disorders such as autoimmunity, atherosclerosis, and airway inflammation but can also affect cancer progression. Recent studies suggest that the clearance process can also influence antitumor immune responses. In this review, we will discuss how apoptotic cells interact with their engulfing phagocytes to generate important immune responses, and how modulation of such responses can influence pathology.
[Signaling mechanisms involved in resolution of inflammation].
Cervantes-Villagrana, Rodolfo Daniel; Cervantes-Villagrana, Alberto Rafael; Presno-Bernal, José Miguel
2014-01-01
Inflammation is a physiological process, which eliminates pathogens and induces repair of damaged tissue. This process is controlled by negative feedback mechanisms, but if the inflammation persists, it generates a deleterious autoimmune process or can to contribute with diseases such as obesity or cancer. The inflammation resolution involves mechanisms such as decrease of proliferation and maturation of immune cells, phagocytosis and apoptosis of immune cells, and decrease of proinflammatory mediators. Therefore, is relevant to study the physiological effects of specific receptors that participate in inflammation resolution and the design of specific agonists as conventional anti-inflammatory therapeutics, without dramatic collateral effects. In this review, we study some mechanisms associated with inflammation inhibition, particularly the transduction of receptors for ligands with anti-inflammatory effects and that are relevant for their potential therapeutic.
A review of the application of inflammatory biomarkers in epidemiologic cancer research
Brenner, Darren R.; Scherer, Dominique; Muir, Kenneth; Schildkraut, Joellen; Boffetta, Paolo; Spitz, Margaret R.; LeMarchand, Loic; Chan, Andrew T.; Goode, Ellen L.; Ulrich, Cornelia M.; Hung, Rayjean J.
2014-01-01
Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways including increased levels of DNA adduct formation, increased angiogenesis and altered anti-apoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker including strengths, weaknesses and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multi-faceted approaches to examine the relationship between inflammatory markers and their roles in cancer development. PMID:24962838
Vieira, Cristiano Pedrozo; De Aro, Andrea Aparecida; Da Ré Guerra, Flávia; De Oliveira, Letícia Prado; De Almeida, Marcos Dos Santos; Pimentel, Edson Rosa
2013-08-01
Tendinopathy is a pathology found mainly in the rotator cuff, patellar, Achilles and flexor tendons. Tendinopathy is a significant impediment to performance in athletes and in workers in the labor market. Some studies have indicated that inflammation in adjacent tissues may affect the rotator cuff and Achilles tendon. In this study alterations were verified in the extracellular matrix (ECM) of the deep digital flexor tendon after two periods (12 and 24 hr) of induction inflammation in rat paw. Wistar rats were divided into three groups: those that received injection of 1% carrageenan; those that received 0.9% NaCl; and those that received no application. The tendon was divided into distal (d), proximal (p), and intermediate (i) regions. Biochemical analyses were performed and included non-collagenous proteins (NCP), glycosaminoglycans (GAGs), hydroxyproline (HoPro) and metalloproteinases 2 and 9. Tissue sections were stained with toluidine blue, hematoxylin-eosin, and Ponceau SS and observed under polarization microscopy. Remarkable results were detected that included the presence of MMP-9, degradation of NCP and GAG and the presence of cellular infiltrate closer to digits in d region. The different concentrations of HoPro, as well as alterations in the organization of the collagen fibers showed the collagenous matrix undergoing some alterations. The results indicated that the induced inflammation in rat paw exhibited characteristics similar to the typical acute inflammatory process observed in tendons. Copyright © 2013 Wiley Periodicals, Inc.
The central role of hypothalamic inflammation in the acute illness response and cachexia.
Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L
2016-06-01
When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Matrix metalloproteinase processing of signaling molecules to regulate inflammation.
Butler, Georgina S; Overall, Christopher M
2013-10-01
Inflammation is a complex and highly regulated process that facilitates the clearance of pathogens and mediates tissue repair. Failure to resolve inflammation can lead to chronic inflammatory diseases such as periodontitis. Matrix metalloproteinases are generally thought to be detrimental in disease because degradation of extracellular matrix contributes to pathology. However, proteomic techniques (degradomics) are revealing that matrix metalloproteinases process a diverse array of substrates and therefore have a broad range of functions. Many matrix metalloproteinase substrates modulate inflammation and hence, by processing these proteins, matrix metalloproteinases can orchestrate the inflammatory response. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Designed electromagnetic pulsed therapy: clinical applications.
Gordon, Glen A
2007-09-01
First reduced to science by Maxwell in 1865, electromagnetic technology as therapy received little interest from basic scientists or clinicians until the 1980s. It now promises applications that include mitigation of inflammation (electrochemistry) and stimulation of classes of genes following onset of illness and injury (electrogenomics). The use of electromagnetism to stop inflammation and restore tissue seems a logical phenomenology, that is, stop the inflammation, then upregulate classes of restorative gene loci to initiate healing. Studies in the fields of MRI and NMR have aided the understanding of cell response to low energy EMF inputs via electromagnetically responsive elements. Understanding protein iterations, that is, how they process information to direct energy, we can maximize technology to aid restorative intervention, a promising step forward over current paradigms of therapy.
Activation and Resolution of Periodontal Inflammation and Its Systemic Impact
Hasturk, Hatice; Kantarci, Alpdogan
2015-01-01
Inflammation is a highly organized event impacting upon organs, tissues and biological systems. Periodontal diseases are characterized by dysregulation or dysfunction of resolution pathways of inflammation resulting in a failure of healing and a dominant chronic, progressive, destructive and predominantly unresolved inflammation. The biological consequences of inflammatory processes may be independent of the etiological agents such as trauma, microbial organisms and stress. The impact of the inflammatory pathological process depends upon the affected tissues or organ system. Whilst mediators are similar, there is a tissue specificity for the inflammatory events. It is plausible that inflammatory processes in one organ could directly lead to pathologies in another organ or tissue. Communication between distant parts of the body and their inflammatory status is also mediated by common signaling mechanisms mediated via cells and soluble mediators. This review focuses on periodontal inflammation, its systemic associations and advances in therapeutic approaches based on mediators acting through orchestration of natural pathway to resolution of inflammation. We also discuss a new treatment concept where natural pathways of resolution of periodontal inflammation can be used to limit systemic inflammation and promote healing and regeneration. PMID:26252412
Ren, Xiaomeng; Li, Xinzhi; Jia, Linna; Chen, Deheng; Hou, Hai; Rui, Liangyou; Zhao, Yujun; Chen, Zheng
2017-02-01
Potent and selective chemical probes are valuable tools for discovery of novel treatments for human diseases. NF-κB-inducing kinase (NIK) is a key trigger in the development of liver injury and fibrosis. Whether inhibition of NIK activity by chemical probes ameliorates liver inflammation and injury is largely unknown. In this study, a small-molecule inhibitor of NIK, B022, was found to be a potent and selective chemical probe for liver inflammation and injury. B022 inhibited the NIK signaling pathway, including NIK-induced p100-to-p52 processing and inflammatory gene expression, both in vitro and in vivo Furthermore, in vivo administration of B022 protected against not only NIK but also CCl 4 -induced liver inflammation and injury. Our data suggest that inhibition of NIK is a novel strategy for treatment of liver inflammation, oxidative stress, and injury.-Ren, X., Li, X., Jia, L., Chen, D., Hou, H., Rui, L., Zhao, Y., Chen, Z. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury. © FASEB.
Bioactive Food Components, Inflammatory Targets, and Cancer Prevention
Kim, Young S.; Young, Matthew R.; Bobe, Gerd; Colburn, Nancy H.; Milner, John A.
2012-01-01
Various dietary components may modify chronic inflammatory processes at the stage of cytokine production, amplification of nuclear factor-κB–mediated inflammatory gene expression, and the release of anti-inflammatory cytokine, transforming growth factor-β. This review provides a synopsis of the strengths and weaknesses of the evidence that specific bioactive food components influence inflammation-related targets linked to cancer. A target repeatedly surfacing as a site of action for several dietary components is transforming growth factor β. Whereas the use of dietary intervention strategies offers intriguing possibilities for maintaining normal cell function by modifying a process that is essential for cancer development and progression, more information is needed to characterize the minimum quantity of the bioactive food components required to bring about a change in inflammation-mediated cancer, the ideal time for intervention, and the importance of genetics in determining the response. Unquestionably, the societal benefits of using foods and their components to prevent chronic inflammation and associated complications, including cancer, are enormous. PMID:19258539
Intraocular inflammation in autoimmune diseases.
Pras, Eran; Neumann, Ron; Zandman-Goddard, Gisele; Levy, Yair; Assia, Ehud I; Shoenfeld, Yehuda; Langevitz, Pnina
2004-12-01
The uveal tract represents the vascular organ of the eye. In addition to providing most of the blood supply to the intraocular structures, it acts as a conduit for immune cells, particularly lymphocytes, to enter the eye. Consequently, the uveal tract is represented in many intraocular inflammatory processes. Uveitis is probably a misnomer unless antigens within the uvea are the direct targets of the inflammatory process. A better term of the condition is "intraocular inflammation" (IOI). To review the presence of IOI in autoimmune diseases, the immunopathogenic mechanisms leading to disease, and treatment. We reviewed the English medical literature by using MEDLINE (1984-2003) employing the terms "uveitis," "intraocular inflammation," and "autoimmune diseases." An underlying autoimmune disease was identified in up to 40% of patients with IOI, and included spondyloarthropathies, Behcets disease, sarcoidosis, juvenile chronic arthritis, Vogt-Koyanagi-Harada syndrome (an inflammatory syndrome including uveitis with dermatologic and neurologic manifestations), immune recovery syndrome, and uveitis with tubulointerstitial disease. The immunopathogenesis of IOI involves enhanced T-cell response. Recently, guidelines for the use of immunosuppressive drugs for inflammatory eye disease were established and include: corticosteroids, azathioprine, methotrexate, mycophenolate mofetil, cyclosporine, tacrolimus, cyclophosphamide, and chlorambucil. New therapies with limited experience include the tumor necrosis factor alpha inhibitors, interferon alfa, monoclonal antibodies against lymphocyte surface antigens, intravenous immunoglobulin (IVIG), and the intraocular delivery of immunosuppressive agents. An underlying autoimmune disease was identified in up to 40% of patients with IOI. Immunosuppressive drugs, biologic agents, and IVIG are employed for the treatment of IOI in autoimmune diseases.
The resolution of inflammation: Principles and challenges.
Headland, Sarah E; Norling, Lucy V
2015-05-01
The concept that chemokines, cytokines and pro-inflammatory mediators act in a co-ordinated fashion to drive the initiation of the inflammatory reaction is well understood. The significance of such networks acting during the resolution of inflammation however is poorly appreciated. In recent years, specific pro-resolving mediators were discovered which activate resolution pathways to return tissues to homeostasis. These mediators are diverse in nature, and include specialized lipid mediators (lipoxins, resolvins, protectins and maresins) proteins (annexin A1, galectins) and peptides, gaseous mediators including hydrogen sulphide, a purine (adenosine), as well as neuromodulator release under the control of the vagus nerve. Functionally, they can act to limit further leukocyte recruitment, induce neutrophil apoptosis and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to the lymphatics and help initiate tissue repair mechanisms and healing. Within this review we highlight the essential cellular aspects required for successful tissue resolution, briefly discuss the pro-resolution mediators that drive these processes and consider potential challenges faced by researchers in the quest to discover how inflammation resolves and why chronic inflammation persists. Copyright © 2015 Elsevier Ltd. All rights reserved.
Allen, Irving C.; Wilson, Justin E.; Schneider, Monika; Lich, John D.; Roberts, Reid A.; Arthur, Janelle C.; Woodford, Rita-Marie T.; Davis, Beckley K.; Uronis, Joshua M.; Herfarth, Hans H.; Jobin, Christian; Rogers, Arlin B.; Ting, Jenny P.-Y.
2013-01-01
SUMMARY In vitro data suggest that a subgroup of NLR proteins, including NLRP12, inhibits the transcription factor NF-κB, although physiologic and disease-relevant evidence is largely missing. Dysregulated NF-κB activity is associated with colonic inflammation and cancer, and we found Nlrp12-/- mice were highly susceptible to colitis and colitis-associated colon cancer. Polyps isolated from Nlrp12-/- mice showed elevated non-canonical NF-κB activation and increased expression of target genes that were associated with cancer, including Cxcl13 and Cxcl12. NLRP12 negatively regulated ERK and AKT signaling pathways in affected tumor tissues. Both hematopoietic and nonhematopoietic-derived NLRP12 contributed to inflammation, but the latter dominantly contributed to tumorigenesis. The non-canonical NF-κB pathway was regulated upon degradation of TRAF3 and activation of NIK. NLRP12 interacted with both NIK and TRAF3, and Nlrp12-/- cells have constitutively elevated NIK, p100 processing to p52 and reduced TRAF3. Thus, NLRP12 is a checkpoint of noncanonical NF-κB, inflammation and tumorigenesis. PMID:22503542
Gusev, E Yu; Chereshnev, V A
2013-01-01
Theoretical and methodological approaches to description of systemic inflammation as general pathological process are discussed. It is shown, that there is a need of integration of wide range of types of researches to develop a model of systemic inflammation.
C-reactive protein in degenerative aortic valve stenosis
Sanchez, Pedro L; Mazzone, AnnaMaria
2006-01-01
Degenerative aortic valve stenosis includes a range of disorder severity from mild leaflet thickening without valve obstruction, "aortic sclerosis", to severe calcified aortic stenosis. It is a slowly progressive active process of valve modification similar to atherosclerosis for cardiovascular risk factors, lipoprotein deposition, chronic inflammation, and calcification. Systemic signs of inflammation, as wall and serum C-reactive protein, similar to those found in atherosclerosis, are present in patients with degenerative aortic valve stenosis and may be expression of a common disease, useful in monitoring of stenosis progression. PMID:16774687
Inflammation in aging: cause, effect, or both?
Jenny, Nancy S
2012-06-01
Aging is a progressive degenerative process tightly integrated with inflammation. Cause and effect are not clear. A number of theories have been developed that attempt to define the role of chronic inflammation in aging: redox stress, mitochondrial damage, immunosenescence, endocrinosenescence, epigenetic modifications, and age-related diseases. However, no single theory explains all aspects of aging; instead, it is likely that multiple processes contribute and that all are intertwined with inflammatory responses. Human immunodeficiency virus (HIV)-infected patients undergo a premature aging phenomenon which may provide clues to better elucidate the nature of inflammation in aging. Environmental and lifestyle effectors of inflammation may also contribute to modulation of both inflammation and age-related dysfunction.
Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Abe, Jun-Ichi; Berk, Bradford C; Li, Jian-Dong; Yan, Chen
2010-05-25
Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-alpha-induced NF-kappaB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-alpha- or LPS-induced up-regulation of proinflammatory mediators, including TNF-alpha, IL-1beta, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-alpha- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-kappaB-dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca(2+) regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases.
Vinpocetine inhibits NF-κB–dependent inflammation via an IKK-dependent but PDE-independent mechanism
Jeon, Kye-Im; Xu, Xiangbin; Aizawa, Toru; Lim, Jae Hyang; Jono, Hirofumi; Kwon, Dong-Seok; Berk, Bradford C.; Li, Jian-Dong; Yan, Chen
2010-01-01
Inflammation is a hallmark of many diseases, such as atherosclerosis, chronic obstructive pulmonary disease, arthritis, infectious diseases, and cancer. Although steroids and cyclooxygenase inhibitors are effective antiinflammatory therapeutical agents, they may cause serious side effects. Therefore, developing unique antiinflammatory agents without significant adverse effects is urgently needed. Vinpocetine, a derivative of the alkaloid vincamine, has long been used for cerebrovascular disorders and cognitive impairment. Its role in inhibiting inflammation, however, remains unexplored. Here, we show that vinpocetine acts as an antiinflammatory agent in vitro and in vivo. In particular, vinpocetine inhibits TNF-α–induced NF-κB activation and the subsequent induction of proinflammatory mediators in multiple cell types, including vascular smooth muscle cells, endothelial cells, macrophages, and epithelial cells. We also show that vinpocetine inhibits monocyte adhesion and chemotaxis, which are critical processes during inflammation. Moreover, vinpocetine potently inhibits TNF-α- or LPS-induced up-regulation of proinflammatory mediators, including TNF-α, IL-1β, and macrophage inflammatory protein-2, and decreases interstitial infiltration of polymorphonuclear leukocytes in a mouse model of TNF-α- or LPS-induced lung inflammation. Interestingly, vinpocetine inhibits NF-κB–dependent inflammatory responses by directly targeting IKK, independent of its well-known inhibitory effects on phosphodiesterase and Ca2+ regulation. These studies thus identify vinpocetine as a unique antiinflammatory agent that may be repositioned for the treatment of many inflammatory diseases. PMID:20448200
Role of inflammation in cardiopulmonary health effects of PM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, Ken; Mills, Nicholas; MacNee, William
2005-09-01
The relationship between increased exposure to PM and adverse cardiovascular effects is well documented in epidemiological studies. Inflammation in the lungs, caused by deposited particles, can be seen as a key process that could mediate adverse effects on the cardiovascular system. There are at least three potential pathways that could lead from pulmonary inflammation to adverse cardiovascular effects. Firstly, inflammation in the lung could lead to systemic inflammation, which is well known to be linked to sudden death from cardiovascular causes. Systemic inflammation can lead to destabilization by activation of inflammatory processes in atheromatous plaques. Secondly, inflammation can cause anmore » imbalance in coagulation factors that favor propagation of thrombi if thrombosis is initiated. Thirdly, inflammation could affect the autonomic nervous system activity in ways that could lead to alterations in the control of heart rhythm which could culminate in fatal dysrhythmia.« less
Shevchenko, A V; Konenkov, V I; Prokofiev, V F; Ragino, Yu I; Chernjavski, A M; Voevoda, M I
2016-03-01
Great number of factors stimulating or inhibiting production of proteins in inflammatory process influence serum levels of markers of inflammation. A number of homozygous genotypes of inflammation, destruction, and angiogenesis genes have been found to be associated with basic clinical-laboratory indices of inflammation and atherosclerotic process. The revealed genetic markers can be used as complimentary markers of prognosis of the disease course.
The Role of Reactive-Oxygen-Species in Microbial Persistence and Inflammation
Spooner, Ralee; Yilmaz, Özlem
2011-01-01
The mechanisms of chronic infections caused by opportunistic pathogens are of keen interest to both researchers and health professionals globally. Typically, chronic infectious disease can be characterized by an elevation in immune response, a process that can often lead to further destruction. Reactive-Oxygen-Species (ROS) have been strongly implicated in the aforementioned detrimental response by host that results in self-damage. Unlike excessive ROS production resulting in robust cellular death typically induced by acute infection or inflammation, lower levels of ROS produced by host cells are increasingly recognized to play a critical physiological role for regulating a variety of homeostatic cellular functions including growth, apoptosis, immune response, and microbial colonization. Sources of cellular ROS stimulation can include “danger-signal-molecules” such as extracellular ATP (eATP) released by stressed, infected, or dying cells. Particularly, eATP-P2X7 receptor mediated ROS production has been lately found to be a key modulator for controlling chronic infection and inflammation. There is growing evidence that persistent microbes can alter host cell ROS production and modulate eATP-induced ROS for maintaining long-term carriage. Though these processes have yet to be fully understood, exploring potential positive traits of these “injurious” molecules could illuminate how opportunistic pathogens maintain persistence through physiological regulation of ROS signaling. PMID:21339989
Endothelial cells: From innocent bystanders to active participants in immune responses.
Al-Soudi, A; Kaaij, M H; Tas, S W
2017-09-01
The endothelium is crucially important for the delivery of oxygen and nutrients throughout the body under homeostatic conditions. However, it also contributes to pathology, including the initiation and perpetuation of inflammation. Understanding the function of endothelial cells (ECs) in inflammatory diseases and molecular mechanisms involved may lead to novel approaches to dampen inflammation and restore homeostasis. In this article, we discuss the various functions of ECs in inflammation with a focus on pathological angiogenesis, attraction of immune cells, antigen presentation, immunoregulatory properties and endothelial-to-mesenchymal transition (EndMT). We also review the current literature on approaches to target these processes in ECs to modulate immune responses and advance anti-inflammatory therapies. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Update in Pathological Diagnosis of Orbital Infections and Inflammations
Lam Choi, Vincent B.; Yuen, Hunter K. L.; Biswas, Jyotirmay; Yanoff, Myron
2011-01-01
Orbital infections and inflammations include a broad spectrum of orbital diseases that can be idiopathic, infectious, from primary or secondary inflammatory processes. Being able to properly diagnose and manage these orbital diseases in a timely manner can avoid permanent vision loss and possibly save a patient's life. When clinicians are faced with such patients, quite often the exact diagnosis cannot be made just based on clinical examination, various laboratory tests and imaging are needed. Moreover, orbital biopsies with histopathological analyses are often required, especially for the atypical cases. Thus, it is important for the clinicians to be familiar with the pathological features and characteristics of these orbital diseases. This review provides a comprehensive update on the clinical and pathological diagnosis of these orbital infections and inflammations. PMID:22224014
Role of reactive oxygen and nitrogen species in the vascular responses to inflammation
Kvietys, Peter R.; Granger, D. Neil
2012-01-01
Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653
Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge.
Kiecolt-Glaser, Janice K
2010-05-01
Inflammation is the common link among the leading causes of death. Mechanistic studies have shown how various dietary components can modulate key pathways to inflammation, including sympathetic activity, oxidative stress, transcription factor nuclear factor-kappaB activation, and proinflammatory cytokine production. Behavioral studies have demonstrated that stressful events and depression can also influence inflammation through these same processes. If the joint contributions of diet and behavior to inflammation were simply additive, they would be important. However, several far more intriguing interactive possibilities are discussed: stress influences food choices; stress can enhance maladaptive metabolic responses to unhealthy meals; and diet can affect mood as well as proinflammatory responses to stressors. Furthermore, because the vagus nerve innervates tissues involved in the digestion, absorption, and metabolism of nutrients, vagal activation can directly and profoundly influence metabolic responses to food, as well as inflammation; in turn, both depression and stress have well-documented negative effects on vagal activation, contributing to the lively interplay between the brain and the gut. As one example, omega-3 fatty acid intake can boost mood and vagal tone, dampen nuclear factor-kappaB activation and responses to endotoxin, and modulate the magnitude of inflammatory responses to stressors. A better understanding of how stressors, negative emotions, and unhealthy meals work together to enhance inflammation will benefit behavioral and nutritional research, as well as the broader biomedical community.
Chemistry meets biology in colitis-associated carcinogenesis
Mangerich, Aswin; Dedon, Peter C.; Fox, James G.; Tannenbaum, Steven R.; Wogan, Gerald N.
2015-01-01
The intestine comprises an exceptional venue for a dynamic and complex interplay of numerous chemical and biological processes. Here, multiple chemical and biological systems, including the intestinal tissue itself, its associated immune system, the gut microbiota, xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state of tissue homoeostasis. Disturbance of this homeostasis can cause inflammatory bowel disease (IBD) – a chronic disease of multifactorial etiology that is strongly associated with increased risk for cancer development. This review addresses recent developments in research into chemical and biological mechanisms underlying the etiology of inflammation-induced colon cancer. Beginning with a general overview of reactive chemical species generated during colonic inflammation, the mechanistic interplay between chemical and biological mediators of inflammation, the role of genetic toxicology and microbial pathogenesis in disease development are discussed. When possible, we systematically compare evidence from studies utilizing human IBD patients with experimental investigations in mice. The comparison reveals that many strong pathological and mechanistic correlates exist between mouse models of colitis-associated cancer, and the clinically relevant situation in humans. We also summarize several emerging issues in the field, such as the carcinogenic potential of novel inflammation-related DNA adducts and genotoxic microbial factors, the systemic dimension of inflammation-induced genotoxicity, and the complex role of genome maintenance mechanisms during these processes. Taken together, current evidence points to the induction of genetic and epigenetic alterations by chemical and biological inflammatory stimuli ultimately leading to cancer formation. PMID:23926919
Koushki, Davood; Latifi, Sahar; Norouzi Javidan, Abbas; Matin, Marzieh
2015-01-01
Context Inflammation after spinal cord injury (SCI) may be responsible for further neural damages and therefore inhibition of inflammatory processes may exert a neuroprotection effect. Objectives To assess the efficacy of some non-conventional herbal medications including sulforaphane, tanshinone IIA, and tetramethylpyrazine in reducing inflammation and compare them with a known effective anti-inflammatory agent (interleukin-10 (IL-10)). Methods We searched relevant articles in Ovid database, Medline (PubMed) EMBASE, Google Scholar, Cochrane, and Scopus up to June 2013. The efficacy of each treatment and study powers were compared using random effects model of meta-analysis. To our knowledge, no conflict of interest exists. Results Eighteen articles entered into the study. The meta-analysis revealed that exogenous IL-10 was more effective in comparison with the mentioned herbal extracts. The proposed pathways for each medication's effect on reducing the inflammation process are complex and many overlaps may exist. Conclusion IL-10 has a strong effect in the induction of neuroprotection and neurorecovery after SCI by multiple pathways. Tetramethylpyrazine has an acceptable influence in reducing inflammation through the up-regulation of IL-10. Outcomes of sulforaphane and tanshinone IIA administration are acceptable but still weaker than IL-10. PMID:24969510
Jabs, Douglas A; Nussenblatt, Robert B; Rosenbaum, James T
2005-09-01
To begin a process of standardizing the methods for reporting clinical data in the field of uveitis. Consensus workshop. Members of an international working group were surveyed about diagnostic terminology, inflammation grading schema, and outcome measures, and the results used to develop a series of proposals to better standardize the use of these entities. Small groups employed nominal group techniques to achieve consensus on several of these issues. The group affirmed that an anatomic classification of uveitis should be used as a framework for subsequent work on diagnostic criteria for specific uveitic syndromes, and that the classification of uveitis entities should be on the basis of the location of the inflammation and not on the presence of structural complications. Issues regarding the use of the terms "intermediate uveitis," "pars planitis," "panuveitis," and descriptors of the onset and course of the uveitis were addressed. The following were adopted: standardized grading schema for anterior chamber cells, anterior chamber flare, and for vitreous haze; standardized methods of recording structural complications of uveitis; standardized definitions of outcomes, including "inactive" inflammation, "improvement'; and "worsening" of the inflammation, and "corticosteroid sparing," and standardized guidelines for reporting visual acuity outcomes. A process of standardizing the approach to reporting clinical data in uveitis research has begun, and several terms have been standardized.
Koushki, Davood; Latifi, Sahar; Norouzi Javidan, Abbas; Matin, Marzieh
2015-01-01
Inflammation after spinal cord injury (SCI) may be responsible for further neural damages and therefore inhibition of inflammatory processes may exert a neuroprotection effect. To assess the efficacy of some non-conventional herbal medications including sulforaphane, tanshinone IIA, and tetramethylpyrazine in reducing inflammation and compare them with a known effective anti-inflammatory agent (interleukin-10 (IL-10)). We searched relevant articles in Ovid database, Medline (PubMed) EMBASE, Google Scholar, Cochrane, and Scopus up to June 2013. The efficacy of each treatment and study powers were compared using random effects model of meta-analysis. To our knowledge, no conflict of interest exists. Eighteen articles entered into the study. The meta-analysis revealed that exogenous IL-10 was more effective in comparison with the mentioned herbal extracts. The proposed pathways for each medication's effect on reducing the inflammation process are complex and many overlaps may exist. IL-10 has a strong effect in the induction of neuroprotection and neurorecovery after SCI by multiple pathways. Tetramethylpyrazine has an acceptable influence in reducing inflammation through the up-regulation of IL-10. Outcomes of sulforaphane and tanshinone IIA administration are acceptable but still weaker than IL-10.
Effect of advanced glycation end product intake on inflammation and aging: a systematic review.
Van Puyvelde, Katrien; Mets, Tony; Njemini, Rose; Beyer, Ingo; Bautmans, Ivan
2014-10-01
Aging is associated with a chronic low-grade inflammatory status that contributes to chronic diseases such as age-related muscle wasting, kidney disease, and diabetes mellitus. Since advanced glycation end products (AGEs) are known to be proinflammatory, this systematic review examined the relation between the dietary intake of AGEs and inflammatory processes. The PubMed and Web of Science databases were screened systematically. Seventeen relevant studies in humans or animals were included. The intervention studies in humans showed mainly a decrease in inflammation in subjects on a low-AGE diet, while an increase in inflammation in subjects on a high-AGE diet was less apparent. About half of the observational studies found a relationship between inflammatory processes and AGEs in food. When the results are considered together, the dietary intake of AGEs appears to be related to inflammatory status and the level of circulating AGEs. Moreover, limiting AGE intake may lead to a decrease in inflammation and chronic diseases related to inflammatory status. Most of the trials were conducted in patients with chronic kidney disease or diabetes, and thus additional studies in healthy individuals are needed. Further investigation is needed to elucidate the effects of lifetime exposure of dietary AGEs on aging and health. © 2014 International Life Sciences Institute.
Agudo, Judith; Ayuso, Eduard; Jimenez, Veronica; Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Tafuro, Sabrina; Obach, Mercè; Ruzo, Albert; Moya, Marta; Pujol, Anna; Bosch, Fatima
2012-01-01
Type 2 diabetes (T2D) results from insulin resistance and inadequate insulin secretion. Insulin resistance initially causes compensatory islet hyperplasia that progresses to islet disorganization and altered vascularization, inflammation, and, finally, decreased functional β-cell mass and hyperglycemia. The precise mechanism(s) underlying β-cell failure remain to be elucidated. In this study, we show that in insulin-resistant high-fat diet-fed mice, the enhanced islet vascularization and inflammation was parallel to an increased expression of vascular endothelial growth factor A (VEGF). To elucidate the role of VEGF in these processes, we have genetically engineered β-cells to overexpress VEGF (in transgenic mice or after adeno-associated viral vector-mediated gene transfer). We found that sustained increases in β-cell VEGF levels led to disorganized, hypervascularized, and fibrotic islets, progressive macrophage infiltration, and proinflammatory cytokine production, including tumor necrosis factor-α and interleukin-1β. This resulted in impaired insulin secretion, decreased β-cell mass, and hyperglycemia with age. These results indicate that sustained VEGF upregulation may participate in the initiation of a process leading to β-cell failure and further suggest that compensatory islet hyperplasia and hypervascularization may contribute to progressive inflammation and β-cell mass loss during T2D. PMID:22961079
Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation.
Iyengar, Neil M; Gucalp, Ayca; Dannenberg, Andrew J; Hudis, Clifford A
2016-12-10
Purpose There is growing evidence that inflammation is a central and reversible mechanism through which obesity promotes cancer risk and progression. Methods We review recent findings regarding obesity-associated alterations in the microenvironment and the local and systemic mechanisms through which these changes support tumor growth. Results Locally, hyperadiposity is associated with altered adipose tissue function, adipocyte death, and chronic low-grade inflammation. Most individuals who are obese harbor inflamed adipose tissue, which resembles chronically injured tissue, with immune cell infiltration and remodeling. Within this distinctly altered local environment, several pathophysiologic changes are found that may promote breast and other cancers. Consistently, adipose tissue inflammation is associated with a worse prognosis in patients with breast and tongue cancers. Systemically, the metabolic syndrome, including dyslipidemia and insulin resistance, occurs in the setting of adipose inflammation and operates in concert with local mechanisms to sustain the inflamed microenvironment and promote tumor growth. Importantly, adipose inflammation and its protumor consequences can be found in some individuals who are not considered to be obese or overweight by body mass index. Conclusion The tumor-promoting effects of obesity occur at the local level via adipose inflammation and associated alterations in the microenvironment, as well as systemically via circulating metabolic and inflammatory mediators associated with adipose inflammation. Accurately characterizing the obese state and identifying patients at increased risk for cancer development and progression will likely require more precise assessments than body mass index alone. Biomarkers of adipose tissue inflammation would help to identify high-risk populations. Moreover, adipose inflammation is a reversible process and represents a novel therapeutic target that warrants further study to break the obesity-cancer link.
Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis.
Ilich, Jasminka Z; Kelly, Owen J; Kim, Youjin; Spicer, Maria T
2014-06-01
Some of the universal characteristics of pre-agricultural hominin diets are strikingly different from the modern human diet. Hominin dietary choices were limited to wild plant and wild animal foods, while the modern diet includes more than 70 % of energy consumed from refined sugars, refined vegetable oils, and highly processed cereals and dairy products. The modern diet, with higher intake of fat has also resulted in a higher ratio of omega-6 (n-6) to omega-3 (n-3) polyunsaturated fatty acids (PUFA), contributing to low-grade chronic inflammation (LGCI) and thus promoting the development of many chronic diseases, including obesity and osteoporosis. In this review, we describe the changes in modern diet, focusing on the kind and amount of consumed fat; explain the shortcomings of the modern diet with regard to inflammatory processes; and delineate the reciprocity between adiposity and inflammatory processes, with inflammation being a common link between obesity and osteoporosis. We present the evidence that overconsumption of n-6 PUFA coupled with under-consumption of n-3 PUFA results in LGCI and, along with the increased presence of reactive oxygen species, leads to a shift in mesenchymal stem cells (precursors for both osteoblasts and adipocytes) lineage commitment toward increased adipogenesis and suppressed osteoblastogenesis. In turn, high n-6 to n-3 PUFA ratios in the modern diet, coupled with increased synthesis of pro-inflammatory cytokines due to adiposity, propagate obesity and osteoporosis by increasing or maintaining LGCI.
Social Support and Heart Failure: Differing Effects by Race
2015-05-11
responses. These compensatory physiologic responses include increased sympathetic nervous system activity, inflammation, and constriction of blood vessels... physiological differences between African Americans and Caucasians. For instance the process by which sodium is processed in the body may vary between...associated cardiovascular and inflammatory diseases (76). One important hormone at work in the cardiovascular system is aldosterone and it may have a
Conroy, Melissa J; Galvin, Karen C; Doyle, Suzanne L; Kavanagh, Maria E; Mongan, Ann-Marie; Cannon, Aoife; Moore, Gillian Y; Reynolds, John V; Lysaght, Joanne
2016-10-01
In the midst of a worsening obesity epidemic, the incidence of obesity-associated morbidities, including cancer, diabetes, cardiac and liver disease is increasing. Insights into mechanisms underlying pathological obesity-associated inflammation are lacking. Both the omentum, the principal component of visceral fat, and liver of obese individuals are sites of excessive inflammation, but to date the T cell profiles of both compartments have not been assessed or compared in a patient cohort with obesity-associated disease. We have previously identified that omentum is enriched with inflammatory cytokines, chemokines and T cells. Here, we compared the inflammatory profile of T cells in the omentum and liver of patients with the obesity-associated malignancy oesophageal adenocarcinoma (OAC). Furthermore, we assessed the secreted cytokine profile in OAC patient serum, omentum and liver to assess systemic and local inflammation. We observed parallel T cell cytokine profiles and phenotypes in the omentum and liver of OAC patients, in particular CD69(+) and inflammatory effector memory T cells. This study reflects similar processes of inflammation and T cell activation in the omentum and liver, and may suggest common targets to modulate pathological inflammation at these sites.
Obstructive renal injury: from fluid mechanics to molecular cell biology.
Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto
2010-04-22
Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.
Diet and Inflammation in Alzheimer's Disease and Related Chronic Diseases: A Review.
Gardener, Samantha L; Rainey-Smith, Stephanie R; Martins, Ralph N
2016-01-01
Inflammation is one of the pathological features of the neurodegenerative disease, Alzheimer's disease (AD). A number of additional disorders are likewise associated with a state of chronic inflammation, including obesity, cardiovascular disease, and type-2 diabetes, which are themselves risk factors for AD. Dietary components have been shown to modify the inflammatory process at several steps of the inflammatory pathway. This review aims to evaluate the published literature on the effect of consumption of pro- or anti-inflammatory dietary constituents on the severity of both AD pathology and related chronic diseases, concentrating on the dietary constituents of flavonoids, spices, and fats. Diet-based anti-inflammatory components could lead to the development of potent novel anti-inflammatory compounds for a range of diseases. However, further work is required to fully characterize the therapeutic potential of such compounds, including gaining an understanding of dose-dependent relationships and limiting factors to effectiveness. Nutritional interventions utilizing anti-inflammatory foods may prove to be a valuable asset in not only delaying or preventing the development of age-related neurodegenerative diseases such as AD, but also treating pre-existing conditions including type-2 diabetes, cardiovascular disease, and obesity.
Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer
Talero, Elena; García-Mauriño, Sofía; Ávila-Román, Javier; Rodríguez-Luna, Azahara; Alcaide, Antonio; Motilva, Virginia
2015-01-01
The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity. PMID:26437418
Repositioning drugs for inflammatory disease – fishing for new anti-inflammatory agents
Hall, Christopher J.; Wicker, Sophie M.; Chien, An-Tzu; Tromp, Alisha; Lawrence, Lisa M.; Sun, Xueying; Krissansen, Geoffrey W.; Crosier, Kathryn E.; Crosier, Philip S.
2014-01-01
Inflammation is an important and appropriate host response to infection or injury. However, dysregulation of this response, with resulting persistent or inappropriate inflammation, underlies a broad range of pathological processes, from inflammatory dermatoses to type 2 diabetes and cancer. As such, identifying new drugs to suppress inflammation is an area of intense interest. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat inflammation. Traditional drug discovery, including structure-based drug design, have largely fallen short of satisfying this unmet need. With faster development times and reduced safety and pharmacokinetic uncertainty, drug repositioning – the process of finding new uses for existing drugs – is emerging as an alternative strategy to traditional drug design that promises an improved risk-reward trade-off. Using a zebrafish in vivo neutrophil migration assay, we undertook a drug repositioning screen to identify unknown anti-inflammatory activities for known drugs. By interrogating a library of 1280 approved drugs for their ability to suppress the recruitment of neutrophils to tail fin injury, we identified a number of drugs with significant anti-inflammatory activity that have not previously been characterized as general anti-inflammatories. Importantly, we reveal that the ten most potent repositioned drugs from our zebrafish screen displayed conserved anti-inflammatory activity in a mouse model of skin inflammation (atopic dermatitis). This study provides compelling evidence that exploiting the zebrafish as an in vivo drug repositioning platform holds promise as a strategy to reveal new anti-inflammatory activities for existing drugs. PMID:25038060
Aging and inflammation: etiological culprits of cancer.
Ahmad, Aamir; Banerjee, Sanjeev; Wang, Zhiwei; Kong, Dejuan; Majumdar, Adhip P N; Sarkar, Fazlul H
2009-12-01
The biochemical phenomenon of aging, as universal as it is, still remains poorly understood. A number of diseases are associated with aging either as a cause or consequence of the aging process. The incidence of human cancers increases exponentially with age and therefore cancer stands out as a disease that is intricately connected to the process of aging. Emerging evidence clearly suggests that there is a symbiotic relationship between aging, inflammation and chronic diseases such as cancer; however, it is not clear whether aging leads to the induction of inflammatory processes thereby resulting in the development and maintenance of chronic diseases or whether inflammation is the causative factor for inducing both aging and chronic diseases such as cancer. Moreover, the development of chronic diseases especially cancer could also lead to the induction of inflammatory processes and may cause premature aging, suggesting that longitudinal research strategies must be employed for dissecting the interrelationships between aging, inflammation and cancer. Here, we have described our current understanding on the importance of inflammation, activation of NF-kappaB and various cytokines and chemokines in the processes of aging and in the development of chronic diseases especially cancer. We have also reviewed the prevailing theories of aging and provided succinct evidence in support of novel theories such as those involving cancer stem cells, the molecular understanding of which would likely hold a great promise towards unraveling the complex relationships between aging, inflammation and cancer.
Dietary PUFA and flavonoids as deterrents for environmental pollutants.
Watkins, Bruce A; Hannon, Kevin; Ferruzzi, Mario; Li, Yong
2007-03-01
Various nutrients and plant-derived phytochemicals are associated with a reduced risk of many diet-related chronic diseases including cardiovascular disease, cancer, diabetes, arthritis and osteoporosis. A common theme that links many chronic diseases is uncontrolled inflammation. The long-chain (LC) omega-3 polyunsaturated fatty acids (PUFA) and flavonoids are known to possess anti-inflammatory actions in cell cultures, animal models and humans. Minimizing the condition of persistent inflammation has been a primary aim for drug development, but understanding how food components attenuate this process is at the nexus for improving the human condition. The prevalence of environmental toxins such as heavy metals and organics that contribute to diminished levels of antioxidants likely aggravates inflammatory states when intakes of omega-3 PUFA and flavonoids are marginal. Scientists at Purdue University have formed a collaboration to better understand the metabolism and physiology of flavonoids. This new effort is focused on determining how candidate flavonoids and their metabolites affect gene targets of inflammation in cell culture and animal models. The challenge of this research is to understand how LC omega-3 PUFA and flavonoids affect the biology of inflammation. The goal is to determine how nutrients and phytochemicals attenuate chronic inflammation associated with a number of diet-related diseases that occur throughout the life cycle. The experimental approach involves molecular, biochemical and physiological endpoints of aging, cancer, obesity and musculoskeletal diseases. Examples include investigations on the combined effects of PUFA and cyanidins on inflammatory markers in cultures of human cancer cells. The actions of catechins and PUFA on muscle loss and osteopenia are being studied in a rodent model of disuse atrophy to explain how muscle and bone communicate to prevent tissue loss associated with injury, disease and aging. The purpose of this review is to introduce the concept for studying food components that influence inflammation and how LC omega-3 PUFA and flavonoids could be used therapeutically against inflammation that is mediated by environmental pollutants.
Inflammation occurs early during the Abeta deposition process in TgCRND8 mice.
Dudal, Sherri; Krzywkowski, Pascale; Paquette, Julie; Morissette, Céline; Lacombe, Diane; Tremblay, Patrick; Gervais, Francine
2004-08-01
Alzheimer's disease (AD) is characterized by a progressive cognitive decline leading to dementia and involves the deposition of amyloid-beta (Abeta) peptides into senile plaques. Other neuropathological features that accompany progression of the disease include a decrease in synaptic density, neurofibrillary tangles, dystrophic neurites, inflammation, and neuronal cell loss. In this study, we report the early kinetics of brain amyloid deposition and its associated inflammation in an early onset transgenic mouse model of AD (TgCRND8) harboring the human amyloid precursor protein gene with the Indiana and Swedish mutations. Both diffuse and compact plaques were detected as early as 9-10 weeks of age. Abeta-immunoreactive (Abeta-IR) plaques (4G8-positive) appeared first in the neocortex and amygdala, then in the hippocampal formation, and lastly in the thalamus. Compact plaques (ThioS-positive) with an amyloid core were observed as early as diffuse plaques were detected, but in lower numbers. Amyloid deposition increased progressively with age. The formation of plaques was concurrent with the appearance of activated microglial cells and shortly followed by the clustering of activated astrocytes around plaques at 13-14 weeks of age. This TgCRND8 mouse model allows for a rapid, time-dependent study of the relationship between the fibrillogenic process and the inflammatory response during the brain amyloidogenic process.
Negative-pressure Wound Therapy in Chronic Inflammatory Breast Diseases
Namdaroğlu, Ozan Barış; Yazıcı, Hilmi; Öztürk, Ahmet Mücteba; Yakan, Savaş; Yıldırım, Mehmet; Uçar, Ahmet Deniz; Erkan, Nazif
2016-01-01
Mastitis is inflammation of breast tissue that may or may not originate from an infection. Two different forms of mastitis have been described, lactational and non-lactational. Lactational mastitis is the most common type and generally conservative therapy that includes milk removal and physical therapy provides symptomatic relief, but antibiotic therapy is also needed. Common types of non-lactational mastitis are periductal mastitis and idiopathic granulomatous mastitis. Treatment includes antibiotics, drainage, and surgery, but usually this is a chronic process and a therapeutic management algorithm for chronic breast inflammation is unclear and has no consensus. Negative-pressure wound therapy is commonly used for various types of wounds but is limited for breast wounds. In this report, we present and discuss two patients with chronic breast inflammation who underwent surgery and were successfully treated using negative-pressure wound therapy to minimize wide tissue defects and cosmetic problems after surgery. Use of negative-pressure wound therapy for breast wounds might be benefical as it is with other wounds but there is scarce information in the literature PMID:28331742
Calviello, Gabriella; Su, Hui-Min; Weylandt, Karsten H.; Fasano, Elena; Serini, Simona; Cittadini, Achille
2013-01-01
A large body of evidence has emerged over the past years to show the critical role played by inflammation in the pathogenesis of several diseases including some cardiovascular, neoplastic, and neurodegenerative diseases, previously not considered inflammation-related. The anti-inflammatory action of ω-3 polyunsaturated fatty acids (PUFAs), as well as their potential healthy effects against the development and progression of the same diseases, has been widely studied by our and others' laboratories. As a result, a rethinking is taking place on the possible mechanisms underlying the beneficial effects of ω-3 PUFAs against these disorders, and, in particular, on the influence that they may exert on the molecular pathways involved in inflammatory process, including the production of inflammatory cytokines and lipid mediators active in the resolving phase of inflammation. In the present review we will summarize and discuss the current knowledge regarding the modulating effects of ω-3 PUFAs on the production of inflammatory cytokines and proresolving or protective lipid mediators in the context of inflammatory, metabolic, neurodegenerative, and neoplastic diseases. PMID:23691510
Source of Chronic Inflammation in Aging.
Sanada, Fumihiro; Taniyama, Yoshiaki; Muratsu, Jun; Otsu, Rei; Shimizu, Hideo; Rakugi, Hiromi; Morishita, Ryuichi
2018-01-01
Aging is a complex process that results from a combination of environmental, genetic, and epigenetic factors. A chronic pro-inflammatory status is a pervasive feature of aging. This chronic low-grade inflammation occurring in the absence of overt infection has been defined as "inflammaging" and represents a significant risk factor for morbidity and mortality in the elderly. The low-grade inflammation persists even after reversing pro-inflammatory stimuli such as LDL cholesterol and the renin-angiotensin system (RAS). Recently, several possible sources of chronic low-grade inflammation observed during aging and age-related diseases have been proposed. Cell senescence and dysregulation of innate immunity is one such mechanism by which persistent prolonged inflammation occurs even after the initial stimulus has been removed. Additionally, the coagulation factor that activates inflammatory signaling beyond its role in the coagulation system has been identified. This signal could be a new source of chronic inflammation and cell senescence. Here, we summarized the factors and cellular pathways/processes that are known to regulate low-grade persistent inflammation in aging and age-related disease.
Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis.
Cattaneo, Annamaria; Macchi, Flavia; Plazzotta, Giona; Veronica, Begni; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine Maria
2015-01-01
During the past two decades, there has been increasing interest in understanding and characterizing the role of inflammation in major depressive disorder (MDD). Indeed, several are the evidences linking alterations in the inflammatory system to Major Depression, including the presence of elevated levels of pro-inflammatory cytokines, together with other mediators of inflammation. However, it is still not clear whether inflammation represents a cause or whether other factors related to depression result in these immunological effects. Regardless, exposure to early life stressful events, which represent a vulnerability factor for the development of psychiatric disorders, act through the modulation of inflammatory responses, but also of neuroplastic mechanisms over the entire life span. Indeed, early life stressful events can cause, possibly through epigenetic changes that persist over time, up to adulthood. Such alterations may concur to increase the vulnerability to develop psychopathologies. In this review we will discuss the role of inflammation and neuronal plasticity as relevant processes underlying depression development. Moreover, we will discuss the role of epigenetics in inducing alterations in inflammation-immune systems as well as dysfunction in neuronal plasticity, thus contributing to the long-lasting negative effects of stressful life events early in life and the consequent enhanced risk for depression. Finally we will provide an overview on the potential role of inflammatory system to aid diagnosis, predict treatment response, enhance treatment matching, and prevent the onset or relapse of Major Depression.
Inflammation and premature aging in advanced chronic kidney disease.
Kooman, Jeroen P; Dekker, Marijke J; Usvyat, Len A; Kotanko, Peter; van der Sande, Frank M; Schalkwijk, Casper G; Shiels, Paul G; Stenvinkel, Peter
2017-10-01
Systemic inflammation in end-stage renal disease is an established risk factor for mortality and a catalyst for other complications, which are related to a premature aging phenotype, including muscle wasting, vascular calcification, and other forms of premature vascular disease, depression, osteoporosis, and frailty. Uremic inflammation is also mechanistically related to mechanisms involved in the aging process, such as telomere shortening, mitochondrial dysfunction, and altered nutrient sensing, which can have a direct effect on cellular and tissue function. In addition to uremia-specific causes, such as abnormalities in the phosphate-Klotho axis, there are remarkable similarities between the pathophysiology of uremic inflammation and so-called "inflammaging" in the general population. Potentially relevant, but still somewhat unexplored in this respect, are abnormal or misplaced protein structures, as well as abnormalities in tissue homeostasis, which evoke danger signals through damage-associated molecular patterns, as well as the senescence-associated secretory phenotype. Systemic inflammation, in combination with the loss of kidney function, can impair the resilience of the body to external and internal stressors by reduced functional and structural tissue reserves, and by impairing normal organ crosstalk, thus providing an explanation for the greatly increased risk of homeostatic breakdown in this population. In this review, the relationship between uremic inflammation and a premature aging phenotype, as well as potential causes and consequences, are discussed. Copyright © 2017 the American Physiological Society.
Suen, Jenni; Thomas, Jolene; Kranz, Amelia; Vun, Simon; Miller, Michelle
2016-01-01
Oxidative stress (OS) and inflammatory processes initiate the first stage of cardiovascular disease (CVD). Flavonoid consumption has been related to significantly improved flow-mediated dilation and blood pressure. Antioxidant and anti-inflammatory mechanisms are thought to be involved. The effect of flavonoids on markers of oxidative stress and inflammation, in at risk individuals is yet to be reviewed. Systematic literature searches were conducted in MEDLINE, Cochrane Library, CINAHL and SCOPUS databases. Randomised controlled trials in a Western country providing a food-based flavonoid intervention to participants with one or two modifiable risk factors for CVD measuring a marker of OS and/or inflammation, were included. Reference lists were hand-searched. The Cochrane Collaboration Risk of Bias Tool was used to assess study quality. The search strategy retrieved 1248 articles. Nineteen articles meeting the inclusion criteria were reviewed. Eight studies were considered at low risk of bias. Cocoa flavonoids provided to Type 2 diabetics and olive oil flavonoids to mildly-hypertensive women reduced OS and inflammation. Other food sources had weaker effects. No consistent effect on OS and inflammation across patients with varied CVD risk factors was observed. Study heterogeneity posed a challenge for inter-study comparisons. Rigorously designed studies will assist in determining the effectiveness of flavonoid interventions for reducing OS and inflammation in patients at risk of CVD. PMID:27649255
Suen, Jenni; Thomas, Jolene; Kranz, Amelia; Vun, Simon; Miller, Michelle
2016-09-14
Oxidative stress (OS) and inflammatory processes initiate the first stage of cardiovascular disease (CVD). Flavonoid consumption has been related to significantly improved flow-mediated dilation and blood pressure. Antioxidant and anti-inflammatory mechanisms are thought to be involved. The effect of flavonoids on markers of oxidative stress and inflammation, in at risk individuals is yet to be reviewed. Systematic literature searches were conducted in MEDLINE, Cochrane Library, CINAHL and SCOPUS databases. Randomised controlled trials in a Western country providing a food-based flavonoid intervention to participants with one or two modifiable risk factors for CVD measuring a marker of OS and/or inflammation, were included. Reference lists were hand-searched. The Cochrane Collaboration Risk of Bias Tool was used to assess study quality. The search strategy retrieved 1248 articles. Nineteen articles meeting the inclusion criteria were reviewed. Eight studies were considered at low risk of bias. Cocoa flavonoids provided to Type 2 diabetics and olive oil flavonoids to mildly-hypertensive women reduced OS and inflammation. Other food sources had weaker effects. No consistent effect on OS and inflammation across patients with varied CVD risk factors was observed. Study heterogeneity posed a challenge for inter-study comparisons. Rigorously designed studies will assist in determining the effectiveness of flavonoid interventions for reducing OS and inflammation in patients at risk of CVD.
Ellinger, Sabine; Stehle, Peter
2016-05-26
Cocoa flavanols have strong anti-inflammatory properties in vitro. If these also occur in vivo, cocoa consumption may contribute to the prevention or treatment of diseases mediated by chronic inflammation. This critical review judged the evidence for such effects occurring after cocoa consumption. A literature search in Medline was performed for randomized controlled trials (RCTs) that investigated the effects of cocoa consumption on inflammatory biomarkers. Thirty-three RCTs were included, along with 9 bolus and 24 regular consumption studies. Acute cocoa consumption decreased adhesion molecules and 4-series leukotrienes in serum, nuclear factor κB activation in leukocytes, and the expression of CD62P and CD11b on monocytes and neutrophils. In healthy subjects and in patients with cardiovascular diseases, most regular consumption trials did not find any changes except for a decreased number of endothelial microparticles, but several cellular and humoral inflammation markers decreased in patients suffering from type 2 diabetes and impaired fasting glucose. Little evidence exists that consumption of cocoa-rich food may reduce inflammation, probably by lowering the activation of monocytes and neutrophils. The efficacy seems to depend on the extent of the basal inflammatory burden. Further well-designed RCTs with inflammation as the primary outcome are needed, focusing on specific markers of leukocyte activation and considering endothelial microparticles as marker of vascular inflammation.
Pathophysiologic roles of the fibrinogen gamma chain.
Farrell, David H
2004-05-01
Fibrinogen binds through its gamma chains to cell surface receptors, growth factors, and coagulation factors to perform its key roles in fibrin clot formation, platelet aggregation, and wound healing. However, these binding interactions can also contribute to pathophysiologic processes, including inflammation and thrombosis. This review summarizes the latest findings on the role of the fibrinogen gamma chain in these processes, and illustrates the potential for therapeutic intervention. Novel gamma chain epitopes that bind platelet integrin alpha IIbbeta3 and leukocyte integrin alphaMbeta2 have been characterized, leading to the revision of former dogma regarding the processes of platelet aggregation, clot retraction, inflammation, and thrombosis. A series of studies has shown that the gamma chain serves as a depot for fibroblast growth factor-2 (FGF-2), which is likely to play an important role in wound healing. Inhibition of gamma chain function with the monoclonal antibody 7E9 has been shown to interfere with multiple fibrinogen activities, including factor XIIIa crosslinking, platelet adhesion, and platelet-mediated clot retraction. The role of the enigmatic variant fibrinogen gamma chain has also become clearer. Studies have shown that gamma chain binding to thrombin and factor XIII results in clots that are mechanically stiffer and resistant to fibrinolysis, which may explain the association between gammaA/gamma' fibrinogen levels and cardiovascular disease. The identification of new interactions with gamma chains has revealed novel targets for the treatment of inflammation and thrombosis. In addition, several exciting studies have shown new functions for the variant gamma chain that may contribute to cardiovascular disease.
Inflamm-Aging of Hematopoiesis, Hematopoietic Stem Cells, and the Bone Marrow Microenvironment
Kovtonyuk, Larisa V.; Fritsch, Kristin; Feng, Xiaomin; Manz, Markus G.; Takizawa, Hitoshi
2016-01-01
All hematopoietic and immune cells are continuously generated by hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while HPCs are actively proliferating and contributing to daily hematopoiesis. In response to hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, HSCs can be activated to proliferate and engage in blood formation. The HSC activation induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms involving pattern recognition receptors or cytokine/chemokine receptors. In contrast to the hematopoietic challenges with obvious clinical symptoms, how the aging process, which involves low-grade chronic inflammation, impacts hematopoiesis remains undefined. Herein, we summarize recent findings pertaining to functional alternations of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the processes of aging and inflammation and highlight some common cellular and molecular changes during the processes that influence hematopoiesis and its cells of origin, HSCs and HPCs, as well as the BM microenvironment. We also discuss how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematopoietic aging. Our aim is to present evidence supporting the concept of “Inflamm-Aging,” or inflammation-associated aging of hematopoiesis. PMID:27895645
Towards a Genetic Definition of Cancer-Associated Inflammation
Prendergast, George C.; Metz, Richard; Muller, Alexander J.
2010-01-01
Chronic inflammation drives the development of many cancers, but a genetic definition of what constitutes ‘cancer-associated’ inflammation has not been determined. Recently, a mouse genetic study revealed a critical role for the immune escape mediator indoleamine 2,3-dioxygenase (IDO) in supporting inflammatory skin carcinogenesis. IDO is generally regarded as being immunosuppressive; however, there was no discernable difference in generalized inflammatory processes in IDO-null mice under conditions where tumor development was significantly suppressed, implicating IDO as key to establishing the pathogenic state of ‘cancer-associated’ inflammation. Here we review recent findings and their potential implications to understanding the relationship between immune escape and inflammation in cancer. Briefly, we propose that genetic pathways of immune escape in cancer are synonymous with pathways that define ‘cancer-associated’ inflammation and that these processes may be identical rather than distinct, as generally presumed, in terms of their genetic definition. PMID:20228228
USDA-ARS?s Scientific Manuscript database
Research in both human and animals has demonstrated that cognitive function decreases with age, to include deficits in processing speed, executive function, memory, and spatial learning. These functional declines may be caused by long-term increases in and susceptibility to oxidative stress and infl...
USDA-ARS?s Scientific Manuscript database
Oxylipins, including eicosanoids, affect a broad range of biological processes, such as the initiation and resolution of inflammation. These compounds, also referred to as lipid mediators, are (non-) enzymatically generated by oxidation of polyunsaturated fatty acids such as arachidonic acid (AA). A...
USDA-ARS?s Scientific Manuscript database
Research has demonstrated, in both human and animals, that cognitive functioning decreases with age, to include deficits in processing speed, executive function, memory, and spatial learning. The cause of these functional declines is not entirely understood; however, neuronal losses and the associat...
[Rationale for a diagnostic approach in non-Graves' orbital inflammation--Report of 61 patients].
Gavard-Perret, A; Lagier, J; Delmas, J; Delas, J; Adenis, J-P; Robert, P-Y
2015-12-01
Orbital inflammatory syndromes include a wide variety of inflammatory intraorbital processes which are very different in terms of clinical presentation and prognosis. We currently prefer to differentiate so-called "specific" inflammations, for which an etiology is able to be identified, from idiopathic orbital inflammatory syndromes (IOIS), for which the etiology remains unknown and the histology is nonspecific. To propose an efficient diagnostic approach for clinicians managing patients with non-Graves' orbital inflammations. This is a retrospective and prospective study concerning 61 patients managed by the medical team for non-Graves' orbital inflammations between May, 1999 and May, 2013 in the ophthalmology departments of Nice and Limoges university hospitals in France. Seventeen specific inflammations, 19 orbital lymphomas and 25 idiopathic orbital inflammatory syndromes were included. Patients were divided into two groups. Thirty-six patients (group 1) underwent primary biopsy, while for the other 25 (group 2), therapy was begun empirically without biopsy. We could therefore compare both approaches in terms of diagnostic efficiency and time until identification of a specific etiology. Our statistical results show that an approach without primary biopsy leads to a number of specific diagnoses statistically much lower than that obtained by the approach with primary biopsy. Also, the risk of missing a specific inflammation (with as a consequence an inappropriate treatment and a risk of functional sequelae as well as a fatal risk of missing a lymphoproliferative pathology) is very clearly higher in the case of not performing primary biopsy. Finally, the average time elapsed between the initial consultation with the ophthalmologist and a specific diagnosis was one month in the case of the first approach, while this delay was almost three times higher with the second approach, with a mean of 2.91 months (P<0.01). Our study shows that biopsy should be the mainstay of diagnostic management. A trial of empiric treatment is only performed first in myositis or in locations where biopsy could jeopardize functional prognosis. It should only be done after biopsy in all other cases. Of course, in all cases of relapse or recurrence after treatment, biopsy should be performed or repeated. The diagnostic work-up of a patient with an orbital inflammatory process must of course include blood testing and orbital imaging, but also a systematic primary biopsy for histological examination in the vast majority of cases. It must be repeated at least in the case of any doubt about the diagnosis or in the case of any recurrence or resistance to treatment. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Gupta, A.; Jain, S.
2012-12-01
The bacterium Helicobacter pylori inhabits the stomachs of nearly half of the world's human population, yet only a small fraction (20%) of those people are harmfully affected by the organism. Inflammation caused by the species often results in stomach ulcers or even cancer in these infected patients. Previous studies indicate that the uncharacterized H. pylori gene imaA (HP0289) may be responsible for suppressing this inflammation. Correlation between the intactness of the gene and inflammation levels in patients was determined through analysis of 105 DNA samples from H. pylori infected patients. Traditional PCR and gel electrophoresis techniques were used in the experimentation process. Primers including AC235, 5'imaARev, 3'imaAFor2446, 3'imaARevClinical, ureA637For, ureA637Rev, interFor1, interRev1, interFor2, and interRev2 were used to identify deletions in HP0289 in each DNA sample. The results from this analysis could allow for eventual remediation of the adverse effects of H. pylori.
A historical perspective on the role of sensory nerves in neurogenic inflammation.
Sousa-Valente, João; Brain, Susan D
2018-05-01
The term 'neurogenic inflammation' is commonly used, especially with respect to the role of sensory nerves within inflammatory disease. However, despite over a century of research, we remain unclear about the role of these nerves in the vascular biology of inflammation, as compared with their interacting role in pain processing and of their potential for therapeutic manipulation. This chapter attempts to discuss the progress in understanding, from the initial discovery of sensory nerves until the present day. This covers pioneering findings that these nerves exist, are involved in vascular events and act as important sensors of environmental changes, including injury and infection. This is followed by discovery of the contents they release such as the established vasoactive neuropeptides substance P and CGRP as well as anti-inflammatory peptides such as the opioids and somatostatin. The more recent emergence of the importance of the transient receptor potential (TRP) channels has revealed some of the mechanisms by which these nerves sense environmental stimuli. This knowledge enables a platform from which to learn of the potential role of neurogenic inflammation in disease and in turn of novel therapeutic targets.
Modulating the function of the immune system by thyroid hormones and thyrotropin.
Jara, Evelyn L; Muñoz-Durango, Natalia; Llanos, Carolina; Fardella, Carlos; González, Pablo A; Bueno, Susan M; Kalergis, Alexis M; Riedel, Claudia A
2017-04-01
Accumulating evidence suggests a close bidirectional communication and regulation between the neuroendocrine and immune systems. Thyroid hormones (THs) can exert responses in various immune cells, e.g., monocytes, macrophages, natural killer cells, and lymphocytes, affecting several inflammation-related processes (such as, chemotaxis, phagocytosis, reactive oxygen species generation, and cytokines production). The interactions between the endocrine and immune systems have been shown to contribute to pathophysiological conditions, including sepsis, inflammation, autoimmune diseases and viral infections. Under these conditions, TH therapy could contribute to restoring normal physiological functions. Here we discuss the effects of THs and thyroid stimulating hormone (TSH) on the immune system and the contribution to inflammation and pathogen clearance, as well as the consequences of thyroid pathologies over the function of the immune system. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Fontana, Luigi
2009-01-01
Acute inflammation is usually a self-limited life preserving response, triggered by pathogens and/or traumatic injuries. This transient response normally leads to removal of harmful agents and to healing of the damaged tissues. In contrast, unchecked or chronic inflammation can lead to persistent tissue and organ damage by activated leukocytes, cytokines, or collagen deposition. Excessive energy intake and adiposity cause systemic inflammation, whereas calorie restriction without malnutrition exerts a potent anti-inflammatory effect. As individuals accumulate fat and their adipocytes enlarge, adipose tissue undergoes molecular and cellular alterations, macrophages accumulate, and inflammation ensues. Overweight/obese subjects have significantly higher plasma concentrations of C-reactive protein and several cytokines, including IL-6, IL-8, IL-18, and TNF-alpha. Experimental animals on a chronic CR regimen, instead, have low levels of circulating inflammatory cytokines, low blood lymphocyte levels, reduced production of inflammatory cytokines by the white blood cells in response to stimulation, and cortisol levels in the high normal range. Recent data demonstrate that CR exerts a powerful anti-inflammatory effect also in non-human primates and humans. Multiple metabolic and neuroendocrine mechanisms are responsible for the CR-mediated anti-inflammatory effects, including reduced adiposity and secretion of pro-inflammatory adipokines, enhanced glucocorticoid production, reduced plasma glucose and advanced glycation end-product concentrations, increased parasympathetic tone, and increased ghrelin production. Measuring tissue specific effects of CR using genomic, proteomic and metabolomic techniques in humans will foster the understanding of the complex biological processes involved in the anti-inflammatory and anti-aging effects of CR. PMID:18502597
The Role of c-FLIP(L) in Regulating Apoptotic Pathways in Prostate Cancer
2006-12-01
which regulates gene expression 3. c-Fos has been shown to play an important role in development, inflammation and oncogenic processes. For example...important role in development, inflammation and oncogenic processes. For example, TNF-family induction of c-Fos plays an important role in proper bone c...identifying the down-stream targets of c-Fos has significant implications in understanding of normal development, inflammation and oncogenesis (10). In
Ageing and inflammation in the male reproductive tract.
Frungieri, M B; Calandra, R S; Bartke, A; Matzkin, M E
2018-05-08
Ageing is usually characterised by a mild chronic proinflammatory state. Despite the tight association between both processes, the phenomenon has recently been termed inflammageing. Inflammation in the male reproductive tract is frequently linked with bacterial or virus infections but also with a broad range of noninfectious processes. Prostatitis, epididymitis and orchitis, among others, can lead to infertility. However, in spite of the inflammation theory of disease, chronic inflammation in male urogenital system does not always cause symptoms. With advancing age, inflammatory processes are commonly observed in the male reproductive tract. Nevertheless, the incidence of inflammation in reproductive organs and ducts varies greatly among elderly men. Inflammageing is considered a predictor of pathogenesis and the development of age-related diseases. This article briefly summarises the current state of knowledge on inflammageing in the male reproductive tract. Yet, the precise aetiology of inflammageing in the male urogenital system, and its potential contribution not only to infertility but most importantly to adverse health outcomes remains almost unknown. Thus, further investigations are required to elucidate the precise cross-links between inflammation and male reproductive senescence, and to establish the impact of anti-inflammatory drug treatments on elder men's general health status. © 2018 Blackwell Verlag GmbH.
Light microscopic study of periapical lesions associated with asymptomatic apical periodontitis.
Kabak, S L; Kabak, Y S; Anischenko, S L
2005-04-01
The purpose of the study has been to evaluate the degree of chronic inflammation in tissues surrounding the apex of the tooth root in patients with apical periodontitis in the remission phase. The material included 37 apical granulomas and radicular cysts obtained as a result of apiectomy, and 20 teeth which were removed together with the focus of the periapical inflammation. Routine histological techniques, as well as the immunofluorescent and immuno-chemical methods were used to examine the material. Despite the absence of clinical symptoms in 23 of 57 cases, the morphological signs of chronic inflammation were observed in the apical area of the tooth root. Morphological signs of viral invasion of epithelial and stromal cells in the radicular cyst wall were revealed in six cases. The presence of the virus of Herpes simplex I in epithelial cells (five cases) and adenoviral invasion (one case) was confirmed by immuno-fluorescent and immuno-chemical methods. Histological examination often reveals morphological signs of an active inflammatory process in the periapical tissues of patients treated during clinical remission. In our opinion, the presence of viruses in the epithelial cells of the radicular cyst may contribute to the persistence of the active stage of the inflammatory process.
Pietzner, Maik; Kaul, Anne; Henning, Ann-Kristin; Kastenmüller, Gabi; Artati, Anna; Lerch, Markus M; Adamski, Jerzy; Nauck, Matthias; Friedrich, Nele
2017-11-30
Inflammation occurs as an immediate protective response of the immune system to a harmful stimulus, whether locally confined or systemic. In contrast, a persisting, i.e., chronic, inflammatory state, even at a low-grade, is a well-known risk factor in the development of common diseases like diabetes or atherosclerosis. In clinical practice, laboratory markers like high-sensitivity C-reactive protein (hsCRP), white blood cell count (WBC), and fibrinogen, are used to reveal inflammatory processes. In order to gain a deeper insight regarding inflammation-related changes in metabolism, the present study assessed the metabolic patterns associated with alterations in inflammatory markers. Based on mass spectrometry and nuclear magnetic resonance spectroscopy we determined a comprehensive panel of 613 plasma and 587 urine metabolites among 925 apparently healthy individuals. Associations between inflammatory markers, namely hsCRP, WBC, and fibrinogen, and metabolite levels were tested by linear regression analyses controlling for common confounders. Additionally, we tested for a discriminative signature of an advanced inflammatory state using random forest analysis. HsCRP, WBC, and fibrinogen were significantly associated with 71, 20, and 19 plasma and 22, 3, and 16 urine metabolites, respectively. Identified metabolites were related to the bradykinin system, involved in oxidative stress (e.g., glutamine or pipecolate) or linked to the urea cycle (e.g., ornithine or citrulline). In particular, urine 3'-sialyllactose was found as a novel metabolite related to inflammation. Prediction of an advanced inflammatory state based solely on 10 metabolites was well feasible (median AUC: 0.83). Comprehensive metabolic profiling confirmed the far-reaching impact of inflammatory processes on human metabolism. The identified metabolites included not only those already described as immune-modulatory but also completely novel patterns. Moreover, the observed alterations provide molecular links to inflammation-associated diseases like diabetes or cardiovascular disorders.
Kalupahana, Nishan S.; Claycombe, Kate J.; Moustaid-Moussa, Naima
2011-01-01
Obesity is associated with the metabolic syndrome, a significant risk factor for developing type 2 diabetes and cardiovascular diseases. Chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metabolic syndrome. Although the exact trigger of this inflammatory process is unknown, adipose tissue hypoxia, endoplasmic reticular stress, and saturated fatty acid–mediated activation of innate immune processes have been identified as important processes in these disorders. Furthermore, macrophages and T lymphocytes have important roles in orchestrating this immune process. Although energy restriction leading to weight loss is the primary dietary intervention to reverse these obesity-associated metabolic disorders, other interventions targeted at alleviating adipose tissue inflammation have not been explored in detail. In this regard, (n-3) PUFA of marine origin both prevent and reverse high-fat-diet–induced adipose tissue inflammation and insulin resistance in rodents. We provide an update on the pathogenesis of adipose tissue inflammation and insulin resistance in obesity and discuss potential mechanisms by which (n-3) PUFA prevent and reverse these changes and the implications in human health. PMID:22332072
Mustard vesicants alter expression of the endocannabinoid system in mouse skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlman, Irene M.; Composto, Gabriella M.
Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis andmore » dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.« less
Mitchell, K.; Yang, H.-Y. T.; Berk, J. D.; Tran, J. H.; Iadarola, M. J.
2009-01-01
During peripheral tissue inflammation, inflammatory processes in the CNS can be initiated by blood-borne pro-inflammatory mediators. The choroid plexus, the site of CSF production, is a highly specialized interface between the vascular system and CNS, and thus, this structure may be an important element in communication between the vascular compartment and the CNS during peripheral tissue inflammation. We investigated the potential participation of the choroid plexus in this process during peripheral tissue inflammation by examining expression of the SCYA2 gene which codes for monocyte chemoattractant protein-1 (MCP-1). MCP-1 protein was previously reported to be induced in a variety of cells during peripheral tissue inflammation. In the basal state, SCYA2 is highly expressed in the choroid plexus as compared to other CNS tissues. During hind paw inflammation, SCYA2 expression was significantly elevated in choroid plexus, whereas it remained unchanged in a variety of brain regions. The SCYA2-expressing cells were strongly associated with the choroid plexus as vascular depletion of blood cells by whole-body saline flush did not significantly alter SCYA2 expression in the choroid plexus. In situ hybridization suggested that the SCYA2-expressing cells were localized to the choroid plexus stroma. To elucidate potential molecular mechanisms of SCYA2 increase, we examined genes in the NF-κβ signaling cascade including TNF-α, IL-1β and IκBα in choroid tissue. Given that we also detected increased levels of MCP-1 protein by ELISA, we sought to identify potential downstream targets of MCP-1 and observed altered expression levels of mRNAs encoding tight junction proteins TJP2 and claudin 5. Finally, we detected a substantial up-regulation of the transcript encoding E-selectin, a molecule which could participate in leukocyte recruitment to the choroid plexus along with MCP-1. Together, these results suggest that profound changes occur in the choroid plexus during peripheral tissue inflammation, likely initiated by blood-borne inflammatory mediators, which may modify events in CNS. PMID:19032979
Inflammation Fuels Tumor Progress and Metastasis
Liu, Jingyi; Lin, Pengnian Charles; Zhou, Binhua P.
2017-01-01
Inflammation is a beneficial response that can remove pathogens, repair injured tissue and restore homeostasis to damaged tissues and organs. However, increasing evidence indicate that chronic inflammation plays a pivotal role in tumor development, as well as progression, metastasis, and resistance to chemotherapy. We will review the current knowledge regarding the contribution of inflammation to epithelial mesenchymal transition. We will also provide some perspectives on the relationship between ER-stress signals and metabolism, and the role of these processes in the development of inflammation. PMID:26004407
Role of Inflammation in Benign Prostatic Hyperplasia
Chughtai, Bilal; Lee, Richard; Te, Alexis; Kaplan, Steven
2011-01-01
Inflammation of the prostate may represent a mechanism for hyperplastic changes to occur in the prostate. There are a variety of growth factors and cytokines that may lead to a proinflammatory process within the prostate. There are several proposed mechanisms that lead to both the intrinsic and extrinsic basis of inflammation. Prostatic inflammation may represent an important factor in influencing prostatic growth and progression of symptoms. This article reviews the recent literature on inflammation leading to chronic prostatic diseases, such as benign prostatic hyperplasia. PMID:22110398
USDA-ARS?s Scientific Manuscript database
Innate lymphoid cells (ILCs) play an important role in many immune processes, including control of infections, inflammation and tissue repair. To date little is known about the metabolism of ILCs under steady-state conditions and infection, and whether these cells can metabolically adapt in response...
Novel lipid mediators promote resolution of acute inflammation: impact of aspirin and statins
Spite, Matthew; Serhan, Charles N.
2010-01-01
The resolution of acute inflammation is a process that allows for inflamed tissues to return to homeostasis. Resolution was held to be a passive process, a concept now overturned with new evidence demonstrating that resolution is actively orchestrated by distinct cellular events and endogenous chemical mediators. Among these, lipid mediators, such as the lipoxins, resolvins, protectins and newly identified maresins, have emerged as a novel genus of potent and stereoselective players that counter-regulate excessive acute inflammation and stimulate molecular and cellular events that define resolution. Given that uncontrolled, chronic inflammation is associated with many cardiovascular pathologies, an appreciation of the endogenous pathways and mediators that control timely resolution can open new terrain for therapeutic approaches targeted at stimulating resolution of local inflammation, as well as correcting the impact of chronic inflammation in cardiovascular disorders. Here, we overview and update the biosynthesis and actions of pro-resolving lipid mediators, highlighting their diverse protective roles relevant to vascular systems and their relation to aspirin and statin therapies. PMID:21071715
Non-invasive monitoring of skin inflammation using an oxygen-sensing paint-on bandage
Li, Zongxi; Navarro-Alvarez, Nalu; Keeley, Emily J.; Nowell, Nicholas H.; Goncalves, Beatriz M. M.; Huang, Christene A.; Evans, Conor L.
2017-01-01
Inflammation involves a cascade of cellular and molecular mediators that ultimately lead to the infiltration of immune cells into the affected area. This inflammatory process in skin is common to many diseases including acne, infection, and psoriasis, with the presence or absence of immune cells a potential diagnostic marker. Here we show that skin inflammation can be non-invasively measured and mapped using a paint-on oxygen sensing bandage in an in vivo porcine inflammation model. After injection of a known inflammatory agent, the bandage could track the increase, plateau, and decrease in oxygen consumption at the injury site over 7 weeks, as well as discern inflammation resultant from injection at various depths beneath the surface of the skin. Both the initial rate of pO2 change and the change in bandage pO2 at equilibration (CBP20) were found to be directly related to the metabolic oxygen consumption rate of the tissue in contact. Healthy skin demonstrated an initial pO2 decrease rate of 6.5 mmHg⋅min−1, and CBP20 of 84 mmHg. Inflamed skin had a significantly higher initial consumption rate of 55 mmHg⋅min−1, and a larger CBP20 of 140 mmHg. The change in the bandage pO2 before and after equilibration with tissue was found to correlate well with histological evidence of skin inflammation in the animals. PMID:29082091
Waetzig, G H; Schreiber, S
2003-07-01
Conventional treatment of chronic inflammatory disorders, including inflammatory bowel diseases, employs broad-range anti-inflammatory drugs. In order to reduce the side-effects and increase the efficacy of treatment, several strategies have been developed in the last decade to interfere with intercellular and intracellular inflammatory signalling processes. The highly conserved mitogen-activated protein kinase pathways regulate most cellular processes, particularly defence mechanisms such as stress reactions and inflammation. In this review, we provide an overview of the current knowledge of the specificity and interconnection of mitogen-activated protein kinase pathways, their functions in the gut immune system and published and ongoing studies on the role of mitogen-activated protein kinases in inflammatory bowel disease. The development of mitogen-activated protein kinase inhibitors and their use for the therapy of inflammatory disorders is a paradigm of the successful bridging of the gap between basic research and clinical practice.
Early environments and the ecology of inflammation
McDade, Thomas W.
2012-01-01
Recent research has implicated inflammatory processes in the pathophysiology of a wide range of chronic degenerative diseases, although inflammation has long been recognized as a critical line of defense against infectious disease. However, current scientific understandings of the links between chronic low-grade inflammation and diseases of aging are based primarily on research in high-income nations with low levels of infectious disease and high levels of overweight/obesity. From a comparative and historical point of view, this epidemiological situation is relatively unique, and it may not capture the full range of ecological variation necessary to understand the processes that shape the development of inflammatory phenotypes. The human immune system is characterized by substantial developmental plasticity, and a comparative, developmental, ecological framework is proposed to cast light on the complex associations among early environments, regulation of inflammation, and disease. Recent studies in the Philippines and lowland Ecuador reveal low levels of chronic inflammation, despite higher burdens of infectious disease, and point to nutritional and microbial exposures in infancy as important determinants of inflammation in adulthood. By shaping the regulation of inflammation, early environments moderate responses to inflammatory stimuli later in life, with implications for the association between inflammation and chronic diseases. Attention to the eco-logics of inflammation may point to promising directions for future research, enriching our understanding of this important physiological system and informing approaches to the prevention and treatment of disease. PMID:23045646
Novel n-3 Immunoresolvents: Structures and Actions
Dalli, Jesmond; Colas, Romain A.; Serhan, Charles N.
2013-01-01
Resolution of inflammation is now held to be an active process where autacoids promote homeostasis. Using functional-metabololipidomics and in vivo systems, herein we report that endogenous n-3 docosapentaenoic (DPA) acid is converted during inflammation-resolution in mice and by human leukocytes to novel n-3 products congenerous to D-series resolvins (Rv), protectins (PD) and maresins (MaR), termed specialized pro-resolving mediators (SPM). The new n-3 DPA structures include 7,8,17-trihydroxy-9,11,13,15E,19Z-docosapentaenoic acid (RvD1n-3 DPA), 7,14-dihydroxy-8,10,12,16Z,19Z-docosapentaenoic acid (MaR1n-3 DPA) and related bioactive products. Each n-3 DPA-SPM displayed protective actions from second organ injury and reduced systemic inflammation in ischemia-reperfusion. The n-3 DPA-SPM, including RvD1n-3 DPA and MaR1n-3 DPA, each exerted potent leukocyte directed actions in vivo. With human leukocytes each n-3 DPA-SPM reduced neutrophil chemotaxis, adhesion and enhanced macrophage phagocytosis. Together, these findings demonstrate that n-3 DPA is converted to novel immunoresolvents with actions comparable to resolvins and are likely produced in humans when n-3 DPA is elevated. PMID:23736886
Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia.
Zambelli, Vanessa O; Picolo, Gisele; Fernandes, Carlos A H; Fontes, Marcos R M; Cury, Yara
2017-12-19
Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A₂ (sPLA₂s). These PLA₂ belong to distinct PLA₂s groups. For example, snake venom sPLA₂s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA₂ belongs to group III of sPLA₂s. It is well known that PLA₂, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA₂s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA₂s from animal venoms, particularly snake venoms.
Targeting inflammation in the treatment of type 2 diabetes: time to start.
Donath, Marc Y
2014-06-01
The role of inflammation in the pathogenesis of type 2 diabetes and associated complications is now well established. Several conditions that are driven by inflammatory processes are also associated with diabetes, including rheumatoid arthritis, gout, psoriasis and Crohn's disease, and various anti-inflammatory drugs have been approved or are in late stages of development for the treatment of these conditions. This review discusses the rationale for the use of some of these anti-inflammatory treatments in patients with diabetes and what we could expect from their use. Future immunomodulatory treatments may not target a specific disease, but could instead act on a dysfunctional pathway that causes several conditions associated with the metabolic syndrome.
Raiten, Daniel J; Ashour, Fayrouz A Sakr; Ross, A Catharine; Meydani, Simin N; Dawson, Harry D; Stephensen, Charles B; Brabin, Bernard J; Suchdev, Parminder S; van Ommen, Ben
2015-01-01
An increasing recognition has emerged of the complexities of the global health agenda—specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations. PMID:25833893
Ideal cardiovascular health and inflammation in European adolescents: The HELENA study.
González-Gil, E M; Santabárbara, J; Ruiz, J R; Bel-Serrat, S; Huybrechts, I; Pedrero-Chamizo, R; de la O, A; Gottrand, F; Kafatos, A; Widhalm, K; Manios, Y; Molnar, D; De Henauw, S; Plada, M; Ferrari, M; Palacios Le Blé, G; Siani, A; González-Gross, M; Gómez-Martínez, S; Marcos, A; Moreno Aznar, L A
2017-05-01
Inflammation plays a key role in atherosclerosis and this process seems to appear in childhood. The ideal cardiovascular health index (ICHI) has been inversely related to atherosclerotic plaque in adults. However, evidence regarding inflammation and ICHI in adolescents is scarce. The aim is to assess the association between ICHI and inflammation in European adolescents. As many as 543 adolescents (251 boys and 292 girls) from the Healthy Lifestyle in Europe by Nutrition in Adolescence (HELENA) study, a cross-sectional multi-center study including 9 European countries, were measured. C-reactive protein (CRP), complement factors C3 and C4, leptin and white blood cell counts were used to compute an inflammatory score. Multilevel linear models and multilevel logistic regression were used to assess the association between ICHI and inflammation controlling by covariates. Higher ICHI was associated with a lower inflammatory score, as well as with several individual components, both in boys and girls (p < 0.01). In addition, adolescents with at least 4 ideal components of the ICHI had significantly lower inflammatory score and lower levels of the study biomarkers, except CRP. Finally, the multilevel logistic regression showed that for every unit increase in the ICHI, the probability of having an inflammatory profile decreased by 28.1% in girls. Results from this study suggest that a better ICHI is associated with a lower inflammatory profile already in adolescence. Improving these health behaviors, and health factors included in the ICHI, could play an important role in CVD prevention. Copyright © 2016 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.
Raiten, Daniel J; Sakr Ashour, Fayrouz A; Ross, A Catharine; Meydani, Simin N; Dawson, Harry D; Stephensen, Charles B; Brabin, Bernard J; Suchdev, Parminder S; van Ommen, Ben
2015-05-01
An increasing recognition has emerged of the complexities of the global health agenda—specifically, the collision of infections and noncommunicable diseases and the dual burden of over- and undernutrition. Of particular practical concern are both 1) the need for a better understanding of the bidirectional relations between nutritional status and the development and function of the immune and inflammatory response and 2) the specific impact of the inflammatory response on the selection, use, and interpretation of nutrient biomarkers. The goal of the Inflammation and Nutritional Science for Programs/Policies and Interpretation of Research Evidence (INSPIRE) is to provide guidance for those users represented by the global food and nutrition enterprise. These include researchers (bench and clinical), clinicians providing care/treatment, those developing and evaluating programs/interventions at scale, and those responsible for generating evidence-based policy. The INSPIRE process included convening 5 thematic working groups (WGs) charged with developing summary reports around the following issues: 1) basic overview of the interactions between nutrition, immune function, and the inflammatory response; 2) examination of the evidence regarding the impact of nutrition on immune function and inflammation; 3) evaluation of the impact of inflammation and clinical conditions (acute and chronic) on nutrition; 4) examination of existing and potential new approaches to account for the impact of inflammation on biomarker interpretation and use; and 5) the presentation of new approaches to the study of these relations. Each WG was tasked with synthesizing a summary of the evidence for each of these topics and delineating the remaining gaps in our knowledge. This review consists of a summary of the INSPIRE workshop and the WG deliberations. © 2015 American Society for Nutrition.
Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection
Rosero, Rebecca A.; Villares, Gabriel J.; Bar-Eli, Menashe
2016-01-01
The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers. PMID:27379162
Protease-Activated Receptors and other G-Protein-Coupled Receptors: the Melanoma Connection.
Rosero, Rebecca A; Villares, Gabriel J; Bar-Eli, Menashe
2016-01-01
The vast array of G-protein-coupled receptors (GPCRs) play crucial roles in both physiological and pathological processes, including vision, coagulation, inflammation, autophagy, and cell proliferation. GPCRs also affect processes that augment cell proliferation and metastases in many cancers including melanoma. Melanoma is the deadliest form of skin cancer, yet limited therapeutic modalities are available to patients with metastatic melanoma. Studies have found that both chemokine receptors and protease-activated receptors, both of which are GPCRs, are central to the metastatic melanoma phenotype and may serve as potential targets in novel therapies against melanoma and other cancers.
Mendel, O I; Luchihina, L V; Mendel, W
2015-01-01
This article presents review on the processes underlying aging and the most common age-associated diseases. Special attention is given to the role of chronic nonspecific inflammation. Based on the literature data it was demonstrated that aging and osteoarthritis have the same basic molecular and cellular mechanisms, among which general are cascades intracellular transcription chronic nonspecific inflammation and metabolic disturbances plays an important role. It is concluded that the process of normal aging is not a disease, but makes the human body, and particularly the musculoskeletal system, susceptible to age-associated changes. Number of changes in the human body that accompany the aging process, and play a role in the development and progression of OA, are potentially reversible, regardless of age (eg, chronic non-specific inflammation), and can be considered as a possible entry points for the effective prevention and complex therapy of OA in elderly people.
[Connective tissue and inflammation].
Jakab, Lajos
2014-03-23
The author summarizes the structure of the connective tissues, the increasing motion of the constituents, which determine the role in establishing the structure and function of that. The structure and function of the connective tissue are related to each other in the resting as well as inflammatory states. It is emphasized that cellular events in the connective tissue are part of the defence of the organism, the localisation of the damage and, if possible, the maintenance of restitutio ad integrum. The organism responds to damage with inflammation, the non specific immune response, as well as specific, adaptive immunity. These processes are located in the connective tissue. Sterile and pathogenic inflammation are relatively similar processes, but inevitable differences are present, too. Sialic acids and glycoproteins containing sialic acids have important roles, and the role of Siglecs is also highlighted. Also, similarities and differences in damages caused by pathogens and sterile agents are briefly summarized. In addition, the roles of adhesion molecules linked to each other, and the whole event of inflammatory processes are presented. When considering practical consequences it is stressed that the structure (building up) of the organism and the defending function of inflammation both have fundamental importance. Inflammation has a crucial role in maintaining the integrity and the unimpaired somato-psychological state of the organism. Thus, inflammation serves as a tool of organism identical with the natural immune response, inseparably connected with the specific, adaptive immune response. The main events of the inflammatory processes take place in the connective tissue.
Ponizovskiy, Michail R
2016-01-01
Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.
Age-related inflammation and insulin resistance: a review of their intricate interdependency.
Park, Min Hi; Kim, Dae Hyun; Lee, Eun Kyeong; Kim, Nam Deuk; Im, Dong Soon; Lee, Jaewon; Yu, Byung Pal; Chung, Hae Young
2014-12-01
Chronic inflammation is a major risk factor underlying aging and the associated diseases of aging; of particular interest is insulin resistance during aging. Chronic inflammation impairs normal lipid accumulation, adipose tissue function, mitochondrial function, and causes endoplasmic reticulum (ER) stress, which lead to insulin resistance. However, some studies show that insulin resistance itself amplifies chronic inflammation. The activity of the insulin-dependent Akt signaling pathway is highlighted because of its decrease in insulin-sensitive organs, like liver and muscle, which may underlie insulin resistance and hyperinsulinemia, and its increased levels in non-metabolic organs, such as kidney and aorta. In that the prevalence of obesity has increased substantially for all age groups in recent years, our review summarizes the data showing the involvement of chronic inflammation in obesity-induced insulin resistance, which perpetuates reciprocal interactions between the chronic inflammatory process and increased adiposity, thereby accelerating the aging process.
Effects of acute systemic inflammation on the interplay between sad mood and affective cognition.
Benson, Sven; Brinkhoff, Alexandra; Lueg, Larissa; Roderigo, Till; Kribben, Andreas; Wilde, Benjamin; Witzke, Oliver; Engler, Harald; Schedlowski, Manfred; Elsenbruch, Sigrid
2017-12-11
Experimental endotoxemia is a translational model to study inflammatory mechanisms involved in the pathophysiology of mood disorders including depression. Disturbed affective cognition constitutes a core aspect in depression, but has never been studied in the context of inflammation. We combined experimental endotoxemia with an established experimental mood induction procedure to assess the interaction between acute inflammation and sad mood and their effects on affective cognition. In this randomized cross-over study, N = 15 healthy males received endotoxin (0.8 ng/kg lipopolysaccharide iv) on one study day and placebo an otherwise identical study day. The affective Go/Nogo task was conducted after experimental induction of neutral and sad mood. Inflammatory markers were assessed hourly. Endotoxin application induced a transient systemic inflammation, characterized by increased leukocyte counts, TNF-alpha and interleukin-6 plasma concentrations (all p < 0.01, interaction effects). Mood induction led to greater sadness ratings, with highest ratings when sad mood was induced during inflammation (p < 0.05, interaction effect). Based on a 2 (endotoxin vs. placebo) × 2 (sad vs. neutral mood) × 2 (sad vs. happy Go/Nogo target words) factorial design, we observed a significant target × endotoxin condition interaction (p < 0.01) reflecting slower responses to sad targets during endotoxemia. Additionally, we found a valence × mood interaction (p < 0.05), reflecting slower reaction times to sad targets in sad mood. In summary, acute inflammation and sad mood are risk factors for disturbed affective cognition. The results may reflect a mood-congruency effect, with prolonged and sustained processing of mood-congruent information during acute inflammation, which may contribute to depression risk.
Inflammation: friend or foe for animal production?
Broom, Leon J; Kogut, Michael H
2018-02-01
Inflammation is an essential immune response that seeks to contain microbial infection and repair damaged tissue. Increased pro-inflammatory mediators have been associated with enhanced resistance to a range of important poultry and pig pathogens. However, inflammation may also have undesirable consequences, including potentially exacerbating tissue damage and diverting nutrients away from productive purposes. The negative effects of inflammation have led to the active pursuit of anti-inflammatory feed additives and/or strategies. These approaches may, however, impair the ability of an animal to respond appropriately and effectively to the array of pathogens that are likely to be encountered in commercial production, and specifically young animals who may be particularly reliant on innate immune responses. Thus, promoting an animal's capacity to mount a rapid, acute inflammatory response to control and contain the infection and the timely transition to anti-inflammatory, tissue repair processes, and a homeostatic state are suggested as the optimum scenario to maintain an animal's resistance to pathogens and minimize non-productive nutrient losses. Important future studies will help to unravel the trade-offs, and relevant metabolic pathways, between robust immune defense and optimum productive performance, and thus provide real insight into methods to appropriately influence this relationship. © 2017 Poultry Science Association Inc.
Pietrzyk, Lukasz; Torres, Anna; Maciejewski, Ryszard; Torres, Kamil
2015-01-01
Colorectal cancer (CRC) is a worldwide health problem, being the third most commonly detected cancer in males and the second in females. Rising CRC incidence trends are mainly regarded as a part of the rapid 'Westernization' of life-style and are associated with calorically excessive high-fat/low-fibre diet, consumption of refined products, lack of physical activity, and obesity. Most recent epidemiological and clinical investigations have consistently evidenced a significant relationship between obesity-driven inflammation in particular steps of colorectal cancer development, including initiation, promotion, progression, and metastasis. Inflammation in obesity occurs by several mechanisms. Roles of imbalanced metabolism (MetS), distinct immune cells, cytokines, and other immune mediators have been suggested in the inflammatory processes. Critical mechanisms are accounted to proinflammatory cytokines (e.g. IL-1, IL-6, IL-8) and tumor necrosis factor-α (TNF-α). These molecules are secreted by macrophages and are considered as major agents in the transition between acute and chronic inflammation and inflammation-related CRC. The second factor promoting the CRC development in obese individuals is altered adipokine concentrations (leptin and adiponectin). The role of leptin and adiponectin in cancer cell proliferation, invasion, and metastasis is attributable to the activation of several signal transduction pathways (JAK/STAT, mitogen-activated protein kinase (MAPK), phosphatidylinositol 3 kinase (PI3K), mTOR, and 5'AMPK signaling pathways) and multiple dysregulation (COX-2 downregulation, mRNA expression).
Gomaa, Noha; Nicolau, Belinda; Siddiqi, Arjumand; Tenenbaum, Howard; Glogauer, Michael; Quiñonez, Carlos
2017-09-14
To evaluate the extent of association between systemic inflammation and periodontal disease in American adults, and to assess whether socio-economic position mediated this relationship. We used data from the National Health and Nutrition Examination Survey (NHANES IV) (2001-2010). Systemic inflammation was defined by individual and aggregate (cumulative inflammatory load) biomarkers (C-reactive protein, white blood cell counts, neutrophil counts, and neutrophil:lymphocyte ratio). Loss of attachment and bleeding on probing were used to define periodontal disease. Poverty:income ratio and education were indicators of socio-economic position. Covariates included age, sex, ethnicity, smoking, alcohol, and attendance for dental treatment. Univariate and multivariable logistic regressions were constructed to assess the relationships of interest. In a total of 2296 respondents, biomarkers of systemic inflammation and cumulative inflammatory load were significantly associated with periodontal disease after adjusting for age, sex, and behavioural factors. Socio-economic position attenuated the association between markers of systemic inflammation and periodontal disease in the fully adjusted model. Socio-economic position partly explains how systemic inflammation and periodontal disease are coupled, and may thus have a significant role in the mechanisms linking oral and non-oral health conditions. It is of critical importance that the social and living conditions are taken into account when considering prevention and treatment strategies for inflammatory diseases, given what appears to be their impactful effect on disease processes.
Galectin-3 and IL-33/ST2 axis roles and interplay in diet-induced steatohepatitis
Pejnovic, Nada; Jeftic, Ilija; Jovicic, Nemanja; Arsenijevic, Nebojsa; Lukic, Miodrag L
2016-01-01
Immune reactivity and chronic low-grade inflammation (metaflammation) play an important role in the pathogenesis of obesity-associated metabolic disorders, including type 2 diabetes and nonalcoholic fatty liver disease (NAFLD), a spectrum of diseases that include liver steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis. Increased adiposity and insulin resistance contribute to the progression from hepatic steatosis to NASH and fibrosis through the development of proinflammatory and profibrotic processes in the liver, including increased hepatic infiltration of innate and adaptive immune cells, altered balance of cytokines and chemokines, increased reactive oxygen species generation and hepatocellular death. Experimental models of dietary-induced NAFLD/NASH in mice on different genetic backgrounds or knockout mice with different immune reactivity are used for elucidating the pathogenesis of NASH and liver fibrosis. Galectin-3 (Gal-3), a unique chimera-type β-galactoside-binding protein of the galectin family has a regulatory role in immunometabolism and fibrogenesis. Mice deficient in Gal-3 develop pronounced adiposity, hyperglycemia and hepatic steatosis, as well as attenuated liver inflammation and fibrosis when fed an obesogenic high-fat diet. Interleukin (IL)-33, a member of the IL-1 cytokine family, mediates its effects through the ST receptor, which is present on immune and nonimmune cells and participates in immunometabolic and fibrotic disorders. Recent evidence, including our own data, suggests a protective role for the IL-33/IL-33R (ST2) signaling pathway in obesity, adipose tissue inflammation and atherosclerosis, but a profibrotic role in NASH development. The link between Gal-3 and soluble ST2 in myocardial fibrosis and heart failure progression has been demonstrated and we have recently shown that Gal-3 and the IL-33/ST2 pathway interact and both have a profibrotic role in diet-induced NASH. This review discusses the current evidence on the roles of Gal-3 and the IL-33/ST2 pathway and their interplay in obesity-associated hepatic inflammation and fibrogenesis that may be of interest in the development of therapeutic interventions to prevent and/or reverse obesity-associated hepatic inflammation and fibrosis. PMID:27956794
Maternal Obesity, Inflammation, and Developmental Programming
Segovia, Stephanie A.; Vickers, Mark H.; Reynolds, Clare M.
2014-01-01
The prevalence of obesity, especially in women of child-bearing age, is a global health concern. In addition to increasing the immediate risk of gestational complications, there is accumulating evidence that maternal obesity also has long-term consequences for the offspring. The concept of developmental programming describes the process in which an environmental stimulus, including altered nutrition, during critical periods of development can program alterations in organogenesis, tissue development, and metabolism, predisposing offspring to obesity and metabolic and cardiovascular disorders in later life. Although the mechanisms underpinning programming of metabolic disorders remain poorly defined, it has become increasingly clear that low-grade inflammation is associated with obesity and its comorbidities. This review will discuss maternal metainflammation as a mediator of programming in insulin sensitive tissues in offspring. Use of nutritional anti-inflammatories in pregnancy including omega 3 fatty acids, resveratrol, curcumin, and taurine may provide beneficial intervention strategies to ameliorate maternal obesity-induced programming. PMID:24967364
The pivotal role of inflammation in scar/keloid formation after acne
Shi, Chao; Zhu, Jianyu; Yang, Degang
2017-01-01
ABSTRACT Most keloids are clinically observed as solid nodules or claw-like extensions. However, they appear hypoechoic on ultrasound images and are therefore easily confused with liquid features such as blood or vessels. The pathological manifestations of typical keloids also include prominent, thick blood vessels. The existing classification of scars fails to reflect the natural history of keloids. The outer characteristics of a typical keloid include bright red hyperplasia with abundant vessels, suggesting the importance of vascular components in the process of scar formation and prompting consideration of the role of inflammation in the development of granular hyperplasia. Additionally, we further considered the potential effectiveness of oral isotretinoin for severe keloids secondary to severe acne. We also explored different principles and applications related to 5-fluorouracil (5-FU), pulsed dye laser (PDL), and CO2 laser treatments for scars. PMID:29707102
Iida, Tomoya; Wagatsuma, Kohei; Hirayama, Daisuke; Nakase, Hiroshi
2017-12-21
Osteopontin (OPN) is involved in a variety of biological processes, including bone remodeling, innate immunity, acute and chronic inflammation, and cancer. The expression of OPN occurs in various tissues and cells, including intestinal epithelial cells and immune cells such as macrophages, dendritic cells, and T lymphocytes. OPN plays an important role in the efficient development of T helper 1 immune responses and cell survival by inhibiting apoptosis. The association of OPN with apoptosis has been investigated. In this review, we described the role of OPN in inflammatory gastrointestinal and liver diseases, focusing on the association of OPN with apoptosis. OPN changes its association with apoptosis depending on the type of disease and the phase of disease activity, acting as a promoter or a suppressor of inflammation and inflammatory carcinogenesis. It is essential that the roles of OPN in those diseases are elucidated, and treatments based on its mechanism are developed.
[Gas gangrene or inflammation of the neck--diagnostic difficulties].
Kedzierski, B; Całka, K; Wilczyński, K; Bojarski, B; Jaźwiec, P; Bogdał, M T; Stokrocki, W
2000-01-01
The authors describe a patient with an extensive inflammation of the neck soft tissues as a complication of the peritonsillar abscess. Follow-up computed tomography revealed gasi-form follicles in the inflammed neck soft tissues, suggesting gas gangrene. We report disseminate ways of the inflammation process on the financial tonsil, reasons of the gangrene also the infections of soft tissues caused by anaerobic bacteries--Clostridium. CT--examination in inflammatory tumors of the neck is valuable, permits to exclude expansion process, but it cannot give unequivocal answer to differentiate gas gangrene and phlegmon.
Marine Diterpenoids as Potential Anti-Inflammatory Agents
González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.
2015-01-01
The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822
Epigenetic regulation in dental pulp inflammation
Hui, T; Wang, C; Chen, D; Zheng, L; Huang, D; Ye, L
2016-01-01
Dental caries, trauma, and other possible factors could lead to injury of the dental pulp. Dental infection could result in immune and inflammatory responses mediated by molecular and cellular events and tissue breakdown. The inflammatory response of dental pulp could be regulated by genetic and epigenetic events. Epigenetic modifications play a fundamental role in gene expression. The epigenetic events might play critical roles in the inflammatory process of dental pulp injury. Major epigenetic events include methylation and acetylation of histones and regulatory factors, DNA methylation, and small non-coding RNAs. Infections and other environmental factors have profound effects on epigenetic modifications and trigger diseases. Despite growing evidences of literatures addressing the role of epigenetics in the field of medicine and biology, very little is known about the epigenetic pathways involved in dental pulp inflammation. This review summarized the current knowledge about epigenetic mechanisms during dental pulp inflammation. Progress in studies of epigenetic alterations during inflammatory response would provide opportunities for the development of efficient medications of epigenetic therapy for pulpitis. PMID:26901577
Connaughton, Ruth M; McMorrow, Aoibheann M; McGillicuddy, Fiona C; Lithander, Fiona E; Roche, Helen M
2016-05-01
Obesity-related metabolic conditions such as insulin resistance (IR), type 2 diabetes and CVD share a number of pathological features, one of which is metabolic-inflammation. Metabolic-inflammation results from the infiltration of immune cells into the adipose tissue, driving a pro-inflammatory environment, which can induce IR. Furthermore, resolution of inflammation, an active process wherein the immune system counteracts pro-inflammatory states, may be dysregulated in obesity. Anti-inflammatory nutritional interventions have focused on attenuating this pro-inflammatory environment. Furthermore, with inherent variability among individuals, establishing at-risk populations who respond favourably to nutritional intervention strategies is important. This review will focus on chronic low-grade metabolic-inflammation, resolution of inflammation and the putative role anti-inflammatory nutrients have as a potential therapy. Finally, in the context of personalised nutrition, the approaches used in defining individuals who respond favourably to nutritional interventions will be highlighted. With increasing prevalence of obesity in younger people, age-dependent biological processes, preventative strategies and therapeutic options are important to help protect against development of obesity-associated co-morbidities.
Clock gene Per2 as a controller of liver carcinogenesis
Mteyrek, Ali; Filipski, Elisabeth; Guettier, Catherine; Okyar, Alper; Lévi, Francis
2016-01-01
Environmental disruption of molecular clocks promoted liver carcinogenesis and accelerated cancer progression in rodents. We investigated the specific role of clock gene Period 2 (Per2) for liver carcinogenesis and clock-controlled cellular proliferation, genomic instability and inflammation. We assessed liver histopathology, and determined molecular and physiology circadian patterns in mice on chronic diethylnitrosamine (DEN) exposure according to constitutive Per2 mutation. First, we found that Per2m/m liver displayed profound alterations in proliferation gene expression, including c-Myc derepression, phase-advanced Wee1, and arrhythmic Ccnb1 and K-ras mRNA expressions, as well as deregulated inflammation, through arrhythmic liver IL-6 protein concentration, in the absence of any DEN exposure. These changes could then make Per2m/m mice more prone to subsequently develop liver cancers on DEN. Indeed, primary liver cancers were nearly fourfold as frequent in Per2m/m mice as compared to wild-type (WT), 4 months after DEN exposure. The liver molecular clock was severely disrupted throughout the whole carcinogenesis process, including the initiation stage, i.e. within the initial 17 days on DEN. Per2m/m further exhibited increased c-Myc and Ccnb1 mean 24h expressions, lack of P53 response, and arrhythmic ATM, Wee1 and Ccnb1 expressions. DEN-induced tumor related inflammation was further promoted through increased protein concentrations of liver IL-6 and TNF-α as compared to WT during carcinogenesis initiation. Per2 mutation severely deregulated liver gene or protein expressions related to three cancer hallmarks, including uncontrolled proliferation, genomic instability, and tumor promoting inflammation, and accelerated liver carcinogenesis several-fold. Clock gene Per2 acted here as a liver tumor suppressor from initiation to progression. PMID:27494874
Koschmieder, S; Mughal, T I; Hasselbalch, H C; Barosi, G; Valent, P; Kiladjian, J-J; Jeryczynski, G; Gisslinger, H; Jutzi, J S; Pahl, H L; Hehlmann, R; Maria Vannucchi, A; Cervantes, F; Silver, R T; Barbui, T
2016-05-01
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal disorders involving hematopoietic stem and progenitor cells and are associated with myeloproliferation, splenomegaly and constitutional symptoms. Similar signs and symptoms can also be found in patients with chronic inflammatory diseases, and inflammatory processes have been found to play an important role in the pathogenesis and progression of MPNs. Signal transduction pathways involving JAK1, JAK2, STAT3 and STAT5 are causally involved in driving both the malignant cells and the inflammatory process. Moreover, anti-inflammatory and immune-modulating drugs have been used successfully in the treatment of MPNs. However, to date, many unresoved issues remain. These include the role of somatic mutations that are present in addition to JAK2V617F, CALR and MPL W515 mutations, the interdependency of malignant and nonmalignant cells and the means to eradicate MPN-initiating and -maintaining cells. It is imperative for successful therapeutic approaches to define whether the malignant clone or the inflammatory cells or both should be targeted. The present review will cover three aspects of the role of inflammation in MPNs: inflammatory states as important differential diagnoses in cases of suspected MPN (that is, in the absence of a clonal marker), the role of inflammation in MPN pathogenesis and progression and the use of anti-inflammatory drugs for MPNs. The findings emphasize the need to separate the inflammatory processes from the malignancy in order to improve our understanding of the pathogenesis, diagnosis and treatment of patients with Philadelphia-negative MPNs.
Dick, Thomas E.; Molkov, Yaroslav I.; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J.; Doyle, John; Scheff, Jeremy D.; Calvano, Steve E.; Androulakis, Ioannis P.; An, Gary; Vodovotz, Yoram
2012-01-01
Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma. PMID:22783197
Li, Huihui; An, Yanpeng; Zhang, Lulu; Lei, Hehua; Zhang, Limin; Wang, Yulan; Tang, Huiru
2013-12-06
Inflammation is closely associated with pathogenesis of various metabolic disorders, cardiovascular diseases, and cancers. To understand the systems responses to localized inflammation, we analyzed the dynamic metabolic changes in rat plasma and urine associated with the carrageenan-induced self-limiting pleurisy using NMR spectroscopy in conjunction with multivariate data analysis. Fatty acids in plasma were also analyzed using GC-FID/MS with the data from clinical chemistry and histopathology as complementary information. We found that in the acute phase of inflammation rats with pleurisy had significantly lower levels in serum albumin, fatty acids, and lipoproteins but higher globulin level and larger quantity of pleural exudate than controls. The carrageenan-induced inflammation was accompanied by significant metabolic alterations involving TCA cycle, glycolysis, biosyntheses of acute phase proteins, and metabolisms of amino acids, fatty acids, ketone bodies, and choline in acute phase. The resolution process of pleurisy was heterogeneous, and two subgroups were observed for the inflammatory rats at day-6 post treatment with different metabolic features together with the quantity of pleural exudate and weights of thymus and spleen. The metabolic differences between these subgroups were reflected in the levels of albumin and acute-phase proteins, the degree of returning to normality for multiple metabolic pathways including glycolysis, TCA cycle, gut microbiota functions, and metabolisms of lipids, choline and vitamin B3. These findings provided some essential details for the dynamic metabolic changes associated with the carrageenan-induced self-limiting inflammation and demonstrated the combined NMR and GC-FID/MS analysis as a powerful approach for understanding biochemical aspects of inflammation.
Dick, Thomas E; Molkov, Yaroslav I; Nieman, Gary; Hsieh, Yee-Hsee; Jacono, Frank J; Doyle, John; Scheff, Jeremy D; Calvano, Steve E; Androulakis, Ioannis P; An, Gary; Vodovotz, Yoram
2012-01-01
Acute inflammation leads to organ failure by engaging catastrophic feedback loops in which stressed tissue evokes an inflammatory response and, in turn, inflammation damages tissue. Manifestations of this maladaptive inflammatory response include cardio-respiratory dysfunction that may be reflected in reduced heart rate and ventilatory pattern variabilities. We have developed signal-processing algorithms that quantify non-linear deterministic characteristics of variability in biologic signals. Now, coalescing under the aegis of the NIH Computational Biology Program and the Society for Complexity in Acute Illness, two research teams performed iterative experiments and computational modeling on inflammation and cardio-pulmonary dysfunction in sepsis as well as on neural control of respiration and ventilatory pattern variability. These teams, with additional collaborators, have recently formed a multi-institutional, interdisciplinary consortium, whose goal is to delineate the fundamental interrelationship between the inflammatory response and physiologic variability. Multi-scale mathematical modeling and complementary physiological experiments will provide insight into autonomic neural mechanisms that may modulate the inflammatory response to sepsis and simultaneously reduce heart rate and ventilatory pattern variabilities associated with sepsis. This approach integrates computational models of neural control of breathing and cardio-respiratory coupling with models that combine inflammation, cardiovascular function, and heart rate variability. The resulting integrated model will provide mechanistic explanations for the phenomena of respiratory sinus-arrhythmia and cardio-ventilatory coupling observed under normal conditions, and the loss of these properties during sepsis. This approach holds the potential of modeling cross-scale physiological interactions to improve both basic knowledge and clinical management of acute inflammatory diseases such as sepsis and trauma.
Endothelial microvesicles in hypoxic hypoxia diseases.
Deng, Fan; Wang, Shuang; Xu, Riping; Yu, Wenqian; Wang, Xianyu; Zhang, Liangqing
2018-05-29
Hypoxic hypoxia, including abnormally low partial pressure of inhaled oxygen, external respiratory dysfunction-induced respiratory hypoxia and venous blood flow into the arterial blood, is characterized by decreased arterial oxygen partial pressure, resulting in tissue oxygen deficiency. The specific characteristics include reduced arterial oxygen partial pressure and oxygen content. Hypoxic hypoxia diseases (HHDs) have attracted increased attention due to their high morbidity and mortality and mounting evidence showing that hypoxia-induced oxidative stress, coagulation, inflammation and angiogenesis play extremely important roles in the physiological and pathological processes of HHDs-related vascular endothelial injury. Interestingly, endothelial microvesicles (EMVs), which can be induced by hypoxia, hypoxia-induced oxidative stress, coagulation and inflammation in HHDs, have emerged as key mediators of intercellular communication and cellular functions. EMVs shed from activated or apoptotic endothelial cells (ECs) reflect the degree of ECs damage, and elevated EMVs levels are present in several HHDs, including obstructive sleep apnoea syndrome and chronic obstructive pulmonary disease. Furthermore, EMVs have procoagulant, proinflammatory and angiogenic functions that affect the pathological processes of HHDs. This review summarizes the emerging roles of EMVs in the diagnosis, staging, treatment and clinical prognosis of HHDs. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney
Park, Daeui; Kim, Byoung-Chul; Kim, Chul-Hong; Choi, Yeon Ja; Jeong, Hyoung Oh; Kim, Mi Eun; Lee, Jun Sik; Park, Min Hi; Chung, Ki Wung; Kim, Dae Hyun; Lee, Jaewon; Im, Dong-Soon; Yoon, Seokjoo; Lee, Sunghoon; Yu, Byung Pal; Bhak, Jong; Chung, Hae Young
2016-01-01
Age-related dysregulated inflammation plays an essential role as a major risk factor underlying the pathophysiological aging process. To better understand how inflammatory processes are related to aging at the molecular level, we sequenced the transcriptome of young and aged rat kidney using RNA-Seq to detect known genes, novel genes, and alternative splicing events that are differentially expressed. By comparing young (6 months of age) and old (25 months of age) rats, we detected 722 up-regulated genes and 111 down-regulated genes. In the aged rats, we found 32 novel genes and 107 alternatively spliced genes. Notably, 6.6% of the up-regulated genes were related to inflammation (P < 2.2 × 10−16, Fisher exact t-test); 15.6% were novel genes with functional protein domains (P = 1.4 × 10−5); and 6.5% were genes showing alternative splicing events (P = 3.3 × 10−4). Based on the results of pathway analysis, we detected the involvement of inflammation-related pathways such as cytokines (P = 4.4 × 10−16), which were found up-regulated in the aged rats. Furthermore, an up-regulated inflammatory gene analysis identified the involvement of transcription factors, such as STAT4, EGR1, and FOSL1, which regulate cancer as well as inflammation in aging processes. Thus, RNA changes in these pathways support their involvement in the pro-inflammatory status during aging. We propose that whole RNA-Seq is a useful tool to identify novel genes and alternative splicing events by documenting broadly implicated inflammation-related genes involved in aging processes. PMID:27153548
Ibrahim, Sherrine A; Ackerman, William E; Summerfield, Taryn L; Lockwood, Charles J; Schatz, Frederick; Kniss, Douglas A
2016-02-01
Inflammation is a proximate mediator of preterm birth and fetal injury. During inflammation several microRNAs (22 nucleotide noncoding ribonucleic acid (RNA) molecules) are up-regulated in response to cytokines such as interleukin-1β. MicroRNAs, in most cases, fine-tune gene expression, including both up-regulation and down-regulation of their target genes. However, the role of pro- and antiinflammatory microRNAs in this process is poorly understood. The principal goal of the work was to examine the inflammatory genomic profile of human decidual cells challenged with a proinflammatory cytokine known to be present in the setting of preterm parturition. We determined the coding (messenger RNA) and noncoding (microRNA) sequences to construct a network of interacting genes during inflammation using an in vitro model of decidual stromal cells. The effects of interleukin-1β exposure on mature microRNA expression were tested in human decidual cell cultures using the multiplexed NanoString platform, whereas the global inflammatory transcriptional response was measured using oligonucleotide microarrays. Differential expression of select transcripts was confirmed by quantitative real time-polymerase chain reaction. Bioinformatics tools were used to infer transcription factor activation and regulatory interactions. Interleukin-1β elicited up- and down-regulation of 350 and 78 nonredundant transcripts (false discovery rate < 0.1), respectively, including induction of numerous cytokines, chemokines, and other inflammatory mediators. Whereas this transcriptional response included marked changes in several microRNA gene loci, the pool of fully processed, mature microRNA was comparatively stable following a cytokine challenge. Of a total of 6 mature microRNAs identified as being differentially expressed by NanoString profiling, 2 (miR-146a and miR-155) were validated by quantitative real time-polymerase chain reaction. Using complementary bioinformatics approaches, activation of several inflammatory transcription factors could be inferred downstream of interleukin-1β based on the overall transcriptional response. Further analysis revealed that miR-146a and miR-155 both target genes involved in inflammatory signaling, including Toll-like receptor and mitogen-activated protein kinase pathways. Stimulation of decidual cells with interleukin-1β alters the expression of microRNAs that function to temper proinflammatory signaling. In this setting, some microRNAs may be involved in tissue-level inflammation during the bulk of gestation and assist in pregnancy maintenance. Copyright © 2016 Elsevier Inc. All rights reserved.
Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications.
Cohen-Cymberknoh, Malena; Kerem, Eitan; Ferkol, Thomas; Elizur, Arnon
2013-12-01
Airway epithelial cells and immune cells participate in the inflammatory process responsible for much of the pathology found in the lung of patients with cystic fibrosis (CF). Intense bronchial neutrophilic inflammation and release of proteases and oxygen radicals perpetuate the vicious cycle and progressively damage the airways. In vitro studies suggest that CF transmembrane conductance regulator (CFTR)-deficient airway epithelial cells display signalling abnormalities and aberrant intracellular processes which lead to transcription of inflammatory mediators. Several transcription factors, especially nuclear factor-κB, are activated. In addition, the accumulation of abnormally processed CFTR in the endoplasmic reticulum results in unfolded protein responses that trigger 'cell stress' and apoptosis leading to dysregulation of the epithelial cells and innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation. Measuring airway inflammation is crucial for initiating treatment and monitoring its effect. No inflammatory biomarker predictive for the clinical course of CF lung disease is currently known, although neutrophil elastase seems to correlate with lung function decline. CF animal models mimicking human lung disease may provide an important insight into the pathogenesis of lung inflammation in CF and identify new therapeutic targets.
Inflammasome and Autophagy Regulation: A Two-way Street
Qian, Sun; Fan, Jie; Billiar, Timothy R; Scott, Melanie J
2017-01-01
Inflammation plays a significant role in protecting hosts against pathogens. Inflammation induced by noninfectious endogenous agents can be detrimental and, if excessive, can result in organ and tissue damage. The inflammasome is a major innate immune pathway that can be activated via both exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs). Inflammasome activation involves formation and oligomerization of a protein complex including a nucleotide oligomerization domain (NOD)-like receptor (NLR), an adaptor protein and pro-caspase-1. This then allows cleavage and activation of caspase-1, followed by downstream cleavage and release of proinflammatory cytokines interleukin (IL)-1β and IL-18 from innate immune cells. Hyperinflammation caused by unrestrained inflammasome activation is linked with multiple inflammatory diseases, including inflammatory bowel disease, Alzheimer’s disease and multiple sclerosis. So there is an understandable rush to understand mechanisms that regulate such potent inflammatory pathways. Autophagy has now been identified as a main regulator of inflammasomes. Autophagy is a vital intracellular process involved in cellular homeostasis, recycling and removal of damaged organelles (eg, mitochondria) and intracellular pathogens. Autophagy is regulated by proteins that are important in endosomal/phagosomal pathways, as well as by specific autophagy proteins coded for by autophagy-related genes. Cytosolic components are surrounded and contained by a double-membraned vesicle, which then fuses with lysosomes to enable degradation of the contents. Autophagic removal of intracellular DAMPs, inflammasome components or cytokines can reduce inflammasome activation. Similarly, inflammasomes can regulate the autophagic process, allowing for a two-way mutual regulation of inflammation that may hold the key for treatment of multiple diseases. PMID:28741645
Allergic rhinitis and inflammatory airway disease: interactions within the unified airspace.
Marple, Bradley F
2010-01-01
Allergic rhinitis (AR), the most common chronic allergic condition in outpatient medicine, is associated with immense health care costs and socioeconomic consequences. AR's impact may be partly from interacting of respiratory conditions via allergic inflammation. This study was designed to review potential interactive mechanisms of AR and associated conditions and consider the relevance of a bidirectional "unified airway" respiratory inflammation model on diagnosis and treatment of inflammatory airway disease. MEDLINE was searched for pathophysiology and pathophysiological and epidemiologic links between AR and diseases of the sinuses, lungs, middle ear, and nasopharynx. Allergic-related inflammatory responses or neural and systemic processes fostering inflammatory changes distant from initial allergen provocation may link AR and comorbidities. Treating AR may benefit associated respiratory tract comorbidities. Besides improving AR outcomes, treatment inhibiting eosinophil recruitment and migration, normalizing cytokine profiles, and reducing asthma-associated health care use in atopic subjects would likely ameliorate other upper airway diseases such as acute rhinosinusitis, chronic rhinosinusitis (CRS) with nasal polyposis (NP), adenoidal hypertrophy, and otitis media with effusion. Epidemiological concordance of AR with several airway diseases conforms to a bidirectional "unified airway" respiratory inflammation model based on anatomic and histological upper and lower airway connections. Epidemiology and current understanding of inflammatory, humoral, and neural processes make links between AR and disorders including asthma, otitis media, NP, and CRS plausible. Combining AR with associated conditions increases disease burden; worsened associated illness may accompany worsened AR. AR pharmacotherapies include antihistamines, leukotriene antagonists, intranasal corticosteroids, and immunotherapy; treatments attenuating proinflammatory responses may also benefit associated conditions.
De Geer, Christopher M
2018-03-01
The purpose of this narrative literature review is to discuss the literature regarding the potential role that cytokines play in degenerative disk disease. The inclusion criteria were studies that used inflammatory mediators in advancing disk disease processes. Research studies were limited to the last 3 decades that had free full-text available online in English. Exclusion criteria were review articles and articles pertaining to temporomandibular joints and other joints of the body other than the intervertebral disk. The following databases were searched: PubMed, EBSCOhost, and Google Scholar through March 13, 2017. A total of 82 studies were included in this review. The papers were reviewed for complex mechanisms behind the degenerative cascade, emphasizing the role of proinflammatory cytokines, which may be instrumental in processes of inflammation, neurologic pain, and disk degeneration. Interleukin-1β and tumor necrosis factor α were among the more notable cytokines involved in this cascade. Because monocyte chemoattractant protein-1 stimulates and activates macrophages in the event of infiltration, additional proinflammatory cytokines are released to act on molecules to promote blood and nerve ingrowth, resulting in pain signaling and tissue degradation. Excessive inflammation and/or tissue damage initiates a pathologic imbalance between anabolic and catabolic processes. This literature review describes how inflammatory and biochemical changes may trigger disk degeneration. Proinflammatory cytokines stimulate microvascular blood and nerve ingrowth, resulting in pain signaling and tissue degradation. This may sensitize a person to chemical and/or mechanical stimuli, contributing to severe low back pain.
Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing
Das, Subhamoy; Baker, Aaron B.
2016-01-01
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice. PMID:27843895
Simulation of Healing Threshold in Strain-Induced Inflammation Through a Discrete Informatics Model.
Ibrahim, Israr Bin M; Sarma O V, Sanjay; Pidaparti, Ramana M
2018-05-01
Respiratory diseases such as asthma and acute respiratory distress syndrome as well as acute lung injury involve inflammation at the cellular level. The inflammation process is very complex and is characterized by the emergence of cytokines along with other changes in cellular processes. Due to the complexity of the various constituents that makes up the inflammation dynamics, it is necessary to develop models that can complement experiments to fully understand inflammatory diseases. In this study, we developed a discrete informatics model based on cellular automata (CA) approach to investigate the influence of elastic field (stretch/strain) on the dynamics of inflammation and account for probabilistic adaptation based on statistical interpretation of existing experimental data. Our simulation model investigated the effects of low, medium, and high strain conditions on inflammation dynamics. Results suggest that the model is able to indicate the threshold of innate healing of tissue as a response to strain experienced by the tissue. When strain is under the threshold, the tissue is still capable of adapting its structure to heal the damaged part. However, there exists a strain threshold where healing capability breaks down. The results obtained demonstrate that the developed discrete informatics based CA model is capable of modeling and giving insights into inflammation dynamics parameters under various mechanical strain/stretch environments.
An intravital microscopy model to study early pancreatic inflammation in type 1 diabetes in NOD mice
Lehmann, Christian; Fisher, Nicholas B.; Tugwell, Barna; Zhou, Juan
2016-01-01
ABSTRACT Intravital microscopy (IVM) of the pancreas has been proven to be an invaluable tool in pancreatitis, transplantation and ischemia/reperfusion research. Also in type 1 diabetes (T1D) pancreatic IVM offers unique advantages for the elucidation of the disease process. Female non-obese diabetic (NOD) mice develop T1D spontaneously by 40 weeks of age. Our goal was to establish an IVM-based method to study early pancreatic inflammation in NOD mice, which can be used to screen novel medications to prevent or delay T1D in future studies. This included evaluation of leukocyte-endothelial interactions as well as disturbances of capillary perfusion in the pancreatic microcirculation. PMID:28243521
van Greevenbroek, Marleen M. J.; Schalkwijk, Casper G.; Stehouwer, Coen D.A.
2016-01-01
The ongoing worldwide obesity epidemic makes the metabolic syndrome an increasingly important entity. In this review, we provide a short background on the metabolic syndrome, we discuss recent developments in the three main options that have been identified for intervention in the metabolic syndrome, i.e. lifestyle and surgical and pharmacological interventions, and we focus on different views in the literature and also include our own viewpoints on the metabolic syndrome. In addition, we discuss some emerging treatment targets for adipose tissue dysfunction and low-grade inflammation, i.e. activation of the inflammasome and the complement system, and consider some selected opportunities for intervention in these processes. PMID:27803798
Ferrucci, Luigi; Ble, Alessandro; Bandinelli, Stefania; Lauretani, Fulvio; Suthers, Kristen; Guralnik, Jack M
2004-06-01
Inflammation is a human being's primary defense against threats to homeostasis that are encountered every day. Especially in old age, when regulatory mechanisms responsible for inflammatory responses may be ineffective or damaged, the result can be adverse pathological conditions, and an increased risk of morbidity and mortality. The inflammation response is a plastic network composed of redundant signaling among several different mediators. These mediators have a reciprocal relationship with other biological sub-systems, including hormone regulation, the autonomic nervous system, and oxidative/anti-oxidant balance. Studying this complex architecture requires parallel and multiple research strategies from epidemiological to biochemical level, from observational studies to innovative intervention approaches. Given that the inflammatory response is a critical age-related process, understanding its regulatory action is essential in avoiding hazardous consequences in old age.
... cause inflammation in the brain, including the cerebellum multiple sclerosis, in which damage to the insulating membrane (myelin) ... cause inflammation in the brain, including the cerebellum multiple sclerosis, in which damage to the insulating membrane (myelin) ...
Ricucci, Domenico; Siqueira, José F; Loghin, Simona; Lin, Louis M
2017-01-01
Descriptions of the pathologic changes in the pulp and associated apical structures of human immature teeth in response to deep caries are lacking in the literature. This article describes the histologic events associated with the radicular pulp and the apical tissues of human immature teeth following pulp inflammation and necrosis. Twelve immature teeth with destructive caries lesions were obtained from 8 patients. Two intact immature teeth served as controls. Teeth were extracted for reasons not related to this study and immediately processed for histopathologic and histobacteriologic analyses. Serial sections were examined for the pulp conditions and classified as reversible or irreversible pulp inflammation, or pulp necrosis. Other histologic parameters were also evaluated. In the 3 cases with reversible pulp inflammation, tissue in the pulp chamber showed mild to moderate inflammation and tertiary dentin formation related to tubules involved in the caries process. Overall, the radicular pulp tissue, apical papilla and Hertwig's epithelial root sheath (HERS) exhibited characteristics of normality. In the 3 cases with irreversible pulp inflammation, the pulps were exposed and severe inflammation occurred in the pulp chamber, with minor areas of necrosis and infection. Large areas of the canal walls were free from odontoblasts and lined by an atubular mineralized tissue. The apical papilla showed extremely reduced cellularity or lack of cells and HERS was discontinuous or absent. In the 6 cases with pulp necrosis, the coronal and radicular pulp tissue was necrotic and colonized by bacterial biofilms. The apical papilla could not be discerned, except for one case. HERS was absent in the necrotic cases. While immature teeth with reversible pulpitis showed histologic features almost similar to normal teeth in the canal and in the apical region, those with irreversible pulpitis and necrosis exhibited significant alterations not only in the radicular pulp but also in the apical tissues, including the apical papilla and HERS. Alterations in the radicular pulp and apical tissues help explain the outcome of current regenerative/reparative therapies and should be taken into account when devising more predictable therapeutic protocols for teeth with incomplete root formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
78 FR 26791 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-08
... 301-435-0103. Stapled Peptides for Treatment of Cardiovascular Diseases and Inflammation Description... inflammation and cardiovascular diseases, including hyperlipidemia, atherosclerosis, restenosis, and acute...-stapled Apolipoprotein Peptide Mimetics for the Treatment of Cardiovascular Diseases and Inflammation. For...
Resolution of inflammation: state of the art, definitions and terms
Serhan, Charles N.; Brain, Sue D.; Buckley, Christopher D.; Gilroy, Derek W.; Haslett, Christopher; O’Neill, Luke A. J.; Perretti, Mauro; Rossi, Adriano G.; Wallace, John L.
2011-01-01
A recent focus meeting on Controlling Acute Inflammation was held in London, April 27-28, 2006, organized by D.W. Gilroy and S.D. Brain for the British Pharmacology Society. We concluded at the meeting that a consensus report was needed that addresses the rapid progress in this emerging field and details how the specific study of resolution of acute inflammation provides leads for novel anti-inflammatory therapeutics, as well as defines the terms and key components of interest in the resolution process within tissues as appreciated today. The inflammatory response protects the body against infection and injury but can itself become dysregulated with deleterious consequences to the host. It is now evident that endogenous biochemical pathways activated during defense reactions can counter-regulate inflammation and promote resolution. Hence, resolution is an active rather than a passive process, as once believed, which now promises novel approaches for the treatment of inflammation-associated diseases based on endogenous agonists of resolution. PMID:17267386
Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia
Zambelli, Vanessa O.; Picolo, Gisele; Fernandes, Carlos A. H.
2017-01-01
Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms. PMID:29311537
Monitoring inflammation (including fever) in acute brain injury.
Provencio, J Javier; Badjatia, Neeraj
2014-12-01
Inflammation is an important part of the normal physiologic response to acute brain injury (ABI). How inflammation is manifest determines if it augments or hinders the resolution of ABI. Monitoring body temperature, the cellular arm of the inflammatory cascade, and inflammatory proteins may help guide therapy. This summary will address the utility of inflammation monitoring in brain-injured adults. An electronic literature search was conducted for English language articles describing the testing, utility, and optimal methods to measure inflammation in ABI. Ninety-four articles were included in this review. Current evidence suggests that control of inflammation after ABI may hold promise for advances in good outcomes. However, our understanding of how much inflammation is good and how much is deleterious is not yet clear. Several important concepts emerge form our review. First, while continuous temperature monitoring of core body temperature is recommended, temperature pattern alone is not useful in distinguishing infectious from noninfectious fever. Second, when targeted temperature management is used, shivering should be monitored at least hourly. Finally, white blood cell levels and protein markers of inflammation may have a limited role in distinguishing infectious from noninfectious fever. Our understanding of optimal use of inflammation monitoring after ABI is limited currently but is an area of active investigation.
Evaluation of plasma biomarkers of inflammation in patients with maple syrup urine disease.
Scaini, Giselli; Tonon, Tássia; Moura de Souza, Carolina F; Schuck, Patricia F; Ferreira, Gustavo C; Quevedo, João; Neto, João Seda; Amorim, Tatiana; Camelo, Jose S; Margutti, Ana Vitoria Barban; Hencke Tresbach, Rafael; Sperb-Ludwig, Fernanda; Boy, Raquel; de Medeiros, Paula F V; Schwartz, Ida Vanessa D; Streck, Emilio Luiz
2018-05-08
Maple syrup urine disease (MSUD) is an autosomal recessive inherited disorder that affects branched-chain amino acid (BCAA) catabolism and is associated with acute and chronic brain dysfunction. Recent studies have shown that inflammation may be involved in the neuropathology of MSUD. However, these studies have mainly focused on single or small subsets of proteins or molecules. Here we performed a case-control study, including 12 treated-MSUD patients, in order to investigate the plasmatic biomarkers of inflammation, to help to establish a possible relationship between these biomarkers and the disease. Our results showed that MSUD patients in treatment with restricted protein diets have high levels of pro-inflammatory cytokines [IFN-γ, TNF-α, IL-1β and IL-6] and cell adhesion molecules [sICAM-1 and sVCAM-1] compared to the control group. However, no significant alterations were found in the levels of IL-2, IL-4, IL-5, IL-7, IL-8, and IL-10 between healthy controls and MSUD patients. Moreover, we found a positive correlation between number of metabolic crisis and IL-1β levels and sICAM-1 in MSUD patients. In conclusion, our findings in plasma of patients with MSUD suggest that inflammation may play an important role in the pathogenesis of MSUD, although this process is not directly associated with BCAA blood levels. Overall, data reported here are consistent with the working hypothesis that inflammation may be involved in the pathophysiological mechanism underlying the brain damage observed in MSUD patients.
Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety.
Vida, Carmen; González, Eva M; De la Fuente, Mónica
2014-01-01
According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the agerelated impairment of organism functions, including those of the nervous and immune systems, as well as of the neuroimmune communication, which explains the altered homeostasis and the resulting increase of morbidity and mortality. Overproduction of oxidant compounds can induce an inflammatory response, since oxidants are inflammation effectors. Thus, oxidation and inflammation are interlinked processes and have many feedback loops. However, the nature of their potential interactions, mainly in the brain and immune cells, and their key involvement in aging remain unclear. Moreover, in the context of the neuroimmune communication, it has been described that an oxidative-inflammatory situation occurs in subjects with anxiety, and this situation contributes to an immunosenescence, alteration of survival responses and shorter life span. As an example of this, a model of premature aging in mice, in which animals show a poor response to stress and high levels of anxiety, an oxidative stress in their immune cells and tissues, as well as a premature immunosenescence and a shorter life expectancy, will be commented in the present review. This model supports the hypothesis that anxiety can be a situation of chronic oxidative stress and inflammation, especially in brain and immune cells, and this accelerates the rate of aging.
Endoplasmic Reticulum Stress and Obesity.
Yilmaz, Erkan
2017-01-01
In recent years, the world has seen an alarming increase in obesity and closely associated with insulin resistance which is a state of low-grade inflammation, the latter characterized by elevated levels of proinflammatory cytokines in blood and tissues. A shift in energy balance alters systemic metabolic regulation and the important role that chronic inflammation, endoplasmic reticulum (ER) dysfunction, and activation of the unfolded protein response (UPR) play in this process.Why obesity is so closely associated with insulin resistance and inflammation is not understood well. This suggests that there are probably other causes for obesity-related insulin resistance and inflammation. One of these appears to be endoplasmic reticulum (ER) stress.The ER is a vast membranous network responsible for the trafficking of a wide range of proteins and plays a central role in integrating multiple metabolic signals critical in cellular homeostasis. Conditions that may trigger unfolded protein response activation include increased protein synthesis, the presence of mutant or misfolded proteins, inhibition of protein glycosylation, imbalance of ER calcium levels, glucose and energy deprivation, hypoxia, pathogens or pathogen-associated components and toxins. Thus, characterizing the mechanisms contributing to obesity and identifying potential targets for its prevention and treatment will have a great impact on the control of associated conditions, particularly T2D.
Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections.
Drago-Serrano, Maria Elisa; Campos-Rodríguez, Rafael; Carrero, Julio César; de la Garza, Mireya
2017-03-01
Lactoferrin (Lf) is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases.
Gleditsch, Dorothy D; Shornick, Laurie P; Van Steenwinckel, Juliette; Gressens, Pierre; Weisert, Ryan P; Koenig, Joyce M
2014-07-01
Chorioamnionitis, an inflammatory gestational disorder, commonly precedes preterm delivery. Preterm infants may be at particular risk for inflammation-related morbidity related to infection, although the pathogenic mechanisms are unclear. We hypothesized that maternal inflammation modulates immune programming to drive postnatal inflammatory processes. We used a novel combined murine model to treat late gestation dams with low-dose lipopolysaccharide (LPS) and to secondarily challenge exposed neonates or weanlings with Sendai virus (SeV) lung infection. Multiple organs were analyzed to characterize age-specific postnatal immune and inflammatory responses. Maternal LPS treatment enhanced innate immune populations in the lungs, livers, and/or spleens of exposed neonates or weanlings. Secondary lung SeV infection variably affected neutrophil, macrophage, and dendritic cell proportions in multiple organs of exposed pups. Neonatal lung infection induced brain interleukin (IL)-4 expression, although this response was muted in LPS-exposed pups. Adaptive immune cells, including lung, lymph node, and thymic lymphocytes and lung CD4 cells expressing FoxP3, interferon (IFN)-γ, or IL-17, were variably prominent in LPS-exposed pups. Maternal inflammation modifies postnatal immunity and augments systemic inflammatory responses to viral lung infection in an age-specific manner. We speculate that inflammatory modulation of the developing immune system contributes to chronic morbidity and mortality in preterm infants.
Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections
Drago-Serrano, Maria Elisa; Campos-Rodríguez, Rafael; Carrero, Julio César; de la Garza, Mireya
2017-01-01
Lactoferrin (Lf) is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases. PMID:28257033
Parkinson's disease and systemic inflammation.
Ferrari, Carina C; Tarelli, Rodolfo
2011-02-22
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the "primed" microglia into an "active" state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease.
Liu, Rongjun; Zhang, Liangliang; Chen, Yunyun; Huang, Zirong; Huang, Yong; Zhao, Shulin
2018-04-03
The superoxide anion (O 2 •- ) and hydroxyl radical ( • OH) are important reactive oxygen species (ROS) used as biomarkers in physiological and pathological processes. ROS generation is closely related to the development of a variety of inflammatory diseases. However, the changes of ROS are difficult to ascertain with in situ tracing of the inflammation process by real-time monitoring, owing to the short half-lives of ROS and high tissue autofluorescence in vivo. Here we developed a new near-infrared (NIR) ratiometric fluorescence imaging approach by using a Förster resonance energy transfer (FRET)-based ratiometric fluorescent nanoprobe for real-time monitoring of O 2 •- and • OH generation and also by using in situ tracing of the inflammation process in vivo. The proposed nanoprobe was composed of PEG functionalized GQDs as the energy donor connecting to hydroIR783, serving as both the O 2 •- / • OH recognizing ligand and the energy acceptor. The nanoprobe not only exhibited a fast response to O 2 •- and • OH but also presented good biocomapatibility as well as a high photostability and signal-to-noise ratio. We have demonstrated that the proposed NIR ratiometric fluorescent nanoprobe can monitor the changes of O 2 •- and • OH in living RAW 264.7 cells via a drug mediating inflammation model and further realized visual monitoring of the change of O 2 •- and • OH in mice for in situ tracing of the inflammation process. Our design may provide a new paradigm for long-term and real-time imaging applications for in vivo tracing of the pathological process related to the inflammatory diseases.
Mazzocca, Augustus D; McCarthy, Mary Beth R; Intravia, Jessica; Beitzel, Knut; Apostolakos, John; Cote, Mark P; Bradley, James; Arciero, Robert A
2013-04-01
The purpose of this study was to quantify the extent of the anti-inflammatory effect of platelet-rich plasma (PRP) in a controlled in vitro environment. Through the stimulation of human umbilical vein endothelial cells with inflammatory cytokines (tumor necrosis factor α and interferon γ), cell adhesion molecule expression (E-selectin, vascular cell adhesion molecule, and human leukocyte antigen DR) and PRP's anti-inflammatory effect can be measured. PRP was produced from 3 individuals using a single-spin (PRPLP) process. Treatment groups include negative (unstimulated) controls, positive (stimulated) controls, ketorolac tromethamine, methylprednisolone, PRP, ketorolac-PRP, and methylprednisolone-PRP. A fluorescence assay of the cellular inflammation markers was measured by the BioTek Synergy HT plate reader (BioTek Instruments, Winooski, VT) at 0, 1, 2, and 5 days. At days 2 and 5, methylprednisolone treatment showed a 2.1- to 5.8-fold reduction (P < .05) in inflammation markers over PRP. In addition, PRP and ketorolac showed a 1.4- to 2.5-fold reduction (P < .05) in cellular inflammation markers over the control. There was no statistically significant difference between ketorolac and PRP. Although PRP and ketorolac reduced cellular inflammation markers (E-selectin, vascular cell adhesion molecule, and human leukocyte antigen DR) compared with control, neither caused as great a reduction as methylprednisolone. Although PRP and ketorolac did not produce as significant a reduction in cellular inflammation markers as methylprednisolone, they reduced cellular inflammation compared with the control. These agents may have clinical application as injectable anti-inflammatory medications. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Molecular Processes that Drive Cigarette Smoke–Induced Epithelial Cell Fate of the Lung
Nyunoya, Toru; Mebratu, Yohannes; Contreras, Amelia; Delgado, Monica; Chand, Hitendra S.
2014-01-01
Cigarette smoke contains numerous chemical compounds, including abundant reactive oxygen/nitrogen species and aldehydes, and many other carcinogens. Long-term cigarette smoking significantly increases the risk of various lung diseases, including chronic obstructive pulmonary disease and lung cancer, and contributes to premature death. Many in vitro and in vivo studies have elucidated mechanisms involved in cigarette smoke–induced inflammation, DNA damage, and autophagy, and the subsequent cell fates, including cell death, cellular senescence, and transformation. In this Translational Review, we summarize the known pathways underlying these processes in airway epithelial cells to help reveal future challenges and describe possible directions of research that could lead to better management and treatment of these diseases. PMID:24111585
Emerging roles of basophils in allergic inflammation.
Miyake, Kensuke; Karasuyama, Hajime
2017-07-01
Basophils have long been neglected in immunological studies because they were regarded as only minor relatives of mast cells. However, recent advances in analytical tools for basophils have clarified the non-redundant roles of basophils in allergic inflammation. Basophils play crucial roles in both IgE-dependent and -independent allergic inflammation, through their migration to the site of inflammation and secretion of various mediators, including cytokines, chemokines, and proteases. Basophils are known to produce large amounts of IL-4 in response to various stimuli. Basophil-derived IL-4 has recently been shown to play versatile roles in allergic inflammation by acting on various cell types, including macrophages, innate lymphoid cells, fibroblasts, and endothelial cells. Basophil-derived serine proteases are also crucial for the aggravation of allergic inflammation. Moreover, recent reports suggest the roles of basophils in modulating adaptive immune responses, particularly in the induction of Th2 differentiation and enhancement of humoral memory responses. In this review, we will discuss recent advances in understanding the roles of basophils in allergic inflammation. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
Steinhoff, Martin S.; von Mentzer, Bengt; Geppetti, Pierangelo; Pothoulakis, Charalabos; Bunnett, Nigel W.
2014-01-01
The tachykinins, exemplified by substance P, are one of the most intensively studied neuropeptide families. They comprise a series of structurally related peptides that derive from alternate processing of three Tac genes and are expressed throughout the nervous and immune systems. Tachykinins interact with three neurokinin G protein-coupled receptors. The signaling, trafficking, and regulation of neurokinin receptors have also been topics of intense study. Tachykinins participate in important physiological processes in the nervous, immune, gastrointestinal, respiratory, urogenital, and dermal systems, including inflammation, nociception, smooth muscle contractility, epithelial secretion, and proliferation. They contribute to multiple diseases processes, including acute and chronic inflammation and pain, fibrosis, affective and addictive disorders, functional disorders of the intestine and urinary bladder, infection, and cancer. Neurokinin receptor antagonists are selective, potent, and show efficacy in models of disease. In clinical trials there is a singular success: neurokinin 1 receptor antagonists to treat nausea and vomiting. New information about the involvement of tachykinins in infection, fibrosis, and pruritus justifies further trials. A deeper understanding of disease mechanisms is required for the development of more predictive experimental models, and for the design and interpretation of clinical trials. Knowledge of neurokinin receptor structure, and the development of targeting strategies to disrupt disease-relevant subcellular signaling of neurokinin receptors, may refine the next generation of neurokinin receptor antagonists. PMID:24382888
An Update on Inflamm-Aging: Mechanisms, Prevention, and Treatment
Wu, Junzhen
2016-01-01
Inflamm-aging is a challenging and promising new branch of aging-related research fields that includes areas such as immunosenescence. Increasing evidence indicates that inflamm-aging is intensively associated with many aging diseases, such as Alzheimer's disease, atherosclerosis, heart disease, type II diabetes, and cancer. Mounting studies have focused on the role of inflamm-aging in disease progression and many advances have been made in the last decade. However, the underlying mechanisms by which inflamm-aging affects pathological changes and disease development are still unclear. Here, we review studies of inflamm-aging that explore the concept, pathological features, mechanisms, intervention, and the therapeutic strategies of inflamm-aging in disease progression. PMID:27493973
Molecular inflammation as an underlying mechanism of the aging process and age-related diseases.
Chung, H Y; Lee, E K; Choi, Y J; Kim, J M; Kim, D H; Zou, Y; Kim, C H; Lee, J; Kim, H S; Kim, N D; Jung, J H; Yu, B P
2011-07-01
Aging is a biological process characterized by time-dependent functional declines that are influenced by changes in redox status and by oxidative stress-induced inflammatory reactions. An organism's pro-inflammatory status may underlie the aging process and age-related diseases. In this review, we explore the molecular basis of low-grade, unresolved, subclinical inflammation as a major risk factor for exacerbating the aging process and age-related diseases. We focus on the redox-sensitive transcription factors, NF-κB and FOXO, which play essential roles in the expression of pro-inflammatory mediators and anti-oxidant enzymes, respectively. Major players in molecular inflammation are discussed with respect to the age-related up-regulation of pro-inflammatory cytokines and adhesion molecules, cyclo-oxygenase-2, lipoxygenase, and inducible nitric oxide synthase. The molecular inflammation hypothesis proposed by our laboratory is briefly described to give further molecular insights into the intricate interplay among redox balance, pro-inflammatory gene activation, and chronic age-related inflammatory diseases. The final section discusses calorie restriction as an aging-retarding intervention that also exhibits extraordinarily effective anti-inflammatory activity by modulating GSH redox, NF-κB, SIRT1, PPARs, and FOXOs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder-Talkington, Brandi N.; Dymacek, Julian; Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506-9300
2013-10-15
The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 μg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chainmore » simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and was used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts. - Highlights: • A novel computational model identified toxicity pathways matching in vivo pathology. • Systematic identification of MWCNT-induced biological processes in mouse lungs • MWCNT-induced functional networks of lung inflammation and fibrosis were revealed. • Two functional, representative genes, ccl2 and vegfa, were validated in vitro.« less
2013-10-01
Evaluation of Novel Polyunsaturated Fatty Acid Derived Lipid Mediators 5a. CONTRACT NUMBER of Inflammation to Ameliorate the Deleterious Effects...studies have not been carried out as yet. Our hypothesis is that novel polyunsaturated fatty acid derived lipid mediators of inflammation, i.e., lipoxins
Inflammation and oxidative stress in vertebrate host–parasite systems
Sorci, Gabriele; Faivre, Bruno
2008-01-01
Innate, inflammation-based immunity is the first line of vertebrate defence against micro-organisms. Inflammation relies on a number of cellular and molecular effectors that can strike invading pathogens very shortly after the encounter between inflammatory cells and the intruder, but in a non-specific way. Owing to this non-specific response, inflammation can generate substantial costs for the host if the inflammatory response, and the associated oxygen-based damage, get out of control. This imposes strong selection pressure that acts to optimize two key features of the inflammatory response: the timing of activation and resolution (the process of downregulation of the response). In this paper, we review the benefits and costs of inflammation-driven immunity. Our aim is to emphasize the importance of resolution of inflammation as a way of maintaining homeostasis against oxidative stress and to prevent the ‘horror autotoxicus’ of chronic inflammation. Nevertheless, host immune regulation also opens the way to pathogens to subvert host defences. Therefore, quantifying inflammatory costs requires assessing (i) short-term negative effects, (ii) delayed inflammation-driven diseases, and (iii) parasitic strategies to subvert inflammation. PMID:18930878
Susceptibility to chronic inflammation: an update.
Nasef, Noha Ahmed; Mehta, Sunali; Ferguson, Lynnette R
2017-03-01
Chronic inflammation is defined by the persistence of inflammatory processes beyond their physiological function, resulting in tissue destruction. Chronic inflammation is implicated in the progression of many chronic diseases and plays a central role in chronic inflammatory and autoimmune disease. As such, this review aims to collate some of the latest research in relation to genetic and environmental susceptibilities to chronic inflammation. In the genetic section, we discuss some of the updates in cytokine research and current treatments that are being developed. We also discuss newly identified canonical and non-canonical genes associated with chronic inflammation. In the environmental section, we highlight some of the latest updates and evidence in relation to the role that infection, diet and stress play in promoting inflammation. The aim of this review is to provide an overview of the latest research to build on our current understanding of chronic inflammation. It highlights the complexity associated with chronic inflammation, as well as provides insights into potential new targets for therapies that could be used to treat chronic inflammation and consequently prevent disease progression.
Inflammation-induced lymphangiogenesis and lymphatic dysfunction
Liao, Shan; von der Weid, Pierre-Yves
2014-01-01
The lymphatic system is intimately linked to tissue fluid homeostasis and immune cell trafficking. These functions are paramount in the establishment and development of an inflammatory response. In the past decade, an increasing number of reports has revealed that marked changes, such as lymphangiogenesis and lymphatic contractile dysfunction occur in both vascular and nodal parts of the lymphatic system during inflammation, as well as other disease processes. This review provides a critical update on the role of the lymphatic system in disease process such as chronic inflammation and cancer and examines the changes in lymphatic functions the diseases cause and the influence these changes have on the progression of the diseases. PMID:24449090
Korzeniewski, Steven J; Romero, Roberto; Cortez, Josepf; Pappas, Athina; Schwartz, Alyse G; Kim, Chong Jai; Kim, Jung-Sun; Kim, Yeon Mee; Yoon, Bo Hyun; Chaiworapongsa, Tinnakorn; Hassan, Sonia S
2014-11-01
We sought to determine whether cumulative evidence of perinatal inflammation was associated with increased risk in a "multi-hit" model of neonatal white matter injury (WMI). This retrospective cohort study included very preterm (gestational ages at delivery <32 weeks) live-born singleton neonates delivered at Hutzel Women's Hospital, Detroit, MI, from 2006 to 2011. Four pathologists blinded to clinical diagnoses and outcomes performed histological examinations according to standardized protocols. Neurosonography was obtained per routine clinical care. The primary indicator of WMI was ventriculomegaly (VE). Neonatal inflammation-initiating illnesses included bacteremia, surgical necrotizing enterocolitis, other infections, and those requiring mechanical ventilation. A total of 425 live-born singleton neonates delivered before the 32nd week of gestation were included. Newborns delivered of pregnancies affected by chronic chorioamnionitis who had histologic evidence of an acute fetal inflammatory response were at increased risk of VE, unlike those without funisitis, relative to referent newborns without either condition, adjusting for gestational age [odds ratio (OR) 4.7; 95% confidence interval (CI) 1.4-15.8 vs. OR 1.3; 95% CI 0.7-2.6]. Similarly, newborns with funisitis who developed neonatal inflammation-initiating illness were at increased risk of VE, unlike those who did not develop such illness, compared to the referent group without either condition [OR 3.6 (95% CI 1.5-8.3) vs. OR 1.7 (95% CI 0.5-5.5)]. The greater the number of these three types of inflammation documented, the higher the risk of VE (P<0.0001). Chronic placental inflammation, acute fetal inflammation, and neonatal inflammation-initiating illness seem to interact in contributing risk information and/or directly damaging the developing brain of newborns delivered very preterm.
Korzeniewski, SJ; Romero, R; Cortez, J; Pappas, A; Schwartz, AG; Kim, CJ; Kim, JS; Kim, YM; Yoon, BH; Chaiworapongsa, T; Hassan, SS
2018-01-01
Objective We sought to determine whether cumulative evidence of perinatal inflammation was associated with increased risk in a ‘multi-hit’ model of neonatal white matter injury. Methods This retrospective cohort study included very preterm (gestational ages at delivery <32 weeks) liveborn singleton neonates delivered at Hutzel Women’s Hospital, Detroit, MI, from 2006–2011. Four pathologists blinded to clinical diagnoses and outcomes performed histological examinations according to standardized protocols. Neurosonography was obtained per routine clinical care. The primary indicator of WMI was ventriculomegaly (VE). Neonatal inflammation-initiating illnesses included bacteremia, surgical necrotizing enterocolitis, other infections, and those requiring mechanical ventilation. Results A total of 425 liveborn singleton neonates delivered before the 32nd week of gestation were included. Newborns delivered of pregnancies affected by chronic chorioamnionitis who had histologic evidence of an acute fetal inflammatory response were at increased risk of VE, unlike those without funisitis, relative to referent newborns without either condition, adjusting for gestational age [OR 4.7; 95%CI 1.4–15.8 vs. OR 1.3; 95%CI 0.7–2.6]. Similarly, newborns with funisitis who developed neonatal inflammation initiating illness were at increased risk of VE, unlike those who did not develop such illness, compared to the referent group without either condition [OR 3.6; 95%CI 1.5–8.3 vs. OR 1.7; 95%CI 0.5–5.5]. The greater the number of these three types of inflammation documented, the higher the risk of VE (p<0.0001). Conclusion Chronic placental inflammation, acute fetal inflammation and neonatal inflammation-initiating illness seem to interact in contributing risk information and/or directly damaging the developing brain of newborns delivered very preterm. PMID:25205706
Age Drives Distortion of Brain Metabolic, Vascular and Cognitive Functions, and the Gut Microbiome
Hoffman, Jared D.; Parikh, Ishita; Green, Stefan J.; Chlipala, George; Mohney, Robert P.; Keaton, Mignon; Bauer, Bjoern; Hartz, Anika M. S.; Lin, Ai-Ling
2017-01-01
Advancing age is the top risk factor for the development of neurodegenerative disorders, including Alzheimer’s disease (AD). However, the contribution of aging processes to AD etiology remains unclear. Emerging evidence shows that reduced brain metabolic and vascular functions occur decades before the onset of cognitive impairments, and these reductions are highly associated with low-grade, chronic inflammation developed in the brain over time. Interestingly, recent findings suggest that the gut microbiota may also play a critical role in modulating immune responses in the brain via the brain-gut axis. In this study, our goal was to identify associations between deleterious changes in brain metabolism, cerebral blood flow (CBF), gut microbiome and cognition in aging, and potential implications for AD development. We conducted our study with a group of young mice (5–6 months of age) and compared those to old mice (18–20 months of age) by utilizing metabolic profiling, neuroimaging, gut microbiome analysis, behavioral assessments and biochemical assays. We found that compared to young mice, old mice had significantly increased levels of numerous amino acids and fatty acids that are highly associated with inflammation and AD biomarkers. In the gut microbiome analyses, we found that old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We also found impaired blood-brain barrier (BBB) function and reduced CBF as well as compromised learning and memory and increased anxiety, clinical symptoms often seen in AD patients, in old mice. Our study suggests that the aging process involves deleterious changes in brain metabolic, vascular and cognitive functions, and gut microbiome structure and diversity, all which may lead to inflammation and thus increase the risk for AD. Future studies conducting comprehensive and integrative characterization of brain aging, including crosstalk with peripheral systems and factors, will be necessary to define the mechanisms underlying the shift from normal aging to pathological processes in the etiology of AD. PMID:28993728
Lieu, TinaMarie; Pelayo, Juan Carlos; Eriksson, Emily M.; Veldhuis, Nicholas A.; Bunnett, Nigel W.
2015-01-01
Activated G protein-coupled receptors traffic to endosomes and are sorted to recycling or degradative pathways. Endosomes are also a site of receptor signaling of sustained and pathophysiologically important processes, including inflammation. However, the mechanisms of endosomal sorting of receptors and the impact of disease on trafficking have not been fully defined. We examined the effects of inflammation on the subcellular distribution and trafficking of the substance P (SP) neurokinin 1 receptor (NK1R) in enteric neurons. We studied NK1R trafficking in enteric neurons of the mouse colon using immunofluorescence and confocal microscopy. The impact of inflammation was studied in IL10−/−-piroxicam and trinitrobenzenesulfonic acid colitis models. NK1R was localized to the plasma membrane of myenteric and submucosal neurons of the uninflamed colon. SP evoked NK1R endocytosis and recycling. Deletion of β-arrestin2, which associates with the activated NK1R, accelerated recycling. Inhibition of endothelin-converting enzyme-1 (ECE-1), which degrades endosomal SP, prevented recycling. Inflammation was associated with NK1R endocytosis in myenteric but not submucosal neurons. Whereas the NK1R in uninflamed neurons recycled within 60 min, NK1R recycling in inflamed neurons was delayed for >120 min, suggesting defective recycling machinery. Inflammation was associated with β-arrestin2 upregulation and ECE-1 downregulation, which may contribute to the defective NK1R recycling. We conclude that inflammation evokes redistribution of NK1R from the plasma membrane to endosomes of myenteric neurons through enhanced SP release and defective NK1R recycling. Defective recycling may be secondary to upregulation of β-arrestin2 and downregulation of ECE-1. Internalized NK1R may generate sustained proinflammatory signals that disrupt normal neuronal functions. PMID:26138465
Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity
Trim, William; Turner, James E.; Thompson, Dylan
2018-01-01
Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed “inflammageing”. In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity—including an accumulation of pro-inflammatory immune cell populations—plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence. PMID:29479350
Caserta, Stefano; Kern, Florian; Cohen, Jonathan; Drage, Stephen; Newbury, Sarah F; Llewelyn, Martin J
2016-06-20
Systemic inflammation in humans may be triggered by infection, termed sepsis, or non-infective processes, termed non-infective systemic inflammatory response syndrome (SIRS). MicroRNAs regulate cellular processes including inflammation and may be detected in blood. We aimed to establish definitive proof-of-principle that circulating microRNAs are differentially affected during sepsis and non-infective SIRS. Critically ill patients with severe (n = 21) or non-severe (n = 8) intra-abdominal sepsis; severe (n = 23) or non-severe (n = 21) non-infective SIRS; or no SIRS (n = 16) were studied. Next-generation sequencing and qRT-PCR were used to measure plasma microRNAs. Detectable blood miRNAs (n = 116) were generally up-regulated in SIRS compared to no-SIRS patients. Levels of these 'circulating inflammation-related microRNAs' (CIR-miRNAs) were 2.64 (IQR: 2.10-3.29) and 1.52 (IQR: 1.15-1.92) fold higher for non-infective SIRS and sepsis respectively (p < 0.0001), hence CIR-miRNAs appeared less abundant in sepsis than in SIRS. Six CIR-miRNAs (miR-30d-5p, miR-30a-5p, miR-192-5p, miR-26a-5p, miR-23a-5p, miR-191-5p) provided good-to-excellent discrimination of severe sepsis from severe SIRS (0.742-0.917 AUC of ROC curves). CIR-miRNA levels inversely correlated with pro-inflammatory cytokines (IL-1, IL-6 and others). Thus, among critically ill patients, sepsis and non-infective SIRS are associated with substantial, differential changes in CIR-miRNAs. CIR-miRNAs may be regulators of inflammation and warrant thorough evaluation as diagnostic and therapeutic targets.
Pantan, Rungusa; Tocharus, Jiraporn; Suksamrarn, Apichart; Tocharus, Chainarong
2016-03-15
Statins have often been used in atherosclerosis treatment because of its pleiotropic effects on inflammation. However, some adverse effects of high doses of statin show reverse effects after withdrawal. Cyanidin-3-glucoside (C3G) is a powerful anti-inflammation and antioxidant that has been of interest for use in combination with low doses of statin, which may be alternative treatment for atherosclerosis. The objective is to investigate the synergistic effect of atorvastatin and C3G in angiotensin II (Ang II)-induced inflammation in vascular smooth muscle cells. Human aortic smooth muscle cells (HASMCs) were exposed to Ang II with or without atorvastatin and C3G alone, or in combination. The results revealed that the combination of atorvastatin and C3G produces synergism against inflammation and oxidative stress. The mechanism of the combination of atorvastatin and C3G suppressed the translocation of the p65 subunit of NF-κB from cytosol to nucleus, and attenuated the expression of proteins including inducible nitric oxide synthase, intracellular adhesion molecule 1(ICAM-1), and vascular cell adhesion molecule 1(VCAM-1), in addition to nitric oxide (NO) production. Moreover, C3G exerts the antioxidative properties of atorvastatin through down-regulating NOX1 and promoting the activity of the Nrf2(-)ARE signaling pathway and downstream proteins including heme oxygenase (HO-1), NAD(P)H:quinoneoxidoreductase 1 (NQO-1), and glutamate-cysteine ligase catalytic subunit (γ-GCLC), besides increasing the activity of superoxide dismutase (SOD) enzymes. Taken together, these results suggest that a combination of low dose statins and C3G might serve as a potential regulator of the atherosclerosis process which is mediated by attenuating oxidative stress, thereby inhibiting NF-κB and activating Nrf2 signaling pathways induced by Ang II. Copyright © 2016 Elsevier Inc. All rights reserved.
Lee, Jongsoon
2014-01-01
It has been increasingly accepted that chronic subacute inflammation plays an important role in the development of insulin resistance and Type 2 Diabetes in animals and humans. Particularly supporting this is that suppression of systemic inflammation in Type 2 Diabetes improves glycemic control; this also points to a new potential therapeutic target for the treatment of Type 2 Diabetes. Recent studies strongly suggest that obesity-induced inflammation is mainly mediated by tissue resident immune cells, with particular attention being focused on adipose tissue macrophages (ATMs). This review delineates the current progress made in understanding obesity-induced inflammation and the roles ATMs play in this process. PMID:23397293
The regulation of inflammation by interferons and their STATs.
Rauch, Isabella; Müller, Mathias; Decker, Thomas
2013-01-01
Interferons (IFN) are subdivided into type I IFN (IFN-I, here synonymous with IFN-α/β), type II (IFN-γ) and type III IFN (IFN-III/IFN-λ) that reprogram nuclear gene expression through STATs 1 and 2 by forming STAT1 dimers (mainly IFN-γ) or the ISGF3 complex, a STAT1-STAT2-IRF9 heterotrimer (IFN-I and IFN-III). Dominant IFN activities in the immune system are to protect cells from viral replication and to activate macrophages for enhanced effector function. However, the impact of IFN and their STATs on the immune system stretches far beyond these activities and includes the control of inflammation. The goal of this review is to give an overview of the different facets of the inflammatory process that show regulatory input by IFN/STAT.
Cytokine mediated tissue fibrosis☆
Borthwick, Lee A.; Wynn, Thomas A.; Fisher, Andrew J.
2013-01-01
Acute inflammation is a recognised part of normal wound healing. However, when inflammation fails to resolve and a chronic inflammatory response is established this process can become dysregulated resulting in pathological wound repair, accumulation of permanent fibrotic scar tissue at the site of injury and the failure to return the tissue to normal function. Fibrosis can affect any organ including the lung, skin, heart, kidney and liver and it is estimated that 45% of deaths in the western world can now be attributed to diseases where fibrosis plays a major aetiological role. In this review we examine the evidence that cytokines play a vital role in the acute and chronic inflammatory responses that drive fibrosis in injured tissues. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease. PMID:23046809
Li, Min; Xu, Jingxing; Shi, Tongxin; Yu, Haiyang; Bi, Jianping; Chen, Guanzhi
2016-11-01
In non-healing wounds, mesenchymal stem cell (MSC)-based therapies have the potential to activate a series of coordinated cellular processes, including angiogenesis, inflammation, cell migration, proliferation and epidermal terminal differentiation. As pro-inflammatory reactions play indispensable roles in initiating wound repair, sustained and prolonged inflammation exhibit detrimental effects on skin wound closure. We investigated the feasibility of using an antioxidant agent epigallocatechin-3-gallate (EGCG), along with MSCs, to improve wound repair through their immunomodulatory actions. In a rat model of wound healing, a single dose of EGCG at 10 mg/kg increased the efficiency of MSC-induced skin wound closure. Twenty days after the wound induction, MSC treatment significantly enhanced the epidermal thickness, which was further increased by EGCG administration. Consistently, the highest extent of growth factors upregulation for neovascularization induction was seen in the animals treated by both MSCs and EGCG, associated with a potent anti-scarring effect throughout the healing process. Finally, expression levels of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and IL-6, in the wound area were reduced by MSCs, and this reduction was further potentiated by EGCG co-administration. EGCG, together with MSCs, can promote skin wound healing likely through their combinational effects in modulating chronic inflammation. © 2016 John Wiley & Sons Australia, Ltd.
Physical activity and cancer prevention : pathways and targets for intervention.
Rogers, Connie J; Colbert, Lisa H; Greiner, John W; Perkins, Susan N; Hursting, Stephen D
2008-01-01
The prevalence of obesity, an established epidemiological risk factor for many cancers, has risen steadily for the past several decades in the US and many other countries. Particularly alarming are the increasing rates of obesity among children, portending continuing increases in the rates of obesity and obesity-related cancers for many years to come. Modulation of energy balance, via increased physical activity, has been shown in numerous comprehensive epidemiological reviews to reduce cancer risk. Unfortunately, the effects and mechanistic targets of physical activity interventions on the carcinogenesis process have not been thoroughly characterized. Studies to date suggest that exercise can exert its cancer-preventive effects at many stages during the process of carcinogenesis, including both tumour initiation and progression. As discussed in this review, exercise may be altering tumour initiation events by modifying carcinogen activation, specifically by enhancing the cytochrome P450 system and by enhancing selective enzymes in the carcinogen detoxification pathway, including, but not limited to, glutathione-S-transferases. Furthermore, exercise may reduce oxidative damage by increasing a variety of anti-oxidant enzymes, enhancing DNA repair systems and improving intracellular protein repair systems. In addition to altering processes related to tumour initiation, exercise may also exert a cancer-preventive effect by dampening the processes involved in the promotion and progression stages of carcinogenesis, including scavenging reactive oxygen species (ROS); altering cell proliferation, apoptosis and differentiation; decreasing inflammation; enhancing immune function; and suppressing angiogenesis. A paucity of data exists as to whether exercise may be working as an anti-promotion strategy via altering ROS in initiated or preneoplastic models; therefore, no conclusions can be made about this possible mechanism. The studies directly examining cell proliferation and apoptosis have shown that exercise can enhance both processes, which is difficult to interpret in the context of carcinogenesis. Studies examining the relationship between exercise and chronic inflammation suggest that exercise may reduce pro-inflammatory mediators and reduce the state of low-grade, chronic inflammation. Additionally, exercise has been shown to enhance components of the innate immune response (i.e. macrophage and natural killer cell function). Finally, only a limited number of studies have explored the relationship between exercise and angiogenesis; therefore, no conclusions can be made currently about the role of exercise in the angiogenesis process as it relates to tumour progression. In summary, exercise can alter biological processes that contribute to both anti-initiation and anti-progression events in the carcinogenesis process. However, more sophisticated, detailed studies are needed to examine each of the potential mechanisms contributing to an exercise-induced decrease in carcinogenesis in order to determine the minimum dose, duration and frequency of exercise needed to yield significant cancer-preventive effects, and whether exercise can be used prescriptively to reverse the obesity-induced physiological changes that increase cancer risk.
Effects of interventions on oxidative stress and inflammation of cardiovascular diseases
Lee, Sewon; Park, Yoonjung; Zuidema, Mozow Yusof; Hannink, Mark; Zhang, Cuihua
2011-01-01
Excessive oxidative stress and low-grade chronic inflammation are major pathophysiological factors contributing to the development of cardiovascular diseases (CVD) such as hypertension, diabetes and atherosclerosis. Accumulating evidence suggests that a compromised anti-oxidant system can lead to excessive oxidative stress in cardiovascular related organs, resulting in cell damage and death. In addition, increased circulating levels of pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and C-reactive protein, are closely related to morbidity and mortality of cardiovascular complications. Emerging evidence suggests that interventions including nutrition, pharmacology and exercise may activate expression of cellular anti-oxidant systems via the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 signaling pathway and play a role in preventing inflammatory processes in CVD. The focus of the present review is to summarize recent evidence showing the role of these anti-oxidant and anti-inflammatory interventions in cardiovascular disease. We believe that these findings may prompt new effective pathogenesis-oriented interventions, based on the exercise-induced protection from disease in the cardiovascular system, aimed at targeting oxidant stress and inflammation. PMID:21286214
Neuro-immune interactions in inflammation and host defense: Implications for transplantation.
Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M
2018-03-01
Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
The sterile inflammatory response
Rock, Kenneth L.; Latz, Eicke; Ontiveros, Fernando; Kono, Hajime
2015-01-01
The acute inflammatory response is a double-edged sword. On the one hand it plays a key role in initial host defense particularly against many infections. On the other hand its aim is imprecise and as a consequence, when it is drawn into battle, it can cause collateral damage in tissues. In situations where the inciting stimulus is sterile, the cost-benefit ratio may be high; because of this, sterile inflammation underlies the pathogenesis of a number of diseases. While there have been major advances in our understanding of how microbes trigger inflammation, much less has been learned about this process in sterile situations. This review focuses on a subset of the many sterile stimuli that can induce inflammation – specifically dead cells and a variety of irritant particles, including crystals, minerals, and protein aggregates. Although this subset of stimuli is structurally very diverse and might appear to be unrelated, there is accumulating evidence that the innate immune system may recognize them in similar ways and stimulate the sterile inflammatory response via common pathways. Here we review established and emerging data about these responses. PMID:20307211
Chronic Inflammatory Diseases and Green Tea Polyphenols
Oz, Helieh S.
2017-01-01
Chronic inflammatory diseases affect millions of people globally and the incidence rate is on the rise. While inflammation contributes to the tissue healing process, chronic inflammation can lead to life-long debilitation and loss of tissue function and organ failure. Chronic inflammatory diseases include hepatic, gastrointestinal and neurodegenerative complications which can lead to malignancy. Despite the millennial advancements in diagnostic and therapeutic modalities, there remains no effective cure for patients who suffer from inflammatory diseases. Therefore, patients seek alternatives and complementary agents as adjunct therapies to relieve symptoms and possibly to prevent consequences of inflammation. It is well known that green tea polyphenols (GrTPs) are potent antioxidants with important roles in regulating vital signaling pathways. These comprise transcription nuclear factor-kappa B mediated I kappa B kinase complex pathways, programmed cell death pathways like caspases and B-cell lymphoma-2 and intervention with the surge of inflammatory markers like cytokines and production ofcyclooxygenase-2. This paper concisely reviews relevant investigations regarding protective effects of GrTPs and some reported adverse effects, as well as possible applications for GrTPs in the treatment of chronic and inflammatory complications. PMID:28587181
Maes, Michael; Nowak, Gabriel; Caso, Javier R; Leza, Juan Carlos; Song, Cai; Kubera, Marta; Klein, Hans; Galecki, Piotr; Noto, Cristiano; Glaab, Enrico; Balling, Rudi; Berk, Michael
2016-07-01
Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.
EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors.
Hui, Tianqian; A, Peng; Zhao, Yuan; Yang, Jing; Ye, Ling; Wang, Chenglin
2018-01-01
Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inflammation and Alzheimer’s disease
Akiyama, Haruhiko; Barger, Steven; Barnum, Scott; Bradt, Bonnie; Bauer, Joachim; Cole, Greg M.; Cooper, Neil R.; Eikelenboom, Piet; Emmerling, Mark; Fiebich, Berndt L.; Finch, Caleb E.; Frautschy, Sally; Griffin, W.S.T.; Hampel, Harald; Hull, Michael; Landreth, Gary; Lue, Lih–Fen; Mrak, Robert; Mackenzie, Ian R.; McGeer, Patrick L.; O’Banion, M. Kerry; Pachter, Joel; Pasinetti, Guilio; Plata–Salaman, Carlos; Rogers, Joseph; Rydel, Russell; Shen, Yong; Streit, Wolfgang; Strohmeyer, Ronald; Tooyoma, Ikuo; Van Muiswinkel, Freek L.; Veerhuis, Robert; Walker, Douglas; Webster, Scott; Wegrzyniak, Beatrice; Wenk, Gary; Wyss–Coray, Tony
2013-01-01
Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer’s disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid β peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder. PMID:10858586
Necroinflammation in Kidney Disease.
Mulay, Shrikant R; Linkermann, Andreas; Anders, Hans-Joachim
2016-01-01
The bidirectional causality between kidney injury and inflammation remains an area of unexpected discoveries. The last decade unraveled the molecular mechanisms of sterile inflammation, which established danger signaling via pattern recognition receptors as a new concept of kidney injury-related inflammation. In contrast, renal cell necrosis remained considered a passive process executed either by the complement-related membrane attack complex, exotoxins, or cytotoxic T cells. Accumulating data now suggest that renal cell necrosis is a genetically determined and regulated process involving specific outside-in signaling pathways. These findings support a unifying theory in which kidney injury and inflammation are reciprocally enhanced in an autoamplification loop, referred to here as necroinflammation. This integrated concept is of potential clinical importance because it offers numerous innovative molecular targets for limiting kidney injury by blocking cell death, inflammation, or both. Here, the contribution of necroinflammation to AKI is discussed in thrombotic microangiopathies, necrotizing and crescentic GN, acute tubular necrosis, and infective pyelonephritis or sepsis. Potential new avenues are further discussed for abrogating necroinflammation-related kidney injury, and questions and strategies are listed for further exploration in this evolving field. Copyright © 2016 by the American Society of Nephrology.
Pal'chun, V T; Gurov, A V; Mikhaleva, L M; Gordienko, M V
Despite the ever growing progress in antibiotic therapy and the advent of the new methods for this purpose, the number of patients suffering from chronic focal infection of the ENT organs has not decreased during the last decades which turns the problem of chronization of inflammation into a serious challenge for the physicians as exemplified by chronic inflammation in the mucous membrane of the middle ear. Pathological changes in the middle ear make up a large fraction of ENT diseases of importance not only for otorhinolaryngologists but also for the specialists in the related medical disciplines. The present article is an overview of etiological, pathogenetic, and pathomorphological aspects of chronization of the inflammation process that are known to occur in the mucous membrane of the middle ear. In the overwhelming majority of the cases, the main cause of the conversion of acute inflammation in the middle ear into the chronic condition is the inadequate (incorrect), inopportune or incomplete treatment of the acute inflammatory process in the middle ear.
Therapy of spondylarthropathy in inflammatory bowel disease.
Generini, S; Fiori, G; Matucci Cerinic, M
2002-01-01
Musculoskeletal manifestations represent the most common extra-intestinal complication of inflammatory bowel diseases (IBD) and are usually included in the clinical spectrum of the spondyloarthropathies (SpA). Although control of intestinal inflammation often ameliorates articular symptoms, sometimes arthropathy is independent of the gut disease course and may require the same therapeutic options which apply to primary SpA diseases, but with caution so as not aggravate the IBD. At the moment, salicylates (sulphasalazine and mesalazine) and selective COX-2 inhibitors (which are preferable to traditional NSAIDs although they cannot be assumed to be safe for the gastrointestinal tract) are the first choice treatment. Several immunosuppressive and biological agents including methotrexate, thalidomide and TNFalpha antagonists have efficacy for both articular and intestinal inflammation and are currently in use for the induction of remission and for maintenance in more severe cases. New combination therapies and novel biologically-driven treatments, targeted to specific pathophysiological processes, might offer less toxicity and the potential for better treatment outcomes.
Kim, Yoon Jae; Chung, Jun Won; Lee, So Jung; Choi, Ki Seok; Kim, Ju Hyun; Hahm, Ki Baik
2010-01-01
Key molecular players that link inflammation to carcinogenesis are prostaglandins, cytokines, nuclear factor-κB (NF-κB), chemokines, angiogenic growth factors, and free radicals, all of which lead to increased mutations and altered functions of important enzymes and proteins, for example, activation of oncogenic products and/or inhibition of tumor suppressor proteins, in inflamed tissues, thus contributing to multi-stage carcinogenesis process. Interpreted reversely, the identification of the molecular mechanisms by which chronic inflammation increases cancer risk or optimal intervention of targeted drugs or agents during the inflammation-associated carcinogenic process could be a necessary basis for developing new strategy of cancer prevention at many sites. In this review, we discuss the possibilities for cancer prevention by controlling inflammation process in Helicobacter pylori (H. pylori)-associated inflamed stomach with Korea red ginseng. Korea red ginseng is a good example of a natural herb that has ubiquitous properties that are conductive to stop inflammatory carcinogenesis that is un wanted outcome of H. pylori infection, rendering rejuvenation of chronic atrophic gastritis. PMID:20490314
Goya, Luis; Martín, María Ángeles; Sarriá, Beatriz; Ramos, Sonia; Mateos, Raquel; Bravo, Laura
2016-01-01
Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts. PMID:27070643
An, Gary; Faeder, James; Vodovotz, Yoram
2008-01-01
The pathophysiology of the burn patient manifests the full spectrum of the complexity of the inflammatory response. In the acute phase, inflammation may have negative effects via capillary leak, the propagation of inhalation injury, and development of multiple organ failure. Attempts to mediate these processes remain a central subject of burn care research. Conversely, inflammation is a necessary prologue and component in the later stage processes of wound healing. Despite the volume of information concerning the cellular and molecular processes involved in inflammation, there exists a significant gap between the knowledge of mechanistic pathophysiology and the development of effective clinical therapeutic regimens. Translational systems biology (TSB) is the application of dynamic mathematical modeling and certain engineering principles to biological systems to integrate mechanism with phenomenon and, importantly, to revise clinical practice. This study will review the existing applications of TSB in the areas of inflammation and wound healing, relate them to specific areas of interest to the burn community, and present an integrated framework that links TSB with traditional burn research.
Goya, Luis; Martín, María Ángeles; Sarriá, Beatriz; Ramos, Sonia; Mateos, Raquel; Bravo, Laura
2016-04-09
Chronic inflammation has been identified as a necessary step to mediate atherosclerosis and cardiovascular disease and as a relevant stage in the onset and progression of several types of cancer. Considerable attention has recently been focused on the identification of dietary bioactive compounds with anti-inflammatory activities as an alternative natural source for prevention of inflammation-associated diseases. The remarkable capacity of cocoa flavanols as antioxidants, as well as to modulate signaling pathways involved in cellular processes, such as inflammation, metabolism and proliferation, has encouraged research on this type of polyphenols as useful bioactive compounds for nutritional prevention of cardiovascular disease and cancer. Data from numerous studies suggest that cocoa and cocoa-derived flavanols can effectively modify the inflammatory process, and thus potentially provide a benefit to individuals with elevated risk factors for atherosclerosis/cardiovascular pathology and cancer. The present overview will focus on the most recent findings about the effects of cocoa, its main constituents and cocoa derivatives on selected biomarkers of the inflammatory process in cell culture, animal models and human cohorts.
Parkinson's Disease and Systemic Inflammation
Ferrari, Carina C.; Tarelli, Rodolfo
2011-01-01
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the “primed” microglia into an “active” state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease. PMID:21403862
Targeting Inflammation in Cancer Prevention and Therapy.
Todoric, Jelena; Antonucci, Laura; Karin, Michael
2016-12-01
Inflammation is associated with the development and malignant progression of most cancers. As most of the cell types involved in cancer-associated inflammation are genetically stable and thus are not subjected to rapid emergence of drug resistance, the targeting of inflammation represents an attractive strategy both for cancer prevention and for cancer therapy. Tumor-extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, tobacco smoking, asbestos exposure, and excessive alcohol consumption, all of which increase cancer risk and stimulate malignant progression. In contrast, cancer-intrinsic or cancer-elicited inflammation can be triggered by cancer-initiating mutations and can contribute to malignant progression through the recruitment and activation of inflammatory cells. Both extrinsic and intrinsic inflammation can result in immunosuppression, thereby providing a preferred background for tumor development. In clinical trials, lifestyle modifications including healthy diet, exercise, alcohol, and smoking cessation have proven effective in ameliorating inflammation and reducing the risk of cancer-related deaths. In addition, consumption of certain anti-inflammatory drugs, including aspirin, can significantly reduce cancer risk, suggesting that common nonsteroidal anti-inflammatory drugs (NSAID) and more specific COX2 inhibitors can be used in cancer prevention. In addition to being examined for their preventative potential, both NSAIDs and more potent anti-inflammatory antibody-based drugs need to be tested for their ability to augment the efficacy of more conventional therapeutic approaches on the basis of tumor resection, radiation, and cytotoxic chemicals. Cancer Prev Res; 9(12); 895-905. ©2016 AACR. ©2016 American Association for Cancer Research.
Odor Signals of Immune Activation and CNS Inflammation
2014-12-01
inflammation results in detectable alteration of body odor and that traumatic brain injury (TBI) might similarly produce volatile metabolites specific to...Because both LPS and TBI elicit inflammatory processes and LPS-induced inflammation induces body odor changes, we hypothesized that (1) TBI would...induce a distinct change in body odor and (2) this change would resemble the change induced by LPS. Mice receiving surgery and lateral fluid percussion
Karshikoff, Bianka; Sundelin, Tina; Lasselin, Julie
2017-01-01
Fatigue is a highly disabling symptom in various medical conditions. While inflammation has been suggested as a potential contributor to the development of fatigue, underlying mechanisms remain poorly understood. In this review, we propose that a better assessment of central fatigue, taking into account its multidimensional features, could help elucidate the role and mechanisms of inflammation in fatigue development. A description of the features of central fatigue is provided, and the current evidence describing the association between inflammation and fatigue in various medical conditions is reviewed. Additionally, the effect of inflammation on specific neuronal processes that may be involved in distinct fatigue dimensions is described. We suggest that the multidimensional aspects of fatigue should be assessed in future studies of inflammation-induced fatigue and that this would benefit the development of effective therapeutic interventions. PMID:28163706
NASA Astrophysics Data System (ADS)
de Castro, Isabele C. V.; Rosa, Cristiane B.; Carvalho, Carolina M.; Soares, Luiz Guilherme P.; Cangussu, Maria Cristina T.; dos Santos, Jean N.; Pinheiro, Antônio L. B.
2015-03-01
Temporomandibular disorders (TMD) are commonly found in the population and usually involve inflammatory processes. Previous studies have shown positive effects of LED (Light emitting diodes) phototherapies on TMD but its action and mechanism in the inflammatory infiltrate of the temporomandibular joint are still poorly understood. The aim of this study was to assess through histological analysis the effectiveness LED (10 J/cm2, λ850 nm, 100 mW, CW) on the inflammation of the temporomandibular joint of rats induced by carrageenan. Thirty animals were divided in two groups with five animals per subgroup according to the experimental times of two, three and seven days: Inflammation and Inflammation + LED phototherapy. The first irradiation was performed 24 h after induction with an interval of 48 h between sessions. After animal death, specimens were processed and stained with HE and Picrosirius. Then the samples were examined histologically. Data were statistically analyzed. The inflammation group showed mild to moderate chronic inflammatory infiltrate among the bone trabecules of the condyle. Over the time-course of the study in the LED group the condyle showed aspects of normality and absent inflammation in some specimens. In all the time-points, no statistically significant differences were found for collagen deposition in the in the condyle and disc when LED was compared to Inflammation group. LED treated groups also demonstrated a smaller number of the layers of the synovial membrane when compared to the non-irradiated groups. It was concluded that, in general, LED phototherapy resulted in a reduction of inflammatory infiltrate in the temporomandibular joint of rat.
Arima, Yasunobu; Ohki, Takuto; Nishikawa, Naoki; Higuchi, Kotaro; Ota, Mitsutoshi; Tanaka, Yuki; Nio-Kobayashi, Junko; Elfeky, Mohamed; Sakai, Ryota; Mori, Yuki; Kawamoto, Tadafumi; Stofkova, Andrea; Sakashita, Yukihiro; Morimoto, Yuji; Kuwatani, Masaki; Iwanaga, Toshihiko; Yoshioka, Yoshichika; Sakamoto, Naoya; Yoshimura, Akihiko; Takiguchi, Mitsuyoshi; Sakoda, Saburo; Prinz, Marco; Kamimura, Daisuke; Murakami, Masaaki
2017-01-01
Impact of stress on diseases including gastrointestinal failure is well-known, but molecular mechanism is not understood. Here we show underlying molecular mechanism using EAE mice. Under stress conditions, EAE caused severe gastrointestinal failure with high-mortality. Mechanistically, autoreactive-pathogenic CD4+ T cells accumulated at specific vessels of boundary area of third-ventricle, thalamus, and dentate-gyrus to establish brain micro-inflammation via stress-gateway reflex. Importantly, induction of brain micro-inflammation at specific vessels by cytokine injection was sufficient to establish fatal gastrointestinal failure. Resulting micro-inflammation activated new neural pathway including neurons in paraventricular-nucleus, dorsomedial-nucleus-of-hypothalamus, and also vagal neurons to cause fatal gastrointestinal failure. Suppression of the brain micro-inflammation or blockage of these neural pathways inhibited the gastrointestinal failure. These results demonstrate direct link between brain micro-inflammation and fatal gastrointestinal disease via establishment of a new neural pathway under stress. They further suggest that brain micro-inflammation around specific vessels could be switch to activate new neural pathway(s) to regulate organ homeostasis. DOI: http://dx.doi.org/10.7554/eLife.25517.001 PMID:28809157
Kang, Hyunju; Kim, Hyeyoung
2017-06-01
Helicobacter pylori is a dominant bacterium living in the human gastric tissues. In H. pylori -infected tissues, the infiltrated inflammatory cells produce reactive oxygen species (ROS), leading to gastric inflammation with production of various mediators. According to numerous epidemiological studies, dietary carotenoids may prevent gastric inflammation due to their antioxidant properties. Recent studies showed that antioxidant and anti-inflammatory effects of astaxanthin and β-carotene may contribute to inhibition of H. pylori -induced gastric inflammation. Astaxanthin changes H. pylori -induced activation of T helper cell type 1 response towards T helper cell type 2 response in the infected tissues. Astaxanthin inhibits the growth of H. pylori . Even though astaxanthin reduces H. pylori -induced gastric inflammation, it does not reduce cytokine levels in the infected tissues. β-Carotene suppresses ROS-mediated inflammatory signaling, including mitogen-activated protein kinases and redox-sensitive transcription factors, and reduces expression of inflammatory mediators, including interleukin-8, inducible nitric oxide synthase, and cyclooxygenase-2 in the infected tissues. Therefore, consumption of astaxanthin- and β-carotene-rich foods may be beneficial to prevent H. pylori -induced gastric inflammation. This review will summarize anti-inflammatory mechanisms of astaxanthin and β-carotene in H. pylori -mediated gastric inflammation.
Bonaccio, Marialaura; Di Castelnuovo, Augusto; Pounis, George; De Curtis, Amalia; Costanzo, Simona; Persichillo, Mariarosaria; Cerletti, Chiara; Donati, Maria Benedetta; de Gaetano, Giovanni; Iacoviello, Licia
2017-06-01
To test the association of low-grade inflammation with socioeconomic status (SES) and determine the relative contribution of prevalent chronic diseases and health-related behaviours in explaining such association. Cross-sectional analysis on 19,867 subjects (age ≥35, 48.1% men) recruited within the Moli-sani study from 2005 to 2010 (Italy). A score of low-grade inflammation, including platelet and leukocyte counts, the granulocyte-to-lymphocyte ratio, and C-reactive protein was applied. SES was measured by education, household income, and occupational social class. Low SES was associated with elevated levels of low-grade inflammation. Health behaviours (including adiposity, smoking, physical activity, and Mediterranean diet adherence) explained 53.5, 53.9, and 84.9% of the association between social class, income, and education with low-grade inflammation, respectively. Adiposity and body mass index showed a prominent role, while prevalent chronic diseases and conditions only marginally attenuated SES inequalities in inflammation. Low-grade inflammation was socioeconomically patterned in a large Mediterranean population. Potentially modifiable behavioural factors explained the greatest part of this association with a leading contribution of adiposity, body mass index, and physical activity.
Delghingaro-Augusto, Viviane; Madad, Leili; Chandra, Arin; Simeonovic, Charmaine J; Dahlstrom, Jane E; Nolan, Christopher J
2014-05-01
Prenatal and postnatal factors such as intrauterine growth restriction (IUGR) and high-fat (HF) diet contribute to type 2 diabetes. Our aim was to determine whether IUGR and HF diets interact in type 2 diabetes pathogenesis, with particular attention focused on pancreatic islet morphology including assessment for inflammation. A surgical model of IUGR (bilateral uterine artery ligation) in Sprague-Dawley rats with sham controls was used. Pups were fed either HF or chow diets after weaning. Serial measures of body weight and glucose tolerance were performed. At 25 weeks of age, rat pancreases were harvested for histologic assessment. The birth weight of IUGR pups was 13% lower than that of sham pups. HF diet caused excess weight gain, dyslipidemia, hyperinsulinemia, and mild glucose intolerance, however, this was not aggravated further by IUGR. Markedly abnormal islet morphology was evident in 0 of 6 sham-chow, 5 of 8 sham-HF, 4 of 8 IUGR-chow, and 8 of 9 IUGR-HF rats (chi-square, P = 0.007). Abnormal islets were characterized by larger size, irregular shape, inflammation with CD68-positive cells, marked fibrosis, and hemosiderosis. β-Cell mass was not altered by IUGR. In conclusion, HF and IUGR independently contribute to islet injury characterized by inflammation, hemosiderosis, and fibrosis. This suggests that both HF and IUGR can induce islet injury via converging pathways. The potential pathogenic or permissive role of iron in this process of islet inflammation warrants further investigation. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Semini, Geo; Hildmann, Annette; Klein, Andreas; Lucka, Lothar; Schön, Margarete; Schön, Michael P; Shmanai, Vadim; Danker, Kerstin
2014-02-01
In cutaneous inflammatory diseases, such as psoriasis, atopic dermatitis and allergic contact dermatitis, skin-infiltrating T lymphocytes and dendritic cells modulate keratinocyte function via the secretion of pro-inflammatory cytokines. Keratinocytes then produce mediators that recruit and activate immune cells and amplify the inflammatory response. These pathophysiological tissue changes are caused by altered gene expression and the proliferation and maturation of dermal and epidermal cells. We recently demonstrated that the glycosidated phospholipid Ino-C2-PAF down-regulates a plethora of gene products associated with innate and acquired immune responses and inflammation in the HaCaT keratinocyte cell line. To further evaluate the influence of Ino-C2-PAF we established an in vitro 2D-model of epidermal inflammation. The induction of inflammation and the impact of Ino-C2-PAF were assessed in this system using a genome-wide microarray analysis. In addition, the expression of selected genes was validated using qRT-PCR and flow cytometry. Treatment of the keratinocytes with a mix of proinflammatory cytokines resulted in transcriptional effects on a variety of genes involved in cutaneous inflammation and immunity, while additional treatment with Ino-C2-PAF counteracted the induction of many of these genes. Remarkably, Ino-C2-PAF suppressed the expression of a group of targets that are implicated in antigen processing and presentation, including MHC molecules. Thus, it is conceivable that Ino-C2-PAF possess therapeutic potential for inflammatory skin disorders, such as psoriasis and allergic contact dermatitis. Copyright © 2013 Elsevier Inc. All rights reserved.
Dehdashtian, Ehsan; Mehrzadi, Saeed; Yousefi, Bahman; Hosseinzadeh, Azam; Reiter, Russel J; Safa, Majid; Ghaznavi, Habib; Naseripour, Masood
2018-01-15
Diabetic retinopathy (DR), a microvascular complication of diabetes mellitus (DM), remains as one of the major causes of vision loss worldwide. The release of pro-inflammatory cytokines and the adhesion of leukocytes to retinal capillaries are initial events in DR development. Inflammation, ER stress, oxidative stress and autophagy are major causative factors involved in the pathogenesis of DR. Diabetes associated hyperglycemia leads to mitochondrial electron transport chain dysfunction culminating in a rise in ROS generation. Since mitochondria are the major source of ROS production, oxidative stress induced by mitochondrial dysfunction also contributes to the development of diabetic retinopathy. Autophagy increases in the retina of diabetic patients and is regulated by ER stress, oxidative stress and inflammation-related pathways. Autophagy functions as a double-edged sword in DR. Under mild stress, autophagic activity can lead to cell survival while during severe stress, dysregulated autophagy results in massive cell death and may have a role in initiation and exacerbation of DR. Melatonin and its metabolites play protective roles against inflammation, ER stress and oxidative stress due to their direct free radical scavenger activities and indirect antioxidant activity via the stimulation antioxidant enzymes including glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase. Melatonin also acts as a cell survival agent by modulating autophagy in various cell types and under different conditions through amelioration of oxidative stress, ER stress and inflammation. Herein, we review the possible effects of melatonin on diabetic retinopathy, focusing on its ability to regulate autophagy processes. Copyright © 2017. Published by Elsevier Inc.
Mechanistic Links Between PARP, NAD, and Brain Inflammation After TBI
2015-10-01
1 AWARD NUMBER: W81XWH-13-2-0091 TITLE: Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI PRINCIPAL INVESTIGATOR...COVERED 25 Sep 2014 - 24 Sep 2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Mechanistic Links Between PARP, NAD , and Brain Inflammation After TBI 5b. GRANT...efficacy of veliparib and NAD as agents for suppressing inflammation and improving outcomes after traumatic brain injury. The animal models include
Obstructive sleep apnea syndrome and upper airway inflammation.
Inancli, Hasan M; Enoz, Murat
2010-01-01
Obstructive sleep apnea syndrome (OSAS) is associated with inflammatory processes and elevated plasma cytokines. Inflammatory processes associated with OSAS may also act as potential mediators of cardiovascular morbidity in these patients. OSAS is associated with elevated levels of C reactive protein (CRP), as a marker of inflammation and cardiovascular risk. At the inflammatory point of view, the levels of TNF-alpha, IL-6, hsCRP, adhesion molecules, monocyte chemo attractant protein-1 and resist in were markedly and significantly elevated in patients with sleep apnea than those in normal control subjects. We reviewed several recent patents and literature in English about OSAS and upper airway inflammation relation since 1966 from the Medline database.
Hacibekiroglu, Tuba; Akinci, Sema; Basturk, Abdulkadir; inal, Besime; Guney, Tekin; Bakanay, Sule Mine; Dilek, Imdat
2015-01-01
Chronic myeloproliferative diseases are clonal stem cell diseases which occur as a result of uncontrollable growth and reproduction of hematopoietic stem cells, which are the myeloid series source in bone marrow. Recent studies have suggested that chronic inflammation can be a triggering factor in the clonal change in chronic myeloproliferative neoplasia (CMPN). In our study, we evaluated the existence of a chronic inflammation process in our Philadelphia negative (Ph-)CMPN patients using inflammation parameters in combination with demographic, laboratory and clinical characteristics of the patients. Demographic characteristics, clinical and laboratorial data, and thrombosis histories of 99 Ph-CMPN patients, who were diagnosed at our outpatient clinic of hematology in accordance with WHO 2008 criteria, were analyzed retrospectively,with 80 healthy individuals of matching gender and age included as controls. Complete blood counts, sedimentation, C reactive protein (CRP), JAK V617F gene mutations, abdomen ultrasound images and previous thrombosis histories of these patients were retrospectively analyzed. Ph-CMPN and healthy control groups included 99 and 80 cases, respectively. PV, ET and MF diagnoses of patients were 43 (%43.4), 44 (44.4%) and 12 (12.1%), respectively. JAK V617F gene mutation was found to be positive in 64 (71.1%) of all cases and in 27(65.8%), 32 (82%), 5 (50%) of the cases in PV, ET and PMF groups, respectively. Thrombosis was determined as 12 (12%) in the entire group, 12.5% in the JAK V617F negative and 15.3% in the positive patients, with no statistical significance (p=0.758). No significant difference was observed between patients with and without previous thrombosis history in respect to hemogram parameters, sedimentation and CRP (p>0.05), neutrophil to lymphocyte ratio (NLR), erythrocyte distribution width (RDW), mean platelet volume (MPV) and sedimentation levels of the patient.
Proposed Mode of Action for Acrolein Respiratory Toxicity Associated with Inhaled Tobacco Smoke.
Yeager, R Philip; Kushman, Mary; Chemerynski, Susan; Weil, Roxana; Fu, Xin; White, Marcella; Callahan-Lyon, Priscilla; Rosenfeldt, Hans
2016-06-01
This article presents a mode of action (MOA) analysis that identifies key mechanisms in the respiratory toxicity of inhaled acrolein and proposes key acrolein-related toxic events resulting from the inhalation of tobacco smoke. Smoking causes chronic obstructive pulmonary disorder (COPD) and acrolein has been previously linked to the majority of smoking-induced noncancer respiratory toxicity. In contrast to previous MOA analyses for acrolein, this MOA focuses on the toxicity of acrolein in the lower respiratory system, reflecting the exposure that smokers experience upon tobacco smoke inhalation. The key mechanisms of acrolein toxicity identified in this proposed MOA include (1) acrolein chemical reactivity with proteins and other macromolecules of cells lining the respiratory tract, (2) cellular oxidative stress, including compromise of the important anti-oxidant glutathione, (3) chronic inflammation, (4) necrotic cell death leading to a feedback loop where necrosis-induced inflammation leads to more necrosis and oxidative damage and vice versa, (5) tissue remodeling and destruction, and (6) loss of lung elasticity and enlarged lung airspaces. From these mechanisms, the proposed MOA analysis identifies the key cellular processes in acrolein respiratory toxicity that consistently occur with the development of COPD: inflammation and necrosis in the middle and lower regions of the respiratory tract. Moreover, the acrolein exposures that occur as a result of smoking are well above exposures that induce both inflammation and necrosis in laboratory animals, highlighting the importance of the role of acrolein in smoking-related respiratory disease. Published by Oxford University Press on behalf of the Society of Toxicology 2016. This work is written by US Government employees and is in the public domain in the US.
Obesity, Inflammation, and Cancer.
Deng, Tuo; Lyon, Christopher J; Bergin, Stephen; Caligiuri, Michael A; Hsueh, Willa A
2016-05-23
Obesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including cancer, and is increasingly recognized as a growing cause of preventable cancer risk. Chronic inflammation, a well-known mediator of cancer, is a central characteristic of obesity, leading to many of its complications, and obesity-induced inflammation confers additional cancer risk beyond obesity itself. Multiple mechanisms facilitate this strong association between cancer and obesity. Adipose tissue is an important endocrine organ, secreting several hormones, including leptin and adiponectin, and chemokines that can regulate tumor behavior, inflammation, and the tumor microenvironment. Excessive adipose expansion during obesity causes adipose dysfunction and inflammation to increase systemic levels of proinflammatory factors. Cells from adipose tissue, such as cancer-associated adipocytes and adipose-derived stem cells, enter the cancer microenvironment to enhance protumoral effects. Dysregulated metabolism that stems from obesity, including insulin resistance, hyperglycemia, and dyslipidemia, can further impact tumor growth and development. This review describes how adipose tissue becomes inflamed in obesity, summarizes ways these mechanisms impact cancer development, and discusses their role in four adipose-associated cancers that demonstrate elevated incidence or mortality in obesity.
Diabetic retinopathy: could the alpha-1 antitrypsin be a therapeutic option?
Ortiz, Gustavo; Salica, Juan P; Chuluyan, Eduardo H; Gallo, Juan E
2014-11-18
Diabetic retinopathy is one of the most important causes of blindness. The underlying mechanisms of this disease include inflammatory changes and remodeling processes of the extracellular-matrix (ECM) leading to pericyte and vascular endothelial cell damage that affects the retinal circulation. In turn, this causes hypoxia leading to release of vascular endothelial growth factor (VEGF) to induce the angiogenesis process. Alpha-1 antitrypsin (AAT) is the most important circulating inhibitor of serine proteases (SERPIN). Its targets include elastase, plasmin, thrombin, trypsin, chymotrypsin, proteinase 3 (PR-3) and plasminogen activator (PAI). AAT modulates the effect of protease-activated receptors (PARs) during inflammatory responses. Plasma levels of AAT can increase 4-fold during acute inflammation then is so-called acute phase protein (APPs). Individuals with low serum levels of AAT could develop disease in lung, liver and pancreas. AAT is involved in extracellular matrix remodeling and inflammation, particularly migration and chemotaxis of neutrophils. It can also suppress nitric oxide (NO) by nitric oxide sintase (NOS) inhibition. AAT binds their targets in an irreversible way resulting in product degradation. The aim of this review is to focus on the points of contact between multiple factors involved in diabetic retinopathy and AAT resembling pleiotropic effects that might be beneficial.
Isoproterenol effects evaluated in heart slices of human and rat in comparison to rat heart in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, Julia E.; Heale, Jason; Bieraugel, Mike
Human response to isoproterenol induced cardiac injury was evaluated by gene and protein pathway changes in human heart slices, and compared to rat heart slices and rat heart in vivo. Isoproterenol (10 and 100 μM) altered human and rat heart slice markers of oxidative stress (ATP and GSH) at 24 h. In this in vivo rat study (0.5 mg/kg), serum troponin concentrations increased with lesion severity, minimal to mild necrosis at 24 and 48 h. In the rat and the human heart, isoproterenol altered pathways for apoptosis/necrosis, stress/energy, inflammation, and remodeling/fibrosis. The rat and human heart slices were in anmore » apoptotic phase, while the in vivo rat heart exhibited necrosis histologically and further progression of tissue remodeling. In human heart slices genes for several heat shock 70 kD members were altered, indicative of stress to mitigate apoptosis. The stress response included alterations in energy utilization, fatty acid processing, and the up-regulation of inducible nitric oxide synthase, a marker of increased oxidative stress in both species. Inflammation markers linked with remodeling included IL-1α, Il-1β, IL-6 and TNFα in both species. Tissue remodeling changes in both species included increases in the TIMP proteins, inhibitors of matrix degradation, the gene/protein of IL-4 linked with cardiac fibrosis, and the gene Ccl7 a chemokine that induces collagen synthesis, and Reg3b a growth factor for cardiac repair. This study demonstrates that the initial human heart slice response to isoproterenol cardiac injury results in apoptosis, stress/energy status, inflammation and tissue remodeling at concentrations similar to that in rat heart slices. - Highlights: • Human response to isoproterenol induced cardiac injury evaluated in heart slices. • Isoproterenol altered apoptosis, energy, inflammation and remodeling pathways. • Human model verified by comparison to rat heart slices and rat heart in vivo. • Human and rat respond to isoproterenol at similar concentrations in vitro.« less
Reinisch, S; Schweiger, K; Pablik, E; Collet-Fenetrier, B; Peyrin-Biroulet, L; Alfaro, I; Panés, J; Moayyedi, P; Reinisch, W
2016-09-01
The Lennard-Jones criteria are considered the gold standard for diagnosing Crohn's disease (CD) and include the items granuloma, macroscopic discontinuity, transmural inflammation, fibrosis, lymphoid aggregates and discontinuous inflammation on histology. The criteria have never been subjected to a formal validation process. To develop a validated and improved diagnostic index based on the items of Lennard-Jones criteria. Included were 328 adult patients with long-standing CD (median disease duration 10 years) from three centres and classified as 'established', 'probable' or 'non-CD' by Lennard-Jones criteria at time of diagnosis. Controls were patients with ulcerative colitis (n = 170). The performance of each of the six diagnostic items of Lennard-Jones criteria was modelled by logistic regression and a new index based on stepwise backward selection and cut-offs was developed. The diagnostic value of the new index was analysed by comparing sensitivity, specificity and accuracy vs. Lennard-Jones criteria. By Lennard-Jones criteria 49% (n = 162) of CD patients would have been diagnosed as 'non-CD' at time of diagnosis (sensitivity/specificity/accuracy, 'established' CD: 0.34/0.99/0.67; 'probable' CD: 0.51/0.95/0.73). A new index was derived from granuloma, fibrosis, transmural inflammation and macroscopic discontinuity, but excluded lymphoid aggregates and discontinuous inflammation on histology. Our index provided improved diagnostic accuracy for 'established' and 'probable' CD (sensitivity/specificity/accuracy, 'established' CD: 0.45/1/0.72; 'probable' CD: 0.8/0.85/0.82), including the subgroup isolated colonic CD ('probable' CD, new index: 0.73/0.85/0.79; Lennard-Jones criteria: 0.43/0.95/0.69). We developed an index based on items of Lennard-Jones criteria providing improved diagnostic accuracy for the differential diagnosis between CD and UC. © 2016 John Wiley & Sons Ltd.
Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto
2015-10-01
Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Effects of low-intensity ultrahigh frequency electromagnetic radiation on inflammatory processes.
Lushnikov, K V; Shumilina, Yu V; Yakushina, V S; Gapeev, A B; Sadovnikov, V B; Chemeris, N K
2004-04-01
Low-intensity ultrahigh frequency electromagnetic radiation (42 GHz, 100 microW/cm(2)) reduces the severity of inflammation and inhibits production of active oxygen forms by inflammatory exudate neutrophils only in mice with inflammatory process. These data suggest that some therapeutic effects of electromagnetic radiation can be explained by its antiinflammatory effect which is realized via modulation of functional activity of neutrophils in the focus of inflammation.
Fredman, Gabrielle; Serhan, Charles N.
2011-01-01
Inflammation when unchecked is associated with many prevalent disorders such as the classic inflammatory diseases arthritis and periodontal disease, as well as the more recent additions that include diabetes and cardiovascular maladies. Hence mechanisms to curtail the inflammatory response and promote catabasis are of immense interest. In recent years, evidence has prompted a paradigm shift whereby the resolution of acute inflammation is a biochemically active process regulated in part by endogenous PUFA (polyunsaturated fatty acid)-derived autacoids. Among these are a novel genus of SPMs (specialized proresolving mediators) that comprise novel families of mediators including lipoxins, resolvins, protectins and maresins. SPMs have distinct structures and act via specific G-protein seven transmembrane receptors that signal intracellular events on selective cellular targets activating proresolving programmes while countering pro-inflammatory signals. An appreciation of these endogenous pathways and mediators that control timely resolution opened a new terrain for therapeutic approaches targeted at stimulating resolution of local inflammation. In the present review, we provide an overview of the biosynthesis and actions of resolvin E1, underscoring its protective role in vascular systems and regulating platelet responses. We also give an overview of newly described resolution circuitry whereby resolvins govern miRNAs (microRNAs), and transcription factors that counter-regulate pro-inflammatory chemokines, cytokines and lipid mediators. PMID:21711247
Nichols, Joi A; Katiyar, Santosh K
2010-03-01
Epidemiological, clinical and laboratory studies have implicated solar ultraviolet (UV) radiation in various skin diseases including, premature aging of the skin and melanoma and non-melanoma skin cancers. Chronic UV radiation exposure-induced skin diseases or skin disorders are caused by the excessive induction of inflammation, oxidative stress and DNA damage, etc. The use of chemopreventive agents, such as plant polyphenols, to inhibit these events in UV-exposed skin is gaining attention. Chemoprevention refers to the use of agents that can inhibit, reverse or retard the process of these harmful events in the UV-exposed skin. A wide variety of polyphenols or phytochemicals, most of which are dietary supplements, have been reported to possess substantial skin photoprotective effects. This review article summarizes the photoprotective effects of some selected polyphenols, such as green tea polyphenols, grape seed proanthocyanidins, resveratrol, silymarin and genistein, on UV-induced skin inflammation, oxidative stress and DNA damage, etc., with a focus on mechanisms underlying the photoprotective effects of these polyphenols. The laboratory studies conducted in animal models suggest that these polyphenols have the ability to protect the skin from the adverse effects of UV radiation, including the risk of skin cancers. It is suggested that polyphenols may favorably supplement sunscreens protection, and may be useful for skin diseases associated with solar UV radiation-induced inflammation, oxidative stress and DNA damage.
Innate immunity and chronic rhinosinusitis: What we have learned from animal models.
London, Nyall R; Lane, Andrew P
2016-06-01
Chronic rhinosinusitis (CRS) is a heterogeneous and multifactorial disease characterized by dysregulated inflammation. Abnormalities in innate immune function including sinonasal epithelial cell barrier function, mucociliary clearance, response to pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs), and the contribution of innate immune cells will be highlighted in this review. PubMed literature review. A review of the literature was conducted to determine what we have learned from animal models in relation to innate immunity and chronic rhinosinusitis. Dysregulation of innate immune mechanisms including sinonasal barrier function, mucociliary clearance, PAMPs, and innate immune cells such as eosinophils, mast cells, and innate lymphoid cells may contribute to CRS pathogenesis. Sinonasal inflammation has been studied using mouse, rat, rabbit, pig, and sheep explant or in vivo models. Study using these models has allowed for analysis of experimental therapeutics and furthered our understanding of the aforementioned aspects of the innate immune mechanism as it relates to sinonasal inflammation. These include augmenting mucociliary clearance through activation of the cystic fibrosis transmembrane conductance regulator (CFTR) and study of drug toxicity on ciliary beat frequency. Knockout models of Toll-like receptors (TLR) have demonstrated the critical role these PRRs play in allergic inflammation as loss of TLR2 and TLR4 leads to decreased lower airway inflammation. Mast cell deficient mice are less susceptible to ovalbumin-induced sinonasal inflammation. Animal models have shed light as to the potential contribution of dysregulated innate immunity in chronic sinonasal inflammation.
Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.
Nakayama, Hiroyuki; Otsu, Kinya
2018-03-06
Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).
Souied, Eric H.; Dugel, Pravin U.; Ferreira, Alberto; Hashmonay, Ron; Lu, Jingsong; Kelly, Simon P.
2016-01-01
ABSTRACT Purpose: Intravitreal injections of anti-vascular endothelial growth factor (VEGF) agents including ranibizumab and aflibercept are used to treat patients with ocular disorders such as neovascular age-related macular degeneration (nAMD); however, the injections are associated with rare instances of severe ocular inflammation. This study compared severe ocular inflammation rates in patients treated with ranibizumab versus aflibercept. Methods: United States physician-level claims data covering an 18-month period for each therapy were analyzed. The primary analysis compared severe ocular inflammation event rates per 1000 injections. Sensitivity and subgroup analyses evaluated the impact of factors including intraocular surgery, intravitreal antibiotic administration, and previous intravitreal injections. Results: The analysis included 432,794 injection claims (ranibizumab n = 253,647, aflibercept n = 179,147); significantly, more unique severe ocular inflammation events occurred in patients receiving aflibercept than ranibizumab (1.06/1000 injections, 95% confidence interval [CI], 0.91–1.21, vs. 0.64/1000 injections, 95% CI 0.54–0.74; p < 0.0001). Comparable results were observed for analyses of patients who had undergone glaucoma or cataract surgeries, had antibiotic-associated endophthalmitis, had non-antibiotic-associated endophthalmitis, and were non-treatment-naive. In contrast, no significant differences in severe ocular inflammation claims were recorded in treatment-naive patients who had no record of anti-VEGF treatment in the 6 months preceding the index claim. No significant change occurred in the rate of severe ocular inflammation claims over time following ranibizumab treatment. Conclusions: Severe ocular inflammation was more frequent following intravitreal injection with aflibercept than with ranibizumab during routine clinical use in patients with nAMD. This highlights the importance of real-world, post-approval, observational monitoring of novel medicines, and may aid clinical decision-making, including choice of anti-VEGF agent. PMID:26855278
The 2009 stock conference report: inflammation, obesity and metabolic disease.
Hevener, A L; Febbraio, M A
2010-09-01
Obesity is linked with many deleterious health consequences and is associated with increased risk of chronic disease including type 2 diabetes, atherosclerosis and certain forms of cancer. Recent work has highlighted the impact of obesity to activate inflammatory gene networks and suggests a causal function of inflammation in the pathogenesis of the metabolic syndrome. Since 2005, when Dr Gokhan Hotamisligil chaired the fourth Stock Conference in Istanbul, Turkey, entitled 'Obesity and Inflammation', there has been an explosion of studies investigating the relationship between obesity, inflammation and substrate metabolism. The exuberance surrounding this field of research is exemplified by the body of work that has been published in these past 4 years, including over 1400 publications. During this time, several novel mechanisms relating to cellular inflammation have been uncovered including the role of the hematopoietic system, toll-like receptor activation, endoplasmic reticulum stress and very recently T-cell activation in obesity-induced insulin resistance. These discoveries have led us to rethink cellular nutrient sensing and its role in inflammation and metabolic disease. Despite burgeoning investigation in this field, there still remain a number of unanswered questions. This review that evolved from the 2009 Stock Conference summarizes current research and identifies the deficiencies in our understanding of this topic. The overall goal of this Stock Conference was to bring together leading investigators in the field of inflammation and obesity research in the hope of fostering new ideas, thus advancing the pursuit of novel therapeutic strategies to reduce disease risk and or better treat chronic disease including type 2 diabetes, cardiovascular disease and cancer. © 2009 The Authors. obesity reviews © 2009 International Association for the Study of Obesity.
Snyder-Talkington, Brandi N.; Dymacek, Julian; Porter, Dale W.; Wolfarth, Michael G.; Mercer, Robert R.; Pacurari, Maricica; Denvir, James; Castranova, Vincent; Qian, Yong; Guo, Nancy L.
2014-01-01
The fibrous shape and biopersistence of multi-walled carbon nanotubes (MWCNT) have raised concern over their potential toxicity after pulmonary exposure. As in vivo exposure to MWCNT produced a transient inflammatory and progressive fibrotic response, this study sought to identify significant biological processes associated with lung inflammation and fibrosis pathology data, based upon whole genome mRNA expression, bronchoaveolar lavage scores, and morphometric analysis from C57BL/6J mice exposed by pharyngeal aspiration to 0, 10, 20, 40, or 80 µg MWCNT at 1, 7, 28, or 56 days post-exposure. Using a novel computational model employing non-negative matrix factorization and Monte Carlo Markov Chain simulation, significant biological processes with expression similar to MWCNT-induced lung inflammation and fibrosis pathology data in mice were identified. A subset of genes in these processes was determined to be functionally related to either fibrosis or inflammation by Ingenuity Pathway Analysis and were used to determine potential significant signaling cascades. Two genes determined to be functionally related to inflammation and fibrosis, vascular endothelial growth factor A (vegfa) and C-C motif chemokine 2 (ccl2), were confirmed by in vitro studies of mRNA and protein expression in small airway epithelial cells exposed to MWCNT as concordant with in vivo expression. This study identified that the novel computational model was sufficient to determine biological processes strongly associated with the pathology of lung inflammation and fibrosis and could identify potential toxicity signaling pathways and mechanisms of MWCNT exposure which could be used for future animal studies to support human risk assessment and intervention efforts. PMID:23845593
Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity.
Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi
2015-12-01
Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. © 2015 Authors; published by Portland Press Limited.
Inflammation-induced microvascular insulin resistance is an early event in diet-induced obesity
Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W.; Barrett, Eugene J.; Cao, Wenhong
2015-01-01
Endothelial dysfunction and vascular insulin resistance usually coexist and chronic inflammation engenders both. In the present study, we investigate the temporal relationship between vascular insulin resistance and metabolic insulin resistance. We assessed insulin responses in all arterial segments, including aorta, distal saphenous artery and the microvasculature, as well as the metabolic insulin responses in muscle in rats fed on a high-fat diet (HFD) for various durations ranging from 3 days to 4 weeks with or without sodium salicylate treatment. Compared with controls, HFD feeding significantly blunted insulin-mediated Akt (protein kinase B) and eNOS [endothelial nitric oxide (NO) synthase] phosphorylation in aorta in 1 week, blunted vasodilatory response in small resistance vessel in 4 weeks and microvascular recruitment in as early as 3 days. Insulin-stimulated whole body glucose disposal did not begin to progressively decrease until after 1 week. Salicylate treatment fully inhibited vascular inflammation, prevented microvascular insulin resistance and significantly improved muscle metabolic responses to insulin. We conclude that microvascular insulin resistance is an early event in diet-induced obesity and insulin resistance and inflammation plays an essential role in this process. Our data suggest microvascular insulin resistance contributes to the development of metabolic insulin resistance in muscle and muscle microvasculature is a potential therapeutic target in the prevention and treatment of diabetes and its related complications. PMID:26265791
Chittur, Sridar; Parr, Brian; Marcovici, Geno
2011-01-01
Chronic inflammation of the hair follicle (HF) is considered a contributing factor in the pathogenesis of androgenetic alopecia (AGA). Previously, we clinically tested liposterolic extract of Serenoa repens (LSESr) and its glycoside, β-sitosterol, in subjects with AGA and showed a highly positive response to treatment. In this study, we sought to determine whether blockade of inflammation using a composition containing LSESr as well as two anti-inflammatory agents (carnitine and thioctic acid) could alter the expression of molecular markers of inflammation in a well-established in vitro system. Using a well-validated assay representative of HF keratinocytes, specifically, stimulation of cultured human keratinocyte cells in vitro, we measured changes in gene expression of a spectrum of well-known inflammatory markers. Lipopolysaccharide (LPS) provided an inflammatory stimulus. In particular, we found that the composition effectively suppressed LPS-activated gene expression of chemokines, including CCL17, CXCL6 and LTB(4) associated with pathways involved in inflammation and apoptosis. Our data support the hypothesis that the test compound exhibits anti-inflammatory characteristics in a well-established in vitro assay representing HF keratinocyte gene expression. These findings suggest that 5-alpha reductase inhibitors combined with blockade of inflammatory processes could represent a novel two-pronged approach in the treatment of AGA with improved efficacy over current modalities.
Inflammation: The Common Pathway of Stress-Related Diseases
Liu, Yun-Zi; Wang, Yun-Xia; Jiang, Chun-Lei
2017-01-01
While modernization has dramatically increased lifespan, it has also witnessed that the nature of stress has changed dramatically. Chronic stress result failures of homeostasis thus lead to various diseases such as atherosclerosis, non-alcoholic fatty liver disease (NAFLD) and depression. However, while 75%–90% of human diseases is related to the activation of stress system, the common pathways between stress exposure and pathophysiological processes underlying disease is still debatable. Chronic inflammation is an essential component of chronic diseases. Additionally, accumulating evidence suggested that excessive inflammation plays critical roles in the pathophysiology of the stress-related diseases, yet the basis for this connection is not fully understood. Here we discuss the role of inflammation in stress-induced diseases and suggest a common pathway for stress-related diseases that is based on chronic mild inflammation. This framework highlights the fundamental impact of inflammation mechanisms and provides a new perspective on the prevention and treatment of stress-related diseases. PMID:28676747
Clinical evidence of inflammation driving secondary brain injury: A systematic review
Hinson, Holly E.; Rowell, Susan; Schreiber, Martin
2015-01-01
Background Despite advances in both prevention and treatment, traumatic brain injury (TBI) remains one of the most burdensome diseases; 2% of the US population currently lives with disabilities resulting from TBI. Recent advances in the understanding of inflammation and its impact on the pathophysiology of trauma have increased the interest in inflammation as a possible mediator in TBI outcome. Objectives The goal of this systematic review is to address the question: “What is the evidence in humans that inflammation is linked to secondary brain injury?” As the experimental evidence has been well described elsewhere, this review will focus on the clinical evidence for inflammation as a mechanism of secondary brain injury. Data Sources Medline database (1996-Week 1 June 2014), Pubmed and Google Scholar databases were queried for relevant studies. Study Eligibility Criteria Studies were eligible if participants were adults and/or children who sustained moderate or severe TBI in the acute phase of injury, published in English. Studies published in the last decade (since 2004) were preferentially included. Trials could be observational or interventional in nature. Appraisal and Synthesis Methods To address the quality of the studies retrieved, we applied the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria to assess the limitations of the included studies. Results Trauma initiates local central nervous system as well as systemic immune activation. Numerous observational studies describe elevation of pro-inflammatory cytokines that are associated with important clinical variables including neurologic outcome and mortality. A small number of clinical trials have included immunomodulating strategies, but no intervention to date has proven effective in improving outcomes after TBI. Limitations Inclusion of studies not initially retrieved by the search terms may have biased our results. Additionally, some reports may have been inadvertently excluded due to use of non-search term key words. Conclusions and Implications of Key Findings Clinical evidence of inflammation causing secondary brain injury in humans is gaining momentum. While inflammation is certainly present, it is not clear from the literature at what juncture inflammation becomes maladaptive, promoting secondary injury rather than facilitating repairand identifying patients with maladaptive inflammation (neuro-inflammation, systemic, or both) after TBI remains elusive. Direct agonism/antagonism represents an exciting target for future study. Level of Evidence Systematic review, level III. PMID:25539220
Polycystic ovary syndrome and chronic inflammation: pharmacotherapeutic implications.
Sirmans, Susan Maureen; Weidman-Evans, Emily; Everton, Victoria; Thompson, Daniel
2012-03-01
To examine the relationship between polycystic ovary syndrome (PCOS), cardiovascular risk factors, cardiovascular disease (CVD), and chronic inflammation and analyze data regarding pharmacologic therapies that are recommended to reduce CVD risk in PCOS and the impact of those therapies on chronic inflammation. A search of MEDLINE (1950-October 2011) was conducted to identify clinical studies pertaining to the identification and treatment of CVD and chronic low-grade inflammation in PCOS. Search terms included polycystic ovary syndrome, cardiovascular disease, inflammation, metformin, thiazolidinedione, and statin. Bibliographies of these studies and review articles were also examined. English-language clinical studies evaluating the effect of metformin, thiazolidinediones, and statins on inflammatory markers, endothelial function, adhesion molecules, fibrinolysis, cytokines, and adipokines in PCOS were included. Women with PCOS have an increased prevalence of many cardiovascular risk factors including obesity, android fat distribution, insulin resistance, impaired glucose tolerance, diabetes, dyslipidemia, hypertension, and metabolic syndrome. Markers of chronic low-grade inflammation, which are associated with an increased risk of CVD, are also elevated in PCOS. Clinical guidelines recommend the use of insulin sensitizers and statins to prevent CVD in some patients with PCOS. Current literature indicates that each of these medication classes has beneficial effects on inflammation, as well. Although there are currently no studies to determine whether these treatments decrease CVD in PCOS, it can be hypothesized that drugs impacting chronic inflammation may reduce cardiovascular risk. Some studies show that metformin, thiazolidinediones, and statins have beneficial effects on inflammatory markers in PCOS; however, the data are inconsistent. There is insufficient information to recommend any pharmacologic therapies for their antiinflammatory effects in PCOS in the absence of other indications such as diabetes and dyslipidemia.
Łukasik, Zuzanna Małgorzata; Makowski, Marcin; Makowska, Joanna Samanta
2018-02-28
Thrombosis and cardiovascular complications are common manifestations of a variety of pathological conditions, including infections and chronic inflammatory diseases. Hence, there is great interest in determining the hitherto unforeseen immune role of the main blood coagulation executor-the platelet. Platelets store and release a plethora of immunoactive molecules, generate microparticles, and interact with cells classically belonging to the immune system. The observed effects of platelet involvement in immune processes, especially in autoimmune diseases, are conflicting-from inciting inflammation to mediating its resolution. An in-depth understanding of the role of platelets in inflammation and immunity could open new therapeutic pathways for patients with autoimmune disorders. This review aims to summarize the current knowledge on the role of platelets in the patomechanisms of autoimmune disorders and suggests directions for future research.
The regulation of inflammation by interferons and their STATs
Rauch, Isabella; Müller, Mathias; Decker, Thomas
2013-01-01
Interferons (IFN) are subdivided into type I IFN (IFN-I, here synonymous with IFN-α/β), type II (IFN-γ) and type III IFN (IFN-III/IFN-λ) that reprogram nuclear gene expression through STATs 1 and 2 by forming STAT1 dimers (mainly IFN-γ) or the ISGF3 complex, a STAT1-STAT2-IRF9 heterotrimer (IFN-I and IFN-III). Dominant IFN activities in the immune system are to protect cells from viral replication and to activate macrophages for enhanced effector function. However, the impact of IFN and their STATs on the immune system stretches far beyond these activities and includes the control of inflammation. The goal of this review is to give an overview of the different facets of the inflammatory process that show regulatory input by IFN/STAT. PMID:24058799
New Radiotracers for Imaging of Vascular Targets in Angiogenesis-related Diseases
Hong, Hao; Chen, Feng; Zhang, Yin; Cai, Weibo
2014-01-01
Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients. PMID:25086372
Dietary modulation of inflammation
USDA-ARS?s Scientific Manuscript database
Inflammation is heightened innate immune response caused by infection or wound. It is a part of essential immune responses for host defense against invading pathogens and wound healing which are the key biological processes necessary for the survival of all multi-cellular organisms. In mammals, it i...
Andersson, I M; Lorentzen, J C; Ericsson-Dahlstrand, A
2000-11-01
Endogenous corticosterone secreted during immune challenge restricts the inflammatory process and genetic variations in this neuroendocrine-immune dialogue have been suggested to influence an individuals sensitivity to develop chronic inflammatory disorders. We have tested inflammation-susceptible Dark Agouti (DA) rats and resistant, MHC-identical, PVG.1AV1 rats for their abilities to secrete corticosterone in response to acute challenge with bacterial lipopolysaccharide (LPS) or a prolonged activation of the nonspecific immune system with arthritogenic yeast beta-glucan. Intravenous injection of LPS triggered equipotent secretion of corticosterone in both rat strains. Interestingly, peak concentrations of corticosterone did not differ significantly between the strains. Intradermal injection of beta-glucan caused severe, monophasic, polyarthritis in DA rats while PVG.1AV1 responded with significantly milder joint inflammation. Importantly, serial sampling of plasma from glucan-injected DA and PVG.1AV1 rats did not reveal elevated concentrations of plasma corticosterone at any time from days 1-30 postinjection compared to preinjection values, in spite of the ongoing inflammatory process. Interestingly, adrenalectomized, beta-glucan-challenged DA rats responded with an aggravated arthritic process, indicating an anti-inflammatory role for the basal levels of corticosterone that were detected in intact DA rats challenged with beta-glucan. Moreover, substitution with subcutaneous corticosterone-secreting pellets, yielding moderate stress-levels, significantly attenuated the arthritic response. In contrast, adrenalectomized and glucan-challenged PVG.1AV1 rats did not respond with an elevated arthritic response, suggesting that these rats contain the arthritic process via corticosterone-independent mechanisms. In conclusion, the hypothalamic-pituitary-adrenal axis in both rat strains exhibited strong activation after challenge with LPS. This contrasted to the basal corticosterone levels observed strains during a prolonged arthritic process. No correlation between ability to secrete corticosterone and susceptibility to inflammation could be demonstrated. Basal levels of endogenous corticosterone appeared to restrain inflammation in beta-glucan-challenged DA rats whereas resistance to inflammation in PVG.1AV1 rats may be mediated via corticosterone-independent mechanisms.
Some effects of mechanical trauma on the development of primary cancers and their metastases.
Weiss, L
1990-05-01
Posttraumatic inflammation and, much less commonly, mechanical trauma itself may affect the clinical course of cancer. There is no evidence that a single incident of trauma can cause cancer, although posttraumatic chronic inflammation may be associated with carcinogenesis. In patients with cancer at the time of trauma, inflammation and repair processes may inhibit or enhance cancer growth, and trauma and its sequelae may increase the rates of invasion and dissemination.
van Norren, Klaske; Dwarkasing, Jvalini T; Witkamp, Renger F
2017-09-01
In cancer patients, the development of cachexia (muscle wasting) is frequently aggravated by anorexia (loss of appetite). Their concurrence is often referred to as anorexia-cachexia syndrome. This review focusses on the recent evidence underlining hypothalamic inflammation as key driver of these processes. Special attention is given to the involvement of hypothalamic serotonin. The anorexia-cachexia syndrome is directly associated with higher mortality in cancer patients. Recent reports confirm its severe impact on the quality of life of patients and their families.Hypothalamic inflammation has been shown to contribute to muscle and adipose tissue loss in cancer via central hypothalamic interleukine (IL)1β-induced activation of the hypothalamic-pituitary-adrenal axis. The resulting release of glucocorticoids directly stimulates catabolic processes in these tissues via activation of the ubiquitin-proteosome pathway. Next to this, hypothalamic inflammation has been shown to reduce food intake in cancer by triggering changes in orexigenic and anorexigenic responses via upregulation of serotonin availability and stimulation of its signalling pathways in hypothalamic tissues. This combination of reduced food intake and stimulation of tissue catabolism represents a dual mechanism by which hypothalamic inflammation contributes to the development and maintenance of anorexia and cachexia in cancer. Hypothalamic inflammation is a driving force in the development of the anorexia-cachexia syndrome via hypothalamic-pituitary-adrenal axis and serotonin pathway activation.
Slavich, George M; Irwin, Michael R
2014-05-01
Major life stressors, especially those involving interpersonal stress and social rejection, are among the strongest proximal risk factors for depression. In this review, we propose a biologically plausible, multilevel theory that describes neural, physiologic, molecular, and genomic mechanisms that link experiences of social-environmental stress with internal biological processes that drive depression pathogenesis. Central to this social signal transduction theory of depression is the hypothesis that experiences of social threat and adversity up-regulate components of the immune system involved in inflammation. The key mediators of this response, called proinflammatory cytokines, can in turn elicit profound changes in behavior, which include the initiation of depressive symptoms such as sad mood, anhedonia, fatigue, psychomotor retardation, and social-behavioral withdrawal. This highly conserved biological response to adversity is critical for survival during times of actual physical threat or injury. However, this response can also be activated by modern-day social, symbolic, or imagined threats, leading to an increasingly proinflammatory phenotype that may be a key phenomenon driving depression pathogenesis and recurrence, as well as the overlap of depression with several somatic conditions including asthma, rheumatoid arthritis, chronic pain, metabolic syndrome, cardiovascular disease, obesity, and neurodegeneration. Insights from this theory may thus shed light on several important questions including how depression develops, why it frequently recurs, why it is strongly predicted by early life stress, and why it often co-occurs with symptoms of anxiety and with certain physical disease conditions. This work may also suggest new opportunities for preventing and treating depression by targeting inflammation.
Slavich, George M.; Irwin, Michael R.
2014-01-01
Major life stressors, especially those involving interpersonal stress and social rejection, are among the strongest proximal risk factors for depression. In this review, we propose a biologically plausible, multilevel theory that describes neural, physiologic, molecular, and genomic mechanisms that link experiences of social-environmental stress with internal biological processes that drive depression pathogenesis. Central to this social signal transduction theory of depression is the hypothesis that experiences of social threat and adversity up-regulate components of the immune system involved in inflammation. The key mediators of this response, called proinflammatory cytokines, can in turn elicit profound changes in behavior, which include the initiation of depressive symptoms such as sad mood, anhedonia, fatigue, psychomotor retardation, and social-behavioral withdrawal. This highly conserved biological response to adversity is critical for survival during times of actual physical threat or injury. However, this response can also be activated by modern-day social, symbolic, or imagined threats, leading to an increasingly proinflammatory phenotype that may be a key phenomenon driving depression pathogenesis and recurrence, as well as the overlap of depression with several somatic conditions including asthma, rheumatoid arthritis, chronic pain, metabolic syndrome, cardiovascular disease, obesity, and neurodegeneration. Insights from this theory may thus shed light on several important questions including how depression develops, why it frequently recurs, why it is strongly predicted by early life stress, and why it often co-occurs with symptoms of anxiety and with certain physical disease conditions. This work may also suggest new opportunities for preventing and treating depression by targeting inflammation. PMID:24417575
In Silico Modeling: Methods and Applications toTrauma and Sepsis
Vodovotz, Yoram; Billiar, Timothy R.
2013-01-01
Objective To familiarize clinicians with advances in computational disease modeling applied to trauma and sepsis. Data Sources PubMed search and review of relevant medical literature. Summary Definitions, key methods, and applications of computational modeling to trauma and sepsis are reviewed. Conclusions Computational modeling of inflammation and organ dysfunction at the cellular, organ, whole-organism, and population levels has suggested a positive feedback cycle of inflammation → damage → inflammation that manifests via organ-specific inflammatory switching networks. This structure may manifest as multi-compartment “tipping points” that drive multiple organ dysfunction. This process may be amenable to rational inflammation reprogramming. PMID:23863232
McCarson, Kenneth E
2015-09-01
Animal models of inflammation are used to assess the production of inflammatory mediators at sites of inflammation, the processing of pain sensation at CNS sites, the anti-inflammatory properties of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs), and the efficacy of putative analgesic compounds in reversing cutaneous hypersensitivity. Detailed in this unit are methods to elicit and measure carrageenan- and complete Freund's adjuvant (CFA)-induced cutaneous inflammation. Due to possible differences between the dorsal root sensory system and the trigeminal sensory system, injections into either the footpad or vibrissal pad are described. In this manner, cutaneous inflammation can be assessed in tissue innervated by the lumbar dorsal root ganglion neurons (footpad) or by the trigeminal ganglion neurons (vibrissal pad). Copyright © 2015 John Wiley & Sons, Inc.
NF-kappaB: Two Sides of the Same Coin
Silva, Rafael C. M. C.; Ferreira, Gerson M.; Abdelhay, Eliana
2018-01-01
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target. PMID:29315242
NF-kappaB: Two Sides of the Same Coin.
Pires, Bruno R B; Silva, Rafael C M C; Ferreira, Gerson M; Abdelhay, Eliana
2018-01-09
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Potential mechanisms of hepatitis B virus induced liver injury
Suhail, Mohd; Abdel-Hafiz, Hany; Ali, Ashraf; Fatima, Kaneez; Damanhouri, Ghazi A; Azhar, Esam; Chaudhary, Adeel GA; Qadri, Ishtiaq
2014-01-01
Chronic active hepatitis (CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma. The histological end points of CAH are chronic inflammation, fibrosis and cirrhosis which are coupled with increased DNA synthesis in cirrhotic vs healthy normal livers. The potential mechanism involved in CAH includes a combination of processes leading to liver cell necrosis, inflammation and cytokine production and liver scaring (fibrosis). The severity of liver damage is regulated by Hepatitis B virus genotypes and viral components. The viral and cellular factors that contribute to liver injury are discussed in this article. Liver injury caused by the viral infection affects many cellular processes such as cell signaling, apoptosis, transcription, DNA repair which in turn induce radical effects on cell survival, growth, transformation and maintenance. The consequence of such perturbations is resulted in the alteration of bile secretion, gluconeogenesis, glycolysis, detoxification and metabolism of carbohydrates, proteins, fat and balance of nutrients. The identification and elucidation of the molecular pathways perturbed by the viral proteins are important in order to design effective strategy to minimize and/or restore the hepatocytes injury. PMID:25253946
Specialized pro-resolving mediators: endogenous regulators of infection and inflammation
Basil, Maria C.; Levy, Bruce D.
2017-01-01
Specialized pro-resolving mediators (SPMs) are enzymatically derived from essential fatty acids and have important roles in orchestrating the resolution of tissue inflammation — that is, catabasis. Host responses to tissue infection elicit acute inflammation in an attempt to control invading pathogens. SPMs are lipid mediators that are part of a larger family of pro-resolving molecules, which includes proteins and gases, that together restrain inflammation and resolve the infection. These immunoresolvents are distinct from immunosuppressive molecules as they not only dampen inflammation but also promote host defence. Here, we focus primarily on SPMs and their roles in lung infection and inflammation to illustrate the potent actions these mediators play in restoring tissue homeostasis after an infection. PMID:26688348
Interplay between DNA repair and inflammation, and the link to cancer
Kidane, Dawit; Chae, Wook Jin; Czochor, Jennifer; Eckert, Kristin A.; Glazer, Peter M.; Bothwell, Alfred L. M.; Sweasy, Joann B.
2015-01-01
DNA damage and repair are linked to cancer. DNA damage that is induced endogenously or from exogenous sources has the potential to result in mutations and genomic instability if not properly repaired, eventually leading to cancer. Inflammation is also linked to cancer. Reactive oxygen and nitrogen species (RONs) produced by inflammatory cells at sites of infection can induce DNA damage. RONs can also amplify inflammatory responses, leading to increased DNA damage. Here, we focus on the links between DNA damage, repair, and inflammation, as they relate to cancer. We examine the interplay between chronic inflammation, DNA damage and repair and review recent findings in this rapidly emerging field, including the links between DNA damage and the innate immune system, and the roles of inflammation in altering the microbiome, which subsequently leads to the induction of DNA damage in the colon. Mouse models of defective DNA repair and inflammatory control are extensively reviewed, including treatment of mouse models with pathogens, which leads to DNA damage. The roles of microRNAs in regulating inflammation and DNA repair are discussed. Importantly, DNA repair and inflammation are linked in many important ways, and in some cases balance each other to maintain homeostasis. The failure to repair DNA damage or to control inflammatory responses has the potential to lead to cancer. PMID:24410153
Zhang, Yong; Kong, Weijia; Jiang, Jiandong
2017-06-01
Numerous experimental and clinical studies indicate that chronic inflammation is closely related to the initiation, progression, and spread of cancer, in which proinflammatory cytokines, such as interleukin (IL)-6, IL-1β, and tumor necrosis factor-α (TNF-α), and transcription factors, such as nuclear factor-κB (NF-κB), and signal transducer and activator of transcription 3 (STAT3), play pivotal roles. Stimulated by proinflammatory cytokines, NF-κB and STAT3 can modulate the expression of target genes, most of which are oncogenic ones, and promote the survival, proliferation, invasion, and metastasis of cancer cells. Now it is generally accepted that inflammation-related molecules and pathways are useful targets for the prevention and treatment of cancer. In this review, we summarize the relationship between chronic inflammation and cancer and describe some potentially useful agents including aspirin, meformin, statins, and some natural products (green tea catechins, andrographolide, curcumin) for their cancer prevention and treatment activities targeting chronic inflammation. The results of typical clinical studies are included, and the influences of these agents on the proinflammatory cytokines and inflammation-related pathways are discussed. Data from the present review support that agents targeting chronic inflammation may have a broad application prospect for the prevention and treatment of cancer in the future.
Eicosanoids in Metabolic Syndrome
Hardwick, James P.; Eckman, Katie; Lee, Yoon Kwang; Abdelmegeed, Mohamed A.; Esterle, Andrew; Chilian, William M.; Chiang, John Y.; Song, Byoung-Joon
2013-01-01
Chronic persistent inflammation plays a significant role in disease pathology of cancer, cardiovascular disease, and metabolic syndrome (MetS). MetS is a constellation of diseases that include obesity, diabetes, hypertension, dyslipidemia, hypertriglyceridemia, and hypercholesterolemia. Nonalcoholic fatty liver disease (NAFLD) is associated with many of the MetS diseases. These metabolic derangements trigger a persistent inflammatory cascade, which includes production of lipid autacoids (eicosanoids) that recruit immune cells to the site of injury and subsequent expression of cytokines and chemokines that amplify the inflammatory response. In acute inflammation, the transcellular synthesis of antiinflammatory eicosanoids resolve inflammation, while persistent activation of the autacoid-cytokine-chemokine cascade in metabolic disease leads to chronic inflammation and accompanying tissue pathology. Many drugs targeting the eicosanoid pathways have been shown to be effective in the treatment of MetS, suggesting a common linkage between inflammation, MetS and drug metabolism.The cross-talk between inflammation and MetS seems apparent because of the growing evidence linking immune cell activation and metabolic disorders such as insulin resistance, dyslipidemia, and hypertriglyceridemia. Thus modulation of lipid metabolism through either dietary adjustment or selective drugs may become a new paradigm in the treatment of metabolic disorders. This review focuses on the mechanisms linking eicosanoid metabolism to persistent inflammation and altered lipid and carbohydrate metabolism in MetS. PMID:23433458
Cholinesterases as biomarkers for parasympathetic dysfunction and inflammation-related disease.
Shenhar-Tsarfaty, Shani; Berliner, Shlomo; Bornstein, Natan M; Soreq, Hermona
2014-07-01
Accumulating evidence suggests parasympathetic dysfunction and elevated inflammation as underlying processes in multiple peripheral and neurological diseases. Acetylcholine, the main parasympathetic neurotransmitter and inflammation regulator, is hydrolyzed by the two closely homologous enzymes, acetylcholinesterase and butyrylcholinesterase (AChE and BChE, respectively), which are also expressed in the serum. Here, we consider the potential value of both enzymes as possible biomarkers in diseases associated with parasympathetic malfunctioning. We cover the modulations of cholinesterase activities in inflammation-related events as well as by cholinesterase-targeted microRNAs. We further discuss epigenetic control over cholinesterase gene expression and the impact of single-nucleotide polymorphisms on the corresponding physiological and pathological processes. In particular, we focus on measurements of circulation cholinesterases as a readily quantifiable readout for changes in the sympathetic/parasympathetic balance and the implications of changes in this readout in health and disease. Taken together, this cumulative know-how calls for expanding the use of cholinesterase activity measurements for both basic research and as a clinical assessment tool.
MHC class II transcription is associated with inflammatory responses in a wild marine mammal.
Montano-Frías, Jorge E; Vera-Massieu, Camila; Álvarez-Martínez, Roberto; Flores-Morán, Adriana; Acevedo-Whitehouse, Karina
2016-08-01
Inflammation is one of the most important non-specific and rapid responses that a vertebrate can elicit in response to damage or a foreign insult. To date, despite increasing evidence that the innate and adaptive branches of immunity are more intricately related than previously thought, few have examined interactions between the Major Histocompatibility Complex (MHC, a polymorphic region of the vertebrate genome that is involved with antigen presentation) and inflammation, and even less is known about these interactions in an eco-immunological context. Here, we examined the effect of MHC class II DRB gene multiplicity and transcription on phytohemagglutinin (PHA)-induced inflammation during the early stages of development of California sea lions. Neither constitutive nor expressed ZacaDRB diversity was found to be associated with pup responses to PHA at any of the stages of pup development. However, for two-month-old pups, those with a specific MHC-DRB locus (ZacaDRB-A) tended to have less efficient responsive inflammation. Transcription of distinct MHC-DRB loci was also linked to PHA-induced inflammation, with patterns that varied markedly between ages, and that suggested that ongoing infectious processes could limit the capacity to respond to a secondary challenge. Life history constraints and physiological processes associated with development of California sea lions, in conjunction with their changing pathogenic environment could explain the observed effects of MHC class II transcription on PHA-induced inflammation. To our knowledge, ours is the first study to examine the importance of expressed vs. constitutive MHC loci on inflammation in a natural population. Copyright © 2016 Elsevier B.V. All rights reserved.
Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis
Loppnow, Harald; Buerke, Michael; Werdan, Karl; Rose-John, Stefan
2011-01-01
Abstract Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an ‘innate-immunovascular-memory’ resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis. PMID:21199323
The fundamental role of mechanical properties in the progression of cancer disease and inflammation
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2014-07-01
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
Andersen, Morten; Sajid, Zamra; Pedersen, Rasmus K; Gudmand-Hoeyer, Johanne; Ellervik, Christina; Skov, Vibe; Kjær, Lasse; Pallisgaard, Niels; Kruse, Torben A; Thomassen, Mads; Troelsen, Jesper; Hasselbalch, Hans Carl; Ottesen, Johnny T
2017-01-01
The chronic Philadelphia-negative myeloproliferative neoplasms (MPNs) are acquired stem cell neoplasms which ultimately may transform to acute myelogenous leukemia. Most recently, chronic inflammation has been described as an important factor for the development and progression of MPNs in the biological continuum from early cancer stage to the advanced myelofibrosis stage, the MPNs being described as "A Human Inflammation Model for Cancer Development". This novel concept has been built upon clinical, experimental, genomic, immunological and not least epidemiological studies. Only a few studies have described the development of MPNs by mathematical models, and none have addressed the role of inflammation for clonal evolution and disease progression. Herein, we aim at using mathematical modelling to substantiate the concept of chronic inflammation as an important trigger and driver of MPNs.The basics of the model describe the proliferation from stem cells to mature cells including mutations of healthy stem cells to become malignant stem cells. We include a simple inflammatory coupling coping with cell death and affecting the basic model beneath. First, we describe the system without feedbacks or regulatory interactions. Next, we introduce inflammatory feedback into the system. Finally, we include other feedbacks and regulatory interactions forming the inflammatory-MPN model. Using mathematical modeling, we add further proof to the concept that chronic inflammation may be both a trigger of clonal evolution and an important driving force for MPN disease progression. Our findings support intervention at the earliest stage of cancer development to target the malignant clone and dampen concomitant inflammation.
Insights into the Role and Interdependence of Oxidative Stress and Inflammation in Liver Diseases
Li, Sha; Hong, Ming
2016-01-01
The crucial roles of oxidative stress and inflammation in the development of hepatic diseases have been unraveled and emphasized for decades. From steatosis to fibrosis, cirrhosis and liver cancer, hepatic oxidative stress, and inflammation are sustained and participated in this pathological progressive process. Notably, increasing evidences showed that oxidative stress and inflammation are tightly related, which are regarded as essential partners that present simultaneously and interact with each other in various pathological conditions, creating a vicious cycle to aggravate the hepatic diseases. Clarifying the interaction of oxidative stress and inflammation is of great importance to provide new directions and targets for developing therapeutic intervention. Herein, this review is concerned with the regulation and interdependence of oxidative stress and inflammation in a variety of liver diseases. In addition to classical mediators and signaling, particular emphasis is placed upon immune suppression, a potential linkage of oxidative stress and inflammation, to provide new inspiration for the treatment of liver diseases. Furthermore, since antioxidation and anti-inflammation have been extensively attempted as the strategies for treatment of liver diseases, the application of herbal medicines and their derived compounds that protect liver from injury via regulating oxidative stress and inflammation collectively were reviewed and discussed. PMID:28070230
Lin, Runhua; Zhang, Chong; Zheng, Jiaxuan; Tian, Dongping; Lei, Zhijin; Chen, Donglin; Xu, Zexin; Su, Min
2016-04-26
Chronic inflammation is associated with increased risk of cancer development, whereas the link between chronic inflammation and esophageal carcinogenesis is still obscure heretofore. This study aimed to investigate the relationship between chronic inflammation and DNA damage, as well as the possible role of DNA damage in esophageal carcinogenic process. Endoscopic esophageal biopsies from 109 individuals from Chaoshan littoral, a high-risk region for esophageal squamous cell carcinoma (ESCC), were examined to evaluate the association between chronic inflammation and histological severity, while additional 204 esophageal non-tumor samples from patients with ESCC were collected. Immunohistochemistry was performed to detect the oxidative DNA damage and DNA double-strand breaks (DSBs). Significantly positive correlation was observed between degree of chronic inflammation and esophageal precursor lesions (rs = 0.37, P < 0.01). Immunohistochemical analysis showed that oxidative DNA damage level was positively correlated with the degree of chronic inflammation (rs = 0.21, P < 0.05). Moreover, the level of oxidative DNA damage positively correlated with histological severity (rs = 0.49, P < 0.01). We found that the extent of DSBs was progressively increased with inflammation degree (P < 0.01) and the progression of precancerous lesions (P < 0.001). Collectively, these findings provide evidence linking chronic inflammation-associated genomic instability with esophageal carcinogenesis and suggest possibilities for early detection and intervention of esophageal carcinogenesis.
Impaired Resolution of Inflammation in Alzheimer's Disease: A Review.
Whittington, Robert A; Planel, Emmanuel; Terrando, Niccolò
2017-01-01
Alzheimer's disease (AD) remains the leading cause of dementia worldwide, and over the last several decades, the role of inflammation in the pathogenesis of this neurodegenerative disorder has been increasingly elucidated. The initiation of the acute inflammatory response is counterbalanced by an active process termed resolution. This process is designed to restore homeostasis and promote tissue healing by the activation of neutrophilic apoptosis, promotion of neutrophil clearance by macrophages, and increasing anti-inflammatory cytokine levels, while concurrently leading to a diminution in pro-inflammatory mediators. The switch from the initiation to the resolution phase of inflammation is initially characterized by increased production of arachidonic acid-derived pro-resolving lipoxins and decreases in pro-inflammatory prostaglandin and leukotriene levels, subsequently followed by increases in specialized pro-resolving lipid mediators derived from omega-3 fatty acids (ω-3 FAs). There is mounting evidence that in AD, the resolution of inflammation is impaired, resulting in chronic inflammation and the exacerbation of the AD-related pathology. In this review, we examine preclinical and clinical evidence supporting the hypothesis that AD is a neurodegenerative disorder where the impairment or failure of resolution contributes to the disease process. Moreover, we review the literature supporting the potential therapeutic role of ω-3 FAs and specialized pro-resolving lipid mediators in the management of the disease. Lastly, we highlight areas that could strengthen the association of failed resolution to AD and should, therefore, be the focus of future scientific investigations in this research field.
Impaired Resolution of Inflammation in Alzheimer’s Disease: A Review
Whittington, Robert A.; Planel, Emmanuel; Terrando, Niccolò
2017-01-01
Alzheimer’s disease (AD) remains the leading cause of dementia worldwide, and over the last several decades, the role of inflammation in the pathogenesis of this neurodegenerative disorder has been increasingly elucidated. The initiation of the acute inflammatory response is counterbalanced by an active process termed resolution. This process is designed to restore homeostasis and promote tissue healing by the activation of neutrophilic apoptosis, promotion of neutrophil clearance by macrophages, and increasing anti-inflammatory cytokine levels, while concurrently leading to a diminution in pro-inflammatory mediators. The switch from the initiation to the resolution phase of inflammation is initially characterized by increased production of arachidonic acid-derived pro-resolving lipoxins and decreases in pro-inflammatory prostaglandin and leukotriene levels, subsequently followed by increases in specialized pro-resolving lipid mediators derived from omega-3 fatty acids (ω-3 FAs). There is mounting evidence that in AD, the resolution of inflammation is impaired, resulting in chronic inflammation and the exacerbation of the AD-related pathology. In this review, we examine preclinical and clinical evidence supporting the hypothesis that AD is a neurodegenerative disorder where the impairment or failure of resolution contributes to the disease process. Moreover, we review the literature supporting the potential therapeutic role of ω-3 FAs and specialized pro-resolving lipid mediators in the management of the disease. Lastly, we highlight areas that could strengthen the association of failed resolution to AD and should, therefore, be the focus of future scientific investigations in this research field. PMID:29163531
Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies
Gambhir, Sahil; Vyas, Dinesh; Hollis, Michael; Aekka, Apporva; Vyas, Arpita
2015-01-01
Nuclear factor kappa B (NF-κB) has an established role in the regulation of innate immunity and inflammation. NF-κB is also involved in critical mechanisms connecting inflammation and cancer development. Recent investigations suggest that the NF-κB signaling cascade may be the central mediator of gastrointestinal malignancies including esophageal, gastric and colorectal cancers. This review will explore NF-κB’s function in inflammation-associated gastrointestinal malignancies, highlighting its oncogenic contribution to each step of carcinogenesis. NF-κB’s role in the inflammation-to-carcinoma sequence in gastrointestinal malignancies warrants stronger emphasis upon targeting this pathway in achieving greater therapeutic efficacy. PMID:25805923
Role of regulatory micro RNAs in type 2 diabetes mellitus-related inflammation.
Hamar, Péter
2012-10-01
Micro RNAs (miRNAs) are small, non-coding RNAs with the function of post-transcriptional gene expression regulation. Micro RNAs may function in networks, forming a complex relationship with diseases. Alterations of specific miRNA levels have significant correlation with diseases of divergent origin, such as diabetes. Type 2 diabetes mellitus (T2DM) has an increasing worldwide epidemic with serious complications. However, T2DM is a chronic process, and from early metabolic alterations to manifest complications decades may pass, during which our diagnostic arsenal is limited. Micro RNAs may thus serve as novel diagnostic tools as well as therapeutic targets in pre-diabetes. Recent Fundings: Micro RNAs (miRNAs) involved in inflammatory processes contributing to the development of type 2 diabetes mellitus (T2DM) published mostly in the past 2 years. MiRNAs are involved in such early diabetic processes as non-alcoholic steatohepatitis (NASH) and inflammation of the visceral adipose tissue. Evidence is emerging regarding the continuous spectrum between type 1 diabetes (T1DM) and T2DM being just 2 endpoints of the same disease with different genetic background. Thus, miRNA regulation of autoimmune components in T2DM may shed new light on pathogenesis. Finally, the involvement of miRNAs in inflammation as a key driving force of diabetic complications is also summarized. Inflammation is emerging as a central pathophysiological process in the development of T2DM. Visceral adipose tissue inflammation and non-alcoholic steatohepatitis together with insulitis are probably the first events leading to a complex metabolic disorder. These early events may be diagnosed or even influenced through our increasing knowledge about the involvement of post-transcriptional gene regulation by miRNAs.
Haroon, Ebrahim; Raison, Charles L; Miller, Andrew H
2012-01-01
The potential contribution of chronic inflammation to the development of neuropsychiatric disorders such as major depression has received increasing attention. Elevated biomarkers of inflammation, including inflammatory cytokines and acute-phase proteins, have been found in depressed patients, and administration of inflammatory stimuli has been associated with the development of depressive symptoms. Data also have demonstrated that inflammatory cytokines can interact with multiple pathways known to be involved in the development of depression, including monoamine metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits relevant to mood regulation. Further understanding of mechanisms by which cytokines alter behavior have revealed a host of pharmacologic targets that may be unique to the impact of inflammation on behavior and may be especially relevant to the treatment and prevention of depression in patients with evidence of increased inflammation. Such targets include the inflammatory signaling pathways cyclooxygenase, p38 mitogen-activated protein kinase, and nuclear factor-κB, as well as the metabolic enzyme, indoleamine-2,3-dioxygenase, which breaks down tryptophan into kynurenine. Other targets include the cytokines themselves in addition to chemokines, which attract inflammatory cells from the periphery to the brain. Psychosocial stress, diet, obesity, a leaky gut, and an imbalance between regulatory and pro-inflammatory T cells also contribute to inflammation and may serve as a focus for preventative strategies relevant to both the development of depression and its recurrence. Taken together, identification of mechanisms by which cytokines influence behavior may reveal a panoply of personalized treatment options that target the unique contributions of the immune system to depression.
Riley, Joan K; Jungheim, Emily S
2016-09-01
A 2013 ASRM committee opinion titled "Optimizing natural fertility" stated that "there is little evidence that dietary variations such as vegetarian diets, low-fat diets, vitamin-enriched diets, antioxidants, or herbal remedies improve fertility …." However, there are emerging epidemiologic data demonstrating that certain components of the diet may influence reproductive health outcomes. Furthermore, translational work with human specimens and animal models lends biologic plausibility to the epidemiologic data, particularly in the context of female reproductive diseases associated with inflammation, including polycystic ovary syndrome (PCOS) and obesity. How to best apply these data clinically for improved reproductive outcomes remains to be determined. In this review, we outline a role for chronic inflammation in the reproductive sequelae of PCOS and obesity and we summarize epidemiologic and translational work demonstrating a potential role for diet in the regulation of inflammatory processes associated with these disorders. These studies identify areas for future research and potential clinical intervention in women affected by the reproductive sequelae of PCOS and obesity. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Persisting eicosanoid pathways in rheumatic diseases.
Korotkova, Marina; Jakobsson, Per-Johan
2014-04-01
An unmet clinical need exists for early treatment of rheumatic diseases and improved treatment strategies that can better maintain remission with reduced ongoing subclinical inflammation and bone destruction. Eicosanoids form one of the most complex networks in the body controlling many physiological and pathophysiological processes, including inflammation, autoimmunity and cancer. Persisting eicosanoid pathways are thought to be involved in the development of rheumatic diseases, and targeting this pathway might enable improved treatment strategies. Several enzymes of the arachidonic acid cascade as well as eicosanoid receptors (all part of the eicosanoid pathway) are today well-recognized targets for anti-inflammatory drugs that can reduce symptoms of inflammation in rheumatic diseases. In this Review, we outline the evidence supporting pivotal roles of eicosanoid signalling in the pathogenesis of rheumatic diseases and discuss findings from studies in animals and humans. We focus first on rheumatoid arthritis and discuss the upregulation of the cyclooxygenase and lipoxygenase pathways as most data are available in this condition. Research into the roles of eicosanoids in other rheumatic diseases (osteoarthritis, idiopathic inflammatory myopathies, systemic lupus erythematosus and gout) is also progressing rapidly and is discussed. Finally, we summarize the prospects of targeting eicosanoid pathways as anti-inflammatory treatment strategies for patients with rheumatic diseases.
Physical inactivity and obesity: relation to asthma and chronic obstructive pulmonary disease?
ten Hacken, Nick H T
2009-12-01
Physical inactivity and obesity are modifiable risk factors for many chronic diseases, including cardiovascular disease, diabetes mellitus, osteoporosis, osteoarthritis, and depression. Both physical inactivity and obesity are associated with low-grade systemic inflammation that may contribute to the inflammatory processes present in many chronic diseases. In asthma, almost no studies are available in which physical inactivity has been studied using performance-based instruments. In contrast, the association between obesity and a higher prevalence of asthma has often been suggested in a large number of studies. In chronic obstructive pulmonary disease (COPD) physical inactivity has been demonstrated in a few studies that used performance-based instruments; this was associated with the higher COPD Global Initiative on Obstructive Lung Disease (GOLD) stages and a higher degree of systemic inflammation, independent of body mass index. In contrast to physical inactivity, obesity in COPD is associated with the lower GOLD stages. Additionally, obesity is associated with the chronic obstructive phenotype and features of the metabolic syndrome. To elucidate the independent relation of physical inactivity and obesity with systemic inflammation, performance-based studies of physical inactivity in asthma and COPD are highly needed.
Gidron, Yori; Kupper, Nina; Kwaijtaal, Martijn; Winter, Jobst; Denollet, Johan
2007-12-01
The current understanding of the pathophysiology of atherosclerosis leading to coronary artery disease (CAD) emphasizes the role of inflammatory mediators. Given the bidirectional communication between the immune and central nervous systems, an important question is whether the brain can be "informed" about and modulate CAD-related inflammation. A candidate communicator and modulator is the vagus nerve. Until now, the vagus nerve has received attention in cardiology mainly due to its role in the parasympathetic cardiovascular response. However, the vagus nerve can also "inform" the brain about peripheral inflammation since its paraganglia have receptors for interleukin-1. Furthermore, its efferent branch has a local anti-inflammatory effect. These effects have not been considered in research on the vagus nerve in CAD or in vagus nerve stimulation trials in CAD. In addition, various behavioural interventions, including relaxation, may influence CAD prognosis by affecting vagal activity. Based on this converging evidence, we propose a neuroimmunomodulation approach to atherogenesis. In this model, the vagus nerve "informs" the brain about CAD-related cytokines; in turn, activation of the vagus (via vagus nerve stimulation, vagomimetic drugs or relaxation) induces an anti-inflammatory response that can slow down the chronic process of atherogenesis.
Diet and Inflammation: Possible Effects on Immunity, Chronic Diseases, and Life Span.
Ricordi, Camillo; Garcia-Contreras, Marta; Farnetti, Sara
2015-01-01
Chronic inflammation negatively impacts all physiological functions, causing an array of degenerative conditions including diabetes; cancer; cardiovascular, osteo-articular, and neurodegenerative diseases; autoimmunity disorders; and aging. In particular, there is a growing knowledge of the role that gene transcription factors play in the inflammatory process. Obesity, metabolic syndrome, and diabetes represent multifactorial conditions resulting from improper balances of hormones and gene expression. In addition, these conditions have a strong inflammatory component that can potentially be impacted by the diet. It can reduce pro-inflammatory eicosanoids that can alter hormonal signaling cascades to the modulation of the innate immune system and gene transcription factors. Working knowledge of the impact of how nutrients, especially dietary fatty acids and polyphenols, can impact these various molecular targets makes it possible to develop a general outline of an anti-inflammatory diet that offers a unique, nonpharmacological approach in treating obesity, metabolic syndrome, and diabetes. Several important bioactive dietary components can exert their effect through selected inflammatory pathways that can affect metabolic and genetic changes. In fact, dietary components that can modulate glucose and insulin levels, as well as any other mediator that can activate nuclear factor-kB, can also trigger inflammation through common pathway master switches.
Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex.
Rizzetto, Lisa; Fava, Francesca; Tuohy, Kieran M; Selmi, Carlo
2018-05-31
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level. Copyright © 2018 Elsevier Ltd. All rights reserved.
You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J
2013-04-01
Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.
Lennard, Katie; Dabee, Smritee; Barnabas, Shaun L; Havyarimana, Enock; Blakney, Anna; Jaumdally, Shameem Z; Botha, Gerrit; Mkhize, Nonhlanhla N; Bekker, Linda-Gail; Lewis, David A; Gray, Glenda; Mulder, Nicola; Passmore, Jo-Ann S; Jaspan, Heather B
2018-01-01
Young African females are at an increased risk of HIV acquisition, and genital inflammation or the vaginal microbiome may contribute to this risk. We studied these factors in 168 HIV-negative South African adolescent females aged 16 to 22 years. Unsupervised clustering of 16S rRNA gene sequences revealed three clusters (subtypes), one of which was strongly associated with genital inflammation. In a multivariate model, the microbiome compositional subtype and hormonal contraception were significantly associated with genital inflammation. We identified 40 taxa significantly associated with inflammation, including those reported previously ( Prevotella , Sneathia , Aerococcus , Fusobacterium , and Gemella ) as well as several novel taxa (including increased frequencies of bacterial vaginosis-associated bacterium 1 [BVAB1], BVAB2, BVAB3, Prevotella amnii , Prevotella pallens , Parvimonas micra , Megasphaera , Gardnerella vaginalis , and Atopobium vaginae and decreased frequencies of Lactobacillus reuteri , Lactobacillus crispatus , Lactobacillus jensenii , and Lactobacillus iners ). Women with inflammation-associated microbiomes had significantly higher body mass indices and lower levels of endogenous estradiol and luteinizing hormone. Community functional profiling revealed three distinct vaginal microbiome subtypes, one of which was characterized by extreme genital inflammation and persistent bacterial vaginosis (BV); this subtype could be predicted with high specificity and sensitivity based on the Nugent score (≥9) or BVAB1 abundance. We propose that women with this BVAB1-dominated subtype may have chronic genital inflammation due to persistent BV, which may place them at a particularly high risk for HIV infection. Copyright © 2017 American Society for Microbiology.
Lennard, Katie; Dabee, Smritee; Barnabas, Shaun L.; Havyarimana, Enock; Blakney, Anna; Jaumdally, Shameem Z.; Botha, Gerrit; Mkhize, Nonhlanhla N.; Bekker, Linda-Gail; Lewis, David A.; Gray, Glenda; Mulder, Nicola; Passmore, Jo-Ann S.
2017-01-01
ABSTRACT Young African females are at an increased risk of HIV acquisition, and genital inflammation or the vaginal microbiome may contribute to this risk. We studied these factors in 168 HIV-negative South African adolescent females aged 16 to 22 years. Unsupervised clustering of 16S rRNA gene sequences revealed three clusters (subtypes), one of which was strongly associated with genital inflammation. In a multivariate model, the microbiome compositional subtype and hormonal contraception were significantly associated with genital inflammation. We identified 40 taxa significantly associated with inflammation, including those reported previously (Prevotella, Sneathia, Aerococcus, Fusobacterium, and Gemella) as well as several novel taxa (including increased frequencies of bacterial vaginosis-associated bacterium 1 [BVAB1], BVAB2, BVAB3, Prevotella amnii, Prevotella pallens, Parvimonas micra, Megasphaera, Gardnerella vaginalis, and Atopobium vaginae and decreased frequencies of Lactobacillus reuteri, Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners). Women with inflammation-associated microbiomes had significantly higher body mass indices and lower levels of endogenous estradiol and luteinizing hormone. Community functional profiling revealed three distinct vaginal microbiome subtypes, one of which was characterized by extreme genital inflammation and persistent bacterial vaginosis (BV); this subtype could be predicted with high specificity and sensitivity based on the Nugent score (≥9) or BVAB1 abundance. We propose that women with this BVAB1-dominated subtype may have chronic genital inflammation due to persistent BV, which may place them at a particularly high risk for HIV infection. PMID:29038128
STRETCHING IMPACTS INFLAMMATION RESOLUTION IN CONNECTIVE TISSUE
Berrueta, Lisbeth; Muskaj, Igla; Olenich, Sara; Butler, Taylor; Badger, Gary J.; Colas, Romain A.; Spite, Matthew; Serhan, Charles N.; Langevin, Helene M.
2016-01-01
Acute inflammation is accompanied from its outset by the release of specialized pro-resolving mediators (SPMs), including resolvins, that orchestrate the resolution of local inflammation. We showed earlier that, in rats with subcutaneous inflammation of the back induced by carrageenan, stretching for 10 minutes twice daily reduced inflammation and improved pain, two weeks after carrageenan injection. In this study, we hypothesized that stretching of connective tissue activates local pro-resolving mechanisms within the tissue in the acute phase of inflammation. In rats injected with carrageenan and randomized to stretch vs. no stretch for 48 hours, stretching reduced inflammatory lesion thickness and neutrophil count, and increased resolvin (RvD1) concentrations within lesions. Furthermore, subcutaneous resolvin injection mimicked the effect of stretching. In ex vivo experiments, stretching of connective tissue reduced the migration of neutrophils and increased tissue RvD1 concentration. These results demonstrate a direct mechanical impact of stretching on inflammation-regulation mechanisms within connective tissue. PMID:26588184
Rosano, Caterina; Marsland, Anna L; Gianaros, Peter J
2012-02-01
Maintaining brain health promotes successful aging. The main determinants of brain health are the preservation of cognitive function and remaining free from structural and metabolic abnormalities, including loss of neuronal synapses, atrophy, small vessel disease and focal amyloid deposits visible by neuroimaging. Promising studies indicate that these determinants are to some extent modifiable, even among adults seventy years and older. Converging animal and human evidence further suggests that inflammation is a shared mechanism, contributing to both cognitive decline and abnormalities in brain structure and metabolism. Thus, inflammation may provide a target for intervention. Specifically, circulating inflammatory markers have been associated with declines in cognitive function and worsening of brain structural and metabolic characteristics. Additionally, it has been proposed that older brains are characterized by a sensitization to neuroinflammatory responses, even in the absence of overt disease. This increased propensity to central inflammation may contribute to poor brain health and premature brain aging. Still unknown is whether and how peripheral inflammatory factors directly contribute to decline of brain health. Human research is limited by the challenges of directly measuring neuroinflammation in vivo. This review assesses the role that inflammation may play in the brain changes that often accompany aging, focusing on relationships between peripheral inflammatory markers and brain health among well-functioning, community-dwelling adults seventy years and older. We propose that monitoring and maintaining lower levels of systemic and central inflammation among older adults could help preserve brain health and support successful aging. Hence, we also identify plausible ways and novel experimental study designs of maintaining brain health late in age through interventions that target the immune system.
Rossi, Antonietta; Pace, Simona; Tedesco, Federica; Pagano, Ester; Guerra, Germano; Troisi, Fabiana; Werner, Markus; Roviezzo, Fiorentina; Zjawiony, Jordan K; Werz, Oliver; Izzo, Angelo A; Capasso, Raffaele
2016-04-01
Leukotrienes (LTs) are lipid mediators derived from arachidonic acid (AA) involved in a number of autoimmune/inflammatory disorders including asthma, allergic rhinitis and cardiovascular diseases. Salvinorin A (SA), a diterpene isolated from the hallucinogenic plant Salvia divinorum, is a well-established analgesic compound, but its anti-inflammatory properties are under-researched and its effects on LT production is unknown to date. Here, we studied the possible effect of SA on LT production and verified its actions on experimental models of inflammation in which LTs play a prominent role. Peritoneal macrophages (PM) stimulated by calcium ionophore A23187 were chosen as in vitro system to evaluate the effect of SA on LT production. Zymosan-induced peritonitis in mice and carrageenan-induced pleurisy in rats were selected as LT-related models to evaluate the effect of SA on inflammation as well as on LT biosynthesis. SA inhibited, in a concentration-dependent manner, A23187-induced LTB4 biosynthesis in isolated PM. In zymosan-induced peritonitis, SA inhibited cell infiltration, myeloperoxidase activity, vascular permeability and LTC4 production in the peritoneal cavity without decreasing the production of prostaglandin E2. In carrageenan-induced pleurisy in rats, a more sophisticated model of acute inflammation related to LTs, SA significantly inhibited LTB4 production in the inflammatory exudates, along with reducing the phlogistic process in the lung. In conclusion, SA inhibited LT production and it was effective in experimental models of inflammation in which LTs play a pivotal role. SA might be considered as a lead compound for the development of drugs useful in LTs-related diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pittman, Meredith E; Khararjian, Armen; Wood, Laura D; Montgomery, Elizabeth A; Voltaggio, Lysandra
2016-12-01
Despite the recommendation of expert gastrointestinal pathologists, private and academic centers (including our own) have continued to use ancillary stains for identification of Helicobacter pylori. For a 1-month period, gastric biopsies were prospectively evaluated for H pylori using routine hematoxylin and eosin (H&E) and a reflex Diff-Quik stain. During this time, 379 gastric biopsies were collected on 326 patients. H pylori organisms were prospectively identified in 23 (7%) patients, all of whom had superficial dense lymphoplasmacytic inflammation expanding the lamina propria. An additional 2 patients with neutrophilic inflammation were found to have H pylori by immunohistochemical staining. One patient diagnosed as having normal gastric mucosa was retrospectively found to have inflammation with rare H pylori organisms originally overlooked on both H&E and Diff-Quik but later identified on immunostain (0.5%). No patients with chemical gastritis (16%) or chronic inflammation (27%) were found to have H pylori. During the study month, 9 immunostains for H pylori were performed in addition to the 379 Diff-Quik. After discontinuation of reflex Diff-Quik, approximately 20 immunostains are performed for H pylori each month, which decreases technical time spent for processing gastric biopsies and reduces cost to the health care system. In our population with a low prevalence of H pylori, reflex staining for organisms is not cost-effective. The organisms can be seen on routine H&E; when suspicious superficial or active inflammation is present without visible organisms, immunohistochemical stains will confirm presence or absence within a day. Discontinuation of up-front ancillary studies is cost-effective without compromising patient care. Copyright © 2016 Elsevier Inc. All rights reserved.
Galuppo, M; Di Paola, R; Mazzon, E; Esposito, E; Paterniti, I; Kapoor, A; Thiemermann, C; Cuzzocrea, S
2010-01-01
Peroxisome Proliferator-Activated Receptor β/δ belongs to a family of ligand-activated transcription factors. Recent data have clarified its metabolic roles and enhanced the potential role of this receptor as a pharmacological target. Moreover, although its role in acute inflammation remains unclear, being the nuclear receptor PPAR β/δ widely expressed in many tissues, including the vascular endothelium, we assume that the infiltration of PMNs into tissues, a prominent feature in inflammation, may also be related to PPAR β/δ. Mice subjected to intratracheal instillation of bleomycin (BLEO, 1 mg/kg), a glycopeptide produced by the bacterium Streptomyces verticillus, develop lung inflammation and injury characterized by a significant neutrophil infiltration and tissue oedema. Therefore, the aim of this study is to investigate the effects of GW0742, a synthetic high affinity PPAR β/δ agonist, and its possible role in preventing the advance of inflammatory and apoptotic processes induced by bleomycin, that long-term leads to the appearance of pulmonary fibrosis. Our data showed that GW0742-treatment (0.3 mg/Kg, 10 percent DMSO, i.p.) has therapeutic effects on pulmonary damage, decreasing many inflammatory and apoptotic parameters detected by measurement of: 1) cytokine production; 2) leukocyte accumulation, indirectly measured as decrease of myeloperoxidase (MPO) activity; 3) IkBα degradation and NF-kB nuclear translocation; 4) ERK phosphorylation; 5) stress oxidative by NO formation due to iNOS expression; 6) nitrotyrosine and PAR localization; 7) the degree of apoptosis, evaluated by Bax and Bcl-2 balance, FAS ligand expression and TUNEL staining. Taken together, our results clearly show that GW0742 reduces the lung injury and inflammation due to the intratracheal BLEO--instillation in mice.
Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.
Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P
2010-02-18
Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.
Effects and molecular mechanisms of intrauterine infection/inflammation on lung development.
Pan, Jiarong; Zhan, Canyang; Yuan, Tianming; Wang, Weiyan; Shen, Ying; Sun, Yi; Wu, Tai; Gu, Weizhong; Chen, Lihua; Yu, Huimin
2018-05-10
Intrauterine infection/inflammation plays an important role in the development of lung injury and bronchopulmonary dysplasia (BPD) in preterm infants, While a multifactorial genesis is likely, mechanisms involved in BPD after intrauterine infection/inflammation are largely unknown. Recent studies have suggested microRNAs (miRNAs) are likely to play a role. Therefore, this study aimed to study the effects and mechanisms of intrauterine infection/inflammation on lung development, and to identify miRNAs related to lung injury and BPD. An animal model of intrauterine infection/inflammation was established with pregnant SD rats endocervically inoculated with E.coli. The fetal and neonatal rats were observed at embryonic day (E) 17, 19, 21 and postnatal day (P) 1, 3, 7, 14, respectively. Body weight, lung weight, the expression levels of NLRP3, TNF-α, IL-lβ, IL-6, VEGF, Collagen I, SP-A, SP-B and SP-C in the lung tissues of fetal and neonatal rats were measured. Expression profiles of 1218 kinds of miRNAs in the lungs of neonatal rats were detected by miRNA microarray technique. Target genes of the identified miRNAs were predicted through online software. Intrauterine infection/inflammation compromised not only weight development but also lung development of the fetal and neonatal rats. The results showed significantly increased expression of NLRP3, TNF-α, IL-1β, IL-6, Collagen I, and significantly decreased expression of VEGF, SP-A, SP-B and SP-C in the fetal and neonatal rat lung tissues in intrauterine infection group compared to the control group at different observation time point (P < 0.05). Forty-three miRNAs with significant differential expression were identified. Possible target genes regulated by the identified miRNAs are very rich. Intrauterine infection/inflammation results in lung histological changes which are very similar to those observed in BPD. Possible mechanisms may include NLRP3 inflammasome activation followed by inflammatory cytokines expression up-regulated, inhibiting the expression of pulmonary surfactant proteins, interfering with lung interstitial development. There are many identified miRNAs which target a wide range of genes and may play an important role in the processes of lung injury and BPD.
[Partsch's chronic granulomatous inflammation, the cutaneous manifestation of a dental cause].
Buch, R S R; Fischer, B; Kleis, W K G; Reichert, T E
2003-08-01
Dentogenous inflammatory diseases can lead to typical dermatological facial symptoms with formation of cutaneous sinuses. Partsch's chronic granulomatous inflammation can result from conducted inflammation of a nonvital tooth via a chronic apical inflammation. In this rare disease, the granulomatous tissue perforates the bone, channels through the overlying skin, and drains via cutaneous or oral sinuses. A frequent localization of the cutaneous sinus is the skin inferior to the body of the mandible, and it is caused by an inflammation of the lower molars. Treatment consists of identifying the responsible teeth and eliminating the focus of infection. Chronically progressive periradicular granuloma and/or radicular cysts can be present with impressive dermatological symptoms. Therefore, X-ray examinations are necessary to exclude possible dentogenic causes in cases of badly healing processes of the face or neck.
Barchuk, A A; Podolsky, M D; Tarakanov, S A; Kotsyuba, I Yu; Gaidukov, V S; Kuznetsov, V I; Merabishvili, V M; Barchuk, A S; Levchenko, E V; Filochkina, A V; Arseniev, A I
2015-01-01
This review article analyzes data of literature devoted to the description, interpretation and classification of focal (nodal) changes in the lungs detected by computed tomography of the chest cavity. There are discussed possible criteria for determining the most likely of their character--primary and metastatic tumor processes, inflammation, scarring, and autoimmune changes, tuberculosis and others. Identification of the most characteristic, reliable and statistically significant evidences of a variety of pathological processes in the lungs including the use of modern computer-aided detection and diagnosis of sites will optimize the diagnostic measures and ensure processing of a large volume of medical data in a short time.
Impact of aging immune system on neurodegeneration and potential immunotherapies.
Liang, Zhanfeng; Zhao, Yang; Ruan, Linhui; Zhu, Linnan; Jin, Kunlin; Zhuge, Qichuan; Su, Dong-Ming; Zhao, Yong
2017-10-01
The interaction between the nervous and immune systems during aging is an area of avid interest, but many aspects remain unclear. This is due, not only to the complexity of the aging process, but also to a mutual dependency and reciprocal causation of alterations and diseases between both the nervous and immune systems. Aging of the brain drives whole body systemic aging, including aging-related changes of the immune system. In turn, the immune system aging, particularly immunosenescence and T cell aging initiated by thymic involution that are sources of chronic inflammation in the elderly (termed inflammaging), potentially induces brain aging and memory loss in a reciprocal manner. Therefore, immunotherapeutics including modulation of inflammation, vaccination, cellular immune therapies and "protective autoimmunity" provide promising approaches to rejuvenate neuroinflammatory disorders and repair brain injury. In this review, we summarize recent discoveries linking the aging immune system with the development of neurodegeneration. Additionally, we discuss potential rejuvenation strategies, focusing aimed at targeting the aging immune system in an effort to prevent acute brain injury and chronic neurodegeneration during aging. Copyright © 2017 Elsevier Ltd. All rights reserved.
How Do Elevated Triglycerides and Low HDL-Cholesterol Affect Inflammation and Atherothrombosis?
Welty, Francine K.
2015-01-01
This review article summarizes recent research into the mechanisms as to how elevated levels of triglyceride (TG) and low levels of high- density- lipoprotein cholesterol (HDL-C) contribute to inflammation and atherosclerosis. Evidence supports the role of TG-rich lipoproteins in signaling mechanisms via apolipoproteins C-III and free fatty acids leading to activation of NFKβ, VCAM-1 and other inflammatory mediators which lead to fatty streak formation and advanced atherosclerosis. Moreover, the cholesterol content in TG-rich lipoproteins has been shown to predict CAD risk better than LDL-C. In addition to reverse cholesterol transport, HDL has many other cardioprotective effects which include regulating immune function. The “functionality” of HDL appears more important than the level of HDL-C. Insulin resistance and central obesity underlie the pathophysiology of elevated TG and low HDL-C in metabolic syndrome and type 2 diabetes. Lifestyle recommendations including exercise and weight loss remain first line therapy in ameliorating insulin resistance and the adverse signaling processes from elevated levels of TG-rich lipoproteins and low HDL-C. PMID:23881582
Lipotoxicity: Effects of Dietary Saturated and Transfatty Acids
Estadella, Débora; da Penha Oller do Nascimento, Claudia M.; Oyama, Lila M.; Ribeiro, Eliane B.; Dâmaso, Ana R.; de Piano, Aline
2013-01-01
The ingestion of excessive amounts of saturated fatty acids (SFAs) and transfatty acids (TFAs) is considered to be a risk factor for cardiovascular diseases, insulin resistance, dyslipidemia, and obesity. The focus of this paper was to elucidate the influence of dietary SFA and TFA intake on the promotion of lipotoxicity to the liver and cardiovascular, endothelial, and gut microbiota systems, as well as on insulin resistance and endoplasmic reticulum stress. The saturated and transfatty acids favor a proinflammatory state leading to insulin resistance. These fatty acids can be involved in several inflammatory pathways, contributing to disease progression in chronic inflammation, autoimmunity, allergy, cancer, atherosclerosis, hypertension, and heart hypertrophy as well as other metabolic and degenerative diseases. As a consequence, lipotoxicity may occur in several target organs by direct effects, represented by inflammation pathways, and through indirect effects, including an important alteration in the gut microbiota associated with endotoxemia. Interactions between these pathways may perpetuate a feedback process that exacerbates an inflammatory state. The importance of lifestyle modification, including an improved diet, is recommended as a strategy for treatment of these diseases. PMID:23509418
Depression and peripheral inflammatory profile of patients with obesity.
Ambrósio, Gabriela; Kaufmann, Fernanda N; Manosso, Luana; Platt, Nicolle; Ghisleni, Gabriele; Rodrigues, Ana Lúcia S; Rieger, Débora K; Kaster, Manuella P
2018-05-01
This narrative review will present and discuss clinical data from 16 cross-sectional and 6 longitudinal studies examining the relationship between body mass index (BMI), symptoms of depression and peripheral inflammation. Our aim is to determine which of obesity and depression contributes best to the peripheral low-grade inflammation frequently associated to both conditions. Studies including a complete evaluation of inflammatory markers are scarce and high levels of interleukin-6 (IL-6) and C-reactive protein (CRP) are the most consistent findings associated with obesity and symptoms of depression. Among the cross-sectional studies, seven studies, including a total of 9421 individuals, pointed to BMI as the major factor associated with systemic low-grade inflammation. However, in four studies, including 16,837 individuals, CRP levels remained associated with the symptoms of depression even after correction for BMI, suggestion that in the absence of overweight or obesity other sources of peripheral inflammation might contribute to presence of depressive symptoms. Additionally, another five studies, including 5569 individuals failed to find an association between depression and peripheral inflammation, reinforcing the heterogeneity of this condition. In the longitudinal data, changes in BMI were associated with a reduction in depressive scores at follow-up, after bariatric surgery or after diet. In four longitudinal studies, high levels of CRP were found to be associated with depression even after adjustment for BMI and weight loss, further corroborating the idea that other sources of peripheral inflammation might contribute to depressive symptoms. Thus it seems that both obesity and depressive symptoms can contribute to peripheral inflammation, and once installed the presence of inflammation can contribute to several behavioral alterations that reinforce the cyclic pattern of co-occurrence observed in patients with obesity and MDD. Future clinical studies should focus on strategic efforts to collect new data and to improve or standardize methods for the evaluation of depression, body composition and a more complete inflammatory profile. These approaches are essential for the development of pharmacological and/or non-pharmacological strategies designed to break this cyclic pattern of co-occurrence. Copyright © 2018 Elsevier Ltd. All rights reserved.
Iron deposition and inflammation in multiple sclerosis. Which one comes first?
2011-01-01
Whether iron deposition is an epiphenomenon of the multiple sclerosis (MS) disease process or may play a primary role in triggering inflammation and disease development remains unclear at this time, and should be studied at the early stages of disease pathogenesis. However, it is difficult to study the relationship between iron deposition and inflammation in early MS due to the delay between the onset of symptoms and diagnosis, and the poor availability of tissue specimens. In a recent article published in BMC Neuroscience, Williams et al. investigated the relationship between inflammation and iron deposition using an original animal model labeled as "cerebral experimental autoimmune encephalomyelitis", which develops CNS perivascular iron deposits. However, the relative contribution of iron deposition vs. inflammation in the pathogenesis and progression of MS remains unknown. Further studies should establish the association between inflammation, reduced blood flow, iron deposition, microglia activation and neurodegeneration. Creating a representative animal model that can study independently such relationship will be the key factor in this endeavor. PMID:21699686
Bellinger, Denise L; Lorton, Dianne
2018-04-13
Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA), Sjőgren's syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA) axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS). These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs. Using a rodent model of inflammatory arthritis as an IMID model, we report disease-specific maladaptive changes in β₂-adrenergic receptor (AR) signaling from protein kinase A (PKA) to mitogen activated protein kinase (MAPK) pathways in the spleen. Beta₂-AR signal "shutdown" in the spleen and switching from PKA to G-coupled protein receptor kinase (GRK) pathways in lymph node cells drives inflammation and disease advancement. Based on these findings and the existing literature in other IMIDs, we present and discuss relevant literature that support the hypothesis that unresolvable immune stimulation from chronic inflammation leads to a maladaptive disease-inducing and perpetuating sympathetic response in an attempt to maintain allostasis. Since the role of sympathetic dysfunction in IMIDs is best studied in RA and rodent models of RA, this IMID is the primary one used to evaluate data relevant to our hypothesis. Here, we review the relevant literature and discuss sympathetic dysfunction as a significant contributor to the pathophysiology of IMIDs, and then discuss a novel target for treatment. Based on our findings in inflammatory arthritis and our understanding of common inflammatory process that are used by the immune system across all IMIDs, novel strategies to restore SNS homeostasis are expected to provide safe, cost-effective approaches to treat IMIDs, lower comorbidities, and increase longevity.
Redox-inflammatory synergy in the metabolic syndrome.
Bryan, Sean; Baregzay, Boran; Spicer, Drew; Singal, Pawan K; Khaper, Neelam
2013-01-01
Metabolic syndrome (MetS) comprises interrelated disease states including obesity, insulin resistance and type 2 diabetes (T2DM), dyslipidemia, and hypertension. Essential to normal physiological function, and yet massively damaging in excess, oxidative stress and inflammation are pivotal common threads among the pathologies of MetS. Increasing evidence indicates that redox and inflammatory dysregulation parallels the syndrome's physiological, biochemical, and anthropometric features, leading many to consider the pro-oxidative, pro-inflammatory milieu an unofficial criterion in itself. Left unchecked, cross-promotion of oxidative stress and inflammation creates a feed-forward cycle that can initiate and advance disease progression. Such redox-inflammatory integration is evident in the pathogenesis of obesity, insulin resistance and T2DM, atherogenic dyslipidemia, and hypertension, and is thus hypothesized to be the "common soil" from which they develop. The present review highlights the synergistic contributions of redox-inflammatory processes to each of the components of the MetS.
Pathophysiology of viral-induced exacerbations of COPD
Alfredo, Potena; Gaetano, Caramori; Paolo, Casolari; Marco, Contoli; Johnston, Sebastian L; Alberto, Papi
2007-01-01
Inflammation of the lower airways is a central feature of chronic obstructive pulmonary disease (COPD). Inflammatory responses are associated with an increased expression of a cascade of proteins including cytokines, chemokines, growth factors, enzymes, adhesion molecules and receptors. In most cases the increased expression of these proteins is the result of enhanced gene transcription: many of these genes are not expressed in normal cells under resting conditions but they are induced in the inflammatory process in a cell-specific manner. Transcription factors regulate the expression of many pro-inflammatory genes and play a key role in the pathogenesis of airway inflammation. Many studies have suggested a role for viral infections as a causative agent of COPD exacerbations. In this review we will focus our attention on the relationship between common respiratory viral infections and the molecular and inflammatory mechanisms that lead to COPD exacerbation. PMID:18268922
Sirtuin 1 and aging theory for chronic obstructive pulmonary disease.
Conti, V; Corbi, G; Manzo, V; Pelaia, G; Filippelli, A; Vatrella, A
2015-01-01
Chronic Obstructive Pulmonary disease (COPD) is an inflammatory syndrome that represents an increasing health problem, especially in the elderly population. Drug therapies are symptomatic and inadequate to contrast disease progression and mortality. Thus, there is an urgent need to clarify the molecular mechanisms responsible for this condition in order to identify new biomarkers and therapeutic targets. Processes including oxidant/antioxidant, protease/antiprotease, and proliferative/antiproliferative balance and control of inflammatory response become dysfunctional during aging as well as in COPD. Recently it was suggested that Sirtuin 1 (SIRT1), an antiaging molecule involved in the response to oxidative stress and chronic inflammation, is implicated in both development and progression of COPD. The present review focuses on the involvement of SIRT1 in the regulation of redox state, inflammation, and premature senescence, all crucial characteristics of COPD phenotypes. Recent evidence corroborating the statement of the "aging theory for COPD" was also discussed.
Lymphoid tissue fibrosis is associated with impaired vaccine responses.
Kityo, Cissy; Makamdop, Krystelle Nganou; Rothenberger, Meghan; Chipman, Jeffrey G; Hoskuldsson, Torfi; Beilman, Gregory J; Grzywacz, Bartosz; Mugyenyi, Peter; Ssali, Francis; Akondy, Rama S; Anderson, Jodi; Schmidt, Thomas E; Reimann, Thomas; Callisto, Samuel P; Schoephoerster, Jordan; Schuster, Jared; Muloma, Proscovia; Ssengendo, Patrick; Moysi, Eirini; Petrovas, Constantinos; Lanciotti, Ray; Zhang, Lin; Arévalo, Maria T; Rodriguez, Benigno; Ross, Ted M; Trautmann, Lydie; Sekaly, Rafick-Pierre; Lederman, Michael M; Koup, Richard A; Ahmed, Rafi; Reilly, Cavan; Douek, Daniel C; Schacker, Timothy W
2018-05-21
Vaccine responses vary by geographic location. We have previously described how HIV-associated inflammation leads to fibrosis of secondary lymph nodes (LNs) and T cell depletion. We hypothesized that other infections may cause LN inflammation and fibrosis, in a process similar to that seen in HIV infection, which may lead to T cell depletion and affect vaccine responses. We studied LNs of individuals from Kampala, Uganda, before and after yellow fever vaccination (YFV) and found fibrosis in LNs that was similar to that seen in HIV infection. We found blunted antibody responses to YFV that correlated to the amount of LN fibrosis and loss of T cells, including T follicular helper cells. These data suggest that LN fibrosis is not limited to HIV infection and may be associated with impaired immunologic responses to vaccines. This may have an impact on vaccine development, especially for infectious diseases prevalent in the developing world.
Effect of intraarticular tramadol administration in the rat model of knee joint inflammation.
Garlicki, Jarosław; Dorazil-Dudzik, Magdalena; Wordliczek, Jerzy; Przewłocka, Barbara
2006-01-01
Local administration of exogenous opioids may cause effective analgesia without adverse symptoms from the central nervous system. Experiments show that peripheral antinociceptive effect of opioids is observed especially in inflammatory pain. The aim of the research was to estimate the effect of tramadol on nociceptive process at the level of peripheral nervous system, after its local administration in the model of knee joint inflammation. Tramadol was administered intraarticulary into the rat knee joint, before the inflammation as a preemptive analgesia and, for comparison, after the intraarticular injection of carrageenan. The research determined the influence of tramadol injection on pain threshold for thermal stimuli, development of inflammatory processes using the measurement of joint edema and motor function following the induction of knee joint inflammation in the rat. Functional assessment of knee joint with inflammation, in terms of rats' mobility and body position as well as joint loading and mobility were studied. The results of the experiments show that local administration of tramadol induces antinociceptive effect. The effect of tramadol, which elicits also a decrease in inflammatory edema, appears not only after its administration after carrageenan when inflammation was already present, but also in the case of its injection prior to carrageenan in the scheme of preemptive analgesia. The results of the described research show that not only morphine but also another opioid, tramadol, widely used in clinical practice, inhibits nociception, edema and functional impairment of the paw after its local application directly to the inflamed knee joint.
Li, Lihong; Sun, Qiang; Li, Yuqian; Yang, Yang; Yang, Yanlong; Chang, Tao; Man, Minghao; Zheng, Longlong
2015-08-01
Microglia activation plays an important role in neuroinflammation. Sirtuin1 (SIRT1) has been shown to play a role in regulation of inflammation. Resveratrol, a potent SIRT1 activator, has anti-inflammation property. MicroRNA (miRNA or miR) related to inflammation pathways has been shown to be a promising therapeutic approach for septic encephalopathy (SE). The miR mediated mechanism of regulation of SIRT1 expression in encephalitis. However, the mechanism of was unknown. To address this question, we investigated whether miRNAs and resveratrol regulate the SIRT1 and the functional changes of mice microglia cell lines pre-treated with or without lipopolysaccharide (LPS). The research about direct role of miR-204 and resveratrol on expression of SIRT1 in mice microglia cell lines (N9 and BV2) pre-treated with or without LPS had been performed. Mice microglia cell lines were transfected with miR-204 mimics and inhibitors or treated with resveratrol, and the effects on cell growth, proliferation, and apoptosis of cells were assessed. LPS induced inflammation and activation of mice microglia. Through overexpression of SIRT1, resveratrol, and inhibitor of miR-204 inhibited inflammation process, proliferation of mice microglia cells and promoted its apoptosis. We identified if resveratrol and miR-204 could repress inflammation process and proliferation of mice microglia cell through promoting the expression of SIRT1.
Syu, Li-Jyun; El-Zaatari, Mohamad; Eaton, Kathryn A.; Liu, Zhiping; Tetarbe, Manas; Keeley, Theresa M.; Pero, Joanna; Ferris, Jennifer; Wilbert, Dawn; Kaatz, Ashley; Zheng, Xinlei; Qiao, Xiotan; Grachtchouk, Marina; Gumucio, Deborah L.; Merchant, Juanita L.; Samuelson, Linda C.; Dlugosz, Andrzej A.
2013-01-01
Gastric adenocarcinoma is one of the leading causes of cancer mortality worldwide. It arises through a stepwise process that includes prominent inflammation with expression of interferon-γ (IFN-γ) and multiple other pro-inflammatory cytokines. We engineered mice expressing IFN-γ under the control of the stomach-specific H+/K+ ATPase β promoter to test the potential role of this cytokine in gastric tumorigenesis. Stomachs of H/K-IFN-γ transgenic mice exhibited inflammation, expansion of myofibroblasts, loss of parietal and chief cells, spasmolytic polypeptide expressing metaplasia, and dysplasia. Proliferation was elevated in undifferentiated and metaplastic epithelial cells in H/K-IFN-γ transgenic mice, and there was increased apoptosis. H/K-IFN-γ mice had elevated levels of mRNA for IFN-γ target genes and the pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor-α. Intracellular mediators of IFN-γ and IL-6 signaling, pSTAT1 and pSTAT3, respectively, were detected in multiple cell types within stomach. H/K-IFN-γ mice developed dysplasia as early as 3 months of age, and 4 of 39 mice over 1 year of age developed antral polyps or tumors, including one adenoma and one adenocarcinoma, which expressed high levels of nuclear β-catenin. Our data identified IFN-γ as a pivotal secreted factor that orchestrates complex changes in inflammatory, epithelial, and mesenchymal cell populations to drive pre-neoplastic progression in stomach; however, additional alterations appear to be required for malignant conversion. PMID:23036899
Jha, Manish K.; Trivedi, Madhukar H.
2018-01-01
Major depressive disorder (MDD) is a chronic condition that affects one in six adults in the US during their lifetime. The current practice of antidepressant medication prescription is a trial-and-error process. Additionally, over a third of patients with MDD fail to respond to two or more antidepressant treatments. There are no valid clinical markers to personalize currently available antidepressant medications, all of which have similar mechanisms targeting monoamine neurotransmission. The goal of this review is to summarize the recent findings of immune dysfunction in patients with MDD, the utility of inflammatory markers to personalize treatment selection, and the potential of targeting inflammation to develop novel antidepressant treatments. To personalize antidepressant prescription, a c-reactive protein (CRP)-matched treatment assignment can be rapidly implemented in clinical practice with point-of-care fingerstick tests. With this approach, 4.5 patients need to be treated for 1 additional remission as compared to a CRP-mismatched treatment assignment. Anti-cytokine treatments may be effective as novel antidepressants. Monoclonal antibodies against proinflammatory cytokines, such as interleukin 6, interleukin 17, and tumor necrosis factor α, have demonstrated antidepressant effects in patients with chronic inflammatory conditions who report significant depressive symptoms. Additional novel antidepressant strategies targeting inflammation include pharmaceutical agents that block the effect of systemic inflammation on the central nervous system. In conclusion, inflammatory markers offer the potential not only to personalize antidepressant prescription but also to guide the development of novel mechanistically-guided antidepressant treatments. PMID:29329256
Efficacy of a food supplement in patients with hashimoto thyroiditis.
Nordio, M; Basciani, S
2015-01-01
Thyroid inflammation has been commonly seen in recent decades, due to a series of factors and is considered as the most frequent thyroid illness. It is characterized by some distinctive traits, which include morphological and hormonal modifications, often in association with an elevated anti-thyroid autoantibody title. The aim of the therapy is to improve symptoms as fast as possible, treating inflammation and subsequent hypothyroidism, when present. Therefore, we evaluated the efficacy of a Food Supplement (FS) containing enzymes which is commonly used in various inflammatory processes and is able to modulate immune reactions during inflammation in a very rapid and efficacious way. An open, controlled study was then designed and 45 patients with Hashimoto thyroiditis were enrolled and divided into 3 groups (FS alone; thyroid hormones alone; FS plus thyroid hormones). Blood, morphological and subjective parameters were considered. The results obtained indicate that the FS used in our study is efficacious and safe when used alone and/or in combination with thyroid hormones in the treatment of autoimmune thyroiditis, as documented by the improvement of the majority of the parameters considered. The efficacy was considered faster than thyroid hormones alone as far as subjective symptomatology is considered. In conclusion, the use of the food supplement evaluated herein during inflammation may be considered an additional tool in clinicians hands, when facing patients with autoimmune thyroiditis, especially in presence of subjective symptomatology, in order to rapidly alleviate it.
Axelsen, M B; Stoltenberg, M; Poggenborg, R P; Kubassova, O; Boesen, M; Bliddal, H; Hørslev-Petersen, K; Hanson, L G; Østergaard, M
2012-03-01
To determine whether dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) evaluated using semi-automatic image processing software can accurately assess synovial inflammation in rheumatoid arthritis (RA) knee joints. In 17 RA patients undergoing knee surgery, the average grade of histological synovial inflammation was determined from four biopsies obtained during surgery. A preoperative series of T(1)-weighted dynamic fast low-angle shot (FLASH) MR images was obtained. Parameters characterizing contrast uptake dynamics, including the initial rate of enhancement (IRE), were generated by the software in three different areas: (I) the entire slice (Whole slice); (II) a manually outlined region of interest (ROI) drawn quickly around the joint, omitting large artefacts such as blood vessels (Quick ROI); and (III) a manually outlined ROI following the synovial capsule of the knee joint (Precise ROI). Intra- and inter-reader agreement was assessed using the intra-class correlation coefficient (ICC). The IRE from the Quick ROI and the Precise ROI revealed high correlations to the grade of histological inflammation (Spearman's correlation coefficient (rho) = 0.70, p = 0.001 and rho = 0.74, p = 0.001, respectively). Intra- and inter-reader ICCs were very high (0.93-1.00). No Whole slice parameters were correlated to histology. DCE-MRI provides fast and accurate assessment of synovial inflammation in RA patients. Manual outlining of the joint to omit large artefacts is necessary.
Neuhofer, Angelika; Zeyda, Maximilian; Mascher, Daniel; Itariu, Bianca K.; Murano, Incoronata; Leitner, Lukas; Hochbrugger, Eva E.; Fraisl, Peter; Cinti, Saverio; Serhan, Charles N.; Stulnig, Thomas M.
2013-01-01
Obesity-induced chronic low-grade inflammation originates from adipose tissue and is crucial for obesity-driven metabolic deterioration, including insulin resistance and type 2 diabetes. Chronic inflammation may be a consequence of a failure to actively resolve inflammation and could result from a lack of local specialized proresolving lipid mediators (SPMs), such as resolvins and protectins, which derive from the n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We assessed obesity-induced changes of n-3–derived SPMs in adipose tissue and the effects of dietary EPA/DHA thereon. Moreover, we treated obese mice with SPM precursors and investigated the effects on inflammation and metabolic dysregulation. Obesity significantly decreased DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA, resolvin D1 precursor) and protectin D1 (PD1) levels in murine adipose tissue. Dietary EPA/DHA treatment restored endogenous biosynthesis of n-3–derived lipid mediators in obesity while attenuating adipose tissue inflammation and improving insulin sensitivity. Notably, 17-HDHA treatment reduced adipose tissue expression of inflammatory cytokines, increased adiponectin expression, and improved glucose tolerance parallel to insulin sensitivity in obese mice. These findings indicate that impaired biosynthesis of certain SPM and SPM precursors, including 17-HDHA and PD1, contributes to adipose tissue inflammation in obesity and suggest 17-HDHA as a novel treatment option for obesity-associated complications. PMID:23349501
Neuhofer, Angelika; Zeyda, Maximilian; Mascher, Daniel; Itariu, Bianca K; Murano, Incoronata; Leitner, Lukas; Hochbrugger, Eva E; Fraisl, Peter; Cinti, Saverio; Serhan, Charles N; Stulnig, Thomas M
2013-06-01
Obesity-induced chronic low-grade inflammation originates from adipose tissue and is crucial for obesity-driven metabolic deterioration, including insulin resistance and type 2 diabetes. Chronic inflammation may be a consequence of a failure to actively resolve inflammation and could result from a lack of local specialized proresolving lipid mediators (SPMs), such as resolvins and protectins, which derive from the n-3 polyunsaturated fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). We assessed obesity-induced changes of n-3-derived SPMs in adipose tissue and the effects of dietary EPA/DHA thereon. Moreover, we treated obese mice with SPM precursors and investigated the effects on inflammation and metabolic dysregulation. Obesity significantly decreased DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA, resolvin D1 precursor) and protectin D1 (PD1) levels in murine adipose tissue. Dietary EPA/DHA treatment restored endogenous biosynthesis of n-3-derived lipid mediators in obesity while attenuating adipose tissue inflammation and improving insulin sensitivity. Notably, 17-HDHA treatment reduced adipose tissue expression of inflammatory cytokines, increased adiponectin expression, and improved glucose tolerance parallel to insulin sensitivity in obese mice. These findings indicate that impaired biosynthesis of certain SPM and SPM precursors, including 17-HDHA and PD1, contributes to adipose tissue inflammation in obesity and suggest 17-HDHA as a novel treatment option for obesity-associated complications.
Lee, Byung-Cheol; Lee, Jongsoon
2013-01-01
There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. PMID:23707515
Farrugia, Brooke L; Lord, Megan S; Melrose, James; Whitelock, John M
2018-04-01
Key events that occur during inflammation include the recruitment, adhesion, and transmigration of leukocytes from the circulation to the site of inflammation. These events are modulated by chemokines, integrins, and selectins and the interaction of these molecules with glycosaminoglycans, predominantly heparan sulfate (HS). The development of HS/heparin mimetics that interfere or inhibit the interactions that occur between glycosaminoglycans and modulators of inflammation holds great potential for use as anti-inflammatory therapeutics. This review will detail the role of HS in the events that occur during inflammation, their interaction and modulation of inflammatory mediators, and the current advances in the development of HS/heparin mimetics as anti-inflammatory biotherapeutics.
Song, Yafeng; Stål, Per S; Yu, Ji-Guo; Lorentzon, Ronny; Backman, Clas; Forsgren, Sture
2014-04-11
We have previously observed, in studies on an experimental overuse model, that the tachykinin system may be involved in the processes of muscle inflammation (myositis) and other muscle tissue alterations. To further evaluate the significance of tachykinins in these processes, we have used inhibitors of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE), substances which are known to terminate the activity of various endogenously produced substances, including tachykinins. Injections of inhibitors of NEP and ACE, as well as the tachykinin substance P (SP), were given locally outside the tendon of the triceps surae muscle of rabbits subjected to marked overuse of this muscle. A control group was given NaCl injections. Evaluations were made at 1 week, a timepoint of overuse when only mild inflammation and limited changes in the muscle structure are noted in animals not treated with inhibitors. Both the soleus and gastrocnemius muscles were examined morphologically and with immunohistochemistry and enzyme immunoassay (EIA). A pronounced inflammation (myositis) and changes in the muscle fiber morphology, including muscle fiber necrosis, occurred in the overused muscles of animals given NEP and ACE inhibitors. The morphological changes were clearly more prominent than for animals subjected to overuse and NaCl injections (NaCl group). A marked SP-like expression, as well as a marked expression of the neurokinin-1 receptor (NK-1R) was found in the affected muscle tissue in response to injections of NEP and ACE inhibitors. The concentration of SP in the muscles was also higher than that for the NaCl group. The observations show that the local injections of NEP and ACE inhibitors led to marked SP-like and NK-1R immunoreactions, increased SP concentrations, and an amplification of the morphological changes in the tissue. The injections of the inhibitors thus led to a more marked myositis process and an upregulation of the SP system. Endogenously produced substances, out of which the tachykinins conform to one substance family, may play a role in mediating effects in the tissue in a muscle that is subjected to pronounced overuse.
An Inflammation-Centric View of Neurological Disease: Beyond the Neuron
Skaper, Stephen D.; Facci, Laura; Zusso, Morena; Giusti, Pietro
2018-01-01
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation. PMID:29618972
Alevizos, Ilias; Alexander, Stefanie; Turner, R. James; Illei, Gabor G.
2013-01-01
Objective MicroRNA reflect physiologic and pathologic processes and may be used as biomarkers of concurrent pathophysiologic events in complex settings such as autoimmune diseases. We generated microRNA microarray profiles from the minor salivary glands of control subjects without Sjögren's syndrome (SS) and patients with SS who had low-grade or high-grade inflammation and impaired or normal saliva production, to identify microRNA patterns specific to salivary gland inflammation or dysfunction. Methods MicroRNA expression profiles were generated by Agilent microRNA arrays. We developed a novel method for data normalization by identifying housekeeping microRNA. MicroRNA profiles were compared by unsupervised mathematical methods to test how well they distinguish between control subjects and various subsets of patients with SS. Several bioinformatics methods were used to predict the messenger RNA targets of the differentially expressed microRNA. Results MicroRNA expression patterns accurately distinguished salivary glands from control subjects and patients with SS who had low-degree or high-degree inflammation. Using real-time quantitative polymerase chain reaction, we validated 2 microRNA as markers of inflammation in an independent cohort. Comparing microRNA from patients with preserved or low salivary flow identified a set of differentially expressed microRNA, most of which were up-regulated in the group with decreased salivary gland function, suggesting that the targets of microRNA may have a protective effect on epithelial cells. The predicted biologic targets of microRNA associated with inflammation or salivary gland dysfunction identified both overlapping and distinct biologic pathways and processes. Conclusion Distinct microRNA expression patterns are associated with salivary gland inflammation and dysfunction in patients with SS, and microRNA represent a novel group of potential biomarkers. PMID:21280008
NASA Astrophysics Data System (ADS)
Chen, Da-Fu; Zhou, Zhi-Yu; Dai, Xue-Jun; Gao, Man-Man; Huang, Bao-Ding; Liang, Tang-Zhao; Shi, Rui; Zou, Li-Jin; Li, Hai-Sheng; Bünger, Cody; Tian, Wei; Zou, Xue-Nong
2014-03-01
The precise mechanism of bone regeneration in different bone graft substitutes has been well studied in recent researches. However, miRNAs regulation of the bone formation has been always mysterious. We developed the anterior lumbar interbody fusion (ALIF) model in pigs using equine bone protein extract (BPE), recombinant human bone morphogenetic protein-2 (rhBMP-2) on an absorbable collagen sponge (ACS), and autograft as bone graft substitute, respectively. The miRNA and gene expression profiles of different bone graft materials were examined using microarray technology and data analysis, including self-organizing maps, KEGG pathway and Biological process GO analyses. We then jointly analyzed miRNA and mRNA profiles of the bone fusion tissue at different time points respectively. Results showed that miRNAs, including let-7, miR-129, miR-21, miR-133, miR-140, miR-146, miR-184, and miR-224, were involved in the regulation of the immune and inflammation response, which provided suitable inflammatory microenvironment for bone formation. At late stage, several miRNAs directly regulate SMAD4, Estrogen receptor 1 and 5-hydroxytryptamine (serotonin) receptor 2C for bone formation. It can be concluded that miRNAs play important roles in balancing the inflammation and bone formation.
Wang, Xinxuan; Feng, Zhihui; Li, Qimeng; Yi, Baicheng; Xu, Qiong
2018-04-13
Dental pulp inflammation is a bacterially driven inflammation process characterized by the local accumulation of cytokines/chemokines that participate in destructive processes in the pulp. Multiple mechanisms are involved in dental pulp inflammation, including epigenetic events, such as DNA methylation/demethylation. Ten-eleven translocation 2 (TET2) is a recently discovered DNA methylcytosine dioxygenase that plays important roles in inflammatory disease. However, its role in the inflammatory response of dental pulp is unknown. We observed elevated mRNA and protein levels of TET2 after lipopolysaccharide (LPS) stimulation in human dental pulp cells (hDPCs). To identify the effects of TET2 on cytokine expression, TET2 was knocked down and cytokines were detected using a cytokine antibody array after LPS stimulation. The protein expression of GM-CSF, IL-6, IL-8 and RANTES decreased in the LPS-induced hDPCs following TET2 knockdown. The downregulated expression levels of IL-6 and IL-8 were further confirmed by real-time quantitative polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). Additionally, the phosphorylation levels of IKK-α/β, p65 and IκBα of the NF-κB signaling pathway were decreased in the TET2-silenced group. Furthermore, the global 5-hydroxymethylcytosine (5hmC) level was significantly decreased and the genomic 5-methylcytosine (5mC) level was increased in the TET2-deficient hDPCs; TET2 depletion resulted in a decrease in the 5hmC level of the MyD88 promoter following LPS stimulation. These findings indicate that TET2 knockdown inhibits LPS-induced inflammatory response in hDPCs by downregulating MyD88 hydroxymethylation. Thus, TET2-dependent DNA demethylation might play an important role in dental pulp inflammation as an epigenetic regulator.
Ageing and the telomere connection: An intimate relationship with inflammation.
Zhang, Jingwen; Rane, Grishma; Dai, Xiaoyun; Shanmugam, Muthu K; Arfuso, Frank; Samy, Ramar Perumal; Lai, Mitchell Kim Peng; Kappei, Dennis; Kumar, Alan Prem; Sethi, Gautam
2016-01-01
Telomeres are the heterochromatic repeat regions at the ends of eukaryotic chromosomes, whose length is considered to be a determinant of biological ageing. Normal ageing itself is associated with telomere shortening. Here, critically short telomeres trigger senescence and eventually cell death. This shortening rate may be further increased by inflammation and oxidative stress and thus affect the ageing process. Apart from shortened or dysfunctional telomeres, cells undergoing senescence are also associated with hyperactivity of the transcription factor NF-κB and overexpression of inflammatory cytokines such as TNF-α, IL-6, and IFN-γ in circulating macrophages. Interestingly, telomerase, a reverse transcriptase that elongates telomeres, is involved in modulating NF-κB activity. Furthermore, inflammation and oxidative stress are implicated as pre-disease mechanisms for chronic diseases of ageing such as neurodegenerative diseases, cardiovascular disease, and cancer. To date, inflammation and telomere shortening have mostly been studied individually in terms of ageing and the associated disease phenotype. However, the interdependent nature of the two demands a more synergistic approach in understanding the ageing process itself and for developing new therapeutic approaches. In this review, we aim to summarize the intricate association between the various inflammatory molecules and telomeres that together contribute to the ageing process and related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Mora-Tiscareño, Antonieta; Medina-Cortina, Humberto; Torres-Jardón, Ricardo; Kavanaugh, Michael
2013-01-01
Chronic exposure to particulate matter air pollution is known to cause inflammation leading to respiratory- and cardiovascular-related sickness and death. Mexico City Metropolitan Area children exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, and innate and adaptive immune responses. Early dysregulated neuroinflammation, brain microvascular damage, production of potent vasoconstrictors, and perturbations in the integrity of the neurovascular unit likely contribute to progressive neurodegenerative processes. The accumulation of misfolded proteins coincides with the anatomical distribution observed in the early stages of both Alzheimer's and Parkinson's diseases. We contend misfolding of hyperphosphorylated tau (HPπ), alpha-synuclein, and beta-amyloid could represent a compensatory early protective response to the sustained systemic and brain inflammation. However, we favor the view that the chronic systemic and brain dysregulated inflammation and the diffuse vascular damage contribute to the establishment of neurodegenerative processes with childhood clinical manifestations. Friend turns Foe early; therefore, implementation of neuroprotective measures to ameliorate or stop the inflammatory and neurodegenerative processes is warranted in exposed children. Epidemiological, cognitive, structural, and functional neuroimaging and mechanistic studies into the association between air pollution exposures and the development of neuroinflammation and neurodegeneration in children are of pressing importance for public health.
Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Mora-Tiscareño, Antonieta; Medina-Cortina, Humberto; Torres-Jardón, Ricardo; Kavanaugh, Michael
2013-01-01
Chronic exposure to particulate matter air pollution is known to cause inflammation leading to respiratory- and cardiovascular-related sickness and death. Mexico City Metropolitan Area children exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, and innate and adaptive immune responses. Early dysregulated neuroinflammation, brain microvascular damage, production of potent vasoconstrictors, and perturbations in the integrity of the neurovascular unit likely contribute to progressive neurodegenerative processes. The accumulation of misfolded proteins coincides with the anatomical distribution observed in the early stages of both Alzheimer's and Parkinson's diseases. We contend misfolding of hyperphosphorylated tau (HPπ), alpha-synuclein, and beta-amyloid could represent a compensatory early protective response to the sustained systemic and brain inflammation. However, we favor the view that the chronic systemic and brain dysregulated inflammation and the diffuse vascular damage contribute to the establishment of neurodegenerative processes with childhood clinical manifestations. Friend turns Foe early; therefore, implementation of neuroprotective measures to ameliorate or stop the inflammatory and neurodegenerative processes is warranted in exposed children. Epidemiological, cognitive, structural, and functional neuroimaging and mechanistic studies into the association between air pollution exposures and the development of neuroinflammation and neurodegeneration in children are of pressing importance for public health. PMID:23509683
Tian, Dongping; Lei, Zhijin; Chen, Donglin; Xu, Zexin; Su, Min
2016-01-01
Chronic inflammation is associated with increased risk of cancer development, whereas the link between chronic inflammation and esophageal carcinogenesis is still obscure heretofore. This study aimed to investigate the relationship between chronic inflammation and DNA damage, as well as the possible role of DNA damage in esophageal carcinogenic process. Endoscopic esophageal biopsies from 109 individuals from Chaoshan littoral, a high-risk region for esophageal squamous cell carcinoma (ESCC), were examined to evaluate the association between chronic inflammation and histological severity, while additional 204 esophageal non-tumor samples from patients with ESCC were collected. Immunohistochemistry was performed to detect the oxidative DNA damage and DNA double-strand breaks (DSBs). Significantly positive correlation was observed between degree of chronic inflammation and esophageal precursor lesions (rs = 0.37, P < 0.01). Immunohistochemical analysis showed that oxidative DNA damage level was positively correlated with the degree of chronic inflammation (rs = 0.21, P < 0.05). Moreover, the level of oxidative DNA damage positively correlated with histological severity (rs = 0.49, P < 0.01). We found that the extent of DSBs was progressively increased with inflammation degree (P < 0.01) and the progression of precancerous lesions (P < 0.001). Collectively, these findings provide evidence linking chronic inflammation-associated genomic instability with esophageal carcinogenesis and suggest possibilities for early detection and intervention of esophageal carcinogenesis. PMID:27028857
de Castro, Isabele C V; Rosa, Cristiane B; Carvalho, Carolina M; Aragão, Juliana S; Cangussu, Maria Cristina T; Dos Santos, Jean N; Pinheiro, Antonio L B
2015-11-01
Temporomandibular disorders (TMDs) are mostly inflammatory conditions widespread in the population. Previous studies have shown positive effects of either laser or light-emitting diode (LED) phototherapies on treating TMDs, but their action and mechanism in the inflammatory infiltrate of the temporomandibular joint are still poorly understood. The aim of this study was to assess, through histological analysis, the effectiveness of using laser light (λ 780 nm, 70 mW, continous wave (CW), 10 J) and LED (λ 850 ± 10 nm, 100 mW, CW, 10 J) on the inflammation of the temporomandibular joint of rats induced by carrageenan. Forty-five animals were divided into three groups with five animals each according to the experimental times of 2, 3, and 7 days: inflammation, inflammation+laser phototherapy, and inflammation+LED phototherapy. The first irradiation was performed 24 h after induction with an interval of 48 h between sessions. After animal death, specimens were processed and stained with hematoxylin-eosin (HE) and picrosirius. Then, the samples were examined histologically. Data were statistically analyzed. The inflammation group showed mild to moderate chronic inflammatory infiltrate between bone trabecules of the condyle. Over the time course of the study in the laser group, the region of the condyle presented mild chronic inflammation and intense vascularization. In the LED group, the condyle showed aspects of normality and absence of inflammation in some specimens. In all the time points, the laser-irradiated groups showed greater amount of collagen deposition in the condyle (p = 0.04) and in the disc (p = 0.03) when compared to the inflammation and LED groups, respectively. Laser- and LED-treated groups demonstrate a smaller number of layers of the synovial membrane when compared to the non-irradiated groups. It was concluded that, in general, laser and LED phototherapies resulted in a reduction of inflammatory infiltrate in the temporomandibular joint of rat.
2013-01-01
Background Autophagy is a major pathway of protein and organelle degradation in the lysosome. Autophagy exists at basal constitutive level and can be induced as a defense mechanism under stress conditions. Molecular relationships between autophagy and inflammation at the periphery were recently evidenced, highlighting a role of autophagy in the regulation of inflammation. Impairment of autophagy (with accumulation of autophagic vacuoles) and substantial inflammation are found in neurodegenerative diseases such as Alzheimer’s Disease (AD). However, the links between autophagy and inflammation in AD remain to be determined. Methods Here, we examined the inflammatory reaction and autophagy in murine tri-cultures of neurons, astrocytes, and microglia. Tri-cultures were exposed to various inflammatory stresses (lipopolysaccharide (LPS), amyloid peptide (Aβ42) with or without cytokines) for 48 hours. Furthermore, the relationships between inflammation and autophagy were also analyzed in astrocyte- and microglia-enriched cultures. Data for multiple variable comparisons were analyzed by a one-way ANOVA followed by a Newman-keuls’ test. Results Aβ42 induced a low inflammation without accumulation of acidic vesicles contrary to moderate or severe inflammation induced by LPS or the cytokine cocktail (IL-1β, TNF-α, and IL-6) or IL-1β alone which led to co-localization of p62 and LC3, two markers of autophagy, with acidic vesicles stained with Lyso-ID Red dye. Moreover, the study reveals a major role of IL-1β in the induction of autophagy in tri-cultures in the presence or absence of Aβ42. However, the vulnerability of the autophagic process in purified microglia to IL-1β was prevented by Aβ42. Conclusion These findings show a close relationship between inflammation and autophagy, in particular a major role of IL-1β in the induction of the microglial autophagy which could be the case in AD. New therapeutic strategies could target inflammasome and autophagy in microglia to maintain its role in the amyloid immunosurveillance. PMID:24330807
Wittkopp, Sharine; Staimer, Norbert; Tjoa, Thomas; Gillen, Daniel; Daher, Nancy; Shafer, Martin; Schauer, James J.; Sioutas, Constantinos; Delfino, Ralph J.
2013-01-01
Background Mitochondria are the main source of reactive oxygen species (ROS). Human mitochondrial haplogroups are linked to differences in ROS production and oxidative-stress induced inflammation that may influence disease pathogenesis, including coronary artery disease (CAD). We previously showed that traffic-related air pollutants were associated with biomarkers of systemic inflammation in a cohort panel of subjects with CAD in the Los Angeles air basin. Objective We tested whether air pollutant exposure-associated inflammation was stronger in mitochondrial haplogroup H than U (high versus low ROS production) in this panel (38 subjects and 417 observations). Methods Inflammation biomarkers were measured weekly in each subject (≤12 weeks), including interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), C-reactive protein, interleukin-6 soluble receptor and tumor necrosis factor-soluble receptor II. We determined haplogroup by restriction fragment length polymorphism analysis. Air pollutants included nitrogen oxides (NOx), carbon monoxide (CO), organic carbon, elemental and black carbon (EC, BC); and particulate matter mass, three size fractions (<0.25 µm, 0.25–2.5 µm, and 2.5–10 µm in aerodynamic diameter). Particulate matter extracts were analyzed for organic compounds, including polycyclic aromatic hydrocarbons (PAH), and in vitro oxidative potential of aqueous extracts. Associations between exposures and biomarkers, stratified by haplogroup, were analyzed by mixed-effects models. Results IL-6 and TNF-α were associated with traffic-related air pollutants (BC, CO, NOx and PAH), and with mass and oxidative potential of quasi-ultrafine particles <0.25 µm. These associations were stronger for haplogroup H than haplogroup U. Conclusions Results suggest that mitochondrial haplogroup U is a novel protective factor for air pollution-related systemic inflammation in this small group of subjects. PMID:23717615
Update on inflammation in chronic kidney disease.
Akchurin, Oleh M; Kaskel, Frederick
2015-01-01
Despite recent advances in chronic kidney disease (CKD) and end-stage renal disease (ESRD) management, morbidity and mortality in this population remain exceptionally high. Persistent, low-grade inflammation has been recognized as an important component of CKD, playing a unique role in its pathophysiology and being accountable in part for cardiovascular and all-cause mortality, as well as contributing to the development of protein-energy wasting. The variety of factors contribute to chronic inflammatory status in CKD, including increased production and decreased clearance of pro-inflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, including those related to dialysis access, altered metabolism of adipose tissue, and intestinal dysbiosis. Inflammation directly correlates with the glomerular filtration rate (GFR) in CKD and culminates in dialysis patients, where extracorporeal factors, such as impurities in dialysis water, microbiological quality of the dialysate, and bioincompatible factors in the dialysis circuit play an additional role. Genetic and epigenetic influences contributing to inflammatory activation in CKD are currently being intensively investigated. A number of interventions have been proposed to target inflammation in CKD, including lifestyle modifications, pharmacological agents, and optimization of dialysis. Importantly, some of these therapies have been recently tested in randomized controlled trials. Chronic inflammation should be regarded as a common comorbid condition in CKD and especially in dialysis patients. A number of interventions have been proven to be safe and effective in well-designed clinical studies. This includes such inexpensive approaches as modification of physical activity and dietary supplementation. Further investigations are needed to evaluate the effects of these interventions on hard outcomes, as well as to better understand the role of inflammation in selected CKD populations (e.g., in children). © 2015 S. Karger AG, Basel.
Chronic Inflammation: Accelerator of Biological Aging.
Fougère, Bertrand; Boulanger, Eric; Nourhashémi, Fati; Guyonnet, Sophie; Cesari, Matteo
2017-09-01
Biological aging is characterized by a chronic low-grade inflammation level. This chronic phenomenon has been named "inflamm-aging" and is a highly significant risk factor for morbidity and mortality in the older persons. The most common theories of inflamm-aging include redox stress, mitochondrial dysfunction, glycation, deregulation of the immune system, hormonal changes, epigenetic modifications, and dysfunction telomere attrition. Inflamm-aging plays a role in the initiation and progression of age-related diseases such as type II diabetes, Alzheimer's disease, cardiovascular disease, frailty, sarcopenia, osteoporosis, and cancer. This review will cover the identification of pathways that control age-related inflammation across multiple systems and its potential causal role in contributing to adverse health outcomes. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
BMP2-Induced Inflammation Can Be Suppressed by the Osteoinductive Growth Factor NELL-1
Shen, Jia; James, Aaron W.; Zara, Janette N.; Asatrian, Greg; Khadarian, Kevork; Zhang, James B.; Ho, Stephanie; Kim, Hyun Ju
2013-01-01
Bone-morphogenetic protein 2 (BMP2) is currently the only Food and Drug Administration-approved osteoinductive growth factor used in clinical settings for bone regeneration and repair. However, the use of BMP2 is encumbered by numerous clinical complications, including postoperative inflammation and life-threatening cervical swelling. Thus, methods to prevent BMP2-induced inflammation would have far-reaching clinical implications toward improving current BMP2-based methods for bone regeneration. For the first time, we investigate the potential role of the growth factor Nel-like molecule-1 (NELL-1) in inhibiting BMP2-induced inflammation. Adult rats underwent a femoral bone onlay procedure, treated with either BMP2 protein (4 mg/mL), NELL-1 protein (4 mg/mL), or both proteins combined. Animals were evaluated at 3, 7, and 14 days postoperatively by histology, histomorphometry, immunohistochemistry, and real-time PCR for markers of inflammation (TNFα, IL6). The relative levels of TNFα and IL6 in serum were also detected by ELISA. The mechanism for NELL-1's anti-inflammatory effect was further assessed through examining inflammatory markers and generation of reactive oxygen species (ROS) in the mouse embryonic fibroblast NIH3T3 cells. BMP2 significantly induced local inflammation, including an early and pronounced polymorphonuclear cell infiltration accompanied by increased expression of TNFα and IL6. Treatment with NELL-1 alone elicited no significant inflammatory response. However, NELL-1 significantly attenuated BMP2-induced inflammation by all markers and at all timepoints. These local findings were also confirmed using systemic serum inflammatory biomarkers (TNFα, IL6). In each case, NELL-1 fully reversed BMP2-induced systemic inflammation. Lastly, our findings were recapitulated in vitro, where NELL-1 suppressed BMP2 induced expression of inflammatory markers, as well as NF-κB transcriptional activity and generation of ROS. BMP2-induced inflammation is a serious public health concern with potentially life-threatening complications. In the present study, we observed that the growth factor, NELL-1, significantly attenuates or completely reverses BMP2-induced inflammation. The mechanisms of NELL-1's anti-inflammatory effect are only partially elucidated, and may include reduction of NF-κB transcriptional activity or ROS generation. PMID:23758588
Regulation of alveolar macrophage death in acute lung inflammation.
Fan, Erica K Y; Fan, Jie
2018-03-27
Acute lung injury (ALI) and its severe form, known as acute respiratory distress syndrome (ARDS), are caused by direct pulmonary insults and indirect systemic inflammatory responses that result from conditions such as sepsis, trauma, and major surgery. The reciprocal influences between pulmonary and systemic inflammation augments the inflammatory process in the lung and promotes the development of ALI. Emerging evidence has revealed that alveolar macrophage (AM) death plays important roles in the progression of lung inflammation through its influence on other immune cell populations in the lung. Cell death and tissue inflammation form a positive feedback cycle, ultimately leading to exaggerated inflammation and development of disease. Pharmacological manipulation of AM death signals may serve as a logical therapeutic strategy for ALI/ARDS. This review will focus on recent advances in the regulation and underlying mechanisms of AM death as well as the influence of AM death on the development of ALI.
Lamin-B in systemic inflammation, tissue homeostasis, and aging.
Chen, Haiyang; Zheng, Xiaobin; Zheng, Yixian
2015-01-01
Gradual loss of tissue function (or homeostasis) is a natural process of aging and is believed to cause many age-associated diseases. In human epidemiology studies, the low-grade and chronic systemic inflammation in elderly has been correlated with the development of aging related pathologies. Although it is suspected that tissue decline is related to systemic inflammation, the cause and consequence of these aging phenomena are poorly understood. By studying the Drosophila fat body and gut, we have uncovered a mechanism by which lamin-B loss in the fat body upon aging induces age-associated systemic inflammation. This chronic inflammation results in the repression of gut local immune response, which in turn leads to the over-proliferation and mis-differentiation of the intestinal stem cells, thereby resulting in gut hyperplasia. Here we discuss the implications and remaining questions in light of our published findings and new observations.
[Inflammation and obesity (lipoinflammation)].
Izaola, Olatz; de Luis, Daniel; Sajoux, Ignacio; Domingo, Joan Carles; Vidal, Montse
2015-06-01
Obesity is a chronic disease with multiple origins. It is a widespread global phenomenon carrying potentially serious complications which requires a multidisciplinary approach due to the significant clinical repercussions and elevated health costs associated with the disease. The most recent evidence indicates that it shares a common characteristic with other prevalent, difficult-to-treat pathologies: chronic, low-grade inflammation which perpetuates the disease and is associated with multiple complications. The current interest in lipoinflammation or chronic inflammation associated with obesity derives from an understanding of the alterations and remodelling that occurs in the adipose tissue, with the participation of multiple factors and elements throughout the process. Recent research highlights the importance of some of these molecules, called pro-resolving mediators, as possible therapeutic targets in the treatment of obesity. This article reviews the evidence published on the mechanisms that regulate the adipose tissue remodelling process and lipoinflammation both in obesity and in the mediators that are directly involved in the appearance and resolution of the inflammatory process. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Linnman, Clas; Appel, Lieuwe; Fredrikson, Mats; Gordh, Torsten; Söderlund, Anne; Långström, Bengt; Engler, Henry
2011-01-01
There are few diagnostic tools for chronic musculoskeletal pain as structural imaging methods seldom reveal pathological alterations. This is especially true for Whiplash Associated Disorder, for which physical signs of persistent injuries to the neck have yet to be established. Here, we sought to visualize inflammatory processes in the neck region by means Positron Emission Tomography using the tracer 11C-D-deprenyl, a potential marker for inflammation. Twenty-two patients with enduring pain after a rear impact car accident (Whiplash Associated Disorder grade II) and 14 healthy controls were investigated. Patients displayed significantly elevated tracer uptake in the neck, particularly in regions around the spineous process of the second cervical vertebra. This suggests that whiplash patients have signs of local persistent peripheral tissue inflammation, which may potentially serve as a diagnostic biomarker. The present investigation demonstrates that painful processes in the periphery can be objectively visualized and quantified with PET and that 11C-D-deprenyl is a promising tracer for these purposes. PMID:21541010
Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations.
Chang, Hun Soo; Lee, Tae-Hyeong; Jun, Ji Ae; Baek, Ae Rin; Park, Jong-Sook; Koo, So-My; Kim, Yang-Ki; Lee, Ho Sung; Park, Choon-Sik
2017-01-01
Neutrophilic airway inflammation represents a pathologically distinct form of asthma and frequently appears in symptomatic adulthood asthmatics. However, clinical impacts and mechanisms of the neutrophilic inflammation have not been thoroughly evaluated up to date. Areas covered: Currently, distinct clinical manifestations, triggers, and molecular mechanisms of the neutrophilic inflammation (namely Toll-like receptor, Th1, Th17, inflammasome) are under investigation in asthma. Furthermore, possible role of the neutrophilic inflammation is being investigated in respect to the airway remodeling. We searched the related literatures published during the past 10 years on the website of Pub Med under the title of asthma and neutrophilic inflammation in human. Expert commentary: Epidemiologic and experimental studies have revealed that the neutrophilic airway inflammation is induced by a wide variety of stimuli including ozone, particulate matters, cigarette smoke, occupational irritants, endotoxins, microbial infection and colonization, and aeroallergens. These triggers provoke diverse immune and inflammatory responses leading to progressive and sometimes irreversible airway obstruction. Clinically, neutrophilic airway inflammation is frequently associated with severe asthma and poor response to glucocorticoid therapy, indicating the need for other treatment strategies. Accordingly, therapeutics will be targeted against the main mediators behind the underlying molecular mechanisms of the neutrophilic inflammation.
Induction of apoptosis in non-small cell lung carcinoma A549 cells by PGD₂ metabolite, 15d-PGJ₂.
Wang, Jun-Jie; Mak, Oi-Tong
2011-11-01
PGD2 (prostaglandin D2) is a mediator in various pathophysiological processes, including inflammation and tumorigenesis. PGD2 can be converted into active metabolites and is known to activate two distinct receptors, DP (PGD2 receptor) and CRTH2/DP2 (chemoattractant receptor-homologous molecule expressed on Th2 cells). In the past, PGD2 was thought to be involved principally in the process of inflammation. However, in recent years, several studies have shown that PGD2 has anti-proliferative ability against tumorigenesis and can induce cellular apoptosis via activation of the caspase-dependent pathway in human colorectal cancer cells, leukaemia cells and eosinophils. In the lung, where PGD2 is highly released when sensitized mast cells are challenged with allergen, the mechanism of PGD2-induced apoptosis is unclear. In the present study, A549 cells, a type of NSCLC (non-small cell lung carcinoma), were treated with PGD2 under various conditions, including while blocking DP and CRTH2/DP2 with the selective antagonists BWA868C and ramatroban respectively. We report here that PGD2 induces A549 cell death through the intrinsic apoptotic pathway, although the process does not appear to involve either DP or CRTH2/DP2. Similar results were also found with H2199 cells, another type of NSCLC. We found that PGD2 metabolites induce apoptosis effectively and that 15d-PGJ2 (15-deoxy-Δ12,14-prostaglandin J2) is a likely candidate for the principal apoptotic inducer in PGD2-induced apoptosis in NSCLC A549 cells.
Coussens, Lisa M.; Werb, Zena
2009-01-01
Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development. PMID:12490959
Design of peptide mimetics to block pro-inflammatory functions of HA fragments.
Hauser-Kawaguchi, Alexandra; Luyt, Leonard G; Turley, Eva
2018-01-31
Hyaluronan is a simple extracellular matrix polysaccharide that actively regulates inflammation in tissue repair and disease processes. The native HA polymer, which is large (>500 kDa), contributes to the maintenance of homeostasis. In remodeling and diseased tissues, polymer size is strikingly polydisperse, ranging from <10 kDa to >500 kDa. In a diseased or stressed tissue context, both smaller HA fragments and high molecular weight HA polymers can acquire pro-inflammatory functions, which result in the activation of multiple receptors, triggering pro-inflammatory signaling to diverse stimuli. Peptide mimics that bind and scavenge HA fragments have been developed, which show efficacy in animal models of inflammation. These studies indicate both that HA fragments are key to driving inflammation and that scavenging these is a viable therapeutic approach to blunting inflammation in disease processes. This mini-review summarizes the peptide-based methods that have been reported to date for blocking HA signaling events as an anti-inflammatory therapeutic approach. Copyright © 2017 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Innate inflammation as the common pathway of risk factors leading to TIAs and stroke.
del Zoppo, Gregory J; Gorelick, Philip B
2010-10-01
In the early moments of ischemic stroke, the processes of thrombosis, ischemia, and inflammation are intimately interrelated, setting in motion an injury that leads to infarction and permanent damage. Of these, the potential roles that innate inflammation can play in the evolution of brain tissue damage in response to the ischemic injury are not well understood. Observations in the settings of atherosclerotic cardiovascular disease and cerebral ischemia have much to teach each other. The following provides an introductory overview of the conference "Innate Inflammation as the Common Pathway of Risk Factors Leading to Transient Ischemic Attacks and Stroke: Pathophysiology and Potential Interventions," which took place May 9-10, 2010 at the New York Academy of Sciences. This meeting was convened to explore aspects of the cellular and tissue responses to innate inflammation. A faculty of leading experts was assembled to discuss the role of inflammation in laboratory models of stroke and myocardial infarction, define possible novel means from laboratory evidence to alleviate or prevent inflammation underlying stroke and cardiovascular disease, and present information on current examples of clinical translation of these understandings in relation to human stroke and myocardial infarction. © 2010 New York Academy of Sciences.
Barros-Becker, Francisco; Romero, Jaime; Pulgar, Alvaro; Feijóo, Carmen G.
2012-01-01
Background The excessive use of antibiotics in aquaculture can adversely affect not only the environment, but also fish themselves. In this regard, there is evidence that some antibiotics can activate the immune system and reduce their effectiveness. None of those studies consider in detail the adverse inflammatory effect that the antibiotic remaining in the water may cause to the fish. In this work, we use the zebrafish to analyze quantitatively the effects of persistent exposure to oxytetracycline, the most common antibiotic used in fish farming. Methodology We developed a quantitative assay in which we exposed zebrafish larvae to oxytetracycline for a period of 24 to 96 hrs. In order to determinate if the exposure causes any inflammation reaction, we evaluated neutrophils infiltration and quantified their total number analyzing the Tg(mpx:GFP)i114 transgenic line by fluorescence stereoscope, microscope and flow cytometry respectively. On the other hand, we characterized the process at a molecular level by analyzing several immune markers (il-1β, il-10, lysC, mpx, cyp1a) at different time points by qPCR. Finally, we evaluated the influence of the inflammation triggered by oxytetracycline on the regeneration capacity in the lateral line. Conclusions Our results suggest that after 48 hours of exposure, the oxytetracycline triggered a widespread inflammation process that persisted until 96 hours of exposure. Interestingly, larvae that developed an inflammation process showed an improved regeneration capacity in the mechanosensory system lateral line. PMID:22590621
The root barks of Morus alba and the flavonoid constituents inhibit airway inflammation.
Lim, Hun Jai; Jin, Hong-Guang; Woo, Eun-Rhan; Lee, Sang Kook; Kim, Hyun Pyo
2013-08-26
The root barks of Morus alba have been used in traditional medicine as an anti-inflammatory drug, especially for treating lung inflammatory disorders. To find new alternative agents against airway inflammation and to establish the scientific rationale of the herbal medicine in clinical use, the root barks of Morus alba and its flavonoid constituents were examined for the first time for their pharmacological activity against lung inflammation. For in vivo evaluation, an animal model of lipopolysaccharide-induced airway inflammation in mice was used. An inhibitory action against the production of proinflammatory molecules in lung epithelial cells and lung macrophages was examined. Against lipopolysaccharide-induced airway inflammation, the ethanol extract of the root barks of Morus alba clearly inhibited bronchitis-like symptoms, as determined by TNF-α production, inflammatory cells infiltration and histological observation at 200-400mg/kg/day by oral administration. In addition, Morus alba and their major flavonoid constituents including kuwanone E, kuwanone G and norartocarpanone significantly inhibited IL-6 production in lung epithelial cells (A549) and NO production in lung macrophages (MH-S). Taken together, it is concluded that Morus alba and the major prenylated flavonoid constituents have a potential for new agents to control lung inflammation including bronchitis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
PARPs and ADP-Ribosylation: 50 Years … and Counting.
Kraus, W Lee
2015-06-18
Over 50 years ago, the discovery of poly(ADP-ribose) (PAR) set a new field of science in motion-the field of poly(ADP-ribosyl) transferases (PARPs) and ADP-ribosylation. The field is still flourishing today. The diversity of biological processes now known to require PARPs and ADP-ribosylation was practically unimaginable even two decades ago. From an initial focus on DNA damage detection and repair in response to genotoxic stresses, the field has expanded to include the regulation of chromatin structure, gene expression, and RNA processing in a wide range of biological systems, including reproduction, development, aging, stem cells, inflammation, metabolism, and cancer. This special focus issue of Molecular Cell includes a collection of three Reviews, three Perspectives, and a SnapShot, which together summarize the current state of the field and suggest where it may be headed. Copyright © 2015 Elsevier Inc. All rights reserved.
Barker-Haliski, Melissa L; Löscher, Wolfgang; White, H Steve; Galanopoulou, Aristea S
2017-07-01
Animal models have provided a wealth of information on mechanisms of epileptogenesis and comorbidogenesis, and have significantly advanced our ability to investigate the potential of new therapies. Processes implicating brain inflammation have been increasingly observed in epilepsy research. Herein we discuss the progress on animal models of epilepsy and comorbidities that inform us on the potential role of inflammation in epileptogenesis and comorbidity pathogenesis in rodent models of West syndrome and the Theiler's murine encephalomyelitis virus (TMEV) mouse model of viral encephalitis-induced epilepsy. Rat models of infantile spasms were generated in rat pups after right intracerebral injections of proinflammatory compounds (lipopolysaccharides with or without doxorubicin, or cytokines) and were longitudinally monitored for epileptic spasms and neurodevelopmental and cognitive deficits. Anti-inflammatory treatments were tested after the onset of spasms. The TMEV mouse model was induced with intracerebral administration of TMEV and prospective monitoring for handling-induced seizures or seizure susceptibility, as well as long-term evaluations of behavioral comorbidities of epilepsy. Inflammatory processes are evident in both models and are implicated in the pathogenesis of the observed seizures and comorbidities. A common feature of these models, based on the data so far available, is their pharmacoresistant profile. The presented data support the role of inflammatory pathways in epileptogenesis and comorbidities in two distinct epilepsy models. Pharmacoresistance is a common feature of both inflammation-based models. Utilization of these models may facilitate the identification of age-specific, syndrome- or etiology-specific therapies for the epilepsies and attendant comorbidities, including the drug-resistant forms. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Endothelium and Its Alterations in Cardiovascular Diseases: Life Style Intervention
Paganelli, Corrado; Buffoli, Barbara; Rodella, Luigi Fabrizio; Rezzani, Rita
2014-01-01
The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions. PMID:24719887
Addictive genes and the relationship to obesity and inflammation.
Heber, David; Carpenter, Catherine L
2011-10-01
There is increasing evidence that the same brain reward circuits involved in perpetuating drug abuse are involved in the hedonic urges and food cravings observed clinically in overweight and obese subjects. A polymorphism of the D2 dopamine receptor which renders it less sensitive to dopamine stimulation has been proposed to promote self-stimulatory behavior such as consuming alcohol, abusing drugs, or binging on foods. It is important to determine how this polymorphism may interact with other well-known candidate genes for obesity including polymorphisms of the leptin receptor gene and the opiomelanocortin gene. Leptin is a proinflammatory cytokine as well as a long-term signal maintaining body fat. Upper-body obesity stimulates systemic inflammation through the action of multiple cytokines including leptin throughout many organs including the brain. The association of numerous diseases including diabetes mellitus, heart disease, as well as depression with chronic low-grade inflammation due to abdominal obesity has raised the possibility that obesity-associated inflammation affecting the brain may promote addictive behaviors leading to a self-perpetuating cycle that may affect not only foods but addictions to drugs, alcohol, and gambling. This new area of interdisciplinary research holds the promise of developing new approaches to treating drug abuse and obesity.
Estrogen Effects on Wound Healing
Horng, Huann-Cheng; Chang, Wen-Hsun; Yeh, Chang-Ching; Huang, Ben-Shian; Chang, Chia-Pei; Chen, Yi-Jen; Tsui, Kuan-Hao
2017-01-01
Wound healing is a physiological process, involving three successive and overlapping phases—hemostasis/inflammation, proliferation, and remodeling—to maintain the integrity of skin after trauma, either by accident or by procedure. Any disruption or unbalanced distribution of these processes might result in abnormal wound healing. Many molecular and clinical data support the effects of estrogen on normal skin homeostasis and wound healing. Estrogen deficiency, for example in postmenopausal women, is detrimental to wound healing processes, notably inflammation and re-granulation, while exogenous estrogen treatment may reverse these effects. Understanding the role of estrogen on skin might provide further opportunities to develop estrogen-related therapy for assistance in wound healing. PMID:29099810
Innate immune recognition and inflammation in Neisseria meningitidis infection.
Johswich, Kay
2017-03-01
Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Inflammation and lithium: clues to mechanisms contributing to suicide-linked traits
Beurel, E; Jope, R S
2014-01-01
Suicide is one of the leading causes of death in the United States, yet it remains difficult to understand the mechanistic provocations and to intervene therapeutically. Stress is recognized as a frequent precursor to suicide. Psychological stress is well established to cause activation of the inflammatory response, including causing neuroinflammation, an increase of inflammatory molecules in the central nervous system (CNS). Neuroinflammation is increasingly recognized as affecting many aspects of CNS functions and behaviors. In particular, much evidence demonstrates that inflammatory markers are elevated in traits that have been linked to suicidal behavior, including aggression, impulsivity and depression. Lithium is recognized as significantly reducing suicidal behavior, is anti-inflammatory and diminishes aggression, impulsivity and depression traits, each of which is associated with elevated inflammation. The anti-inflammatory effects of lithium result from its inhibition of glycogen synthase kinase-3 (GSK3). GSK3 has been demonstrated to strongly promote inflammation, aggressive behavior in rodents and depression-like behaviors in rodents, whereas regulation of impulsivity by GSK3 has not yet been investigated. Altogether, evidence is building supporting the hypothesis that stress activates GSK3, which in turn promotes inflammation, and that inflammation is linked to behaviors associated with suicide, including particularly aggression, impulsivity and depression. Further investigation of these links may provide a clearer understanding of the causes of suicidal behavior and provide leads for the development of effective preventative interventions, which may include inhibitors of GSK3. PMID:25514751
Inflammation and lithium: clues to mechanisms contributing to suicide-linked traits.
Beurel, E; Jope, R S
2014-12-16
Suicide is one of the leading causes of death in the United States, yet it remains difficult to understand the mechanistic provocations and to intervene therapeutically. Stress is recognized as a frequent precursor to suicide. Psychological stress is well established to cause activation of the inflammatory response, including causing neuroinflammation, an increase of inflammatory molecules in the central nervous system (CNS). Neuroinflammation is increasingly recognized as affecting many aspects of CNS functions and behaviors. In particular, much evidence demonstrates that inflammatory markers are elevated in traits that have been linked to suicidal behavior, including aggression, impulsivity and depression. Lithium is recognized as significantly reducing suicidal behavior, is anti-inflammatory and diminishes aggression, impulsivity and depression traits, each of which is associated with elevated inflammation. The anti-inflammatory effects of lithium result from its inhibition of glycogen synthase kinase-3 (GSK3). GSK3 has been demonstrated to strongly promote inflammation, aggressive behavior in rodents and depression-like behaviors in rodents, whereas regulation of impulsivity by GSK3 has not yet been investigated. Altogether, evidence is building supporting the hypothesis that stress activates GSK3, which in turn promotes inflammation, and that inflammation is linked to behaviors associated with suicide, including particularly aggression, impulsivity and depression. Further investigation of these links may provide a clearer understanding of the causes of suicidal behavior and provide leads for the development of effective preventative interventions, which may include inhibitors of GSK3.
Stressed and inflamed, can GSK3 be blamed?
Jope, Richard S.; Cheng, Yuyan; Lowell, Jeffrey; Worthen, Ryan J.; Sitbon, Yoel H.; Beurel, Eleonore
2016-01-01
Psychological stress has a pervasive influence on our lives. In many cases adapting to stress strengthens organisms, but chronic or severe stress is usually harmful. One surprising outcome of psychological stress is activation of an inflammatory response, resembling inflammation caused by infection or trauma. Excessive psychological stress and the consequential inflammation in the brain can increase susceptibility to psychiatric diseases, such as depression, and impair learning and memory, including in some patients with cognitive deficits. An emerging target to control detrimental outcomes of stress and inflammation is glycogen synthase kinase-3 (GSK3). GSK3 promotes inflammation, partly by regulating key transcription factors in the inflammation signaling pathway, and GSK3 can impair learning by promoting inflammation and by inhibiting long term potentiation (LTP). Drugs inhibiting GSK3 may prove beneficial for controlling mood and cognitive impairments caused by excessive stress and the associated neuroinflammation. PMID:27876551
John, Chandy C.; Black, Maureen M.; Nelson, Charles A.
2017-01-01
The early to middle childhood years are a critical period for child neurodevelopment. Nutritional deficiencies, infection and inflammation are major contributors to impaired child neurodevelopment in these years, particularly in low resource settings. This review identifies global research priorities relating to nutrition, infection, and inflammation in early to middle childhood neurodevelopment. Research priority areas identified include: 1) assessment of how nutrition, infection or inflammation in the pre-conception, prenatal and infancy periods (or interventions in these periods) affect function in early to middle childhood; 2) assessment of whether effects of nutritional interventions vary by poverty or inflammation; 3) determination of the feasibility of pre-school and school-based integrated nutritional interventions; 4) improved assessment of the epidemiology of infection- and inflammation-related neurodevelopmental impairment (NDI); 5) identification of mechanisms through which infection causes NDI; 6) identification of non-infectious causes of inflammation-related NDI and interventions for causes already identified (e.g, environmental factors); and 7) studies on the effects of interactions between nutritional, infectious and inflammatory factors on neurodevelopment in early to middle childhood. Areas of emerging importance which require further study include the effects of maternal Zika virus infection, childhood environmental enteropathy, and alterations in the child’s microbiome on neurodevelopment in early to middle childhood. Research in these key areas will be critical to the development of interventions to optimize the neurodevelopmental potential of children worldwide in the early to middle childhood years. PMID:28562249
John, Chandy C; Black, Maureen M; Nelson, Charles A
2017-04-01
The early to middle childhood years are a critical period for child neurodevelopment. Nutritional deficiencies, infection, and inflammation are major contributors to impaired child neurodevelopment in these years, particularly in low-resource settings. This review identifies global research priorities relating to nutrition, infection, and inflammation in early to middle childhood neurodevelopment. The research priority areas identified include: (1) assessment of how nutrition, infection, or inflammation in the preconception, prenatal, and infancy periods (or interventions in these periods) affect function in early to middle childhood; (2) assessment of whether effects of nutritional interventions vary by poverty or inflammation; (3) determination of the feasibility of preschool- and school-based integrated nutritional interventions; (4) improved assessment of the epidemiology of infection- and inflammation-related neurodevelopmental impairment (NDI); (5) identification of mechanisms through which infection causes NDI; (6) identification of noninfectious causes of inflammation-related NDI and interventions for causes already identified (eg, environmental factors); and (7) studies on the effects of interactions between nutritional, infectious, and inflammatory factors on neurodevelopment in early to middle childhood. Areas of emerging importance that require additional study include the effects of maternal Zika virus infection, childhood environmental enteropathy, and alterations in the child's microbiome on neurodevelopment in early to middle childhood. Research in these key areas will be critical to the development of interventions to optimize the neurodevelopmental potential of children worldwide in the early to middle childhood years. Copyright © 2017 by the American Academy of Pediatrics.
An inflammation-responsive transcription factor in the pathophysiology of osteoarthritis.
Ray, Alpana; Ray, Bimal K
2008-01-01
A number of risk factors including biomechanical stress on the articular cartilage imposed by joint overloading due to obesity, repetitive damage of the joint tissues by injury of the menisci and ligaments, and abnormal joint alignment play a significant role in the onset of osteoarthritis (OA). Genetic predisposition can also lead to the formation of defective cartilage matrix because of abnormal gene expression in the cartilage-specific cells. Another important biochemical event in OA is the consequence of inflammation. It has been shown that synovial inflammation triggers the synthesis of biological stimuli such as cytokines and growth factors which subsequently reach the chondrocyte cells of the articular cartilage activating inflammatory events in the chondrocytes leading to cartilage destruction. In addition to cartilage degradation, hypertrophy of the subchondral bone and osteophyte formation at the joint margins also takes place in OA. Both processes involve abnormal expression of a number of genes including matrix metalloproteinases (MMPs) for cartilage degradation and those associated with bone formation during osteophyte development. To address how diverse groups of genes are activated in OA chondrocyte, we have studied their induction mechanism. We present evidence for abundant expression of an inflammation-responsive transcription factor, SAF-1, in moderate to severely damaged OA cartilage tissues. In contrast, cells in normal cartilage matrix contain very low level of SAF-1 protein. SAF-1 is identified as a major regulator of increased synthesis of MMP-1 and -9 and pro-angiogenic factor, vascular endothelial growth factor (VEGF). While VEGF by stimulating angiogenesis plays a key role in new bone formation in osteophyte, increase of MMP-1 and -9 is instrumental for cartilage erosion in the pathogenesis of OA. Increased expression in degenerated cartilage matrix and in the osteophytes indicate for a key regulatory role of SAF-1 in directing catabolic matrix degrading and anabolic matrix regenerating activities.
Glushakova, Olena Y; Johnson, Danny; Hayes, Ronald L
2014-07-01
Traumatic brain injury (TBI) is a significant risk factor for chronic traumatic encephalopathy (CTE), Alzheimer's disease (AD), and Parkinson's disease (PD). Cerebral microbleeds, focal inflammation, and white matter damage are associated with many neurological and neurodegenerative disorders including CTE, AD, PD, vascular dementia, stroke, and TBI. This study evaluates microvascular abnormalities observed at acute and chronic stages following TBI in rats, and examines pathological processes associated with these abnormalities. TBI in adult rats was induced by controlled cortical impact (CCI) of two magnitudes. Brain pathology was assessed in white matter of the corpus callosum for 24 h to 3 months following injury using immunohistochemistry (IHC). TBI resulted in focal microbleeds that were related to the magnitude of injury. At the lower magnitude of injury, microbleeds gradually increased over the 3 month duration of the study. IHC revealed TBI-induced focal abnormalities including blood-brain barrier (BBB) damage (IgG), endothelial damage (intercellular adhesion molecule 1 [ICAM-1]), activation of reactive microglia (ionized calcium binding adaptor molecule 1 [Iba1]), gliosis (glial fibrillary acidic protein [GFAP]) and macrophage-mediated inflammation (cluster of differentiation 68 [CD68]), all showing different temporal profiles. At chronic stages (up to 3 months), apparent myelin loss (Luxol fast blue) and scattered deposition of microbleeds were observed. Microbleeds were surrounded by glial scars and co-localized with CD68 and IgG puncta stainings, suggesting that localized BBB breakdown and inflammation were associated with vascular damage. Our results indicate that evolving white matter degeneration following experimental TBI is associated with significantly delayed microvascular damage and focal microbleeds that are temporally and regionally associated with development of punctate BBB breakdown and progressive inflammatory responses. Increased understanding of mechanisms underlying delayed microvascular damage following TBI could provide novel insights into chronic pathological responses to TBI and potential common mechanisms underlying TBI and neurodegenerative diseases.
Is biological aging accelerated in drug addiction?
Bachi, Keren; Sierra, Salvador; Volkow, Nora D; Goldstein, Rita Z; Alia-Klein, Nelly
2017-02-01
Drug-addiction may trigger early onset of age-related disease, due to drug-induced multi-system toxicity and perilous lifestyle, which remains mostly undetected and untreated. We present the literature on pathophysiological processes that may hasten aging and its relevance to addiction, including: oxidative stress and cellular aging, inflammation in periphery and brain, decline in brain volume and function, and early onset of cardiac, cerebrovascular, kidney, and liver disease. Timely detection of accelerated aging in addiction is crucial for the prevention of premature morbidity and mortality.
Role of Adiposity-Driven Inflammation in Depressive Morbidity
Capuron, Lucile; Lasselin, Julie; Castanon, Nathalie
2017-01-01
Depression and metabolic disorders, including overweight and obesity, appear tightly interrelated. The prevalence of these conditions is concurrently growing worldwide, and both depression and overweight/obesity represent substantial risk factors for multiple medical complications. Moreover, there is now multiple evidence for a bidirectional relationship between depression and increased adiposity, with overweight/obesity being associated with an increased prevalence of depression, and in turn, depression augmenting the risk of weight gain and obesity. Although the reasons for this intricate link between depression and increased adiposity remain unclear, converging clinical and preclinical evidence points to a critical role for inflammatory processes and related alterations of brain functions. In support of this notion, increased adiposity leads to a chronic low-grade activation of inflammatory processes, which have been shown elsewhere to have a potent role in the pathophysiology of depression. It is therefore highly possible that adiposity-driven inflammation contributes to the development of depressive disorders and their growing prevalence worldwide. This review will present recent evidence in support of this hypothesis and will discuss the underlying mechanisms and potential therapeutic targets. Altogether, findings presented here should help to better understand the mechanisms linking adiposity to depression and facilitate the identification of new preventive and/or therapeutic strategies. PMID:27402495
Straub, Rainer H.; Cutolo, Maurizio; Pacifici, Roberto
2015-01-01
Objective Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflammaging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an “accident of inflammation”. Methods Extensive literature search in PubMed central. Results Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. Conclusions The article highlights the complexity of interwoven pathways of osteopenia. PMID:26044543
Mangini, Sandrigo; Higuchi, Maria de Lourdes; Kawakami, Joyce Tiyeko; Reis, Marcia Martins; Ikegami, Renata Nishiyama; Palomino, Suely Aparecida Pinheiro; Pomerantzeff, Pablo Maria Alberto; Fiorelli, Alfredo Inácio; Marcondes-Braga, Fabiana Goulart; Bacal, Fernando; Ferreira, Sílvia Moreira Ayub; Issa, Victor Sarli; Souza, Germano Emílio Conceição; Chizzola, Paulo Roberto; Bocchi, Edimar Alcides
2015-01-15
Clinical and experimental conflicting data have questioned the relationship between infectious agents, inflammation and dilated cardiomyopathy (DCM). The aim of this study was to determine the frequency of infectious agents and inflammation in endomyocardial biopsy (EMB) specimens from patients with idiopathic DCM, explanted hearts from different etiologies, including Chagas' disease, compared to donated hearts. From 2008 to 2011, myocardial samples from 29 heart donors and 55 patients with DCMs from different etiologies were studied (32 idiopathic, 9 chagasic, 6 ischemic and 8 other specific etiologies). Inflammation was investigated by immunohistochemistry and infectious agents by immunohistochemistry, molecular biology, in situ hybridization and electron microscopy. There were no differences regarding the presence of macrophages, expression of HLA class II and ICAM-I in donors and DCM. Inflammation in Chagas' disease was predominant. By immunohistochemistry, in donors, there was a higher expression of antigens of enterovirus and Borrelia, hepatitis B and C in DCMs. By molecular biology, in all groups, the positivity was elevated to microorganisms, including co-infections, with a higher positivity to adenovirus and HHV6 in donors towards DCMs. This study was the first to demonstrate the presence of virus in the heart tissue of chagasic DCM. The presence of inflammation and infectious agents is frequent in donated hearts, in the myocardium of patients with idiopathic DCM, myocardial dysfunction related to cardiovascular diseases, and primary and secondary cardiomyopathies, including Chagas' disease. The role of co-infection in Chagas' heart disease physiopathology deserves to be investigated in future studies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Survey of less-inflammable hydraulic fluids for aircraft
NASA Technical Reports Server (NTRS)
Drake, Wray V; Drell, I L
1950-01-01
A survey of current information on civil and military development of less-inflammable hydraulic fluids for aircraft is presented. Types of less-inflammable fluid reported include: glycol derivative, water base, silicone, ester, and halogenated compound. Specification requirements, physical and chemical properties, hydraulic-system test results, and advantages and disadvantages of various hydraulic fluids are discussed. For completely satisfactory service, some modification of currently available fluids or of present hydraulic-system parts still appears necessary.
[Epithelial dysfunction associated with pyo-inflammatory diseases of the ENT organs].
Petukhova, N A
The modern concept of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome associated with pyo-inflammatory ENT diseases is presented. It has provided a basis for the analysis of the initial stages of etiopathogenesis of acute and chronic inflammation in the ENT system including the mucous and associated lymphoid tissues as well as the Pirogov-Waldeyer limphopharyngeal ring making up the first protective barrier. The leading role of dysbiosis of synanthropic microflora and endotoxins of the Gram-negative bacteria in the mechanisms of regional responsiveness of the organism to the infection and chronic endotoxic aggression is demonstrated. The regional and synthetic mechanisms underlying the interaction between the external and internal media of the organism are subjected to the analysis with special reference to those operating in epithelium. The possible variants of the outcome of these processes are considered including both the recovery and the development of chronic inflammation. It has been proved that the exhaustion of the internal reserves for the stabilization of the epithelium-associated lymphoid tissue system including the Pirogov-Waldeyer limphopharyngeal ring leads to the formation of epithelial dysfunction as the initial stage of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome. It is concluded that the modern concept of epithelial-endothelial dysfunction and epithelial-endothelial distress-syndrome is a fundamental interdisciplinary phenomenon.
The Role of Extracellular Adenosine Triphosphate in Ischemic Organ Injury.
Zhao, Hailin; Kilgas, Susan; Alam, Azeem; Eguchi, Shiori; Ma, Daqing
2016-05-01
Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.
Schneider, Christian
2011-01-01
Musculoskeletal injuries are on the rise. First-line management of such injuries usually employs the RICE (rest, ice, compression, and elevation) approach to limit excessive inflammation. Nonsteroidal anti-inflammatory drugs (NSAIDs) are also commonly used to limit inflammation and to control pain. Traumeel®, a preparation with bioregulatory effects is also used to treat the symptoms associated with acute musculoskeletal injuries, including pain and swelling. Traumeel is a fixed combination of biological and mineral extracts, which aims to apply stimuli to multiple targets to restore normal functioning of regulatory mechanisms. This paper presents the accumulating evidence of Traumeel’s action on the inflammatory process, and of its efficacy and tolerability in randomized trials, as well as observational and surveillance studies for the treatment of musculoskeletal injuries. Traumeel has shown comparable effectiveness to NSAIDs in terms of reducing symptoms of inflammation, accelerating recovery, and improving mobility, with a favorable safety profile. While continued research and development is ongoing to broaden the clinical evidence of Traumeel in acute musculoskeletal injury and to further establish its benefits, current information suggests that Traumeel may be considered as an anti-inflammatory agent that is at least as effective and appears to be better tolerated than NSAIDs. PMID:21556350
Iron Supplementation Decreases Severity of Allergic Inflammation in Murine Lung
Hale, Laura P.; Kant, Erin Potts; Greer, Paula K.; Foster, W. Michael
2012-01-01
The incidence and severity of allergic asthma have increased over the last century, particularly in the United States and other developed countries. This time frame was characterized by marked environmental changes, including enhanced hygiene, decreased pathogen exposure, increased exposure to inhaled pollutants, and changes in diet. Although iron is well-known to participate in critical biologic processes such as oxygen transport, energy generation, and host defense, iron deficiency remains common in the United States and world-wide. The purpose of these studies was to determine how dietary iron supplementation affected the severity of allergic inflammation in the lungs, using a classic model of IgE-mediated allergy in mice. Results showed that mice fed an iron-supplemented diet had markedly decreased allergen-induced airway hyperreactivity, eosinophil infiltration, and production of pro-inflammatory cytokines, compared with control mice on an unsupplemented diet that generated mild iron deficiency but not anemia. In vitro, iron supplementation decreased mast cell granule content, IgE-triggered degranulation, and production of pro-inflammatory cytokines post-degranulation. Taken together, these studies show that iron supplementation can decrease the severity of allergic inflammation in the lung, potentially via multiple mechanisms that affect mast cell activity. Further studies are indicated to determine the potential of iron supplementation to modulate the clinical severity of allergic diseases in humans. PMID:23029172
Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.
Dinkla, S; Wessels, K; Verdurmen, W P R; Tomelleri, C; Cluitmans, J C A; Fransen, J; Fuchs, B; Schiller, J; Joosten, I; Brock, R; Bosman, G J C G M
2012-10-18
Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions.
Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure
Dinkla, S; Wessels, K; Verdurmen, W P R; Tomelleri, C; Cluitmans, J C A; Fransen, J; Fuchs, B; Schiller, J; Joosten, I; Brock, R; Bosman, G J C G M
2012-01-01
Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane–cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane–cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions. PMID:23076218
Alexander, Janet E; Colyer, Alison; Haydock, Richard M; Hayek, Michael G; Park, JeanSoon
2018-05-09
As in human populations, advances in nutrition and veterinary care have led to an increase in the lifespan of companion animals. Detrimental physiological changes occurring later in life must be understood before interventions can be made to slow or reduce them. One important aspect of human aging is upregulation of the inflammatory response and increase in oxidative damage resulting in pathologies linked to chronic inflammation. To determine whether similar processes occur in the aging dog, changes in markers of inflammation and oxidative stress were investigated in 80 Labrador retrievers from adulthood to the end of life. Serum levels of immunoglobulin M (p < .001) and 8-hydroxy-2-deoxyguanosine (p < .001) increased with age, whereas no effect of age was detected for immunoglobulin G or C-reactive protein unless the last year of life was included in the analysis (p = .002). Baseline levels of heat shock protein 70 decreased with age (p < .001) while those after exposure to heat stress were maintained (p = .018). However, when excluding final year of life data, a decline in the heat shock protein 70 response after heat stress was observed (p = .004). These findings indicate that aging dogs undergo changes similar to human inflammaging and offer the possibility of nutritional or pharmacological intervention to delay or reduce these effects.
Untangling the Gordian knot of HIV, stress, and cognitive impairment.
Valdez, Arielle N; Rubin, Leah H; Neigh, Gretchen N
2016-10-01
As individuals live longer with HIV, this "graying of the HIV epidemic" has introduced a new set of challenges including a growing number of age and inflammation-related diseases such as cardiovascular disease, type II diabetes, cancer, and dementia. The biological underpinnings of these complex and co-morbid diseases are not fully understood and become very difficult to disentangle in the context of HIV and aging. In the current review we examine the contributions and interactions of HIV, stress, and cognitive impairment and query the extent to which inflammation is the linchpin in these dynamic interactions. Given the inter-relatedness of stress, inflammatory mechanisms, HIV, and cognitive impairment, future work will either need to address multiple dimensions simultaneously or embrace the philosophy that breaking the aberrant cycle at any one point will subsequently remedy the other related systems and processes. Such a single-point intervention may be effective in early disease states, but after perpetuation of an aberrant cycle, adaptations in an attempt to internally resolve the issue will likely lead to the need for multifaceted interventions. Acknowledging that HIV, inflammation, and stress may interact with one another and collectively impact cognitive ability is an important step in fully understanding an individual's complete clinical picture and moving towards personalized medicine.
Inflammation-Related Effects of Diesel Engine Exhaust Particles: Studies on Lung Cells In Vitro
Schwarze, P. E.; Totlandsdal, A. I.; Låg, M.; Refsnes, M.; Holme, J. A.; Øvrevik, J.
2013-01-01
Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers. PMID:23509760
Macrophages – Key Cells in the Response to Wear Debris from Joint Replacements
Nich, Christophe; Takakubo, Yuya; Pajarinen, Jukka; Ainola, Mari; Salem, Abdelhakim; Sillat, Tarvo; Rao, Allison J.; Raska, Milan; Tamaki, Yasunobu; Takagi, Michiaki; Konttinen, Yrjö T.; Goodman, Stuart B.; Gallo, Jiri
2013-01-01
The generation of wear debris is an inevitable result of normal usage of joint replacements. Wear debris particles stimulate local and systemic biological reactions resulting in chronic inflammation, periprosthetic bone destruction, and eventually, implant loosening and revision surgery. The latter may be indicated in up to 15% patients in the decade following the arthroplasty using conventional polyethylene. Macrophages play multiple roles in both inflammation and in maintaining tissue homeostasis. As sentinels of the innate immune system, they are central to the initiation of this inflammatory cascade, characterized by the release of pro-inflammatory and pro-osteoclastic factors. Similar to the response to pathogens, wear particles elicit a macrophage response, based on the unique properties of the cells belonging to this lineage, including sensing, chemotaxis, phagocytosis, and adaptive stimulation. The biological processes involved are complex, redundant, both local and systemic, and highly adaptive. Cells of the monocyte/macrophage lineage are implicated in this phenomenon, ultimately resulting in differentiation and activation of bone resorbing osteoclasts. Simultaneously, other distinct macrophage populations inhibit inflammation and protect the bone-implant interface from osteolysis. Here, the current knowledge about the physiology of monocyte/macrophage lineage cells is reviewed. In addition, the pattern and consequences of their interaction with wear debris and the recent developments in this field are presented. PMID:23568608
Inflammation and fertility in the mare.
Christoffersen, M; Troedsson, Mht
2017-08-01
A transient uterine inflammation post-breeding is a normal physiological reaction in the mare, and it is believed that the inflammatory response is necessary to eliminate bacteria and excess spermatozoa introduced into the uterine lumen. A tight balance between multiple pro- and anti-inflammatory factors is required for resolving the breeding-induced inflammation within 24-36 hr in the reproductively healthy mare, whereas a subpopulation of mares is susceptible to development of a persistent infection that can interfere with fertility. The aetiology of persistent endometritis can be either bacterial or semen-induced and both scenarios can threaten the establishment of pregnancy. Several factors associated with susceptibility to persistent endometritis have been identified including altered innate immune response in the early inflammatory process, reduced myometrial contractions and impaired opsonization; however, the pathogenesis to susceptibility has not been fully elucidated. Current research focuses on the initial hours of uterine inflammatory responses to semen and bacteria, and potential treatments to modify this altered innate immune response. An increased understanding of the mechanisms involved in the disease progression is necessary to improve the treatment and management of these mares. This review attempts to summarize the current knowledge of the uterine inflammatory and immunological responses to breeding-induced endometritis, persistent breeding-induced endometritis (PBIE) and bacterial endometritis in the mare. © 2017 Blackwell Verlag GmbH.
Glowacki, Andrew J; Yoshizawa, Sayuri; Jhunjhunwala, Siddharth; Vieira, Andreia E; Garlet, Gustavo P; Sfeir, Charles; Little, Steven R
2013-11-12
The hallmark of periodontal disease is the progressive destruction of gingival soft tissue and alveolar bone, which is initiated by inflammation in response to an invasive and persistent bacterial insult. In recent years, it has become apparent that this tissue destruction is associated with a decrease in local regulatory processes, including a decrease of forkhead box P3-expressing regulatory lymphocytes. Accordingly, we developed a controlled release system capable of generating a steady release of a known chemoattractant for regulatory lymphocytes, C-C motif chemokine ligand 22 (CCL22), composed of a degradable polymer with a proven track record of clinical translation, poly(lactic-co-glycolic) acid. We have previously shown that this sustained presentation of CCL22 from a point source effectively recruits regulatory T cells (Tregs) to the site of injection. Following administration of the Treg-recruiting formulation to the gingivae in murine experimental periodontitis, we observed increases in hallmark Treg-associated anti-inflammatory molecules, a decrease of proinflammatory cytokines, and a marked reduction in alveolar bone resorption. Furthermore, application of the Treg-recruiting formulation (fabricated with human CCL22) in ligature-induced periodontitis in beagle dogs leads to reduced clinical measures of inflammation and less alveolar bone loss under severe inflammatory conditions in the presence of a diverse periodontopathogen milieu.
Mast cell-neural interactions contribute to pain and itch.
Gupta, Kalpna; Harvima, Ilkka T
2018-03-01
Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Inflammation at the Molecular Interface of Atherogenesis
Lamon, Brian D.; Hajjar, David P.
2008-01-01
Despite the multifactorial nature of atherosclerosis, substantial evidence has established inflammation as an often surreptitious, yet critical and unifying driving force which promotes disease progression. To this end, research has defined molecular networks initiated by cytokines, growth factors and other pro-inflammatory molecules which promote hallmarks of atherosclerosis such as endothelial dysfunction, macrophage infiltration, LDL oxidation, cell proliferation and thrombosis. Although commonly associated with risk factors such as dyslipidemia, diabetes and hypertension, the global etiology of atherosclerosis may be alternatively attributed to underlying anthropological pressures. The agricultural, industrial and technological revolutions produced alterations in dietary, social and economic factors which have collectively exaggerated the exposure of the human genome to environmental stimuli. Furthermore, advances in sanitation, nutrition, and medicine have increased the lifespan of humans, effectively prolonging blood vessel exposure to these factors. As a result, the vasculature has become conditioned to respond to injury with what is arguably an overzealous immunological response; thus setting the stage for the prevalence of cardiovascular disease, including atherosclerotic plaque development in Western populations. Evidence suggests that each of these alterations can be linked to specific mediators in the inflammatory process. Integration of these factors with an inflammation-based hypothesis of atherosclerosis has yet to be extrapolated to observations in the realms of basic and clinical sciences and is the focus of this review. PMID:18948435
Sex Differences in Depression: Does Inflammation Play a Role?
Derry, Heather M; Padin, Avelina C; Kuo, Jennifer L; Hughes, Spenser; Kiecolt-Glaser, Janice K
2015-10-01
Women become depressed more frequently than men, a consistent pattern across cultures. Inflammation plays a key role in initiating depression among a subset of individuals, and depression also has inflammatory consequences. Notably, women experience higher levels of inflammation and greater autoimmune disease risk compared to men. In the current review, we explore the bidirectional relationship between inflammation and depression and describe how this link may be particularly relevant for women. Compared to men, women may be more vulnerable to inflammation-induced mood and behavior changes. For example, transient elevations in inflammation prompt greater feelings of loneliness and social disconnection for women than for men, which can contribute to the onset of depression. Women also appear to be disproportionately affected by several factors that elevate inflammation, including prior depression, somatic symptomatology, interpersonal stressors, childhood adversity, obesity, and physical inactivity. Relationship distress and obesity, both of which elevate depression risk, are also more strongly tied to inflammation for women than for men. Taken together, these findings suggest that women's susceptibility to inflammation and its mood effects may contribute to sex differences in depression. Depression continues to be a leading cause of disability worldwide, with women experiencing greater risk than men. Due to the depression-inflammation connection, these patterns may promote additional health risks for women. Considering the impact of inflammation on women's mental health may foster a better understanding of sex differences in depression, as well as the selection of effective depression treatments.
Modulation of experimental arthritis by vagal sensory and central brain stimulation.
Bassi, Gabriel Shimizu; Dias, Daniel Penteado Martins; Franchin, Marcelo; Talbot, Jhimmy; Reis, Daniel Gustavo; Menezes, Gustavo Batista; Castania, Jaci Airton; Garcia-Cairasco, Norberto; Resstel, Leonardo Barbosa Moraes; Salgado, Helio Cesar; Cunha, Fernando Queiróz; Cunha, Thiago Mattar; Ulloa, Luis; Kanashiro, Alexandre
2017-08-01
Articular inflammation is a major clinical burden in multiple inflammatory diseases, especially in rheumatoid arthritis. Biological anti-rheumatic drug therapies are expensive and increase the risk of systemic immunosuppression, infections, and malignancies. Here, we report that vagus nerve stimulation controls arthritic joint inflammation by inducing local regulation of innate immune response. Most of the previous studies of neuromodulation focused on vagal regulation of inflammation via the efferent peripheral pathway toward the viscera. Here, we report that vagal stimulation modulates arthritic joint inflammation through a novel "afferent" pathway mediated by the locus coeruleus (LC) of the central nervous system. Afferent vagal stimulation activates two sympatho-excitatory brain areas: the paraventricular hypothalamic nucleus (PVN) and the LC. The integrity of the LC, but not that of the PVN, is critical for vagal control of arthritic joint inflammation. Afferent vagal stimulation suppresses articular inflammation in the ipsilateral, but not in the contralateral knee to the hemispheric LC lesion. Central stimulation is followed by subsequent activation of joint sympathetic nerve terminals inducing articular norepinephrine release. Selective adrenergic beta-blockers prevent the effects of articular norepinephrine and thereby abrogate vagal control of arthritic joint inflammation. These results reveals a novel neuro-immune brain map with afferent vagal signals controlling side-specific articular inflammation through specific inflammatory-processing brain centers and joint sympathetic innervations. Copyright © 2017 Elsevier Inc. All rights reserved.
Circulating Cell-Free DNA Differentiates Severity of Inflammation.
Frank, Mayu O
2016-10-01
As the U.S. population ages, the incidence of chronic disease will rise. Chronic diseases have been linked to chronic inflammation. The purpose of this review is to summarize the literature on cell-free DNA (cfDNA) in relation to inflammation. PubMed, EMBASE, and Web of Science were searched. Inclusion criteria were noninterventional studies on acute and chronic inflammation, autoimmunity, and infection published in English after 2000, conducted in humans using the fluorescence method of quantifying DNA. Of the 442 articles retrieved, 83 were identified for full-text review and 13 remained after application of inclusion criteria. Of the reviewed studies, three involved acute inflammation, six involved chronic inflammation, and four involved infection. Healthy controls with interpretable results were included in six studies, three of which used the Quant-iT high-sensitivity DNA kit and found cfDNA quantities near 800 ng/ml, while the other three used other fluorescence methods and found quantities below 100 ng/ml. All 13 studies compared groups, and all but 1 found statistically significant differences between them. Among studies using the Quant-iT reagent, levels were higher in infection than in chronic inflammation. Among studies that used other reagents, levels increased from chronic to acute inflammation to severe infection. CfDNA levels were associated with mortality and with clinical outcomes in acute inflammation and infection. Most studies assessed cfDNA's correlation with other inflammation biomarkers and found inconclusive results. There appears to be an association between inflammation and cfDNA. Further research is necessary before cfDNA can be used clinically as a measure of inflammation. © The Author(s) 2016.
Ryan, Sean O; Johnson, Jenny L; Cobb, Brian A
2013-05-15
Low-grade chronic inflammation can persist in aging humans unnoticed for years or even decades, inflicting continuous damage that can culminate later in life as organ dysfunction, physical frailty, and some of the most prominent debilitating and deadly age-associated diseases, including rheumatoid arthritis, diabetes, heart disease, and cancer. Despite the near universal acceptance of these associations, the mechanisms underlying unresolved inflammation remain poorly understood. In this study, we describe a novel inducible method to examine systemic chronic inflammation using susceptible animal models. Induced inflammation results in unresolved innate cellular responses and persistence of the same serum proinflammatory molecules used as diagnostic biomarkers and therapeutic targets for chronic inflammation in humans. Surprisingly, we found long-term persistence of an inflammation-associated neutrophil cell population constitutively producing the proinflammatory IFN-γ cytokine, which until now has only been detected transiently in acute inflammatory responses. Interestingly, these cells appear to confer T cell resistance to the otherwise potent anti-inflammatory function of myeloid-derived suppressor cells, revealing a novel mechanism for the maintenance of chronic inflammatory responses over time. This discovery represents an attractive target to resolve inflammation and prevent the inflammation-induced pathologies that are of critical concern for the well-being of the aging population.
Lipid Interventions in Aortic Valvular Disease.
Choi, Kwang Jin; Tsomidou, Christiana; Lerakis, Stamatios; Madanieh, Raef; Vittorio, Timothy J; Kosmas, Constantine E
2015-10-01
Aortic valve stenosis is the most common valvular disease in the elderly population. Presently, there is increasing evidence that aortic stenosis (AS) is an active process of lipid deposition, inflammation, fibrosis and calcium deposition. The pathogenesis of AS shares many similarities to that of atherosclerosis; therefore, it was hypothesized that certain lipid interventions could prevent or slow the progression of aortic valve stenosis. Despite the early enthusiasm that statins may slow the progression of AS, recent large clinical trials did not consistently demonstrate a decrease in the progression of AS. However, some researchers believe that statins may have a benefit early on in the disease process, where inflammation (and not calcification) is the predominant process, in contrast to severe or advanced AS, where calcification (and not inflammation) predominates. Positron emission tomography using 18F-fluorodeoxyglucose and 18F-sodium fluoride can demonstrate the relative contributions of valvular calcification and inflammation in AS, and thus this method might potentially be useful in providing the answer as to whether lipid interventions at the earlier stages of AS would be more effective in slowing the progression of the disease. Currently, there is a strong interest in recombinant apolipoprotein A-1 Milano and in the development of new pharmacological agents, targeting reduction of lipoprotein (a) levels and possibly reduction of the expression of lipoprotein-associated phospholipase A2, as potential means to slow the progression of aortic valvular stenosis.
Elevated inflammatory biomarkers during unemployment: modification by age and country in the UK
Hughes, Amanda; McMunn, Anne; Bartley, Mel; Kumari, Meena
2015-01-01
Background There is raised risk of mortality following unemployment, and reviews have consistently found worse psychological health among the unemployed. Inflammation is increasingly implicated as a mediating factor relating stress to physical disease and is strongly linked to depression. Inflammation may, therefore, be implicated in processes associated with excess mortality and morbidity during unemployment. This study examined associations of unemployment with inflammatory markers among working-age men and women from England and Scotland. Methods Cross-sectional analyses using data from the Health Survey for England and the Scottish Health Survey collected between 1998 and 2010. Systemic inflammation was indexed by serum concentrations of C reactive protein (CRP) and fibrinogen, and compared between participants currently employed/self-employed, currently unemployed and other groups. Results CRP, fibrinogen and odds of CRP >3 mg/L were all significantly raised for the unemployed, as compared to the employed participants (eg, OR for CRP >3 mg/L=1.43, CI 1.15 to 1.78 N=23 025), following adjustment for age, gender, occupational social class, housing tenure, smoking, alcohol consumption, body mass index, long-term illness and depressive/anxiety symptoms. Strengths of associations varied considerably by both age and country/region, with effects mainly driven by participants aged ≥48 and participants from Scotland, which had comparatively high unemployment during this time. Conclusions Current unemployment is associated with elevated inflammatory markers using data from two large-scale, nationally representative UK studies. Effect modification by age suggests inflammation may be particularly involved in processes leading to ill-health among the older unemployed. Country/regional effects may suggest the relationship of unemployment with inflammation is strongly influenced by contextual factors, and/or reflect life course accumulation processes. PMID:25700535
OCT monitoring of pathophysiological processes
NASA Astrophysics Data System (ADS)
Gladkova, Natalia D.; Shakhova, Natalia M.; Shakhov, Andrei; Petrova, Galina P.; Zagainova, Elena; Snopova, Ludmila; Kuznetzova, Irina N.; Chumakov, Yuri; Feldchtein, Felix I.; Gelikonov, Valentin M.; Gelikonov, Grigory V.; Kamensky, Vladislav A.; Kuranov, Roman V.; Sergeev, Alexander M.
1999-04-01
Based on results of clinical examination of about 200 patients we discuss capabilities of the optical coherence tomography (OCT) in monitoring and diagnosing of various pathophysiological processes. Performed in several clinical areas including dermatology, urology, laryngology, gynecology, and dentistry, our study shows the existence of common optical features in manifestation of a pathophysiological process in different organs. In this paper we focus at such universal tomographic optical signs for processes of inflammation, necrosis and tumor growth. We also present data on dynamical OCT monitoring of evolution of pathophysiological processes, both at the stage of disease development and following-up results of different treatments such as drug application, radiation therapy, cryodestruction, and laser vaporization. The discovered peculiarities of OCT images for structural and functional imaging of biological tissues can be put as a basis for application of this method for diagnosing of pathology, guidance of treatment, estimation of its adequacy and assessing of the healing process.
[Septopal from E. Merck in the prevention and treatment of bone and soft tissue infections].
Misterka, S
1992-01-01
On the basis of the many years usage of Gentamycin-Septopal in treatment of blood-derived and traumatic inflammation of bones we can say that in both forms of inflammation fully satisfying results were achieved. In chronic traumatic inflammations of bones with active stomias where the inflammatory process lasted many weeks, and from the purulent matter two or more tribes with various sensitiveness to antibiotics, associated treatment was also used with application of large doses cephalosporin antibiotics of Glaxo-Zinacef of Fortum firms. It should be stressed that in treatment of a patient with that disease correct radioisotopic diagnostic of the focus of inflammation and the evaluation of the immunity state of the organism of the patient, especially during long-lasting disease, is, among others, important.
Decreased activity and accelerated apoptosis of neutrophils in the presence of natural polyphenols
Perečko, Tomáš; Harmatha, Juraj; Nosáľ, Radomír; Drábiková, Katarína
2012-01-01
Prolonged or excessive formation and liberation of cytotoxic substances from neutrophils intensifies inflammation and the risk of tissue damage. From this perspective, administration of substances which are able to reduce activity of neutrophils and to enhance apoptosis of these cells may improve the therapy of pathological states connected with persistent inflammation. In this short review, neutrophil oxidative burst and apoptosis are presented as potential targets for pharmacological intervention. Effects of natural polyphenols (resveratrol, pterostilbene, pinosylvin, piceatannol, curcumin, N-feruloylserotonin) are summarised, considering the ability of these compounds to affect inflammation and particularly neutrophil activity. The intended neutrophil inhibition is introduced as a part of a new strategy for pharmacological modulation of chronic inflammatory processes, focused on supporting innate anti-inflammatory mechanisms and enhancing resolution of inflammation. PMID:23118588
Yau, Po Lai; Ross, Naima; Tirsi, Andrew; Arif, Arslan; Ozinci, Zeynep; Convit, Antonio
2017-06-01
To investigate in adolescents the relationships between retinal vessel diameter, physical fitness, insulin sensitivity, and systemic inflammation. We evaluated 157 adolescents, 112 with excessive weight and 45 lean, all without type 2 diabetes mellitus. All received detailed evaluations, including measurements of retinal vessel diameter, insulin sensitivity, levels of inflammation, and physical fitness. Overweight/obese adolescents had significantly narrower retinal arteriolar and wider venular diameters, significantly lower insulin sensitivity, and physical fitness. They also had decreased levels of anti-inflammatory and increased levels of proinflammatory markers as well as an overall higher inflammation balance score. Fitness was associated with larger retinal arteriolar and narrower venular diameters and these relationships were mediated by insulin sensitivity. We demonstrate that inflammation also mediates the relationship between fitness and retinal venular, but not arterial diameter; insulin sensitivity and inflammation balance score jointly mediate this relationship with little overlap in their effects. Increasing fitness and insulin sensitivity and reducing inflammation among adolescents carrying excess weight may improve microvascular integrity. Interventions to improve physical fitness and insulin function and reduce inflammation in adolescents, a group likely to benefit from such interventions, may reduce not only cardiovascular disease in middle age, but also improve cerebrovascular function later in life.
Parainflammation, chronic inflammation and age-related macular degeneration
Chen, Mei; Xu, Heping
2016-01-01
Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978
Autophagy in immunity and inflammation
Levine, Beth; Mizushima, Noboru; Virgin, Herbert W.
2011-01-01
Autophagy is an essential, homeostatic process by which cells break down their own components. Perhaps the most primordial function of this lysosomal degradation pathway is adaptation to nutrient deprivation. However, in complex multicellular organisms, the core molecular machinery of autophagy — the ‘autophagy proteins’ — orchestrates diverse aspects of cellular and organismal responses to other dangerous stimuli such as infection. Recent developments reveal a crucial role for the autophagy pathway and proteins in immunity and inflammation. They balance the beneficial and detrimental effects of immunity and inflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases. PMID:21248839
Arpón, A; Riezu-Boj, J I; Milagro, F I; Marti, A; Razquin, C; Martínez-González, M A; Corella, D; Estruch, R; Casas, R; Fitó, M; Ros, E; Salas-Salvadó, J; Martínez, J A
2016-08-01
Epigenetic processes, including DNA methylation, might be modulated by environmental factors such as the diet, which in turn have been associated with the onset of several diseases such as obesity or cardiovascular events. Meanwhile, Mediterranean diet (MedDiet) has demonstrated favourable effects on cardiovascular risk, blood pressure, inflammation and other complications related to excessive adiposity. Some of these effects could be mediated by epigenetic modifications. Therefore, the objective of this study was to investigate whether the adherence to MedDiet is associated with changes in the methylation status from peripheral blood cells. A subset of 36 individuals was selected within the Prevención con Dieta Mediterránea (PREDIMED)-Navarra study, a randomised, controlled, parallel trial with three groups of intervention in high cardiovascular risk volunteers, two with a MedDiet and one low-fat control group. Changes in methylation between baseline and 5 years were studied. DNA methylation arrays were analysed by several robust statistical tests and functional classifications. Eight genes related to inflammation and immunocompetence (EEF2, COL18A1, IL4I1, LEPR, PLAGL1, IFRD1, MAPKAPK2, PPARGC1B) were finally selected as changes in their methylation levels correlated with adherence to MedDiet and because they presented sensitivity related to a high variability in methylation changes. Additionally, EEF2 methylation levels positively correlated with concentrations of TNF-α and CRP. This report is apparently the first showing that adherence to MedDiet is associated with the methylation of the reported genes related to inflammation with a potential regulatory impact.
Protectin D1n-3 DPA and resolvin D5n-3 DPA are effectors of intestinal protection
Gobbetti, Thomas; Dalli, Jesmond; Colas, Romain A.; Federici Canova, Donata; Aursnes, Marius; Bonnet, Delphine; Alric, Laurent; Vergnolle, Nathalie; Deraison, Celine; Hansen, Trond V.; Serhan, Charles N.
2017-01-01
The resolution of inflammation is an active process orchestrated by specialized proresolving lipid mediators (SPM) that limit the host response within the affected tissue; failure of effective resolution may lead to tissue injury. Because persistence of inflammatory signals is a main feature of chronic inflammatory conditions, including inflammatory bowel diseases (IBDs), herein we investigate expression and functions of SPM in intestinal inflammation. Targeted liquid chromatography-tandem mass spectrometry-based metabololipidomics was used to identify SPMs from n-3 polyunsaturated fatty acids in human IBD colon biopsies, quantifying a significant up-regulation of the resolvin and protectin pathway compared with normal gut tissue. Systemic treatment with protectin (PD)1n-3 DPA or resolvin (Rv)D5n-3 DPA protected against colitis and intestinal ischemia/reperfusion-induced inflammation in mice. Inhibition of 15-lipoxygenase activity reduced PD1n-3 DPA and augmented intestinal inflammation in experimental colitis. Intravital microscopy of mouse mesenteric venules demonstrated that PD1n-3 DPA and RvD5n-3 DPA decreased the extent of leukocyte adhesion and emigration following ischemia-reperfusion. These data were translated by assessing human neutrophil–endothelial interactions under flow: PD1n-3 DPA and RvD5n-3 DPA reduced cell adhesion onto TNF-α–activated human endothelial monolayers. In conclusion, we propose that innovative therapies based on n-3 DPA-derived mediators could be developed to enable antiinflammatory and tissue protective effects in inflammatory pathologies of the gut. PMID:28356517
Caulfield, Jasmine I.; Caruso, Michael J.; Michael, Kerry C.; Bourne, Rebecca A.; Chirichella, Nicole R.; Klein, Laura C.; Craig, Timothy; Bonneau, Robert H.; August, Avery; Cavigelli, Sonia A.
2017-01-01
Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7–57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) “Airway inflammation only”, allergen exposure 3 times/week, (2) “Labored breathing only”, methacholine exposure once/week, and (3) “Airway inflammation + Labored breathing”, allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ~20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ~30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ~50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. PMID:28284954
Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud
2013-12-01
The liver isoform of the enzyme alkaline phosphatase (AP) has been used classically as a serum biomarker for hepatic disease states such as hepatitis, steatosis, cirrhosis, drug-induced liver injury, and hepatocellular carcinoma. Recent studies have demonstrated a more general anti-inflammatory role for AP, as it is capable of dephosphorylating potentially deleterious molecules such as nucleotide phosphates, the pathogenic endotoxin lipopolysaccharide (LPS), and the contact clotting pathway activator polyphosphate (polyP), thereby reducing inflammation and coagulopathy systemically. Yet the mechanism underlying the observed increase in liver AP levels in circulation during inflammatory insults is largely unknown. This paper hypothesizes an immunological role for AP in the liver and the potential of this system for damping generalized inflammation along with a wide range of ancillary pathologies. Based on the provided framework, a mechanism is proposed in which AP undergoes transcytosis in hepatocytes from the canalicular membrane to the sinusoidal membrane during inflammation and the enzyme's expression is upregulated as a result. Through a tightly controlled, nucleotide-stimulated negative feedback process, AP is transported in this model as an immune complex with immunoglobulin G by the asialoglycoprotein receptor through the cell and secreted into the serum, likely using the receptor's State 1 pathway. The subsequent dephosphorylation of inflammatory stimuli by AP and uptake of the circulating immune complex by endothelial cells and macrophages may lead to decreased inflammation and coagulopathy while providing an early upstream signal for the induction of a number of anti-inflammatory gene products, including AP itself. © 2013.
Personalizing Protein Nourishment
DALLAS, DAVID C.; SANCTUARY, MEGAN R.; QU, YUNYAO; KHAJAVI, SHABNAM HAGHIGHAT; VAN ZANDT, ALEXANDRIA E.; DYANDRA, MELISSA; FRESE, STEVEN A.; BARILE, DANIELA; GERMAN, J. BRUCE
2016-01-01
Proteins are not equally digestible—their proteolytic susceptibility varies by their source and processing method. Incomplete digestion increases colonic microbial protein fermentation (putrefaction), which produces toxic metabolites that can induce inflammation in vitro and have been associated with inflammation in vivo. Individual humans differ in protein digestive capacity based on phenotypes, particularly disease states. To avoid putrefaction-induced intestinal inflammation, protein sources and processing methods must be tailored to the consumer’s digestive capacity. This review explores how food processing techniques alter protein digestibility and examines how physiological conditions alter digestive capacity. Possible solutions to improving digestive function or matching low digestive capacity with more digestible protein sources are explored. Beyond the ileal digestibility measurements of protein digestibility, less invasive, quicker and cheaper techniques for monitoring the extent of protein digestion and fermentation are needed to personalize protein nourishment. Biomarkers of protein digestive capacity and efficiency can be identified with the toolsets of peptidomics, metabolomics, microbial sequencing and multiplexed protein analysis of fecal and urine samples. By monitoring individual protein digestive function, the protein component of diets can be tailored via protein source and processing selection to match individual needs to minimize colonic putrefaction and, thus, optimize gut health. PMID:26713355
Autophagy and its implication in human oral diseases.
Tan, Ya-Qin; Zhang, Jing; Zhou, Gang
2017-02-01
Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.
Autophagy and its implication in human oral diseases
Tan, Ya-Qin; Zhang, Jing; Zhou, Gang
2017-01-01
ABSTRACT Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis. PMID:27764582
Severance, Emily G.; Yolken, Robert H.; Eaton, William W.
2014-01-01
Autoimmunity, gastrointestinal (GI) disorders and schizophrenia have been associated with one another for a long time. This paper reviews these connections and provides a context by which multiple risk factors for schizophrenia may be related. Epidemiological studies strongly link schizophrenia with autoimmune disorders including enteropathic celiac disease. Exposure to wheat gluten and bovine milk casein also contribute to non-celiac food sensitivities in susceptible individuals. Co-morbid GI inflammation accompanies humoral immunity to food antigens, occurs early during the course of schizophrenia and appears to be independent from antipsychotic-generated motility effects. This inflammation impacts endothelial barrier permeability and can precipitate translocation of gut bacteria into systemic circulation. Infection by the neurotropic gut pathogen, Toxoplasma gondii, will elicit an inflammatory GI environment. Such processes trigger innate immunity, including activation of complement C1q, which also functions at synapses in the brain. The emerging field of microbiome research lies at the center of these interactions with evidence that the abundance and diversity of resident gut microbiota contribute to digestion, inflammation, gut permeability and behavior. Dietary modifications of core bacterial compositions may explain inefficient gluten digestion and how immigrant status in certain situations is a risk factor for schizophrenia. Gut microbiome research in schizophrenia is in its infancy, but data in related fields suggest disease-associated altered phylogenetic compositions. In summary, this review surveys associative and experimental data linking autoimmunity, GI activity and schizophrenia, and proposes that understanding of disrupted biological pathways outside of the brain can lend valuable information regarding pathogeneses of complex, polygenic brain disorders. PMID:25034760
Severance, Emily G; Yolken, Robert H; Eaton, William W
2016-09-01
Autoimmunity, gastrointestinal (GI) disorders and schizophrenia have been associated with one another for a long time. This paper reviews these connections and provides a context by which multiple risk factors for schizophrenia may be related. Epidemiological studies strongly link schizophrenia with autoimmune disorders including enteropathic celiac disease. Exposure to wheat gluten and bovine milk casein also contribute to non-celiac food sensitivities in susceptible individuals. Co-morbid GI inflammation accompanies humoral immunity to food antigens, occurs early during the course of schizophrenia and appears to be independent from antipsychotic-generated motility effects. This inflammation impacts endothelial barrier permeability and can precipitate translocation of gut bacteria into systemic circulation. Infection by the neurotropic gut pathogen, Toxoplasma gondii, will elicit an inflammatory GI environment. Such processes trigger innate immunity, including activation of complement C1q, which also functions at synapses in the brain. The emerging field of microbiome research lies at the center of these interactions with evidence that the abundance and diversity of resident gut microbiota contribute to digestion, inflammation, gut permeability and behavior. Dietary modifications of core bacterial compositions may explain inefficient gluten digestion and how immigrant status in certain situations is a risk factor for schizophrenia. Gut microbiome research in schizophrenia is in its infancy, but data in related fields suggest disease-associated altered phylogenetic compositions. In summary, this review surveys associative and experimental data linking autoimmunity, GI activity and schizophrenia, and proposes that understanding of disrupted biological pathways outside of the brain can lend valuable information regarding pathogeneses of complex, polygenic brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Lactoferrin and oral diseases: current status and perspective in periodontitis
Berlutti, Francesca; Pilloni, Andrea; Pietropaoli, Miriam; Polimeni, Antonella; Valenti, Piera
2012-01-01
Summary Lactoferrin (Lf), an iron-binding glycoprotein able to chelate two ferric ions per molecule, is a component of human secretions synthesized by exocrine glands and neutrophils in infection/inflammation sites. Lactoferrin in saliva represents an important defence factor against bacterial injuries including those related to Streptococcus mutans and periodontopathic bacteria through its ability to decrease bacterial growth, biofilm development, iron overload, reactive oxygen formation and inflammatory processes. A growing body of research suggests that inflammatory periodontal disease involves a failure of resolution pathways to restore tissue homeostasis. There is an important distinction between anti-inflammation and resolution; anti-inflammation is pharmacologic intervention in inflammatory pathways, whereas resolution involves biologic pathways restoring inflammatory homeostasis. An appropriate regulation of pro-inflammatory cytokine synthesis might be useful in reducing periodontal tissue destruction. Recently, the multi-functional IL-6 is emerging as an important factor able to modulate bone, iron and inflammatory homeostasis. Here, we report an overview of Lf functions as well as for the first time Lf anti-inflammatory ability against periodontitis in in vitro model and observational clinical study. In in vitro model, represented by gingival fibroblasts infected with Prevotella intermedia, Lf exerted a potent anti-inflammatory activity. In the observational clinical trial performed through bovine Lf (bLf) topically administered to volunteers suffering from periodontitis, bLf decreased cytokines, including IL-6 in crevicular fluid, edema, bleeding, pocket depth, gingival and plaque index, thus improving clinical attachment levels. Even if other clinical trials are required, these results provide strong evidence for a instead of an therapeutic potential of this multifunctional natural protein. PMID:22545184
Xiao, C; Miller, A H; Felger, J; Mister, D; Liu, T; Torres, M A
2017-07-01
Psychosocial and inflammatory factors have been associated with fatigue in breast cancer survivors. Nevertheless, the relative contribution and/or interaction of these factors with cancer-related fatigue have not been well documented. This cross-sectional study enrolled 111 stage 0-III breast cancer patients treated with breast surgery followed by whole breast radiotherapy. Fatigue was measured by the total score of the Multidimensional Fatigue Inventory-20. Potential risk factors included inflammatory markers (plasma cytokines and their receptors and C-reactive protein; CRP), depressive symptoms (as assessed by the Inventory of Depressive Symptomatology-Self Reported), sleep (as assessed by the Pittsburgh Sleep Quality Index) and perceived stress (as assessed by the Perceived Stress Scale) as well as age, race, marital status, smoking history, menopause status, endocrine treatment, chemotherapy and cancer stage. Linear regression modeling was employed to examine risk factors of fatigue. Only risk factors with a significance level <0.10 were included in the initial regression model. A post-hoc mediation model using PROCESS SPSS was conducted to examine the association among depressive symptoms, sleep problems, stress, inflammation and fatigue. At 1 year post-radiotherapy, depressive symptoms (p<0.0001) and inflammatory markers (CRP: p = 0.015; interleukin-1 receptor antagonist: p = 0.014; soluble tumor necrosis factor receptor-2: p = 0.009 in separate models) were independent risk factors of fatigue. Mediation analysis showed that depressive symptoms also mediated the associations of fatigue with sleep and stress. Depressive symptoms and inflammation were independent risk factors for cancer-related fatigue at 1 year post-radiotherapy, and thus represent independent treatment targets for this debilitating symptom.
Kaur, Gaganpreet; Kaur, Maninder; Silakari, Om
2014-01-01
The recent research area endeavors to discover ultimate multi-target ligands, an increasingly feasible and attractive alternative to existing mono-targeted drugs for treatment of complex, multi-factorial inflammation process which underlays plethora of debilitated health conditions. In order to improvise this option, exploration of relevant chemical core scaffold will be an utmost need. Privileged benzimidazole scaffold being historically versatile structural motif could offer a viable starting point in the search for novel multi-target ligands against multi-factorial inflammation process since, when appropriately substituted, it can selectively modulate diverse receptors, pathways and enzymes associated with the pathogenesis of inflammation. Despite this remarkable capability, the multi-target capacity of the benzimidazole scaffold remains largely unexploited. With this in focus, the present review article attempts to provide synopsis of published research to exemplify the valuable use of benzimidazole nucleus and focus on their suitability as starting scaffold to develop multi-targeted anti-inflammatory ligands.
Gube, Monika; Kraus, Thomas; Lenz, Klaus; Reisgen, Uwe; Brand, Peter
2014-06-01
Do emissions from a resistance spot welding process of zinc-coated materials induce systemic inflammation in healthy subjects after exposure for 6 hours? Twelve healthy male subjects were exposed once for 6 hours either to filtered ambient air or to welding fume from resistance spot welding of zinc-coated material (mass concentration approximately 100 μg m). Biological effects were measured before, after, and 24 hours after exposure. At the concentrations used in this study, however, the suspected properties of ultrafine particles did not lead to systemic inflammation as reflected by high-sensitivity C-reactive protein or other endpoint parameters under consideration. Ultrafine particles from a resistance spot welding process of zinc-covered materials with a number concentration of about 10 cm and a mass concentration of about 100 μg m did not induce systemic inflammation.
The Choroid Plexus Functions as a Niche for T-Cell Stimulation Within the Central Nervous System
Strominger, Itai; Elyahu, Yehezqel; Berner, Omer; Reckhow, Jensen; Mittal, Kritika; Nemirovsky, Anna; Monsonego, Alon
2018-01-01
The choroid plexus (CP) compartment in the ventricles of the brain comprises fenestrated vasculature and, therefore, it is permeable to blood-borne mediators of inflammation. Here, we explored whether T-cell activation in the CP plays a role in regulating central nervous system (CNS) inflammation. We show that CD4 T cells injected into the lateral ventricles adhere to the CP, transmigrate across its epithelium, and undergo antigen-specific activation and proliferation. This process is enhanced following peripheral immune stimulation and significantly impacts the immune signaling induced by the CP. Ex vivo studies demonstrate that T-cell harboring the CP through its apical surface is a chemokine- and adhesion molecule-dependent process. We suggest that, within the CNS, the CP serves an immunological niche, which rapidly responds to peripheral inflammation and, thereby, promotes two-way T-cell trafficking that impact adaptive immunity in the CNS. PMID:29868025
Inflammation and immune system activation in aging: a mathematical approach.
Nikas, Jason B
2013-11-19
Memory and learning declines are consequences of normal aging. Since those functions are associated with the hippocampus, I analyzed the global gene expression data from post-mortem hippocampal tissue of 25 old (age ≥ 60 yrs) and 15 young (age ≤ 45 yrs) cognitively intact human subjects. By employing a rigorous, multi-method bioinformatic approach, I identified 36 genes that were the most significant in terms of differential expression; and by employing mathematical modeling, I demonstrated that 7 of the 36 genes were able to discriminate between the old and young subjects with high accuracy. Remarkably, 90% of the known genes from those 36 most significant genes are associated with either inflammation or immune system activation. This suggests that chronic inflammation and immune system over-activity may underlie the aging process of the human brain, and that potential anti-inflammatory treatments targeting those genes may slow down this process and alleviate its symptoms.
Kanda, Yusuke; Osaki, Mitsuhiko; Okada, Futoshi
2017-04-19
A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis.
Relation between inflammables and ignition sources in aircraft environments
NASA Technical Reports Server (NTRS)
Scull, Wilfred E
1951-01-01
A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and discussed. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings through which flame will not propagate are presented and discussed. Ignition temperatures and limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressures and minimum size of opening for flame propagation in gasoline-air mixtures are included; inerting of gasoline-air mixtures is discussed.
Chronic liver inflammation and hepatocellular carcinogenesis are independent of S100A9.
De Ponti, Aurora; Wiechert, Lars; Stojanovic, Ana; Longerich, Thomas; Marhenke, Silke; Hogg, Nancy; Vogel, Arndt; Cerwenka, Adelheid; Schirmacher, Peter; Hess, Jochen; Angel, Peter
2015-05-15
The S100A8/A9 heterodimer (calprotectin) acts as a danger signal when secreted into the extracellular space during inflammation and tissue damage. It promotes proinflammatory responses and drives tumor development in different models of inflammation-driven carcinogenesis. S100A8/A9 is strongly expressed in several human tumors, including hepatocellular carcinoma (HCC). Apart from this evidence, the role of calprotectin in hepatocyte transformation and tumor microenvironment is still unknown. The aim of this study was to define the function of S100A8/A9 in inflammation-driven HCC. Mice lacking S100a9 were crossed with the Mdr2(-/-) model, a prototype of inflammation-induced HCC formation. S100a9(-/-) Mdr2(-/-) (dKO) mice displayed no significant differences in tumor incidence or multiplicity compared to Mdr2(-/-) animals. Chronic liver inflammation, fibrosis and oval cell activation were not affected upon S100a9 deletion. Our data demonstrate that, although highly upregulated, calprotectin is dispensable in the onset and development of HCC, and in the maintenance of liver inflammation. © 2014 UICC.
Gonkowski, Slawomir; Makowska, Krystyna; Calka, Jaroslaw
2018-05-24
The enteric nervous system (ENS), located in the intestinal wall and characterized by considerable independence from the central nervous system, consists of millions of cells. Enteric neurons control the majority of functions of the gastrointestinal tract using a wide range of substances, which are neuromediators and/or neuromodulators. One of them is leucine-enkephalin (leuENK), which belongs to the endogenous opioid family. It is known that opioids in the gastrointestinal tract have various functions, including visceral pain conduction, intestinal motility and secretion and immune processes, but many aspects of distribution and function of leuENK in the ENS, especially during pathological states, remain unknown. During this experiment, the distribution of leuENK - like immunoreactive (leuENK-LI) nervous structures using the immunofluorescence technique were studied in the porcine colon in physiological conditions, during chemically-induced inflammation and after axotomy. The study included the circular muscle layer, myenteric (MP), outer submucous (OSP) and inner submucous plexus (ISP) and the mucosal layer. In control animals, the number of leuENK-LI neurons amounted to 4.86 ± 0.17%, 2.86 ± 0.28% and 1.07 ± 0.08% in the MP, OSP and ISP, respectively. Generally, both pathological stimuli caused an increase in the number of detected leuENK-LI cells, but the intensity of the observed changes depended on the factor studied and part of the ENS. The percentage of leuENK-LI perikarya amounted to 11.48 ± 0.96%, 8.71 ± 0.13% and 9.40 ± 0.76% during colitis, and 6.90 ± 0.52% 8.46 ± 12% and 4.48 ± 0.44% after axotomy in MP, OSP and ISP, respectively. Both processes also resulted in an increase in the number of leuENK-LI nerves in the circular muscle layer, whereas changes were less visible in the mucosa during inflammation and axotomy did not change the number of leuENK-LI mucosal fibers. LeuENK in the ENS takes part in intestinal regulatory processes not only in physiological conditions, but also under pathological factors. The observed changes are probably connected with the participation of leuENK in sensory and motor innervation and the neuroprotective effects of this substance. Differences in the number of leuENK-LI neurons during inflammation and after axotomy may suggest that the exact functions of leuENK probably depend on the type of pathological factor acting on the intestine.
Metabolic Syndrome, Inflammation and Lower Urinary Tract Symptoms – Possible Translational Links
He, Qiqi; Wang, Zhiping; Liu, Guiming; Daneshgari, Firouz; MacLennan, Gregory T.; Gupta, Sanjay
2015-01-01
Background Epidemiological data suggest that lower urinary tract symptoms (LUTS) may be associated with metabolic syndrome (MetS). Inflammation has been proposed as a candidate mechanism at the crossroad between these two clinical entities. The aim of this review article is to evaluate the role of MetS-induced inflammation in the pathogenesis and progression of LUTS. Methods A systematic review was conducted using the keywords ‘metabolic syndrome AND lower urinary tract symptoms’ within the title search engines including PubMed, Web of Science, and the Cochrane Library for relevant research work published between 2000 and January 2015. The obtained literature was reviewed by the primary author (QH) and was assessed for eligibility and standard level of evidence. Results Total of 52 articles met the eligibility criteria. Based on database search during the past 15 years and our systematic review of prospective and retrospective cohorts, case-control trials, observational studies and animal data identified a possible link between MetS-induced inflammation and LUTS including benign prostatic hyperplasia, bladder outlet obstruction, overactive bladder, urinary incontinence and others possible urinary tract abnormalities. Conclusions There is convincing evidence to suggest that MetS and inflammation could be important contributors to LUTS in men, particularly in the development of benign prostatic hyperplasia. However, the role of MetS-induced inflammation remains unclear in overactive bladder, urinary incontinence and etiology of LUTS progression. PMID:26391088
Bleau, Christian; Karelis, Antony D; St-Pierre, David H; Lamontagne, Lucie
2015-09-01
Obesity is associated with a systemic chronic low-grade inflammation that contributes to the development of metabolic disorders such as cardiovascular diseases and type 2 diabetes. However, the etiology of this obesity-related pro-inflammatory process remains unclear. Most studies have focused on adipose tissue dysfunctions and/or insulin resistance in skeletal muscle cells as well as changes in adipokine profile and macrophage recruitment as potential sources of inflammation. However, low-grade systemic inflammation probably involves a complex network of signals interconnecting several organs. Recent evidences have suggested that disturbances in the composition of the gut microbial flora and alterations in levels of gut peptides following the ingestion of a high-fat diet may be a cause of low-grade systemic inflammation that may even precede and predispose to obesity, metabolic disorders or type 2 diabetes. This hypothesis is appealing because the gastrointestinal system is first exposed to nutrients and may thereby represent the first link in the chain of events leading to the development of obesity-associated systemic inflammation. Therefore, the present review will summarize the latest advances interconnecting intestinal mucosal bacteria-mediated inflammation, adipose tissue and skeletal muscle in a coordinated circuitry favouring the onset of a high-fat diet-related systemic low-grade inflammation preceding obesity and predisposing to metabolic disorders and/or type 2 diabetes. A particular emphasis will be given to high-fat diet-induced alterations of gut homeostasis as an early initiator event of mucosal inflammation and adverse consequences contributing to the promotion of extended systemic inflammation, especially in adipose and muscular tissues. Copyright © 2014 John Wiley & Sons, Ltd.
GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease
McKenzie, Brent S.
2016-01-01
Kawasaki disease (KD) is the leading cause of pediatric heart disease in developed countries. KD patients develop cardiac inflammation, characterized by an early infiltrate of neutrophils and monocytes that precipitates coronary arteritis. Although the early inflammatory processes are linked to cardiac pathology, the factors that regulate cardiac inflammation and immune cell recruitment to the heart remain obscure. In this study, using a mouse model of KD (induced by a cell wall Candida albicans water-soluble fraction [CAWS]), we identify an essential role for granulocyte/macrophage colony-stimulating factor (GM-CSF) in orchestrating these events. GM-CSF is rapidly produced by cardiac fibroblasts after CAWS challenge, precipitating cardiac inflammation. Mechanistically, GM-CSF acts upon the local macrophage compartment, driving the expression of inflammatory cytokines and chemokines, whereas therapeutically, GM-CSF blockade markedly reduces cardiac disease. Our findings describe a novel role for GM-CSF as an essential initiating cytokine in cardiac inflammation and implicate GM-CSF as a potential target for therapeutic intervention in KD. PMID:27595596
Smith, Milo R.; Burman, Poromendro
2016-01-01
Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders. PMID:28101530
Otálora-Ardila, Aída; Herrera M., L. Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C.
2016-01-01
Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140–185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform. PMID:27792729
Otálora-Ardila, Aída; Herrera M, L Gerardo; Flores-Martínez, José Juan; Welch, Kenneth C
2016-01-01
Inflammation and activation of the acute phase response (APR) are energetically demanding processes that protect against pathogens. Phytohaemagglutinin (PHA) and lipopolysaccharide (LPS) are antigens commonly used to stimulate inflammation and the APR, respectively. We tested the hypothesis that the APR after an LPS challenge was energetically more costly than the inflammatory response after a PHA challenge in the fish-eating Myotis bat (Myotis vivesi). We measured resting metabolic rate (RMR) after bats were administered PHA and LPS. We also measured skin temperature (Tskin) after the LPS challenge and skin swelling after the PHA challenge. Injection of PHA elicited swelling that lasted for several days but changes in RMR and body mass were not significant. LPS injection produced a significant increase in Tskin and in RMR, and significant body mass loss. RMR after LPS injection increased by 140-185% and the total cost of the response was 6.50 kJ. Inflammation was an energetically low-cost process but the APR entailed a significant energetic investment. Examination of APR in other bats suggests that the way in which bats deal with infections might not be uniform.
Bruschetta, Giuseppe; Impellizzeri, Daniela; Morabito, Rossana; Marino, Angela; Ahmad, Akbar; Spanò, Nunziacarla; La Spada, Giuseppa; Cuzzocrea, Salvatore; Esposito, Emanuela
2014-01-01
Cnidarian toxins represent a rich source of biologically active compounds. Since they may act via oxidative stress events, the aim of the present study was to verify whether crude venom, extracted from the jellyfish Pelagia noctiluca, elicits inflammation and oxidative stress processes, known to be mediated by Reactive Oxygen Species (ROS) production, in rats. In a first set of experiments, the animals were injected with crude venom (at three different doses 6, 30 and 60 µg/kg, suspended in saline solution, i.v.) to test the mortality and possible blood pressure changes. In a second set of experiments, to confirm that Pelagia noctiluca crude venom enhances ROS formation and may contribute to the pathophysiology of inflammation, crude venom-injected animals (30 µg/kg) were also treated with tempol, a powerful antioxidant (100 mg/kg i.p., 30 and 60 min after crude venom). Administration of tempol after crude venom challenge, caused a significant reduction of each parameter related to inflammation. The potential effect of Pelagia noctiluca crude venom in the systemic inflammation process has been here demonstrated, adding novel information about its biological activity. PMID:24727391
Major Depressive Disorder Following Dermatomyositis: A Case Linking Depression with Inflammation.
Reddy, Abhishek; Birur, Badari; Shelton, Richard C; Li, Li
2018-03-13
Major depressive disorder (MDD) is one of the most common psychiatric disorders. Recent studies have shown a strong association between MDD and peripheral inflammation, shown by a higher incidence of depression in patients with inflammatory diseases including rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis and systemic lupus erythematosus. Dermatomyositis (DM), an idiopathic inflammatory connective tissue disease that is associated with inflammation, predominantly affects the skin and skeletal muscle. The association between DM and MDD in the context of inflammation has seldom been reported. Here we report a 30- year- old Caucasian female with symptoms of depression dating back to 2 years. These symptoms started after cutaneous manifestations of DM. In the past two years, her DM symptoms have worsened that paralleled an increase of depressive symptoms. Also, during the course of the patient's DM, we tracked elevated inflammatory markers including creatine kinase and aldolase, whereas C-reactive protein, C3, and C4 were in a high normal range which correlated with worsening of depression. Hence, a temporal relationship between the onset of MDD and DM symptoms suggests that inflammation may be a common mechanism linking these two conditions.
Therapeutic Role of Hematopoietic Stem Cells in Autism Spectrum Disorder-Related Inflammation
Siniscalco, Dario; Bradstreet, James Jeffrey; Antonucci, Nicola
2013-01-01
Autism and autism spectrum disorders (ASDs) are heterogeneous, severe neuro-developmental disorders with core symptoms of dysfunctions in social interactions and communication skills, restricted interests, repetitive – stereotypic verbal and non-verbal behaviors. Biomolecular evidence points to complex gene-environmental interactions in ASDs. Several biochemical processes are associated with ASDs: oxidative stress (including endoplasmic reticulum stress), decreased methylation capacity, limited production of glutathione; mitochondrial dysfunction, intestinal dysbiosis, increased toxic metal burden, and various immune abnormalities. The known immunological disorders include: T-lymphocyte populations and function, gene expression changes in monocytes, several autoimmune-related findings, high levels of N-acetylgalactosaminidase (which precludes macrophage activation), and primary immune deficiencies. These immunological observations may result in minicolumn structural changes in the brain, as well as, abnormal immune mediation of synaptic functions. Equally, these immune dysregulations serve as the rationale for immune-directed interventions such as hematopoietic stem cells (HSCs), which are pivotal in controlling chronic inflammation and in the restoration of immunological balance. These properties make them intriguing potential agents for ASD treatments. This prospective review will focus on the current state-of-the-art knowledge and challenges intrinsic in the application of HSCs for ASD-related immunological disorders. PMID:23772227
Pathogenesis of Pancreatic Cancer: Lessons from Animal Models
Murtaugh, L. Charles
2014-01-01
The past several decades have seen great effort devoted to mimicking the key features of pancreatic ductal adenocarcinoma (PDAC) in animals, and have produced two robust models of this deadly cancer. Carcinogen-treated Syrian hamsters develop PDAC with genetic lesions that reproduce those of human, including activation of the Kras oncogene, and early studies in this species validated non-genetic risk factors for PDAC including pancreatitis, obesity and diabetes. More recently, PDAC research has been invigorated by the development of genetically-engineered mouse models based on tissue-specific Kras activation and deletion of tumor suppressor genes. Surprisingly, mouse PDAC appears to arise from exocrine acinar rather than ductal cells, via a process of phenotypic reprogramming that is accelerated by inflammation. Studies in both models have uncovered molecular mechanisms by which inflammation promotes and sustains PDAC, and identified targets for chemoprevention to suppress PDAC in high-risk individuals. The mouse model, in particular, has also been instrumental in developing new approaches to early detection as well as treatment of advanced disease. Together, animal models enable diverse approaches to basic and preclinical research on pancreatic cancer, the results of which will accelerate progress against this currently intractable cancer. PMID:24178582
[Etiopathogenic aspects in development and evolution of pterigyum].
Crăiţoiu, Stefania; Ciprian, Livezeanu; Rodica, Mănescu; Mihai, Afrem; Anca, Eremia Irina
2008-01-01
Pterygium is an epithelial hyperplasia accompanied by a fibrovascular growth originating at the corneo-conjunctival junction, from where the modified limbic cells migrate and surpass the cornea. The studies reviewed show that it is an active process associated with cell growth, remodelling of the connective tissue, angiogenesis and inflammation. Despite the lack of knowledge regarding the pathogenesis of pterygia, epidemiologic evidence suggests that exposure to UV-irradiation may be an initial trigger in the development of this lesion. Other theories include changes of the apoptotic pathway the presence of some active angiogenetic factors or involvement of the MMPs, cytokines and growths factors. UV light could be the initial trigger that activates epithelial cells at or near the limbus to produce cytokines such as IL-6 and IL-8 and growth factors. These multifactorial proteins set up a cascade of events that include inflammation, proliferation, angiogenesis and antiapoptosis. Cytokines are able to induce the expression of MMPs and their tissue inhibitors (TIMPs) making it likely that they would also affect the rate of tissue remodeling, such as destruction of Bowman's membrane and the invasion of pterygium. In the etiology of pterygium abnormalities in tear functions have also been emphasized.
Targeting pro-resolution pathways to combat chronic inflammation in COPD
Anthony, Desiree; Vlahos, Ross
2014-01-01
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung condition that is associated with irreversible airflow obstruction as a consequence of small airways disease, excessive mucus production and emphysema. Paradoxically, excessive inflammation fails to control microbial pathogens that not only colonise COPD airways, but also trigger acute exacerbations, which markedly increase inflammation underlying host tissue damage. Excessive production of leukocyte mobilising cytokines such as CXCL8 (IL-8) and leukotriene B4 (LTB4) in response to environmental stimuli (cigarette smoke and microbial products) are thought to maintain chronic inflammation, in conjunction with inefficient macrophage clearance of microbes and apoptotic neutrophils. In this perspective, we discuss an alternative view on why inflammation persists with a focus on why pro-resolution mediators such as lipoxin A4 (LXA4), D-series resolving and Annexin A1 fail to effectively switch off inflammation in COPD. These pro-resolving mediators converge on the G-protein coupled receptor, ALX/FPR2. This receptor is particularly relevant to COPD as the complex milieu of exogenous and host-derived mediators within the inflamed airways include agonists that potently activate ALX/FPR2, including Serum Amyloid A (SAA) and the cathelicidin, LL-37. There is emerging evidence to suggest that ALX/FPR2 can exist in alternative receptor conformations in an agonist-biased manner, which facilitates alternate functional receptor behaviors. Hence, the development of more stable pro-resolving analogs provides therapeutic opportunities to address ALX/FPR2 conformations to counteract pathogenic signaling and promote non-phlogistic clearance pathways essential for resolution of inflammation. PMID:25478196
Targeting pro-resolution pathways to combat chronic inflammation in COPD.
Bozinovski, Steven; Anthony, Desiree; Vlahos, Ross
2014-11-01
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung condition that is associated with irreversible airflow obstruction as a consequence of small airways disease, excessive mucus production and emphysema. Paradoxically, excessive inflammation fails to control microbial pathogens that not only colonise COPD airways, but also trigger acute exacerbations, which markedly increase inflammation underlying host tissue damage. Excessive production of leukocyte mobilising cytokines such as CXCL8 (IL-8) and leukotriene B4 (LTB4) in response to environmental stimuli (cigarette smoke and microbial products) are thought to maintain chronic inflammation, in conjunction with inefficient macrophage clearance of microbes and apoptotic neutrophils. In this perspective, we discuss an alternative view on why inflammation persists with a focus on why pro-resolution mediators such as lipoxin A4 (LXA4), D-series resolving and Annexin A1 fail to effectively switch off inflammation in COPD. These pro-resolving mediators converge on the G-protein coupled receptor, ALX/FPR2. This receptor is particularly relevant to COPD as the complex milieu of exogenous and host-derived mediators within the inflamed airways include agonists that potently activate ALX/FPR2, including Serum Amyloid A (SAA) and the cathelicidin, LL-37. There is emerging evidence to suggest that ALX/FPR2 can exist in alternative receptor conformations in an agonist-biased manner, which facilitates alternate functional receptor behaviors. Hence, the development of more stable pro-resolving analogs provides therapeutic opportunities to address ALX/FPR2 conformations to counteract pathogenic signaling and promote non-phlogistic clearance pathways essential for resolution of inflammation.
Gao, Mingming; Ma, Yongjie; Liu, Dexi
2013-11-01
To elucidate the mechanism of rutin in blocking macrophage-mediated inflammation and high fat diet-induced obesity and fatty liver. Both in vitro and in vivo approaches were taken in evaluating the effects of rutin on palmitic acids-triggered inflammation in cultured macrophages, and on weight gain and development of fatty liver of mice fed a high fat diet. Palmitic acids increase mRNA levels of pro-inflammatory cytokines, and elevate the production of TNFα in cultured macrophages. Pre-exposure of rutin to cells greatly suppressed these elevations. The suppressed inflammation by rutin was correlated with a decrease in transcription of genes responsible for ER stress and production of reactive oxygen species. In vivo, rutin protects mice from high fat diet-induced obesity, fatty liver and insulin resistance. The protective effects were associated with lack of hypertrophy and crown-like structures in the white adipose tissue, decreased mRNA levels of marker genes for macrophages including F4/80, Cd11c and Cd68, and repressed transcription of genes involved in chronic inflammation such as Mcp1 and Tnfα in white adipose tissue. In addition, rutin increases the expression of genes responsible for energy expenditure in brown adipose tissue including Pgc1α and Dio2. Furthermore, rutin suppresses transcription of Srebp1c and Cd36 in the liver, leading to a blockade of fatty liver development. These results suggest that supplementation of rutin is a promising strategy for blocking macrophage-mediated inflammation and inflammation-induced obesity and its associated complications.
Lee, Byung-Cheol; Lee, Jongsoon
2014-03-01
There is increasing evidence showing that inflammation is an important pathogenic mediator of the development of obesity-induced insulin resistance. It is now generally accepted that tissue-resident immune cells play a major role in the regulation of this obesity-induced inflammation. The roles that adipose tissue (AT)-resident immune cells play have been particularly extensively studied. AT contains most types of immune cells and obesity increases their numbers and activation levels, particularly in AT macrophages (ATMs). Other pro-inflammatory cells found in AT include neutrophils, Th1 CD4 T cells, CD8 T cells, B cells, DCs, and mast cells. However, AT also contains anti-inflammatory cells that counter the pro-inflammatory immune cells that are responsible for the obesity-induced inflammation in this tissue. These anti-inflammatory cells include regulatory CD4 T cells (Tregs), Th2 CD4 T cells, and eosinophils. Hence, AT inflammation is shaped by the regulation of pro- and anti-inflammatory immune cell homeostasis, and obesity skews this balance towards a more pro-inflammatory status. Recent genetic studies revealed several molecules that participate in the development of obesity-induced inflammation and insulin resistance. In this review, the cellular and molecular players that participate in the regulation of obesity-induced inflammation and insulin resistance are discussed, with particular attention being placed on the roles of the cellular players in these pathogeneses. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Background. Chronic systemic low-grade inflammation in obese subjects is associated with health complications including cardiovascular diseases, insulin resistance and diabetes. Reducing inflammatory responses may reduce these risks. However, available markers of inflammatory status inadequately des...
Wiseman, Stewart; Marlborough, Fergal; Doubal, Fergus; Webb, David J; Wardlaw, Joanna
2014-01-01
The cause of cerebral small vessel disease is not fully understood, yet it is important, accounting for about 25% of all strokes. It also increases the risk of having another stroke and contributes to about 40% of dementias. Various processes have been implicated, including microatheroma, endothelial dysfunction and inflammation. A previous review investigated endothelial dysfunction in lacunar stroke versus mostly non-stroke controls while another looked at markers of inflammation and endothelial damage in ischaemic stroke in general. We have focused on blood markers between clinically evident lacunar stroke and other subtypes of ischaemic stroke, thereby controlling for stroke in general. We systematically assessed the literature for studies comparing blood markers of coagulation, fibrinolysis, endothelial dysfunction and inflammation in lacunar stroke versus non-stroke controls or other ischaemic stroke subtypes. We assessed the quality of included papers and meta-analysed results. We split the analysis on time of blood draw in relation to the stroke. We identified 1,468 full papers of which 42 were eligible for inclusion, including 4,816 ischaemic strokes, of which 2,196 were lacunar and 2,500 non-stroke controls. Most studies subtyped stroke using TOAST. The definition of lacunar stroke varied between studies. Markers of coagulation/fibrinolysis (tissue plasminogen activator (tPA), plasminogen activator inhibitor (PAI), fibrinogen, D-dimer) were higher in lacunar stroke versus non-stroke although fibrinogen was no different to non-stroke in the acute phase. tPA and PAI were no different between lacunar and non-lacunar stroke. Fibrinogen and D-dimer were significantly lower in lacunar stroke compared to other ischaemic strokes, both acutely and chronically. Markers of endothelial dysfunction (homocysteine, von Willebrand Factor (vWF), E-selectin, P-selectin, intercellular adhesion molecule-1 (ICAM), vascular cellular adhesion molecule-1 (VCAM)) were higher or had insufficient or conflicting data (P-selectin, VCAM) in lacunar stroke versus non-stroke. Compared to other ischaemic stroke subtypes, homocysteine did not differ in lacunar stroke while vWF was significantly lower in lacunar stroke acutely [atherothrombotic standardized mean difference, SMD, -0.34 (-0.61, -0.08); cardioembolic SMD -0.38 (-0.62, -0.14)], with insufficient data chronically. Markers of inflammation (C-reactive protein (CRP), tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6)) were higher in lacunar stroke versus non-stroke, although there were no studies measuring TNF-α chronically and the sole study measuring IL-6 chronically showed no difference between lacunar stroke and non-stroke. Compared to other ischaemic stroke subtypes, there was no difference (CRP) or insufficient or conflicting data (TNF-α) to lacunar stroke. IL-6 was significantly lower [atherothrombotic SMD -0.37 (-0.63, -0.10); cardioembolic SMD -0.52 (-0.82, -0.22)] in lacunar stroke acutely, with insufficient data chronically. Lacunar stroke is an important stroke subtype. More studies comparing lacunar stroke to non-lacunar stroke specifically, rather than to non-stroke controls, are needed. Prospective studies with measurements taken well after the acute event are more likely to be helpful in determining pathogenesis. The available data in this review were limited and do not exclude the possibility that peripheral inflammatory processes including endothelial dysfunction are associated with lacunar stroke and cerebral small vessel disease. © 2013 S. Karger AG, Basel
Systemic inflammation and resting state connectivity of the default mode network.
Marsland, Anna L; Kuan, Dora C-H; Sheu, Lei K; Krajina, Katarina; Kraynak, Thomas E; Manuck, Stephen B; Gianaros, Peter J
2017-05-01
The default mode network (DMN) encompasses brain systems that exhibit coherent neural activity at rest. DMN brain systems have been implicated in diverse social, cognitive, and affective processes, as well as risk for forms of dementia and psychiatric disorders that associate with systemic inflammation. Areas of the anterior cingulate cortex (ACC) and surrounding medial prefrontal cortex (mPFC) within the DMN have been implicated specifically in regulating autonomic and neuroendocrine processes that relate to systemic inflammation via bidirectional signaling mechanisms. However, it is still unclear whether indicators of inflammation relate directly to coherent resting state activity of the ACC, mPFC, or other areas within the DMN. Accordingly, we tested whether plasma interleukin (IL)-6, an indicator of systemic inflammation, covaried with resting-state functional connectivity of the DMN among 98 adults aged 30-54 (39% male; 81% Caucasian). Independent component analyses were applied to resting state fMRI data to generate DMN connectivity maps. Voxel-wise regression analyses were then used to test for associations between IL-6 and DMN connectivity across individuals, controlling for age, sex, body mass index, and fMRI signal motion. Within the DMN, IL-6 covaried positively with connectivity of the sub-genual ACC and negatively with a region of the dorsal medial PFC at corrected statistical thresholds. These novel findings offer evidence for a unique association between a marker of systemic inflammation (IL-6) and ACC and mPFC functional connectivity within the DMN, a network that may be important for linking aspects of immune function to psychological and behavioral states in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Tossa, Paul; Bohadana, Abraham; Demange, Valérie; Wild, Pascal; Michaely, Jean-Pierre; Hannhart, Bernard; Paris, Christophe; Zmirou-Navier, Denis
2009-01-01
Background Occupational asthma is a common type of asthma caused by a specific agent in the workplace. The basic alteration of occupational asthma is airways inflammation. Although most patients with occupational asthma are mature adults, there is evidence that airways inflammation starts soon after inception of exposure, including during apprenticeship. Airways hyper responsiveness to methacholine is a valid surrogate marker of airways inflammation, which has proved useful in occupational epidemiology. But it is time-consuming, requires active subject's cooperation and is not readily feasible. Other non-invasive and potentially more useful tests include the forced oscillation technique, measurement of fraction exhaled nitric oxide, and eosinophils count in nasal lavage fluid. Methods and design This study aims to investigate early development of airways inflammation and asthma-like symptoms in apprentice bakers, pastry-makers and hairdressers, three populations at risk of occupational asthma whose work-related exposures involve agents of different nature. The objectives are to (i) examine the performance of the non-invasive tests cited above in detecting early airways inflammation that might eventually develop into occupational asthma; and (ii) evaluate whether, and how, constitutional (e.g. atopy) and behavioural (e.g. smoking) risk factors for occupational asthma modulate the effects of allergenic and/or irritative substances involved in these occupations. This paper presents the study rationale and detailed protocol. Discussion Among 441 volunteers included at the first visit, 354 attended the fourth one. Drop outs were investigated and showed unrelated to the study outcome. Sample size and follow-up participation rates suggest that the data collected in this study will allow it to meet its objectives. PMID:19389222
Tossa, Paul; Bohadana, Abraham; Demange, Valérie; Wild, Pascal; Michaely, Jean-Pierre; Hannhart, Bernard; Paris, Christophe; Zmirou-Navier, Denis
2009-04-23
Occupational asthma is a common type of asthma caused by a specific agent in the workplace. The basic alteration of occupational asthma is airways inflammation. Although most patients with occupational asthma are mature adults, there is evidence that airways inflammation starts soon after inception of exposure, including during apprenticeship. Airways hyper responsiveness to methacholine is a valid surrogate marker of airways inflammation, which has proved useful in occupational epidemiology. But it is time-consuming, requires active subject's cooperation and is not readily feasible. Other non-invasive and potentially more useful tests include the forced oscillation technique, measurement of fraction exhaled nitric oxide, and eosinophils count in nasal lavage fluid. This study aims to investigate early development of airways inflammation and asthma-like symptoms in apprentice bakers, pastry-makers and hairdressers, three populations at risk of occupational asthma whose work-related exposures involve agents of different nature. The objectives are to (i) examine the performance of the non-invasive tests cited above in detecting early airways inflammation that might eventually develop into occupational asthma; and (ii) evaluate whether, and how, constitutional (e.g. atopy) and behavioural (e.g. smoking) risk factors for occupational asthma modulate the effects of allergenic and/or irritative substances involved in these occupations. This paper presents the study rationale and detailed protocol. Among 441 volunteers included at the first visit, 354 attended the fourth one. Drop outs were investigated and showed unrelated to the study outcome. Sample size and follow-up participation rates suggest that the data collected in this study will allow it to meet its objectives.
[The way of self-defence of the organism: inflammation].
Jakab, Lajos
2013-08-11
The acute and chronic constitutional reactions of the organism elicited by sterile causes and pathogenic structures threatening the soundness of the organism are surveyed by the author. It is emphasized that depending on causes which can be very different, there are various syndromes occurring in the clinical practice. On the basis of multitudiness of pathogenic factors and individual differences, the infammatory reactions are clinically, pathologically and pathobiochemically can be hugely variable. The acute inflammatory response may be sterile. It is often difficult to recognize in these processes whether the inflammation is harmful or beneficial for the organism as a whole. It is possible that the inflammatory response itself is the defending resource of the individual. The non-sterile acute inflammation is evoked by pathogenic microorganisms. The variety of clinical syndromes are explained by the high diversity of pathogenic microbes, the individualities of the defending organisms, and the natural and adaptive immunity of the organism which may be intact or possibly defective. In the latter case the inflammation itself is the disease, as a consequence of a pathological process conducted by the cortico-hypothalamo-adernal axis. The acute inflammation is a defending, preventing and repairing process, constituting an important part of the natural innate immune response. It is inseparable from the natural innate immune response, which is in close cooperation with the adaptive, specific immune response with mutual effects on each of the other. The conductor and the response reactions of the two immune responses are also the same. There are alterations in serum proteins/glycoproteins synthesized mostly by the hepatocytes. Because the concentration of almost all proteins/glycoproteins may change, the use of the discriminative term "acute phase reactant" is hardly relevant. For example, the HDL molecule is a negative "acute phase reactant". On the gound of clinical, pathological and biochemical caracteristics, the chronic sterile inflammation is a very different entity. It has been established that atherosclerosis is one of the ab origine chronic inflammatory syndrome. It is a long-lasting pathological entity progressing, rather than resolving with different celerity, namely a unique vasculitis syndrome. We are speaking about risk factors instead of causes, which constitute larger or smaller groups to elicite the preventing reaction of the host. The propagations and final outcomes are quite different from that of the acute process. The disadvantages or benefits for the organism are scarcely predictable, albeit the chronic process may have roles in its prolonged nature.
Vallée, Alexandre; Lecarpentier, Yves
2018-01-01
Inflammation and oxidative stress are common and co-substantial pathological processes accompanying, promoting, and even initiating numerous cancers. The canonical WNT/β-catenin pathway and peroxisome proliferator-activated receptor gamma (PPARγ) generally work in opposition. If one of them is upregulated, the other one is downregulated and vice versa. WNT/β-catenin signaling is upregulated in inflammatory processes and oxidative stress and in many cancers, although there are some exceptions for cancers. The opposite is observed with PPARγ, which is generally downregulated during inflammation and oxidative stress and in many cancers. This helps to explain in part the opposite and unidirectional profile of the canonical WNT/β-catenin signaling and PPARγ in these three frequent and morbid processes that potentiate each other and create a vicious circle. Many intracellular pathways commonly involved downstream will help maintain and amplify inflammation, oxidative stress, and cancer. Thus, many WNT/β-catenin target genes such as c-Myc, cyclin D1, and HIF-1α are involved in the development of cancers. Nuclear factor-kappaB (NFκB) can activate many inflammatory factors such as TNF-α, TGF-β, interleukin-6 (IL-6), IL-8, MMP, vascular endothelial growth factor, COX2, Bcl2, and inducible nitric oxide synthase. These factors are often associated with cancerous processes and may even promote them. Reactive oxygen species (ROS), generated by cellular alterations, stimulate the production of inflammatory factors such as NFκB, signal transducer and activator transcription, activator protein-1, and HIF-α. NFκB inhibits glycogen synthase kinase-3β (GSK-3β) and therefore activates the canonical WNT pathway. ROS activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling in many cancers. PI3K/Akt also inhibits GSK-3β. Many gene mutations of the canonical WNT/β-catenin pathway giving rise to cancers have been reported (CTNNB1, AXIN, APC). Conversely, a significant reduction in the expression of PPARγ has been observed in many cancers. Moreover, PPARγ agonists promote cell cycle arrest, cell differentiation, and apoptosis and reduce inflammation, angiogenesis, oxidative stress, cell proliferation, invasion, and cell migration. All these complex and opposing interactions between the canonical WNT/β-catenin pathway and PPARγ appear to be fairly common in inflammation, oxidative stress, and cancers. PMID:29706964
Li, Wenjing; Liu, Ting; Xiong, Yingluo; Lv, Jiaoyan; Cui, Xinyi; He, Rui
2018-06-05
BLT1, the primary functional receptor of Leukotriene B4 (LTB4), is involved in tissue inflammation by mediating leukocyte recruitment, and recently LTB4-dependent inflammation was reported to promote lung tumor growth. Exposure to diesel exhaust particle (DEP), the major component of particulate matter 2.5 (PM 2.5 ), can elicit lung inflammation, which may increase the risk of lung cancer. However, it remains unknown about the critical factors mediating DEP-induced lung inflammation and the subsequent effect on tumor metastasis. In this study, we found that DEP exposure led to acute lung inflammation, characterized by abundant infiltration of neutrophils and elevated lung levels in LTB4, as well as several pro-inflammatory cytokines and chemokines, including IL-1β, IL-6, TNF-α, CXCL1/2. Furthermore, DEP exposure promoted lung metastasis of 3LL and 4T1 cells. BLT1 blockade by its specific antagonist U75302 significantly inhibited neutrophilic lung inflammation following DEP exposure. Importantly, BLT1 blockade before the onset of inflammation significantly reduced DEP-enhanced lung metastasis, which was associated with greatly decreased infiltrating neutrophils in lungs. Interestingly, BLT1 blockade after the occurrence of lung metastases had no effect on the magnitude of lung metastasis, suggesting that inhibition of BLT1-mediated lung inflammation was insufficient to suppress established metastatic tumor. Administration of BLT2 inhibitor LY255283 fails to inhibit DEP-induced lung inflammation and tumor metastasis. Collectively, our results demonstrate that DEP exposure causes BLT1-mediated lung neutrophilic inflammation, which is critical for tumor lung metastasis, and suggest that interruption of the LTB4-BLT1 axis could be useful for preventing PM 2.5 -induced inflammation and subsequent susceptible to lung metastasis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Exploring Black-White Differences in the Relationship Between Inflammation and Timing of Menopause.
Nowakowski, Alexandra C H; Graves, Katelyn Y
2017-06-01
Understanding the biosocial context of menopausal timing offers insight into social and health inequalities. Prior research on inflammatory chronic conditions suggests that inflammation may predict how early women experience menopause. We explore the ability of black race to moderate the overall relationship between chronic inflammation and timing of menopause. We use data from the National Social Life, Health, and Aging Project on inflammation, age of last menstruation, and race as well as relevant social and medical covariates. We conduct event history modeling to predict age at menopause by inflammatory biomarker levels. Using interaction analysis, we investigate whether being black may shape the overall relationship between inflammation status and menopause timing. Our analyses find no significant statistical interactions between black race and inflammation in predicting menopausal onset. However, we do identify independent correlational relationships between inflammation and black race (r = 0.136) and between menopausal timing and black race (r = -0.129) as well as inflammation (r = -0.138) that emerge as significant in corresponding regression models. We conclude that race probably does not moderate associations between inflammation and menopause. Yet, we also note that the original parameter estimate for black race's impact on menopausal onset (HR = 1.29, p < 0.05) becomes non-significant in a model that includes inflammation (HR = 1.06, p < 0.01). To translate our findings into policy and practice implications, we present alternate conceptualizations of black-white disparity in the inflammation-menopause relationship and recommend future research using mediation modeling.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, P. A.; Chen, X.; Kelly, C. P.; Reinecker, H. C.
2011-01-01
Challenges to successful space exploration and colonization include adverse physiological reactions to micro gravity and space radiation factors. Constant remodeling of the microvasculature is critical for tissue preservation, wound healing, and recovery after ischemia. Regulation of the vascular system in the intestine is particularly important to enable nutrient absorption while maintaining barrier function and mucosal defense against micro biota. Although tremendous progress has been made in understanding the molecular circuits regulating neovascularization, our knowledge of the adaptations of the vascular system to environmental challenges in the intestine remains incomplete. This is in part because of the lack of methods to observe and quantify the complex processes associated with vascular responses in vivo. Developed by GRC as a mature beta version, pre-release research software, VESsel GENeration Analysis (VESGEN) maps and quantifies the fractal-based complexity of vascular branching for novel insights into the cytokine, transgenic and therapeutic regulation of angiogenesis, lymphangiogenesis and microvascular remodeling. Here we demonstrate that VESGEN can be used to characterize the dynamic vascular responses to acute intestinal inflammation and mucosal recovery from in vivo confocal microscopic 3D image series. We induced transient intestinal inflammation in mice by DSS treatment and investigated whether the ability of the pro biotic yeast Saccharomyces boulardii (Sb) to protect against intestinal inflammation was due to regulation of vascular remodeling. A primary characteristic of inflammation is excessive neovascularization (angiogenesis) resulting in fragile vessels prone to bleeding. Morphological parameters for triplicate specimens revealed that Sb treatment greatly reduced the inflammatory response of vascular networks by an average of 78%. This resulted from Sb inhibition of vascular endothelial growth factor receptor signaling, a major angiogenesis signaling pathway. It needs to be determined whether pro biotic yeast represents a promising approach to GI protection in space. GRC performed only the VESGEN post-testing analysis.
Simons, Ronald L; Lei, Man-Kit; Beach, Steven R H; Barr, Ashley B; Cutrona, Carolyn E; Gibbons, Frederick X; Philibert, Robert A
2017-07-01
It is assumed that both social stress and chronological age increase the risk of chronic illness, in part, through their effect on systemic inflammation. Unfortunately, observational studies usually employ single-marker measures of inflammation (e.g., Interleukin-6, C-reactive protein) that preclude strong tests for mediational effects. The present study investigated the extent to which the effects of socioeconomic disadvantage and age on onset of chronic illness is mediated by dominance of the innate (inflammatory) over the acquired (antiviral) components of the immune system. We assessed inflammation using the ratio of inflammatory to antiviral cell types (ITACT Ratio). This approach provided a stronger test of evolutionary arguments regarding the effect of social stress on chronic inflammation than is the case with cytokine measures, and afforded an opportunity to replicate findings obtained utilizing mRNA. We used structural equation modeling and longitudinal data from a sample of 100 middle-age African American women to perform our analyses. Dominance of inflammatory over antiviral cell activity was associated with each of the eight illnesses included in our chronic illness measure. Both socioeconomic disadvantage and age were also associated with inflammatory dominance. Pursuant to the central focus of the study, the effects of socioeconomic adversity and age on increased illness were mediated by our measure of inflammatory dominance. The indirect effect of these variables through inflammatory cell profile was significant, with neither socioeconomic disadvantage nor age showing a significant association with illness once the impact of inflammatory cell profile was taken into account. First, the analysis provides preliminary validation of a new measure of inflammation that is calculated based on the ratio of inflammatory to antiviral white blood cells. Second, our results support the hypothesis that socioeconomic disadvantage and chronological age increase risk for chronic illness in part through their effect on inflammatory processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Slopen, Natalie; Loucks, Eric B; Appleton, Allison A; Kawachi, Ichiro; Kubzansky, Laura D; Non, Amy L; Buka, Stephen; Gilman, Stephen E
2015-01-01
Children exposed to social adversity carry a greater risk of poor physical and mental health into adulthood. This increased risk is thought to be due, in part, to inflammatory processes associated with early adversity that contribute to the etiology of many adult illnesses. The current study asks whether aspects of the prenatal social environment are associated with levels of inflammation in adulthood, and whether prenatal and childhood adversity both contribute to adult inflammation. We examined associations of prenatal and childhood adversity assessed through direct interviews of participants in the Collaborative Perinatal Project between 1959 and 1974 with blood levels of C-reactive protein in 355 offspring interviewed in adulthood (mean age=42.2 years). Linear and quantile regression models were used to estimate the effects of prenatal adversity and childhood adversity on adult inflammation, adjusting for age, sex, and race and other potential confounders. In separate linear regression models, high levels of prenatal and childhood adversity were associated with higher CRP in adulthood. When prenatal and childhood adversity were analyzed together, our results support the presence of an effect of prenatal adversity on (log) CRP level in adulthood (β=0.73, 95% CI: 0.26, 1.20) that is independent of childhood adversity and potential confounding factors including maternal health conditions reported during pregnancy. Supplemental analyses revealed similar findings using quantile regression models and logistic regression models that used a clinically-relevant CRP threshold (>3mg/L). In a fully-adjusted model that included childhood adversity, high prenatal adversity was associated with a 3-fold elevated odds (95% CI: 1.15, 8.02) of having a CRP level in adulthood that indicates high risk of cardiovascular disease. Social adversity during the prenatal period is a risk factor for elevated inflammation in adulthood independent of adversities during childhood. This evidence is consistent with studies demonstrating that adverse exposures in the maternal environment during gestation have lasting effects on development of the immune system. If these results reflect causal associations, they suggest that interventions to improve the social and environmental conditions of pregnancy would promote health over the life course. It remains necessary to identify the mechanisms that link maternal conditions during pregnancy to the development of fetal immune and other systems involved in adaptation to environmental stressors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bioactive Egg Components and Inflammation
Andersen, Catherine J.
2015-01-01
Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk. PMID:26389951
Ge, Qian; Brichard, Sonia; Yi, Xu; Li, QiFu
2014-01-01
Obesity is associated closely with the metabolic syndrome (MS). It is well known that obesity-induced chronic inflammation plays a fundamental role in the pathogenesis of MS. White adipose tissue (AT) is the primary site for the initiation and exacerbation of obesity-associated inflammation. Exploring the mechanisms of white AT inflammation and resetting the immunological balance in white AT could be crucial for the management of MS. Several prominent molecular mechanisms have been proposed to mediate inflammation in white AT, including hypoxia, endoplasmic reticulum stress, lipotoxicity, and metabolic endotoxemia. Recently, a growing body of evidence supports the role of miRNAs as a new important inflammatory mediator by regulating both the adaptive and innate immunity. This review will focus on the implication of miRNAs in white AT inflammation in obesity, and will also highlight the potential of miRNAs as targets for therapeutic intervention in MS as well as the challenges lying in miRNA-targeting therapeutics.
Systemic inflammatory response following acute myocardial infarction
Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min
2015-01-01
Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI. PMID:26089856
Tuberculosis in the elderly: Why inflammation matters.
Piergallini, Tucker J; Turner, Joanne
2018-05-01
Growing old is associated with an increase in the basal inflammatory state of an individual and susceptibility to many diseases, including infectious diseases. Evidence is growing to support the concept that inflammation and disease susceptibility in the elderly is linked. Our studies focus on the infectious disease tuberculosis (TB), which is caused by Mycobacterium tuberculosis (M.tb), a pathogen that infects approximately one fourth of the world's population. Aging is a major risk factor for developing TB, and inflammation has been strongly implicated. In this review we will discuss the relationship between inflammation in the lung and susceptibility to develop and succumb to TB in old age. Further understanding of the relationship between inflammation, age, and M.tb will lead to informed decisions about TB prevention and treatment strategies that are uniquely designed for the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.
STATs in cancer inflammation and immunity: a leading role for STAT3.
Yu, Hua; Pardoll, Drew; Jove, Richard
2009-11-01
Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-kappaB (NF-kappaB) and interleukin-6 (IL-6)-GP130-Janus kinase (JAK) pathways, and by opposing STAT1- and NF-kappaB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy.
The molecular mechanisms of glucocorticoids-mediated neutrophil survival.
Saffar, Arash S; Ashdown, Heather; Gounni, Abdelilah S
2011-04-01
Neutrophil-dominated inflammation plays an important role in many airway diseases including asthma, chronic obstructive pulmonary disease (COPD), bronchiolitis and cystic fibrosis. In cases of asthma where neutrophil-dominated inflammation is a major contributing factor to the disease, treatment with corticosteroids can be problematic as corticosteroids have been shown to promote neutrophil survival which, in turn, accentuates neutrophilic inflammation. In light of such cases, novel targeted medications must be developed that could control neutrophilic inflammation while still maintaining their antibacterial/anti-fungal properties, thus allowing individuals to maintain effective innate immune responses to invading pathogens. The aim of this review is to describe the molecular mechanisms of neutrophil apoptosis and how these pathways are modulated by glucocorticoids. These new findings are of potential clinical value and provide further insight into treatment of neutrophilic inflammation in lung disease.
Ribeiro, A; Almeida, V I; Costola-de-Souza, C; Ferraz-de-Paula, V; Pinheiro, M L; Vitoretti, L B; Gimenes-Junior, J A; Akamine, A T; Crippa, J A; Tavares-de-Lima, W; Palermo-Neto, J
2015-02-01
We have previously shown that the prophylactic treatment with cannabidiol (CBD) reduces inflammation in a model of acute lung injury (ALI). In this work we analyzed the effects of the therapeutic treatment with CBD in mice subjected to the model of lipopolysaccharide (LPS)-induced ALI on pulmonary mechanics and inflammation. CBD (20 and 80 mg/kg) was administered (i.p.) to mice 6 h after LPS-induced lung inflammation. One day (24 h) after the induction of inflammation the assessment of pulmonary mechanics and inflammation were analyzed. The results show that CBD decreased total lung resistance and elastance, leukocyte migration into the lungs, myeloperoxidase activity in the lung tissue, protein concentration and production of pro-inflammatory cytokines (TNF and IL-6) and chemokines (MCP-1 and MIP-2) in the bronchoalveolar lavage supernatant. Thus, we conclude that CBD administered therapeutically, i.e. during an ongoing inflammatory process, has a potent anti-inflammatory effect and also improves the lung function in mice submitted to LPS-induced ALI. Therefore the present and previous data suggest that in the future cannabidiol might become a useful therapeutic tool for the attenuation and treatment of inflammatory lung diseases.
Tendons – time to revisit inflammation
Rees, Jonathan D; Stride, Matthew; Scott, Alex
2014-01-01
It is currently widely accepted among clinicians that chronic tendinopathy is caused by a degenerative process devoid of inflammation. Current treatment strategies are focused on physical treatments, peritendinous or intratendinous injections of blood or blood products and interruption of painful stimuli. Results have been at best, moderately good and at worst a failure. The evidence for non-infammatory degenerative processes alone as the cause of tendinopathy is surprisingly weak. There is convincing evidence that the inflammatory response is a key component of chronic tendinopathy. Newer anti-inflammatory modalities may provide alternative potential opportunities in treating chronic tendinopathies and should be explored further. PMID:23476034
Effector CD4+ T cells recognize intravascular antigen presented by patrolling monocytes.
Westhorpe, Clare L V; Norman, M Ursula; Hall, Pam; Snelgrove, Sarah L; Finsterbusch, Michaela; Li, Anqi; Lo, Camden; Tan, Zhe Hao; Li, Songhui; Nilsson, Susan K; Kitching, A Richard; Hickey, Michael J
2018-02-21
Although effector CD4 + T cells readily respond to antigen outside the vasculature, how they respond to intravascular antigens is unknown. Here we show the process of intravascular antigen recognition using intravital multiphoton microscopy of glomeruli. CD4 + T cells undergo intravascular migration within uninflamed glomeruli. Similarly, while MHCII is not expressed by intrinsic glomerular cells, intravascular MHCII-expressing immune cells patrol glomerular capillaries, interacting with CD4 + T cells. Following intravascular deposition of antigen in glomeruli, effector CD4 + T-cell responses, including NFAT1 nuclear translocation and decreased migration, are consistent with antigen recognition. Of the MHCII + immune cells adherent in glomerular capillaries, only monocytes are retained for prolonged durations. These cells can also induce T-cell proliferation in vitro. Moreover, monocyte depletion reduces CD4 + T-cell-dependent glomerular inflammation. These findings indicate that MHCII + monocytes patrolling the glomerular microvasculature can present intravascular antigen to CD4 + T cells within glomerular capillaries, leading to antigen-dependent inflammation.
Peeters, Janneke G C; Vervoort, Stephin J; Tan, Sander C; Mijnheer, Gerdien; de Roock, Sytze; Vastert, Sebastiaan J; Nieuwenhuis, Edward E S; van Wijk, Femke; Prakken, Berent J; Creyghton, Menno P; Coffer, Paul J; Mokry, Michal; van Loosdregt, Jorg
2015-09-29
The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA) is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4(+) memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Influence of Physical Activity and Nutrition on Obesity-Related Immune Function
Zourdos, Michael C.; Jo, Edward; Ormsbee, Michael J.
2013-01-01
Research examining immune function during obesity suggests that excessive adiposity is linked to impaired immune responses leading to pathology. The deleterious effects of obesity on immunity have been associated with the systemic proinflammatory profile generated by the secretory molecules derived from adipose cells. These include inflammatory peptides, such as TNF-α, CRP, and IL-6. Consequently, obesity is now characterized as a state of chronic low-grade systemic inflammation, a condition considerably linked to the development of comorbidity. Given the critical role of adipose tissue in the inflammatory process, especially in obese individuals, it becomes an important clinical objective to identify lifestyle factors that may affect the obesity-immune system relationship. For instance, stress, physical activity, and nutrition have each shown to be a significant lifestyle factor influencing the inflammatory profile associated with the state of obesity. Therefore, the purpose of this review is to comprehensively evaluate the impact of lifestyle factors, in particular psychological stress, physical activity, and nutrition, on obesity-related immune function with specific focus on inflammation. PMID:24324381
Gut microbiota: A player in aging and a target for anti-aging intervention.
Vaiserman, Alexander M; Koliada, Alexander K; Marotta, Francesco
2017-05-01
Aging-associated alterations in composition, diversity and functional features of intestinal microbiota are well-described in the modern literature. They are suggested to be caused by an age-related decline in immune system functioning (immunosenescence) and a low-grade chronic inflammation (inflammaging), which accompany many aging-associated pathologies. The microbiota-targeted dietary and probiotic interventions have been shown to favorably affect the host health and aging by an enhancement of antioxidant activity, improving immune homeostasis, suppression of chronic inflammation, regulation of fat deposition and metabolism and prevention of insulin resistance. Recently, a high effectiveness and safety of novel therapeutic application such as fecal microbiota transplantation in the prevention and treatment of age-related pathological conditions including atherosclerosis, type 2 diabetes and Parkinson's disease has been demonstrated. In this review, recent research findings are summarized on the role of gut micribiota in aging processes with emphasis on therapeutic potential of microbiome-targeted interventions in anti-aging medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis
Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.; Gralinski, Lisa E.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Douglas, Madeline G.; Scobey, Trevor; Beall, Anne; Dinnon, Kenneth; Kocher, Jacob F.; Hale, Andrew E.; Stratton, Kelly G.; Waters, Katrina M.
2017-01-01
ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. PMID:28830941
Bacterial infection imaging with [18F]fluoropropyl-trimethoprim
Lee, Iljung; Hou, Catherine; Weng, Chi-Chang; Li, Shihong; Lieberman, Brian P.; Zeng, Chenbo; Mankoff, David A.; Mach, Robert H.
2017-01-01
There is often overlap in the diagnostic features of common pathologic processes such as infection, sterile inflammation, and cancer both clinically and using conventional imaging techniques. Here, we report the development of a positron emission tomography probe for live bacterial infection based on the small-molecule antibiotic trimethoprim (TMP). [18F]fluoropropyl-trimethoprim, or [18F]FPTMP, shows a greater than 100-fold increased uptake in vitro in live bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) relative to controls. In a rodent myositis model, [18F]FPTMP identified live bacterial infection without demonstrating confounding increased signal in the same animal from other etiologies including chemical inflammation (turpentine) and cancer (breast carcinoma). Additionally, the biodistribution of [18F]FPTMP in a nonhuman primate shows low background in many important tissues that may be sites of infection such as the lungs and soft tissues. These results suggest that [18F]FPTMP could be a broadly useful agent for the sensitive and specific imaging of bacterial infection with strong translational potential. PMID:28716936
A molecular signature of an arrest of descent in human parturition
MITTAL, Pooja; ROMERO, Roberto; TARCA, Adi L.; DRAGHICI, Sorin; NHAN-CHANG, Chia-Ling; CHAIWORAPONGSA, Tinnakorn; HOTRA, John; GOMEZ, Ricardo; KUSANOVIC, Juan Pedro; LEE, Deug-Chan; KIM, Chong Jai; HASSAN, Sonia S.
2010-01-01
Objective This study was undertaken to identify the molecular basis of an arrest of descent. Study Design Human myometrium was obtained from women in term labor (TL; n=29) and arrest of descent (AODes, n=21). Gene expression was characterized using Illumina® HumanHT-12 microarrays. A moderated t-test and false discovery rate adjustment were applied for analysis. Confirmatory qRT-PCR and immunoblot was performed in an independent sample set. Results 400 genes were differentially expressed between women with an AODes compared to those with TL. Gene Ontology analysis indicated enrichment of biological processes and molecular functions related to inflammation and muscle function. Impacted pathways included inflammation and the actin cytoskeleton. Overexpression of HIF1A, IL-6, and PTGS2 in AODES was confirmed. Conclusion We have identified a stereotypic pattern of gene expression in the myometrium of women with an arrest of descent. This represents the first study examining the molecular basis of an arrest of descent using a genome-wide approach. PMID:21284969
Oxidative stress and the ageing endocrine system.
Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio
2013-04-01
Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.
Murray-Kolb, Laura E.; Scharf, Rebecca J.; Pendergast, Laura L.; Lang, Dennis R.; Kolling, Glynis L.; Guerrant, Richard L.
2016-01-01
The intestinal microbiota undergoes active remodeling in the first 6 to 18 months of life, during which time the characteristics of the adult microbiota are developed. This process is strongly influenced by the early diet and enteric pathogens. Enteric infections and malnutrition early in life may favor microbiota dysbiosis and small intestinal bacterial overgrowth, resulting in intestinal barrier dysfunction and translocation of intestinal bacterial products, ultimately leading to low-grade, chronic, subclinical systemic inflammation. The leaky gut–derived low-grade systemic inflammation may have profound consequences on the gut–liver–brain axis, compromising normal growth, metabolism, and cognitive development. This review examines recent data suggesting that early-life enteric infections that lead to intestinal barrier disruption may shift the intestinal microbiota toward chronic systemic inflammation and subsequent impaired cognitive development. PMID:27142301
Chen, Chun-Jen; Shi, Yan; Hearn, Arron; Fitzgerald, Kate; Golenbock, Douglas; Reed, George; Akira, Shizuo; Rock, Kenneth L.
2006-01-01
While it is known that monosodium urate (MSU) crystals cause the disease gout, the mechanism by which these crystals stimulate this inflammatory condition has not been clear. Here we find that the Toll/IL-1R (TIR) signal transduction adaptor myeloid differentiation primary response protein 88 (MyD88) is required for acute gouty inflammation. In contrast, other TIR adaptor molecules, TIRAP/Mal, TRIF, and TRAM, are not required for this process. The MyD88-dependent TLR1, -2, -4, -6, -7, -9, and -11 and IL-18 receptor (IL-18R) are not essential for MSU-induced inflammation. Moreover, MSU does not stimulate HEK cells expressing TLR1–11 to activate NF-κB. In contrast, mice deficient in the MyD88-dependent IL-1R showed reduced inflammatory responses, similar to those observed in MyD88-deficient mice. Similarly, mice treated with IL-1 neutralizing antibodies also showed reduced MSU-induced inflammation, demonstrating that IL-1 production and IL-1R activation play essential roles in MSU-triggered inflammation. IL-1R deficiency in bone marrow–derived cells did not affect the inflammatory response; however, it was required in non–bone marrow–derived cells. These results indicate that IL-1 is essential for the MSU-induced inflammatory response and that the requirement of MyD88 in this process is primarily through its function as an adaptor molecule in the IL-1R signaling pathway. PMID:16886064
Menopause, obesity and inflammation: interactive risk factors for Alzheimer’s disease
Christensen, Amy; Pike, Christian J.
2015-01-01
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder, the development of which is regulated by several environmental and genetic risk factors. Two factors theorized to contribute to the initiation and/or progression of AD pathogenesis are age-related increases in inflammation and obesity. These factors may be particularly problematic in women. The onset of menopause in mid-life elevates the vulnerability of women to AD, an increased risk that is likely associated with the depletion of estrogens. Menopause is also linked with an abundance of additional changes, including increased central adiposity and inflammation. Here, we review the current literature to explore the interactions between obesity, inflammation, menopause and AD. PMID:26217222
Kanda, Yusuke; Osaki, Mitsuhiko; Okada, Futoshi
2017-01-01
A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis. PMID:28422073
Relation Between Inflammables and Ignition Sources in Aircraft Environments
NASA Technical Reports Server (NTRS)
Scull, Wilfred E
1950-01-01
A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.
Fowke, Jay H; Koyama, Tatsuki; Fadare, Oluwole; Clark, Peter E
2016-01-01
BPH is a common disease associated with age and obesity. However, the biological pathways between obesity and BPH are unknown. Our objective was to investigate biomarkers of systemic and prostate tissue inflammation as potential mediators of the obesity and BPH association. Participants included 191 men without prostate cancer at prostate biopsy. Trained staff measured weight, height, waist and hip circumferences, and body composition by bioelectric impedance analysis. Systemic inflammation was estimated by serum IL-6, IL-1β, IL-8, and TNF-α; and by urinary prostaglandin E2 metabolite (PGE-M), F2-isoprostane (F2iP), and F2-isoprostane metabolite (F2iP-M) levels. Prostate tissue was scored for grade, aggressiveness, extent, and location of inflammatory regions, and also stained for CD3 and CD20 positive lymphocytes. Analyses investigated the association between multiple body composition scales, systemic inflammation, and prostate tissue inflammation against BPH outcomes, including prostate size at ultrasound and LUTS severity by the AUA-symptom index (AUA-SI). Prostate size was significantly associated with all obesity measures. For example, prostate volume was 5.5 to 9.0 mls larger comparing men in the 25th vs. 75th percentile of % body fat, fat mass (kg) or lean mass (kg). However, prostate size was not associated with proinflammatory cytokines, PGE-M, F2iP, F2iP-M, prostate tissue inflammation scores or immune cell infiltration. In contrast, the severity of prostate tissue inflammation was significantly associated with LUTS, such that there was a 7 point difference in AUA-SI between men with mild vs. severe inflammation (p = 0.004). Additionally, men with a greater waist-hip ratio (WHR) were significantly more likely to have severe prostate tissue inflammation (p = 0.02), and a high WHR was significantly associated with moderate/severe LUTS (OR = 2.56, p = 0.03) among those participants with prostate tissue inflammation. The WHR, an estimate of centralized obesity, was associated with the severity of inflammatory regions in prostate tissue and with LUTS severity among men with inflammation. Our results suggest centralized obesity advances prostate tissue inflammation to increase LUTS severity. Clinically targeting centralized fat deposition may reduce LUTS severity. Mechanistically, the lack of a clear relationship between systemic inflammatory or oxidative stress markers in blood or urine with prostate size or LUTS suggests pathways other than systemic inflammatory signaling may link body adiposity to BPH outcomes.
Burks, Tyesha N; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J; Foster, D Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D; Abadir, Peter M
2015-05-20
Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT(1)R, AT(2)R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT(1)R:AT(2)R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT(1)R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently.
Burks, Tyesha N.; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J.; Foster, D. Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D.; Abadir, Peter M.
2015-01-01
Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT1R, AT2R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT1R:AT2R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT1R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently. PMID:26221650
Persistent inflammation and recovery after intensive care: A systematic review.
Griffith, David M; Vale, Matthew E; Campbell, Christine; Lewis, Steff; Walsh, Timothy S
2016-06-01
Physical weakness is common after critical illness; however, it is not clear how best to treat it. Inflammation characterizes critical illness, is associated with loss of muscle mass during critical illness, and potentially modifies post-intensive care unit (ICU) recovery. We sought to identify published reports on the prevalence of systemic inflammation after critical illness and its association with physical recovery. This is a systematic review of the literature from MEDLINE, EMBASE, CINAHL, CPCI-SSH, and CPCI-S from January 1982 to December 2011. From 7433 references, 207 full-text articles were reviewed, 57 were eligible, and 22 were included. Inflammation was present in most patients at ICU discharge according to C-reactive protein concentration (range, 70%-100%), procalcitonin (range, 89%-100%), tumor necrosis factor α (100%), and systemic inflammatory response syndrome criteria (range, 92%-95%). Fewer patients had elevated myeloperoxidase concentrations (range, 0%-56%). At hospital discharge, 9 (90%) of 10 chronic obstructive pulmonary disease patients had elevated C-reactive protein. No studies tested the association between inflammation and physical recovery. Inflammation is present in most patients at ICU discharge, but little is known or has been investigated about persistent inflammation after this time point. No studies have explored the relationship between persistent inflammation and physical recovery. Further research is proposed. Copyright © 2016 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Consumption of an obesigenic / high-fat (HF) diet is associated with an increase of inflammation-related colon cancer risk and may alter the gut microbiota. To test the hypothesis that a HF feeding accelerates inflammatory processes and changes gut microbiome composition, C57BL/6 mice were fed a HF ...
Armour, Mike; Smith, Caroline A; Schabrun, Siobhan; Steiner, Genevieve Z; Zhu, Xiaoshu; Lawson, Kenny; Song, Jing
2018-01-01
Endometriosis is the most common cause of chronic pelvic pain worldwide. Non-surgical treatments are effective for only 30-50% of women and have a significant side effect burden that leads to high discontinuation rates. Surgery can be effective but is expensive and invasive, and symptoms tend to recur within 5 years. There is early evidence that acupuncture may be effective in treating endometriosis-related chronic pelvic pain, showing clinically significant analgesia. Both levels of inflammation and pain processing have been shown to be altered in women with chronic pelvic pain. Acupuncture has been shown to reduce inflammation and change central pain processing in other conditions, but research on women with endometriosis is currently lacking. The aim of this feasibility study is to provide data on recruitment rates, retention, appropriateness of outcome measures, minimal clinically important difference in numeric rated scales for pain and the potential effect of acupuncture on pain processing and markers of inflammation in endometriosis-related CPP. We will include women aged 18-45 years with a diagnosis of endometriosis via laparoscopy in the past 5 years. A total of 30 participants will be recruited and randomly allocated in a 1:1 ratio to receive acupuncture or usual care. Women in the acupuncture group will receive two 45-min treatment sessions per week for 8 weeks (total of 16 sessions). Women in the usual care group will continue with their current treatment regimen. The primary feasibility outcomes are recruitment rates, retention rates and the safety and acceptability of the intervention; secondary patient-centred outcomes include a change in 0-10 daily pelvic pain ratings, the Endometriosis Health Profile 30 (EHP-30) and changes in conditioned pain modulation, resting and task-related EEG activity and inflammatory markers. Analyses will be performed blind to group allocation. This is a two-armed, assessor blind, randomised controlled feasibility trial. Data will be compared at baseline and trial completion 8 weeks later. Outcomes from this feasibility study will inform a larger, fully powered clinical trial should the treatment show trends for potential effectiveness. Australian New Zealand Clinical Trials Registry, ACTRN12617000053325 (http://www.ANZCTR.org.au/ACTRN12617000053325.aspx).
2014-01-01
Background We have previously observed, in studies on an experimental overuse model, that the tachykinin system may be involved in the processes of muscle inflammation (myositis) and other muscle tissue alterations. To further evaluate the significance of tachykinins in these processes, we have used inhibitors of neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE), substances which are known to terminate the activity of various endogenously produced substances, including tachykinins. Methods Injections of inhibitors of NEP and ACE, as well as the tachykinin substance P (SP), were given locally outside the tendon of the triceps surae muscle of rabbits subjected to marked overuse of this muscle. A control group was given NaCl injections. Evaluations were made at 1 week, a timepoint of overuse when only mild inflammation and limited changes in the muscle structure are noted in animals not treated with inhibitors. Both the soleus and gastrocnemius muscles were examined morphologically and with immunohistochemistry and enzyme immunoassay (EIA). Results A pronounced inflammation (myositis) and changes in the muscle fiber morphology, including muscle fiber necrosis, occurred in the overused muscles of animals given NEP and ACE inhibitors. The morphological changes were clearly more prominent than for animals subjected to overuse and NaCl injections (NaCl group). A marked SP-like expression, as well as a marked expression of the neurokinin-1 receptor (NK-1R) was found in the affected muscle tissue in response to injections of NEP and ACE inhibitors. The concentration of SP in the muscles was also higher than that for the NaCl group. Conclusions The observations show that the local injections of NEP and ACE inhibitors led to marked SP-like and NK-1R immunoreactions, increased SP concentrations, and an amplification of the morphological changes in the tissue. The injections of the inhibitors thus led to a more marked myositis process and an upregulation of the SP system. Endogenously produced substances, out of which the tachykinins conform to one substance family, may play a role in mediating effects in the tissue in a muscle that is subjected to pronounced overuse. PMID:24725470
Molecular Ultrasound Imaging for the Detection of Neural Inflammation
NASA Astrophysics Data System (ADS)
Volz, Kevin R.
Molecular imaging is a form of nanotechnology that enables the noninvasive examination of biological processes in vivo. Radiopharmaceutical agents are used to selectively target biochemical markers, which permits their detection and evaluation. Early visualization of molecular variations indicative of pathophysiological processes can aid in patient diagnoses and management decisions. Molecular imaging is performed by introducing molecular probes into the body. Molecular probes are often contrast agents that have been nanoengineered to selectively target and tether to molecules, enabling their radiologic identification. Ultrasound contrast agents have been demonstrated as an effective method of detecting perfusion at the tissue level. Through a nanoengineering process, ultrasound contrast agents can be targeted to specific molecules, thereby extending ultrasound's capabilities from the tissue to molecular level. Molecular ultrasound, or targeted contrast enhanced ultrasound (TCEUS), has recently emerged as a popular molecular imaging technique due to its ability to provide real-time anatomical and functional information in the absence of ionizing radiation. However, molecular ultrasound represents a novel form of molecular imaging, and consequently remains largely preclinical. A review of the TCEUS literature revealed multiple preclinical studies demonstrating its success in detecting inflammation in a variety of tissues. Although, a gap was identified in the existing evidence, as TCEUS effectiveness for detection of neural inflammation in the spinal cord was unable to be uncovered. This gap in knowledge, coupled with the profound impacts that this TCEUS application could have clinically, provided rationale for its exploration, and use as contributory evidence for the molecular ultrasound body of literature. An animal model that underwent a contusive spinal cord injury was used to establish preclinical evidence of TCEUS to detect neural inflammation. Imaging was performed while targeting three early inflammatory markers (P-selectin, VCAM-1, ICAM-1). Imaging protocols and outcome measures of previous TCEUS investigations of inflammation were replicated to aid in comparisons of outcomes. Signal intensity data was used to generate time intensity curves for qualitative and quantitative analysis of contrast agent temporal behavior. A proof of principle study established preclinical evidence to support the ability of TCEUS to detect acute neural inflammation. Substantial increases in signal intensities were observed while targeting inflammatory markers compared to controls. Further investigations consisted of examining molecular ultrasound sensitivity, and were accomplished by examining targeted contrast agent dosing parameters, and the ability of TCEUS to longitudinally evaluate neural inflammation. Qualitative analysis of TCEUS imaging performed with both administered doses revealed marked increases in signal intensities during acute inflammation, where inflammatory marker expression was presumably at its highest. This was in comparison to measures obtained in the absence of, and during, chronic inflammation. This research contributes much needed empirical evidence to the molecular ultrasound body of literature, and represents the first steps towards advancing this TCEUS application to clinical practice. Future studies are necessary to further these findings and effectively build upon this evidence. Increasing evidence of TCEUS use for the detection of neural inflammation will aid in its eventual clinical translation, where it will likely have a positive impact on patient care.
Takyar, Seyedtaghi; Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren; Elias, Jack A
2013-09-23
Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF-miR-1-Mpl-P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma.
Vasavada, Hema; Zhang, Jian-ge; Ahangari, Farida; Niu, Naiqian; Liu, Qing; Lee, Chun Geun; Cohn, Lauren
2013-01-01
Asthma, the prototypic Th2-mediated inflammatory disorder of the lung, is an emergent disease worldwide. Vascular endothelial growth factor (VEGF) is a critical regulator of pulmonary Th2 inflammation, but the underlying mechanism and the roles of microRNAs (miRNAs) in this process have not been defined. Here we show that lung-specific overexpression of VEGF decreases miR-1 expression in the lung, most prominently in the endothelium, and a similar down-regulation occurs in lung endothelium in Th2 inflammation models. Intranasal delivery of miR-1 inhibited inflammatory responses to ovalbumin, house dust mite, and IL-13 overexpression. Blocking VEGF inhibited Th2-mediated lung inflammation, and this was restored by antagonizing miR-1. Using mRNA arrays, Argonaute pull-down assays, luciferase expression assays, and mutational analysis, we identified Mpl as a direct target of miR-1 and showed that VEGF controls the expression of endothelial Mpl during Th2 inflammation via the regulation of miR-1. In vivo knockdown of Mpl inhibited Th2 inflammation and indirectly inhibited the expression of P-selectin in lung endothelium. These experiments define a novel VEGF–miR-1–Mpl–P-selectin effector pathway in lung Th2 inflammation and herald the utility of miR-1 and Mpl as potential therapeutic targets for asthma. PMID:24043765
Steffen, Patrick R; Walker, Jill; Meredith, Richard; Anderson, Chris
2016-01-21
Mexican immigrants have lower cardiovascular disease risk than US citizens, but risk increases with level of acculturation. Our study investigated whether job stress and financial strain would be related to inflammation (C-reactive protein), lipids, and blood pressure, and if they would play a role in the acculturation process in Mexican immigrants. A sample of 310 Mexican immigrants living in the United States were studied on measures of job stress, financial strain, acculturation, and cardiovascular disease risk factors (C-reactive protein, lipids, and blood pressure). Job instability, financial strain, and acculturation, were related to inflammation, but psychological demands and decision latitude were not related. Lipids and blood pressure were not related to the variables of interest. Body mass index (BMI) was related to both increased acculturation and inflammation, and when controlling for BMI, acculturation was no longer a significant predictor of inflammation. Job instability and financial strain remained significant predictors of inflammation after controlling for BMI, sex, and age. Job instability and financial strain were not related to acculturation, suggesting that these factors are significant stressors for both newly arrived and more established immigrants. Job instability and financial strain predict increased inflammation in Mexican immigrants but they do not play a role in the relationship between acculturation and C-reactive protein. The effects of acculturation on inflammation in this study were mediated by BMI.
Emr, Bryanna; Sadowsky, David; Azhar, Nabil; Gatto, Louis A; An, Gary; Nieman, Gary F; Vodovotz, Yoram
2014-04-01
Sepsis-induced inflammation in the gut/peritoneal compartment occurs early in sepsis and can lead to acute lung injury (ALI). We have suggested that inflammatory ascites drives the pathogenesis of ALI and that removal of ascites with an abdominal wound vacuum prevents ALI. We hypothesized that the time- and compartment-dependent changes in inflammation that determine this process can be discerned using principal component analysis (PCA) and Dynamic Bayesian Network (DBN) inference. To test this hypothesis, data from a previous study were analyzed using PCA and DBN. In that study, two groups of anesthetized, ventilated pigs were subjected to experimental sepsis via intestinal ischemia/reperfusion and placement of a peritoneal fecal clot. The control group (n = 6) had the abdomen opened at 12 h after injury (T12) with attachment of a passive drain. The peritoneal suction treatment (PST) group (n = 6) was treated in an identical fashion except that a vacuum was applied to the peritoneal cavity at T12 to remove ascites and maintained until T48. Multiple inflammatory mediators were measured in ascites and plasma and related to lung function (PaO2/FIO2 ratio and oxygen index) using PCA and DBN. Peritoneal suction treatment prevented ALI based on lung histopathology, whereas control animals developed ALI. Principal component analysis revealed that local to the insult (i.e., ascites), primary proinflammatory cytokines play a decreased role in the overall response in the treatment group as compared with control. In both groups, multiple, nested positive feedback loops were inferred from DBN, which included interrelated roles for bacterial endotoxin, interleukin 6, transforming growth factor β1, C-reactive protein, PaO2/FIO2 ratio, and oxygen index. von Willebrand factor was an output in control, but not PST, ascites. These combined in vivo and in silico studies suggest that in this clinically realistic paradigm of sepsis, endotoxin drives the inflammatory response in the ascites, interplaying with lung dysfunction in a feed-forward loop that exacerbates inflammation and leads to endothelial dysfunction, systemic spillover, and ALI; PST partially modifies this process.
Therapeutic Potential of Traditional Chinese Medicine on Inflammatory Diseases
Tsai, Wen-Hsin; Yang, Chih-Ching; Li, Ping-Chia; Chen, Wang-Chuan; Chien, Chiang-Ting
2013-01-01
Increased oxidative stress induces inflammation to several tissues/organs leading to cell death and long-term injury. Traditional Chinese Medicine (TCM) with antioxidant, anti-inflammatory, anti-apoptotic, and autophagic regulatory functions has been widely used as preventive or therapeutic strategy in modern medicine. Oxidative stress and inflammation have been widely reported to contribute to cigarette smoke-induced lung inflammation, hepatotoxicity, or sympathetic activation-induced liver inflammation, lipopolysaccharide-induced renal inflammation, and substance P-mediated neurogenic hyperactive bladder based on clinical findings. In this review, we introduce several evidences for TCM treatment including Monascus adlay (MA) produced by inoculating adlay (Cois lachrymal-jobi L. var. ma-yuen Stapf) with Monascus purpureus on lung injury, Amla (Emblica officinalis Gaertn. of Euphorbiaceae family) on hepatotoxin-induced liver inflammation, Virgate Wormwood Decoction (Yīn Chén Hāo tāng) and its active component genipin on sympathetic activation–induced liver inflammation, and green tea extract and its active components, catechins, or a modified TCM formula Five Stranguries Powder (Wǔ Lén Sǎn) plus Crataegi Fructus (Shān Zhā) on hyperactive bladder. The pathophysiologic and molecular mechanisms of TCM on ameliorating inflammatory diseases are discussed in the review. PMID:24716170
Burcham, Grant N.; Cresswell, Gregory M.; Snyder, Paul W.; Chen, Long; Liu, Xiaoqi; Crist, Scott A.; Henry, Michael D.; Ratliff, Timothy L.
2015-01-01
Evidence linking prostatitis and prostate cancer development is contradictory. To study this link, the POET3 mouse, an inducible model of prostatitis, was crossed with a Pten-loss model of prostate cancer (Pten+/−) containing the ROSA26 luciferase allele to monitor prostate size. Prostatitis was induced, and prostate bioluminescence was tracked over 12 months, with lesion development, inflammation, and cytokine expression analyzed at 4, 8, and 12 months and compared with mice without induction of prostatitis. Acute prostatitis led to more proliferative epithelium and enhanced bioluminescence. However, 4 months after initiation of prostatitis, mice with induced inflammation had lower grade pre-neoplastic lesions. A trend existed toward greater development of carcinoma 12 months after induction of inflammation, including one of two mice with carcinoma developing perineural invasion. Two of 18 mice at the later time points developed lesions with similarities to proliferative inflammatory atrophy, including one mouse with associated carcinoma. Pten+/− mice developed spontaneous inflammation, and prostatitis was similar among groups of mice at 8 and 12 months. Analyzed as one cohort, lesion number and grade were positively correlated with prostatitis. Specifically, amounts of CD11b+Gr1+ cells were correlated with lesion development. These results support the hypothesis that myeloid-based inflammation is associated with lesion development in the murine prostate, and previous bouts of CD8-driven prostatitis may promote invasion in the Pten+/− model of cancer. PMID:25455686
Solomon, K D; Cheetham, J K; DeGryse, R; Brint, S F; Rosenthal, A
2001-02-01
To compare the efficacy and safety of ketorolac 0.5% ophthalmic solution with its vehicle in the treatment of ocular inflammation after cataract surgery and intraocular lens implantation. Multicenter clinical study. One hundred four patients were prospectively randomized, 52 patients in treatment group, 52 patients in control group. Patients received either ketorolac or vehicle four times daily in the operated eye for 14 days starting the day after surgery in a prospective, double-masked, randomized, parallel group study. Only patients with moderate or greater postoperative inflammation the day after surgery were enrolled. The main outcome measures include inflammation (cell, flare, ciliary flush), intraocular pressure and visual acuity. Ketorolac was significantly more effective than vehicle in reducing the manifestations of postoperative ocular inflammation, including: anterior chamber cells (P: = 0.002) and flare (P: = 0.009), conjunctival erythema (P: = 0.010), ciliary flush (P: = 0.022), photophobia (P: = 0.027), and pain (P: = 0.043). Five times as many patients were dropped from the study for lack of efficacy from the vehicle group (22/52) than from the ketorolac group (4/52; P: = 0.001). Ketorolac was found to be equally as safe as vehicle in terms of adverse events, changes in visual acuity, intraocular pressure, and biomicroscopic and ophthalmoscopic variables. Ketorolac tromethamine 0.5% ophthalmic solution was significantly more effective than vehicle in the treatment of moderate or greater ocular inflammation following routine cataract surgery, while being as safe as vehicle.
Heisler, Jillian M.; O’Connor, Jason C.
2015-01-01
Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057
The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis.
Bird, Ranjana P
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H 2 S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health. © 2018 Elsevier Inc. All rights reserved.
Vasavada, Shaleen R; Dobbs, Ryan W; Kajdacsy-Balla, André A; Abern, Michael R; Moreira, Daniel M
2018-05-01
We performed a comprehensive literature review and meta-analysis to evaluate the association of inflammation on prostate needle biopsies and prostate cancer risk. We searched Embase®, PubMed® and Web of Science™ from January 1, 1990 to October 1, 2016 for abstracts containing the key words prostate cancer, inflammation and biopsy. Study inclusion criteria were original research, adult human subjects, cohort or case-control study design, histological inflammation on prostate needle biopsy and prostate cancer on histology. Two independent teams reviewed abstracts and extracted data from the selected manuscripts. Combined ORs and 95% CIs of any, acute and chronic inflammation were calculated using the random effects method. Of the 1,030 retrieved abstracts 46 underwent full text review and 25 were included in the final analysis, comprising a total of 20,585 subjects and 6,641 patients with prostate cancer. There was significant heterogeneity among studies (I 2 = 84.4%, p <0.001). The presence of any inflammation was significantly associated with a lower prostate cancer risk in 25 studies (OR 0.455, 95% CI 0.337-0.573). There was no evidence of publication bias (p >0.05). When subanalyzed by inflammation type, acute inflammation in 4 studies and chronic inflammation in 15 were each associated with a lower prostate cancer risk (OR 0.681, 95% CI 0.450-0.913 and OR 0.499, 95% CI 0.334-0.665, respectively). In a meta-analysis of 25 studies inflammation on prostate needle biopsy was associated with a lower prostate cancer risk. Clinically the presence of inflammation on prostate needle biopsy may lower the risk of a subsequent prostate cancer diagnosis. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Simons, Brian W; Durham, Nicholas M; Bruno, Tullia C; Grosso, Joseph F; Schaeffer, Anthony J; Ross, Ashley E; Hurley, Paula J; Berman, David M; Drake, Charles G; Thumbikat, Praveen; Schaeffer, Edward M
2015-02-01
Inflammation is associated with several diseases of the prostate including benign enlargement and cancer, but a causal relationship has not been established. Our objective was to characterize the prostate inflammatory microenvironment after infection with a human prostate-derived bacterial strain and to determine the effect of inflammation on prostate cancer progression. To this end, we mimicked typical human prostate infection with retrograde urethral instillation of CP1, a human prostatic isolate of Escherichia coli. CP1 bacteria were tropic for the accessory sex glands and induced acute inflammation in the prostate and seminal vesicles, with chronic inflammation lasting at least 1 year. Compared to controls, infection induced both acute and chronic inflammation with epithelial hyperplasia, stromal hyperplasia, and inflammatory cell infiltrates. In areas of inflammation, epithelial proliferation and hyperplasia often persist, despite decreased expression of androgen receptor (AR). Inflammatory cells in the prostates of CP1-infected mice were characterized at 8 weeks post-infection by flow cytometry, which showed an increase in macrophages and lymphocytes, particularly Th17 cells. Inflammation was additionally assessed in the context of carcinogenesis. Multiplex cytokine profiles of inflamed prostates showed that distinct inflammatory cytokines were expressed during prostate inflammation and cancer, with a subset of cytokines synergistically increased during concurrent inflammation and cancer. Furthermore, CP1 infection in the Hi-Myc mouse model of prostate cancer accelerated the development of invasive prostate adenocarcinoma, with 70% more mice developing cancer by 4.5 months of age. This study provides direct evidence that prostate inflammation accelerates prostate cancer progression and gives insight into the microenvironment changes induced by inflammation that may accelerate tumour initiation or progression. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Hepatic Inflammation and Fibrosis: Functional Links and Key Pathways
Seki, Ekihiro; Schwabe, Robert F.
2014-01-01
Inflammation is one of the most characteristic features of chronic liver disease of viral, alcoholic, fatty and autoimmune origin. Inflammation is typically present in all disease stages, and associated with the development of fibrosis, cirrhosis and hepatocellular carcinoma. In the past decade, numerous studies have contributed to improved understanding of the links between hepatic inflammation and fibrosis. Here, we review mechanisms that link inflammation with the development of liver fibrosis, focusing on the role of inflammatory mediators in hepatic stellate cell (HSC) activation and HSC survival during fibrogenesis and fibrosis regression. We will summarize the contributions of different inflammatory cells, including hepatic macrophages, T- and B-lymphocytes, NK cells and platelets, as well as key effectors such as cytokines, chemokines, and damage-associated molecular patterns. Furthermore, we will discuss the relevance of inflammatory signaling pathways for clinical liver disease and for the development of anti-fibrogenic strategies. PMID:25066777
Dietary quality and markers of inflammation: No association in youth with type 1 diabetes.
Liese, Angela D; Ma, Xiaonan; Ma, Xiaoguang; Mittleman, Murray A; The, Natalie S; Standiford, Debra A; Lawrence, Jean M; Pihoker, Catherine; Marcovina, Santica M; Mayer-Davis, Elizabeth J; Puett, Robin C
2018-02-01
Systemic inflammation is a key process underlying cardiovascular disease (CVD) development, and CVD risk is significantly elevated in persons with type 1 diabetes (T1D). Youth with T1D exhibit increased levels of inflammation. Studies in persons without diabetes suggest that dietary quality influences inflammation, yet little is known about dietary influences on inflammation in youth with T1D. This study evaluated the association of four distinct dietary quality indices (Dietary Approaches to Stop Hypertension (DASH), Healthy Eating Index 2010 (HEI2010), modified KIDMED and Total Antioxidant Capacity (TAC)) with biomarkers of inflammation (C-reactive protein (CRP), fibrinogen and interleukin-6 (IL-6)) in a sample of 2520 youth with T1D participating in the SEARCH for Diabetes in Youth Study. Average diet quality was moderate to poor, with mean scores of 43 (DASH, range 0-80), 55 (HEI2010, range 0-100), 3.7 (mKIDMED, range 3-12) and 7237 (TAC). None of the four diet quality scores was associated with the selected biomarkers of inflammation in any analyses. Evaluation of a non-linear relationship or interactions with BMI or levels of glycemic control did not alter the findings. Replication of analyses using longitudinal data yielded consistent findings with our cross-sectional results. Biomarkers of inflammation in youth with T1D may not be directly influenced by dietary intake, at least at the levels of dietary quality observed here. More work is needed to understand what physiologic mechanisms specific to persons with T1D might inhibit the generally beneficial influence of high dietary quality on systemic inflammation observed in populations without diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.
Subhashini; Chauhan, P S; Singh, R
2016-01-01
Antigen exposure and persistent inflammation leads to structural changes in the asthmatic airways which are collectively termed as "airway remodelling". Presently available asthma medications ameliorate inflammations but are unable to prevent or reverse the airway remodelling process as most of the treatment strategies are only focused on inflammation instead of remodelling. Curcumin, a phytochemical present in the rhizome of Curcuma longa is well known for its anti-inflammatory activity; however, the main drawback is its poor bioavailability which limits its therapeutic approval. So, the effect of nasal curcumin on acute and chronic asthma has been studied where short exposure to ovalbumin (4 days) represents acute phase whereas repeated exposures for longer (twice per week till 5 weeks) represents chronic asthma. Disodium cromoglycate (DSCG, 50mg/kg, i.p.) and dexamethasone (1mg/kg, i.p.) were used as standard drugs in acute and chronic model of asthma respectively. OVA-induced airway inflammation initiated in acute stage led to remodelling due to persistent inflammation, epithelial and sub epithelial thickening (smooth muscle thickening), extracellular matrix (ECM) deposition, goblet cell hyperplasia and mucus plug formation. Intranasal curcumin is effective in inhibiting airway inflammation and remodelling both by maintaining the structural integrity of lungs in terms of inflammation, airway wall thickening and mucus production. Our findings suggest that curcumin administered through nasal route might prove therapeutically efficient in inhibiting allergic airway inflammations and maintaining structural integrity in the mouse model of allergic asthma. This may lead to the development of curcumin aerosol in near future. Copyright © 2016 SEICAP. Published by Elsevier Espana. All rights reserved.
Inflammation, Self-Regulation, and Health: An Immunologic Model of Self-Regulatory Failure.
Shields, Grant S; Moons, Wesley G; Slavich, George M
2017-07-01
Self-regulation is a fundamental human process that refers to multiple complex methods by which individuals pursue goals in the face of distractions. Whereas superior self-regulation predicts better academic achievement, relationship quality, financial and career success, and lifespan health, poor self-regulation increases a person's risk for negative outcomes in each of these domains and can ultimately presage early mortality. Given its centrality to understanding the human condition, a large body of research has examined cognitive, emotional, and behavioral aspects of self-regulation. In contrast, relatively little attention has been paid to specific biologic processes that may underlie self-regulation. We address this latter issue in the present review by examining the growing body of research showing that components of the immune system involved in inflammation can alter neural, cognitive, and motivational processes that lead to impaired self-regulation and poor health. Based on these findings, we propose an integrated, multilevel model that describes how inflammation may cause widespread biobehavioral alterations that promote self-regulatory failure. This immunologic model of self-regulatory failure has implications for understanding how biological and behavioral factors interact to influence self-regulation. The model also suggests new ways of reducing disease risk and enhancing human potential by targeting inflammatory processes that affect self-regulation.
USDA-ARS?s Scientific Manuscript database
A hallmark of obesity is the increase in body adiposity and its associated inflammation that contribute to obesity-related chronic diseases including cancer. Clinical studies show that obesity is related to poor prognosis, early recurrence and metastasis in cancer patients. Recurrence and metastas...
Caulfield, Jasmine I; Caruso, Michael J; Michael, Kerry C; Bourne, Rebecca A; Chirichella, Nicole R; Klein, Laura C; Craig, Timothy; Bonneau, Robert H; August, Avery; Cavigelli, Sonia A
2017-05-30
Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ∼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ∼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ∼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Sampey, Brante P; Vanhoose, Amanda M; Winfield, Helena M; Freemerman, Alex J; Muehlbauer, Michael J; Fueger, Patrick T; Newgard, Christopher B; Makowski, Liza
2011-06-01
Obesity has reached epidemic proportions worldwide and reports estimate that American children consume up to 25% of calories from snacks. Several animal models of obesity exist, but studies are lacking that compare high-fat diets (HFD) traditionally used in rodent models of diet-induced obesity (DIO) to diets consisting of food regularly consumed by humans, including high-salt, high-fat, low-fiber, energy dense foods such as cookies, chips, and processed meats. To investigate the obesogenic and inflammatory consequences of a cafeteria diet (CAF) compared to a lard-based 45% HFD in rodent models, male Wistar rats were fed HFD, CAF or chow control diets for 15 weeks. Body weight increased dramatically and remained significantly elevated in CAF-fed rats compared to all other diets. Glucose- and insulin-tolerance tests revealed that hyperinsulinemia, hyperglycemia, and glucose intolerance were exaggerated in the CAF-fed rats compared to controls and HFD-fed rats. It is well-established that macrophages infiltrate metabolic tissues at the onset of weight gain and directly contribute to inflammation, insulin resistance, and obesity. Although both high fat diets resulted in increased adiposity and hepatosteatosis, CAF-fed rats displayed remarkable inflammation in white fat, brown fat and liver compared to HFD and controls. In sum, the CAF provided a robust model of human metabolic syndrome compared to traditional lard-based HFD, creating a phenotype of exaggerated obesity with glucose intolerance and inflammation. This model provides a unique platform to study the biochemical, genomic and physiological mechanisms of obesity and obesity-related disease states that are pandemic in western civilization today.
Kimer, Nina; Pedersen, Julie S; Tavenier, Juliette; Christensen, Jeffrey E; Busk, Troels M; Hobolth, Lise; Krag, Aleksander; Al-Soud, Waleed Abu; Mortensen, Martin S; Sørensen, Søren J; Møller, Søren; Bendtsen, Flemming
2018-01-01
Decompensated cirrhosis is characterized by disturbed hemodynamics, immune dysfunction, and high risk of infections. Translocation of viable bacteria and bacterial products from the gut to the blood is considered a key driver in this process. Intestinal decontamination with rifaximin may reduce bacterial translocation (BT) and decrease inflammation. A randomized, placebo-controlled trial investigated the effects of rifaximin on inflammation and BT in decompensated cirrhosis. Fifty-four out-patients with cirrhosis and ascites were randomized, mean age 56 years (± 8.4), and model for end-stage liver disease score 12 (± 3.9). Patients received rifaximin 550-mg BD (n = 36) or placebo BD (n = 18). Blood and fecal (n = 15) sampling were conducted at baseline and after 4 weeks. Bacterial DNA in blood was determined by real-time qPCR 16S rRNA gene quantification. Bacterial composition in feces was analyzed by 16S rRNA gene sequencing. Circulating markers of inflammation, including tumor necrosis factor alpha, interleukins 6, 10, and 18, stromal cell-derived factor 1-α, transforming growth factor β-1, and high sensitivity C-reactive protein, were unaltered by rifaximin treatment. Rifaximin altered abundance of bacterial taxa in blood marginally, only a decrease in Pseudomonadales was observed. In feces, rifaximin decreased bacterial richness, but effect on particular species was not observed. Subgroup analyses on patients with severely disturbed hemodynamics (n = 34) or activated lipopolysaccharide binding protein (n = 37) revealed no effect of rifaximin. Four weeks of treatment with rifaximin had no impact on the inflammatory state and only minor effects on BT and intestinal bacterial composition in stable, decompensated cirrhosis (NCT01769040). © 2017 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
D’Orazio, Nicolantonio; Gammone, Maria Alessandra; Gemello, Eugenio; De Girolamo, Massimo; Cusenza, Salvatore; Riccioni, Graziano
2012-01-01
Inflammation is a hot topic in medical research, because it plays a key role in inflammatory diseases: rheumatoid arthritis (RA) and other forms of arthritis, diabetes, heart diseases, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, even cancer and many others. Over the past few decades, it was realized that the process of inflammation is virtually the same in different disorders, and a better understanding of inflammation may lead to better treatments for numerous diseases. Inflammation is the activation of the immune system in response to infection, irritation, or injury, with an influx of white blood cells, redness, heat, swelling, pain, and dysfunction of the organs involved. Although the pathophysiological basis of these conditions is not yet fully understood, reactive oxygen species (ROS) have often been implicated in their pathogenesis. In fact, in inflammatory diseases the antioxidant defense system is compromised, as evidenced by increased markers of oxidative stress, and decreased levels of protective antioxidant enzymes in patients with rheumatoid arthritis (RA). An enriched diet containing antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic substances, has been suggested to improve symptoms by reducing disease-related oxidative stress. In this respect, the marine world represents a largely untapped reserve of bioactive ingredients, and considerable potential exists for exploitation of these bioactives as functional food ingredients. Substances such as n-3 oils, carotenoids, vitamins, minerals and peptides provide a myriad of health benefits, including reduction of cardiovascular diseases, anticarcinogenic and anti-inflammatory activities. New marine bioactives are recently gaining attention, since they could be helpful in combating chronic inflammatory degenerative conditions. The aim of this review is to examine the published studies concerning the potential pharmacological properties and application of many marine bioactives against inflammatory diseases. PMID:22690145
Pietrzak, Max
2016-03-01
Adhesive capsulitis (AC) is very poorly understood, particularly it's underlying etiology. Obesity and metabolic syndrome, which are strongly associated with chronic low grade inflammation, are becoming increasingly understood to underlie a raft of morbid states including upper limb pain syndromes, diabetes (DM), cardiovascular disease (CVD), cancer and central nervous system dysfunction and degeneration. Notwithstanding age, two of the strongest established risk factors for AC are DM and CVD. The hypothesis argues that similar to DM and CVD, the inflammation and capsular fibrosis seen in AC is precipitated by metabolic syndrome and chronic low grade inflammation. These pathophysiological mechanisms are highly likely to be perpetuated by upregulation of pro-inflammatory cytokine production, sympathetic dominance of autonomic balance, and neuro-immune activation. The hypothesis predicts and describes how these processes may etiologically underpin and induce each sub-classification of AC. An improved understanding of the etiology of AC may lead to more accurate diagnosis, improved management, treatment outcomes, and reduce or prevent pain, disability and suffering associated with the disease. The paper follows on with a discussion of similarities between the pathophysiology of AC to general systemic inflammatory control mechanisms whereby connective tissue (CT) fibrosis is induced as a storage depot for leukocytes and chronic inflammatory cells. The potential role of hyaluronic acid (HA), the primary component of the extracellular matrix (ECM) and CT, in the pathophysiology of AC is also discussed with potential treatment implications. Lastly, a biochemical link between physical and mental health through the ECM is described and the concept of a periventricular-limbic central driver of CT dysfunction is introduced. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Xiaonan; DuBois, Debra C.; Almon, Richard R.
2017-01-01
Naproxen (NPX) is used in the treatment of rheumatoid arthritis (RA) for alleviation of pain and inflammation. In view of the extensive albumin binding of NPX, this study investigates whether chronic inflammation and sex influence the physiologic albumin concentrations, plasma protein binding, and pharmacokinetics (PK) of NPX. The PK of NPX was evaluated in a rat model of RA [collagen-induced arthritis (CIA) in Lewis rats] and in healthy controls. These PK studies included 1) NPX in female and male CIA rats that received 10, 25, or 50 mg/kg NPX i.p.; and 2) NPX in healthy female and male rats after i.p. dosing of NPX at 50 mg/kg. Plasma albumin concentrations were quantified by enzyme-linked immunosorbent assay, and protein binding was assessed using ultrafiltration. The NPX concentrations in plasma and filtrates were determined by liquid chromatography–tandem mass spectrometry (LC-MS/MS). Plasma concentration-time data of NPX were first assessed by noncompartmental analysis (NCA). Nonlinear PK as indicated by dose-dependent NCA clearances and distribution volumes was observed. A two-compartment model with a first-order absorption process incorporating nonlinear protein binding in plasma and tissues jointly described the PK data of all groups. Saturable albumin binding accounts for the nonlinearity of NPX PK in all rats as well as part of the PK differences in arthritic rats. The CIA rats exhibited reduced albumin concentrations, reduced overall protein binding, and reduced clearances of unbound NPX, consistent with expectations during inflammation. The net effect of chronic inflammation was an elevation of the Cmax and area under the plasma concentration-time curve (AUC) of unbound drug. PMID:28246126